Science.gov

Sample records for computational nuclear structure

  1. An introduction to using the FORTRAN programs provided with Computational Nuclear Physics 1 Nuclear Structure

    NASA Technical Reports Server (NTRS)

    Boytos, Matthew A.; Norbury, John W.

    1992-01-01

    The authors of this paper have provided a set of ready-to-run FORTRAN programs that should be useful in the field of theoretical nuclear physics. The purpose of this document is to provide a simple synopsis of the programs and their use. A separate section is devoted to each program set and includes: abstract; files; compiling, linking, and running; obtaining results; and a tutorial.

  2. Large-Scale Computations Leading to a First-Principles Approach to Nuclear Structure

    SciTech Connect

    Ormand, W E; Navratil, P

    2003-08-18

    We report on large-scale applications of the ab initio, no-core shell model with the primary goal of achieving an accurate description of nuclear structure from the fundamental inter-nucleon interactions. In particular, we show that realistic two-nucleon interactions are inadequate to describe the low-lying structure of {sup 10}B, and that realistic three-nucleon interactions are essential.

  3. Frontiers of Nuclear Structure

    SciTech Connect

    Nazarewicz, Witold

    1997-12-31

    Current developments in nuclear structure at the `limits` are discussed. The studies of nuclear behavior at extreme conditions provide us with invaluable information about the nature of the nuclear interaction and nucleonic correlations at various energy-distance scales. In this talk frontiers of nuclear structure are briefly reviewed from a theoretical perspective, mainly concentrating on medium-mass and heavy nuclei.

  4. Challenges in nuclear structure theory

    NASA Astrophysics Data System (ADS)

    Nazarewicz, W.

    2016-08-01

    The goal of nuclear structure theory is to build a comprehensive microscopic framework in which properties of nuclei and extended nuclear matter, and nuclear reactions and decays can all be consistently described. Due to novel theoretical concepts, breakthroughs in the experimentation with rare isotopes, increased exchange of ideas across different research areas, and the progress in computer technologies and numerical algorithms, nuclear theorists have been quite successful in solving various bits and pieces of the nuclear many-body puzzle and the prospects are exciting. This article contains a brief, personal perspective on the status of the field.

  5. Computer vision in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Sommer, Gerald

    1990-11-01

    Computervision is used to overcome the mismatch between user models and implementation models of software systems for image analysis in nuclear medicine. Computer vision in nuclear medicine results in an active support of the user by the system. This is reached by modeling of imaging equipment and schedules scenes of interest and the process of visual image interpretation. Computer vision is demonstrated especially in the low level and medium level range. Special highlights are given for the estimation of image quality an uniform approach to enhancement and restoration of images and analysis of shape and dynamics of patterns. 1.

  6. Computational Infrastructure for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Smith, M. S.; Lingerfelt, E. J.; Scott, J. P.; Nesaraja, C. D.; Hix, W. R.; Bardayan, D. W.; Blackmon, J. C.; Chae, K.; Guidry, M. W.; Hard, C. C.; Sharp, J. E.; Kozub, R. L.; Meyer, R. A.

    2004-12-01

    The Computational Infrastructure for Nuclear Astrophysics is a platform-independent, online suite of computer codes developed by the ORNL Nuclear Data Project that makes a rapid connection between laboratory nuclear physics results and astrophysical models. It enables users to evaluate cross sections, process them into thermonuclear reaction rates, and parameterize (with a few percent accuracy) these rates that vary by up to 30 orders of magnitude over the temperatures of interest. Users can then properly format these rates for input into astrophysical computer simulations, create and manipulate libraries of rates, as well as run and visualize sample post-processing nucleosynthesis calculations. For example, we have developed animated nuclide charts that show how predicted abundances (represented by a user-defined color scale) change in time. With this unique suite, users can within a very short time quantify the astrophysical impact of a newly measured or calculated cross section, or a newly created customized reaction rate library, and then document and share their results with the scientific community. The suite has a straightforward interface with a "Windows Wizard" motif whereby users progress through complicated calculations in a step-by-step fashion. Users can upload their own files for processing and save their work on our server, as well as work with files that other users wish to share. These tools are currently being used to investigate novae and X-ray bursts. The suite is available through nucastrodata.org, a website that also hyperlinks available nuclear data sets relevant for nuclear astrophysics research. New features are continually being added to this software, which is funded by the U.S. Department of Energy Low Energy Nuclear Physics and Nuclear Data Programs. ORNL is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725.

  7. Computational Design of Advanced Nuclear Fuels

    SciTech Connect

    Savrasov, Sergey; Kotliar, Gabriel; Haule, Kristjan

    2014-06-03

    The objective of the project was to develop a method for theoretical understanding of nuclear fuel materials whose physical and thermophysical properties can be predicted from first principles using a novel dynamical mean field method for electronic structure calculations. We concentrated our study on uranium, plutonium, their oxides, nitrides, carbides, as well as some rare earth materials whose 4f eletrons provide a simplified framework for understanding complex behavior of the f electrons. We addressed the issues connected to the electronic structure, lattice instabilities, phonon and magnon dynamics as well as thermal conductivity. This allowed us to evaluate characteristics of advanced nuclear fuel systems using computer based simulations and avoid costly experiments.

  8. High energy nuclear structures

    SciTech Connect

    Boguta, J.; Kunz, J.

    1984-03-09

    In conventional nuclear physics the nucleus is described as a non-relativistic many-body system, which is governed by the Schroedinger equation. Nucleons interact in this framework via static two-body potentials, mesonic degrees of freedom are neglected. An alternative description of nuclear physics in terms of a relativistic field theory has been developed by Walecka. The model Lagrangian containing baryons, sigma-mesons and ..omega..-mesons was subsequently extended to include also ..pi..-mesons and rho-mesons. An essential feature of such a nuclear Lagrangian is its renormalizability. In addition to the description of known nuclear structure the field theoretical approach may reveal entirely new nuclear phenomena, based on the explicit treatment of mesonic degrees of freedom. The existence of such abnormal nuclear states was proposed by Lee and Wick employing the sigma-model Lagrangian. There the non-linearity of the meson field equations allows for soliton solutions in the presence of nucleons, in particular the sigma-field may exhibit a kink. Different types of soliton solutions occur in gauge theories with hidden symmetries. In the phenomenological Lagrangian the rho-meson is described by a non-abelian gauge field, that acquires its mass spontaneously due to the non-vanishing vacuum expectation value of a Higgs field. A general ansatz for soliton solutions of such a gauge theory was given by Dashen et al. A specific solution and its possible implications for nuclear physics like anomalous nuclear states were discussed by Boguta.

  9. Computational nuclear quantum many-body problem: The UNEDF project

    SciTech Connect

    Fann, George I

    2013-01-01

    The UNEDF project was a large-scale collaborative effort that applied high-performance computing to the nuclear quantum many-body problem. The primary focus of the project was on constructing, validating, and applying an optimized nuclear energy density functional, which entailed a wide range of pioneering developments in microscopic nuclear structure and reactions, algorithms, high-performance computing, and uncertainty quantification. UNEDF demonstrated that close associations among nuclear physicists, mathematicians, and computer scientists can lead to novel physics outcomes built on algorithmic innovations and computational developments. This review showcases a wide range of UNEDF science results to illustrate this interplay.

  10. Continuum Nuclear Structure via

    NASA Astrophysics Data System (ADS)

    Templon, Jeffrey A.

    1993-01-01

    Nuclear spectra are generally well-understood for excitation energies below the particle-emission threshold. Above this threshold, excited states decay preferentially by emission of nucleons or nucleon clusters. These resonant excitations are short-lived, producing continuum spectra of overlapping states accompanied by non-resonant, probe -dependent background processes. The resonant excitations' properties are difficult to deduce from these spectra. Many important advances in nuclear physics require understanding of such excitations. (e,e^' X) coincidence experiments have established the utility of angular correlation measurements of particle (X) emitted by decaying resonances for continuum studies. However, electron-induced reactions excite only a subset of the total nuclear response. Hadronic probes are necessary for a complete study. This dissertation describes a (p,p^' X) coincidence experiment, the first at intermediate energies where microscopic theories apply. The reaction's utility was investigated and applied to ^{12 }C. The experiment was performed using a 156 MeV polarized proton beam. A magnetic spectrometer was used to detect scattered protons. An array of eight silicon-detector telescopes was constructed and used to measure the angular correlation of charged particles (X). Inclusive (p,p ^') and exclusive (p,p ^' X) data were acquired simultaneously. The momentum transfer range (0.6<= q<= 1.2 fm^{-1}) was covered in three spectrometer angle settings. The excitation energy range spanned the region from sharp states to quasifree processes. Analyzing powers and cross sections were measured for both inclusive and exclusive data. A simple reaction model was developed which suggested a Legendre-polynomial series should describe the sigma(theta_{X}) data. The model relates the polynomial coefficients to nuclear structure information. A result of this work is that this series was found to satisfactorily describe the data and provided new information about

  11. Evaluated nuclear structure data file

    NASA Astrophysics Data System (ADS)

    Tuli, J. K.

    The Evaluated Nuclear Structure Data File (ENSDF) contains the evaluated nuclear properties of all known nuclides. These properties are derived both from nuclear reaction and radioactive decay measurements. All experimental data are evaluated to create the adopted properties for each nuclide. ENSDF, together with other numeric and biographic files, can be accessed on-line through the INTERNET or modem. Some of the databases are also available on the World Wide Web. The structure and the scope of ENSDF are presented along with the on-line access system of the National Nuclear Data Center at Brookhaven National Laboratory.

  12. Evaluated nuclear structure data file

    NASA Astrophysics Data System (ADS)

    Tuli, J. K.

    1996-02-01

    The Evaluated Nuclear Structure Data File (ENSDF) contains the evaluated nuclear properties of all known nuclides, as derived both from nuclear reaction and radioactive decay measurements. All experimental data are evaluated to create the adopted properties for each nuclide. ENSDF, together with other numeric and bibliographic files, can be accessed on-line through the INTERNET or modem, and some of the databases are also available on the World Wide Web. The structure and the scope of ENSDF are presented along with the on-line access system of the National Nuclear Data Center at Brookhaven National Laboratory.

  13. Computers boost structural technology

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Venneri, Samuel L.

    1989-01-01

    Derived from matrix methods of structural analysis and finite element methods developed over the last three decades, computational structures technology (CST) blends computer science, numerical analysis, and approximation theory into structural analysis and synthesis. Recent significant advances in CST include stochastic-based modeling, strategies for performing large-scale structural calculations on new computing systems, and the integration of CST with other disciplinary modules for multidisciplinary analysis and design. New methodologies have been developed at NASA for integrated fluid-thermal structural analysis and integrated aerodynamic-structure-control design. The need for multiple views of data for different modules also led to the development of a number of sophisticated data-base management systems. For CST to play a role in the future development of structures technology and in the multidisciplinary design of future flight vehicles, major advances and computational tools are needed in a number of key areas.

  14. Digital computer operation of a nuclear reactor

    DOEpatents

    Colley, R.W.

    1982-06-29

    A method is described for the safe operation of a complex system such as a nuclear reactor using a digital computer. The computer is supplied with a data base containing a list of the safe state of the reactor and a list of operating instructions for achieving a safe state when the actual state of the reactor does not correspond to a listed safe state, the computer selects operating instructions to return the reactor to a safe state.

  15. Digital computer operation of a nuclear reactor

    DOEpatents

    Colley, Robert W.

    1984-01-01

    A method is described for the safe operation of a complex system such as a nuclear reactor using a digital computer. The computer is supplied with a data base containing a list of the safe state of the reactor and a list of operating instructions for achieving a safe state when the actual state of the reactor does not correspond to a listed safe state, the computer selects operating instructions to return the reactor to a safe state.

  16. Nuclear Structure at the Limits

    SciTech Connect

    Nazarewicz, Witold

    1997-12-31

    One of the frontiers of today`s nuclear science is the ``journey to the limits``: of atomic charge and nuclear mass, of neutron-to-proton ratio, and of angular momentum. The tour to the limits is not only a quest for new, exciting phenomena but the new data are expected, as well, to bring qualitatively new information about the fundamental properties of the nucleonic many-body system, the nature of the nuclear interaction, and nucleonic correlations at various energy-distance scales. In this talk, current developments in nuclear structure at the limits are discussed from a theoretical perspective.

  17. Nuclear structure from radioactive decay

    SciTech Connect

    Wood, J.L.

    1991-09-30

    This report discusses nuclear structure from radioactive decay of the following: Neutron-Deficient Iridium Isotopes; Neutron-Deficient Platinum Isotopes; Neutron-Deficient Gold Isotopes; Neutron-Deficient Mercury Isotopes; Neutron-Deficient Thallium Isotopes; Neutron-Deficient Lead Isotopes; Neutron-Deficient Samarium Isotopes; Neutron-Deficient Promethium Isotopes; Neutron-Deficient Neodymium Isotopes; and Neutron-Deficient Praseodymium Isotopes. Also discussed are Nuclear Systematics and Models.

  18. Computational Challenges in Nuclear Weapons Simulation

    SciTech Connect

    McMillain, C F; Adams, T F; McCoy, M G; Christensen, R B; Pudliner, B S; Zika, M R; Brantley, P S; Vetter, J S; May, J M

    2003-08-29

    After a decade of experience, the Stockpile Stewardship Program continues to ensure the safety, security and reliability of the nation's nuclear weapons. The Advanced Simulation and Computing (ASCI) program was established to provide leading edge, high-end simulation capabilities needed to meet the program's assessment and certification requirements. The great challenge of this program lies in developing the tools and resources necessary for the complex, highly coupled, multi-physics calculations required to simulate nuclear weapons. This paper describes the hardware and software environment we have applied to fulfill our nuclear weapons responsibilities. It also presents the characteristics of our algorithms and codes, especially as they relate to supercomputing resource capabilities and requirements. It then addresses impediments to the development and application of nuclear weapon simulation software and hardware and concludes with a summary of observations and recommendations on an approach for working with industry and government agencies to address these impediments.

  19. Nuclear Quadrupole Moments and Nuclear Shell Structure

    DOE R&D Accomplishments Database

    Townes, C. H.; Foley, H. M.; Low, W.

    1950-06-23

    Describes a simple model, based on nuclear shell considerations, which leads to the proper behavior of known nuclear quadrupole moments, although predictions of the magnitudes of some quadrupole moments are seriously in error.

  20. Distributed computing and nuclear reactor analysis

    SciTech Connect

    Brown, F.B.; Derstine, K.L.; Blomquist, R.N.

    1994-03-01

    Large-scale scientific and engineering calculations for nuclear reactor analysis can now be carried out effectively in a distributed computing environment, at costs far lower than for traditional mainframes. The distributed computing environment must include support for traditional system services, such as a queuing system for batch work, reliable filesystem backups, and parallel processing capabilities for large jobs. All ANL computer codes for reactor analysis have been adapted successfully to a distributed system based on workstations and X-terminals. Distributed parallel processing has been demonstrated to be effective for long-running Monte Carlo calculations.

  1. Evaluated Nuclear Structure Data File

    NASA Astrophysics Data System (ADS)

    Tuli, Jagdish K.

    2004-10-01

    The Evaluated Nuclear Structure Data File (ENSDF) is a leading resource for the experimental nuclear data. It is maintained and distributed by the National Nuclear Data Center, Brookhaven National Laboratory. The file is mainly contributed to by an international network of evaluators under the auspice of the International Atomic Energy Agency. The ENSDF is updated, generally by mass number, i.e., evaluating together all isobars for a given mass number. If, however, experimental activity in an isobaric chain is limited to a particular nuclide then only that nuclide is updated. The evaluations are published in the journal Nuclear Data Sheets, a publication of Elsevier. This presentation will briefly review this and other databases and dissemination services of the US and international network, and reflect on how the network resources can help scientists in both the basic as well as the applied fields.

  2. Nuclear Structure at the Limits

    SciTech Connect

    Nazarewicz, W.

    1998-01-12

    One of the frontiers of today�s nuclear science is the �journey to the limits� of atomic charge and nuclear mass, of neutron-to-proton ratio, and of angular momentum. The tour to the limits is not only a quest for new, exciting phenomena, but the new data are expected, as well, to bring qualitatively new information about the fundamental properties of the nucleonic many-body system, the nature of the nuclear interaction, and nucleonic correlations at various energy-distance scales. In this series of lectures, current developments in nuclear structure at the limits are discussed from a theoretical perspective, mainly concentrating on medium-mass and heavy nuclei.

  3. Nuclear structure of Trypanosoma cruzi.

    PubMed

    Schenkman, Sergio; Pascoalino, Bruno dos Santos; Nardelli, Sheila C

    2011-01-01

    The presence of nucleus in living organisms characterizes the Eukaryote domain. The nucleus compartmentalizes the genetic material surrounded by a double membrane called nuclear envelope. The nucleus has been observed since the advent of the light microscope, and sub-compartments such as nucleoli, diverse nuclear bodies and condensed chromosomes have been later recognized, being part of highly organized and dynamic structure. The significance and function of such organization has increased with the understanding of transcription, replication, DNA repair, recombination processes. It is now recognized as consequence of adding complexity and regulation in more complex eukaryotic cells. Here we provide a description of the actual stage of knowledge of the nuclear structure of Trypanosoma cruzi. As an early divergent eukaryote, it presents unique and/or reduced events of DNA replication, transcription and repair as well as RNA processing and transport to the cytosol. Nevertheless, it shows peculiar structure changes accordingly to the cell cycle and stage of differentiation. T. cruzi proliferates only as epimastigote and amastigote stages, and when these forms differentiate in trypomastigote forms, their cell cycle is arrested. This arrested stage is capable of invading mammalian cells and of surviving harsh conditions, such as the gut of the insect vector and mammalian macrophages. Transcription and replication decrease during transformation in trypomastigotes implicating large alterations in the nuclear structure. Recent evidences also suggest that T. cruzi nucleus respond to oxidative and nutritional stresses. Due to the phylogenetic proximity with other well-known trypanosomes, such as Trypanosoma brucei and Leishmania major, they are expected to have similar nuclear organization, although differences are noticed due to distinct life cycles, cellular organizations and the specific adaptations for surviving in different host environments. Therefore, the general

  4. Changing Facets of Nuclear Structure

    NASA Astrophysics Data System (ADS)

    Covello, Aldo

    2008-04-01

    Section I. Exotic nuclear structure. Radioactive beams at TRIUMF / A. C. Shotter. Status of RI-beam factory project at RIKEN / H. Ueno. Population of neutron unbound states via two-proton knockout reactions / N. Frank ... [et al.]. Studies of neutron-rich nuclei using ISOL facilities at CERN and Jyväskylä / J. Äystö. Shell structure evolution far from stability: recent results from GANIL / F. Azaiez. Magnetic moment meaurements: pushing the limits / N. Benczer-Koller. Technique for measuring angular correlations and g-factors of excited states with large multi-detector arrays: an application to neutron rich nuclei produced in spontaneous fission / A. V. Ramayya ... [et al.]. Isospin symmetry and proton decay: identification of the 10+ isomer in [symbol]Ni / C. Fahlander ... [et al.]. Exploring the evolution of the shell structure by means of deep inelastic reactions / G. de Angelis. Studies on the exotic structure of [symbol]Al by measurements of [symbol] and P[symbol] / D. Q. Fang ... [et al.]. Extended cluster model for light and medium nuclei / M. Tomaselli ... [et al.]. Nuclear structure studies on exotic nuclei with radioactive beams - present status and future perspectives at FAIR / P. Egelhof. The SPES direct target project at the Laboratori Nazionali di Legnaro / G. Prete ... [et al.] -- Section II. Nuclear structure and nuclear forces. Modern aspects of nuclear structure theory / J. Wambach. Correlations in nuclei: a review / R. Schiavilla. Correlated nucleons in k- and r-space / I. Sick. Roles of all-order core polarizations and Brown-Rho scaling in nucleon effective interactions / T. T. S. Kuo ... [et al.]. Ab initio and ab exitu no core shell model / J. P. Vary ... [et al.]. Ab-initio coupled cluster theory for open quantum systems / G. Hagen ... [et al.]. Symplectic no-core shell model / J. P. Draayer ... [et al.]. Role of deformed symplectic configurations in ab initio no-core shell model results / T. Dytrych ... [et al.]. Nuclear structure

  5. Nuclear structure from radioactive decay

    SciTech Connect

    Wood, J.L.

    1990-09-30

    This report discusses the nuclear structure of the following isotopes as a result of radioactive decays: neutron-deficient iridium isotopes; neutron-deficient platinum isotopes; neutron-deficient gold isotopes; neutron-deficient mercury isotopes; neutron-deficient thallium isotopes; neutron-deficient lead isotopes; neutron-deficient promethium isotopes; and neutron-deficient samarium isotopes.

  6. Experimental data confronts nuclear structure

    SciTech Connect

    Garrett, J.D.

    1988-01-01

    The physical content of experimental data for a variety of excitation energies and angular momenta is summarized. The specific nuclear structure questions which these data address are considered. The specific regions discussed are: low-spin data near the particle separation thresholds; low-spin data at intermediate excitation energies; high-spin, near-yrast data and high-spin data at larger excitation energies. 63 refs., 14 figs., 1 tab.

  7. Effective Field Theories of Nuclear Structure

    NASA Astrophysics Data System (ADS)

    Furnstahl, Richard

    1996-10-01

    Traditional nuclear structure calculations have been pushed to new heights recently by exploiting new methods and increased computational power.(B. Pudliner et al)., Phys. Rev. Lett. 74, 4396 (1995); S.E. Koonin et al., nucl-th/9602006 (1996). Nevertheless, these developments have been made without direct input from quantum chromodynamics (QCD), the basic theory of strong interactions. Effective Field Theory provides a framework for connecting the energy scales and degrees of freedom appropriate for nuclear structure with those in the underlying QCD. Recent work shows how spontaneously broken chiral symmetry constrains the systematics of few-body nuclei.(See, for example, J.L. Friar, Few-Body Systems Suppl. 99), 1 (1996). Important ingredients are dimensional power counting and the assumption of naturalness,(A. Manohar and H. Georgi, Nucl. Phys. B234), 189 (1984). which allow estimates of the sizes of terms in effective lagrangians and imply the hierarchy of nuclear many-body forces. The delicacies of nuclear saturation introduce formidable obstacles to the systematic extension of effective chiral field theory to finite densities. For heavier nuclei, however, the successes of relativistic mean-field phenomenology can be understood in terms of nonrenormalizable effective field theories that are consistent with the symmetries of QCD. This framework provides new insight into issues of relativistic versus nonrelativistic formulations, nucleon compositeness, vacuum contributions, and extrapolations to high density.

  8. Nuclear Power Plant Concrete Structures

    SciTech Connect

    Basu, Prabir; Labbe, Pierre; Naus, Dan

    2013-01-01

    A nuclear power plant (NPP) involves complex engineering structures that are significant items of the structures, systems and components (SSC) important to the safe and reliable operation of the NPP. Concrete is the commonly used civil engineering construction material in the nuclear industry because of a number of advantageous properties. The NPP concrete structures underwent a great degree of evolution, since the commissioning of first NPP in early 1960. The increasing concern with time related to safety of the public and environment, and degradation of concrete structures due to ageing related phenomena are the driving forces for such evolution. The concrete technology underwent rapid development with the advent of chemical admixtures of plasticizer/super plasticizer category as well as viscosity modifiers and mineral admixtures like fly ash and silica fume. Application of high performance concrete (HPC) developed with chemical and mineral admixtures has been witnessed in the construction of NPP structures. Along with the beneficial effect, the use of admixtures in concrete has posed a number of challenges as well in design and construction. This along with the prospect of continuing operation beyond design life, especially after 60 years, the impact of extreme natural events ( as in the case of Fukushima NPP accident) and human induced events (e.g. commercial aircraft crash like the event of September 11th 2001) has led to further development in the area of NPP concrete structures. The present paper aims at providing an account of evolution of NPP concrete structures in last two decades by summarizing the development in the areas of concrete technology, design methodology and construction techniques, maintenance and ageing management of concrete structures.

  9. Computer applications for engineering/structural analysis

    SciTech Connect

    Zaslawsky, M.; Samaddar, S.K.

    1991-01-01

    Analysts and organizations have a tendency to lock themselves into specific codes with the obvious consequences of not addressing the real problem and thus reaching the wrong conclusion. This paper discusses the role of the analyst in selecting computer codes. The participation and support of a computation division in modifying the source program, configuration management, and pre- and post-processing of codes are among the subjects discussed. Specific examples illustrating the computer code selection process are described in the following problem areas: soil structure interaction, structural analysis of nuclear reactors, analysis of waste tanks where fluid structure interaction is important, analysis of equipment, structure-structure interaction, analysis of the operation of the superconductor supercollider which includes friction and transient temperature, and 3D analysis of the 10-meter telescope being built in Hawaii. Validation and verification of computer codes and their impact on the selection process are also discussed.

  10. Theoretical studies in nuclear reactions and nuclear structure

    SciTech Connect

    Not Available

    1992-05-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon's mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon's mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon's mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e{sup +}e{sup {minus}} problem and heavy ion dynamics.

  11. Theoretical studies in nuclear reactions and nuclear structure. Progress report

    SciTech Connect

    Not Available

    1992-05-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon`s mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon`s mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon`s mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e{sup +}e{sup {minus}} problem and heavy ion dynamics.

  12. Computer Information System For Nuclear Medicine

    NASA Astrophysics Data System (ADS)

    Cahill, P. T.; Knowles, R. J.....; Tsen, O.

    1983-12-01

    To meet the complex needs of a nuclear medicine division serving a 1100-bed hospital, a computer information system has been developed in sequential phases. This database management system is based on a time-shared minicomputer linked to a broadband communications network. The database contains information on patient histories, billing, types of procedures, doses of radiopharmaceuticals, times of study, scanning equipment used, and technician performing the procedure. These patient records are cycled through three levels of storage: (a) an active file of 100 studies for those patients currently scheduled, (b) a temporary storage level of 1000 studies, and (c) an archival level of 10,000 studies containing selected information. Merging of this information with reports and various statistical analyses are possible. This first phase has been in operation for well over a year. The second phase is an upgrade of the size of the various storage levels by a factor of ten.

  13. Solar structure without computers

    NASA Astrophysics Data System (ADS)

    Clayton, Donald D.

    1986-04-01

    We derive succinctly the equations of solar structure. We first present models of objects in hydrostatic equilibrium that fail as models of the sun in order to illustrate important physical requirements. Then by arguing physically that the pressure gradient can be matched to the simple function dP/dr=-kre-(r/a)2, we derive a complete analytic representation of the solar interior in terms of a one-parameter family of models. Two different conditions are then used to select the appropriate value of the parameter specifying the best model within the family: (1) the solar luminosity is equated to the thermonuclear power generated near the center and/or (2) the solar luminosity is equated to the radiative diffusion of energy from a central region. The two methods of selecting the parameter agree to within a few percent. The central conditions of the sun are well calculated by these analytic formulas, all without aid of a computer. This is an original treatment, yielding much the best description of the solar center to be found by methods of differential and integral calculus, rendering it an excellent laboratory for applied calculus.

  14. Microscopic Approaches to Nuclear Structure: Configuration Interaction

    SciTech Connect

    Ormand, W E

    2007-09-21

    The configuration interaction (CI) approach to solving the nuclear many-body problem, also known as the interacting shell model, has proven to be powerful tool in understanding the structure of nuclei. The principal criticism of past applications of the shell model is the reliance on empirical tuning to interaction matrix elements. If an accurate description of nuclei far from the valley of stability, where little or no data is available, a more fundamental approach is needed. This starts with recent ab initio approaches with effective interactions in the no-core shell model (NCSM). Using effective-field theory for guidance, fully ab initio descriptions of nuclei up to {sup 16}O with QCD based NN, NNN, and NNNN interactions will be possible within the next five years. An important task is then to determine how to use these NCSM results to develop effective interactions to describe heavier nuclei without the need to resort to an empirical retuning with every model space. Thus, it is likely that more traditional CI applications utilizing direct diagonalization and more fundamental interactions will be applicable to nuclei with perhaps up to one hundred constituents. But, these direct diagonalization CI applications will always be computationally limited due to the rapid increase in the number of configurations with particle number. Very recently, the shifted-contour method has been applied to the Auxiliary-field Monte Carlo approach to the Shell Model (AFMCSM), and preliminary applications exhibit a remarkable taming of the notorious sign problem. If the mitigation of the sign problem holds true, the AFMCSM will offer a method to compute quantum correlations to mean-field applications for just about all nuclei; giving exact results for CI model spaces that can approach 10{sup 20-25}. In these lectures, I will discuss modern applications of CI to the nuclear many-body problem that have the potential to guide nuclear structure theory into the next decade.

  15. Nuclear Structure in China 2010

    NASA Astrophysics Data System (ADS)

    Bai, Hong-Bo; Meng, Jie; Zhao, En-Guang; Zhou, Shan-Gui

    2011-08-01

    Personal view on nuclear physics research / Jie Meng -- High-spin level structures in [symbol]Zr / X. P. Cao ... [et al.] -- Constraining the symmetry energy from the neutron skin thickness of tin isotopes / Lie-Wen Chen ... [et al.] -- Wobbling rotation in atomic nuclei / Y. S. Chen and Zao-Chun Gao -- The mixing of scalar mesons and the possible nonstrange dibaryons / L. R. Dai ... [et al.] -- Net baryon productions and gluon saturation in the SPS, RHIC and LHC energy regions / Sheng-Qin Feng -- Production of heavy isotopes with collisions between two actinide nuclides / Z. Q. Feng ... [et al.] -- The projected configuration interaction method / Zao-Chun Gao and Yong-Shou Chen -- Applications of Nilsson mean-field plus extended pairing model to rare-earth nuclei / Xin Guan ... [et al.] -- Complex scaling method and the resonant states / Jian-You Guo ... [et al.] -- Probing the equation of state by deep sub-barrier fusion reactions / Hong-Jun Hao and Jun-Long Tian -- Doublet structure study in A[symbol]105 mass region / C. Y. He ... [et al.] -- Rotational bands in transfermium nuclei / X. T. He -- Shape coexistence and shape evolution [symbol]Yb / H. Hua ... [et al.] -- Multistep shell model method in the complex energy plane / R. J. Liotta -- The evolution of protoneutron stars with kaon condensate / Ang Li -- High spin structures in the [symbol]Lu nucleus / Li Cong-Bo ... [et al.] -- Nuclear stopping and equation of state / QingFeng Li and Ying Yuan -- Covariant description of the low-lying states in neutron-deficient Kr isotopes / Z. X. Li ... [et al.] -- Isospin corrections for superallowed [symbol] transitions / HaoZhao Liang ... [et al.] -- The positive-parity band structures in [symbol]Ag / C. Liu ... [et al.] -- New band structures in odd-odd [symbol]I and [symbol]I / Liu GongYe ... [et al.] -- The sd-pair shell model and interacting boson model / Yan-An Luo ... [et al.] -- Cross-section distributions of fragments in the calcium isotopes projectile

  16. Allosteric mechanisms of nuclear receptors: insights from computational simulations.

    PubMed

    Mackinnon, Jonathan A G; Gallastegui, Nerea; Osguthorpe, David J; Hagler, Arnold T; Estébanez-Perpiñá, Eva

    2014-08-05

    The traditional structural view of allostery defines this key regulatory mechanism as the ability of one conformational event (allosteric site) to initiate another in a separate location (active site). In recent years computational simulations conducted to understand how this phenomenon occurs in nuclear receptors (NRs) has gained significant traction. These results have yield insights into allosteric changes and communication mechanisms that underpin ligand binding, coactivator binding site formation, post-translational modifications, and oncogenic mutations. Moreover, substantial efforts have been made in understanding the dynamic processes involved in ligand binding and coregulator recruitment to different NR conformations in order to predict cell/tissue-selective pharmacological outcomes of drugs. They also have improved the accuracy of in silico screening protocols so that nowadays they are becoming part of optimisation protocols for novel therapeutics. Here we summarise the important contributions that computational simulations have made towards understanding the structure/function relationships of NRs and how these can be exploited for rational drug design.

  17. Structure of different grades of nuclear graphite

    NASA Astrophysics Data System (ADS)

    Mironov, B. E.; Westwood, A. V. K.; Scott, A. J.; Brydson, R.; Jones, A. N.

    2012-07-01

    Owing to its low neutron absorption cross-section, large scattering cross section and thermal and chemical stability, graphite is a key component of operational nuclear reactors where it is used as a moderator, reflector and as major structural component for 90% of current UK nuclear plants. It is also of interest for use in developing the future high temperature gas-cooled reactors. The properties of the nuclear graphite are influenced by its structural characteristics, which change as a function of neutron irradiation, temperature and oxidation. The principal structural changes during neutron irradiation that affect the integrity and dimensions of nuclear graphite components, thereby affecting service lifetime, are that the a-axis contracts and the c-axis expands in the crystallites. Characterization of virgin graphite structure and of the damage evolution after irradiation of nuclear graphite has an important role to play in the understanding and development of materials used in current and future nuclear reactors, respectively.

  18. Nuclear structure studies with intermediate energy probes

    SciTech Connect

    Lee, T.S.H.

    1993-10-01

    Nuclear structure studies with pions are reviewed. Results from a recent study of 1 p-shell nuclei using (e,e{prime}), ({pi}, {pi}{prime}), and ({gamma},{pi}) reactions are reported. Future nuclear structure studies with GeV electrons at CEBAF are also briefly discussed.

  19. EVALUATED NUCLEAR STRUCTURE DATA FILE -- A MANUAL FOR PREPARATION OF DATA SETS.

    SciTech Connect

    TULI, J.K.

    2001-02-01

    This manual describes the organization and structure of the Evaluated Nuclear Structure Data File (ENSDF). This computer-based file is maintained by the National Nuclear Data Center (NNDC) at Brookhaven National Laboratory for the international Nuclear Structure and Decay Data Network. For every mass number (presently, A {le} 293), the Evaluated Nuclear Structure Data File (ENSDF) contains evaluated structure information. For masses A {ge} 44, this information is published in the Nuclear Data Sheets; for A < 44, ENSDF is based on compilations published in the journal Nuclear Physics. The information in ENSDF is updated by mass chain or by nuclide with a varying cycle time dependent on the availability of new information.

  20. Use of exotic nuclear beams for nuclear structure studies

    SciTech Connect

    Sugimoto, K.

    1984-10-01

    Possible experiments are discussed for nuclear structure studies using, as secondary beams, projectile fragments produced by high-energy heavy-ion collisions. They are, specifically, (a) determination of nuclear sizes from measurements of the total interaction cross sections of nucleus-nucleus collisions, and (b) determination of static electromagnetic moments, ..mu..'s and Q's, of short-lived ..beta..-radioactive nuclei. 9 references.

  1. Global nuclear-structure calculations

    SciTech Connect

    Moeller, P.; Nix, J.R.

    1990-04-20

    The revival of interest in nuclear ground-state octupole deformations that occurred in the 1980's was stimulated by observations in 1980 of particularly large deviations between calculated and experimental masses in the Ra region, in a global calculation of nuclear ground-state masses. By minimizing the total potential energy with respect to octupole shape degrees of freedom in addition to {epsilon}{sub 2} and {epsilon}{sub 4} used originally, a vastly improved agreement between calculated and experimental masses was obtained. To study the global behavior and interrelationships between other nuclear properties, we calculate nuclear ground-state masses, spins, pairing gaps and {Beta}-decay and half-lives and compare the results to experimental qualities. The calculations are based on the macroscopic-microscopic approach, with the microscopic contributions calculated in a folded-Yukawa single-particle potential.

  2. Electromagnetic studies of nuclear structure and reactions

    SciTech Connect

    Hersman, F.W.; Dawson, J.F.; Heisenberg, J.H.; Calarco, J.R.

    1990-06-01

    This report contains papers on the following topics: giant resonance studies; deep inelastic scattering studies; high resolution nuclear structure work; and relativistic RPA; and field theory in the Schroedinger Representation.

  3. New method for calculation of nuclear cluster structure of nuclei

    SciTech Connect

    Ibishi, A.I.

    2005-05-06

    In the calculations of the many-nucleon bound states, using the realistic nucleon-nucleon potential, and a three- and four-nucleon potential, the Exact Many-Body Nuclear Cluster Model (EMBNCM) was found to give accurate results, that converege much more rapidly, than those obtained by the Faddeev equation calculations. With the use of realistic nucleon-nucleon potentials, and many-nucleon potentials, containing strong tensor, Majorana, and repulsive core components, the many-body cluster structure of 16O, 27Al, 44Ti, and 48Ti is discussed. In 27Al(p,x)Na reactions we assume that two different nuclear cluster structures of 27Al, gives us two different isotopes of Na: 22Na and 24Na. But the most important result is the existence of two different permutations symmetries of 27Al. Using new method for calculation of nuclear cluster structure of 27Al, we have found two different nuclear cluster structures of 27Al: 24Na+3He and 25Na+d. The internal nuclear cluster wave functions of different nuclear cluster models (nuclear cluster isomers) of the same isotope are not equivalent, if we take into account Many-Body Nuclear Forces, such as 3BF and 4BF. The core clusters of 16O, 27Al, 44Ti, and 48Ti nuclei have a trigonal-pyramide Td, D2d, and C3v symmetry, while exterior clusters in 16O and 27Al[(24Na +3 He)model] nuclei have a trigonal symmetry C2v, and D3h. We have developed a new system of Jacobi coordinates for our EMBNCM model with the symmetry above. The new computer code for determination of direct nuclear cluster reactions has been written in Mathematica 5 programming language. We have found a high level of dependence of the nuclear cluster wave functions from the center of mass and cluster effects.

  4. New method for calculation of nuclear cluster structure of nuclei

    NASA Astrophysics Data System (ADS)

    Ibishi, A. I.

    2005-05-01

    In the calculations of the many-nucleon bound states, using the realistic nucleon-nucleon potential, and a three- and four-nucleon potential, the Exact Many-Body Nuclear Cluster Model (EMBNCM) was found to give accurate results, that converege much more rapidly, than those obtained by the Faddeev equation calculations. With the use of realistic nucleon-nucleon potentials, and many-nucleon potentials, containing strong tensor, Majorana, and repulsive core components, the many-body cluster structure of 16O, 27Al, 44Ti, and 48Ti is discussed. In 27Al(p,x)Na reactions we assume that two different nuclear cluster structures of 27Al, gives us two different isotopes of Na: 22Na and 24Na. But the most important result is the existence of two different permutations symmetries of 27Al. Using new method for calculation of nuclear cluster structure of 27Al, we have found two different nuclear cluster structures of 27Al: 24Na+3He and 25Na+d. The internal nuclear cluster wave functions of different nuclear cluster models (nuclear cluster isomers) of the same isotope are not equivalent, if we take into account Many-Body Nuclear Forces, such as 3BF and 4BF. The core clusters of 16O, 27Al, 44Ti, and 48Ti nuclei have a trigonal-pyramide Td, D2d, and C3v symmetry, while exterior clusters in 16O and 27Al[(24Na +3 He)model] nuclei have a trigonal symmetry C2v, and D3h. We have developed a new system of Jacobi coordinates for our EMBNCM model with the symmetry above. The new computer code for determination of direct nuclear cluster reactions has been written in Mathematica 5 programming language. We have found a high level of dependence of the nuclear cluster wave functions from the center of mass and cluster effects.

  5. Recent advances in computational methods for nuclear magnetic resonance data processing.

    PubMed

    Gao, Xin

    2013-02-01

    Although three-dimensional protein structure determination using nuclear magnetic resonance (NMR) spectroscopy is a computationally costly and tedious process that would benefit from advanced computational techniques, it has not garnered much research attention from specialists in bioinformatics and computational biology. In this paper, we review recent advances in computational methods for NMR protein structure determination. We summarize the advantages of and bottlenecks in the existing methods and outline some open problems in the field. We also discuss current trends in NMR technology development and suggest directions for research on future computational methods for NMR.

  6. 16th International Conference on Nuclear Structure: NS2016

    SciTech Connect

    Galindo-Uribarri, Alfredo

    2016-10-28

    Every two years the Nuclear Structure (NS) conference series brings together researchers from an international community of experimental and theoretical nuclear physicists to present and discuss their latest results in nuclear structure. This biennial conference covered the latest results on experimental and theoretical research into the structure of nuclei at the extremes of isospin, excitation energy, mass, and angular momentum. Topics included many of the most exciting areas of modern nuclear structure research such as transitional behavior, nuclear structure and its evolution across the nuclear landscape, shell structure, collectivity, nuclear structure with radioactive beams, and macroscopic and microscopic approaches to nuclear structure.

  7. 16th International Conference on Nuclear Structure: NS2016

    DOE PAGES

    Galindo-Uribarri, Alfredo

    2016-10-28

    Every two years the Nuclear Structure (NS) conference series brings together researchers from an international community of experimental and theoretical nuclear physicists to present and discuss their latest results in nuclear structure. This biennial conference covered the latest results on experimental and theoretical research into the structure of nuclei at the extremes of isospin, excitation energy, mass, and angular momentum. Topics included many of the most exciting areas of modern nuclear structure research such as transitional behavior, nuclear structure and its evolution across the nuclear landscape, shell structure, collectivity, nuclear structure with radioactive beams, and macroscopic and microscopic approaches tomore » nuclear structure.« less

  8. A Nuclear Reactions Primer with Computers.

    ERIC Educational Resources Information Center

    Calle, Carlos I.; Roach, Jennifer A.

    1987-01-01

    Described is a microcomputer software program NUCLEAR REACTIONS designed for college level students and in use at Sweet Briar College (Sweet Briar, VA). The program is written in Microsoft Basic Version 2.1 for the Apple Macintosh Microcomputer. It introduces two conservation principles: (1) conservation of charge; and (2) conservation of nucleon…

  9. Regularity of nuclear structure under random interactions

    SciTech Connect

    Zhao, Y. M.

    2011-05-06

    In this contribution I present a brief introduction to simplicity out of complexity in nuclear structure, specifically, the regularity of nuclear structure under random interactions. I exemplify such simplicity by two examples: spin-zero ground state dominance and positive parity ground state dominance in even-even nuclei. Then I discuss two recent results of nuclear structure in the presence of random interactions, in collaboration with Prof. Arima. Firstly I discuss sd bosons under random interactions, with the focus on excited states in the yrast band. We find a few regular patterns in these excited levels. Secondly I discuss our recent efforts towards obtaining eigenvalues without diagonalizing the full matrices of the nuclear shell model Hamiltonian.

  10. Evaluation of mini super computers for nuclear design applications

    SciTech Connect

    Altomare, S.; Baradari, F.

    1987-01-01

    The evolution of the mini super computers will force changes from the current environment of performing nuclear design calculations on mainframe computers (such as a CRAY) to mini super computers. This change will come about for a number of reasons. First, the mini super computers currently available in the marketplace offer the power and speed comparable to mainframes and can provide the capability to support highly computer intensive calculations. Second, the equipment is physically smaller and can easily be installed and operated without extensive investments in facilities and operations support. Third, the computer capacity can be acquired with as much needed memory, disk, and tape capacity as may be needed. Another reasons is that the performance/cost ratio has increased drastically as hardware costs have decreased. A study was conducted at the Westinghouse Commercial Nuclear Fuel Division (CNFD) to evaluate the mini super computers for use in nuclear core design. As a result of this evaluation, Westinghouse CNFD is offering a combined hardware/software technology transfer package for core design. This package provides the utility designer with a totally dedicated mini super computer comparable in speed to the CRAY 1S with sufficient capacity for a sizable design group to perform the engineering activities related to nuclear core design and operations support. This also assures the utility of being totally compatible with the CNFD design codes, thus assuring total update compatibility.

  11. Quantum computing using electron-nuclear double resonances

    NASA Astrophysics Data System (ADS)

    Bowden, Charles M.; Dowling, Jonathan P.; Hotaling, Steven P.

    1997-07-01

    We consider the use of Electron-Nuclear Double Resonance (ENDOR) techniques in quantum computing. ENDOR resolution as a possible limiting factor is discussed. It is found that ENDOR and double-ENDOR techniques have sufficient resolution for quantum computing applications.

  12. Computational modeling of nuclear thermal rockets

    NASA Technical Reports Server (NTRS)

    Peery, Steven D.

    1993-01-01

    The topics are presented in viewgraph form and include the following: rocket engine transient simulation (ROCETS) system; ROCETS performance simulations composed of integrated component models; ROCETS system architecture significant features; ROCETS engineering nuclear thermal rocket (NTR) modules; ROCETS system easily adapts Fortran engineering modules; ROCETS NTR reactor module; ROCETS NTR turbomachinery module; detailed reactor analysis; predicted reactor power profiles; turbine bypass impact on system; and ROCETS NTR engine simulation summary.

  13. Infinite possibilities: Computational structures technology

    NASA Astrophysics Data System (ADS)

    Beam, Sherilee F.

    1994-12-01

    Computational Fluid Dynamics (or CFD) methods are very familiar to the research community. Even the general public has had some exposure to CFD images, primarily through the news media. However, very little attention has been paid to CST--Computational Structures Technology. Yet, no important design can be completed without it. During the first half of this century, researchers only dreamed of designing and building structures on a computer. Today their dreams have become practical realities as computational methods are used in all phases of design, fabrication and testing of engineering systems. Increasingly complex structures can now be built in even shorter periods of time. Over the past four decades, computer technology has been developing, and early finite element methods have grown from small in-house programs to numerous commercial software programs. When coupled with advanced computing systems, they help engineers make dramatic leaps in designing and testing concepts. The goals of CST include: predicting how a structure will behave under actual operating conditions; designing and complementing other experiments conducted on a structure; investigating microstructural damage or chaotic, unpredictable behavior; helping material developers in improving material systems; and being a useful tool in design systems optimization and sensitivity techniques. Applying CST to a structure problem requires five steps: (1) observe the specific problem; (2) develop a computational model for numerical simulation; (3) develop and assemble software and hardware for running the codes; (4) post-process and interpret the results; and (5) use the model to analyze and design the actual structure. Researchers in both industry and academia continue to make significant contributions to advance this technology with improvements in software, collaborative computing environments and supercomputing systems. As these environments and systems evolve, computational structures technology will

  14. Infinite possibilities: Computational structures technology

    NASA Technical Reports Server (NTRS)

    Beam, Sherilee F.

    1994-01-01

    Computational Fluid Dynamics (or CFD) methods are very familiar to the research community. Even the general public has had some exposure to CFD images, primarily through the news media. However, very little attention has been paid to CST--Computational Structures Technology. Yet, no important design can be completed without it. During the first half of this century, researchers only dreamed of designing and building structures on a computer. Today their dreams have become practical realities as computational methods are used in all phases of design, fabrication and testing of engineering systems. Increasingly complex structures can now be built in even shorter periods of time. Over the past four decades, computer technology has been developing, and early finite element methods have grown from small in-house programs to numerous commercial software programs. When coupled with advanced computing systems, they help engineers make dramatic leaps in designing and testing concepts. The goals of CST include: predicting how a structure will behave under actual operating conditions; designing and complementing other experiments conducted on a structure; investigating microstructural damage or chaotic, unpredictable behavior; helping material developers in improving material systems; and being a useful tool in design systems optimization and sensitivity techniques. Applying CST to a structure problem requires five steps: (1) observe the specific problem; (2) develop a computational model for numerical simulation; (3) develop and assemble software and hardware for running the codes; (4) post-process and interpret the results; and (5) use the model to analyze and design the actual structure. Researchers in both industry and academia continue to make significant contributions to advance this technology with improvements in software, collaborative computing environments and supercomputing systems. As these environments and systems evolve, computational structures technology will

  15. Supporting the future nuclear workforce with computer-based procedures

    DOE PAGES

    Oxstrand, Johanna; Le Blanc, Katya

    2016-05-01

    Here we see that computer-based tools have dramatically increased ease and efficiency of everyday tasks. Gone are the days of paging through a paper catalog, transcribing product numbers, and calculating totals. Today, a consumer can find a product online with a simple search engine, and then purchase it in a matter of a few clicks. Paper catalogs have their place, but it is hard to imagine life without on-line shopping sites. All tasks conducted in a nuclear power plant are guided by procedures, which helps ensure safe and reliable operation of the plants. One prominent goal of the nuclear industrymore » is to minimize the risk of human errors. To achieve this goal one has to ensure tasks are correctly and consistently executed. This is partly achieved by training and by a structured approach to task execution, which is provided by procedures and work instructions. Procedures are used in the nuclear industry to direct workers' actions in a proper sequence. The governing idea is to minimize the reliance on memory and choices made in the field. However, the procedure document may not contain sufficient information to successfully complete the task. Therefore, the worker might have to carry additional documents such as turnover sheets, operation experience, drawings, and other procedures to the work site. The nuclear industry is operated with paper procedures like paper catalogs of the past. A field worker may carry a large stack of documents needed to complete a task to the field. Even though the paper process has helped keep the industry safe for decades, there are limitations to using paper. Paper procedures are static (i.e., the content does not change after the document is printed), difficult to search, and rely heavily on the field worker’s situational awareness and ability to consistently meet the high expectation of human performance excellence. With computer-based procedures (CBPs) that stack of papers may be reduced to the size of a small tablet or even

  16. Supporting the future nuclear workforce with computer-based procedures

    SciTech Connect

    Oxstrand, Johanna; Le Blanc, Katya

    2016-05-01

    Here we see that computer-based tools have dramatically increased ease and efficiency of everyday tasks. Gone are the days of paging through a paper catalog, transcribing product numbers, and calculating totals. Today, a consumer can find a product online with a simple search engine, and then purchase it in a matter of a few clicks. Paper catalogs have their place, but it is hard to imagine life without on-line shopping sites. All tasks conducted in a nuclear power plant are guided by procedures, which helps ensure safe and reliable operation of the plants. One prominent goal of the nuclear industry is to minimize the risk of human errors. To achieve this goal one has to ensure tasks are correctly and consistently executed. This is partly achieved by training and by a structured approach to task execution, which is provided by procedures and work instructions. Procedures are used in the nuclear industry to direct workers' actions in a proper sequence. The governing idea is to minimize the reliance on memory and choices made in the field. However, the procedure document may not contain sufficient information to successfully complete the task. Therefore, the worker might have to carry additional documents such as turnover sheets, operation experience, drawings, and other procedures to the work site. The nuclear industry is operated with paper procedures like paper catalogs of the past. A field worker may carry a large stack of documents needed to complete a task to the field. Even though the paper process has helped keep the industry safe for decades, there are limitations to using paper. Paper procedures are static (i.e., the content does not change after the document is printed), difficult to search, and rely heavily on the field worker’s situational awareness and ability to consistently meet the high expectation of human performance excellence. With computer-based procedures (CBPs) that stack of papers may be reduced to the size of a small tablet or even a smart

  17. Parallel multiphysics algorithms and software for computational nuclear engineering

    NASA Astrophysics Data System (ADS)

    Gaston, D.; Hansen, G.; Kadioglu, S.; Knoll, D. A.; Newman, C.; Park, H.; Permann, C.; Taitano, W.

    2009-07-01

    There is a growing trend in nuclear reactor simulation to consider multiphysics problems. This can be seen in reactor analysis where analysts are interested in coupled flow, heat transfer and neutronics, and in fuel performance simulation where analysts are interested in thermomechanics with contact coupled to species transport and chemistry. These more ambitious simulations usually motivate some level of parallel computing. Many of the coupling efforts to date utilize simple code coupling or first-order operator splitting, often referred to as loose coupling. While these approaches can produce answers, they usually leave questions of accuracy and stability unanswered. Additionally, the different physics often reside on separate grids which are coupled via simple interpolation, again leaving open questions of stability and accuracy. Utilizing state of the art mathematics and software development techniques we are deploying next generation tools for nuclear engineering applications. The Jacobian-free Newton-Krylov (JFNK) method combined with physics-based preconditioning provide the underlying mathematical structure for our tools. JFNK is understood to be a modern multiphysics algorithm, but we are also utilizing its unique properties as a scale bridging algorithm. To facilitate rapid development of multiphysics applications we have developed the Multiphysics Object-Oriented Simulation Environment (MOOSE). Examples from two MOOSE-based applications: PRONGHORN, our multiphysics gas cooled reactor simulation tool and BISON, our multiphysics, multiscale fuel performance simulation tool will be presented.

  18. Paralel Multiphysics Algorithms and Software for Computational Nuclear Engineering

    SciTech Connect

    D. Gaston; G. Hansen; S. Kadioglu; D. A. Knoll; C. Newman; H. Park; C. Permann; W. Taitano

    2009-08-01

    There is a growing trend in nuclear reactor simulation to consider multiphysics problems. This can be seen in reactor analysis where analysts are interested in coupled flow, heat transfer and neutronics, and in fuel performance simulation where analysts are interested in thermomechanics with contact coupled to species transport and chemistry. These more ambitious simulations usually motivate some level of parallel computing. Many of the coupling efforts to date utilize simple 'code coupling' or first-order operator splitting, often referred to as loose coupling. While these approaches can produce answers, they usually leave questions of accuracy and stability unanswered. Additionally, the different physics often reside on separate grids which are coupled via simple interpolation, again leaving open questions of stability and accuracy. Utilizing state of the art mathematics and software development techniques we are deploying next generation tools for nuclear engineering applications. The Jacobian-free Newton-Krylov (JFNK) method combined with physics-based preconditioning provide the underlying mathematical structure for our tools. JFNK is understood to be a modern multiphysics algorithm, but we are also utilizing its unique properties as a scale bridging algorithm. To facilitate rapid development of multiphysics applications we have developed the Multiphysics Object-Oriented Simulation Environment (MOOSE). Examples from two MOOSE based applications: PRONGHORN, our multiphysics gas cooled reactor simulation tool and BISON, our multiphysics, multiscale fuel performance simulation tool will be presented.

  19. Progress report on nuclear structure studies

    SciTech Connect

    Walters, W.B.

    1991-08-31

    In this report, new results are reported for the decay and nuclear orientation of {sup 114,116}I and {sup 114}Sb as well as data for the structure of daughter nuclides {sup 114,116}Te. New results for IBM-2 calculations for the structure of {sup 126}Xe are also reported. 6 figs., 5 tabs.

  20. Theoretical nuclear structure. Progress report for 1997

    SciTech Connect

    Nazarewicz, W.; Strayer, M.R.

    1997-12-31

    This research effort is directed toward theoretical support and guidance for the fields of radioactive ion beam physics, gamma-ray spectroscopy, and the interface between nuclear structure and nuclear astrophysics. The authors report substantial progress in all these areas. One measure of progress is publications and invited material. The research described here has led to more than 25 papers that are published, accepted, or submitted to refereed journals, and to 25 invited presentations at conferences and workshops.

  1. Creep of Structural Nuclear Composites

    SciTech Connect

    Will Windes; R.W. Lloyd

    2005-09-01

    A research program has been established to investigate fiber reinforced ceramic composites to be used as control rod components within a Very High Temperature Reactor (VHTR) design. Two candidate systems have been identified, carbon fiber reinforced carbon (Cf/C) and silicon carbide fiber reinforced silicon carbide (SiCf/SiC) composites. One of the primary degradation mechanisms anticipated for these core components is high temperature thermal and irradiation enhanced creep. As a consequence, high temperature test equipment, testing methodologies, and test samples for very high temperature (up to 1600º C) tensile strength and long duration creep studies have been established. Actual testing of both tubular and flat, "dog-bone"-shaped tensile composite specimens will begin next year. Since there is no precedence for using ceramic composites within a nuclear reactor, ASTM standard test procedures are currently being established from these high temperature mechanical tests.

  2. Computational Age Dating of Special Nuclear Materials

    SciTech Connect

    None, None

    2012-06-30

    This slide-show presented an overview of the Constrained Progressive Reversal (CPR) method for computing decays, age dating, and spoof detecting. The CPR method is: Capable of temporal profiling a SNM sample; Precise (compared with known decay code, such a ORIGEN); Easy (for computer implementation and analysis). We have illustrated with real SNM data using CPR for age dating and spoof detection. If SNM is pure, may use CPR to derive its age. If SNM is mixed, CPR will indicate that it is mixed or spoofed.

  3. Nuclear Structure Research at Richmond

    SciTech Connect

    Beausang, Cornelius W.

    2015-04-30

    The goals for the final year were; (1) to continue ongoing efforts to develop and enhance GRETINA and work towards GRETA; (2) to investigate the structure of non-yrast states in shape transitional Sm and Gd nuclei; (3) to investigate the structure of selected light Cd nuclei; (4) to exploit the surrogate reaction technique to extract (n,f) cross sections for actinide nuclei, particularly the first measurement of the 236Pu and 237Pu(n,f) cross sections.

  4. Nuclear structure and depletion of nuclear isomers using electron linacs

    SciTech Connect

    Carroll, J. J.; Litz, M. S.; Henriquez, S. L.; Burns, D. A.; Netherton, K. A.; Pereira, N. R.; Karamian, S. A.

    2013-04-19

    Long-lived nuclear excited states (isomers) have proven important to understanding nuclear structure. With some isomers having half-lives of decades or longer, and intrinsic energy densities reaching 10{sup 12} J/kg, they have also been suggested for a wide range of applications. The ability to effectively transfer a population of nuclei from an isomer to shorter-lived levels will determine the feasibility of any applications. Here is described a first demonstration of the induced depletion of a population of the 438 year isomer of {sup 108}Ag to its 2.38 min ground state, using 6 MeV bremsstrahlung from a modified medical electron linac. The experiment suggests refinements to be implemented in the future and how a similar approach might be applied to study induced depletion of the 1200 year isomer of {sup 166}Ho.

  5. Electron Scattering and Nuclear Structure

    ERIC Educational Resources Information Center

    Trower, W. P.; Ficenec, J. R.

    1971-01-01

    Presents information about the nucleus gained by studies of electron scattering. Discusses what can be implied about the shape of the charge distribution, the nucleus positions, the vibrational modes of the nucleus, the momentum of the nucleus, and the granularity and core structures of the nucleus. (DS)

  6. Reliability assessment of nuclear structural systems

    SciTech Connect

    Reich, M.; Hwang, H.

    1983-01-01

    Reliability assessment of nuclear structural systems has been receiving more emphasis over the last few years. This paper deals with the recent progress made by the Structural Analysis Division of Brookhaven National Laboratory (BNL), in the development of a probability-based reliability analysis methodology for safety evaluation of reactor containments and other seismic category I structures. An important feature of this methodology is the incorporation of finite element analysis and random vibration theory. By utilizing this method, it is possible to evaluate the safety of nuclear structures under various static and dynamic loads in terms of limit state probability. Progress in other related areas, such as the establishment of probabilistic characteristics for various loads and structural resistance, are also described. Results of an application of the methodology to a realistic reinforced concrete containment subjected to dead and live loads, accidental internal pressures and earthquake ground accelerations are presented.

  7. Nuclear Structure in 78Ge

    NASA Astrophysics Data System (ADS)

    Forney, Anne M.; Walters, W. B.; Sethi, J.; Chiara, C. J.; Harker, J.; Janssens, R. V. F.; Zhu, S.; Carpenter, M.; Alcorta, M.; Gürdal, G.; Hoffman, C. R.; Kay, B. P.; Kondev, F. G.; Lauristen, T.; Lister, C. J.; McCutchan, E. A.; Rogers, A. M.; Seweryniak, D.

    2017-01-01

    Owing to the importance of the structure of 76Ge in interpreting double β decay studies, the structures of adjacent nuclei have been of considerable interest. Recently reported features for the structures of 72,74,76Ge indicate both shape coexistence and triaxiality. New data for the excited states of 78Ge will be reported arising from Gammasphere studies of multinucleon transfer reactions between a 76Ge beam and thick heavy targets at the ATLAS facility at Argonne National Laboratory. The previously known yrast band is extended to higher spins, candidate levels for a triaxial sequence have been observed, and the associated staggering determined. The staggering in 78Ge found in this work is not in agreement with theoretical work. Candidates for negative-parity states and seniority-four states will be discussed. This material is based upon work supported by the U.S. DOE under DE-AC02-06CH11357 and DE-FG02-94ER40834. Resources of ANL's ATLAS setup, a DOE Office of Science user facility, were used.

  8. Military engine computational structures technology

    NASA Technical Reports Server (NTRS)

    Thomson, Daniel E.

    1992-01-01

    Integrated High Performance Turbine Engine Technology Initiative (IHPTET) goals require a strong analytical base. Effective analysis of composite materials is critical to life analysis and structural optimization. Accurate life prediction for all material systems is critical. User friendly systems are also desirable. Post processing of results is very important. The IHPTET goal is to double turbine engine propulsion capability by the year 2003. Fifty percent of the goal will come from advanced materials and structures, the other 50 percent will come from increasing performance. Computer programs are listed.

  9. Storage structure for nuclear waste

    SciTech Connect

    Krieger, F.

    1985-02-05

    A storage structure for storing radioactive materials is claimed. It includes tubular storage members provided near the bottom thereof with a plurality of horizontal bolts the longitudinal axes of which intersect at a common point of said axes. A plurality of support plates for said tubular member is provided at the lower end thereof. Each support plate is adapted to support one of said plurality of bolts and each support plate includes an upstanding portion. Said upstanding portion of each of said plurality of support plates is provided with an open recess including an upper relatively wide slanting entrance adapted for insertion of one of said plurality of bolts and a lower bolt-bearing surface coaxial with one of said plurality of bolts. One support plate may have several upstanding portions of which each has a recess for the insertion and the support of a bolt projecting from a different tube for storing radioactive materials.

  10. Nuclear-structure investigations on spherical nuclei

    SciTech Connect

    Heisenberg, J.

    1982-01-01

    Nuclear structure research at the University of New Hampshire is reported. Energy level studies using electron inelastic scattering and electron-induced fission are briefly discussed. Also, the theoretical studies are outlined including exchange current calculations, shell model RPA calculations, and self-consistent RPA. Publications are listed. (WHK)

  11. NNS computing facility manual P-17 Neutron and Nuclear Science

    SciTech Connect

    Hoeberling, M.; Nelson, R.O.

    1993-11-01

    This document describes basic policies and provides information and examples on using the computing resources provided by P-17, the Neutron and Nuclear Science (NNS) group. Information on user accounts, getting help, network access, electronic mail, disk drives, tape drives, printers, batch processing software, XSYS hints, PC networking hints, and Mac networking hints is given.

  12. Collective network for computer structures

    DOEpatents

    Blumrich, Matthias A.; Coteus, Paul W.; Chen, Dong; Gara, Alan; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Takken, Todd E.; Steinmacher-Burow, Burkhard D.; Vranas, Pavlos M.

    2011-08-16

    A system and method for enabling high-speed, low-latency global collective communications among interconnected processing nodes. The global collective network optimally enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices ate included that interconnect the nodes of the network via links to facilitate performance of low-latency global processing operations at nodes of the virtual network and class structures. The global collective network may be configured to provide global barrier and interrupt functionality in asynchronous or synchronized manner. When implemented in a massively-parallel supercomputing structure, the global collective network is physically and logically partitionable according to needs of a processing algorithm.

  13. Investigation of Nuclear Partonic Structure. Final Report

    SciTech Connect

    Crawford, Henry J.; Engelage, J. M.

    2016-08-30

    Our research program had two primary goals during the period of this grant, to search for new and rare particles produced in high-energy nuclear collisions and to understand the internal structure of nuclear matter. We have developed electronics to pursue these goals at the Relativistic Heavy Ion Collider (RHIC) in the Solenoidal Tracker at RHIC (STAR) experiment and the AnDY experiment. Our results include discovery of the anti-hyper-triton, anti- 3Λ-barH, which opened a new branch on the chart of the nuclides, and the anti-alpha, anti- 4He, the heaviest form of anti-matter yet seen, as well as uncovering hints of gluon saturation in cold nuclear matter and observation of jets in polarized proton-proton collisions that will be used to probe orbital motion inside protons.

  14. Seismic analysis of nuclear power plant structures

    NASA Technical Reports Server (NTRS)

    Go, J. C.

    1973-01-01

    Primary structures for nuclear power plants are designed to resist expected earthquakes of the site. Two intensities are referred to as Operating Basis Earthquake and Design Basis Earthquake. These structures are required to accommodate these seismic loadings without loss of their functional integrity. Thus, no plastic yield is allowed. The application of NASTRAN in analyzing some of these seismic induced structural dynamic problems is described. NASTRAN, with some modifications, can be used to analyze most structures that are subjected to seismic loads. A brief review of the formulation of seismic-induced structural dynamics is also presented. Two typical structural problems were selected to illustrate the application of the various methods of seismic structural analysis by the NASTRAN system.

  15. Microstructural characterization and pore structure analysis of nuclear graphite

    NASA Astrophysics Data System (ADS)

    Kane, J.; Karthik, C.; Butt, D. P.; Windes, W. E.; Ubic, R.

    2011-08-01

    Graphite will be used as a structural and moderator material in next-generation nuclear reactors. While the overall nature of the production of nuclear graphite is well understood, the historic nuclear grades of graphite are no longer available. This paper reports the virgin microstructural characteristics of filler particles and macro-scale porosity in virgin nuclear graphite grades of interest to the Next Generation Nuclear Plant program. Optical microscopy was used to characterize filler particle size and shape as well as the arrangement of shrinkage cracks. Computer aided image analysis was applied to optical images to quantitatively determine the variation of pore structure, area, eccentricity, and orientation within and between grades. The overall porosity ranged between ˜14% and 21%. A few large pores constitute the majority of the overall porosity. The distribution of pore area in all grades was roughly logarithmic in nature. The average pore was best fit by an ellipse with aspect ratio of ˜2. An estimated 0.6-0.9% of observed porosity was attributed to shrinkage cracks in the filler particles. Finally, a preferred orientation of the porosity was observed in all grades.

  16. Microstructural Characterization and Pore Structure Analysis of Nuclear Graphite

    SciTech Connect

    J. Kane; C. Karthik; D. P. Butt; W. E. Windes; R. Ubic

    2011-08-01

    Graphite will be used as a structural and moderator material in next-generation nuclear reactors. While the overall nature of the production of nuclear graphite is well understood, the historic nuclear grades of graphite are no longer available. This paper reports the virgin microstructural characteristics of filler particles and macro-scale porosity in virgin nuclear graphite grades of interest to the Next Generation Nuclear Plant program. Optical microscopy was used to characterize filler particle size and shape as well as the arrangement of shrinkage cracks. Computer aided image analysis was applied to optical images to quantitatively determine the variation of pore structure, area, eccentricity, and orientation within and between grades. The overall porosity ranged between {approx}14% and 21%. A few large pores constitute the majority of the overall porosity. The distribution of pore area in all grades was roughly logarithmic in nature. The average pore was best fit by an ellipse with aspect ratio of {approx}2. An estimated 0.6-0.9% of observed porosity was attributed to shrinkage cracks in the filler particles. Finally, a preferred orientation of the porosity was observed in all grades.

  17. Forging the link between nuclear reactions and nuclear structure

    NASA Astrophysics Data System (ADS)

    Dickhoff, W. H.

    2016-06-01

    A review of the recent applications of the dispersive optical model (DOM) is presented. Emphasis is on the nonlocal implementation of the DOM that is capable of describing ground-state properties accurately when data like the nuclear charge density are available. The present understanding of the role of short- and long-range physics in determining proton properties near the Fermi energy for stable closed-shell nuclei has relied mostly on data from the (e, e' p) reaction. Hadronic tools to extract such spectroscopic information have been hampered by the lack of a consistent reaction description that provides unambiguous and undisputed results. The DOM, conceived by Claude Mahaux, provides a unified description of both elastic nucleon scattering and structure information related to single-particle properties below the Fermi energy. We have recently introduced a nonlocal dispersive optical potential for both the real and imaginary part. Nonlocal absorptive potentials yield equivalent elastic differential cross sections for 40Ca as compared to local ones but change the l-dependent absorption profile suggesting important consequences for the analysis of nuclear reactions. Below the Fermi energy, nonlocality is essential for an accurate representation of particle number and the nuclear charge density. Spectral properties implied by (e, e' p) and (p, 2p) reactions are correctly described, including the energy distribution of about 10% high-momentum protons obtained at Jefferson Lab. The nonlocal DOM allows a complete description of experimental data both above (up to 200 MeV) and below the Fermi energy in 40Ca. It is further demonstrated that elastic nucleon-nucleus scattering data constrain the spectral strength in the continuum of orbits that are nominally bound in the independent-particle model. Extension of this analysis to 48Ca allows a prediction of the neutron skin of this nucleus that is larger than most predictions made so far.

  18. Center for Computational Structures Technology

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Perry, Ferman W.

    1995-01-01

    The Center for Computational Structures Technology (CST) is intended to serve as a focal point for the diverse CST research activities. The CST activities include the use of numerical simulation and artificial intelligence methods in modeling, analysis, sensitivity studies, and optimization of flight-vehicle structures. The Center is located at NASA Langley and is an integral part of the School of Engineering and Applied Science of the University of Virginia. The key elements of the Center are: (1) conducting innovative research on advanced topics of CST; (2) acting as pathfinder by demonstrating to the research community what can be done (high-potential, high-risk research); (3) strong collaboration with NASA scientists and researchers from universities and other government laboratories; and (4) rapid dissemination of CST to industry, through integration of industrial personnel into the ongoing research efforts.

  19. Collective network for computer structures

    DOEpatents

    Blumrich, Matthias A; Coteus, Paul W; Chen, Dong; Gara, Alan; Giampapa, Mark E; Heidelberger, Philip; Hoenicke, Dirk; Takken, Todd E; Steinmacher-Burow, Burkhard D; Vranas, Pavlos M

    2014-01-07

    A system and method for enabling high-speed, low-latency global collective communications among interconnected processing nodes. The global collective network optimally enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices are included that interconnect the nodes of the network via links to facilitate performance of low-latency global processing operations at nodes of the virtual network. The global collective network may be configured to provide global barrier and interrupt functionality in asynchronous or synchronized manner. When implemented in a massively-parallel supercomputing structure, the global collective network is physically and logically partitionable according to the needs of a processing algorithm.

  20. Nuclear structure and sub-barrier fusion

    SciTech Connect

    Esbensen, H. . Cyclotron Lab. Argonne National Lab., IL )

    1990-01-01

    The influence of nuclear structure on heavy-ion fusion and elastic scattering, at energies near and below the Coulomb barrier, is discussed within the coupled channels formalism. The coupled channels approach provides a consistent description of the enhancement of sub-barrier fusion and the energy dependence of the effective potential for elastic scattering. This is illustrated by comparison to the data for several systems. 48 refs., 4 figs.

  1. Nuclear structure models: Applications and development

    SciTech Connect

    Semmes, P.B.

    1992-07-01

    This report discusses the following topics: Studies of superdeformed States; Signature Inversion in Odd-Odd Nuclei: A fingerprint of Triaxiality; Signature Inversion in {sup 120}Cs - Evidence for a Residual p-n Interaction; Signatures of {gamma} Deformation in Nuclei and an Application to {sup 125}Xe; Nuclear Spins and Moments: Fundamental Structural Information; and Electromagnetic Properties of {sup 181}Ir: Evidence of {beta} Stretching.

  2. Computer applications for engineering/structural analysis. Revision 1

    SciTech Connect

    Zaslawsky, M.; Samaddar, S.K.

    1991-12-31

    Analysts and organizations have a tendency to lock themselves into specific codes with the obvious consequences of not addressing the real problem and thus reaching the wrong conclusion. This paper discusses the role of the analyst in selecting computer codes. The participation and support of a computation division in modifying the source program, configuration management, and pre- and post-processing of codes are among the subjects discussed. Specific examples illustrating the computer code selection process are described in the following problem areas: soil structure interaction, structural analysis of nuclear reactors, analysis of waste tanks where fluid structure interaction is important, analysis of equipment, structure-structure interaction, analysis of the operation of the superconductor supercollider which includes friction and transient temperature, and 3D analysis of the 10-meter telescope being built in Hawaii. Validation and verification of computer codes and their impact on the selection process are also discussed.

  3. Computational Aspects of Heat Transfer in Structures

    NASA Technical Reports Server (NTRS)

    Adelman, H. M. (Compiler)

    1982-01-01

    Techniques for the computation of heat transfer and associated phenomena in complex structures are examined with an emphasis on reentry flight vehicle structures. Analysis methods, computer programs, thermal analysis of large space structures and high speed vehicles, and the impact of computer systems are addressed.

  4. Proton-neutron interaction and nuclear structure

    SciTech Connect

    Casten, R.F.

    1986-01-01

    The pervasive role of the proton-neutron interaction in nuclear structure is discussed. Particular emphasis is given to its influence on the onset of collectivity and deformation, on intruder states, and on the evolution of subshell structure. The N/sub p/N/sub n/ scheme is outlined and some applications of it to collective model calculations and to nuclei far off stability are described. The concept of N/sub p/N/sub n/ multiplets is introduced. 32 refs., 20 figs.

  5. Electromagnetic studies of nucleon and nuclear structure

    SciTech Connect

    Heisenberg, J.H.; Calarco, J.R.; Hersman, F.W.; Dawson, J.F.

    1993-06-01

    Important objectives of the group are the study of subatomic structure through experimental measurements and the interpretation of the data through modeling. The common theme that unifies the studies of strong interactions and hadronic systems is the effort to determine the electromagnetic response as completely as possible. The general approach is coincidence detection of exclusive final states and determination of the dependence on the spin variables using polarized beams and targets and outgoing nucleon polarimetry. Direct reaction and giant resonance studies of electron quasi-elastic scattering on {sup 12}C and {sup 16}O are reported, as well as work on nuclear structure models and instrumentation development.

  6. Computational fluid dynamics studies of nuclear rocket performance

    NASA Technical Reports Server (NTRS)

    Stubbs, Robert M.; Kim, Suk C.; Benson, Thomas J.

    1994-01-01

    A CFD analysis of a low pressure nuclear rocket concept is presented with the use of an advanced chemical kinetics, Navier-Stokes code. The computations describe the flow field in detail, including gas dynamic, thermodynamic and chemical properties, as well as global performance quantities such as specific impulse. Computational studies of several rocket nozzle shapes are conducted in an attempt to maximize hydrogen recombination. These Navier-Stokes calculations, which include real gas and viscous effects, predict lower performance values than have been reported heretofore.

  7. Large Scale Computing and Storage Requirements for Nuclear Physics Research

    SciTech Connect

    Gerber, Richard A.; Wasserman, Harvey J.

    2012-03-02

    IThe National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,000 users and hosting some 550 projects that involve nearly 700 codes for a wide variety of scientific disciplines. In addition to large-scale computing resources NERSC provides critical staff support and expertise to help scientists make the most efficient use of these resources to advance the scientific mission of the Office of Science. In May 2011, NERSC, DOE’s Office of Advanced Scientific Computing Research (ASCR) and DOE’s Office of Nuclear Physics (NP) held a workshop to characterize HPC requirements for NP research over the next three to five years. The effort is part of NERSC’s continuing involvement in anticipating future user needs and deploying necessary resources to meet these demands. The workshop revealed several key requirements, in addition to achieving its goal of characterizing NP computing. The key requirements include: 1. Larger allocations of computational resources at NERSC; 2. Visualization and analytics support; and 3. Support at NERSC for the unique needs of experimental nuclear physicists. This report expands upon these key points and adds others. The results are based upon representative samples, called “case studies,” of the needs of science teams within NP. The case studies were prepared by NP workshop participants and contain a summary of science goals, methods of solution, current and future computing requirements, and special software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, “multi-core” environment that is expected to dominate HPC architectures over the next few years. The report also includes a section with NERSC responses to the workshop findings. NERSC has many initiatives already underway that address key workshop findings and all of the action items are aligned with NERSC strategic plans.

  8. KEYNOTE: Simulation, computation, and the Global Nuclear Energy Partnership

    NASA Astrophysics Data System (ADS)

    Reis, Victor, Dr.

    2006-01-01

    Dr. Victor Reis delivered the keynote talk at the closing session of the conference. The talk was forward looking and focused on the importance of advanced computing for large-scale nuclear energy goals such as Global Nuclear Energy Partnership (GNEP). Dr. Reis discussed the important connections of GNEP to the Scientific Discovery through Advanced Computing (SciDAC) program and the SciDAC research portfolio. In the context of GNEP, Dr. Reis talked about possible fuel leasing configurations, strategies for their implementation, and typical fuel cycle flow sheets. A major portion of the talk addressed lessons learnt from ‘Science Based Stockpile Stewardship’ and the Accelerated Strategic Computing Initiative (ASCI) initiative and how they can provide guidance for advancing GNEP and SciDAC goals. Dr. Reis’s colorful and informative presentation included international proverbs, quotes and comments, in tune with the international flavor that is part of the GNEP philosophy and plan. He concluded with a positive and motivating outlook for peaceful nuclear energy and its potential to solve global problems. An interview with Dr. Reis, addressing some of the above issues, is the cover story of Issue 2 of the SciDAC Review and available at http://www.scidacreview.org This summary of Dr. Reis’s PowerPoint presentation was prepared by Institute of Physics Publishing, the complete PowerPoint version of Dr. Reis’s talk at SciDAC 2006 is given as a multimedia attachment to this summary.

  9. INIS: A Computer-Based International Nuclear Information System.

    ERIC Educational Resources Information Center

    Balakrishnan, M. R.

    1986-01-01

    Description of the International Nuclear Information System includes its history, organizational structure, subject classification scheme, thesaurus, input standards, and various products and services generated by the system. Appendices provide a list of participating countries, subjects covered by the system, and a sample output record.…

  10. Nuclear structure of {sup 102}Mo

    SciTech Connect

    Rahman, M.A.; Chowdhury, M.S.

    2006-05-15

    Nuclear structure of the {sup 102}Mo nucleus has been studied using the {sup 100}Mo(t,p){sup 102}Mo reaction with the triton beam energy of 12 MeV obtained from the tandem Van de Graaff accelerator and a multichannel magnetic spectrograph. Proton spectra are obtained at 12 different angles from 5 deg. to 87.5 deg., at an interval of 7.5 deg. and are detected in nuclear emulsion plates. Thirty-five levels in the energy range from 0.000 to 3.248 MeV have been observed. The results yield a number of new levels with spin assignments. Absolute differential cross sections for the levels have been measured. The experimental angular distributions are compared with the theoretical distorted-wave Born approximation calculations to determine L and J{sup {pi}} values. The present results are compared with the previous results.

  11. Structural Biology of Nuclear Auxin Action.

    PubMed

    Dinesh, Dhurvas Chandrasekaran; Villalobos, Luz Irina A Calderón; Abel, Steffen

    2016-04-01

    Auxin coordinates plant development largely via hierarchical control of gene expression. During the past decades, the study of early auxin genes paired with the power of Arabidopsis genetics have unraveled key nuclear components and molecular interactions that perceive the hormone and activate primary response genes. Recent research in the realm of structural biology allowed unprecedented insight into: (i) the recognition of auxin-responsive DNA elements by auxin transcription factors; (ii) the inactivation of those auxin response factors by early auxin-inducible repressors; and (iii) the activation of target genes by auxin-triggered repressor degradation. The biophysical studies reviewed here provide an impetus for elucidating the molecular determinants of the intricate interactions between core components of the nuclear auxin response module.

  12. Quantitative 3D structured illumination microscopy of nuclear structures.

    PubMed

    Kraus, Felix; Miron, Ezequiel; Demmerle, Justin; Chitiashvili, Tsotne; Budco, Alexei; Alle, Quentin; Matsuda, Atsushi; Leonhardt, Heinrich; Schermelleh, Lothar; Markaki, Yolanda

    2017-05-01

    3D structured illumination microscopy (3D-SIM) is the super-resolution technique of choice for multicolor volumetric imaging. Here we provide a validated sample preparation protocol for labeling nuclei of cultured mammalian cells, image acquisition and registration practices, and downstream image analysis of nuclear structures and epigenetic marks. Using immunostaining and replication labeling combined with image segmentation, centroid mapping and nearest-neighbor analyses in open-source environments, 3D maps of nuclear structures are analyzed in individual cells and normalized to fluorescence standards on the nanometer scale. This protocol fills an unmet need for the application of 3D-SIM to the technically challenging nuclear environment, and subsequent quantitative analysis of 3D nuclear structures and epigenetic modifications. In addition, it establishes practical guidelines and open-source solutions using ImageJ/Fiji and the TANGO plugin for high-quality and routinely comparable data generation in immunostaining experiments that apply across model systems. From sample preparation through image analysis, the protocol can be executed within one week.

  13. Inspection of Nuclear Power Plant Containment Structures

    SciTech Connect

    Graves, H.L.; Naus, D.J.; Norris, W.E.

    1998-12-01

    Safety-related nuclear power plant (NPP) structures are designed to withstand loadings from a number of low-probability external and interval events, such as earthquakes, tornadoes, and loss-of-coolant accidents. Loadings incurred during normal plant operation therefore generally are not significant enough to cause appreciable degradation. However, these structures are susceptible to aging by various processes depending on the operating environment and service conditions. The effects of these processes may accumulate within these structures over time to cause failure under design conditions, or lead to costly repair. In the late 1980s and early 1990s several occurrences of degradation of NPP structures were discovered at various facilities (e.g., corrosion of pressure boundary components, freeze- thaw damage of concrete, and larger than anticipated loss of prestressing force). Despite these degradation occurrences and a trend for an increasing rate of occurrence, in-service inspection of the safety-related structures continued to be performed in a somewhat cursory manner. Starting in 1991, the U.S. Nuclear Regulatory Commission (USNRC) published the first of several new requirements to help ensure that adequate in-service inspection of these structures is performed. Current regulatory in-service inspection requirements are reviewed and a summary of degradation experience presented. Nondestructive examination techniques commonly used to inspect the NPP steel and concrete structures to identify and quantify the amount of damage present are reviewed. Finally, areas where nondestructive evaluation techniques require development (i.e., inaccessible portions of the containment pressure boundary, and thick heavily reinforced concrete sections are discussed.

  14. New Approaches to Quantum Computing using Nuclear Magnetic Resonance Spectroscopy

    SciTech Connect

    Colvin, M; Krishnan, V V

    2003-02-07

    The power of a quantum computer (QC) relies on the fundamental concept of the superposition in quantum mechanics and thus allowing an inherent large-scale parallelization of computation. In a QC, binary information embodied in a quantum system, such as spin degrees of freedom of a spin-1/2 particle forms the qubits (quantum mechanical bits), over which appropriate logical gates perform the computation. In classical computers, the basic unit of information is the bit, which can take a value of either 0 or 1. Bits are connected together by logic gates to form logic circuits to implement complex logical operations. The expansion of modern computers has been driven by the developments of faster, smaller and cheaper logic gates. As the size of the logic gates become smaller toward the level of atomic dimensions, the performance of such a system is no longer considered classical but is rather governed by quantum mechanics. Quantum computers offer the potentially superior prospect of solving computational problems that are intractable to classical computers such as efficient database searches and cryptography. A variety of algorithms have been developed recently, most notably Shor's algorithm for factorizing long numbers into prime factors in polynomial time and Grover's quantum search algorithm. The algorithms that were of only theoretical interest as recently, until several methods were proposed to build an experimental QC. These methods include, trapped ions, cavity-QED, coupled quantum dots, Josephson junctions, spin resonance transistors, linear optics and nuclear magnetic resonance. Nuclear magnetic resonance (NMR) is uniquely capable of constructing small QCs and several algorithms have been implemented successfully. NMR-QC differs from other implementations in one important way that it is not a single QC, but a statistical ensemble of them. Thus, quantum computing based on NMR is considered as ensemble quantum computing. In NMR quantum computing, the spins with

  15. Nuclear matrix - structure, function and pathogenesis.

    PubMed

    Wasąg, Piotr; Lenartowski, Robert

    2016-12-20

    The nuclear matrix (NM), or nuclear skeleton, is the non-chromatin, ribonucleoproteinaceous framework that is resistant to high ionic strength buffers, nonionic detergents, and nucleolytic enzymes. The NM fulfills a structural role in eukaryotic cells and is responsible for maintaining the shape of the nucleus and the spatial organization of chromatin. Moreover, the NM participates in several cellular processes, such as DNA replication/repair, gene expression, RNA transport, cell signaling and differentiation, cell cycle regulation, apoptosis and carcinogenesis. Short nucleotide sequences called scaffold/matrix attachment regions (S/MAR) anchor the chromatin loops to the NM proteins (NMP). The NMP composition is dynamic and depends on the cell type and differentiation stage or metabolic activity. Alterations in the NMP composition affect anchoring of the S/MARs and thus alter gene expression. This review aims to systematize information about the skeletal structure of the nucleus, with particular emphasis on the organization of the NM and its role in selected cellular processes. We also discuss several diseases that are caused by aberrant NM structure or dysfunction of individual NM elements.

  16. Nuclear structure/nuclei far from stability

    SciTech Connect

    Casten, R.F.; Garrett, J.D.; Moller, P.; Bauer, W.W.; Brenner, D.S.; Butler, G.W.; Crawford, J.E.; Davids, C.N.; Dyer, P.L.; Gregorich, K.; Hagbert, E.G.; Hamilton, W.D.; Harar, S.; Haustein, P.E.; Hayes, A.C.; Hoffman, D.C.; Hsu, H.H.; Madland, D.G.; Myers, W.D.; Penttila, H.T.; Ragnarsson, I.; Reeder, P.L.; Robertson, G.H.; Rowley, N.; Schreiber, F.; Seifert, H.L.; Sherrill, B.M.; Siciliano, E.R.; Sprouse, G.D.; Stephens, F

    1990-01-01

    This report outlines some of the nuclear structure topics discussed at the Los Alamos Workshop on the Science of Intense Radioactive Ion Beams (RIB). In it we also tried to convey some of the excitement of the participants for utilizing RIBs in their future research. The introduction of radioactive beams promises to be a major milestone for nuclear structure perhaps even more important than the last such advance in beams based on the advent of heavy-ion accelerators in the 1960's. RIBs not only will allow a vast number of new nuclei to be studies at the extremes of isospin, but the variety of combinations of exotic proton and neutron configurations should lead to entirely new phenomena. A number of these intriguing new studies and the profound consequences that they promise for understanding the structure of the atomic nucleus, nature's only many-body, strongly-inteacting quantum system, are discussed in the preceeding sections. However, as with any scientific frontier, the most interesting phenomena probably will be those that are not anticipated--they will be truly new.

  17. Tungsten - Yttrium Based Nuclear Structural Materials

    NASA Astrophysics Data System (ADS)

    Ramana, Chintalapalle; Chessa, Jack; Martinenz, Gustavo

    2013-04-01

    The challenging problem currently facing the nuclear science community in this 21st century is design and development of novel structural materials, which will have an impact on the next-generation nuclear reactors. The materials available at present include reduced activation ferritic/martensitic steels, dispersion strengthened reduced activation ferritic steels, and vanadium- or tungsten-based alloys. These materials exhibit one or more specific problems, which are either intrinsic or caused by reactors. This work is focussed towards tungsten-yttrium (W-Y) based alloys and oxide ceramics, which can be utilized in nuclear applications. The goal is to derive a fundamental scientific understanding of W-Y-based materials. In collaboration with University of Califonia -- Davis, the project is designated to demonstrate the W-Y based alloys, ceramics and composites with enhanced physical, mechanical, thermo-chemical properties and higher radiation resistance. Efforts are focussed on understanding the microstructure, manipulating materials behavior under charged-particle and neutron irradiation, and create a knowledge database of defects, elemental diffusion/segregation, and defect trapping along grain boundaries and interfaces. Preliminary results will be discussed.

  18. Interdisciplinary Team-Teaching Experience for a Computer and Nuclear Energy Course for Electrical and Computer Engineering Students

    ERIC Educational Resources Information Center

    Kim, Charles; Jackson, Deborah; Keiller, Peter

    2016-01-01

    A new, interdisciplinary, team-taught course has been designed to educate students in Electrical and Computer Engineering (ECE) so that they can respond to global and urgent issues concerning computer control systems in nuclear power plants. This paper discusses our experience and assessment of the interdisciplinary computer and nuclear energy…

  19. Update on nuclear structure effects in light muonic atoms

    NASA Astrophysics Data System (ADS)

    Hernandez, Oscar Javier; Dinur, Nir Nevo; Ji, Chen; Bacca, Sonia; Barnea, Nir

    2016-12-01

    We present calculations of the nuclear structure corrections to the Lamb shift in light muonic atoms, using state-of-the-art nuclear potentials. We outline updated results on finite nucleon size contributions.

  20. Nuclear Structure Near the Drip Lines

    SciTech Connect

    Nazarewicz, W.

    1998-08-10

    Experiments with beams of unstable nuclei will make it possible to look closely into many aspects of the nuclear many-body problem. Theoretically, exotic nuclei represent a formidable challenge for the nuclear many-body theories and their power to predict nuclear properties in nuclear terra incognita.

  1. Advances and trends in computational structural mechanics

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Atluri, Satya N.

    1987-01-01

    The development status and applicational range of techniques in computational structural mechanics (CSM) are evaluated with a view to advances in computational models for material behavior, discrete-element technology, quality assessment, the control of numerical simulations of structural response, hybrid analysis techniques, techniques for large-scale optimization, and the impact of new computing systems on CSM. Primary pacers of CSM development encompass prediction and analysis of novel materials for structural components, computational strategies for large-scale structural calculations, and the assessment of response prediction reliability together with its adaptive improvement.

  2. Dynamic Computer Model of a Stirling Space Nuclear Power System

    DTIC Science & Technology

    2006-05-04

    I would like to thank all Naval Academy faculty involved with the Trident Scholar program . The committee readers (Professors Cerza, Nakos, and...obstacles in structural integrity , stowing for launch, deployment in orbit, and sun pointing that are far from being solved with current technology. 6...the Systems for Nuclear Auxiliary Power (SNAP) program . This program resulted in the only reactor flown in space by the United States. Also, Russia

  3. Computational complexity in electronic structure.

    PubMed

    Whitfield, James Daniel; Love, Peter John; Aspuru-Guzik, Alán

    2013-01-14

    In quantum chemistry, the price paid by all known efficient model chemistries is either the truncation of the Hilbert space or uncontrolled approximations. Theoretical computer science suggests that these restrictions are not mere shortcomings of the algorithm designers and programmers but could stem from the inherent difficulty of simulating quantum systems. Extensions of computer science and information processing exploiting quantum mechanics has led to new ways of understanding the ultimate limitations of computational power. Interestingly, this perspective helps us understand widely used model chemistries in a new light. In this article, the fundamentals of computational complexity will be reviewed and motivated from the vantage point of chemistry. Then recent results from the computational complexity literature regarding common model chemistries including Hartree-Fock and density functional theory are discussed.

  4. Computational fluid dynamics (CFD) and its potential for nuclear applications

    SciTech Connect

    Weber, D.P.; Wei, T.Y.C.; Rock, D.T.; Rizwan-Uddin; Brewster, R.A.; Jonnavithula, S.

    1999-11-01

    The purpose of this paper is to examine the use of these advanced models, methods and computing environments for nuclear applications to determine if the industry can expect to derive the same benefit as other industries, such as the automotive and the aerospace industries. As an example, the authors will examine the use of modern computational fluid dynamics (CFD) capability for subchannel analysis, which is an important part of the analysis technology used by utilities to ensure safe and economical design and operation of reactors. In the current deregulated environment, it is possible that by use of these enhanced techniques, the thermal and electrical output of current reactors may be increased without any increase in cost and at no compromise in safety.

  5. Analysis of nuclear thermal propulsion systems using computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Stubbs, Robert M.; Kim, Suk C.; Papp, John L.

    1993-01-01

    Computational fluid dynamics (CFD) analyses of nuclear rockets with relatively low chamber pressures were carried out to assess the merits of using such low pressures to take advantage of hydrogen dissociation and recombination. The computations, using a Navier-Stokes code with chemical kinetics, describe the flow field in detail, including gas dynamics, thermodynamic and chemical properties, and provide global performance quantities such as specific impulse and thrust. Parametric studies were performed varying chamber temperature, chamber pressure and nozzle size. Chamber temperature was varied between 2700 K and 3600 K, and chamber pressure between 0.1 atm. and 10 atm. Performance advantages associated with lower chamber pressures are shown to occur at the higher chamber temperatures. Viscous losses are greater at lower chamber pressures and can be decreased in larger nozzles where the boundary layer is a smaller fraction of the flow field.

  6. Nuclear structure research. Annual progress report

    SciTech Connect

    Wood, J.L.

    1996-12-31

    The most significant development this year has been the realization that EO transition strength is a fundamental manifestation of nuclear mean-square charge radius differences. Thus, EO transitions provide a fundamental signature for shape coexistence in nuclei. In this sense, EO transitions are second only to E2 transitions for signaling (quadrupole) shapes in nuclei and do so when shape differences occur. A major effort has been devoted to the review of EO transitions in nuclei. Experiments have been carried out or are scheduled at: ATLAS/FMA ({alpha} decay of very neutron-deficient Bi isotopes); MSU/NSCL ({beta} decay of {sup 56}Cu); and HRIBF/RMS (commissioning of tape collector, internal conversion/internal-pair spectrometer; {beta} decay of {sup 58}Cu). A considerable effort has been devoted to planning the nuclear structure physics that will be pursued using HRIBF. Theoretical investigations have continued in collaboration with Prof. K. Heyde, Prof. D.J. Rowe, Prof. J.O. Rasmussen, and Prof. P.B. Semmes. These studies focus on shape coexistence and particle-core coupling.

  7. Computation of free-molecular flow in nuclear materials

    NASA Astrophysics Data System (ADS)

    Casella, Andrew M.; Loyalka, Sudarshan K.; Hanson, Brady D.

    2009-11-01

    Generally, the transport of gases and vapors in nuclear materials is adequately described by the diffusion equation with an effective diffusion coefficient. There are instances however, in which the flow pathway can be so restrictive that the diffusion description has limitations. In general, molecular transport is governed by intermolecular forces and collisions (interactions between multiple gas/vapor molecules) and by molecule-surface interactions. However, if nano-scale pathways exist within these materials, as has been suggested, then molecular transport can be characterized as being in the free-molecular flow regime where intermolecular interactions can be ignored and flow is determined entirely by molecule-surface collisions. Our purpose in this investigation is to focus on free-molecular transport in fine capillaries of a range of shapes and to explore the effect of geometry on this transport. We have employed Monte Carlo techniques in our calculations, and for simple geometries we have benchmarked our results against some analytical and previously available results. We have used Mathematica ® which has exceptional built-in symbolic and graphical capabilities, permitting easy handling of complicated geometries and good visualization of the results. Our computations provide insights into the role of geometry in molecular transport in nuclear materials with narrow pathways for flows, and also will be useful in guiding computations that include intermolecular collisions and more realistic gas-surface collision operators.

  8. Investigations of nuclear structure and nuclear reactions induced by complex projectiles

    SciTech Connect

    Sarantites, D.G.

    1990-01-01

    This report discusses research in the following areas: nuclear structure; fusion reactions near and below the barrier; incomplete fusion and fragmentation reactions; and instrumentation and analysis. (LSP).

  9. Probabilistic Computer Analysis for Rapid Evaluation of Structures.

    SciTech Connect

    XU, JIM

    2007-03-29

    P-CARES 2.0.0, Probabilistic Computer Analysis for Rapid Evaluation of Structures, was developed for NRC staff use to determine the validity and accuracy of the analysis methods used by various utilities for structural safety evaluations of nuclear power plants. P-CARES provides the capability to effectively evaluate the probabilistic seismic response using simplified soil and structural models and to quickly check the validity and/or accuracy of the SSI data received from applicants and licensees. The code is organized in a modular format with the basic modules of the system performing static, seismic, and nonlinear analysis.

  10. Computer Security for Commercial Nuclear Power Plants - Literature Review for Korea Hydro Nuclear Power Central Research Institute

    SciTech Connect

    Duran, Felicia Angelica; Waymire, Russell L.

    2013-10-01

    Sandia National Laboratories (SNL) is providing training and consultation activities on security planning and design for the Korea Hydro and Nuclear Power Central Research Institute (KHNPCRI). As part of this effort, SNL performed a literature review on computer security requirements, guidance and best practices that are applicable to an advanced nuclear power plant. This report documents the review of reports generated by SNL and other organizations [U.S. Nuclear Regulatory Commission, Nuclear Energy Institute, and International Atomic Energy Agency] related to protection of information technology resources, primarily digital controls and computer resources and their data networks. Copies of the key documents have also been provided to KHNP-CRI.

  11. Rapidity Correlation Structure in Nuclear Collisions

    NASA Astrophysics Data System (ADS)

    Zin, Christopher; Gavin, Sean; Moschelli, George

    2016-09-01

    The forces that drive the nuclear collision system towards local thermal equilibrium leave few observable traces. Heavy ion experiments report a range of features widely attributed to the hydrodynamic flow of a near-equilibrium quark gluon plasma. In particular, measurements of azimuthal anisotropy provide the most comprehensive support for the hydrodynamic description of these systems. In search of the source of this flow, we turned to smaller proton-proton, proton-nucleus and deuterium-nucleus collisions, expecting to find this effect absent. Instead, these collisions show an azimuthal anisotropy that is comparable to the larger ion-ion systems. How can we learn about the mechanisms that give rise to hydrodynamics if every available collision system exhibits flow? We show that measurements of the rapidity dependence of transverse momentum correlations can be used to determine the characteristic time τπ that dictates the rate of isotropization of the stress energy tensor, as well as the shear viscosity ν = η / sT . We formulate methods for computing these correlations using second order dissipative hydrodynamics with noise. Current data are consistent with τπ / ν 10 but targeted measurements can improve this precision. NSF PHY-1207687.

  12. When lamins go bad: nuclear structure and disease.

    PubMed

    Schreiber, Katherine H; Kennedy, Brian K

    2013-03-14

    Mutations in nuclear lamins or other proteins of the nuclear envelope are the root cause of a group of phenotypically diverse genetic disorders known as laminopathies, which have symptoms that range from muscular dystrophy to neuropathy to premature aging syndromes. Although precise disease mechanisms remain unclear, there has been substantial progress in our understanding of not only laminopathies, but also the biological roles of nuclear structure. Nuclear envelope dysfunction is associated with altered nuclear activity, impaired structural dynamics, and aberrant cell signaling. Building on these findings, small molecules are being discovered that may become effective therapeutic agents.

  13. Structure, dynamics and function of nuclear pore complexes

    PubMed Central

    D’Angelo, M. A.; Hetzer, M. W.

    2009-01-01

    Nuclear pore complexes are large aqueous channels that penetrate the nuclear envelope, connecting the nuclear interior with the cytoplasm. Until recently, these macromolecular complexes were viewed as static structures whose only function was to control the molecular trafficking between the two compartments. It has now become evident that this simplistic scenario is inaccurate and that nuclear pore complexes are highly dynamic multiprotein assemblies involved in diverse cellular processes ranging from the organization of the cytoskeleton to gene expression. In this review, we will discuss the most recent developments in the nuclear pore complex field, focusing in the assembly, disassembly, maintenance and function of this macromolecular structure. PMID:18786826

  14. 77 FR 50727 - Configuration Management Plans for Digital Computer Software Used in Safety Systems of Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ... COMMISSION Configuration Management Plans for Digital Computer Software Used in Safety Systems of Nuclear... draft regulatory guide (DG), DG-1206, ``Configuration Management Plan for Digital Computer Software Used... Digital Computer Software Used in Safety Systems of Nuclear Power Plants'' is temporarily identified...

  15. Introduction to the computational structural mechanics testbed

    NASA Technical Reports Server (NTRS)

    Lotts, C. G.; Greene, W. H.; Mccleary, S. L.; Knight, N. F., Jr.; Paulson, S. S.; Gillian, R. E.

    1987-01-01

    The Computational Structural Mechanics (CSM) testbed software system based on the SPAR finite element code and the NICE system is described. This software is denoted NICE/SPAR. NICE was developed at Lockheed Palo Alto Research Laboratory and contains data management utilities, a command language interpreter, and a command language definition for integrating engineering computational modules. SPAR is a system of programs used for finite element structural analysis developed for NASA by Lockheed and Engineering Information Systems, Inc. It includes many complementary structural analysis, thermal analysis, utility functions which communicate through a common database. The work on NICE/SPAR was motivated by requirements for a highly modular and flexible structural analysis system to use as a tool in carrying out research in computational methods and exploring computer hardware. Analysis examples are presented which demonstrate the benefits gained from a combination of the NICE command language with a SPAR computational modules.

  16. Nudat: Nuclear Structure and Decay Data from the National Nuclear Data Center (NNDC)

    DOE Data Explorer

    NuDat allows users to search and plot nuclear structure and decay data interactively. NuDat was developed by the National Nuclear Data Center (NNDC)but utilizes contributions from physicists around the world. It provides an interface between web users and several databases containing nuclear structure, nuclear decay and some neutron-induced nuclear reaction information. Users can search for nuclear level properties (energy, half-life, spinparity), gamma-ray information (energy, intensity, multipolarity, coincidences), radiation information following nuclear decay (energy, intensity, dose), and neutron-induced reaction data from the BNL-325 book (thermal cross section and resonance integral). The information provided by NuDat 2 can be viewed in tables, level schemes and an interactive chart of nuclides.

  17. Computational composite mechanics for aerospace propulsion structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1987-01-01

    Specialty methods are presented for the computational simulation of specific composite behavior. These methods encompass all aspects of composite mechanics, impact, progressive fracture and component specific simulation. Some of these methods are structured to computationally simulate, in parallel, the composite behavior and history from the initial frabrication through several missions and even to fracture. Select methods and typical results obtained from such simulations are described in detail in order to demonstrate the effectiveness of computationally simulating: (1) complex composite structural behavior in general, and (2) specific aerospace propulsion structural components in particular.

  18. Parallel computations and control of adaptive structures

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Alvin, Kenneth F.; Belvin, W. Keith; Chong, K. P. (Editor); Liu, S. C. (Editor); Li, J. C. (Editor)

    1991-01-01

    The equations of motion for structures with adaptive elements for vibration control are presented for parallel computations to be used as a software package for real-time control of flexible space structures. A brief introduction of the state-of-the-art parallel computational capability is also presented. Time marching strategies are developed for an effective use of massive parallel mapping, partitioning, and the necessary arithmetic operations. An example is offered for the simulation of control-structure interaction on a parallel computer and the impact of the approach presented for applications in other disciplines than aerospace industry is assessed.

  19. Computational composite mechanics for aerospace propulsion structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1986-01-01

    Specialty methods are presented for the computational simulation of specific composite behavior. These methods encompass all aspects of composite mechanics, impact, progressive fracture and component specific simulation. Some of these methods are structured to computationally simulate, in parallel, the composite behavior and history from the initial fabrication through several missions and even to fracture. Select methods and typical results obtained from such simulations are described in detail in order to demonstrate the effectiveness of computationally simulating (1) complex composite structural behavior in general and (2) specific aerospace propulsion structural components in particular.

  20. Nuclear structure in the dinuclear model with rotating clusters

    SciTech Connect

    Adamian, G. G.; Antonenko, N. V.; Jolos, R. V.; Palchikov, Yu. V.; Shneidman, T. M.; Scheid, W.

    2007-08-15

    The dinuclear-system model can be applied to nuclear structure. Here, we study deformed clusters which rotate with respect to the internuclear distance and exchange nucleons. The model can be used to explain the band structure of nuclear spectra, especially the parity splitting observed in actinides, e.g., in {sup 238}U.

  1. Structural integrity of nuclear reactor pressure vessels

    NASA Astrophysics Data System (ADS)

    Knott, John F.

    2013-09-01

    The paper starts from concerns expressed by Sir Alan Cottrell, in the early 1970s, related to the safety of the pressurized water reactor (PWR) proposed at that time for the next phase of electrical power generation. It proceeds to describe the design and operation of nuclear generation plant and gives details of the manufacture of PWR reactor pressure vessels (RPVs). Attention is paid to stress-relief cracking and under-clad cracking, experienced with early RPVs, explaining the mechanisms for these forms of cracking and the means taken to avoid them. Particular note is made of the contribution of non-destructive inspection to structural integrity. Factors affecting brittle fracture in RPV steels are described: in particular, effects of neutron irradiation. The use of fracture mechanics to assess defect tolerance is explained, together with the failure assessment diagram embodied in the R6 procedure. There is discussion of the Master Curve and how it incorporates effects of irradiation on fracture toughness. Dangers associated with extrapolation of data to low probabilities are illustrated. The treatment of fatigue-crack growth is described, in the context of transients that may be experienced in the operation of PWR plant. Detailed attention is paid to the thermal shock associated with a large loss-of-coolant accident. The final section reviews the arguments advanced to justify 'Incredibility of Failure' and how these are incorporated in assessments of the integrity of existing plant and proposed 'new build' PWR pressure vessels.

  2. Nuclear structure research. Annual progress report

    SciTech Connect

    Wood, J.L.

    1995-07-31

    The most significant development this year has been the realization of a method for estimating EO transition strength in nuclei and the prediction that the de-excitation (draining) of superdeformed bands must take place, at least in some cases, by strong EO transitions. A considerable effort has been devoted to planning the nuclear structure physics that will be pursued using the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge. A significant effort has been devoted to HRIBF target development. This is a critical component of the HRIBF project. Exhaustive literature searches have been made for a variety of target materials with emphasis on thermodynamic properties. Vapor pressure measurements have been carried out. Experimental data sets for radioactive decays in the very neutron-deficient Pr-Eu and Ir-Tl regions have been under analysis. These decay schemes constitute parts of student Ph.D. theses. These studies are aimed at elucidating the onset of deformation in the Pr-Sm region and the characteristics of shape coexistence in the Ir-Bi region. Further experiments on shape coexistence in the neutron-deficient Ir-Bi region are planned using {alpha} decay studies at the FMA at ATLAS. The first experiment is scheduled for later this year.

  3. Computational Chemistry Using Modern Electronic Structure Methods

    ERIC Educational Resources Information Center

    Bell, Stephen; Dines, Trevor J.; Chowdhry, Babur Z.; Withnall, Robert

    2007-01-01

    Various modern electronic structure methods are now days used to teach computational chemistry to undergraduate students. Such quantum calculations can now be easily used even for large size molecules.

  4. Computing with structured connections networks. Technical report

    SciTech Connect

    Feldman, J.A.; Fanty, M.A.; Goddard, N.; Lynne, K.

    1987-04-01

    Rapid advances both in the neurosciences and in computer science are beginning to lead to a new interest in computational models linking animal brains and behavior. In computer science, there is a large and growing body of knowledge about parallel computation and another, largely separate, science of artificial intelligence. The idea of looking directly at massively parallel realizations of intelligent activity promises to be fruitful for the study of both natural and artificial computations. Much attention has been directed towards the biological implications of this interdisciplinary effort, but there are equally important relations with computational theory, hardware and software. This article focuses on the design and use of massively parallel computational models, particularly in artificial intelligence. Much of the recent work on massively parallel computation has been carried out by physicists and examines the emergent behavior of large, unstructured collections of computing units. We are more concerned with how one can design, realize and analyze networks that embody the specific computational structures needed to solve hard problems. Adaptation and learning are treated as ways to improve structured networks, not as a replacement for analysis and design.

  5. Toward understanding the structure of the vertebrate nuclear pore complex.

    PubMed

    Beck, Martin; Glavy, Joseph S

    2014-01-01

    Nuclear pore complexes are large macromolecular assemblies that facilitate the nucleocytoplasmic exchange of macromolecules. Because of their intricate composition, membrane association, and sheer size, the integration of various, complementary structure determination approaches is a prerequisite for elucidating their structure. We have recently employed such an integrated strategy to analyze the scaffold structure of the cytoplasmic and nuclear rings of the human nuclear pore complex. In this extra view, we highlight two specific aspects of this work: the power of electron microscopy for bridging different resolution regimes and the importance of post-translational modifications for regulating nucleoporin interactions. We review recent technological developments and give a perspective toward future structure determination approaches.

  6. Muonic Atoms and the Nuclear Structure

    NASA Astrophysics Data System (ADS)

    Antognini, A.

    High-precision laser spectroscopy of atomic energy levels enables the measurement of nuclear properties. Sensitivity to these properties is particularly enhanced in muonic atoms which are bound systems of a muon and a nucleus. Exemplary is the measurement of the proton charge radius from muonic hydrogen performed by the CREMA collaboration which resulted in an order of magnitude more precise charge radius as extracted from other methods but at a variance of 7 standard deviations. Here, we summarize the role of muonic atoms for the extraction of nuclear charge radii, we present the status of the so called "proton charge radius puzzle", and we sketch how muonic atoms can be used to infer also the magnetic nuclear radii, demonstrating again an interesting interplay between atomic and particle/nuclear physics.

  7. Spent Nuclear Fuel Structural Response when Subject to an End Impact Accident

    SciTech Connect

    Adkins, Harold E.; Koeppel, Brian J.; Tang, David T.

    2004-11-19

    The US Nuclear Regulatory Commission (USNRC) is tasked with licensing of safe spent fuel storage and transportation systems. A subset of this responsibility is to investigate and understand the structural performance of these systems. In a joint effort between staff at the Pacific Northwest National Laboratory (PNNL) and the USNRC, computational studies were performed to predict the structural response of spent nuclear fuel when subject to an end impact accident. In this study, the structural performance of a typical Pressurized Water Reactor (PWR) fuel assembly is evaluated utilizing the ANSYS®/LS-DYNA® finite element analysis (FEA) code.

  8. MECHANICAL REGULATION OF NUCLEAR STRUCTURE AND FUNCTION

    PubMed Central

    Martins, Rui P.; Finan, John D.; Guilak, Farshid; Lee, David A.

    2013-01-01

    Mechanical loading induces both nuclear distortion and alterations in gene expression in a variety of cell types. Mechanotransduction is the process by which extracellular mechanical forces can activate a number of well-studied cytoplasmic signaling cascades. Inevitably such signals are transduced to the nucleus and induce transcription factor-mediated changes in gene expression. However, gene expression can be also regulated through alterations in nuclear architecture, providing direct control of genome function. One putative transduction mechanism for this phenomenon involves alterations in nuclear architecture that result from the mechanical perturbation of the cell. This perturbation is associated with direct mechanical strain or osmotic stress, which is transferred to the nucleus. This review describes the current state of knowledge relating the nuclear architecture and the transfer of mechanical forces to the nucleus mediated by the cytoskeleton, the nucleoskeleton, and the LINC (linker of the nucleoskeleton and cytoskeleton) complex. Moreover, remodeling of the nucleus induces alterations in nuclear stiffness, which may be associated with cell differentiation. These phenomena are discussed in relation to the potential influence of nuclear architecture-mediated mechanoregulation of transcription and cell fate. PMID:22655599

  9. Mechanical regulation of nuclear structure and function.

    PubMed

    Martins, Rui P; Finan, John D; Guilak, Farshid; Lee, David A

    2012-01-01

    Mechanical loading induces both nuclear distortion and alterations in gene expression in a variety of cell types. Mechanotransduction is the process by which extracellular mechanical forces can activate a number of well-studied cytoplasmic signaling cascades. Inevitably, such signals are transduced to the nucleus and induce transcription factor-mediated changes in gene expression. However, gene expression also can be regulated through alterations in nuclear architecture, providing direct control of genome function. One putative transduction mechanism for this phenomenon involves alterations in nuclear architecture that result from the mechanical perturbation of the cell. This perturbation is associated with direct mechanical strain or osmotic stress, which is transferred to the nucleus. This review describes the current state of knowledge relating the nuclear architecture and the transfer of mechanical forces to the nucleus mediated by the cytoskeleton, the nucleoskeleton, and the LINC (linker of the nucleoskeleton and cytoskeleton) complex. Moreover, remodeling of the nucleus induces alterations in nuclear stiffness, which may be associated with cell differentiation. These phenomena are discussed in relation to the potential influence of nuclear architecture-mediated mechanoregulation of transcription and cell fate.

  10. Application of desktop computers in nuclear engineering education

    SciTech Connect

    Graves, H.W. Jr. )

    1990-01-01

    Utilization of desktop computers in the academic environment is based on the same objectives as in the industrial environment - increased quality and efficiency. Desktop computers can be extremely useful teaching tools in two general areas: classroom demonstrations and homework assignments. Although differences in emphasis exist, tutorial programs share many characteristics with interactive software developed for the industrial environment. In the Reactor Design and Fuel Management course at the University of Maryland, several interactive tutorial programs provided by Energy analysis Software Service have been utilized. These programs have been designed to be sufficiently structured to permit an orderly, disciplined solution to the problem being solved, and yet be flexible enough to accommodate most problem solution options.

  11. Aging management of containment structures in nuclear power plants

    SciTech Connect

    Naus, D.J.; Oland, C.B.; Ellingwood, B.R.; Graves, H.L. III; Norris, W.E.

    1994-12-31

    Research is being conducted by ORNL under US Nuclear Regulatory Commission (USNRC) sponsorship to address aging management of nuclear power plant containment and other safety-related structures. Documentation is being prepared to provide the USNRC with potential structural safety issues and acceptance criteria for use in continued service evaluations of nuclear power plants. Accomplishments include development of a Structural Materials Information Center containing data and information on the time variation of 144 material properties under the influence of pertinent environmental stressors or aging factors, evaluation of models for potential concrete containment degradation factors, development of a procedure to identify critical structures and degradation factors important to aging management, evaluations of nondestructive evaluation techniques. assessments of European and North American repair practices for concrete, review of parameters affecting corrosion of metals embedded in concrete, and development of methodologies for making current condition assessments and service life predictions of new or existing reinforced concrete structures in nuclear power plants.

  12. Computational image analysis of nuclear morphology associated with various nuclear-specific aging disorders.

    PubMed

    Choi, Siwon; Wang, Wei; Ribeiro, Alexandrew J S; Kalinowski, Agnieszka; Gregg, Siobhan Q; Opresko, Patricia L; Niedernhofer, Laura J; Rohde, Gustavo K; Dahl, Kris Noel

    2011-01-01

    Computational image analysis is used in many areas of biological and medical research, but advanced techniques including machine learning remain underutilized. Here, we used automated segmentation and shape analyses, with pre-defined features and with computer generated components, to compare nuclei from various premature aging disorders caused by alterations in nuclear proteins. We considered cells from patients with Hutchinson-Gilford progeria syndrome (HGPS) with an altered nucleoskeletal protein; a mouse model of XFE progeroid syndrome caused by a deficiency of ERCC1-XPF DNA repair nuclease; and patients with Werner syndrome (WS) lacking a functional WRN exonuclease and helicase protein. Using feature space analysis, including circularity, eccentricity, and solidity, we found that XFE nuclei were larger and significantly more elongated than control nuclei. HGPS nuclei were smaller and rounder than the control nuclei with features suggesting small bumps. WS nuclei did not show any significant shape changes from control. We also performed principle component analysis (PCA) and a geometric, contour based metric. PCA allowed direct visualization of morphological changes in diseased nuclei, whereas standard, feature-based approaches required pre-defined parameters and indirect interpretation of multiple parameters. Both methods yielded similar results, but PCA proves to be a powerful pre-analysis methodology for unknown systems.

  13. EVALUATED NUCLEAR STRUCTURE DATA FILE AND RELATED PRODUCTS.

    SciTech Connect

    TULI,J.K.

    2004-09-26

    The Evaluated Nuclear Structure Data File (ENSDF) is a leading resource for the experimental nuclear data. It is maintained and distributed by the National Nuclear Data Center, Brookhaven National Laboratory. The file is mainly contributed to by an international network of evaluators under the auspice of the International Atomic Energy Agency. The ENSDF is updated, generally by mass number, i.e., evaluating together all isobars for a given mass number. If, however, experimental activity in an isobaric chain is limited to a particular nuclide then only that nuclide is updated. The evaluations are published in the journal Nuclear Data Sheets, Academic Press, a division of Elsevier.

  14. Evaluated Nuclear Structure Data File and Related Products

    SciTech Connect

    Tuli, Jagdish K.

    2005-05-24

    The Evaluated Nuclear Structure Data File (ENSDF) is a leading resource for experimental nuclear data. It is maintained and distributed by the National Nuclear Data Center, Brookhaven National Laboratory. The file is mainly contributed to by an international network of evaluators under the auspice of the International Atomic Energy Agency. The ENSDF is updated, generally by mass number, i.e., evaluating together all isobars for a given mass number. If, however, experimental activity in an isobaric chain is limited to a particular nuclide, then only that nuclide is updated. The evaluations are published in the Journal of Nuclear Data Sheets, Academic Press, a division of Elsevier.

  15. Investigations of nuclear structure and nuclear reactions induced by complex projectiles

    SciTech Connect

    Sarantites, D.G.

    1991-01-01

    The research program of our group touches five areas of nuclear physics: (1) Nuclear structure studies at high spin; (2) Studies at the interface between structure and reactions; (3) Production and study of hot nuclei; (4) Incomplete fusion and fragmentation reactions; and (5) Development and use of novel techniques and instrumentation in the above areas of research. The papers from these areas are discussed in this report.

  16. Physical and Mechanical Metallurgy of Zirconium Alloys for Nuclear Applications: A Multi-Scale Computational Study

    NASA Astrophysics Data System (ADS)

    Glazoff, Michael Vasily

    In the post-Fukushima world, thermal and structural stability of materials under extreme conditions is an important issue for the safety of nuclear reactors. Because the nuclear industry will continue using zirconium (Zr) cladding for the foreseeable future, it becomes critical to gain a fundamental understanding of several interconnected problems. First, what are the thermodynamic and kinetic factors affecting oxidation and hydrogen pick-up by these materials at normal, off-normal conditions, and in long-term storage? Secondly, what protective coatings could be used in order to gain valuable time at off-normal conditions (temperature exceeds ~1200°C (2200°F)? Thirdly, the kinetics of the coating's oxidation must be understood. Lastly, one needs automated inspection algorithms allowing identifying cladding's defects. This work attempts to explore the problem from a computational perspective, utilizing first principles atomistic simulations, computational thermodynamics, plasticity theory, and morphological algorithms of image processing for defect identification. It consists of the four parts dealing with these four problem areas preceded by the introduction. In the 1st part, computational thermodynamics and ab initio calculations were used to shed light upon the different stages of zircaloy oxidation and hydrogen pickup, and microstructure optimization to increase thermal stability. The 2 nd part describes the kinetic theory of oxidation of the several materials considered to be perspective coatings for Zr alloys: SiC and ZrSiO4. The 3rd part deals with understanding the respective roles of the two different plasticity mechanisms in Zr nuclear alloys: twinning (at low T) and crystallographic slip (higher T's). For that goal, an advanced plasticity model was proposed. In the 4th part projectional algorithms for defect identification in zircaloy coatings are described. Conclusions and recommendations are presented in the 5th part. This integrative approach's value

  17. Nuclear structure notes on element 115 decay chains

    SciTech Connect

    Rudolph, D. Sarmiento, L. G.; Forsberg, U.

    2015-10-15

    Hitherto collected data on more than hundred α-decay chains stemming from element 115 are combined to probe some aspects of the underlying nuclear structure of the heaviest atomic nuclei yet created in the laboratory.

  18. Evaluated nuclear structure data file. A manual for preparation of data sets

    SciTech Connect

    Tuli, J.K.

    1983-03-01

    This manual describes the organization and structure of the Evaluated Nuclear Structure Data File (ENSDF). This computer-based file is maintained by the National Nuclear Data Center (NNDC) at Brookhaven National Laboratory for the international Nuclear Structure and Decay Data Network. For every mass number (presently, A less than or equal to 263), the Evaluated Nuclear Structure Data File (ENSDF) contains evaluated structure information. For masses A greater than or equal to 45, this information is documented in the Nuclear Data Sheets; for A < 45, ENSDF is based on compilations published in the journal Nuclear Physics. The information in ENSDF is updated by mass chains with a present cycle time of approximately six years. The body of a data set is composed of numeric data records which describe the measured or deduced properties of levels, ..gamma.. rays, ..cap alpha.. particles, etc. These records are associated with the level which decays (for gamma records) or the level which is populated (for beta, ec, or alpha records). Thus, each level record is followed by a group of records describing charged-particle decay into the level and ..gamma..-ray decay out of the level. (WHK)

  19. HMG Nuclear Proteins: Linking Chromatin Structure to Cellular Phenotype

    PubMed Central

    Reeves, Raymond

    2009-01-01

    I. Summary Although the three families of mammalian HMG proteins (HMGA, HMGB and HMGN) participate in many of the same nuclear processes, each family plays its own unique role in modulating chromatin structure and regulating genomic function. This review focuses on the similarities and differences in the mechanisms by which the different HMG families impact chromatin structure and influence cellular phenotype. The biological implications of having three architectural transcription factor families with complementary, but partially overlapping, nuclear functions are discussed. PMID:19748605

  20. Generalized Nuclear Data: A New Structure (with Supporting Infrastructure) for Handling Nuclear Data

    NASA Astrophysics Data System (ADS)

    Mattoon, C. M.; Beck, B. R.; Patel, N. R.; Summers, N. C.; Hedstrom, G. W.; Brown, D. A.

    2012-12-01

    The Evaluated Nuclear Data File (ENDF) format was designed in the 1960s to accommodate neutron reaction data to support nuclear engineering applications in power, national security and criticality safety. Over the years, the scope of the format has been extended to handle many other kinds of data including charged particle, decay, atomic, photo-nuclear and thermal neutron scattering. Although ENDF has wide acceptance and support for many data types, its limited support for correlated particle emission, limited numeric precision, and general lack of extensibility mean that the nuclear data community cannot take advantage of many emerging opportunities. More generally, the ENDF format provides an unfriendly environment that makes it difficult for new data evaluators and users to create and access nuclear data. The Cross Section Evaluation Working Group (CSEWG) has begun the design of a new Generalized Nuclear Data (or 'GND') structure, meant to replace older formats with a hierarchy that mirrors the underlying physics, and is aligned with modern coding and database practices. In support of this new structure, Lawrence Livermore National Laboratory (LLNL) has updated its nuclear data/reactions management package Fudge to handle GND structured nuclear data. Fudge provides tools for converting both the latest ENDF format (ENDF-6) and the LLNL Evaluated Nuclear Data Library (ENDL) format to and from GND, as well as for visualizing, modifying and processing (i.e., converting evaluated nuclear data into a form more suitable to transport codes) GND structured nuclear data. GND defines the structure needed for storing nuclear data evaluations and the type of data that needs to be stored. But unlike ENDF and ENDL, GND does not define how the data are to be stored in a file. Currently, Fudge writes the structured GND data to a file using the eXtensible Markup Language (XML), as it is ASCII based and can be viewed with any text editor. XML is a meta-language, meaning that it

  1. Crystal Structure of the Herpesvirus Nuclear Egress Complex Provides Insights into Inner Nuclear Membrane Remodeling.

    PubMed

    Zeev-Ben-Mordehai, Tzviya; Weberruß, Marion; Lorenz, Michael; Cheleski, Juliana; Hellberg, Teresa; Whittle, Cathy; El Omari, Kamel; Vasishtan, Daven; Dent, Kyle C; Harlos, Karl; Franzke, Kati; Hagen, Christoph; Klupp, Barbara G; Antonin, Wolfram; Mettenleiter, Thomas C; Grünewald, Kay

    2015-12-29

    Although nucleo-cytoplasmic transport is typically mediated through nuclear pore complexes, herpesvirus capsids exit the nucleus via a unique vesicular pathway. Together, the conserved herpesvirus proteins pUL31 and pUL34 form the heterodimeric nuclear egress complex (NEC), which, in turn, mediates the formation of tight-fitting membrane vesicles around capsids at the inner nuclear membrane. Here, we present the crystal structure of the pseudorabies virus NEC. The structure revealed that a zinc finger motif in pUL31 and an extensive interaction network between the two proteins stabilize the complex. Comprehensive mutational analyses, characterized both in situ and in vitro, indicated that the interaction network is not redundant but rather complementary. Fitting of the NEC crystal structure into the recently determined cryoEM-derived hexagonal lattice, formed in situ by pUL31 and pUL34, provided details on the molecular basis of NEC coat formation and inner nuclear membrane remodeling.

  2. Design of structures for Nuclear Electric Propulsion vehicles

    NASA Technical Reports Server (NTRS)

    Hedgepeth, John M.; Lawrence, Charles

    1993-01-01

    This paper reports a study of efficient structures for connecting various elements of Nuclear Electric Propulsion (NEP) vehicles. The design requirements for the structure are discussed and a truss beam is selected for the application. Evaluation of stiffness and weight indicate that the required structure is less than 5 percent of the dry weight of the vehicle.

  3. Computer assistance for the structural chemist

    NASA Technical Reports Server (NTRS)

    Carhart, R. E.; Varkony, T. H.; Smith, D. H.

    1977-01-01

    A description is presented of the approaches used to modify the molecular structure generator program, CONGEN. The CONGEN program for constructing structures under constraints has been discussed by Carhart et al. (1975). The modifications reported are to lead to a more efficient structure generation on the basis of a translation of structural data input to the program. From an algorithmic standpoint, CONGEN is successful if it can, in a reasonable amount of time and without exhausting storage resources, produce a list of candidate structures satisfying the chemist's constraints. However, this list is often quite large, and it remains for the chemist to discriminate among the candidates, eventually reducing the possibilities to just one structure. Ways are studied for providing computer assistance in examining and further constraining lists of structural candidates.

  4. The computational structural mechanics testbed procedures manual

    NASA Technical Reports Server (NTRS)

    Stewart, Caroline B. (Compiler)

    1991-01-01

    The purpose of this manual is to document the standard high level command language procedures of the Computational Structural Mechanics (CSM) Testbed software system. A description of each procedure including its function, commands, data interface, and use is presented. This manual is designed to assist users in defining and using command procedures to perform structural analysis in the CSM Testbed User's Manual and the CSM Testbed Data Library Description.

  5. Nuclear microscopy of sperm cell elemental structure

    NASA Astrophysics Data System (ADS)

    Bench, Graham S.; Balhorn, Rod; Friz, Alexander M.

    1995-05-01

    Theories suggest there is a link between protamine concentrations in individual sperm and male fertility. Previously, biochemical analyses have used pooled samples containing millions of sperm to determine protamine concentrations. These methods have not been able to determine what percentage of morphologically normal sperm are biochemically defective and potentially infertile. Nuclear microscopy has been utilized to measure elemental profiles at the single sperm level. By measuring the amount of phosphorus and sulfur, the total DNA and protamine content in individual sperm from fertile bull and mouse semen have been determined. These values agree with results obtained from other biochemical analyses. Nuclear microscopy shows promise for measuring elemental profiles in the chromatin of individual sperm. The technique may be able to resolve theories regarding the importance of protamines to male fertility and identify biochemical defects responsible for certain types of male infertility.

  6. Nuclear microscopy of sperm cell elemental structure

    SciTech Connect

    Bench, G.S.; Balhorn, R.; Friz, A.M.; Freeman, S.P.H.T.

    1994-09-28

    Theories suggest there is a link between protamine concentrations in individual sperm and male fertility. Previously, biochemical analyses have used pooled samples containing millions of sperm to determine protamine concentrations. These methods have not been able to determine what percentage of morphologically normal sperm are biochemically defective and potentially infertile. Nuclear microscopy has been utilized to measure elemental profiles at the single sperm level. By measuring the amount of phosphorus and sulfur, the total DNA and protamine content in individual sperm from fertile bull and mouse semen have been determined. These values agree with results obtained from other biochemical analyses. Nuclear microscopy shows promise for measuring elemental profiles in the chromatin of individual sperm. The technique may be able to resolve theories regarding the importance of protamines to male fertility and identify biochemical defects responsible for certain types of male infertility.

  7. Scientific Grand Challenges: Forefront Questions in Nuclear Science and the Role of High Performance Computing

    SciTech Connect

    Khaleel, Mohammad A.

    2009-10-01

    This report is an account of the deliberations and conclusions of the workshop on "Forefront Questions in Nuclear Science and the Role of High Performance Computing" held January 26-28, 2009, co-sponsored by the U.S. Department of Energy (DOE) Office of Nuclear Physics (ONP) and the DOE Office of Advanced Scientific Computing (ASCR). Representatives from the national and international nuclear physics communities, as well as from the high performance computing community, participated. The purpose of this workshop was to 1) identify forefront scientific challenges in nuclear physics and then determine which-if any-of these could be aided by high performance computing at the extreme scale; 2) establish how and why new high performance computing capabilities could address issues at the frontiers of nuclear science; 3) provide nuclear physicists the opportunity to influence the development of high performance computing; and 4) provide the nuclear physics community with plans for development of future high performance computing capability by DOE ASCR.

  8. Computer subroutines for the estimation of nuclear reaction effects in proton-tissue-dose calculations

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Khandelwal, G. S.

    1976-01-01

    Calculational methods for estimation of dose from external proton exposure of arbitrary convex bodies are briefly reviewed. All the necessary information for the estimation of dose in soft tissue is presented. Special emphasis is placed on retaining the effects of nuclear reaction, especially in relation to the dose equivalent. Computer subroutines to evaluate all of the relevant functions are discussed. Nuclear reaction contributions for standard space radiations are in most cases found to be significant. Many of the existing computer programs for estimating dose in which nuclear reaction effects are neglected can be readily converted to include nuclear reaction effects by use of the subroutines described herein.

  9. Report on aging of nuclear power plant reinforced concrete structures

    SciTech Connect

    Naus, D.J.; Oland, C.B.; Ellingwood, B.R.

    1996-03-01

    The Structural Aging Program provides the US Nuclear Regulatory Commission with potential structural safety issues and acceptance criteria for use in continued service assessments of nuclear power plant safety-related concrete structures. The program was organized under four task areas: Program Management, Materials Property Data Base, Structural Component Assessment/Repair Technology, and Quantitative Methodology for Continued Service Determinations. Under these tasks, over 90 papers and reports were prepared addressing pertinent aspects associated with aging management of nuclear power plant reinforced concrete structures. Contained in this report is a summary of program results in the form of information related to longevity of nuclear power plant reinforced concrete structures, a Structural Materials Information Center presenting data and information on the time variation of concrete materials under the influence of environmental stressors and aging factors, in-service inspection and condition assessments techniques, repair materials and methods, evaluation of nuclear power plant reinforced concrete structures, and a reliability-based methodology for current and future condition assessments. Recommendations for future activities are also provided. 308 refs., 61 figs., 50 tabs.

  10. Computational Methods for Structural Mechanics and Dynamics

    NASA Technical Reports Server (NTRS)

    Stroud, W. Jefferson (Editor); Housner, Jerrold M. (Editor); Tanner, John A. (Editor); Hayduk, Robert J. (Editor)

    1989-01-01

    Topics addressed include: transient dynamics; transient finite element method; transient analysis in impact and crash dynamic studies; multibody computer codes; dynamic analysis of space structures; multibody mechanics and manipulators; spatial and coplanar linkage systems; flexible body simulation; multibody dynamics; dynamical systems; and nonlinear characteristics of joints.

  11. Aeroelastic Model Structure Computation for Envelope Expansion

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.

    2007-01-01

    Structure detection is a procedure for selecting a subset of candidate terms, from a full model description, that best describes the observed output. This is a necessary procedure to compute an efficient system description which may afford greater insight into the functionality of the system or a simpler controller design. Structure computation as a tool for black-box modeling may be of critical importance in the development of robust, parsimonious models for the flight-test community. Moreover, this approach may lead to efficient strategies for rapid envelope expansion that may save significant development time and costs. In this study, a least absolute shrinkage and selection operator (LASSO) technique is investigated for computing efficient model descriptions of non-linear aeroelastic systems. The LASSO minimises the residual sum of squares with the addition of an l(Sub 1) penalty term on the parameter vector of the traditional l(sub 2) minimisation problem. Its use for structure detection is a natural extension of this constrained minimisation approach to pseudo-linear regression problems which produces some model parameters that are exactly zero and, therefore, yields a parsimonious system description. Applicability of this technique for model structure computation for the F/A-18 (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) Active Aeroelastic Wing project using flight test data is shown for several flight conditions (Mach numbers) by identifying a parsimonious system description with a high percent fit for cross-validated data.

  12. Phenomenological correlations in nuclear structure: An opportunity for nuclear astrophysics and a challenge to theory

    SciTech Connect

    Casten, R.F. ); Zamfir, N.V. Clark Univ., Worcester, MA )

    1992-01-01

    Though it often appears daunting in its complexity, nuclear data frequently exhibits remarkable simplicities when viewed from the appropriate perspectives. This realization, which is becoming more and more apparent, is one of the fruits of the vast amount of nuclear data that has been accumulated over many years but, surprisingly, has never been completely digested. This emerging, unified, and simple macroscopic phenomenology, aided by microscopic underpinnings and physical arguments, appears in many guises and often simplifies semi-empirical estimates of structure far from stability in the critical realms where nuclear astrophysics takes place and where it is in need for improved nuclear input. The generality of simple phenomenological relationships begs both for a sound theoretical basis and for the advent of Radioactive Nuclear Beams so that the reliability of their extrapolations can be assessed and tested. These issues will be discussed, and illustrated with a number of specific examples.

  13. Phenomenological correlations in nuclear structure: An opportunity for nuclear astrophysics and a challenge to theory

    SciTech Connect

    Casten, R.F.; Zamfir, N.V. |

    1992-12-01

    Though it often appears daunting in its complexity, nuclear data frequently exhibits remarkable simplicities when viewed from the appropriate perspectives. This realization, which is becoming more and more apparent, is one of the fruits of the vast amount of nuclear data that has been accumulated over many years but, surprisingly, has never been completely digested. This emerging, unified, and simple macroscopic phenomenology, aided by microscopic underpinnings and physical arguments, appears in many guises and often simplifies semi-empirical estimates of structure far from stability in the critical realms where nuclear astrophysics takes place and where it is in need for improved nuclear input. The generality of simple phenomenological relationships begs both for a sound theoretical basis and for the advent of Radioactive Nuclear Beams so that the reliability of their extrapolations can be assessed and tested. These issues will be discussed, and illustrated with a number of specific examples.

  14. 78 FR 47014 - Configuration Management Plans for Digital Computer Software Used in Safety Systems of Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-02

    ... COMMISSION Configuration Management Plans for Digital Computer Software Used in Safety Systems of Nuclear... 1 of RG 1.169, ``Configuration Management Plans for Digital Computer Software Used in Safety Systems... those systems include software. This RG is one of six RG revisions addressing computer...

  15. A New Light Weight Structural Material for Nuclear Structures

    SciTech Connect

    Rabiei, Afsaneh

    2016-01-14

    Radiation shielding materials are commonly used in nuclear facilities to attenuate the background ionization radiations to a minimum level for creating a safer workplace, meeting regulatory requirements and maintaining high quality performance. The conventional radiation shielding materials have a number of drawbacks: heavy concrete contains a high amount of elements that are not desirable for an effective shielding such as oxygen, silicon, and calcium; a well known limitation of lead is its low machinability and toxicity, which is causing a major environmental concern. Therefore, an effective and environmentally friendly shielding material with increased attenuation and low mass density is desirable. Close-cell composite metal foams (CMFs) and open-cell Al foam with fillers are light-weight candidate materials that we have studied in this project. Close-cell CMFs possess several suitable properties that are unattainable by conventional radiation shielding materials such as low density and high strength for structural applications, high surface area to volume ratio for excellent thermal isolation with an extraordinary energy absorption capability. Open-cell foam is made up of a network of interconnected solid struts, which allows gas or fluid media to pass through it. This unique structure provided a further motive to investigate its application as radiation shields by infiltrating original empty pores with high hydrogen or boron compounds, which are well known for their excellent neutron shielding capability. The resulting open-cell foam with fillers will not only exhibit light weight and high specific surface area, but also possess excellent radiation shielding capability and good processability. In this study, all the foams were investigated for their radiation shielding efficiency in terms of X-ray, gamma ray and neutron. X-ray transmission measurements were carried out on a high-resolution microcomputed tomography (microCT) system. Gamma-emitting sources: 3.0m

  16. Structural Basis of Vesicle Formation at the Inner Nuclear Membrane.

    PubMed

    Hagen, Christoph; Dent, Kyle C; Zeev-Ben-Mordehai, Tzviya; Grange, Michael; Bosse, Jens B; Whittle, Cathy; Klupp, Barbara G; Siebert, C Alistair; Vasishtan, Daven; Bäuerlein, Felix J B; Cheleski, Juliana; Werner, Stephan; Guttmann, Peter; Rehbein, Stefan; Henzler, Katja; Demmerle, Justin; Adler, Barbara; Koszinowski, Ulrich; Schermelleh, Lothar; Schneider, Gerd; Enquist, Lynn W; Plitzko, Jürgen M; Mettenleiter, Thomas C; Grünewald, Kay

    2015-12-17

    Vesicular nucleo-cytoplasmic transport is becoming recognized as a general cellular mechanism for translocation of large cargoes across the nuclear envelope. Cargo is recruited, enveloped at the inner nuclear membrane (INM), and delivered by membrane fusion at the outer nuclear membrane. To understand the structural underpinning for this trafficking, we investigated nuclear egress of progeny herpesvirus capsids where capsid envelopment is mediated by two viral proteins, forming the nuclear egress complex (NEC). Using a multi-modal imaging approach, we visualized the NEC in situ forming coated vesicles of defined size. Cellular electron cryo-tomography revealed a protein layer showing two distinct hexagonal lattices at its membrane-proximal and membrane-distant faces, respectively. NEC coat architecture was determined by combining this information with integrative modeling using small-angle X-ray scattering data. The molecular arrangement of the NEC establishes the basic mechanism for budding and scission of tailored vesicles at the INM.

  17. Structural Basis of Vesicle Formation at the Inner Nuclear Membrane

    PubMed Central

    Hagen, Christoph; Dent, Kyle C.; Zeev-Ben-Mordehai, Tzviya; Grange, Michael; Bosse, Jens B.; Whittle, Cathy; Klupp, Barbara G.; Siebert, C. Alistair; Vasishtan, Daven; Bäuerlein, Felix J.B.; Cheleski, Juliana; Werner, Stephan; Guttmann, Peter; Rehbein, Stefan; Henzler, Katja; Demmerle, Justin; Adler, Barbara; Koszinowski, Ulrich; Schermelleh, Lothar; Schneider, Gerd; Enquist, Lynn W.; Plitzko, Jürgen M.; Mettenleiter, Thomas C.; Grünewald, Kay

    2015-01-01

    Summary Vesicular nucleo-cytoplasmic transport is becoming recognized as a general cellular mechanism for translocation of large cargoes across the nuclear envelope. Cargo is recruited, enveloped at the inner nuclear membrane (INM), and delivered by membrane fusion at the outer nuclear membrane. To understand the structural underpinning for this trafficking, we investigated nuclear egress of progeny herpesvirus capsids where capsid envelopment is mediated by two viral proteins, forming the nuclear egress complex (NEC). Using a multi-modal imaging approach, we visualized the NEC in situ forming coated vesicles of defined size. Cellular electron cryo-tomography revealed a protein layer showing two distinct hexagonal lattices at its membrane-proximal and membrane-distant faces, respectively. NEC coat architecture was determined by combining this information with integrative modeling using small-angle X-ray scattering data. The molecular arrangement of the NEC establishes the basic mechanism for budding and scission of tailored vesicles at the INM. PMID:26687357

  18. Nuclear war group survival: Structures and camp site

    SciTech Connect

    David, C.V.

    1987-06-09

    A nuclear war group survival camp is described including a combination of structures, facilities, equipment and other camp site improvements and further comprising: means for protecting people inside structures located above ground against the effects of blast caused by the explosion of a nuclear weapon, on and above ground, within a distance that would create a lethal environment inside any conventionally constructed building structure at such distance; means for removing fallout debris (dust) generated by the explosion in a manner such that the total radiation dosage received by any and all so sheltered people remains below the radiation dose level considered critical.

  19. QCD and a new paradigm for nuclear structure

    NASA Astrophysics Data System (ADS)

    Thomas, A. W.

    2016-09-01

    We review the reasons why one might choose to seriously re-examine the traditional approach to nuclear theory where nucleons are treated as immutable. This examination leads us to argue that the modification of the structure of the nucleon when immersed in a nuclear medium is fundamental to how atomic nuclei are built. Consistent with this approach we suggest key experiments which should tell us unambiguously whether there is such a change in the structure of a bound nucleon. We also briefly report on extremely promising recent calculations of the structure of nuclei across the periodic table based upon this idea.

  20. Electron-Nuclear Spin Dynamics in a Mesoscopic Solid-State Quantum Computer

    SciTech Connect

    Berman, G.P.; Campbell, D.K.; Doolen, G.D.; Nagaev, K.E.

    1998-12-07

    We numerically simulate the process of nuclear spin measurement in Kane's quantum computer. For this purpose, we model the quantum dynamics of two coupled nuclear spins located on {sup 31}P donors implanted in Si. We estimate the minimum time of measurement necessary for the reliable transfer of quantum information from the nuclear spin subsystem to the electronic one and the probability of error for typical values of external noise.

  1. The role of nuclear shapes in nuclear structure (from the perspective of the Daresbury Tandem)

    SciTech Connect

    Nazarewicz, W.

    1993-06-01

    In specific regions of the nuclear periodic chart, large multipole moments are observed and the low-lying excitations have a rotational character. These features are understood if the nuclei in question are assumed to have a stable deformation, i.e., a non-spherical distribution of the nuclear matter. In other (transitional) regions the quasi-rotational bands are present; they are strongly coupled to low-lying vibrational modes. Those nuclei are best understood in terms of small static deformations but large dynamic fluctuations around local equilibria. As a matter of fact, the vast majority of nuclei are deformed; even in those which are spherical or almost spherical, the dynamical couplings to shape vibrations are crucial. The issue of nuclear deformation is many-faceted. If the nuclear shape (nuclear mean field) is deformed, characteristic excitation modes are present, such as rotations and vibrations built upon the non-spherical equilibrium. Through the particle-core coupling, nuclear deformations can dramatically influence the single-particle properties of nucleons moving in the average nuclear potential. Many experimental investigations using the Daresbury Tandem were related in one way or another to the physics of nuclear shapes. Fundamental discoveries from Daresbury include the observation of superdeformed structures in rapidly rotating nuclei, the observation of identical ({open_quotes}twinned{close_quotes}) rotational bands, various studies of structural changes induced by very fast rotation (band-crossings, band-terminations), the observation of the oblate-deformed {open_quotes}dipole{close_quotes} bands, studies of reflection-asymmetric shapes, studies of (quasimolecular) cluster configurations in light nuclei, and many, many others. The author reviews the forefront research at Daresbury from the global perspective; the common denominator being the nuclear shape deformation.

  2. Computer program for afterheat temperature distribution for mobile nuclear power plant

    NASA Technical Reports Server (NTRS)

    Parker, W. G.; Vanbibber, L. E.

    1972-01-01

    ESATA computer program was developed to analyze thermal safety aspects of post-impacted mobile nuclear power plants. Program is written in FORTRAN 4 and designed for IBM 7094/7044 direct coupled system.

  3. Nuclear structure from radioactive decay. Annual progress report

    SciTech Connect

    Wood, J.L.

    1991-09-30

    This report discusses nuclear structure from radioactive decay of the following: Neutron-Deficient Iridium Isotopes; Neutron-Deficient Platinum Isotopes; Neutron-Deficient Gold Isotopes; Neutron-Deficient Mercury Isotopes; Neutron-Deficient Thallium Isotopes; Neutron-Deficient Lead Isotopes; Neutron-Deficient Samarium Isotopes; Neutron-Deficient Promethium Isotopes; Neutron-Deficient Neodymium Isotopes; and Neutron-Deficient Praseodymium Isotopes. Also discussed are Nuclear Systematics and Models.

  4. Quantum wavepacket ab initio molecular dynamics: an approach for computing dynamically averaged vibrational spectra including critical nuclear quantum effects.

    PubMed

    Sumner, Isaiah; Iyengar, Srinivasan S

    2007-10-18

    We have introduced a computational methodology to study vibrational spectroscopy in clusters inclusive of critical nuclear quantum effects. This approach is based on the recently developed quantum wavepacket ab initio molecular dynamics method that combines quantum wavepacket dynamics with ab initio molecular dynamics. The computational efficiency of the dynamical procedure is drastically improved (by several orders of magnitude) through the utilization of wavelet-based techniques combined with the previously introduced time-dependent deterministic sampling procedure measure to achieve stable, picosecond length, quantum-classical dynamics of electrons and nuclei in clusters. The dynamical information is employed to construct a novel cumulative flux/velocity correlation function, where the wavepacket flux from the quantized particle is combined with classical nuclear velocities to obtain the vibrational density of states. The approach is demonstrated by computing the vibrational density of states of [Cl-H-Cl]-, inclusive of critical quantum nuclear effects, and our results are in good agreement with experiment. A general hierarchical procedure is also provided, based on electronic structure harmonic frequencies, classical ab initio molecular dynamics, computation of nuclear quantum-mechanical eigenstates, and employing quantum wavepacket ab initio dynamics to understand vibrational spectroscopy in hydrogen-bonded clusters that display large degrees of anharmonicities.

  5. Parallel structures in human and computer memory

    NASA Technical Reports Server (NTRS)

    Kanerva, P.

    1986-01-01

    If one thinks of our experiences as being recorded continuously on film, then human memory can be compared to a film library that is indexed by the contents of the film strips stored in it. Moreover, approximate retrieval cues suffice to retrieve information stored in this library. One recognizes a familiar person in a fuzzy photograph or a familiar tune played on a strange instrument. A computer memory that would allow a computer to recognize patterns and to recall sequences the way humans do is constructed. Such a memory is remarkably similiar in structure to a conventional computer memory and also to the neural circuits in the cortex of the cerebellum of the human brain. It is concluded that the frame problem of artificial intelligence could be solved by the use of such a memory if one were able to encode information about the world properly.

  6. Nuclear microscopy of sperm cell elemental structure

    SciTech Connect

    Bench, G.S.

    1994-12-31

    Theories have suggested that there is a link between protamine concentrations in individual sperm and sperm fertility. At present, biochemical analyses have only been performed on bulk populations and existing methods have not been able to determine what percentage of morphologically normal sperm are biochemically defective and potentially infertile. As part of an investigation into male sperm fertility, nuclear microscopy has been utilized to measure elemental profiles at the single sperm level. By measuring the ratio of Phosphorus to Sulfur the authors have been able to determine the amount of protamine 1 and protamine 2 in individual cells from bulk fertile samples of bull and mouse sperm. Preliminary results show that, for each species, the relative amounts of protamine 1 and protamine 2 in morphologically normal sperm agree well with expected values.

  7. Structural Ceramic Composites for Nuclear Applications

    SciTech Connect

    William Windes; P.A. Lessing; Y. Katoh; L. L. Snead; E. Lara-Curzio; J. Klett; C. Henager, Jr.; R. J. Shinavski

    2005-08-01

    A research program has been established to investigate fiber reinforced ceramic composites to be used as control rod components within a Very High Temperature Reactor. Two candidate systems have been identified, carbon fiber reinforced carbon (Cf/C) and silicon carbide fiber reinforced silicon carbide (SiCf/SiC) composites. Initial irradiation stability studies to determine the maximum dose for each composite type have been initiated within the High Flux Isotope Reactor at Oak Ridge National Laboratory. Test samples exposed to 10 dpa irradiation dose have been completed with future samples to dose levels of 20 and 30 dpa scheduled for completion in following years. Mechanical and environmental testing is being conducted concurrently at the Idaho National Laboratory and at Pacific Northwest National Laboratory. High temperature test equipment, testing methodologies, and test samples for high temperature (up to 1600º C) tensile strength and long duration creep studies have been established. Specific attention was paid to the architectural fiber preform design as well as the materials used in construction of the composites. Actual testing of both tubular and flat, "dog-bone" shaped tensile composite specimens will begin next year. Since there is no precedence for using ceramic composites within a nuclear reactor, ASTM standard test procedures will be established from these mechanical and environmental tests. Close collaborations between the U.S. national laboratories and international collaborators (i.e. France and Japan) are being forged to establish both national and international test standards to be used to qualify ceramic composites for nuclear reactor applications.

  8. Computational Simulation of Composite Structural Fatigue

    NASA Technical Reports Server (NTRS)

    Minnetyan, Levon; Chamis, Christos C. (Technical Monitor)

    2005-01-01

    Progressive damage and fracture of composite structures subjected to monotonically increasing static, tension-tension cyclic, pressurization, and flexural cyclic loading are evaluated via computational simulation. Constituent material properties, stress and strain limits are scaled up to the structure level to evaluate the overall damage and fracture propagation for composites. Damage initiation, growth, accumulation, and propagation to fracture due to monotonically increasing static and cyclic loads are included in the simulations. Results show the number of cycles to failure at different temperatures and the damage progression sequence during different degradation stages. A procedure is outlined for use of computational simulation data in the assessment of damage tolerance, determination of sensitive parameters affecting fracture, and interpretation of results with insight for design decisions.

  9. Computational Simulation of Composite Structural Fatigue

    NASA Technical Reports Server (NTRS)

    Minnetyan, Levon

    2004-01-01

    Progressive damage and fracture of composite structures subjected to monotonically increasing static, tension-tension cyclic, pressurization, and flexural cyclic loading are evaluated via computational simulation. Constituent material properties, stress and strain limits are scaled up to the structure level to evaluate the overall damage and fracture propagation for composites. Damage initiation, growth, accumulation, and propagation to fracture due to monotonically increasing static and cyclic loads are included in the simulations. Results show the number of cycles to failure at different temperatures and the damage progression sequence during different degradation stages. A procedure is outlined for use of computational simulation data in the assessment of damage tolerance, determination of sensitive parameters affecting fracture, and interpretation of results with insight for design decisions.

  10. Computed structures of polyimides model compounds

    NASA Technical Reports Server (NTRS)

    Tai, H.; Phillips, D. H.

    1990-01-01

    Using a semi-empirical approach, a computer study was made of 8 model compounds of polyimides. The compounds represent subunits from which NASA Langley Research Center has successfully synthesized polymers for aerospace high performance material application, including one of the most promising, LARC-TPI polymer. Three-dimensional graphic display as well as important molecular structure data pertaining to these 8 compounds are obtained.

  11. Nuclear Pore-Like Structures in a Compartmentalized Bacterium

    PubMed Central

    Sagulenko, Evgeny; Green, Kathryn; Yee, Benjamin; Morgan, Garry; Leis, Andrew; Lee, Kuo-Chang; Butler, Margaret K.; Chia, Nicholas; Pham, Uyen Thi Phuong; Lindgreen, Stinus; Catchpole, Ryan; Poole, Anthony M.; Fuerst, John A.

    2017-01-01

    Planctomycetes are distinguished from other Bacteria by compartmentalization of cells via internal membranes, interpretation of which has been subject to recent debate regarding potential relations to Gram-negative cell structure. In our interpretation of the available data, the planctomycete Gemmata obscuriglobus contains a nuclear body compartment, and thus possesses a type of cell organization with parallels to the eukaryote nucleus. Here we show that pore-like structures occur in internal membranes of G.obscuriglobus and that they have elements structurally similar to eukaryote nuclear pores, including a basket, ring-spoke structure, and eight-fold rotational symmetry. Bioinformatic analysis of proteomic data reveals that some of the G. obscuriglobus proteins associated with pore-containing membranes possess structural domains found in eukaryote nuclear pore complexes. Moreover, immunogold labelling demonstrates localization of one such protein, containing a β-propeller domain, specifically to the G. obscuriglobus pore-like structures. Finding bacterial pores within internal cell membranes and with structural similarities to eukaryote nuclear pore complexes raises the dual possibilities of either hitherto undetected homology or stunning evolutionary convergence. PMID:28146565

  12. Nuclear structure at intermediate energies. Progress report

    SciTech Connect

    Bonner, B.E.; Mutchler, G.S.

    1992-07-15

    We report here oil the progress that we made for the nine months beginning October 1, 1991 for DOE Grant No. DE-FG05-87ER40309. The report covers the third year of a three year grant. Since we are submitting an accompanying Grant Renewal Proposal, we provide in this report more background information than usual for the different projects. The theme that unites the experiments undertaken by the Bonner Lab Medium Energy Group is a determination to understand in detail the many facets and manifestations of the strong interaction, that which is now referred to as nonperturbative QCD. Whether we are investigating the question of just what does carry the spin of baryons, or the extent of the validity of the SU(6) wavefunctions for the excited hyperons (as will be measured in our CEBAF experiment), or questions associated with the formation of a new state of matter predicted by QCD (the subject of AGS {bar p} experiment E854, AGS heavy ion experiment E810, as-well as the approved STAR experiment at RHIC), - all these projects share this common goal. FNAL E683 may well open a new field of investigation in nuclear physics: That of just how colored quarks and gluons interact with nuclear matter as they traverse nuclei of different-sizes. In most all of the experiments mentioned, above, the Bonner Lab Group is playing major leadership roles as well as doing a big fraction of the hard work that such experiments require. We use many of the facilities that are available to the intermediate energy physics community and we use our expertise to design and fabricate the detectors and instrumentation that are required to perform the measurements which we decide to do. The format we follow in the Progress Report is,to provide a concise, but fairly complete write-up on each project. The publications listed in Section In give much greater detail on many of the projects. The aim in this report is to focus on the physics goals, the results, and their significance.

  13. Probing nuclear structure of {sup 124}Xe

    SciTech Connect

    Saha, B.; Dewald, A.; Moeller, O.; Peusquens, R.; Jessen, K.; Fitzler, A.; Klug, T.; Tonev, D.; Brentano, P. von; Jolie, J.; Gall, B.J.P.; Petkov, P.

    2004-09-01

    Excited states in {sup 124}Xe were populated in the fusion-evaporation reaction {sup 110}Pd({sup 18}O,4n){sup 124}Xe at a beam energy of 80 MeV. A recoil distance measurement using the Euroball spectrometer in Strasbourg and the Cologne plunger was performed. Altogether 19 lifetimes of excited states in six different bands were determined using gated spectra only, in order to avoid problems related to feeding. The measured B(E2) values were used to derive the nuclear deformation of {sup 124}Xe and the interaction of the ground state band with two s bands. Two sd-IBM-1 calculations with two Hamiltonians of different complexities were performed, which show a good agreement with the measured B(E2) values in the ground state band and the quasi-{gamma} band. The deduced B(M1) values for the regular M1 band show the behavior expected for magnetic rotation. However, it is also shown that these experimental B(M1) values can be described on the basis of a rotational band as well.

  14. Studying the Atomic Nucleus - A New Era in Nuclear Structure Studies

    SciTech Connect

    Casten, R. F.

    2011-05-06

    The study of atomic nuclei is part of the fascinating quest to understand the fundamental nature and origins of matter. This field, nuclear structure, is undergoing a revolutionary transformation that is breaking cherished paradigms, opening new vistas of nuclear matter for study, and which has the promise of leading to a new comprehensive understanding. The advent of new facilities for the production and study of exotic nuclei provides access to an entirely new territory of nuclei, and advances in extreme computing are enabling similar advances in the theory of atomic nuclei.

  15. 95Mo nuclear magnetic resonance parameters of molybdenum hexacarbonyl from density functional theory: appraisal of computational and geometrical parameters.

    PubMed

    Cuny, Jérôme; Sykina, Kateryna; Fontaine, Bruno; Le Pollès, Laurent; Pickard, Chris J; Gautier, Régis

    2011-11-21

    Solid-state (95)Mo nuclear magnetic resonance (NMR) properties of molybdenum hexacarbonyl have been computed using density functional theory (DFT) based methods. Both quadrupolar coupling and chemical shift parameters were evaluated and compared with parameters of high precision determined using single-crystal (95)Mo NMR experiments. Within a molecular approach, the effects of major computational parameters, i.e. basis set, exchange-correlation functional, treatment of relativity, have been evaluated. Except for the isotropic parameter of both chemical shift and chemical shielding, computed NMR parameters are more sensitive to geometrical variations than computational details. Relativistic effects do not play a crucial part in the calculations of such parameters for the 4d transition metal, in particular isotropic chemical shift. Periodic DFT calculations were tackled to measure the influence of neighbouring molecules on the crystal structure. These effects have to be taken into account to compute accurate solid-state (95)Mo NMR parameters even for such an inorganic molecular compound.

  16. Nuclear structure and dynamics with density functional theory

    NASA Astrophysics Data System (ADS)

    Stetcu, Ionel

    2015-10-01

    Even in the absence of ab initio methods capable of tackling heavy nuclei without restrictions, one can obtain an ab initio description of ground-state properties by means of the density functional theory (DFT), and its extension to superfluid systems in its local variant, the superfluid local density approximation (SLDA). Information about the properties of excited states can be obtained in the same framework by using an extension to the time-dependent (TD) phenomena. Unlike other approaches in which the nuclear structure information is used as a separate input into reaction models, the TD approach treats on the same footing the nuclear structure and dynamics, and is well suited to provide more reliable description for a large number of processes involving heavy nuclei, from the nuclear response to electroweak probes, to nuclear reactions, such as neutron-induced reactions, or nuclear fusion and fission. Such processes, sometimes part of integrated nuclear systems, have important applications in astrophysics, energy production, global security, etc. In this talk, I will present the simulation of a simple reaction, that is the Coulomb excitation of a 238U nucleus, and discuss the application of the TD-DFT formalism to the description of induced fission. I gratefully acknowledge partial support of the U.S. Department of Energy through an Early Career Award of the LANL/LDRD Program.

  17. Altered nuclear structure in myotonic dystrophy type 1-derived fibroblasts.

    PubMed

    Rodríguez, R; Hernández-Hernández, O; Magaña, J J; González-Ramírez, R; García-López, E S; Cisneros, B

    2015-02-01

    Myotonic dystrophy type 1 (DM1) is a multisystem genetic disorder caused by a triplet nucleotide repeat expansion in the 3' untranslated region of the Dystrophia Myotonica-Protein Kinase (DMPK) gene. DMPK gene transcripts containing CUG expanded repeats accumulate in nuclear foci and ultimately cause altered splicing/gene expression of numerous secondary genes. The study of primary cell cultures derived from patients with DM1 has allowed the identification and further characterization of molecular mechanisms underlying the pathology in the natural context of the disease. In this study we show for the first time impaired nuclear structure in fibroblasts of DM1 patients. DM1-derived fibroblasts exhibited altered localization of the nuclear envelope (NE) proteins emerin and lamins A/C and B1 with concomitant increased size and altered shape of nuclei. Abnormal NE organization is more common in DM1 fibroblasts containing abundant nuclear foci, implying expression of the expanded RNA as determinant of nuclear defects. That transient expression of the DMPK 3' UTR containing 960 CTG but not with the 3' UTR lacking CTG repeats is sufficient to generate NE disruption in normal fibroblasts confirms the direct impact of mutant RNA on NE architecture. We also evidence nucleoli distortion in DM1 fibroblasts by immunostaining of the nucleolar protein fibrillarin, implying a broader effect of the mutant RNA on nuclear structure. In summary, these findings reveal that NE disruption, a hallmark of laminopathy disorders, is a novel characteristic of DM1.

  18. Nuclear spins and moments: Fundamental structural information

    SciTech Connect

    Semmes, P.B.

    1991-01-01

    Predictions for the low energy structure of well deformed odd-A Pm and Sm nuclei in the A {approx} 130 region are given, based on the particle-rotor model. Distinctive magnetic dipole properties (static moments and transition rates) are expected for certain Nilsson configurations, and comparisons to recent data are made for {sup 133}Pm, {sup 135}Sm and {sup 133}Sm.

  19. Nuclear spins and moments: Fundamental structural information

    SciTech Connect

    Semmes, P.B.

    1991-12-31

    Predictions for the low energy structure of well deformed odd-A Pm and Sm nuclei in the A {approx} 130 region are given, based on the particle-rotor model. Distinctive magnetic dipole properties (static moments and transition rates) are expected for certain Nilsson configurations, and comparisons to recent data are made for {sup 133}Pm, {sup 135}Sm and {sup 133}Sm.

  20. The Structure Inventory of the Nuclear Pore Complex.

    PubMed

    Schwartz, Thomas U

    2016-05-22

    The nuclear pore complex (NPC) is the principal gateway for molecular exchange between nucleus and cytoplasm across the nuclear envelope. Due to its sheer size of estimated 50-112MDa and its complex buildup from about 500-1000 individual proteins, it is a difficult object to study for structural biologists. Here, I review the extensive ensemble of high-resolution structures of the building blocks of the NPC. Concurrent with the increase in size and complexity, these latest, large structures and assemblies can now be used as the basis for hybrid approaches, primarily in combination with cryo-electron microscopic analysis, generating the first structure-based assembly models of the NPC. Going forward, the structures will be critically important for a detailed analysis of the NPC, including function, evolution, and assembly.

  1. Computational strategies to address chromatin structure problems

    NASA Astrophysics Data System (ADS)

    Perišić, Ognjen; Schlick, Tamar

    2016-06-01

    While the genetic information is contained in double helical DNA, gene expression is a complex multilevel process that involves various functional units, from nucleosomes to fully formed chromatin fibers accompanied by a host of various chromatin binding enzymes. The chromatin fiber is a polymer composed of histone protein complexes upon which DNA wraps, like yarn upon many spools. The nature of chromatin structure has been an open question since the beginning of modern molecular biology. Many experiments have shown that the chromatin fiber is a highly dynamic entity with pronounced structural diversity that includes properties of idealized zig-zag and solenoid models, as well as other motifs. This diversity can produce a high packing ratio and thus inhibit access to a majority of the wound DNA. Despite much research, chromatin’s dynamic structure has not yet been fully described. Long stretches of chromatin fibers exhibit puzzling dynamic behavior that requires interpretation in the light of gene expression patterns in various tissue and organisms. The properties of chromatin fiber can be investigated with experimental techniques, like in vitro biochemistry, in vivo imagining, and high-throughput chromosome capture technology. Those techniques provide useful insights into the fiber’s structure and dynamics, but they are limited in resolution and scope, especially regarding compact fibers and chromosomes in the cellular milieu. Complementary but specialized modeling techniques are needed to handle large floppy polymers such as the chromatin fiber. In this review, we discuss current approaches in the chromatin structure field with an emphasis on modeling, such as molecular dynamics and coarse-grained computational approaches. Combinations of these computational techniques complement experiments and address many relevant biological problems, as we will illustrate with special focus on epigenetic modulation of chromatin structure.

  2. On-line computer system for use with low- energy nuclear physics experiments is reported

    NASA Technical Reports Server (NTRS)

    Gemmell, D. S.

    1969-01-01

    Computer program handles data from low-energy nuclear physics experiments which utilize the ND-160 pulse-height analyzer and the PHYLIS computing system. The program allows experimenters to choose from about 50 different basic data-handling functions and to prescribe the order in which these functions will be performed.

  3. Solving subsurface structural problems using a computer

    SciTech Connect

    Witte, D.M. )

    1987-02-01

    Until recently, the solution of subsurface structural problems has required a combination of graphical construction, trigonometry, time, and patience. Recent advances in software available for both mainframe and microcomputers now reduce the time and potential error of these calculations by an order of magnitude. Software for analysis of deviated wells, three point problems, apparent dip, apparent thickness, and the intersection of two planes, as well as the plotting and interpretation of these data can be used to allow timely and accurate exploration or operational decisions. The available computer software provides a set of utilities, or tools, rather than a comprehensive, intelligent system. The burden for selection of appropriate techniques, computation methods, and interpretations still lies with the explorationist user.

  4. Theoretical nuclear structure and astrophysics. Progress report for 1996

    SciTech Connect

    Guidry, M.W.; Nazarewicz, W.; Strayer, M.R.

    1996-12-31

    This research effort is directed toward theoretical support and guidance for the fields of radioactive ion beam physics, gamma ray spectroscopy, computational and nuclear astrophysics, and the interface between these disciplines. The authors report substantial progress in all those areas. One measure of progress is publications and invited material. The research described here has led to more than 43 papers that are published, accepted, or submitted to refereed journals, and to 15 invited presentations at conferences and workshops.

  5. Nuclear structure of the transactinides - investigated by decay spectroscopy

    NASA Astrophysics Data System (ADS)

    Heßberger, Fritz Peter

    2016-12-01

    Superheavy elements owe their stability due to a subtle balance between the disruptive Coulomb force and the attractive nuclear forces. Thus they represent an ideal laboratory to study basic interactions. The essential tools are detailed investigations of radioactive decay properties and nuclear structure of superheavy nuclei. The results of those studies will deliver valuable input to improve theoretical models. To fulfill this demand conclusive data of high quality are necessary, which is presently not so easy to meet due to small production cross sections and technical limitations (beam intensities, detection probabilities). Possibilities and problems concerning extraction of decay properties and nuclear structure information on the basis of a low number of observed decay events will be discussed for three illustrative examples, 257Rf, 257Lr, and 288Fl.

  6. The nuclear pore complex: understanding its function through structural insight.

    PubMed

    Beck, Martin; Hurt, Ed

    2017-02-01

    Nuclear pore complexes (NPCs) fuse the inner and outer nuclear membranes to form channels across the nuclear envelope. They are large macromolecular assemblies with a complex composition and diverse functions. Apart from facilitating nucleocytoplasmic transport, NPCs are involved in chromatin organization, the regulation of gene expression and DNA repair. Understanding the molecular mechanisms underlying these functions has been hampered by a lack of structural knowledge about the NPC. The recent convergence of crystallographic and biochemical in vitro analysis of nucleoporins (NUPs), the components of the NPC, with cryo-electron microscopic imaging of the entire NPC in situ has provided first pseudo-atomic view of its central core and revealed that an unexpected network of short linear motifs is an important spatial organization principle. These breakthroughs have transformed the way we understand NPC structure, and they provide an important base for functional investigations, including the elucidation of the molecular mechanisms underlying clinically manifested mutations of the nucleocytoplasmic transport system.

  7. Structure and gating of the nuclear pore complex

    NASA Astrophysics Data System (ADS)

    Eibauer, Matthias; Pellanda, Mauro; Turgay, Yagmur; Dubrovsky, Anna; Wild, Annik; Medalia, Ohad

    2015-06-01

    Nuclear pore complexes (NPCs) perforate the nuclear envelope and allow the exchange of macromolecules between the nucleus and the cytoplasm. To acquire a deeper understanding of this transport mechanism, we analyse the structure of the NPC scaffold and permeability barrier, by reconstructing the Xenopus laevis oocyte NPC from native nuclear envelopes up to 20 Å resolution by cryo-electron tomography in conjunction with subtomogram averaging. In addition to resolving individual protein domains of the NPC constituents, we propose a model for the architecture of the molecular gate at its central channel. Furthermore, we compare and contrast this native NPC structure to one that exhibits reduced transport activity and unveil the spatial properties of the NPC gate.

  8. A-dependence of weak nuclear structure functions

    SciTech Connect

    Haider, H.; Athar, M. Sajjad; Simo, I. Ruiz

    2015-05-15

    Effect of nuclear medium on the weak structure functions F{sub 2}{sup A}(x, Q{sup 2}) and F{sub 3}{sup A}(x, Q{sup 2}) have been studied using charged current (anti)neutrino deep inelastic scattering on various nuclear targets. Relativistic nuclear spectral function which incorporate Fermi motion, binding and nucleon correlations are used for the calculations. We also consider the pion and rho meson cloud contributions calculated from a microscopic model for meson-nucleus self-energies. Using these structure functions, F{sub i}{sup A}/F{sub i}{sup proton} and F{sub i}{sup A}/F{sub i}{sup deuteron}(i=2,3, A={sup 12}C, {sup 16}O, CH and H{sub 2}O) are obtained.

  9. Structure and gating of the nuclear pore complex.

    PubMed

    Eibauer, Matthias; Pellanda, Mauro; Turgay, Yagmur; Dubrovsky, Anna; Wild, Annik; Medalia, Ohad

    2015-06-26

    Nuclear pore complexes (NPCs) perforate the nuclear envelope and allow the exchange of macromolecules between the nucleus and the cytoplasm. To acquire a deeper understanding of this transport mechanism, we analyse the structure of the NPC scaffold and permeability barrier, by reconstructing the Xenopus laevis oocyte NPC from native nuclear envelopes up to 20 Å resolution by cryo-electron tomography in conjunction with subtomogram averaging. In addition to resolving individual protein domains of the NPC constituents, we propose a model for the architecture of the molecular gate at its central channel. Furthermore, we compare and contrast this native NPC structure to one that exhibits reduced transport activity and unveil the spatial properties of the NPC gate.

  10. Live CLEM imaging to analyze nuclear structures at high resolution.

    PubMed

    Haraguchi, Tokuko; Osakada, Hiroko; Koujin, Takako

    2015-01-01

    Fluorescence microscopy (FM) and electron microscopy (EM) are powerful tools for observing molecular components in cells. FM can provide temporal information about cellular proteins and structures in living cells. EM provides nanometer resolution images of cellular structures in fixed cells. We have combined FM and EM to develop a new method of correlative light and electron microscopy (CLEM), called "Live CLEM." In this method, the dynamic behavior of specific molecules of interest is first observed in living cells using fluorescence microscopy (FM) and then cellular structures in the same cell are observed using electron microscopy (EM). Following image acquisition, FM and EM images are compared to enable the fluorescent images to be correlated with the high-resolution images of cellular structures obtained using EM. As this method enables analysis of dynamic events involving specific molecules of interest in the context of specific cellular structures at high resolution, it is useful for the study of nuclear structures including nuclear bodies. Here we describe Live CLEM that can be applied to the study of nuclear structures in mammalian cells.

  11. Structure from motion in computationally constrained systems

    NASA Astrophysics Data System (ADS)

    Conroy, Joseph; Humbert, J. Sean

    2013-06-01

    Visual sensing is an attractive method to allow small, palm-sized flying vehicles to navigate complex environments without collisions. Visual processing for unmanned vehicles, however, is typically computationally intense. Insects are able to extract structural information about the environment by appropriate control of self-motion and efficient processing of the visual field. This paper presents a methodology that attempts to capture the insect's ability to do this by constructing a nonlinear observer with provable stability via a Lyapunov analysis. Furthermore, the persistency of excitation condition for the observer illustrates the need for a zig-zagging flight style exhibited by certain insects.

  12. Natural circulating passive cooling system for nuclear reactor containment structure

    DOEpatents

    Gou, Perng-Fei; Wade, Gentry E.

    1990-01-01

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

  13. Passive cooling system for nuclear reactor containment structure

    DOEpatents

    Gou, Perng-Fei; Wade, Gentry E.

    1989-01-01

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

  14. Detailed requirements for a next generation nuclear data structure.

    SciTech Connect

    Brown, D.

    2016-07-05

    This document attempts to compile the requirements for the top-levels of a hierarchical arrangement of nuclear data such as found in the ENDF format. This set of requirements will be used to guide the development of a new data structure to replace the legacy ENDF format.

  15. 10. Photocopy of drawing, February 1958, NUCLEAR REACTOR FACILITY, STRUCTURAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Photocopy of drawing, February 1958, NUCLEAR REACTOR FACILITY, STRUCTURAL CROSS SECTION. Giffals & Vallet, Inc., L. Rosetti, Associated Architects and Engineers, Detroit, Michigan; and U.S. Army Engineer Division, New England Corps of Engineers, Boston, Massachusetts. Drawing Number 35-84-04. (Original: AMTL Engineering Division, Watertown). - Watertown Arsenal, Building No. 100, Wooley Avenue, Watertown, Middlesex County, MA

  16. Perturbation approach for nuclear magnetic resonance solid-state quantum computation

    DOE PAGES

    Berman, G. P.; Kamenev, D. I.; Tsifrinovich, V. I.

    2003-01-01

    A dynmore » amics of a nuclear-spin quantum computer with a large number ( L = 1000 ) of qubits is considered using a perturbation approach. Small parameters are introduced and used to compute the error in an implementation of an entanglement between remote qubits, using a sequence of radio-frequency pulses. The error is computed up to the different orders of the perturbation theory and tested using exact numerical solution.« less

  17. Quantum Trajectory-Electronic Structure Approach for Exploring Nuclear Effects in the Dynamics of Nanomaterials.

    PubMed

    Garashchuk, Sophya; Jakowski, Jacek; Wang, Lei; Sumpter, Bobby G

    2013-12-10

    A massively parallel, direct quantum molecular dynamics method is described. The method combines a quantum trajectory (QT) representation of the nuclear wave function discretized into an ensemble of trajectories with an electronic structure (ES) description of electrons, namely using the density functional tight binding (DFTB) theory. Quantum nuclear effects are included into the dynamics of the nuclei via quantum corrections to the classical forces. To reduce computational cost and increase numerical accuracy, the quantum corrections to dynamics resulting from localization of the nuclear wave function are computed approximately and included into selected degrees of freedom representing light particles where the quantum effects are expected to be the most pronounced. A massively parallel implementation, based on the message passing interface allows for efficient simulations of ensembles of thousands of trajectories at once. The QTES-DFTB dynamics approach is employed to study the role of quantum nuclear effects on the interaction of hydrogen with a model graphene sheet, revealing that neglect of nuclear effects can lead to an overestimation of adsorption.

  18. Crystal Structure of the Herpesvirus Nuclear Egress Complex Provides Insights into Inner Nuclear Membrane Remodeling

    PubMed Central

    Zeev-Ben-Mordehai, Tzviya; Weberruß, Marion; Lorenz, Michael; Cheleski, Juliana; Hellberg, Teresa; Whittle, Cathy; El Omari, Kamel; Vasishtan, Daven; Dent, Kyle C.; Harlos, Karl; Franzke, Kati; Hagen, Christoph; Klupp, Barbara G.; Antonin, Wolfram; Mettenleiter, Thomas C.; Grünewald, Kay

    2015-01-01

    Summary Although nucleo-cytoplasmic transport is typically mediated through nuclear pore complexes, herpesvirus capsids exit the nucleus via a unique vesicular pathway. Together, the conserved herpesvirus proteins pUL31 and pUL34 form the heterodimeric nuclear egress complex (NEC), which, in turn, mediates the formation of tight-fitting membrane vesicles around capsids at the inner nuclear membrane. Here, we present the crystal structure of the pseudorabies virus NEC. The structure revealed that a zinc finger motif in pUL31 and an extensive interaction network between the two proteins stabilize the complex. Comprehensive mutational analyses, characterized both in situ and in vitro, indicated that the interaction network is not redundant but rather complementary. Fitting of the NEC crystal structure into the recently determined cryoEM-derived hexagonal lattice, formed in situ by pUL31 and pUL34, provided details on the molecular basis of NEC coat formation and inner nuclear membrane remodeling. PMID:26711332

  19. NASA Workshop on Computational Structural Mechanics 1987, part 1

    NASA Technical Reports Server (NTRS)

    Sykes, Nancy P. (Editor)

    1989-01-01

    Topics in Computational Structural Mechanics (CSM) are reviewed. CSM parallel structural methods, a transputer finite element solver, architectures for multiprocessor computers, and parallel eigenvalue extraction are among the topics discussed.

  20. In situ structural analysis of the human nuclear pore complex.

    PubMed

    von Appen, Alexander; Kosinski, Jan; Sparks, Lenore; Ori, Alessandro; DiGuilio, Amanda L; Vollmer, Benjamin; Mackmull, Marie-Therese; Banterle, Niccolo; Parca, Luca; Kastritis, Panagiotis; Buczak, Katarzyna; Mosalaganti, Shyamal; Hagen, Wim; Andres-Pons, Amparo; Lemke, Edward A; Bork, Peer; Antonin, Wolfram; Glavy, Joseph S; Bui, Khanh Huy; Beck, Martin

    2015-10-01

    Nuclear pore complexes are fundamental components of all eukaryotic cells that mediate nucleocytoplasmic exchange. Determining their 110-megadalton structure imposes a formidable challenge and requires in situ structural biology approaches. Of approximately 30 nucleoporins (Nups), 15 are structured and form the Y and inner-ring complexes. These two major scaffolding modules assemble in multiple copies into an eight-fold rotationally symmetric structure that fuses the inner and outer nuclear membranes to form a central channel of ~60 nm in diameter. The scaffold is decorated with transport-channel Nups that often contain phenylalanine-repeat sequences and mediate the interaction with cargo complexes. Although the architectural arrangement of parts of the Y complex has been elucidated, it is unclear how exactly it oligomerizes in situ. Here we combine cryo-electron tomography with mass spectrometry, biochemical analysis, perturbation experiments and structural modelling to generate, to our knowledge, the most comprehensive architectural model of the human nuclear pore complex to date. Our data suggest previously unknown protein interfaces across Y complexes and to inner-ring complex members. We show that the transport-channel Nup358 (also known as Ranbp2) has a previously unanticipated role in Y-complex oligomerization. Our findings blur the established boundaries between scaffold and transport-channel Nups. We conclude that, similar to coated vesicles, several copies of the same structural building block--although compositionally identical--engage in different local sets of interactions and conformations.

  1. Storage ring mass spectrometry for nuclear structure and astrophysics research

    NASA Astrophysics Data System (ADS)

    Zhang, Y. H.; Litvinov, Yu A.; Uesaka, T.; Xu, H. S.

    2016-07-01

    In the last two and a half decades ion storage rings have proven to be powerful tools for precision experiments with unstable nuclides in the realm of nuclear structure and astrophysics. There are presently three storage ring facilities in the world at which experiments with stored radioactive ions are possible. These are the ESR in GSI, Darmstadt/Germany, the CSRe in IMP, Lanzhou/China, and the R3 storage ring in RIKEN, Saitama/Japan. In this work, an introduction to the facilities is given. Selected characteristic experimental results and their impact in nuclear physics and astrophysics are presented. Planned technical developments and the envisioned future experiments are outlined.

  2. NUCLEAR STRUCTURE AND DECAY DATA: INTRODUCTION TO RELEVANT WEB PAGES.

    SciTech Connect

    BURROWS, T.W.; MCLAUGHLIN, P.D.; NICHOLS, A.L.

    2005-04-04

    A brief description is given of the nuclear data centers around the world able to provide access to those databases and programs of highest relevance to nuclear structure and decay data specialists. A number of Web-page addresses are also provided for the reader to inspect and investigate these data and codes for study, evaluation and calculation. These instructions are not meant to be comprehensive, but should provide the reader with a reasonable means of electronic access to the most important data sets and programs.

  3. Nuclear structure studies with gamma-ray beams

    SciTech Connect

    Tonchev, Anton; Bhatia, Chitra; Kelley, John; Raut, Rajarshi; Rusev, Gencho; Tornow, Werner; Tsoneva, Nadia

    2015-05-28

    In stable and weakly bound neutron-rich nuclei, a resonance-like concentration of dipole states has been observed for excitation energies below the neutron-separation energy. This clustering of strong dipole states has been named the Pygmy Dipole Resonance (PDR) in contrast to the Giant Dipole Resonance (GDR) that dominates the E1 response. Understanding the PDR is presently of great interest in nuclear structure and nuclear astrophysics. High-sensitivity studies of E1 and M1 transitions in closed-shell nuclei using monoenergetic and 100% linearly-polarized photon beams are presented.

  4. Orbital transfer of large space structures with nuclear electric rockets

    NASA Technical Reports Server (NTRS)

    Silva, T. H.; Byers, D. C.

    1980-01-01

    This paper discusses the potential application of electric propulsion for orbit transfer of a large spacecraft structure from low earth orbit to geosynchronous altitude in a deployed configuration. The electric power was provided by the spacecraft nuclear reactor space power system on a shared basis during transfer operations. Factors considered with respect to system effectiveness included nuclear power source sizing, electric propulsion thruster concept, spacecraft deployment constraints, and orbital operations and safety. It is shown that the favorable total impulse capability inherent in electric propulsion provides a potential economic advantage over chemical propulsion orbit transfer vehicles by reducing the number of Space Shuttle flights in ground-to-orbit transportation requirements.

  5. Phase structure in a chiral model of nuclear matter

    SciTech Connect

    Phat, Tran Huu; Anh, Nguyen Tuan; Tam, Dinh Thanh

    2011-08-15

    The phase structure of symmetric nuclear matter in the extended Nambu-Jona-Lasinio (ENJL) model is studied by means of the effective potential in the one-loop approximation. It is found that chiral symmetry gets restored at high nuclear density and a typical first-order phase transition of the liquid-gas transition occurs at zero temperature, T=0, which weakens as T grows and eventually ends up with a second-order critical point at T=20 MeV. This phase transition scenario is confirmed by investigating the evolution of the effective potential versus the effective nucleon mass and the equation of state.

  6. 78 FR 47805 - Test Documentation for Digital Computer Software Used in Safety Systems of Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-06

    ... COMMISSION Test Documentation for Digital Computer Software Used in Safety Systems of Nuclear Power Plants..., ``Test Documentation for Digital Computer Software Used in Safety Systems of Nuclear Power Plants.'' This..., ``Maintenance and Inspection of Records.'' This RG is one of six RG revisions addressing computer...

  7. GASFLOW: A computational model to analyze accidents in nuclear containment and facility buildings

    SciTech Connect

    Travis, J.R. ); Nichols, B.D.; Wilson, T.L.; Lam, K.L.; Spore, J.W.; Niederauer, G.F. )

    1993-01-01

    GASFLOW is a finite-volume computer code that solves the time-dependent, compressible Navier-Stokes equations for multiple gas species. The fluid-dynamics algorithm is coupled to the chemical kinetics of combusting liquids or gases to simulate diffusion or propagating flames in complex geometries of nuclear containment or confinement and facilities' buildings. Fluid turbulence is calculated to enhance the transport and mixing of gases in rooms and volumes that may be connected by a ventilation system. The ventilation system may consist of extensive ductwork, filters, dampers or valves, and fans. Condensation and heat transfer to walls, floors, ceilings, and internal structures are calculated to model the appropriate energy sinks. Solid and liquid aerosol behavior is simulated to give the time and space inventory of radionuclides. The solution procedure of the governing equations is a modified Los Alamos ICE'd-ALE methodology. Complex facilities can be represented by separate computational domains (multiblocks) that communicate through overlapping boundary conditions. The ventilation system is superimposed throughout the multiblock mesh. Gas mixtures and aerosols are transported through the free three-dimensional volumes and the restricted one-dimensional ventilation components as the accident and fluid flow fields evolve. Combustion may occur if sufficient fuel and reactant or oxidizer are present and have an ignition source. Pressure and thermal loads on the building, structural components, and safety-related equipment can be determined for specific accident scenarios. GASFLOW calculations have been compared with large oil-pool fire tests in the 1986 HDR containment test T52.14, which is a 3000-kW fire experiment. The computed results are in good agreement with the observed data.

  8. Crystal structure of human nuclear pore complex component NUP43.

    PubMed

    Xu, Chao; Li, Zhihong; He, Hao; Wernimont, Amy; Li, Yanjun; Loppnau, Peter; Min, Jinrong

    2015-10-24

    Nuclear pore complexes (NPC) form nuclear pores that cross the nuclear envelope and allow molecules to transport between the nucleus and the cytoplasm. We solved the crystal structure of human Nup43 (hNUP43), an important component in the Nup107 subcomplex of NPC. hNup43 adopts a seven-bladed β-propeller fold. We confirmed by ITC that neither human Nup37 (hNup37) nor human Nup133 (hNup133) interacts with hNup43. We demonstrated by analytical gel filtration that the human Nup85-Seh1L binary complex recruits hNup43 to form a ternary complex. Based on amino acid sequence analysis, we predicted the hNup85-hSeh1L binding surface of hNup43.

  9. Evaluated Nuclear Structure Data File (ENSDF) from the National Nuclear Data Center (NNDC)

    DOE Data Explorer

    ENSDF contains evaluated nuclear structure and decay data in a standard format. An international network of evaluators contributes to the database, which is maintained by the National Nuclear Data Center at Brookhaven National Laboratory. Information in the database is regularly updated to reflect revised evaluation results. Most of the recently completed evaluations are published in Nuclear Data Sheets, a monthly journal published by Academic Press, a division of Elsevier Science. For each nuclide, all known experimental data used to deduce nuclear structure information are included. Each type of experiment is presented as a separate dataset. In addition, there is a dataset of "adopted" level and gamma-ray transition properties, which represent the evaluator's determination of the best values for these properties, based on all available experimental data. As of February 2008, the ENSDF database contains 16236 datasets for 3030 nuclides. (Taken from the NNDC's information page on ENSDF at http://www.nndc.bnl.gov/ensdf/ensdf_info.jsp) ENSDF may be browsed or the data may be retrieved based on nuclide, charge, or mass, or by indexed reaction and decay quantities. (Specialized interface)

  10. Probing nuclear bubble structure via neutron star asteroseismology

    NASA Astrophysics Data System (ADS)

    Sotani, Hajime; Iida, Kei; Oyamatsu, Kazuhiro

    2017-01-01

    We consider torsional oscillations that are trapped in a layer of spherical-hole (bubble) nuclear structure, which is expected to occur in the deepest region of the inner crust of a neutron star. Because this layer intervenes between the phase of slab nuclei and the outer core of uniform nuclear matter, torsional oscillations in the bubble phase can be excited separately from usual crustal torsional oscillations. We find from eigenmode analyses for various models of the equation of state of uniform nuclear matter that the fundamental frequencies of such oscillations are almost independent of the incompressibility of symmetric nuclear matter, but strongly depend on the slope parameter of the nuclear symmetry energy L. Although the frequencies are also sensitive to the entrainment effect, i.e. what portion of nucleons outside bubbles contribute to the oscillations, by having such a portion fixed, we can successfully fit the calculated fundamental frequencies of torsional oscillations in the bubble phase inside a star of specific mass and radius as a function of L. By comparing the resultant fitting formula to the frequencies of quasi-periodic oscillations (QPOs) observed from the soft-gamma repeaters, we find that each of the observed low-frequency QPOs can be identified either as a torsional oscillation in the bubble phase or as a usual crustal oscillation, given generally accepted values of L for all the stellar models are considered here.

  11. Creating a Comprehensive, Efficient, and Sustainable Nuclear Regulatory Structure

    SciTech Connect

    O'Brien, Patricia; Wright, Troy L.; Tuttle, John D.; Hazel, Michael J.; Schlegel, Steven C.; Miller, Daniel R.

    2009-03-30

    Abstract. With the congressionally mandated January 1, 2013 deadline for the U.S. Department of Energy’s (DOE) Nuclear Material Protection, Control and Accounting (MPC&A) program to complete its transition of MPC&A responsibility to the Russian Federation, NNSA management directed its MPC&A program managers and team leaders to demonstrate that work in ongoing programs would lead to successful and timely achievement of these milestones. In the spirit of planning for successful project completion, the NNSA review of the Russian regulatory development process confirmed the critical importance of an effective regulatory system to a sustainable nuclear protection regime and called for an analysis of the existing Russian regulatory structure and the identification of a plan to ensure a complete MPC&A regulatory foundation. This paper describes the systematic process used by the U.S. DOE MPC&A Regulatory Development Project RDP) to develop an effective and sustainable MPC&A regulatory structure in the Russian Federation. This nuclear regulatory system will address all non-military Category I and II nuclear materials at State Corporation for Atomic Energy “Rosatom,” the Federal Service for Ecological, Technological, and Nuclear Oversight (Rostechnadzor), the Federal Agency for Marine and River Transport (FAMRT, within the Ministry of Transportation), and the Ministry of Industry and Trade (Minpromtorg). The approach to ensuring a complete and comprehensive nuclear regulatory structure includes five sequential steps. The approach was adopted from DOE’s project management guidelines and was adapted to the regulatory development task by the RDP. The five steps in the Regulatory Development Process are: 1) Define MPC&A Structural Elements; 2) Analyze the existing regulatory documents using the identified Structural Elements; 3) Validate the analysis with Russian colleagues and define the list of documents to be developed; 4) Prioritize and schedule the development of

  12. TUNL Nuclear Structure Data Evaluation on A = 2-20 Nuclides

    NASA Astrophysics Data System (ADS)

    Truong, Thinh; Kelley, John; Sheu, Grace

    2016-09-01

    Nuclear data represents measured or evaluated probabilities of various physical interactions involving the nuclei of atoms. The nuclear data group at Triangle Universities Nuclear Laboratory (TUNL) compiles, evaluates and disseminates nuclear structure data relevant to light nuclei in the mass region of A = 2 - 20. Our activities primarily involve surveying literature articles and producing recommended values for inclusion into various United States Nuclear Data Program databases, such as Experimental Unevaluated Nuclear Data List (XUNDL) and Evaluated Nuclear Structure Data File (ENSDF). We have projects related to analyzing beta-decay lifetimes, compiling structure data from recently published articles, and producing full nuclear structure data evaluations of nuclides based on all existing literature. The nuclear data disseminated is used for theoretical model development of nuclear physics and for applications involving radiation and nuclear power technologies. This work is supported by the U.S. National Science Foundation Grant No. NSF-PHY-1461204 and Duke/TUNL.

  13. Unified ab initio approaches to nuclear structure and reactions

    DOE PAGES

    Navratil, Petr; Quaglioni, Sofia; Hupin, Guillaume; ...

    2016-04-13

    The description of nuclei starting from the constituent nucleons and the realistic interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of the nuclear forces, with two-, three- and possibly higher many-nucleon components, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD-employing Hamiltonians constructed within chiral effective field theory. After a brief overview of the field, we focus on ab initio many-body approaches—built upon the no-core shell model—that are capable of simultaneously describing both bound and scattering nuclear states, and present results for resonances in light nuclei, reactions important for astrophysics and fusion research. In particular, we review recent calculations of resonances in the 6He halo nucleus, of five- and six-nucleon scattering, and an investigation of the role of chiral three-nucleon interactions in the structure of 9Be. Further, we discuss applications to the 7Bemore » $${({\\rm{p}},\\gamma )}^{8}{\\rm{B}}$$ radiative capture. Lastly, we highlight our efforts to describe transfer reactions including the 3H$${({\\rm{d}},{\\rm{n}})}^{4}$$He fusion.« less

  14. Low Energy Nuclear Structure Modeling: Can It Be Improved?

    NASA Astrophysics Data System (ADS)

    Stone, Jirina R.

    Since the discovery of the atomic nucleus in 1911 generations of physicists have devoted enormous effort to understand low energy nuclear structure. Properties of nuclei in their ground state, including mass, binding energy and shape, provide vital input to many areas of sub-atomic physics as well as astrophysics and cosmology. Low energy excited states are equally important for understanding nuclear dynamics. Yet, no consensus exists as to what is the best path to a theory which would not only consistently reproduce a wide variety of experimental data but also have enough predictive power to yield credible predictions in areas where data are still missing. In this contribution some of the main obstacles preventing building such a theory are discussed. These include modification of the free nucleon-nucleon force in the nuclear environment and effects of the sub-nucleon (quark) structure of the nucleon. Selected classes of nuclear models, mean-field, shell and ab-initio models are briefly outlined. Finally, suggestions are made for, at least partial, progress that can be achieved with the quark-meson coupling model, as reported in recent publication [1].

  15. Multiple multipole program computation of periodic structures

    NASA Astrophysics Data System (ADS)

    Hafner, Ch.

    1995-05-01

    The three-dimensional multiple multipole program (MMP) code based on the generalized multipole technique is outlined for readers who are not familiar with its concepts. This code was originally designed for computational electromagnetics. Rayleigh expansions and periodic boundary conditions are two new features that make MMP computations of arbitrary periodic structures efficient and that at the same time allow us to take advantage of the benefits of other MMP features, including surface impedance boundary conditions and a variety of available basis functions for modeling the electromagnetic field. The application of three-dimensional MMP to a simple grating of highly conducting wires with rectangular cross sections illustrates the high accuracy and the fast convergence of the method as well as the use of surface impedance boundary conditions. A more complicated biperiodic array of helical antennas demonstrates the application of thin-wire expansions in conjunction with regular MMP expansions. This model can be considered a simulation of a thin, anisotropic chiral slab with interesting characteristics.

  16. Computational Modeling in Structural Materials Processing

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    High temperature materials such as silicon carbide, a variety of nitrides, and ceramic matrix composites find use in aerospace, automotive, machine tool industries and in high speed civil transport applications. Chemical vapor deposition (CVD) is widely used in processing such structural materials. Variations of CVD include deposition on substrates, coating of fibers, inside cavities and on complex objects, and infiltration within preforms called chemical vapor infiltration (CVI). Our current knowledge of the process mechanisms, ability to optimize processes, and scale-up for large scale manufacturing is limited. In this regard, computational modeling of the processes is valuable since a validated model can be used as a design tool. The effort is similar to traditional chemically reacting flow modeling with emphasis on multicomponent diffusion, thermal diffusion, large sets of homogeneous reactions, and surface chemistry. In the case of CVI, models for pore infiltration are needed. In the present talk, examples of SiC nitride, and Boron deposition from the author's past work will be used to illustrate the utility of computational process modeling.

  17. A computer system to analyze showers in nuclear emulsions: Center Director's discretionary fund report

    NASA Technical Reports Server (NTRS)

    Meegan, C. A.; Fountain, W. F.; Berry, F. A., Jr.

    1987-01-01

    A system to rapidly digitize data from showers in nuclear emulsions is described. A TV camera views the emulsions though a microscope. The TV output is superimposed on the monitor of a minicomputer. The operator uses the computer's graphics capability to mark the positions of particle tracks. The coordinates of each track are stored on a disk. The computer then predicts the coordinates of each track through successive layers of emulsion. The operator, guided by the predictions, thus tracks and stores the development of the shower. The system provides a significant improvement over purely manual methods of recording shower development in nuclear emulsion stacks.

  18. Integrated structural analysis of the human nuclear pore complex scaffold.

    PubMed

    Bui, Khanh Huy; von Appen, Alexander; DiGuilio, Amanda L; Ori, Alessandro; Sparks, Lenore; Mackmull, Marie-Therese; Bock, Thomas; Hagen, Wim; Andrés-Pons, Amparo; Glavy, Joseph S; Beck, Martin

    2013-12-05

    The nuclear pore complex (NPC) is a fundamental component of all eukaryotic cells that facilitates nucleocytoplasmic exchange of macromolecules. It is assembled from multiple copies of about 30 nucleoporins. Due to its size and complex composition, determining the structure of the NPC is an enormous challenge, and the overall architecture of the NPC scaffold remains elusive. In this study, we have used an integrated approach based on electron tomography, single-particle electron microscopy, and crosslinking mass spectrometry to determine the structure of a major scaffold motif of the human NPC, the Nup107 subcomplex, in both isolation and integrated into the NPC. We show that 32 copies of the Nup107 subcomplex assemble into two reticulated rings, one each at the cytoplasmic and nuclear face of the NPC. This arrangement may explain how changes of the diameter are realized that would accommodate transport of huge cargoes.

  19. Towards reconciling structure and function in the nuclear pore complex

    PubMed Central

    Aebi, Ueli; Fahrenkrog, Birthe

    2008-01-01

    The spatial separation between the cytoplasm and the cell nucleus necessitates the continuous exchange of macromolecular cargo across the double-membraned nuclear envelope. Being the only passageway in and out of the nucleus, the nuclear pore complex (NPC) has the principal function of regulating the high throughput of nucleocytoplasmic transport in a highly selective manner so as to maintain cellular order and function. Here, we present a retrospective review of the evidence that has led to the current understanding of both NPC structure and function. Looking towards the future, we contemplate on how various outstanding effects and nanoscopic characteristics ought to be addressed, with the goal of reconciling structure and function into a single unified picture of the NPC. PMID:18228033

  20. NASA Workshop on Computational Structural Mechanics 1987, part 3

    NASA Technical Reports Server (NTRS)

    Sykes, Nancy P. (Editor)

    1989-01-01

    Computational Structural Mechanics (CSM) topics are explored. Algorithms and software for nonlinear structural dynamics, concurrent algorithms for transient finite element analysis, computational methods and software systems for dynamics and control of large space structures, and the use of multi-grid for structural analysis are discussed.

  1. Ab initio nuclear structure from lattice effective field theory

    SciTech Connect

    Lee, Dean

    2014-11-11

    This proceedings article reviews recent results by the Nuclear Lattice EFT Collaboration on an excited state of the {sup 12}C nucleus known as the Hoyle state. The Hoyle state plays a key role in the production of carbon via the triple-alpha reaction in red giant stars. We discuss the structure of low-lying states of {sup 12}C as well as the dependence of the triple-alpha reaction on the masses of the light quarks.

  2. Brine: a computer program to compute brine migration adjacent to a nuclear waste canister in a salt repository

    SciTech Connect

    Duckworth, G.D.; Fuller, M.E.

    1980-06-10

    This report presents a mathematical model used to predict brine migration toward a nuclear waste canister in a bedded salt repository. The mathematical model is implemented in a computer program called BRINE. The program is written in FORTRAN and executes in the batch mode on a CDC 7600. A description of the program input requirements and output available is included. Samples of input and output are given.

  3. NASA Workshop on Computational Structural Mechanics 1987, part 2

    NASA Technical Reports Server (NTRS)

    Sykes, Nancy P. (Editor)

    1989-01-01

    Advanced methods and testbed/simulator development topics are discussed. Computational Structural Mechanics (CSM) testbed architecture, engine structures simulation, applications to laminate structures, and a generic element processor are among the topics covered.

  4. Earthquake-Soil-Structure Interaction Modeling of Nuclear Power Plants for Near-Field Events

    NASA Astrophysics Data System (ADS)

    Abell Mena, Jose Antonio

    This dissertation proposes an approach to modeling the response of a nuclear power facility considering soil-structure interaction, when subjected to earthquake motions originated in the near-field. It is argued that near-field earthquake-induced motions are complex in the sense that current state-of-practice assumptions made on the nature of seismic wave-field stemming from such events are oversimplified. Furthermore, even if near-field sources might not deliver the largest magnitude earthquakes for a given seismic setting, it is possible that the intensity of motions generated by such sources controls design of structural and/or non-structural components of nuclear facilities in some frequency range. Several nuclear power facilities are located in the vicinity of known smaller earthquake sources (within less than 10km). The domain reduction method is used to excite a model of the soil-structure system with a three-dimensional seismic wave-field which is computed using a state-of-the-art seismic simulation code. The response of this model is compared with that of an alternative model which assumes that the incoming wave-field is not three-dimensional but unidimensional. This last modeling approach is the most common in both the research and practice of nuclear power-plant seismic design. Two source-to-site geometries are evaluated to compare possible effects of the propagation path. Computation of non-linear soil response is achieved by using a new implementation of the classical elasto-plasticity constitutive modeling framework using the new language features of the C++11 standard. This novel implementation scheme aims at being both efficient and maintainable by software-engineering standards. Both these goals are hard to achieve with just the features of previous editions of the C++ standard.

  5. Research in nondestructive evaluation techniques for nuclear reactor concrete structures

    SciTech Connect

    Clayton, Dwight; Smith, Cyrus

    2014-02-18

    The purpose of the Materials Aging and Degradation (MAaD) Pathway of the Department of Energy's Light Water Reactor Sustainability (LWRS) Program is to develop the scientific basis for understanding and predicting longterm environmental degradation behavior of material in nuclear power plants and to provide data and methods to assess the performance of systems, structures, and components (SSCs) essential to safe and sustained nuclear power plant operations. The understanding of aging-related phenomena and their impacts on SSCs is expected to be a significant issue for any nuclear power plant planning for long-term operations (i.e. service beyond the initial license renewal period). Management of those phenomena and their impacts during long-term operations can be better enable by improved methods and techniques for detection, monitoring, and prediction of SSC degradation. The MAaD Pathway R and D Roadmap for Concrete, 'Light Water Reactor Sustainability Nondestructive Evaluation for Concrete Research and Development Roadmap', focused initial research efforts on understanding the recent concrete issues at nuclear power plants and identifying the availability of concrete samples for NDE techniques evaluation and testing. [1] An overview of the research performed by ORNL in these two areas is presented here.

  6. Research in nondestructive evaluation techniques for nuclear reactor concrete structures

    NASA Astrophysics Data System (ADS)

    Clayton, Dwight; Smith, Cyrus

    2014-02-01

    The purpose of the Materials Aging and Degradation (MAaD) Pathway of the Department of Energy's Light Water Reactor Sustainability (LWRS) Program is to develop the scientific basis for understanding and predicting longterm environmental degradation behavior of material in nuclear power plants and to provide data and methods to assess the performance of systems, structures, and components (SSCs) essential to safe and sustained nuclear power plant operations. The understanding of aging-related phenomena and their impacts on SSCs is expected to be a significant issue for any nuclear power plant planning for long-term operations (i.e. service beyond the initial license renewal period). Management of those phenomena and their impacts during long-term operations can be better enable by improved methods and techniques for detection, monitoring, and prediction of SSC degradation. The MAaD Pathway R&D Roadmap for Concrete, "Light Water Reactor Sustainability Nondestructive Evaluation for Concrete Research and Development Roadmap", focused initial research efforts on understanding the recent concrete issues at nuclear power plants and identifying the availability of concrete samples for NDE techniques evaluation and testing. [1] An overview of the research performed by ORNL in these two areas is presented here.

  7. Mathematical analysis of compressive/tensile molecular and nuclear structures

    NASA Astrophysics Data System (ADS)

    Wang, Dayu

    Mathematical analysis in chemistry is a fascinating and critical tool to explain experimental observations. In this dissertation, mathematical methods to present chemical bonding and other structures for many-particle systems are discussed at different levels (molecular, atomic, and nuclear). First, the tetrahedral geometry of single, double, or triple carbon-carbon bonds gives an unsatisfying demonstration of bond lengths, compared to experimental trends. To correct this, Platonic solids and Archimedean solids were evaluated as atoms in covalent carbon or nitrogen bond systems in order to find the best solids for geometric fitting. Pentagonal solids, e.g. the dodecahedron and icosidodecahedron, give the best fit with experimental bond lengths; an ideal pyramidal solid which models covalent bonds was also generated. Second, the macroscopic compression/tension architectural approach was applied to forces at the molecular level, considering atomic interactions as compressive (repulsive) and tensile (attractive) forces. Two particle interactions were considered, followed by a model of the dihydrogen molecule (H2; two protons and two electrons). Dihydrogen was evaluated as two different types of compression/tension structures: a coaxial spring model and a ring model. Using similar methods, covalent diatomic molecules (made up of C, N, O, or F) were evaluated. Finally, the compression/tension model was extended to the nuclear level, based on the observation that nuclei with certain numbers of protons/neutrons (magic numbers) have extra stability compared to other nucleon ratios. A hollow spherical model was developed that combines elements of the classic nuclear shell model and liquid drop model. Nuclear structure and the trend of the "island of stability" for the current and extended periodic table were studied.

  8. Studying the Effects of Nuclear Weapons Using a Slide-Rule Computer

    ERIC Educational Resources Information Center

    Shastri, Ananda

    2007-01-01

    This paper describes the construction of a slide-rule computer that allows one to quickly determine magnitudes of several effects that result from the detonation of a nuclear device. Suggestions for exercises are also included that allow high school and college-level physics students to explore scenarios involving these effects. It is hoped that…

  9. NVR-BIP: Nuclear Vector Replacement using Binary Integer Programming for NMR Structure-Based Assignments.

    PubMed

    Apaydin, Mehmet Serkan; Çatay, Bülent; Patrick, Nicholas; Donald, Bruce R

    2011-05-01

    Nuclear magnetic resonance (NMR) spectroscopy is an important experimental technique that allows one to study protein structure and dynamics in solution. An important bottleneck in NMR protein structure determination is the assignment of NMR peaks to the corresponding nuclei. Structure-based assignment (SBA) aims to solve this problem with the help of a template protein which is homologous to the target and has applications in the study of structure-activity relationship, protein-protein and protein-ligand interactions. We formulate SBA as a linear assignment problem with additional nuclear overhauser effect constraints, which can be solved within nuclear vector replacement's (NVR) framework (Langmead, C., Yan, A., Lilien, R., Wang, L. and Donald, B. (2003) A Polynomial-Time Nuclear Vector Replacement Algorithm for Automated NMR Resonance Assignments. Proc. the 7th Annual Int. Conf. Research in Computational Molecular Biology (RECOMB), Berlin, Germany, April 10-13, pp. 176-187. ACM Press, New York, NY. J. Comp. Bio., (2004), 11, pp. 277-298; Langmead, C. and Donald, B. (2004) An expectation/maximization nuclear vector replacement algorithm for automated NMR resonance assignments. J. Biomol. NMR, 29, 111-138). Our approach uses NVR's scoring function and data types and also gives the option of using CH and NH residual dipolar coupling (RDCs), instead of NH RDCs which NVR requires. We test our technique on NVR's data set as well as on four new proteins. Our results are comparable to NVR's assignment accuracy on NVR's test set, but higher on novel proteins. Our approach allows partial assignments. It is also complete and can return the optimum as well as near-optimum assignments. Furthermore, it allows us to analyze the information content of each data type and is easily extendable to accept new forms of input data, such as additional RDCs.

  10. Shipboard Application of a Ring Structured Distributed Computing System.

    DTIC Science & Technology

    Considerable research is currently going on into the application of distributed computing systems. They appear particularly suitable for the...structured distributed computing system might be adapted to function in this environment. Included in this consideration are the feasibility of

  11. Pore structure development in oxidized IG-110 nuclear graphite

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Contescu, Cristian I.; Yu, Suyuan; Burchell, Timothy D.

    2012-11-01

    The oxidation-induced porosity development in nuclear graphite has great effect on its mechanical behavior, thus it is very important to understand the pore structure development of nuclear graphite during oxidation. This paper reports on the oxidation kinetics of grade IG-110 nuclear graphite and the porosity development in oxidized samples. The distribution of the oxidized layer in IG-110 specimens oxidized at 600-750 °C was studied using optical microscopy coupled with automated image analysis technique, and the mechanism of porosity development was determined. The thickness of oxidized layer decreased with the oxidation temperature but was independent of the weight loss level. Oxidation caused consumption of graphite structure and development of porosity, which was initiated from the binder phase. Statistical analysis indicated that generation and growth of pores was dominant at low temperatures, while merging and collapse of pores was the main effect at high temperatures. Compared with medium-grained PCEA graphite, the fine-grained IG-110 graphite demonstrates deeper penetration of the oxidant because of its higher pore density and greater porosity.

  12. Pore structure development in oxidized IG-110 nuclear graphite

    SciTech Connect

    Wang, Peng; Contescu, Cristian I; Yu, Suyuan; Burchell, Timothy D

    2012-01-01

    The oxidation-induced porosity development in nuclear graphite has great effect on its mechanical behavior, thus it is very important to understand the pore structure development of nuclear graphite during oxidation. This paper reports on the oxidation kinetics of grade IG-110 nuclear graphite and the porosity development in oxidized samples. The distribution of the oxidized layer in IG-110 specimens oxidized at 600-750 C was studied using optical microscopy coupled with automated image analysis technique, and the mechanism of porosity development was determined. The thickness of oxidized layer decreased with the oxidation temperature but was independent of the weight loss level. Oxidation caused consumption of graphite structure and development of porosity, which was initiated from the binder phase. Statistical analysis indicated that generation and growth of pores was dominant at low temperatures, while merging and collapse of pores was the main effect at high temperatures. Compared with medium-grained PCEA graphite, the fine-grained IG-110 graphite demonstrates deeper penetration of the oxidant because of its higher pore density and lager porosity.

  13. Atomic structure of the Y complex of the nuclear pore.

    PubMed

    Kelley, Kotaro; Knockenhauer, Kevin E; Kabachinski, Greg; Schwartz, Thomas U

    2015-05-01

    The nuclear pore complex (NPC) is the principal gateway for transport into and out of the nucleus. Selectivity is achieved through the hydrogel-like core of the NPC. The structural integrity of the NPC depends on ~15 architectural proteins, which are organized in distinct subcomplexes to form the >40-MDa ring-like structure. Here we present the 4.1-Å crystal structure of a heterotetrameric core element ('hub') of the Y complex, the essential NPC building block, from Myceliophthora thermophila. Using the hub structure together with known Y-complex fragments, we built the entire ~0.5-MDa Y complex. Our data reveal that the conserved core of the Y complex has six rather than seven members. Evolutionarily distant Y-complex assemblies share a conserved core that is very similar in shape and dimension, thus suggesting that there are closely related architectural codes for constructing the NPC in all eukaryotes.

  14. Structural organization of nuclear lamins A, C, B1, and B2 revealed by superresolution microscopy

    PubMed Central

    Shimi, Takeshi; Kittisopikul, Mark; Tran, Joseph; Goldman, Anne E.; Adam, Stephen A.; Zheng, Yixian; Jaqaman, Khuloud; Goldman, Robert D.

    2015-01-01

    The nuclear lamina is a key structural element of the metazoan nucleus. However, the structural organization of the major proteins composing the lamina is poorly defined. Using three-dimensional structured illumination microscopy and computational image analysis, we characterized the supramolecular structures of lamin A, C, B1, and B2 in mouse embryo fibroblast nuclei. Each isoform forms a distinct fiber meshwork, with comparable physical characteristics with respect to mesh edge length, mesh face area and shape, and edge connectivity to form faces. Some differences were found in face areas among isoforms due to variation in the edge lengths and number of edges per face, suggesting that each meshwork has somewhat unique assembly characteristics. In fibroblasts null for the expression of either lamins A/C or lamin B1, the remaining lamin meshworks are altered compared with the lamin meshworks in wild-type nuclei or nuclei lacking lamin B2. Nuclei lacking LA/C exhibit slightly enlarged meshwork faces and some shape changes, whereas LB1-deficient nuclei exhibit primarily a substantial increase in face area. These studies demonstrate that individual lamin isoforms assemble into complex networks within the nuclear lamina and that A- and B-type lamins have distinct roles in maintaining the organization of the nuclear lamina. PMID:26310440

  15. Structure, spectra and antioxidant action of ascorbic acid studied by density functional theory, Raman spectroscopic and nuclear magnetic resonance techniques

    NASA Astrophysics Data System (ADS)

    Singh, Gurpreet; Mohanty, B. P.; Saini, G. S. S.

    2016-02-01

    Structure, vibrational and nuclear magnetic resonance spectra, and antioxidant action of ascorbic acid towards hydroxyl radicals have been studied computationally and in vitro by ultraviolet-visible, nuclear magnetic resonance and vibrational spectroscopic techniques. Time dependant density functional theory calculations have been employed to specify various electronic transitions in ultraviolet-visible spectra. Observed chemical shifts and vibrational bands in nuclear magnetic resonance and vibrational spectra, respectively have been assigned with the help of calculations. Changes in the structure of ascorbic acid in aqueous phase have been examined computationally and experimentally by recording Raman spectra in aqueous medium. Theoretical calculations of the interaction between ascorbic acid molecule and hydroxyl radical predicted the formation of dehydroascorbic acid as first product, which has been confirmed by comparing its simulated spectra with the corresponding spectra of ascorbic acid in presence of hydrogen peroxide.

  16. Structure, spectra and antioxidant action of ascorbic acid studied by density functional theory, Raman spectroscopic and nuclear magnetic resonance techniques.

    PubMed

    Singh, Gurpreet; Mohanty, B P; Saini, G S S

    2016-02-15

    Structure, vibrational and nuclear magnetic resonance spectra, and antioxidant action of ascorbic acid towards hydroxyl radicals have been studied computationally and in vitro by ultraviolet-visible, nuclear magnetic resonance and vibrational spectroscopic techniques. Time dependant density functional theory calculations have been employed to specify various electronic transitions in ultraviolet-visible spectra. Observed chemical shifts and vibrational bands in nuclear magnetic resonance and vibrational spectra, respectively have been assigned with the help of calculations. Changes in the structure of ascorbic acid in aqueous phase have been examined computationally and experimentally by recording Raman spectra in aqueous medium. Theoretical calculations of the interaction between ascorbic acid molecule and hydroxyl radical predicted the formation of dehydroascorbic acid as first product, which has been confirmed by comparing its simulated spectra with the corresponding spectra of ascorbic acid in presence of hydrogen peroxide.

  17. Radiation Resistance of Fluorite-Structured Nuclear Oxides

    SciTech Connect

    Garrido, Frederico; Moll, Sandra; Thome, Lionel; Vincent, Laetitia; Nowicki, Lech; Sattonnay, Gaeel

    2009-03-10

    Fluorite-structure oxides are radiation-resistant materials making them ideal candidates for uses as nuclear fuels or as inert matrices for actinide transmutation. The radiation tolerance of urania and cubic zirconia single crystals was investigated by external ion irradiation in predominating domains of electronic and nuclear stopping of bombarding particles. Damage kinetics show that the behavior of the two investigated fluorite-type oxides is almost the same: (i) at low-energy a two-stage disordering process is exhibited--first a ballistic step due to the formation of radiation-induced defects and second a crystal fragmentation induced by the formation of gas bubbles at large concentration-; (ii) at high energy a one-stage damage kinetics associated with the formation of ion tracks whose overlapping at high fluence results in the formation of nanometer-sized domains with a small disorientation.

  18. Nuclear structure studies with medium energy probes. [Northwestern Univ

    SciTech Connect

    Seth, Kamal K.

    1980-01-01

    Progress in the continuing program of experimental research in nuclear structure with medium-energy probes during the year 1979-1980 is reviewed, and the research activities planned for the year 1980-1981 are discussed. In the study of pion-induced reactions emphasis is placed on investigation of isovector characteristics of nuclear excitations and on double charge exchange reactions. Pion production studies form the major part of the program of experiments with proton beams of 400 to 800 MeV at LAMPF. Current emphasis is on the bearing of these investigations on di-baryon existence. The study of high-spin states and magnetic scattering constitute the main goals of the electron scattering program at Bates. Representative results are presented; completed work is reported in the usual publications. (RWR)

  19. Nuclear-structure studies of exotic nuclei with MINIBALL

    NASA Astrophysics Data System (ADS)

    Butler, P. A.; Cederkall, J.; Reiter, P.

    2017-04-01

    High-resolution γ-ray spectroscopy has been established at ISOLDE for nuclear-structure and nuclear-reaction studies with reaccelerated radioactive ion beams provided by the REX-ISOLDE facility. The MINIBALL spectrometer comprises 24 six-fold segmented, encapsulated high-purity germanium crystals. It was specially designed for highest γ-ray detection efficiency which is advantageous for low-intensity radioactive ion beams. The MINIBALL array has been used in numerous Coulomb-excitation and transfer-reaction experiments with exotic ion beams of energies up to 3 MeV A–1. The physics case covers a wide range of topics which are addressed with beams ranging from neutron-rich magnesium isotopes up to heavy radium isotopes. In the future the HIE-ISOLDE will allow the in-beam γ-ray spectroscopy program to proceed with higher secondary-beam intensity, higher beam energy and better beam quality.

  20. Ran-dependent nuclear export mediators: a structural perspective.

    PubMed

    Güttler, Thomas; Görlich, Dirk

    2011-08-31

    Nuclear export is an essential eukaryotic activity. It proceeds through nuclear pore complexes (NPCs) and is mediated by soluble receptors that shuttle between nucleus and cytoplasm. RanGTPase-dependent export mediators (exportins) constitute the largest class of these carriers and are functionally highly versatile. All of these exportins load their substrates in response to RanGTP binding in the nucleus and traverse NPCs as ternary RanGTP-exportin-cargo complexes to the cytoplasm, where GTP hydrolysis leads to export complex disassembly. The different exportins vary greatly in their substrate range. Recent structural studies of both protein- and RNA-specific exporters have illuminated how exportins bind their cargoes, how Ran triggers cargo loading and how export complexes are disassembled in the cytoplasm. Here, we review the current state of knowledge and highlight emerging principles as well as prevailing questions.

  1. Computer architecture evaluation for structural dynamics computations: Project summary

    NASA Technical Reports Server (NTRS)

    Standley, Hilda M.

    1989-01-01

    The intent of the proposed effort is the examination of the impact of the elements of parallel architectures on the performance realized in a parallel computation. To this end, three major projects are developed: a language for the expression of high level parallelism, a statistical technique for the synthesis of multicomputer interconnection networks based upon performance prediction, and a queueing model for the analysis of shared memory hierarchies.

  2. Overview of computational structural methods for modern military aircraft

    NASA Technical Reports Server (NTRS)

    Kudva, J. N.

    1992-01-01

    Computational structural methods are essential for designing modern military aircraft. This briefing deals with computational structural methods (CSM) currently used. First a brief summary of modern day aircraft structural design procedures is presented. Following this, several ongoing CSM related projects at Northrop are discussed. Finally, shortcomings in this area, future requirements, and summary remarks are given.

  3. Beta delayed neutrons for nuclear structure and astrophysics

    NASA Astrophysics Data System (ADS)

    Grzywacz, Robert

    2014-09-01

    Beta-delayed neutron emission (β xn) is a significant or even dominant decay channel for the majority of very neutron-rich nuclei, especially for those on the r-process path. The recent theoretical models predicts that it may play more significant role then previously expected for astrophysics and this realization instigated a renewed experimental interest in this topic as a part of a larger scope of research on beta-decay strength distribution. Because studies of the decay strength directly probe relevant physics on the microscopic level, energy-resolved measurements of the beta-decay strength distribution is a better test of nuclear models than traditionally used experimental observables like half-lives and neutron branching ratios. A new detector system called the Versatile Array of Neutron Detectors at Low Energy (VANDLE) was constructed to directly address this issue. In its first experimental campaign at the Holifield Radioactive Ion Beam Facility neutron energy spectra in key regions of the nuclear chart were measured: near the shell closures at 78Ni and 132Sn, and for the deformed nuclei near 100Rb. In several cases, unexpectedly intense and concentrated, resonant-like, high-energy neutron structures were observed. These results were interpreted within shell model framework which clearly indicated that these neutron emission is driven by nuclear structure effects and are due to large Gamow-Teller type transition matrix elements. This research was sponsored in part by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Cooperative Agreement No. DE-FG52-08NA28552.

  4. 78 FR 47011 - Software Unit Testing for Digital Computer Software Used in Safety Systems of Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-02

    ... COMMISSION Software Unit Testing for Digital Computer Software Used in Safety Systems of Nuclear Power Plants..., ``Software Unit Testing for Digital Computer Software Used in Safety Systems of Nuclear Power Plants.'' This... software elements if those systems include software. This RG is one of six RG revisions addressing...

  5. Computational technology for high-temperature aerospace structures

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Card, M. F.

    1992-01-01

    The status and some recent developments of computational technology for high-temperature aerospace structures are summarized. Discussion focuses on a number of aspects including: goals of computational technology for high-temperature structures; computational material modeling; life prediction methodology; computational modeling of high-temperature composites; error estimation and adaptive improvement strategies; strategies for solution of fluid flow/thermal/structural problems; and probabilistic methods and stochastic modeling approaches, integrated analysis and design. Recent trends in high-performance computing environment are described and the research areas which have high potential for meeting future technological needs are identified.

  6. Computational structural mechanics methods research using an evolving framework

    NASA Technical Reports Server (NTRS)

    Knight, N. F., Jr.; Lotts, C. G.; Gillian, R. E.

    1990-01-01

    Advanced structural analysis and computational methods that exploit high-performance computers are being developed in a computational structural mechanics research activity sponsored by the NASA Langley Research Center. These new methods are developed in an evolving framework and applied to representative complex structural analysis problems from the aerospace industry. An overview of the methods development environment is presented, and methods research areas are described. Selected application studies are also summarized.

  7. Data-Structuring Operations in Concurrent Computations.

    DTIC Science & Technology

    1979-10-01

    8217 (plWl)p(p2, 2). Every computation a in a job J is a prefix of a halted computation which is a permutatioi of a canonical computation wEJ . The approach...standard state S’, and halted firing sequence g starting in S, TI(S’,2) is not necessarily SOE-inclusive of r(S,2). This is because even though 2 is a - 347

  8. Management of aging of nuclear power plant containment structures

    SciTech Connect

    Naus, D.; Oland, C.B.; Ellingwood, B.; Norris, W.E.; Graves, H.L. III

    1998-06-01

    Research addressing aging management of nuclear power plant concrete and steel containment structures is summarized. Accomplishments related to concrete containment structures include formation of a materials` property database; an aging assessment methodology to identify critical structures and degradation factors; guidelines and evaluation criteria for use in condition assessments; and a time-dependent reliability-based methodology for condition assessments and estimations of future performance. Under the steel containments and liners activity, a degradation assessment methodology has been developed, mathematical models that describe time-dependent changes in the containment due to aggressive environmental factors have been identified, and statistical data supporting the use of these models in time-dependent reliability analysis have been summarized.

  9. Exceptional structural and mechanical flexibility of the nuclear pore complex.

    PubMed

    Liashkovich, Ivan; Meyring, Anne; Kramer, Armin; Shahin, Victor

    2011-03-01

    Nuclear pore complexes (NPCs) mediate all transport between the cytosol and the nucleus and therefore take centre stage in physiology. While transport through NPCs has been extensively investigated little is known about their structural and barley anything about their mechanical flexibility. Structural and mechanical flexibility of NPCs, however, are presumably of key importance. Like the cell and the cell nucleus, NPCs themselves are regularly exposed to physiological mechanical forces. Besides, NPCs reveal striking transport properties which are likely to require fairly high structural flexibility. The NPC transports up to 1,000 molecules per second through a physically 9 nm wide channel which repeatedly opens to accommodate macromolecules significantly larger than its physical diameter. We hypothesised that NPCs possess remarkable structural and mechanical stability. Here, we tested this hypothesis at the single NPC level using the nano-imaging and probing approach atomic force microscopy (AFM). AFM presents the NPC as a highly flexible structure. The NPC channel dilates by striking 35% on exposure to trans-cyclohexane-1,2-diol (TCHD), which is known to transiently collapse the hydrophobic phase in the NPC channel like receptor-cargo complexes do in transit. It constricts again to its initial size after TCHD removal. AFM-based nano-indentation measurements show that the 50 nm long NPC basket can astonishingly be squeezed completely into the NPC channel on exposure to incremental mechanical loads but recovers its original vertical position within the nuclear envelope plane when relieved. We conclude that the NPC possesses exceptional structural and mechanical flexibility which is important to fulfilling its functions.

  10. Nuclear magnetic resonance probes of membrane biophysics: Structure and dynamics

    NASA Astrophysics Data System (ADS)

    Leftin, Avigdor

    The phospholipid membrane is a self-assembled, dynamic molecular system that may exist alone in association with only water, or in complex systems comprised of multiple lipid types and proteins. In this dissertation the intra- and inter-molecular forces responsible for the atomistic, molecular and collective equilibrium structure and dynamics are studied by nuclear magnetic resonance spectroscopy (NMR). The multinuclear NMR measurements and various experimental techniques are able to provide data that enable the characterization of the hierarchical spatio-temporal organization of the phospholipid membrane. The experimental and theoretical studies conducted target membrane interactions ranging from model systems composed of only water and lipids, to multiple component domain forming membranes that are in association with peripheral and trans-membrane proteins. These measurements consisit of frequency spectrum lineshapes and nuclear-spin relaxation rates obtained using 2H NMR, 13C NMR, 31P NMR and 1H NMR. The changes of these experimental observables are interpreted within a statistical thermodynamic framework that allows the membrane structure, activation energies, and correlation times of motion to be determined. The cases presented demonstrate how fundamental principles of NMR spectroscopy may be applied to a host of membranes, leading to the biophysical characterization of membrane structure and dynamics.

  11. Nuclear structure studies far from the line of beta stability

    SciTech Connect

    Avignone, F.T. III

    1986-04-15

    This report includes research activities concerning nuclear structure research of neutron rich and neutron deficient isotopes. Individual sections deal with Coulomb interactions; lifetime measurements of nuclei; calculations and Monte Carlo simulations for predicting responses of Ge and NaI(Tl) detectors to gamma radiation; and beta decay, energy levels, and mass measurements of selected isotopes. The research program features the discovery of new isotopes via their delayed proton decay and the detailed investigation of the beta-delayed, proton spectra. This report covers activities through the contract period from 1979 through 1985. 10 refs. (DWL)

  12. Nuclear reactor containment structure with continuous ring tunnel at grade

    DOEpatents

    Seidensticker, Ralph W.; Knawa, Robert L.; Cerutti, Bernard C.; Snyder, Charles R.; Husen, William C.; Coyer, Robert G.

    1977-01-01

    A nuclear reactor containment structure which includes a reinforced concrete shell, a hemispherical top dome, a steel liner, and a reinforced-concrete base slab supporting the concrete shell is constructed with a substantial proportion thereof below grade in an excavation made in solid rock with the concrete poured in contact with the rock and also includes a continuous, hollow, reinforced-concrete ring tunnel surrounding the concrete shell with its top at grade level, with one wall integral with the reinforced concrete shell, and with at least the base of the ring tunnel poured in contact with the rock.

  13. Nuclear structure and reactions using lattice effective field theory

    NASA Astrophysics Data System (ADS)

    Rupak, Gautam

    2016-09-01

    Effective field theory (EFT) formulated on a space-time lattice provides a model-independent framework for ab initio nuclear structure and reaction calculations. The EFT interactions are rooted in quantum chromodynamics through low energy symmetry constraints. In this talk I present several recent developments in lattice EFT, in particular I present the so called adiabatic projection method that enables elastic and in-elastic reaction calculations. Bound state properties of atomic nuclei such as carbon and oxygen will also be presented. Partial support from US National Science Foundation Grant PHY-1307453 is acknowledged.

  14. Theoretical nuclear structure and astrophysics. Progress report for 1993--1995

    SciTech Connect

    Guidry, M.W.; Nazarewicz, W.; Strayer, M.R.

    1995-12-31

    This research effort is directed toward theoretical support and guidance for the developing fields of radioactive ion beam (RIB) physics, computational and nuclear astrophysics, and the interface between these disciplines. The authors are concerned both with the application of existing technologies and concepts to guide the initial RIB program, and the development of new ideas and new technologies to influence the longer-term future of nuclear structure physics and astrophysics. The authors report substantial progress in both areas. One measure of progress is publications and invited material. The research described here has led to more than 70 papers that are published, accepted, or submitted to refereed journals, and to 46 invited presentations at conferences and workshops.

  15. NUSTART: A PC code for NUclear STructure And Radiative Transition analysis and supplementation

    SciTech Connect

    Larsen, G.L.; Gardner, D.G.; Gardner, M.A.

    1990-10-01

    NUSTART is a computer program for the IBM PC/At. It is designed for use with the nuclear reaction cross-section code STAPLUS, which is a STAPRE-based CRAY computer code that is being developed at Lawrence Livermore National Laboratory. The NUSTART code was developed to handle large sets of discrete nuclear levels and the multipole transitions among these levels; it operates in three modes. The Data File Error Analysis mode analyzes an existing STAPLUS input file containing the levels and their multipole transition branches for a number of physics and/or typographical errors. The Interactive Data File Generation mode allows the user to create input files of discrete levels and their branching fractions in the format required by STAPLUS, even though the user enters the information in the (different) format used by many people in the nuclear structure field. In the Branching Fractions Calculations mode, the discrete nuclear level set is read, and the multipole transitions among the levels are computed under one of two possible assumptions: (1) the levels have no collective character, or (2) the levels are all rotational band heads. Only E1, M1, and E2 transitions are considered, and the respective strength functions may be constants or, in the case of E1 transitions, the strength function may be energy dependent. The first option is used for nuclei closed shells; the bandhead option may be used to vary the E1, M1, and E2 strengths for interband transitions. K-quantum number selection rules may be invoked if desired. 19 refs.

  16. New computing systems, future computing environment, and their implications on structural analysis and design

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Housner, Jerrold M.

    1993-01-01

    Recent advances in computer technology that are likely to impact structural analysis and design of flight vehicles are reviewed. A brief summary is given of the advances in microelectronics, networking technologies, and in the user-interface hardware and software. The major features of new and projected computing systems, including high performance computers, parallel processing machines, and small systems, are described. Advances in programming environments, numerical algorithms, and computational strategies for new computing systems are reviewed. The impact of the advances in computer technology on structural analysis and the design of flight vehicles is described. A scenario for future computing paradigms is presented, and the near-term needs in the computational structures area are outlined.

  17. PREFACE: International Conference on Computing in High Energy and Nuclear Physics (CHEP'07)

    NASA Astrophysics Data System (ADS)

    Sobie, Randall; Tafirout, Reda; Thomson, Jana

    2007-07-01

    The 2007 International Conference on Computing in High Energy and Nuclear Physics (CHEP) was held on 2-7 September 2007 in Victoria, British Columbia, Canada. CHEP is a major series of international conferences for physicists and computing professionals from the High Energy and Nuclear Physics community, Computer Science and Information Technology. The CHEP conference provides an international forum to exchange information on computing experience and needs for the community, and to review recent, ongoing, and future activities. The CHEP'07 conference had close to 500 attendees with a program that included plenary sessions of invited oral presentations, a number of parallel sessions comprising oral and poster presentations, and an industrial exhibition. Conference tracks covered topics in Online Computing, Event Processing, Software Components, Tools and Databases, Software Tools and Information Systems, Computing Facilities, Production Grids and Networking, Grid Middleware and Tools, Distributed Data Analysis and Information Management and Collaborative Tools. The conference included a successful whale-watching excursion involving over 200 participants and a banquet at the Royal British Columbia Museum. The next CHEP conference will be held in Prague in March 2009. We would like thank the sponsors of the conference and the staff at the TRIUMF Laboratory and the University of Victoria who made the CHEP'07 a success. Randall Sobie and Reda Tafirout CHEP'07 Conference Chairs

  18. Vorinostat differentially alters 3D nuclear structure of cancer and non-cancerous esophageal cells.

    PubMed

    Nandakumar, Vivek; Hansen, Nanna; Glenn, Honor L; Han, Jessica H; Helland, Stephanie; Hernandez, Kathryn; Senechal, Patti; Johnson, Roger H; Bussey, Kimberly J; Meldrum, Deirdre R

    2016-08-09

    The histone deacetylase (HDAC) inhibitor vorinostat has received significant attention in recent years as an 'epigenetic' drug used to treat solid tumors. However, its mechanisms of action are not entirely understood, particularly with regard to its interaction with the aberrations in 3D nuclear structure that accompany neoplastic progression. We investigated the impact of vorinostat on human esophageal epithelial cell lines derived from normal, metaplastic (pre-cancerous), and malignant tissue. Using a combination of novel optical computed tomography (CT)-based quantitative 3D absorption microscopy and conventional confocal fluorescence microscopy, we show that subjecting malignant cells to vorinostat preferentially alters their 3D nuclear architecture relative to non-cancerous cells. Optical CT (cell CT) imaging of fixed single cells showed that drug-treated cancer cells exhibit significant alterations in nuclear morphometry. Confocal microscopy revealed that vorinostat caused changes in the distribution of H3K9ac-marked euchromatin and H3K9me3-marked constitutive heterochromatin. Additionally, 3D immuno-FISH showed that drug-induced expression of the DNA repair gene MGMT was accompanied by spatial relocation toward the center of the nucleus in the nuclei of metaplastic but not in non-neoplastic cells. Our data suggest that vorinostat's differential modulation of 3D nuclear architecture in normal and abnormal cells could play a functional role in its anti-cancer action.

  19. Vorinostat differentially alters 3D nuclear structure of cancer and non-cancerous esophageal cells

    PubMed Central

    Nandakumar, Vivek; Hansen, Nanna; Glenn, Honor L.; Han, Jessica H.; Helland, Stephanie; Hernandez, Kathryn; Senechal, Patti; Johnson, Roger H.; Bussey, Kimberly J.; Meldrum, Deirdre R.

    2016-01-01

    The histone deacetylase (HDAC) inhibitor vorinostat has received significant attention in recent years as an ‘epigenetic’ drug used to treat solid tumors. However, its mechanisms of action are not entirely understood, particularly with regard to its interaction with the aberrations in 3D nuclear structure that accompany neoplastic progression. We investigated the impact of vorinostat on human esophageal epithelial cell lines derived from normal, metaplastic (pre-cancerous), and malignant tissue. Using a combination of novel optical computed tomography (CT)-based quantitative 3D absorption microscopy and conventional confocal fluorescence microscopy, we show that subjecting malignant cells to vorinostat preferentially alters their 3D nuclear architecture relative to non-cancerous cells. Optical CT (cell CT) imaging of fixed single cells showed that drug-treated cancer cells exhibit significant alterations in nuclear morphometry. Confocal microscopy revealed that vorinostat caused changes in the distribution of H3K9ac-marked euchromatin and H3K9me3-marked constitutive heterochromatin. Additionally, 3D immuno-FISH showed that drug-induced expression of the DNA repair gene MGMT was accompanied by spatial relocation toward the center of the nucleus in the nuclei of metaplastic but not in non-neoplastic cells. Our data suggest that vorinostat’s differential modulation of 3D nuclear architecture in normal and abnormal cells could play a functional role in its anti-cancer action. PMID:27503568

  20. International Nuclear Energy Research Initiative Development of Computational Models for Pyrochemical Electrorefiners of Nuclear Waste Transmutation Systems

    SciTech Connect

    M.F. Simpson; K.-R. Kim

    2010-12-01

    In support of closing the nuclear fuel cycle using non-aqueous separations technology, this project aims to develop computational models of electrorefiners based on fundamental chemical and physical processes. Spent driver fuel from Experimental Breeder Reactor-II (EBR-II) is currently being electrorefined in the Fuel Conditioning Facility (FCF) at Idaho National Laboratory (INL). And Korea Atomic Energy Research Institute (KAERI) is developing electrorefining technology for future application to spent fuel treatment and management in the Republic of Korea (ROK). Electrorefining is a critical component of pyroprocessing, a non-aqueous chemical process which separates spent fuel into four streams: (1) uranium metal, (2) U/TRU metal, (3) metallic high-level waste containing cladding hulls and noble metal fission products, and (4) ceramic high-level waste containing sodium and active metal fission products. Having rigorous yet flexible electrorefiner models will facilitate process optimization and assist in trouble-shooting as necessary. To attain such models, INL/UI has focused on approaches to develop a computationally-light and portable two-dimensional (2D) model, while KAERI/SNU has investigated approaches to develop a computationally intensive three-dimensional (3D) model for detailed and fine-tuned simulation.

  1. Structured Design Language for Computer Programs

    NASA Technical Reports Server (NTRS)

    Pace, Walter H., Jr.

    1986-01-01

    Box language used at all stages of program development. Developed to provide improved productivity in designing, coding, and maintaining computer programs. BOX system written in FORTRAN 77 for batch execution.

  2. French diagnostic reference levels in diagnostic radiology, computed tomography and nuclear medicine: 2004-2008 review.

    PubMed

    Roch, P; Aubert, B

    2013-04-01

    After 5 y of collecting data on diagnostic reference levels (DRLs), the Nuclear Safety and Radiation Protection French Institute (IRSN) presents the analyses of this data. The analyses of the collected data for radiology, computed tomography (CT) and nuclear medicine allow IRSN to estimate the level of regulatory application by health professionals and the representativeness of current DRL in terms of relevant examinations, dosimetric quantities, numerical values and patient morphologies. Since 2004, the involvement of professionals has highly increased, especially in nuclear medicine, followed by CT and then by radiology. Analyses show some discordance between regulatory examinations and clinical practice. Some of the dosimetric quantities used for the DRL setting are insufficient or not relevant enough, and some numerical values should also be reviewed. On the basis of these findings, IRSN formulates recommendations to update regulatory DRL with current and relevant examination lists, dosimetric quantities and numerical values.

  3. Synthesis of Efficient Structures for Concurrent Computation.

    DTIC Science & Technology

    1983-10-01

    CONTRACT OR GRANT NUMBER(a) Richard M. King and Ernst Mayr F49620-82-C-0007 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK...for CONCURRENT COMPUTATION by Richard M. King Ernst W. Mayrt Cordel Green Principal Investigator Kestrel Institute 1801 Page Mill Road Palo Alto, CA... Mayr , and A. Siegel ’Techniques for Solving Graph Problems in Parallel Environments’ Proceedings of the W4h Symposium on Foundation* of Computer

  4. Role of nuclear structure on the tilting mode

    NASA Astrophysics Data System (ADS)

    Naik, H.; Dange, S. P.

    2003-12-01

    The high spin fraction (HSF) of 131Te as a function of fragment emission angle has been determined in the 40 MeV alpha-particle induced fission of 238U using off-line gamma ray spectrometric technique. From the HSF the fragment average spin (Jav) of fission product has been deduced using statistical model analysis. The Jav value of 131Te is seen to remain nearly constant (10ℏ) from 90° to 20°. On the other hand, the Jav value of 132I from earlier work shows a drastic decrease (33%) from 11.4ℏ at 90° to 7.6ℏ at 20°. However, the yield weighted Jav value of both the products show a decrease of 13%, which in close agreement with the value of 5-10% change from 90° to 0° in the results obtained from gamma ray multiplicity measurements. Thus the drastic difference in the change of fragment average spin (Jav) of individual product from 90° to 20° obtained from the gamma ray spectrometric technique is most probably due to the nuclear structure effect of the fission products in their fragment stage. This shows the role of nuclear structure on the tilting mode and this experimental observation is made for the first time.

  5. Structural analysis of strained quantum dots using nuclear magnetic resonance.

    PubMed

    Chekhovich, E A; Kavokin, K V; Puebla, J; Krysa, A B; Hopkinson, M; Andreev, A D; Sanchez, A M; Beanland, R; Skolnick, M S; Tartakovskii, A I

    2012-10-01

    Strained semiconductor nanostructures can be used to make single-photon sources, detectors and photovoltaic devices, and could potentially be used to create quantum logic devices. The development of such applications requires techniques capable of nanoscale structural analysis, but the microscopy methods typically used to analyse these materials are destructive. NMR techniques can provide non-invasive structural analysis, but have been restricted to strain-free semiconductor nanostructures because of the significant strain-induced quadrupole broadening of the NMR spectra. Here, we show that optically detected NMR spectroscopy can be used to analyse individual strained quantum dots. Our approach uses continuous-wave broadband radiofrequency excitation with a specially designed spectral pattern and can probe individual strained nanostructures containing only 1 × 10(5) quadrupole nuclear spins. With this technique, we are able to measure the strain distribution and chemical composition of quantum dots in the volume occupied by the single confined electron. The approach could also be used to address problems in quantum information processing such as the precise control of nuclear spins in the presence of strong quadrupole effects.

  6. Chlorine Nuclear Quadrupole Hyperfine Structure in the Vinyl - Chloride Complex

    NASA Astrophysics Data System (ADS)

    Leung, Helen O.; Marshall, Mark D.; Messinger, Joseph P.

    2015-06-01

    The microwave spectrum of the vinyl chloride--hydrogen chloride complex, presented at last year's symposium, is greatly complicated by the presence of two chlorine nuclei as well as an observed, but not fully explained tunneling motion. Indeed, although it was possible at that time to demonstrate conclusively that the complex is nonplanar, the chlorine nuclear quadrupole hyperfine splitting in the rotational spectrum resisted analysis. With higher resolution, Balle-Flygare Fourier transform microwave spectra, the hyperfine structure has been more fully resolved, but appears to be perturbed for some rotational transitions. It appears that knowledge of the quadrupole coupling constants will provide essential information regarding the structure of the complex, specifically the location of the hydrogen atom in HCl. Our progress towards obtaining values for these constants will be presented.

  7. Analysis of fine structure in the nuclear continuum

    SciTech Connect

    Shevchenko, A.; Kalmykov, Y.; Neumann-Cosel, P. von; Ponomarev, V. Yu.; Richter, A.; Wambach, J.; Carter, J.; Usman, I.; Cooper, G. R. J.; Fearick, R. W.

    2008-02-15

    Fine structure has been shown to be a general phenomenon of nuclear giant resonances of different multipolarities over a wide mass range. In this article we assess various techniques that have been proposed to extract quantitative information from the fine structure in terms of characteristic scales. These include the so-called local scaling dimension, the entropy index method, Fourier analysis, and continuous and discrete wavelet transforms. As an example, results on the isoscalar giant quadrupole resonance in {sup 208}Pb from high-energy-resolution inelastic proton scattering and calculations with the quasiparticle-phonon model are analyzed. Wavelet analysis, both continuous and discrete, of the spectra is shown to be a powerful tool to extract the magnitude and localization of characteristic scales.

  8. Direct reactions for nuclear structure required for fundamental symmetry tests

    NASA Astrophysics Data System (ADS)

    Garrett, P. E.; Rand, E. T.; Diaz Varela, A.; Ball, G. C.; Bildstein, V.; Faestermann, T.; Hadinia, B.; Hertenberger, R.; Jamieson, D. S.; Jigmeddorj, B.; Leach, K. G.; Svensson, C. E.; Wirth, H.-F.

    2016-09-01

    A program of nuclear structure studies to support fundamental symmetry tests has been initiated. Motivated by the search for an electric dipole moment in 199Hg, the structure in the vicinity has been explored via direct reaction studies. To date, these have included the 198,200Hg(d, d') inelastic scattering reactions, with the aim to obtain information on the E2 and E3 strength distributions, and the 198Hg(d, p) and 200Hg(d, t) reactions to obtain information on the single-particle states in 199Hg. The studies using the 200Hg targets have been fully analyzed using the FRESCO reaction code yielding the E2 and E3 strength distribution to 4 MeV in excitation energy, and the (d, t) single- particle strength to over 3 MeV in excitation energy.

  9. Structures and construction of nuclear power plants on lunar surface

    NASA Astrophysics Data System (ADS)

    Shimizu, Katsunori; Kobatake, Masuhiko; Ogawa, Sachio; Kanamori, Hiroshi; Okada, Yasuhiko; Mano, Hideyuki; Takagi, Kenji

    1991-07-01

    The best structure and construction techniques of nuclear power plants in the severe environments on the lunar surface are studied. Facility construction types (functional conditions such as stable structure, shield thickness, maintainability, safety distances, and service life), construction conditions (such as construction methods, construction equipment, number of personnel, time required for construction, external power supply, and required transportation) and construction feasibility (construction method, reactor transportation between the moon and the earth, ground excavation for installation, loading and unloading, transportation, and installation, filling up the ground, electric power supply of plant S (300 kW class) and plant L (3000 kW class)) are outlined. Items to pay attention to in construction are (1) automation and robotization of construction; (2) cost reduction by multi functional robots; and (3) methods of supplying power to robots. A precast concrete block manufacturing plant is also outlined.

  10. Personal computer based decision support system for routing nuclear spent fuel

    SciTech Connect

    Chin, Shih-Miao; Joy, D.S.; Johnson, P.E. ); Bobic, S.M.; Miaou, Shaw-Pin . Transportation Center)

    1989-11-14

    An approach has been formulated to route nuclear spent fuel over the US Interstate highway network. This approach involves the generation of alternative routes so that any potential adverse impacts will not only concentrate on regions along the shortest path between the nuclear power plant and repository. Extensive literature research on the shortest path finding algorithms has been carried out. Consequently, an extremely efficient shortest path algorithm has been implemented and significantly increases the overall system performance. State-of-the-art interactive computer graphics is used. In addition to easy-to-use pop-up menus, full color mapping and display capabilities are also incorporated. All of these features have been implemented on commonly available personal computers. 6 figs., 2 tabs.

  11. The Nuclear Energy Advanced Modeling and Simulation Enabling Computational Technologies FY09 Report

    SciTech Connect

    Diachin, L F; Garaizar, F X; Henson, V E; Pope, G

    2009-10-12

    In this document we report on the status of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Enabling Computational Technologies (ECT) effort. In particular, we provide the context for ECT In the broader NEAMS program and describe the three pillars of the ECT effort, namely, (1) tools and libraries, (2) software quality assurance, and (3) computational facility (computers, storage, etc) needs. We report on our FY09 deliverables to determine the needs of the integrated performance and safety codes (IPSCs) in these three areas and lay out the general plan for software quality assurance to meet the requirements of DOE and the DOE Advanced Fuel Cycle Initiative (AFCI). We conclude with a brief description of our interactions with the Idaho National Laboratory computer center to determine what is needed to expand their role as a NEAMS user facility.

  12. Computational Efficient Upscaling Methodology for Predicting Thermal Conductivity of Nuclear Waste forms

    SciTech Connect

    Li, Dongsheng; Sun, Xin; Khaleel, Mohammad A.

    2011-09-28

    This study evaluated different upscaling methods to predict thermal conductivity in loaded nuclear waste form, a heterogeneous material system. The efficiency and accuracy of these methods were compared. Thermal conductivity in loaded nuclear waste form is an important property specific to scientific researchers, in waste form Integrated performance and safety code (IPSC). The effective thermal conductivity obtained from microstructure information and local thermal conductivity of different components is critical in predicting the life and performance of waste form during storage. How the heat generated during storage is directly related to thermal conductivity, which in turn determining the mechanical deformation behavior, corrosion resistance and aging performance. Several methods, including the Taylor model, Sachs model, self-consistent model, and statistical upscaling models were developed and implemented. Due to the absence of experimental data, prediction results from finite element method (FEM) were used as reference to determine the accuracy of different upscaling models. Micrographs from different loading of nuclear waste were used in the prediction of thermal conductivity. Prediction results demonstrated that in term of efficiency, boundary models (Taylor and Sachs model) are better than self consistent model, statistical upscaling method and FEM. Balancing the computation resource and accuracy, statistical upscaling is a computational efficient method in predicting effective thermal conductivity for nuclear waste form.

  13. Nuclear Technology Series. Course 29: Civil/Structural Inspection.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  14. Density functional theory computation of Nuclear Magnetic Resonance parameters in light and heavy nuclei

    NASA Astrophysics Data System (ADS)

    Sutter, Kiplangat

    This thesis illustrates the utilization of Density functional theory (DFT) in calculations of gas and solution phase Nuclear Magnetic Resonance (NMR) properties of light and heavy nuclei. Computing NMR properties is still a challenge and there are many unknown factors that are still being explored. For instance, influence of hydrogen-bonding; thermal motion; vibration; rotation and solvent effects. In one of the theoretical studies of 195Pt NMR chemical shift in cisplatin and its derivatives illustrated in Chapter 2 and 3 of this thesis. The importance of representing explicit solvent molecules explicitly around the Pt center in cisplatin complexes was outlined. In the same complexes, solvent effect contributed about half of the J(Pt-N) coupling constant. Indicating the significance of considering the surrounding solvent molecules in elucidating the NMR measurements of cisplatin binding to DNA. In chapter 4, we explore the Spin-Orbit (SO) effects on the 29Si and 13C chemical shifts induced by surrounding metal and ligands. The unusual Ni, Pd, Pt trends in SO effects to the 29Si in metallasilatrane complexes X-Si-(mu-mt)4-M-Y was interpreted based on electronic and relativistic effects rather than by structural differences between the complexes. In addition, we develop a non-linear model for predicting NMR SO effects in a series of organics bonded to heavy nuclei halides. In chapter 5, we extend the idea of "Chemist's orbitals" LMO analysis to the quantum chemical proton NMR computation of systems with internal resonance-assisted hydrogen bonds. Consequently, we explicitly link the relationship between the NMR parameters related to H-bonded systems and intuitive picture of a chemical bond from quantum calculations. The analysis shows how NMR signatures characteristic of H-bond can be explained by local bonding and electron delocalization concepts. One shortcoming of some of the anti-cancer agents like cisplatin is that they are toxic and researchers are looking for

  15. Understanding Nuclear Receptor Form and Function Using Structural Biology

    PubMed Central

    Rastinejad, Fraydoon; Huang, Pengxiang; Chandra, Vikas; Khorasanizadeh, Sepideh

    2013-01-01

    Nuclear receptors (NR) are a major transcription factor family whose members selectively bind small molecule lipophilic ligands and transduce those signals into specific changes in gene programs. For over two decades, structural biology efforts were directed exclusively on the individual ligand binding domains (LBDs) or DNA binding domains (DBDs) of NRs. These analyses revealed the basis for both ligand and DNA binding, and also revealed receptor conformations representing both the activated and repressed states. Additionally, crystallographic studies explained how NR LBD surfaces recognize discrete portions of transcriptional coregulators. The many structural snapshots of LBDs have also guided the development of synthetic ligands with therapeutic potential. Yet, the exclusive structural focus on isolated NR domains has made it difficult to conceptualize how all the NR polypeptide segments are coordinated physically and functionally in the context of receptor quaternary architectures. Newly emerged crystal structures of the PPARγ-RXRα heterodimer and HNF-4α homodimer have recently revealed the higher order organizations of these receptor complexes on DNA, as well as the complexity and uniqueness of their domain-domain interfaces. These emerging structural advances promise to better explain how signals in one domain can be allosterically transmitted to distal receptor domains, also providing much better frameworks for guiding future drug discovery efforts. PMID:24103914

  16. BOLD VENTURE COMPUTATION SYSTEM for nuclear reactor core analysis, Version III

    SciTech Connect

    Vondy, D.R.; Fowler, T.B.; Cunningham, G.W. III.

    1981-06-01

    This report is a condensed documentation for VERSION III of the BOLD VENTURE COMPUTATION SYSTEM for nuclear reactor core analysis. An experienced analyst should be able to use this system routinely for solving problems by referring to this document. Individual reports must be referenced for details. This report covers basic input instructions and describes recent extensions to the modules as well as to the interface data file specifications. Some application considerations are discussed and an elaborate sample problem is used as an instruction aid. Instructions for creating the system on IBM computers are also given.

  17. POPCYCLE: a computer code for calculating nuclear and fossil plant levelized life-cycle power costs

    SciTech Connect

    Hardie, R.W.

    1982-02-01

    POPCYCLE, a computer code designed to calculate levelized life-cycle power costs for nuclear and fossil electrical generating plants is described. Included are (1) derivations of the equations and a discussion of the methodology used by POPCYCLE, (2) a description of the input required by the code, (3) a listing of the input for a sample case, and (4) the output for a sample case.

  18. Noncyclic geometric quantum computation in a nuclear-magnetic-resonance system

    SciTech Connect

    Wang, Z. S.; Liu, G. Q.; Ji, Y. H.

    2009-05-15

    A scheme is proposed to include both cyclic and noncyclic geometric quantum computations in nuclear-magnetic-resonance system by the invariant theory. By controlling magnetic field and arbitrary parameters in the invariant operator, the phases accumulated in the entangling quantum gates for single- and two-qubit systems are pure geometric phases. Thus, fault tolerance may occur in some critical magnetic field parameters for either cyclic or noncyclic evolution by differently choosing for gate time.

  19. Physics with gamma-beams and charged particle detectors: I) Nuclear structure II) Nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Gai, Moshe

    2015-02-01

    The Charged Particle Working Group (CPWG) is proposing to construct large area Silicon Strip Detector (SSD), a gas Time Projection Chamber detector read by an electronic readout system (eTPC) and a Bubble Chamber (BC) containing superheated high purity water to be used in measurements utilizing intense gamma-ray beams from the newly constructed ELI-NP facility at Magurele, Bucharest in Romania. We intend to use the SSD and eTPC detectors to address essential problems in nuclear structure physics, such as clustering and the many alpha-decay of light nuclei such as 12C and 16O . All three detectors (SSD, eTPC and BC) will be used to address central problems in nuclear astrophysics such as the astrophysical cross section factor of the 12C (α,γ) reaction and other processes central to stellar evolution. The CPWG intends to submit to the ELI-NP facility a Technical Design Report (TDR) for the proposed detectors.

  20. Physics with gamma-beams and charged particle detectors: I) Nuclear structure II) Nuclear astrophysics

    SciTech Connect

    Gai, Moshe

    2015-02-24

    The Charged Particle Working Group (CPWG) is proposing to construct large area Silicon Strip Detector (SSD), a gas Time Projection Chamber detector read by an electronic readout system (eTPC) and a Bubble Chamber (BC) containing superheated high purity water to be used in measurements utilizing intense gamma-ray beams from the newly constructed ELI-NP facility at Magurele, Bucharest in Romania. We intend to use the SSD and eTPC detectors to address essential problems in nuclear structure physics, such as clustering and the many alpha-decay of light nuclei such as {sup 12}C and {sup 16}O. All three detectors (SSD, eTPC and BC) will be used to address central problems in nuclear astrophysics such as the astrophysical cross section factor of the {sup 12}C(α,γ) reaction and other processes central to stellar evolution. The CPWG intends to submit to the ELI-NP facility a Technical Design Report (TDR) for the proposed detectors.

  1. A Dataset and a Technique for Generalized Nuclear Segmentation for Computational Pathology.

    PubMed

    Kumar, Neeraj; Verma, Ruchika; Sharma, Sanuj; Bhargava, Surabhi; Vahadane, Abhishek; Sethi, Amit

    2017-03-06

    Nuclear segmentation in digital microscopic tissue images can enable extraction of high-quality features for nuclear morphometrics and other analysis in computational pathology. Conventional image processing techniques such as Otsu thresholding and watershed segmentation do not work effectively on challenging cases, such as chromatin-sparse and crowded nuclei. In contrast, machine learning-based segmentation can generalize across various nuclear appearances. However, training machine learning algorithms require datasets of images in which a vast number of nuclei have been annotated. Publicly accessible and annotated datasets, along with widely agreed upon metrics to compare techniques, have catalyzed tremendous innovation and progress on other image classification problems, particularly in object recognition. Inspired by their success, we introduce a large publicly accessible dataset of H&E stained tissue images with more than 21,000 painstakingly annotated nuclear boundaries, whose quality was validated by a medical doctor. Because our dataset is taken from multiple hospitals and includes a diversity of nuclear appearances from several patients, disease states, and organs, techniques trained on it are likely to generalize well and work right out-of-the-box on other H&E stained images. We also propose a new metric to evaluate nuclear segmentation results that penalizes object- and pixel-level errors in a unified manner, unlike previous metrics that penalize only one type of error. We also propose a segmentation technique based on deep learning that lays special emphasis on identifying the nuclear boundaries, including those between the touching or overlapping nuclei, and works well on a diverse set of test images.

  2. Computational Prediction of RNA Tertiary Structure

    NASA Astrophysics Data System (ADS)

    Zhao, Yunjie; Gong, Zhou; Chen, Changjun; Xiao, Yi

    2012-02-01

    RNAs have been found to be involved in the biological processes. The large RNA usually consists of two basic elements: RNA hairpins and duplex. Due to the experimental determination difficulties, the few RNA tertiary structures limit our understanding of the specific regulation mechanisms and functions. Therefore, RNA tertiary structure prediction is very important for understanding RNA biological functions. Since RNA often folds hierarchically, one of the possible RNA structure prediction approaches is through the hierarchical steps. Here, we focus on the prediction method of RNA tertiary hairpin and duplex structures in which assembles the small tertiary structure fragments from well-defined RNA structural motifs. In a benchmark test with known experiment structures, more than half of the cases agree with the experimental structure better than 3 å RMSD over all the heavy atoms. The prediction results also reproduce the native like complementary base pairs of the secondary structures. Most importantly, the method performs the atomic accuracy of tertiary structures by about several minutes. We expect that the method will be a useful resource for RNA tertiary structure prediction and helpful to the biological research community.

  3. Increased reliability of nuclear magnetic resonance protein structures by consensus structure bundles.

    PubMed

    Buchner, Lena; Güntert, Peter

    2015-02-03

    Nuclear magnetic resonance (NMR) structures are represented by bundles of conformers calculated from different randomized initial structures using identical experimental input data. The spread among these conformers indicates the precision of the atomic coordinates. However, there is as yet no reliable measure of structural accuracy, i.e., how close NMR conformers are to the "true" structure. Instead, the precision of structure bundles is widely (mis)interpreted as a measure of structural quality. Attempts to increase precision often overestimate accuracy by tight bundles of high precision but much lower accuracy. To overcome this problem, we introduce a protocol for NMR structure determination with the software package CYANA, which produces, like the traditional method, bundles of conformers in agreement with a common set of conformational restraints but with a realistic precision that is, throughout a variety of proteins and NMR data sets, a much better estimate of structural accuracy than the precision of conventional structure bundles.

  4. 77 FR 50722 - Software Unit Testing for Digital Computer Software Used in Safety Systems of Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ... COMMISSION Software Unit Testing for Digital Computer Software Used in Safety Systems of Nuclear Power Plants... regulatory guide (DG), DG-1208, ``Software Unit Testing for Digital Computer Software used in Safety Systems... revision endorses, with clarifications, the enhanced consensus practices for testing of computer...

  5. 77 FR 50720 - Test Documentation for Digital Computer Software Used in Safety Systems of Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ... COMMISSION Test Documentation for Digital Computer Software Used in Safety Systems of Nuclear Power Plants... regulatory guide (DG), DG-1207, ``Test Documentation for Digital Computer Software used in Safety Systems of... software and computer systems as described in the Institute of Electrical and Electronics Engineers...

  6. US-MEXICAN COLLABORATION IN COMPUTATIONAL RESEARCH FOR THE PEACEFUL USE OF NUCLEAR ENERGY

    SciTech Connect

    R. PERRY; W. CHARLTON; ET AL

    1999-07-01

    Under the auspices of the ''Memorandum of Understanding for the Exchange of Technical Information and for Cooperation in the Field of Peaceful Uses of Nuclear Energy'' between the National Institute of Nuclear Research of Mexico (ININ) and the Los Alamos National Laboratory (LANL), scientists and engineers from ININ met and collaborated with scientists at LANL. The collaboration was sponsored by the US Department of Energy as part of its ''Sister Laboratories'' program. In this weeklong meeting, these scientists and engineers carried out mutual consultation and cooperative efforts in the field of computational research in nuclear power. Three main areas for technical collaboration were discussed: (a) establishment of electronic access to LANL open computational facilities and reactor physics codes from ININ, (b) calculation of radiation damage to BWR reactor vessels, and (c) calculation of BWR burnup for MOX fuel. These three tasks were successfully completed during the weeklong meeting between the laboratory scientists. The discussion, held at LANL in March 1999, involved ten LANL specialists and three ININ specialists. In addition, several computer technicians provided the necessary support for the utilization of the SUN computers, which were setup for the seminars. Discussions between team members occupied about half of the visit. Mixed Oxide (MOX) assembly models were developed and calculations made using HELIOS and MCNP the remainder of the time. As a result of the collaboration, the scientists from ININ returned to the institute and immediately began using the computational facilities at LANL for further MOX assembly calculations. As a result of the meeting, ININ is providing expert advice for the thermal hydraulic calculations for a similar cooperative program between Peruvian and LANL. The three areas of cooperation will be discussed in detail in this paper. Sample results of the MOX calculations at ININ will also be presented.

  7. Crystal structure of a nuclear actin ternary complex.

    PubMed

    Cao, Tingting; Sun, Lingfei; Jiang, Yuxiang; Huang, Shanjin; Wang, Jiawei; Chen, Zhucheng

    2016-08-09

    Actin polymerizes and forms filamentous structures (F-actin) in the cytoplasm of eukaryotic cells. It also exists in the nucleus and regulates various nucleic acid transactions, particularly through its incorporation into multiple chromatin-remodeling complexes. However, the specific structure of actin and the mechanisms that regulate its polymeric nature inside the nucleus remain unknown. Here, we report the crystal structure of nuclear actin (N-actin) complexed with actin-related protein 4 (Arp4) and the helicase-SANT-associated (HSA) domain of the chromatin remodeler Swr1. The inner face and barbed end of N-actin are sequestered by interactions with Arp4 and the HSA domain, respectively, which prevents N-actin from polymerization and binding to many actin regulators. The two major domains of N-actin are more twisted than those of globular actin (G-actin), and its nucleotide-binding pocket is occluded, freeing N-actin from binding to and regulation by ATP. These findings revealed the salient structural features of N-actin that distinguish it from its cytoplasmic counterpart and provide a rational basis for its functions and regulation inside the nucleus.

  8. Crystal structure of a nuclear actin ternary complex

    PubMed Central

    Cao, Tingting; Sun, Lingfei; Jiang, Yuxiang; Huang, Shanjin; Wang, Jiawei; Chen, Zhucheng

    2016-01-01

    Actin polymerizes and forms filamentous structures (F-actin) in the cytoplasm of eukaryotic cells. It also exists in the nucleus and regulates various nucleic acid transactions, particularly through its incorporation into multiple chromatin-remodeling complexes. However, the specific structure of actin and the mechanisms that regulate its polymeric nature inside the nucleus remain unknown. Here, we report the crystal structure of nuclear actin (N-actin) complexed with actin-related protein 4 (Arp4) and the helicase-SANT–associated (HSA) domain of the chromatin remodeler Swr1. The inner face and barbed end of N-actin are sequestered by interactions with Arp4 and the HSA domain, respectively, which prevents N-actin from polymerization and binding to many actin regulators. The two major domains of N-actin are more twisted than those of globular actin (G-actin), and its nucleotide-binding pocket is occluded, freeing N-actin from binding to and regulation by ATP. These findings revealed the salient structural features of N-actin that distinguish it from its cytoplasmic counterpart and provide a rational basis for its functions and regulation inside the nucleus. PMID:27457955

  9. [Electromagnetic studies of nuclear structure and reactions]. [Nuclear Physics Group, Univ. of New Hampshire

    SciTech Connect

    Not Available

    1992-01-01

    The experimental goals are focused on developing an understanding of strong interactions and the structure of hadronic systems by determination of the electromagnetic response; these goals will be accomplished through coincidence detection of final states. Nuclear modeling objectives are to organize and interpret the data through a consistent description of a broad spectrum of reaction observables; calculations are performed in a nonrelativistic diagrammatic framework as well as a relativistic QHD approach. Work is described according to the following arrangement: direct knockout reactions (completion of [sup 16]O(e,e[prime]p), [sup 12]C(e,e[prime]pp) progress, large acceptance detector physics simulations), giant resonance studies (intermediate-energy experiments with solid-state detectors, the third response function in [sup 12]C(e,e[prime]p[sub 0]) and [sup 16]O(e,e[prime]p[sub 0]), comparison of the [sup 12]C(e, e[prime]p[sub 0]) and [sup 16]O(e,e[prime]p[sub 3]) reactions, quadrupole strength in the [sup 16]O(e,e[prime][alpha][sub 0]) reaction, quadrupole strength in the [sup 12]C(e,e[prime][alpha]) reaction, analysis of the [sup 12]C(e,e[prime]p[sub 1]) and [sup 16]O(e,e[prime]p[sub 3]) angular distributions, analysis of the [sup 40]Ca(e,e[prime]x) reaction at low q, analysis of the higher-q [sup 12]C(e,e[prime]x) data from Bates), models of nuclear structure (experimental work, Hartree-Fock calculations, phonon excitations in spherical nuclei, shell model calculations, variational methods for relativistic fields), and instrumentation development efforts (developments at CEBAF, CLAS contracts, BLAST developments).

  10. An integrated computer procedure for sizing composite airframe structures

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.

    1979-01-01

    A computerized algorithm to generate cross-sectional dimensions and fiber orientations for composite airframe structures is described, and its application in a wing structural synthesis is established. The algorithm unifies computations of aeroelastic loads, stresses, and deflections, as well as optimal structural sizing and fiber orientations in an open-ended system of integrated computer programs. A finite-element analysis and a mathematical-optimization technique are discussed.

  11. Ab Initio Nuclear Structure and Reaction Calculations for Rare Isotopes

    SciTech Connect

    Draayer, Jerry P.

    2014-09-28

    We have developed a novel ab initio symmetry-adapted no-core shell model (SA-NCSM), which has opened the intermediate-mass region for ab initio investigations, thereby providing an opportunity for first-principle symmetry-guided applications to nuclear structure and reactions for nuclear isotopes from the lightest p-shell systems to intermediate-mass nuclei. This includes short-lived proton-rich nuclei on the path of X-ray burst nucleosynthesis and rare neutron-rich isotopes to be produced by the Facility for Rare Isotope Beams (FRIB). We have provided ab initio descriptions of high accuracy for low-lying (including collectivity-driven) states of isotopes of Li, He, Be, C, O, Ne, Mg, Al, and Si, and studied related strong- and weak-interaction driven reactions that are important, in astrophysics, for further understanding stellar evolution, X-ray bursts and triggering of s, p, and rp processes, and in applied physics, for electron and neutrino-nucleus scattering experiments as well as for fusion ignition at the National Ignition Facility (NIF).

  12. Nonlocalized clustering: a new concept in nuclear cluster structure physics.

    PubMed

    Zhou, Bo; Funaki, Y; Horiuchi, H; Ren, Zhongzhou; Röpke, G; Schuck, P; Tohsaki, A; Xu, Chang; Yamada, T

    2013-06-28

    We investigate the α+^{16}O cluster structure in the inversion-doublet band (Kπ=0(1)±}) states of 20Ne with an angular-momentum-projected version of the Tohsaki-Horiuchi-Schuck-Röpke (THSR) wave function, which was successful "in its original form" for the description of, e.g., the famous Hoyle state. In contrast with the traditional view on clusters as localized objects, especially in inversion doublets, we find that these single THSR wave functions, which are based on the concept of nonlocalized clustering, can well describe the Kπ=0(1)- band and the Kπ=0(1)+ band. For instance, they have 99.98% and 99.87% squared overlaps for 1- and 3- states (99.29%, 98.79%, and 97.75% for 0+, 2+, and 4+ states), respectively, with the corresponding exact solution of the α+16O resonating group method. These astounding results shed a completely new light on the physics of low energy nuclear cluster states in nuclei: The clusters are nonlocalized and move around in the whole nuclear volume, only avoiding mutual overlap due to the Pauli blocking effect.

  13. Quantum Computing Using Pulse-Based Electron-Nuclear Double Resonance (endor):. Molecular Spin-Qubits

    NASA Astrophysics Data System (ADS)

    Sato, Kazuo; Nakazawa, Shigeki; Rahimi, Robabeh D.; Nishida, Shinsuke; Ise, Tomoaki; Shimoi, Daisuke; Toyota, Kazuo; Morita, Yasushi; Kitagawa, Masahiro; Carl, Parick; Höfner, Peter; Takui, Takeji

    2009-06-01

    Electrons with the spin quantum number 1/2, as physical qubits, have naturally been anticipated for implementing quantum computing and information processing (QC/QIP). Recently, electron spin-qubit systems in organic molecular frames have emerged as a hybrid spin-qubit system along with a nuclear spin-1/2 qubit. Among promising candidates for QC/QIP from the materials science side, the reasons for why electron spin-qubits such as molecular spin systems, i.e., unpaired electron spins in molecular frames, have potentialities for serving for QC/QIP will be given in the lecture (Chapter), emphasizing what their advantages or disadvantages are entertained and what technical and intrinsic issues should be dealt with for the implementation of molecular-spin quantum computers in terms of currently available spin manipulation technology such as pulse-based electron-nuclear double resonance (pulsed or pulse ENDOR) devoted to QC/QIP. Firstly, a general introduction and introductory remarks to pulsed ENDOR spectroscopy as electron-nuclear spin manipulation technology is given. Super dense coding (SDC) experiments by the use of pulsed ENDOR are also introduced to understand differentiating QC ENDOR from QC NMR based on modern nuclear spin technology. Direct observation of the spinor inherent in an electron spin, detected for the first time, will be shown in connection with the entanglement of an electron-nuclear hybrid system. Novel microwave spin manipulation technology enabling us to deal with genuine electron-electron spin-qubit systems in the molecular frame will be introduced, illustrating, from the synthetic strategy of matter spin-qubits, a key-role of the molecular design of g-tensor/hyperfine-(A-)tensor molecular engineering for QC/QIP. Finally, important technological achievements of recently-emerging CD ELDOR (Coherent-Dual ELectron-electron DOuble Resonance) spin technology enabling us to manipulate electron spin-qubits are described.

  14. PROCEEDINGS OF THE RIKEN BNL RESEARCH CENTER WORKSHOP ON LARGE SCALE COMPUTATIONS IN NUCLEAR PHYSICS USING THE QCDOC, SEPTEMBER 26 - 28, 2002.

    SciTech Connect

    AOKI,Y.; BALTZ,A.; CREUTZ,M.; GYULASSY,M.; OHTA,S.

    2002-09-26

    The massively parallel computer QCDOC (QCD On a Chip) of the RIKEN BNL Research Center (RI3RC) will provide ten-teraflop peak performance for lattice gauge calculations. Lattice groups from both Columbia University and RBRC, along with assistance from IBM, jointly handled the design of the QCDOC. RIKEN has provided $5 million in funding to complete the machine in 2003. Some fraction of this computer (perhaps as much as 10%) might be made available for large-scale computations in areas of theoretical nuclear physics other than lattice gauge theory. The purpose of this workshop was to investigate the feasibility and possibility of using a supercomputer such as the QCDOC for lattice, general nuclear theory, and other calculations. The lattice applications to nuclear physics that can be investigated with the QCDOC are varied: for example, the light hadron spectrum, finite temperature QCD, and kaon ({Delta}I = 1/2 and CP violation), and nucleon (the structure of the proton) matrix elements, to name a few. There are also other topics in theoretical nuclear physics that are currently limited by computer resources. Among these are ab initio calculations of nuclear structure for light nuclei (e.g. up to {approx}A = 8 nuclei), nuclear shell model calculations, nuclear hydrodynamics, heavy ion cascade and other transport calculations for RHIC, and nuclear astrophysics topics such as exploding supernovae. The physics topics were quite varied, ranging from simulations of stellar collapse by Douglas Swesty to detailed shell model calculations by David Dean, Takaharu Otsuka, and Noritaka Shimizu. Going outside traditional nuclear physics, James Davenport discussed molecular dynamics simulations and Shailesh Chandrasekharan presented a class of algorithms for simulating a wide variety of femionic problems. Four speakers addressed various aspects of theory and computational modeling for relativistic heavy ion reactions at RHIC. Scott Pratt and Steffen Bass gave general overviews of

  15. Structural Composites Corrosive Management by Computational Simulation

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Minnetyan, Levon

    2006-01-01

    A simulation of corrosive management on polymer composites durability is presented. The corrosive environment is assumed to manage the polymer composite degradation on a ply-by-ply basis. The degradation is correlated with a measured Ph factor and is represented by voids, temperature, and moisture which vary parabolically for voids and linearly for temperature and moisture through the laminate thickness. The simulation is performed by a computational composite mechanics computer code which includes micro, macro, combined stress failure, and laminate theories. This accounts for starting the simulation from constitutive material properties and up to the laminate scale which exposes the laminate to the corrosive environment. Results obtained for one laminate indicate that the ply-by-ply managed degradation degrades the laminate to the last one or the last several plies. Results also demonstrate that the simulation is applicable to other polymer composite systems as well.

  16. Extending the lifespan of nuclear power plant structures

    SciTech Connect

    Naus, D.J.; Oland, C.B.; Ellingwood, B.

    1995-04-01

    By the end of this decade, 63 of the 111 commercial nuclear power plants in the United States will be more than 20 years old, with some nearing the end of their 40-year operating license term. Faced with the prospect of having to replace lost generating capacity from other sources and substantial shutdown and decommissioning costs, many utilities are expected to apply to continue the service of their plants past the initial licensing period. In support of such applications, evidence should be provided that the capacity of the safety-related systems and structures to mitigate potential extreme events has not deteriorated unacceptably due to either aging or environmental stressor effects during the previous service history.

  17. [Electromagnetic studies of nuclear structure and reactions]. Progress summary

    SciTech Connect

    Not Available

    1992-12-31

    The experimental goals are focused on developing an understanding of strong interactions and the structure of hadronic systems by determination of the electromagnetic response; these goals will be accomplished through coincidence detection of final states. Nuclear modeling objectives are to organize and interpret the data through a consistent description of a broad spectrum of reaction observables; calculations are performed in a nonrelativistic diagrammatic framework as well as a relativistic QHD approach. Work is described according to the following arrangement: direct knockout reactions (completion of {sup 16}O(e,e{prime}p), {sup 12}C(e,e{prime}pp) progress, large acceptance detector physics simulations), giant resonance studies (intermediate-energy experiments with solid-state detectors, the third response function in {sup 12}C(e,e{prime}p{sub 0}) and {sup 16}O(e,e{prime}p{sub 0}), comparison of the {sup 12}C(e, e{prime}p{sub 0}) and {sup 16}O(e,e{prime}p{sub 3}) reactions, quadrupole strength in the {sup 16}O(e,e{prime}{alpha}{sub 0}) reaction, quadrupole strength in the {sup 12}C(e,e{prime}{alpha}) reaction, analysis of the {sup 12}C(e,e{prime}p{sub 1}) and {sup 16}O(e,e{prime}p{sub 3}) angular distributions, analysis of the {sup 40}Ca(e,e{prime}x) reaction at low q, analysis of the higher-q {sup 12}C(e,e{prime}x) data from Bates), models of nuclear structure (experimental work, Hartree-Fock calculations, phonon excitations in spherical nuclei, shell model calculations, variational methods for relativistic fields), and instrumentation development efforts (developments at CEBAF, CLAS contracts, BLAST developments).

  18. Nuclear and bound nucleon structure studies using GlueX

    NASA Astrophysics Data System (ADS)

    Patsyuk, Maria; Hen, Or; Williams, Mike

    2016-09-01

    We propose extending the physics program of the GlueX detector at Jefferson Lab to study structure of bound nucleon and short range correlations (SRC) in nuclei. Many important properties of nuclear systems are significantly influenced by the existence of SRC-pairs, which are high- momentum nucleons in a nucleus with considerably overlapping wave functions. Using the new JLab high-energy high-intensity photon beam, we will study exclusive meson photo-production on the nucleon in nuclei from Deuterium to Lead. We will compare the branching ratio of these reactions on semi-free nucleons in deuterium, deeply bound nucleons in heavier nuclei, and nucleons belonging to SRC pairs (by tagging the spectator recoil nucleon in the GlueX Barrel Calorimeter) in order to learn about short range structure of nuclei and the possible modification of the internal structure of bound nucleons. In this talk, we will present a brief summary of the physics goals and a data-driven determination of the neutron-detection efficiency using the so-called tag and probe technique.

  19. Applying microscopy to the analysis of nuclear structure and function.

    PubMed

    Iborra, Francisco; Cook, Peter R; Jackson, Dean A

    2003-02-01

    One of the ultimate goals of biological research is to understand mechanisms of cell function within living organisms. With this in mind, many sophisticated technologies that allow us to inspect macromolecular structure in exquisite detail have been developed. Although knowledge of structure derived from techniques such as X-ray crystallography and nuclear magnetic resonance is of vital importance, these approaches cannot reveal the remarkable complexity of molecular interactions that exists in vivo. With this in mind, this review focuses on the use of microscopy techniques to analyze cell structure and function. We describe the different basic microscopic methodologies and how the routine techniques are best applied to particular biological problems. We also emphasize the specific capabilities and uses of light and electron microscopy and highlight their individual advantages and disadvantages. For completion, we also comment on the alternative possibilities provided by a variety of advanced imaging technologies. We hope that this brief analysis of the undoubted power of microscopy techniques will be enough to stimulate a wider participation in this rapidly developing area of biological discovery.

  20. TRUMP-BD: A computer code for the analysis of nuclear fuel assemblies under severe accident conditions

    SciTech Connect

    Lombardo, N.J.; Marseille, T.J.; White, M.D.; Lowery, P.S.

    1990-06-01

    TRUMP-BD (Boil Down) is an extension of the TRUMP (Edwards 1972) computer program for the analysis of nuclear fuel assemblies under severe accident conditions. This extension allows prediction of the heat transfer rates, metal-water oxidation rates, fission product release rates, steam generation and consumption rates, and temperature distributions for nuclear fuel assemblies under core uncovery conditions. The heat transfer processes include conduction in solid structures, convection across fluid-solid boundaries, and radiation between interacting surfaces. Metal-water reaction kinetics are modeled with empirical relationships to predict the oxidation rates of steam-exposed Zircaloy and uranium metal. The metal-water oxidation models are parabolic in form with an Arrhenius temperature dependence. Uranium oxidation begins when fuel cladding failure occurs; Zircaloy oxidation occurs continuously at temperatures above 13000{degree}F when metal and steam are available. From the metal-water reactions, the hydrogen generation rate, total hydrogen release, and temporal and spatial distribution of oxide formations are computed. Consumption of steam from the oxidation reactions and the effect of hydrogen on the coolant properties is modeled for independent coolant flow channels. Fission product release from exposed uranium metal Zircaloy-clad fuel is modeled using empirical time and temperature relationships that consider the release to be subject to oxidation and volitization/diffusion ( bake-out'') release mechanisms. Release of the volatile species of iodine (I), tellurium (Te), cesium (Ce), ruthenium (Ru), strontium (Sr), zirconium (Zr), cerium (Cr), and barium (Ba) from uranium metal fuel may be modeled.

  1. Understanding the proton radius puzzle: Nuclear structure effects in light muonic atoms

    NASA Astrophysics Data System (ADS)

    Ji, Chen; Hernandez, Oscar Javier; Nevo Dinur, Nir; Bacca, Sonia; Barnea, Nir

    2016-03-01

    We present calculations of nuclear structure effects to the Lamb shift in light muonic atoms. We adopt a modern ab-initio approach by combining state-of-the-art nuclear potentials with the hyperspherical harmonics method. Our calculations are instrumental to the determination of nuclear charge radii in the Lamb shift measurements, which will shed light on the proton radius puzzle.

  2. Virtual ultrasound sources for inspecting nuclear components of coarse-grained structure

    SciTech Connect

    Brizuela, J.; Katchadjian, P.; Desimone, C.; Garcia, A.

    2014-02-18

    This work describes an ultrasonic inspection procedure designed for verifying coarse-grained structure materials, which are commonly used on nuclear reactors. In this case, conventional phased array techniques cannot be used due to attenuating characteristics and backscattered noise from microstructures inside the material. Thus, synthetic aperture ultrasonic imaging (SAFT) is used for this approach in contact conditions. In order to increase energy transferred to the medium, synthetic transmit aperture is formed by several elements which generate a diverging wavefront equivalent to a virtual ultrasound source behind the transducer. On the other hand, the phase coherence technique has been applied to reduce more structural noise and improve the image quality. The beamforming process has been implemented over a GPU platform to reduce computing time.

  3. Nuclear Structure at the Legnaro National Laboratories:. from High Intensity Stable to Radioactive Nuclear Beams

    NASA Astrophysics Data System (ADS)

    de Angelis, G.

    2007-04-01

    To understand the properties of a nucleus, apart from establishing the interaction between its components, it is necessary to determine the arrangement of the nucleons, i.e. the structure of a nucleus. So far our knowledge about the structure of nuclei is mostly limited to nuclei close to the valley of stability, or nuclei with a deficiency of neutrons, which can be produced in fusion-evaporation reactions with stable beams and stable targets. Future perspectives in nuclear structure rely on radioactive ion beams (RIB) as well as on high intensity beams of stable ions (HISB). A world wide effort is presently going on in order to built the next generation radioactive ion beam facilities like the FAIR and the EURISOL projects. The LNL are contributing to such development through the design study of the EURISOL project as well as through the design and construction of the intermediate facility SPES. Concerning the instrumentation, particularly powerful is the combination of large acceptance spectrometers with highly segmented γ-detector arrays. An example is the CLARA γ-ray detector array coupled with the PRISMA spectrometer at the Legnaro National Laboratories (LNL). The physics aims achievable with such device complement studies performed with current radioactive beam (RIB) facilities. With this set-up we have recently investigated the stability of the N=50 shell closure. Here the comparison of the experimental data with shell model calculations seems to indicate a persistence of the N=50 shell gap down to Z=31. Also the study of proton rich nuclei can strongly benefit from the use of high intensity stable beams using fusion evaporation reactions at energies close to the Coulomb barrier. Future perspectives at LNL are based on an increase in intensity as well as on the availability of heavy ion species. Moreover a new ISOL facility (SPES) dedicated to the production and acceleration of radioactive neutron rich species is now under development at LNL. Among the new

  4. Structural Analysis Using Computer Based Methods

    NASA Technical Reports Server (NTRS)

    Dietz, Matthew R.

    2013-01-01

    The stiffness of a flex hose that will be used in the umbilical arms of the Space Launch Systems mobile launcher needed to be determined in order to properly qualify ground umbilical plate behavior during vehicle separation post T-0. This data is also necessary to properly size and design the motors used to retract the umbilical arms. Therefore an experiment was created to determine the stiffness of the hose. Before the test apparatus for the experiment could be built, the structure had to be analyzed to ensure it would not fail under given loading conditions. The design model was imported into the analysis software and optimized to decrease runtime while still providing accurate restlts and allow for seamless meshing. Areas exceeding the allowable stresses in the structure were located and modified before submitting the design for fabrication. In addition, a mock up of a deep space habitat and the support frame was designed and needed to be analyzed for structural integrity under different loading conditions. The load cases were provided by the customer and were applied to the structure after optimizing the geometry. Once again, weak points in the structure were located and recommended design changes were made to the customer and the process was repeated until the load conditions were met without exceeding the allowable stresses. After the stresses met the required factors of safety the designs were released for fabrication.

  5. Experimental and computational study of thaumasite structure

    SciTech Connect

    Scholtzová, Eva; Kucková, Lenka; Kožíšek, Jozef; Pálková, Helena; Tunega, Daniel

    2014-05-01

    The structure of thaumasite has been studied experimentally by means of a single crystal X-ray diffraction and FTIR methods, and theoretically using density functional theory (DFT) method. Very good agreement was achieved between calculated and experimental structural parameters. In addition, calculations offered the refinement of the positions of the hydrogen atoms. The detailed analysis of the hydrogen bonds existing in the thaumasite structure has been performed. Several types of hydrogen bonds have been classified. The water molecules coordinating Ca{sup 2+} cation act as proton donors in moderate O-H···O hydrogen bonds formed with CO₃⁻²and SO₄⁻² anions. The multiple O-H···O hydrogen bonds exist among water molecules themselves. Finally, relatively weak hydrogen bonds form water molecules with the OH groups from the coordination sphere of the Si(OH)₆⁻² anion. Further, calculated vibrational spectrum allowed complete assignment of all vibrational modes which are not available from the experimental spectrum that has a complex structure with overlapped bands, especially below 1500 cm⁻¹. Highlights: • The thaumasite structure was studied experimentally and using DFT method. • We used DFT method for the refinement of the positions of hydrogen atoms. • A detailed analysis of the hydrogen bonds was done. • A complete assignment of all bands to particular types of vibrations was done.

  6. The relation IBM/PC nuclear structure and decay data base

    SciTech Connect

    Boboshin, I.N.; Varlamov, V.V.; Trukhanov, S.K.

    1994-12-31

    The Evaluated Nuclear Structure Data File (ENSDF) is now apparently one of the most complete nuclear structure and decay data bank. The most important characteristics from ENSDF are the following: for levels - excitation energy, spin, parity, half-life time, decay branching ratio, electric and magnetic moment; for gamma-transitions -energy, intensity, multipolarity, mixing ratio, for alpha- and beta-decays - energy and itensity. The high frequency personal computers (PC) dissemination, the development of data base management systems (DBMS) with advanced interface and convenient and power required languages allow to put the problem of creation of the universal data base (DB) using the ENSDF information. At bottom the point is in the ENSDF data adaptation to such DBMS in such manner that all possible requests to the ENSDF set to be completely exceeded by the standard resources of DBMS> The data base management system PARADOX (trade mark registered by Borland International) was chosen as a program tool for new universal data base on decay and structure of nuclei.

  7. Structural integrity analysis of the degraded drywell containment at the Oyster Creek Nuclear generating station.

    SciTech Connect

    Petti, Jason P.

    2007-01-01

    This study examines the effects of the degradation experienced in the steel drywell containment at the Oyster Creek Nuclear Generating Station. Specifically, the structural integrity of the containment shell is examined in terms of the stress limits using the ASME Boiler and Pressure Vessel (B&PV) Code, Section III, Division I, Subsection NE, and examined in terms of buckling (stability) using the ASME B&PV Code Case N-284. Degradation of the steel containment shell (drywell) at Oyster Creek was first observed during an outage in the mid-1980s. Subsequent inspections discovered reductions in the shell thickness due to corrosion throughout the containment. Specifically, significant corrosion occurred in the sandbed region of the lower sphere. Since the presence of the wet sand provided an environment which supported corrosion, a series of analyses were conducted by GE Nuclear Energy in the early 1990s. These analyses examined the effects of the degradation on the structural integrity. The current study adopts many of the same assumptions and data used in the previous GE study. However, the additional computational recourses available today enable the construction of a larger and more sophisticated structural model.

  8. Impact of structural aging on seismic risk assessment of reinforced concrete structures in nuclear power plants

    SciTech Connect

    Ellingwood, B.; Song, J.

    1996-03-01

    The Structural Aging Program is addressing the potential for degradation of concrete structural components and systems in nuclear power plants over time due to aging and aggressive environmental stressors. Structures are passive under normal operating conditions but play a key role in mitigating design-basis events, particularly those arising from external challenges such as earthquakes, extreme winds, fires and floods. Structures are plant-specific and unique, often are difficult to inspect, and are virtually impossible to replace. The importance of structural failures in accident mitigation is amplified because such failures may lead to common-cause failures of other components. Structural condition assessment and service life prediction must focus on a few critical components and systems within the plant. Components and systems that are dominant contributors to risk and that require particular attention can be identified through the mathematical formalism of a probabilistic risk assessment, or PRA. To illustrate, the role of structural degradation due to aging on plant risk is examined through the framework of a Level 1 seismic PRA of a nuclear power plant. Plausible mechanisms of structural degradation are found to increase the core damage probability by approximately a factor of two.

  9. Detection and Classification of Thyroid Follicular Lesions Based on Nuclear Structure from Histopathology Images

    PubMed Central

    Wang, Wei; Ozolek, John A.; Rohde, Gustavo K.

    2010-01-01

    Follicular lesions of the thyroid are traditionally difficult and tedious challenges in diagnostic surgical pathology in part due to lack of obvious discriminatory cytological and microarchitectural features. We describe a computerized method to detect and classify follicular adenoma of the thyroid, follicular carcinoma of the thyroid, and normal thyroid based on the nuclear chromatin distribution from digital images of tissue obtained by routine histological methods. Our method is based on determining whether a set of nuclei, obtained from histological images using automated image segmentation, is most similar to sets of nuclei obtained from normal or diseased tissues. This comparison is performed utilizing numerical features, a support vector machine, and a simple voting strategy. We also describe novel methods to identify unique and defining chromatin patterns pertaining to each class. Unlike previous attempts in detecting and classifying these thyroid lesions using computational imaging, our results show that our method can automatically classify the data pertaining to 10 different human cases with 100% accuracy after blind cross validation using at most 43 nuclei randomly selected from each patient. We conclude that nuclear structure alone contains enough information to automatically classify the normal thyroid, follicular carcinoma, and follicular adenoma, as long as groups of nuclei (instead of individual ones) are used. We also conclude that the distribution of nuclear size and chromatin concentration (how tightly packed it is) seem to be discriminating features between nuclei of follicular adenoma, follicular carcinoma, and normal thyroid. PMID:20099247

  10. Nuclear matrix and structural and functional compartmentalization of the eucaryotic cell nucleus.

    PubMed

    Razin, S V; Borunova, V V; Iarovaia, O V; Vassetzky, Y S

    2014-07-01

    Becoming popular at the end of the 20th century, the concept of the nuclear matrix implies the existence of a nuclear skeleton that organizes functional elements in the cell nucleus. This review presents a critical analysis of the results obtained in the study of nuclear matrix in the light of current views on the organization of the cell nucleus. Numerous studies of nuclear matrix have failed to provide evidence of the existence of such a structure. Moreover, the existence of a filamentous structure that supports the nuclear compartmentalization appears to be unnecessary, since this function is performed by the folded genome itself.

  11. An overview of the activities of the OECD/NEA Task Force on adapting computer codes in nuclear applications to parallel architectures

    SciTech Connect

    Kirk, B.L.; Sartori, E.

    1997-06-01

    Subsequent to the introduction of High Performance Computing in the developed countries, the Organization for Economic Cooperation and Development/Nuclear Energy Agency (OECD/NEA) created the Task Force on Adapting Computer Codes in Nuclear Applications to Parallel Architectures (under the guidance of the Nuclear Science Committee`s Working Party on Advanced Computing) to study the growth area in supercomputing and its applicability to the nuclear community`s computer codes. The result has been four years of investigation for the Task Force in different subject fields - deterministic and Monte Carlo radiation transport, computational mechanics and fluid dynamics, nuclear safety, atmospheric models and waste management.

  12. An Adaptive Evaluation Structure for Computer-Based Instruction.

    ERIC Educational Resources Information Center

    Welsh, William A.

    Adaptive Evaluation Structure (AES) is a set of linked computer programs designed to increase the effectiveness of interactive computer-assisted instruction at the college level. The package has four major features, the first of which is based on a prior cognitive inventory and on the accuracy and pace of student responses. AES adjusts materials…

  13. Assessment of computer codes for VVER-440/213-type nuclear power plants

    SciTech Connect

    Szabados, L.; Ezsol, Gy.; Perneczky

    1995-09-01

    Nuclear power plant of VVER-440/213 designed by the former USSR have a number of special features. As a consequence of these features the transient behaviour of such a reactor system should be different from the PWR system behaviour. To study the transient behaviour of the Hungarian Paks Nuclear Power Plant of VVER-440/213-type both analytical and experimental activities have been performed. The experimental basis of the research in the PMK-2 integral-type test facility , which is a scaled down model of the plant. Experiments performed on this facility have been used to assess thermal-hydraulic system codes. Four tests were selected for {open_quotes}Standard Problem Exercises{close_quotes} of the International Atomic Energy Agency. Results of the 4th Exercise, of high international interest, are presented in the paper, focusing on the essential findings of the assessment of computer codes.

  14. [Computational chemistry in structure-based drug design].

    PubMed

    Cao, Ran; Li, Wei; Sun, Han-Zi; Zhou, Yu; Huang, Niu

    2013-07-01

    Today, the understanding of the sequence and structure of biologically relevant targets is growing rapidly and researchers from many disciplines, physics and computational science in particular, are making significant contributions to modern biology and drug discovery. However, it remains challenging to rationally design small molecular ligands with desired biological characteristics based on the structural information of the drug targets, which demands more accurate calculation of ligand binding free-energy. With the rapid advances in computer power and extensive efforts in algorithm development, physics-based computational chemistry approaches have played more important roles in structure-based drug design. Here we reviewed the newly developed computational chemistry methods in structure-based drug design as well as the elegant applications, including binding-site druggability assessment, large scale virtual screening of chemical database, and lead compound optimization. Importantly, here we address the current bottlenecks and propose practical solutions.

  15. The computational structural mechanics testbed data library description

    NASA Technical Reports Server (NTRS)

    Stewart, Caroline B. (Compiler)

    1988-01-01

    The datasets created and used by the Computational Structural Mechanics Testbed software system are documented by this manual. A description of each dataset including its form, contents, and organization is presented.

  16. The computational structural mechanics testbed data library description

    NASA Technical Reports Server (NTRS)

    Stewart, Caroline B. (Compiler)

    1988-01-01

    The datasets created and used by the Computational Structural Mechanics Testbed software system is documented by this manual. A description of each dataset including its form, contents, and organization is presented.

  17. PREFACE: International Conference on Computing in High Energy and Nuclear Physics (CHEP'09)

    NASA Astrophysics Data System (ADS)

    Gruntorad, Jan; Lokajicek, Milos

    2010-11-01

    The 17th International Conference on Computing in High Energy and Nuclear Physics (CHEP) was held on 21-27 March 2009 in Prague, Czech Republic. CHEP is a major series of international conferences for physicists and computing professionals from the worldwide High Energy and Nuclear Physics community, Computer Science, and Information Technology. The CHEP conference provides an international forum to exchange information on computing experience and needs for the community, and to review recent, ongoing and future activities. Recent conferences were held in Victoria, Canada 2007, Mumbai, India in 2006, Interlaken, Switzerland in 2004, San Diego, USA in 2003, Beijing, China in 2001, Padua, Italy in 2000. The CHEP'09 conference had 600 attendees with a program that included plenary sessions of invited oral presentations, a number of parallel sessions comprising 200 oral and 300 poster presentations, and an industrial exhibition. We thanks all the presenters, for the excellent scientific content of their contributions to the conference. Conference tracks covered topics on Online Computing, Event Processing, Software Components, Tools and Databases, Hardware and Computing Fabrics, Grid Middleware and Networking Technologies, Distributed Processing and Analysis and Collaborative Tools. The conference included excursions to Prague and other Czech cities and castles and a banquet held at the Zofin palace in Prague. The next CHEP conference will be held in Taipei, Taiwan on 18-22 October 2010. We would like thank the Ministry of Education Youth and Sports of the Czech Republic and the EU ACEOLE project for the conference support, further to commercial sponsors, the International Advisory Committee, the Local Organizing Committee members representing the five collaborating Czech institutions Jan Gruntorad (co-chair), CESNET, z.s.p.o., Prague Andrej Kugler, Nuclear Physics Institute AS CR v.v.i., Rez Rupert Leitner, Charles University in Prague, Faculty of Mathematics and

  18. Activities in support of continuing the service of nuclear power plant concrete structures

    SciTech Connect

    Naus, Dan J

    2012-01-01

    In general, nuclear power plant concrete structure s performance has been very good; however, aging of concrete structures occurs with the passage of time that can potentially result in degradation if is effects are not controlled. Safety-related nuclear power plant concrete structures are described. In-service inspection and testing requirements in the U.S. are summarized. The interaction of the license renewal process and concrete structures is noted. A summary of operating experience related to aging of nuclear power plant concrete structures is provided. Several candidate areas are identified where additional research would be beneficial for aging management of nuclear power plant concrete structures. Finally, an update on recent activities at Oak Ridge National Laboratory related to aging management of nuclear power plant concrete structures is provided.

  19. Nuclear power plant status diagnostics using simulated condensation: An auto-adaptive computer learning technique

    SciTech Connect

    Bartlett, E.B.

    1990-01-01

    The application of artificial neural network concepts to engineering analysis involves training networks, and therefore computers, to perform pattern classification or function mapping tasks. This training process requires the near optimization of network inter-neural connections. A new method for the stochastic optimization of these interconnections is presented in this dissertation. The new approach, called simulated condensation, is applied to networks of generalized, fully interconnected, continuous preceptrons. Simulated condensation optimizes the nodal bias, gain, and output activation constants as well as the usual interconnection weights. In this work, the simulated condensation network paradigm is applied to nuclear power plant operating status recognition. A set of standard problems such as the exclusive-or problem and others are also analyzed as benchmarks for the new methodology. The objective of the nuclear power plant accidient condition diagnosis effort is to train a network to identify both safe and potentially unsafe power plant conditions based on real time plant data. The data is obtained from computer generated accident scenarios. A simulated condensation network is trained to recognize seven nuclear power plant accident conditions as well as the normal full power operating condition. These accidents include, hot and cold leg loss of coolant, control rod ejection and steam generator tube leak accidents. Twenty-seven plant process variables are used as input to the neural network. Results show the feasibility of using simulated condensation as a method for diagnosing nuclear power plant conditions. The method is general and can easily be applied to other types of plants and plant processes.

  20. The shell model as a unified view of nuclear structure

    NASA Astrophysics Data System (ADS)

    Caurier, E.; Martínez-Pinedo, G.; Nowacki, F.; Poves, A.; Zuker, A. P.

    2005-04-01

    The last decade has witnessed both quantitative and qualitative progress in shell-model studies, which have resulted in remarkable gains in our understanding of the structure of the nucleus. Indeed, it is now possible to diagonalize matrices in determinantal spaces of dimensionality up to 109 using the Lanczos tridiagonal construction, whose formal and numerical aspects are analyzed in this review. In addition, many new approximation methods have been developed in order to overcome the dimensionality limitations. New effective nucleon-nucleon interactions have been constructed that contain both two- and three-body contributions. The former are derived from realistic potentials (i.e., potentials consistent with two-nucleon data). The latter incorporate the pure monopole terms necessary to correct the bad saturation and shell-formation properties of the realistic two-body forces. This combination appears to solve a number of hitherto puzzling problems. The present review concentrates on those results which illustrate the global features of the approach: the universality of the effective interaction and the capacity of the shell model to describe simultaneously all the manifestations of the nuclear dynamics, either single-particle or collective in nature. The review also treats in some detail the problems associated with rotational motion, the origin of quenching of the Gamow-Teller transitions, double- β decays, the effect of isospin nonconserving nuclear forces, and the specificities of neutron-rich nuclei. Many other calculations—which appear to have “merely” spectroscopic interest—are touched upon briefly, although the authors are fully aware that much of the credibility of the shell model rests on them.

  1. The shell model as a unified view of nuclear structure

    SciTech Connect

    Caurier, E.; Martinez-Pinedo, G.; Nowacki, F.; Poves, A.; Zuker, A.P.

    2005-04-01

    The last decade has witnessed both quantitative and qualitative progress in shell-model studies, which have resulted in remarkable gains in our understanding of the structure of the nucleus. Indeed, it is now possible to diagonalize matrices in determinantal spaces of dimensionality up to 10{sup 9} using the Lanczos tridiagonal construction, whose formal and numerical aspects are analyzed in this review. In addition, many new approximation methods have been developed in order to overcome the dimensionality limitations. New effective nucleon-nucleon interactions have been constructed that contain both two- and three-body contributions. The former are derived from realistic potentials (i.e., potentials consistent with two-nucleon data). The latter incorporate the pure monopole terms necessary to correct the bad saturation and shell-formation properties of the realistic two-body forces. This combination appears to solve a number of hitherto puzzling problems. The present review concentrates on those results which illustrate the global features of the approach: the universality of the effective interaction and the capacity of the shell model to describe simultaneously all the manifestations of the nuclear dynamics, either single-particle or collective in nature. The review also treats in some detail the problems associated with rotational motion, the origin of quenching of the Gamow-Teller transitions, double-{beta} decays, the effect of isospin nonconserving nuclear forces, and the specificities of neutron-rich nuclei. Many other calculations--which appear to have 'merely' spectroscopic interest--are touched upon briefly, although the authors are fully aware that much of the credibility of the shell model rests on them.

  2. Assessment of radiation dose in nuclear cardiovascular imaging using realistic computational models

    PubMed Central

    Xie, Tianwu; Lee, Choonsik; Bolch, Wesley E.; Zaidi, Habib

    2015-01-01

    Purpose: Nuclear cardiology plays an important role in clinical assessment and has enormous impact on the management of a variety of cardiovascular diseases. Pediatric patients at different age groups are exposed to a spectrum of radiation dose levels and associated cancer risks different from those of adults in diagnostic nuclear medicine procedures. Therefore, comprehensive radiation dosimetry evaluations for commonly used myocardial perfusion imaging (MPI) and viability radiotracers in target population (children and adults) at different age groups are highly desired. Methods: Using Monte Carlo calculations and biological effects of ionizing radiation VII model, we calculate the S-values for a number of radionuclides (Tl-201, Tc-99m, I-123, C-11, N-13, O-15, F-18, and Rb-82) and estimate the absorbed dose and effective dose for 12 MPI radiotracers in computational models including the newborn, 1-, 5-, 10-, 15-yr-old, and adult male and female computational phantoms. Results: For most organs, 201Tl produces the highest absorbed dose whereas 82Rb and 15O-water produce the lowest absorbed dose. For the newborn baby and adult patient, the effective dose of 82Rb is 48% and 77% lower than that of 99mTc-tetrofosmin (rest), respectively. Conclusions: 82Rb results in lower effective dose in adults compared to 99mTc-labeled tracers. However, this advantage is less apparent in children. The produced dosimetric databases for various radiotracers used in cardiovascular imaging, using new generation of computational models, can be used for risk-benefit assessment of a spectrum of patient population in clinical nuclear cardiology practice. PMID:26127049

  3. Assessment of radiation dose in nuclear cardiovascular imaging using realistic computational models

    SciTech Connect

    Xie, Tianwu; Lee, Choonsik; Bolch, Wesley E.; Zaidi, Habib

    2015-06-15

    Purpose: Nuclear cardiology plays an important role in clinical assessment and has enormous impact on the management of a variety of cardiovascular diseases. Pediatric patients at different age groups are exposed to a spectrum of radiation dose levels and associated cancer risks different from those of adults in diagnostic nuclear medicine procedures. Therefore, comprehensive radiation dosimetry evaluations for commonly used myocardial perfusion imaging (MPI) and viability radiotracers in target population (children and adults) at different age groups are highly desired. Methods: Using Monte Carlo calculations and biological effects of ionizing radiation VII model, we calculate the S-values for a number of radionuclides (Tl-201, Tc-99m, I-123, C-11, N-13, O-15, F-18, and Rb-82) and estimate the absorbed dose and effective dose for 12 MPI radiotracers in computational models including the newborn, 1-, 5-, 10-, 15-yr-old, and adult male and female computational phantoms. Results: For most organs, {sup 201}Tl produces the highest absorbed dose whereas {sup 82}Rb and {sup 15}O-water produce the lowest absorbed dose. For the newborn baby and adult patient, the effective dose of {sup 82}Rb is 48% and 77% lower than that of {sup 99m}Tc-tetrofosmin (rest), respectively. Conclusions: {sup 82}Rb results in lower effective dose in adults compared to {sup 99m}Tc-labeled tracers. However, this advantage is less apparent in children. The produced dosimetric databases for various radiotracers used in cardiovascular imaging, using new generation of computational models, can be used for risk-benefit assessment of a spectrum of patient population in clinical nuclear cardiology practice.

  4. Computer-aided optimization of smart structures

    NASA Astrophysics Data System (ADS)

    Lerch, Reinhard; Kaltenbacher, Manfred; Landes, Hermann; Simkovics, Reinhard

    1999-06-01

    In this paper, the finite-element/boundary-element program CAPA is presented, which has been developed by the authors during the last decade. With this software environment we are able to model quite different types of transducers which mostly ask for the numerical solution of a multifield problem, such as coupled electric-mechanical fields or magnetic- mechanical fields. Practical applications in the area of smart structures will demonstrate the applicability of the developed software.

  5. PREFACE: International Conference on Computing in High Energy and Nuclear Physics (CHEP 2012)

    NASA Astrophysics Data System (ADS)

    Ernst, Michael; Düllmann, Dirk; Rind, Ofer; Wong, Tony

    2012-12-01

    The International Conference on Computing in High Energy and Nuclear Physics (CHEP) was held at New York University on 21- 25 May 2012. CHEP is a major series of international conferences for physicists and computing professionals from the High Energy and Nuclear Physics community and related scientific and technical fields. The CHEP conference provides a forum to exchange information on computing progress and needs for the community, and to review recent, ongoing and future activities. CHEP conferences are held at roughly 18-month intervals, alternating between Europe, Asia, the Americas and other parts of the world. Recent CHEP conferences have been held in Taipei, Taiwan (2010); Prague, Czech Republic (2009); Victoria, Canada (2007); Mumbai, India (2006); Interlaken, Switzerland (2004); San Diego, United States (2003); Beijing, China (2001); Padova, Italy (2000). CHEP 2012 was organized by Brookhaven National Laboratory (BNL) and co-sponsored by New York University. The organizational structure for CHEP consists of an International Advisory Committee (IAC) which sets the overall themes of the conference, a Program Organizing Committee (POC) that oversees the program content, and a Local Organizing Committee (LOC) that is responsible for local arrangements (lodging, transportation and social events) and conference logistics (registration, program scheduling, conference site selection and conference proceedings). There were over 500 attendees with a program that included plenary sessions of invited speakers, a number of parallel sessions comprising around 125 oral and 425 poster presentations and industrial exhibitions. We thank all the presenters for the excellent scientific content of their contributions to the conference. Conference tracks covered topics on Online Computing, Event Processing, Distributed Processing and Analysis on Grids and Clouds, Computer Facilities, Production Grids and Networking, Software Engineering, Data Stores and Databases and

  6. Multiphysics Computational Analysis of a Solid-Core Nuclear Thermal Engine Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Canabal, Francisco; Cheng, Gary; Chen, Yen-Sen

    2007-01-01

    The objective of this effort is to develop an efficient and accurate computational heat transfer methodology to predict thermal, fluid, and hydrogen environments for a hypothetical solid-core, nuclear thermal engine - the Small Engine. In addition, the effects of power profile and hydrogen conversion on heat transfer efficiency and thrust performance were also investigated. The computational methodology is based on an unstructured-grid, pressure-based, all speeds, chemically reacting, computational fluid dynamics platform, while formulations of conjugate heat transfer were implemented to describe the heat transfer from solid to hydrogen inside the solid-core reactor. The computational domain covers the entire thrust chamber so that the afore-mentioned heat transfer effects impact the thrust performance directly. The result shows that the computed core-exit gas temperature, specific impulse, and core pressure drop agree well with those of design data for the Small Engine. Finite-rate chemistry is very important in predicting the proper energy balance as naturally occurring hydrogen decomposition is endothermic. Locally strong hydrogen conversion associated with centralized power profile gives poor heat transfer efficiency and lower thrust performance. On the other hand, uniform hydrogen conversion associated with a more uniform radial power profile achieves higher heat transfer efficiency, and higher thrust performance.

  7. High Performance Computing and Storage Requirements for Nuclear Physics: Target 2017

    SciTech Connect

    Gerber, Richard; Wasserman, Harvey

    2014-04-30

    In April 2014, NERSC, ASCR, and the DOE Office of Nuclear Physics (NP) held a review to characterize high performance computing (HPC) and storage requirements for NP research through 2017. This review is the 12th in a series of reviews held by NERSC and Office of Science program offices that began in 2009. It is the second for NP, and the final in the second round of reviews that covered the six Office of Science program offices. This report is the result of that review

  8. SSME structural computer program development. Volume 2: BOPACE users manual

    NASA Technical Reports Server (NTRS)

    Vos, R. G.

    1973-01-01

    A computer program for use with a thermal-elastic-plastic-creep structural analyzer is presented. The following functions of the computer program are discussed: (1) analysis of very high temperature and large plastic-creep effects, (2) treatment of cyclic thermal and mechanical loads, (3) development of constitutive theory which closely follows actual behavior under variable temperature conditions, (4) stable numerical solution approach which avoids cumulative errors, and (5) capability of handling up to 1000 degrees of freedom. The computer program is written in FORTRAN IV and has been run on the IBM 360 and UNIVAC 1108 computer systems.

  9. A computer aided teaching course on corrosion of concrete structures

    SciTech Connect

    Ramesht, M.H.; Cottis, R.A.

    1996-10-01

    Computers provide a powerful opportunity for the development of teaching materials. They provide a rich interactive environment to stimulate and engage the student. The advent of computers with multimedia capabilities allows the constructor of teaching materials to show the student material from many sources; text, chart, audio, video, animation, simulation, sound or photographs. When these are combined with interactivity, a powerful learning environment is created. There is currently no CAL (Computer Aided Learning) or CBT (Computer Based Training) material available on the subject of corrosion and corrosion protection in concrete structures for civil engineering students. This paper will describe a Computer Aided Learning package intended to introduce students to the environmental degradation of concrete structures.

  10. Demonstrating Structural Adequacy of Nuclear Power Plant Containment Structures for Beyond Design-Basis Pressure Loadings

    SciTech Connect

    Braverman, J.I.; Morante, R.

    2010-07-18

    ABSTRACT Demonstrating the structural integrity of U.S. nuclear power plant (NPP) containment structures, for beyond design-basis internal pressure loadings, is necessary to satisfy Nuclear Regulatory Commission (NRC) requirements and performance goals. This paper discusses methods for demonstrating the structural adequacy of the containment for beyond design-basis pressure loadings. Three distinct evaluations are addressed: (1) estimating the ultimate pressure capacity of the containment structure (10 CFR 50 and US NRC Standard Review Plan, Section 3.8) ; (2) demonstrating the structural adequacy of the containment subjected to pressure loadings associated with combustible gas generation (10 CFR 52 and 10 CFR 50); and (3) demonstrating the containment structural integrity for severe accidents (10 CFR 52 as well as SECY 90-016, SECY 93-087, and related NRC staff requirements memoranda (SRMs)). The paper describes the technical basis for specific aspects of the methods presented. It also presents examples of past issues identified in licensing activities related to these evaluations.

  11. Recent developments of the NESSUS probabilistic structural analysis computer program

    NASA Technical Reports Server (NTRS)

    Millwater, H.; Wu, Y.-T.; Torng, T.; Thacker, B.; Riha, D.; Leung, C. P.

    1992-01-01

    The NESSUS probabilistic structural analysis computer program combines state-of-the-art probabilistic algorithms with general purpose structural analysis methods to compute the probabilistic response and the reliability of engineering structures. Uncertainty in loading, material properties, geometry, boundary conditions and initial conditions can be simulated. The structural analysis methods include nonlinear finite element and boundary element methods. Several probabilistic algorithms are available such as the advanced mean value method and the adaptive importance sampling method. The scope of the code has recently been expanded to include probabilistic life and fatigue prediction of structures in terms of component and system reliability and risk analysis of structures considering cost of failure. The code is currently being extended to structural reliability considering progressive crack propagation. Several examples are presented to demonstrate the new capabilities.

  12. Probabilistic structural mechanics research for parallel processing computers

    NASA Technical Reports Server (NTRS)

    Sues, Robert H.; Chen, Heh-Chyun; Twisdale, Lawrence A.; Martin, William R.

    1991-01-01

    Aerospace structures and spacecraft are a complex assemblage of structural components that are subjected to a variety of complex, cyclic, and transient loading conditions. Significant modeling uncertainties are present in these structures, in addition to the inherent randomness of material properties and loads. To properly account for these uncertainties in evaluating and assessing the reliability of these components and structures, probabilistic structural mechanics (PSM) procedures must be used. Much research has focused on basic theory development and the development of approximate analytic solution methods in random vibrations and structural reliability. Practical application of PSM methods was hampered by their computationally intense nature. Solution of PSM problems requires repeated analyses of structures that are often large, and exhibit nonlinear and/or dynamic response behavior. These methods are all inherently parallel and ideally suited to implementation on parallel processing computers. New hardware architectures and innovative control software and solution methodologies are needed to make solution of large scale PSM problems practical.

  13. Three-dimensional protein structure prediction: Methods and computational strategies.

    PubMed

    Dorn, Márcio; E Silva, Mariel Barbachan; Buriol, Luciana S; Lamb, Luis C

    2014-10-12

    A long standing problem in structural bioinformatics is to determine the three-dimensional (3-D) structure of a protein when only a sequence of amino acid residues is given. Many computational methodologies and algorithms have been proposed as a solution to the 3-D Protein Structure Prediction (3-D-PSP) problem. These methods can be divided in four main classes: (a) first principle methods without database information; (b) first principle methods with database information; (c) fold recognition and threading methods; and (d) comparative modeling methods and sequence alignment strategies. Deterministic computational techniques, optimization techniques, data mining and machine learning approaches are typically used in the construction of computational solutions for the PSP problem. Our main goal with this work is to review the methods and computational strategies that are currently used in 3-D protein prediction.

  14. Nuclear Structure and Nuclear Astrophysics Studies with Fast Heavy-Ion Beams

    NASA Astrophysics Data System (ADS)

    Motobayashi, Tohru

    Collaboration between France and Japan on studies with fast RI (radioactive isotope) beams and related technical developments started in 1980s, when the GANIL accelerators and RIKEN cyclotron complex started operation and RI beam production technique was developed. Several examples of collaboration on nuclear physics and nuclear astrophysics experiments including related technical development are discussed.

  15. Computational challenges of structure-based approaches applied to HIV.

    PubMed

    Forli, Stefano; Olson, Arthur J

    2015-01-01

    Here, we review some of the opportunities and challenges that we face in computational modeling of HIV therapeutic targets and structural biology, both in terms of methodology development and structure-based drug design (SBDD). Computational methods have provided fundamental support to HIV research since the initial structural studies, helping to unravel details of HIV biology. Computational models have proved to be a powerful tool to analyze and understand the impact of mutations and to overcome their structural and functional influence in drug resistance. With the availability of structural data, in silico experiments have been instrumental in exploiting and improving interactions between drugs and viral targets, such as HIV protease, reverse transcriptase, and integrase. Issues such as viral target dynamics and mutational variability, as well as the role of water and estimates of binding free energy in characterizing ligand interactions, are areas of active computational research. Ever-increasing computational resources and theoretical and algorithmic advances have played a significant role in progress to date, and we envision a continually expanding role for computational methods in our understanding of HIV biology and SBDD in the future.

  16. An improved multiregion computer model for predicting nuclear excursions in aqueous homogeneous solution assemblies

    SciTech Connect

    Kimpland, R.H. )

    1993-01-01

    This paper reports on new work in the computer simulation of nuclear excursions in water solutions of uranium sulfate and nitrate. The goal of this work is a new multiregion model that improves on previous work. Improvements include better power, pressure, and reactivity feedback traces of pulses. Computed power and pressure pulses are compared with data from research reactors (KEWB, CRAC, and SILENE). A multiregion model represents the spatial distribution of energy being dumped into the system more accurately than a single lumped region. It also makes it possible to model variations in axial and radial velocities from region to region. Each region has its own equation of state and its own energy, continuity, and momentum equations, which are coupled with the reactor kinetics equations through reactivity feedback. The equation of state for a liquid containing bubbles of radiolytic gas is given in Ref. 1.

  17. A new multiregion computer model for predicting nuclear excursions in aqueous homogeneous solution assemblies

    SciTech Connect

    Kimpland, R.H. )

    1992-01-01

    This paper reports on new work in the computer simulation of nuclear excursions in water solutions of uranium sulphate and nitrate. The goal of this work is a new multiregion model that improves on previous work. Improvements include better power, pressure, and reactivity feedback traces of pulses. Computed power and pressure pulses are compared with data from research reactors (KEWB, CRAC, and SILENE). A multiregion model represents the spatial distribution of energy being dumped into the system more accurately than a single lumped region. Future work will include a study of the senstivity of the model to certain parameters, such as physical properties and rates of radiolytic gas formation. The model will be expanded from five regions to ten regions to observe the effect of discretization on the model. Also, an attempt to improve the reactivity feedback will be made.

  18. Advances in Computational Stability Analysis of Composite Aerospace Structures

    SciTech Connect

    Degenhardt, R.; Araujo, F. C. de

    2010-09-30

    European aircraft industry demands for reduced development and operating costs. Structural weight reduction by exploitation of structural reserves in composite aerospace structures contributes to this aim, however, it requires accurate and experimentally validated stability analysis of real structures under realistic loading conditions. This paper presents different advances from the area of computational stability analysis of composite aerospace structures which contribute to that field. For stringer stiffened panels main results of the finished EU project COCOMAT are given. It investigated the exploitation of reserves in primary fibre composite fuselage structures through an accurate and reliable simulation of postbuckling and collapse. For unstiffened cylindrical composite shells a proposal for a new design method is presented.

  19. Structures and regulation of non-X orphan nuclear receptors: A retinoid hypothesis.

    PubMed

    Zhi, Xiaoyong; Zhou, X Edward; Melcher, Karsten; Xu, H Eric

    2016-03-01

    Nuclear receptors are defined as a family of ligand regulated transcription factors [1-6]. While this definition reflects that ligand binding is a key property of nuclear receptors, it is still a heated subject of debate if all the nuclear receptors (48 human members) can bind ligands (ligands referred here to both physiological and synthetic ligands). Recent studies in nuclear receptor structure biology and pharmacology have undoubtedly increased our knowledge of nuclear receptor functions and their regulation. As a result, they point to new avenues for the discovery and development of nuclear receptor regulators, including nuclear receptor ligands. Here we review the recent literature on orphan nuclear receptor structural analysis and ligand identification, particularly on the orphan nuclear receptors that do not heterodimerize with retinoid X receptors, which we term as non-X orphan receptors. We also propose a speculative "retinoid hypothesis" for a subset of non-X orphan nuclear receptors, which we hope to help shed light on orphan nuclear receptor biology and drug discovery. This article is part of a Special Issue entitled 'Orphan Nuclear Receptors'.

  20. Nur77 forms novel nuclear structures upon DNA damage that cause transcriptional arrest

    SciTech Connect

    Leseleuc, Louis de; Denis, Francois . E-mail: francois.denis@iaf.inrs.ca

    2006-05-15

    The orphan nuclear receptor Nur77 has been implicated in both growth and apoptosis, and its function and activity can be modulated by cellular redistribution. Green fluorescent protein-tagged Nur77 was used to evaluate the role of Nur77 intracellular redistribution in response to genotoxic stress. Selected DNA damaging agents and transcription inhibition lead to rapid redistribution of Nur77 into nuclear structures distinct from conventional nuclear bodies. These nuclear bodies formed transiently were tightly bound to the nuclear matrix and conditions that lead to their appearance were associated with Nur77 transcriptional inhibition. The formation of Nur77 nuclear bodies might be involved in programmed cell death modulation upon exposure to DNA damaging agents that inhibit transcription by sequestrating this proapoptotic factor in dense nuclear structures.

  1. NASA CST aids U.S. industry. [computational structures technology

    NASA Technical Reports Server (NTRS)

    Housner, Jerry M.; Pinson, Larry D.

    1993-01-01

    The effect of NASA's computational structures Technology (CST) research on aerospace vehicle design and operation is discussed. The application of this research to proposed version of a high-speed civil transport, to composite structures in aerospace, to the study of crack growth, and to resolving field problems is addressed.

  2. Monitoring the Geneseo Nuclear Structure Lab with VISION

    NASA Astrophysics Data System (ADS)

    Nicklaw, R.; Padalino, S.; McLean, J.

    2002-10-01

    VISION (Virtual Instrument System Information) is a LabVIEW based program designed to monitor a 2 MV Van de Graaff accelerator in the Geneseo Nuclear Structure Laboratory (GNSL). The purpose of the system is to monitor and notify the user of potentially critical situations in the lab. Main parameters of interest are the water coolant temperatures in the diffusion pumps, pressures within the vacuum chambers, and Van de Graaff operational parameters. LabVIEW reads these values and then displays them on monitors located throughout the laboratory. The user can set alarm limits on the relevant parameters, and when exceeded notifies the user verbally and visually. Recent additions to the VISION program include the water level sensor, calibration of the pressure readings, a web server application, and data logging. The VISION system is Internet accessible ^1, data from the main screen is displayed over the web for remote monitoring of the accelerator. Another useful monitoring tool is the data logger, which writes acquired data to a formatted text document at specified intervals. A future goal for VISION is to not only monitor, but to control aspects of the GNSL with LabVIEW. ^1 Webpage accessible at: http://s69n144.sci.geneseo.edu/vision.htm * Research funded in part by the United States Department of Energy

  3. Nuclear-structure aspects of double beta decay

    SciTech Connect

    Suhonen, Jouni

    2010-11-24

    Neutrinoless double beta (0{nu}{beta}{beta}) decay of nuclei is a process that requires the neutrino to be a massive Majorana particle and thus cannot proceed in the standard model of electro-weak interactions. Recent results of the neutrino-oscillation experiments have produced accurate information on the mixing of neutrinos and their squared mass differences. The 0{nu}{beta}{beta} decay takes place in atomic nuclei where it can be observed, at least in principle, by underground neutrino experiments. The need of nuclei in observation of the 0{nu}{beta}{beta} decay bears two facets: The nucleus serves as laboratory for detection but at the same time its complicated many-nucleon structure interferes strongly with the analysis of the experimental data. The information about the weak-interaction observables, like the neutrino mass, has to be filtered from the data through the nuclear matrix elements (NMEs). Hence, exact knowledge about the NMEs is of paramount importance in the analysis of the data provided by the expensive and time-consuming underground experiments.

  4. Nucleus-Dependent Valence-Space Approach to Nuclear Structure

    NASA Astrophysics Data System (ADS)

    Stroberg, S. R.; Calci, A.; Hergert, H.; Holt, J. D.; Bogner, S. K.; Roth, R.; Schwenk, A.

    2017-01-01

    We present a nucleus-dependent valence-space approach for calculating ground and excited states of nuclei, which generalizes the shell-model in-medium similarity renormalization group to an ensemble reference with fractionally filled orbitals. Because the ensemble is used only as a reference, and not to represent physical states, no symmetry restoration is required. This allows us to capture three-nucleon (3 N ) forces among valence nucleons with a valence-space Hamiltonian specifically targeted to each nucleus of interest. Predicted ground-state energies from carbon through nickel agree with results of other large-space ab initio methods, generally to the 1% level. In addition, we show that this new approach is required in order to obtain convergence for nuclei in the upper p and s d shells. Finally, we address the 1+/3+ inversion problem in 22Na and 46V. This approach extends the reach of ab initio nuclear structure calculations to essentially all light- and medium-mass nuclei.

  5. Nuclear structure and reaction studies at medium energies

    SciTech Connect

    Hoffmann, G.W.; Ray, R.L.

    1990-10-01

    This document constitutes the (1988--1991) technical progress report for the ongoing medium energy physics research program supported by the US Department of Energy through special Research Grant FG05-88ER40444. The experiments discussed are conducted at the Los Alamos National Laboratory's (LANL) Clinton P. Anderson Meson Physics Facility (LAMPF), the Alternating Gradient Synchrotron (AGS) facility of the Brookhaven National Laboratory (BNL), and at the Fermi National Accelerator Laboratory (FNAL). The overall motivation for the work discussed in this document is driven by three main objectives: (1) provide hadron-nucleon and hadron-nucleus scattering data which serve to facilitate the study of effective two-body interactions, test (and possibly determine) nuclear structure, and help study reaction mechanisms and dynamics;(2) provide unique, first-of-a-kind exploratory'' hadron-nucleus scattering data in the hope that such data will lead to discovery of new phenomena and new physics; and (3) perform precision tests of fundamental interactions, such as rare decay searches, whose observation would imply fundamental new physics.

  6. NGC 1068 - Resolution of nuclear structure in the optical continuum

    NASA Technical Reports Server (NTRS)

    Lynds, Roger; Faber, S. M.; Light, Robert M.; Groth, Edward J.; Holtzman, Jon A.

    1991-01-01

    The HST Planetary Camera has been used to obtain an optical continuum image of the Seyfert galaxy NGC 1068. The image reveals a bright nucleus embedded in an irregular cloudlike structure which is well-differentiated against the background of the galaxy. The nucleus is resolved, with an FWHM of about 0.15 arcsec, or 11 pc. There is no evidence for any unresolved nuclear component. The precise geometry of the scattering region cannot yet be inferred. The cloud surrounding the nucleus is elongated in the NE-SSW direction and has extreme dimensions of 3.5 arcsec x 1.7 arcsec. The brightness centroid is situated 0.4 arcsec SW of the nucleus. It is concluded that the light from the cloud is contributed largely by stars, but that the appearance of the cloud is distinctly dissimilar to what is expected from young or old stellar systems and bears to simple relationship to the numerous features that have heretofore been resolved at other wavelengths.

  7. Geographic structure of European anchovy: A nuclear-DNA study

    NASA Astrophysics Data System (ADS)

    Bouchenak-Khelladi, Yanis; Durand, Jean-Dominique; Magoulas, Antonios; Borsa, Philippe

    2008-08-01

    Atlantic-Mediterranean anchovies were genetically characterized at two polymorphic nuclear loci (intron 6 of two creatine-kinase genes) and compared to reference Engraulis albidus and E. encrasicolus samples from the northern Western Mediterranean to provide new insights into their geographic structure. Northeastern Atlantic anchovy, represented by one sample from the Canary archipelago and one sample from the Alboran Sea, were genetically distinct from Mediterranean E. encrasicolus (Weir and Cockerham's ^θ = 0.027-0.311), indicating geographic isolation from either side of the Almería-Oran oceanographic front. Generally smaller genetic differences were evident among anchovy populations from different sub-basins in the Mediterranean ( ^θ = - 0.019-0.116), the genetic differences between Black Sea and Ionian Sea/Aegean Sea anchovies being the strongest ( ^θ = 0.002-0.116). There was no evidence of the presence of E. albidus in our samples outside Camargue (northern shore of the Western Mediterranean). However, a sample from the southern Western Mediterranean appeared to be genetically intermediate between E. albidus and Mediterranean E. encrasicolus, indicating possible hybridization. Anchovy from the Benguela current system off southern Africa possessed allele frequencies characteristic of E. albidus at one locus and Northeastern Atlantic anchovy at the other locus, suggesting past introgression.

  8. Investigations of nuclear structure and nuclear reactions induced by complex projectiles. Progress report, September 1, 1991--August 31, 1992

    SciTech Connect

    Sarantites, D.G.

    1992-12-01

    The research program described touches five areas of nuclear physics: nuclear structure studies at high spin (hyperdeformation in the mass A {approx_equal} 182 region, structure of {sup 182}Hg and {sup 182}Au at high spin, a highly deformed band in {sup 136}Pm and the anomalous h{sub 11/2} proton crossing in the A{approximately}135 superdeformed region), studies at the interface between structure and reactions (population of entry states in heavy-ion fusion reactions, nuclear structure effects in proton evaporation spectra, nuclear structure- dependent entry state population by total spectroscopy, entrance channel effects in fusion near the barrier, lifetimes of subbarrier {alpha} particles by the atomic clock method), production and study of hot nuclei (the statistical model evaporation code EVAP, statistical emission of deuterons and tritons from highly excited compound nuclei, heavy-fragment emission as a probe of the thermal properties of highly excited compound nuclei, use of incoming-wave boundary condition transmission coefficients in the statistical model: implications in the particle evaporation spectra, study of transparency in the optical model), reaction mechanism studies (binary character of highly dissipative {sup 209}Bi + {sup 136}Xe collisions at E/A=28.2 MeV), and development and use of novel techniques and instrumentation in these areas of research (including a 4{pi} channel selection device, a novel x-ray detector, and a simple channel-selecting detector).

  9. Investigations of nuclear structure and nuclear reactions induced by complex projectiles. [Dept. of Chemistry, Washington Univ. , St. Louis, Mo

    SciTech Connect

    Sarantites, D.G.

    1992-01-01

    The research program described touches five areas of nuclear physics: nuclear structure studies at high spin (hyperdeformation in the mass A [approx equal] 182 region, structure of [sup 182]Hg and [sup 182]Au at high spin, a highly deformed band in [sup 136]Pm and the anomalous h[sub 11/2] proton crossing in the A[approximately]135 superdeformed region), studies at the interface between structure and reactions (population of entry states in heavy-ion fusion reactions, nuclear structure effects in proton evaporation spectra, nuclear structure- dependent entry state population by total spectroscopy, entrance channel effects in fusion near the barrier, lifetimes of subbarrier [alpha] particles by the atomic clock method), production and study of hot nuclei (the statistical model evaporation code EVAP, statistical emission of deuterons and tritons from highly excited compound nuclei, heavy-fragment emission as a probe of the thermal properties of highly excited compound nuclei, use of incoming-wave boundary condition transmission coefficients in the statistical model: implications in the particle evaporation spectra, study of transparency in the optical model), reaction mechanism studies (binary character of highly dissipative [sup 209]Bi + [sup 136]Xe collisions at E/A=28.2 MeV), and development and use of novel techniques and instrumentation in these areas of research (including a 4[pi] channel selection device, a novel x-ray detector, and a simple channel-selecting detector).

  10. Interactive computer code for dynamic and soil structure interaction analysis

    SciTech Connect

    Mulliken, J.S.

    1995-12-01

    A new interactive computer code is presented in this paper for dynamic and soil-structure interaction (SSI) analyses. The computer program FETA (Finite Element Transient Analysis) is a self contained interactive graphics environment for IBM-PC`s that is used for the development of structural and soil models as well as post-processing dynamic analysis output. Full 3-D isometric views of the soil-structure system, animation of displacements, frequency and time domain responses at nodes, and response spectra are all graphically available simply by pointing and clicking with a mouse. FETA`s finite element solver performs 2-D and 3-D frequency and time domain soil-structure interaction analyses. The solver can be directly accessed from the graphical interface on a PC, or run on a number of other computer platforms.

  11. Toward a structure determination method for biomineral-associated protein using combined solid- state NMR and computational structure prediction.

    PubMed

    Masica, David L; Ash, Jason T; Ndao, Moise; Drobny, Gary P; Gray, Jeffrey J

    2010-12-08

    Protein-biomineral interactions are paramount to materials production in biology, including the mineral phase of hard tissue. Unfortunately, the structure of biomineral-associated proteins cannot be determined by X-ray crystallography or solution nuclear magnetic resonance (NMR). Here we report a method for determining the structure of biomineral-associated proteins. The method combines solid-state NMR (ssNMR) and ssNMR-biased computational structure prediction. In addition, the algorithm is able to identify lattice geometries most compatible with ssNMR constraints, representing a quantitative, novel method for investigating crystal-face binding specificity. We use this method to determine most of the structure of human salivary statherin interacting with the mineral phase of tooth enamel. Computation and experiment converge on an ensemble of related structures and identify preferential binding at three crystal surfaces. The work represents a significant advance toward determining structure of biomineral-adsorbed protein using experimentally biased structure prediction. This method is generally applicable to proteins that can be chemically synthesized.

  12. Computing Response Of A Structure To Random Transient Pressures

    NASA Technical Reports Server (NTRS)

    Sepcenko, Valentin; Margasahayam, Ravi

    1994-01-01

    Improved method of computing vibrational response of structure to transient random acoustic excitation at predominantly low frequencies devised, called "deterministic". Motivated by need to analyze more accurately vibro/acoustic responses of structures at spacecraft-launching facilities and determine whether need for reinforcement or redesign to withstand launch environment. Also used to study such phenomena as earthquake motions, ocean waves, aircraft pressure gusts, responses of bridges to winds, and effects to jet-engine noise on aircraft structures.

  13. Physical and mechanical metallurgy of zirconium alloys for nuclear applications: a multi-scale computational study

    SciTech Connect

    Glazoff, Michael Vasily

    2014-10-01

    In the post-Fukushima world, the stability of materials under extreme conditions is an important issue for the safety of nuclear reactors. Because the nuclear industry is going to continue using advanced zirconium cladding materials in the foreseeable future, it become critical to gain fundamental understanding of the several interconnected problems. First, what are the thermodynamic and kinetic factors affecting the oxidation and hydrogen pick-up by these materials at normal, off-normal conditions, and in long-term storage? Secondly, what protective coatings (if any) could be used in order to gain extremely valuable time at off-normal conditions, e.g., when temperature exceeds the critical value of 2200°F? Thirdly, the kinetics of oxidation of such protective coating or braiding needs to be quantified. Lastly, even if some degree of success is achieved along this path, it is absolutely critical to have automated inspection algorithms allowing identifying defects of cladding as soon as possible. This work strives to explore these interconnected factors from the most advanced computational perspective, utilizing such modern techniques as first-principles atomistic simulations, computational thermodynamics of materials, diffusion modeling, and the morphological algorithms of image processing for defect identification. Consequently, it consists of the four parts dealing with these four problem areas preceded by the introduction and formulation of the studied problems. In the 1st part an effort was made to employ computational thermodynamics and ab initio calculations to shed light upon the different stages of oxidation of ziraloys (2 and 4), the role of microstructure optimization in increasing their thermal stability, and the process of hydrogen pick-up, both in normal working conditions and in long-term storage. The 2nd part deals with the need to understand the influence and respective roles of the two different plasticity mechanisms in Zr nuclear alloys: twinning

  14. Locomotion without a brain: physical reservoir computing in tensegrity structures.

    PubMed

    Caluwaerts, K; D'Haene, M; Verstraeten, D; Schrauwen, B

    2013-01-01

    Embodiment has led to a revolution in robotics by not thinking of the robot body and its controller as two separate units, but taking into account the interaction of the body with its environment. By investigating the effect of the body on the overall control computation, it has been suggested that the body is effectively performing computations, leading to the term morphological computation. Recent work has linked this to the field of reservoir computing, allowing one to endow morphologies with a theory of universal computation. In this work, we study a family of highly dynamic body structures, called tensegrity structures, controlled by one of the simplest kinds of "brains." These structures can be used to model biomechanical systems at different scales. By analyzing this extreme instantiation of compliant structures, we demonstrate the existence of a spectrum of choices of how to implement control in the body-brain composite. We show that tensegrity structures can maintain complex gaits with linear feedback control and that external feedback can intrinsically be integrated in the control loop. The various linear learning rules we consider differ in biological plausibility, and no specific assumptions are made on how to implement the feedback in a physical system.

  15. High-performance computing in accelerating structure design and analysis

    NASA Astrophysics Data System (ADS)

    Li, Zenghai; Folwell, Nathan; Ge, Lixin; Guetz, Adam; Ivanov, Valentin; Kowalski, Marc; Lee, Lie-Quan; Ng, Cho-Kuen; Schussman, Greg; Stingelin, Lukas; Uplenchwar, Ravindra; Wolf, Michael; Xiao, Liling; Ko, Kwok

    2006-03-01

    Future high-energy accelerators such as the Next Linear Collider (NLC) will accelerate multi-bunch beams of high current and low emittance to obtain high luminosity, which put stringent requirements on the accelerating structures for efficiency and beam stability. While numerical modeling has been quite standard in accelerator R&D, designing the NLC accelerating structure required a new simulation capability because of the geometric complexity and level of accuracy involved. Under the US DOE Advanced Computing initiatives (first the Grand Challenge and now SciDAC), SLAC has developed a suite of electromagnetic codes based on unstructured grids and utilizing high-performance computing to provide an advanced tool for modeling structures at accuracies and scales previously not possible. This paper will discuss the code development and computational science research (e.g. domain decomposition, scalable eigensolvers, adaptive mesh refinement) that have enabled the large-scale simulations needed for meeting the computational challenges posed by the NLC as well as projects such as the PEP-II and RIA. Numerical results will be presented to show how high-performance computing has made a qualitative improvement in accelerator structure modeling for these accelerators, either at the component level (single cell optimization), or on the scale of an entire structure (beam heating and long-range wakefields).

  16. High-Performance Computing in Accelerating Structure Design And Analysis

    SciTech Connect

    Li, Z.H.; Folwell, N.; Ge, Li-Xin; Guetz, A.; Ivanov, V.; Kowalski, M.; Lee, L.Q.; Ng, C.K.; Schussman, G.; Stingelin, L.; Uplenchwar, R.; Wolf, M.; Xiao, L.L.; Ko, K.; /SLAC /PSI, Villigen /Illinois U., Urbana

    2006-06-27

    Future high-energy accelerators such as the Next Linear Collider (NLC) will accelerate multi-bunch beams of high current and low emittance to obtain high luminosity, which put stringent requirements on the accelerating structures for efficiency and beam stability. While numerical modeling has been quite standard in accelerator R&D, designing the NLC accelerating structure required a new simulation capability because of the geometric complexity and level of accuracy involved. Under the US DOE Advanced Computing initiatives (first the Grand Challenge and now SciDAC), SLAC has developed a suite of electromagnetic codes based on unstructured grids and utilizing high performance computing to provide an advanced tool for modeling structures at accuracies and scales previously not possible. This paper will discuss the code development and computational science research (e.g. domain decomposition, scalable eigensolvers, adaptive mesh refinement) that have enabled the large-scale simulations needed for meeting the computational challenges posed by the NLC as well as projects such as the PEP-II and RIA. Numerical results will be presented to show how high performance computing has made a qualitative improvement in accelerator structure modeling for these accelerators, either at the component level (single cell optimization), or on the scale of an entire structure (beam heating and long range wakefields).

  17. Symbolic algorithms for the computation of Moshinsky brackets and nuclear matrix elements

    NASA Astrophysics Data System (ADS)

    Ursescu, D.; Tomaselli, M.; Kuehl, T.; Fritzsche, S.

    2005-12-01

    To facilitate the use of the extended nuclear shell model (NSM), a FERMI module for calculating some of its basic quantities in the framework of MAPLE is provided. The Moshinsky brackets, the matrix elements for several central and non-central interactions between nuclear two-particle states as well as their expansion in terms of Talmi integrals are easily given within a symbolic formulation. All of these quantities are available for interactive work. Program summaryTitle of program:Fermi Catalogue identifier:ADVO Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVO Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions:None Computer for which the program is designed and others on which is has been tested:All computers with a licence for the computer algebra package MAPLE [Maple is a registered trademark of Waterloo Maple Inc., produced by MapleSoft division of Waterloo Maple Inc.] Instalations:GSI-Darmstadt; University of Kassel (Germany) Operating systems or monitors under which the program has beentested: WindowsXP, Linux 2.4 Programming language used:MAPLE 8 and 9.5 from MapleSoft division of Waterloo Maple Inc. Memory required to execute with typical data:30 MB No. of lines in distributed program including test data etc.:5742 No. of bytes in distributed program including test data etc.:288 939 Distribution program:tar.gz Nature of the physical problem:In order to perform calculations within the nuclear shell model (NSM), a quick and reliable access to the nuclear matrix elements is required. These matrix elements, which arise from various types of forces among the nucleons, can be calculated using Moshinsky's transformation brackets between relative and center-of-mass coordinates [T.A. Brody, M. Moshinsky, Tables of Transformation Brackets, Monografias del Instituto de Fisica, Universidad Nacional Autonoma de Mexico, 1960] and by the proper use of the nuclear states in different coupling notations

  18. Computational modeling of RNA 3D structures and interactions.

    PubMed

    Dawson, Wayne K; Bujnicki, Janusz M

    2016-04-01

    RNA molecules have key functions in cellular processes beyond being carriers of protein-coding information. These functions are often dependent on the ability to form complex three-dimensional (3D) structures. However, experimental determination of RNA 3D structures is difficult, which has prompted the development of computational methods for structure prediction from sequence. Recent progress in 3D structure modeling of RNA and emerging approaches for predicting RNA interactions with ions, ligands and proteins have been stimulated by successes in protein 3D structure modeling.

  19. PREFACE: 11th International Spring Seminar on Nuclear Physics: Shell Model and Nuclear Structure - achievements of the past two decades

    NASA Astrophysics Data System (ADS)

    2015-02-01

    The 11th International Seminar on Nuclear Physics was held in Ischia from May 12 to May 16, 2014. This Seminar was dedicated to Aldo Covello, who has been the promoter of this series of meetings, which started in Sorrento in 1986 and continued with meetings held every two or three years in the Naples area. Aldo's idea was to offer to a group of researchers, actively working in selected fields of Nuclear Physics, the opportunity to confront their points of view in a lively and informal way. The choice for the period of the year, Spring, as well as the sites chosen reflected this intent. The first meeting was of a purely theoretical nature, but it was immediately clear that the scope of these conferences needed to be enlarged calling into play the experimental community. Then, starting from the second meeting, all the following ones have been characterized by fruitful discussion between theoretical and experimental researchers on current achievements and future developments of nuclear structure. This may be read, in fact, as one of the motivating factors for Aldo's election as Fellow of the American Physical Society in 2008 "... for his outstanding contributions to the international nuclear physics community by providing, for over two decades, a venue for theorists and experimentalists to share their latest ideas." The present meeting, organized by Aldo's former students and with the benefit of his suggestions, has maintained this tradition. The title "Shell model and nuclear structure: achievements of the past two decades" recalls that of the 2nd International Spring Seminar "Shell Model and Nuclear Structure: where do we stand?". The main aim of this 11th Seminar was, in fact, to discuss the changes of the past two decades on our view of nuclei in terms of shell structure as well as the perspectives of the shell model, which has been one of the key points in Aldo's research. This point is well accounted by the Opening Speech of Igal Talmi, one of the fathers of the

  20. The 3-D inelastic analyses for computational structural mechanics

    NASA Technical Reports Server (NTRS)

    Hopkins, D. A.; Chamis, C. C.

    1989-01-01

    The 3-D inelastic analysis method is a focused program with the objective to develop computationally effective analysis methods and attendant computer codes for three-dimensional, nonlinear time and temperature dependent problems present in the hot section of turbojet engine structures. Development of these methods was a major part of the Hot Section Technology (HOST) program over the past five years at Lewis Research Center.

  1. Computer Simulation Methods for Defect Configurations and Nanoscale Structures

    SciTech Connect

    Gao, Fei

    2010-01-01

    This chapter will describe general computer simulation methods, including ab initio calculations, molecular dynamics and kinetic Monte-Carlo method, and their applications to the calculations of defect configurations in various materials (metals, ceramics and oxides) and the simulations of nanoscale structures due to ion-solid interactions. The multiscale theory, modeling, and simulation techniques (both time scale and space scale) will be emphasized, and the comparisons between computer simulation results and exprimental observations will be made.

  2. Bayesian Computational Sensor Networks for Aircraft Structural Health Monitoring

    DTIC Science & Technology

    2016-02-02

    AFRL-AFOSR-VA-TR-2016-0094 Bayesian Computational Sensor Networks for Aircraft Structural Health Monitoring. Thomas Henderson UNIVERSITY OF UTAH SALT...The major goal of this work was to provide rigorous Bayesian Computational Sensor Networks to quantify uncertainty in (1) model-based state...estimates incorporating sensor data, (2) model parameters (e.g., diffusion coefficients), (3) sensor node model parameter values (e.g., location, bias

  3. Computational analysis of RNA structures with chemical probing data

    PubMed Central

    Ge, Ping; Zhang, Shaojie

    2015-01-01

    RNAs play various roles, not only as the genetic codes to synthesize proteins, but also as the direct participants of biological functions determined by their underlying high-order structures. Although many computational methods have been proposed for analyzing RNA structures, their accuracy and efficiency are limited, especially when applied to the large RNAs and the genome-wide data sets. Recently, advances in parallel sequencing and high-throughput chemical probing technologies have prompted the development of numerous new algorithms, which can incorporate the auxiliary structural information obtained from those experiments. Their potential has been revealed by the secondary structure prediction of ribosomal RNAs and the genome-wide ncRNA function annotation. In this review, the existing probing-directed computational methods for RNA secondary and tertiary structure analysis are discussed. PMID:25687190

  4. Approximating solar/stellar structure without a computer

    NASA Astrophysics Data System (ADS)

    Doorish, John F.

    1989-09-01

    The purpose of this paper is to offer a method for the approximate solution of the stellar interior equations (SIE) which determine the structure of a star. It is intended to avoid the use of a computer for a first approximation thereby saving valuable computer time. New dimensionless variables are developed which are dependent upon the SIE and are substituted into a simple series expansion. The values for pressure, temperature, mass, etc., per shell within the star are derived in this way. The obtained model is compared to a standard computer model and is found to be rather agreeable. The model developed is for the present sun.

  5. Structured Computer Learning Activities at School and Participation in Out-of-School Structured Activities.

    ERIC Educational Resources Information Center

    Hecht, Jeffrey B.; Dwyer, David J.

    1993-01-01

    Examines the relationship between student participation in structured activities and academic success at school; discusses the use of computers in schools; and describes a study that investigated 220 students in 3 high schools to determine relationships between participation in structured activities and successful computer use in school. (Contains…

  6. A new computational structure for real-time dynamics

    SciTech Connect

    Izaguirre, A. ); Hashimoto, Minoru )

    1992-08-01

    The authors present an efficient structure for the computation of robot dynamics in real time. The fundamental characteristic of this structure is the division of the computation into a high-priority synchronous task and low-priority background tasks, possibly sharing the resources of a conventional computing unit based on commercial microprocessors. The background tasks compute the inertial and gravitational coefficients as well as the forces due to the velocities of the joints. In each control sample period, the high-priority synchronous task computes the product of the inertial coefficients by the accelerations of the joints and performs the summation of the torques due to the velocities and gravitational forces. Kircanski et al. (1986) have shown that the bandwidth of the variation of joint angles and of their velocities is an order of magnitude less than the variation of joint accelerations. This result agrees with the experiments the authors have carried out using a PUMA 260 robot. Two main strategies contribute to reduce the computational burden associated with the evaluation of the dynamic equations. The first involves the use of efficient algorithms for the evaluation of the equations. The second is aimed at reducing the number of dynamic parameters by identifying beforehand the linear dependencies among these parameters, as well as carrying out a significance analysis of the parameters' contribution to the final joint torques. The actual code used to evaluate this dynamic model is entirely computer generated from experimental data, requiring no other manual intervention than performing a campaign of measurements.

  7. Computational structures technology at Grumman: Current practice/future needs

    NASA Technical Reports Server (NTRS)

    Pifko, Allan B.; Eidinoff, Harvey

    1992-01-01

    The current practice for the design analysis of new airframe structural systems is to construct a master finite element model of the vehicle in order to develop internal load distributions. The inputs to this model include the geometry which is taken directly from CADAM and CATIA structural layout and aerodynamic loads and mass distribution computer models. This master model is sufficiently detailed to define major load paths and for the computation of dynamic mode shapes and structural frequencies, but not detailed enough to define local stress gradients and notch stresses. This master model is then used to perform structural optimization studies that will provide minimum weights for major structural members. The post-processed output from the master model, load, stress, and strain analysis is then used by structural analysts to perform detailed stress analysis of local regions in order to design local structure with all its required details. This local analysis consists of hand stress analysis and life prediction analysis with the assistance of manuals, design charts, computer stress and structural life analysis and sometimes finite element or boundary element analysis. The resulting design is verified by fatigue tests.

  8. Computational structures technology at Grumman: Current practice/future needs

    NASA Astrophysics Data System (ADS)

    Pifko, Allan B.; Eidinoff, Harvey

    1992-05-01

    The current practice for the design analysis of new airframe structural systems is to construct a master finite element model of the vehicle in order to develop internal load distributions. The inputs to this model include the geometry which is taken directly from CADAM and CATIA structural layout and aerodynamic loads and mass distribution computer models. This master model is sufficiently detailed to define major load paths and for the computation of dynamic mode shapes and structural frequencies, but not detailed enough to define local stress gradients and notch stresses. This master model is then used to perform structural optimization studies that will provide minimum weights for major structural members. The post-processed output from the master model, load, stress, and strain analysis is then used by structural analysts to perform detailed stress analysis of local regions in order to design local structure with all its required details. This local analysis consists of hand stress analysis and life prediction analysis with the assistance of manuals, design charts, computer stress and structural life analysis and sometimes finite element or boundary element analysis. The resulting design is verified by fatigue tests.

  9. PREFACE: 21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015)

    NASA Astrophysics Data System (ADS)

    Sakamoto, H.; Bonacorsi, D.; Ueda, I.; Lyon, A.

    2015-12-01

    The International Conference on Computing in High Energy and Nuclear Physics (CHEP) is a major series of international conferences intended to attract physicists and computing professionals to discuss on recent developments and trends in software and computing for their research communities. Experts from the high energy and nuclear physics, computer science, and information technology communities attend CHEP events. This conference series provides an international forum to exchange experiences and the needs of a wide community, and to present and discuss recent, ongoing, and future activities. At the beginning of the successful series of CHEP conferences in 1985, the latest developments in embedded systems, networking, vector and parallel processing were presented in Amsterdam. The software and computing ecosystem massively evolved since then, and along this path each CHEP event has marked a step further. A vibrant community of experts on a wide range of different high-energy and nuclear physics experiments, as well as technology explorer and industry contacts, attend and discuss the present and future challenges, and shape the future of an entire community. In such a rapidly evolving area, aiming to capture the state-of-the-art on software and computing through a collection of proceedings papers on a journal is a big challenge. Due to the large attendance, the final papers appear on the journal a few months after the conference is over. Additionally, the contributions often report about studies at very heterogeneous statuses, namely studies that are completed, or are just started, or yet to be done. It is not uncommon that by the time a specific paper appears on the journal some of the work is over a year old, or the investigation actually happened in different directions and with different methodologies than originally presented at the conference just a few months before. And by the time the proceedings appear in journal form, new ideas and explorations have

  10. Nuclear quadrupole resonance studies in semi-metallic structures

    NASA Technical Reports Server (NTRS)

    Murty, A. N.

    1974-01-01

    Both experimental and theoretical studies are presented on spectrum analysis of nuclear quadrupole resonance of antimony and arsenic tellurides. Numerical solutions for secular equations of the quadrupole interaction energy are also discussed.

  11. Structure and Activities of Nuclear Medicine in Kuwait.

    PubMed

    Elgazzar, Abdelhamid H; Owunwanne, Azuwuike; Alenezi, Saud

    2016-07-01

    The practice of nuclear medicine in Kuwait began in 1965 as a clinic for treating thyroid diseases. The practice developed gradually and until 1981 when the Faculty of Medicine established the Division of Nuclear Medicine in the Department of Radiology, which later became a separate department responsible for establishing and managing the practice in all hospitals of Kuwait. In 1987, a nuclear medicine residency program was begun and it is administered by Kuwait Institute for Medical Specializations originally as a 4-year but currently as a 5-year program. Currently there are 11 departments in the ministry of health hospitals staffed by 49 qualified attending physicians, mostly the diplomats of the Kuwait Institute for Medical Specializations nuclear medicine residency program, 4 academic physicians, 2 radiopharmacists, 2 physicists, and 130 technologists. These departments are equipped with 33 dual-head gamma cameras, 10 SPET/CT, 5 PET/CT, 2 cyclotrons, 1 breast-specific gamma imaging, 1 positron-emitting mammography, 10 thyroid uptake units, 8 technegas machines, 7 PET infusion systems, and 8 treadmills. Activities of nuclear medicine in Kuwait include education and training, clinical service, and research. Education includes nuclear medicine technology program in the Faculty of Allied Health Sciences, the 5-year residency program, medical school teaching distributed among different modules of the integrated curriculum with 14 didactic lecture, and other teaching sessions in nuclear medicine MSc program, which run concurrently with the first part of the residency program. The team of Nuclear Medicine in Kuwait has been active in research and has published more than 300 paper, 11 review articles, 12 book chapters, and 17 books in addition to 36 grants and 2 patents. A PhD program approved by Kuwait University Council would begin in 2016.

  12. Impact of new computing systems on computational mechanics and flight-vehicle structures technology

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Storaasli, O. O.; Fulton, R. E.

    1984-01-01

    Advances in computer technology which may have an impact on computational mechanics and flight vehicle structures technology were reviewed. The characteristics of supersystems, highly parallel systems, and small systems are summarized. The interrelations of numerical algorithms and software with parallel architectures are discussed. A scenario for future hardware/software environment and engineering analysis systems is presented. Research areas with potential for improving the effectiveness of analysis methods in the new environment are identified.

  13. Computer code for space-time diagnostics of nuclear safety parameters

    SciTech Connect

    Solovyev, D. A.; Semenov, A. A.; Gruzdov, F. V.; Druzhaev, A. A.; Shchukin, N. V.; Dolgenko, S. G.; Solovyeva, I. V.; Ovchinnikova, E. A.

    2012-07-01

    The computer code ECRAN 3D (Experimental and Calculation Reactor Analysis) is designed for continuous monitoring and diagnostics of reactor cores and databases for RBMK-1000 on the basis of analytical methods for the interrelation parameters of nuclear safety. The code algorithms are based on the analysis of deviations between the physically obtained figures and the results of neutron-physical and thermal-hydraulic calculations. Discrepancies between the measured and calculated signals are equivalent to obtaining inadequacy between performance of the physical device and its simulator. The diagnostics system can solve the following problems: identification of facts and time for inconsistent results, localization of failures, identification and quantification of the causes for inconsistencies. These problems can be effectively solved only when the computer code is working in a real-time mode. This leads to increasing requirements for a higher code performance. As false operations can lead to significant economic losses, the diagnostics system must be based on the certified software tools. POLARIS, version 4.2.1 is used for the neutron-physical calculation in the computer code ECRAN 3D. (authors)

  14. Structural basis for the regulation of nuclear import of Epstein-Barr virus nuclear antigen 1 (EBNA1) by phosphorylation of the nuclear localization signal.

    PubMed

    Nakada, Ryohei; Hirano, Hidemi; Matsuura, Yoshiyuki

    2017-02-26

    Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is expressed in every EBV-positive tumor and is essential for the maintenance, replication, and transcription of the EBV genome in the nucleus of host cells. EBNA1 is a serine phosphoprotein, and it has been shown that phosphorylation of S385 in the nuclear localization signal (NLS) of EBNA1 increases the binding affinity to the nuclear import adaptor importin-α1 as well as importin-α5, and stimulates nuclear import of EBNA1. To gain insights into how phosphorylation of the EBNA1 NLS regulates nuclear import, we have determined the crystal structures of two peptide complexes of importin-α1: one with S385-phosphorylated EBNA1 NLS peptide, determined at 2.0 Å resolution, and one with non-phosphorylated EBNA1 NLS peptide, determined at 2.2 Å resolution. The structures show that EBNA1 NLS binds to the major and minor NLS-binding sites of importin-α1, and indicate that the binding affinity of the EBNA1 NLS to the minor NLS-binding site could be enhanced by phosphorylation of S385 through electrostatic interaction between the phosphate group of phospho-S385 and K392 of importin-α1 (corresponding to R395 of importin-α5) on armadillo repeat 8.

  15. Automatic classification of hepatocellular carcinoma images based on nuclear and structural features

    NASA Astrophysics Data System (ADS)

    Kiyuna, Tomoharu; Saito, Akira; Marugame, Atsushi; Yamashita, Yoshiko; Ogura, Maki; Cosatto, Eric; Abe, Tokiya; Hashiguchi, Akinori; Sakamoto, Michiie

    2013-03-01

    Diagnosis of hepatocellular carcinoma (HCC) on the basis of digital images is a challenging problem because, unlike gastrointestinal carcinoma, strong structural and morphological features are limited and sometimes absent from HCC images. In this study, we describe the classification of HCC images using statistical distributions of features obtained from image analysis of cell nuclei and hepatic trabeculae. Images of 130 hematoxylin-eosin (HE) stained histologic slides were captured at 20X by a slide scanner (Nanozoomer, Hamamatsu Photonics, Japan) and 1112 regions of interest (ROI) images were extracted for classification (551 negatives and 561 positives, including 113 well-differentiated positives). For a single nucleus, the following features were computed: area, perimeter, circularity, ellipticity, long and short axes of elliptic fit, contour complexity and gray level cooccurrence matrix (GLCM) texture features (angular second moment, contrast, homogeneity and entropy). In addition, distributions of nuclear density and hepatic trabecula thickness within an ROI were also extracted. To represent an ROI, statistical distributions (mean, standard deviation and percentiles) of these features were used. In total, 78 features were extracted for each ROI and a support vector machine (SVM) was trained to classify negative and positive ROIs. Experimental results using 5-fold cross validation show 90% sensitivity for an 87.8% specificity. The use of statistical distributions over a relatively large area makes the HCC classifier robust to occasional failures in the extraction of nuclear or hepatic trabecula features, thus providing stability to the system.

  16. Computer-based accountability system (Phase I) for special nuclear materials at Argonne-West

    SciTech Connect

    Ingermanson, R.S.; Proctor, A.E.

    1982-05-01

    An automated accountability system for special nuclear materials (SNM) is under development at Argonne National Laboratory-West. Phase I of the development effort has established the following basic features of the system: a unique file organization allows rapid updating or retrieval of the status of various SNM, based on batch numbers, storage location, serial number, or other attributes. Access to the program is controlled by an interactive user interface that can be easily understood by operators who have had no prior background in electronic data processing. Extensive use of structured programming techniques make the software package easy to understand and to modify for specific applications. All routines are written in FORTRAN.

  17. Computational study: Reduction of iron corrosion in lead coolant of fast nuclear reactor

    SciTech Connect

    Arkundato, Artoto; Su'ud, Zaki; Abdullah, Mikrajuddin; Widayani

    2012-06-20

    In this paper we report molecular dynamics simulation results of iron (cladding) corrosion in interaction with lead coolant of fast nuclear reactor. The goal of this work is to study effect of oxygen injection to the coolant to reduce iron corrosion. By evaluating diffusion coefficients, radial distribution functions, mean-square displacement curves and observation of crystal structure of iron before and after oxygen injection, we concluded that a significant reduction of corrosion can be achieved by issuing about 2% of oxygen atoms into lead coolant.

  18. Comparison of Property-Oriented Basis Sets for the Computation of Electronic and Nuclear Relaxation Hyperpolarizabilities.

    PubMed

    Zaleśny, Robert; Baranowska-Łączkowska, Angelika; Medveď, Miroslav; Luis, Josep M

    2015-09-08

    In the present work, we perform an assessment of several property-oriented atomic basis sets in computing (hyper)polarizabilities with a focus on the vibrational contributions. Our analysis encompasses the Pol and LPol-ds basis sets of Sadlej and co-workers, the def2-SVPD and def2-TZVPD basis sets of Rappoport and Furche, and the ORP basis set of Baranowska-Łączkowska and Łączkowski. Additionally, we use the d-aug-cc-pVQZ and aug-cc-pVTZ basis sets of Dunning and co-workers to determine the reference estimates of the investigated electric properties for small- and medium-sized molecules, respectively. We combine these basis sets with ab initio post-Hartree-Fock quantum-chemistry approaches (including the coupled cluster method) to calculate electronic and nuclear relaxation (hyper)polarizabilities of carbon dioxide, formaldehyde, cis-diazene, and a medium-sized Schiff base. The primary finding of our study is that, among all studied property-oriented basis sets, only the def2-TZVPD and ORP basis sets yield nuclear relaxation (hyper)polarizabilities of small molecules with average absolute errors less than 5.5%. A similar accuracy for the nuclear relaxation (hyper)polarizabilites of the studied systems can also be reached using the aug-cc-pVDZ basis set (5.3%), although for more accurate calculations of vibrational contributions, i.e., average absolute errors less than 1%, the aug-cc-pVTZ basis set is recommended. It was also demonstrated that anharmonic contributions to first and second hyperpolarizabilities of a medium-sized Schiff base are particularly difficult to accurately predict at the correlated level using property-oriented basis sets. For instance, the value of the nuclear relaxation first hyperpolarizability computed at the MP2/def2-TZVPD level of theory is roughly 3 times larger than that determined using the aug-cc-pVTZ basis set. We link the failure of the def2-TZVPD basis set with the difficulties in predicting the first-order field

  19. Have NEC Coat, Will Travel: Structural Basis of Membrane Budding During Nuclear Egress in Herpesviruses.

    PubMed

    Bigalke, J M; Heldwein, E E

    2017-01-01

    Herpesviruses are unusual among enveloped viruses because they bud twice yet acquire a single envelope. Furthermore, unlike other DNA viruses that replicate in the nucleus, herpesviruses do not exit it by passing through the nuclear pores or by rupturing the nuclear envelope. Instead, herpesviruses have a complex mechanism of nuclear escape whereby nascent capsids bud at the inner nuclear membrane to form perinuclear virions that subsequently fuse with the outer nuclear membrane, releasing capsids into the cytosol. This makes them some of the very few known viruses that bud into the nuclear envelope. The envelope acquired during nuclear budding does not end up in the mature viral particle but instead allows the capsid to translocate from the nucleus into the cytosol. The viral nuclear egress complex (NEC) is a critical player in the nuclear egress, yet its function and mechanism have remained enigmatic. Recent studies have demonstrated that the NEC buds membranes without the help of other proteins by forming a honeycomb coat, which established the NEC as the first virally encoded budding machine that operates at the nuclear, as opposed to cytoplasmic, membrane. This review discusses our current understanding of the NEC budding mechanism, with the emphasis on studies that illuminated the structure of the NEC coat and its role in capsid budding during herpesvirus nuclear escape.

  20. Have NEC Coat, Will Travel: Structural Basis of Membrane Budding During Nuclear Egress in Herpesviruses

    PubMed Central

    Bigalke, J.M.; Heldwein, E.E.

    2017-01-01

    Herpesviruses are unusual among enveloped viruses because they bud twice yet acquire a single envelope. Furthermore, unlike other DNA viruses that replicate in the nucleus, herpesviruses do not exit it by passing through the nuclear pores or by rupturing the nuclear envelope. Instead, herpesviruses have a complex mechanism of nuclear escape whereby nascent capsids bud at the inner nuclear membrane to form perinuclear virions that subsequently fuse with the outer nuclear membrane, releasing capsids into the cytosol. This makes them some of the very few known viruses that bud into the nuclear envelope. The envelope acquired during nuclear budding does not end up in the mature viral particle but instead allows the capsid to translocate from the nucleus into the cytosol. The viral nuclear egress complex (NEC) is a critical player in the nuclear egress, yet its function and mechanism have remained enigmatic. Recent studies have demonstrated that the NEC buds membranes without the help of other proteins by forming a honeycomb coat, which established the NEC as the first virally encoded budding machine that operates at the nuclear, as opposed to cytoplasmic, membrane. This review discusses our current understanding of the NEC budding mechanism, with the emphasis on studies that illuminated the structure of the NEC coat and its role in capsid budding during herpesvirus nuclear escape. PMID:28057257

  1. Demonstration of Emitted-Neutron Computed Tomography to Quantify Nuclear Materials

    SciTech Connect

    Hausladen, Paul; Blackston, Matthew A; Newby, Jason

    2011-09-01

    In this document, we report demonstration of emitted-neutron computed tomography using fast fission neutrons to infer the geometry of sources of special nuclear material (SNM). The imaging system employed in the demonstration is based on a newly constructed array of pixelated neutron detectors that are suitable for arrangement in a close-packed imaging array and whose active volume consists of liquid scintillator EJ-309 which allows neutron-gamma discrimination via pulse shape to enable essentially pure fast-neutron imaging. The system is capable of high quality fast-neutron imaging where tomographic reconstruction of slices through an object resolves neutron sources similar in dimension to a fuel pellet, or about 1 cm. During measurements of Pu MOX fuel rodlet arrays in soup cans at the INL ZPPR facility, the position of a partial defect of a single rodlet containing Pu replaced by one containing depleted uranium (DU) was detected.

  2. New approach to creation of geometrical module for nuclear reactor neutron transport computer simulation analysis

    SciTech Connect

    Poveschenko, T.; Poveschenko, O.

    2012-07-01

    This paper presents the new approach to creation of geometrical module for nuclear reactor neutron transport computer simulation analysis so called the differential cross method. It is elaborated for detecting boards between physical zones. It is proposed to use GMSH open source mesh editor extended by some features: a special option and a special kind of mesh (cubic background mesh).This method is aimed into Monte Carlo Method as well as for deterministic neutron transport methods. Special attention is attended for reactor core composed of a set of material zones with complicate geometrical boundaries. The idea of this approach is described. In general case method works for 3-D space. Algorithm of creation of the geometrical module is given. 2-D neutron transport benchmark-test for RBMK reactor cluster cell is described. It demonstrates the ability of this approach to provide flexible definition of geometrical meshing with preservation of curved surface or any level of heterogeneity. (authors)

  3. Delineating role of ubiquitination on nuclear factor-kappa B pathway by a computational modeling approach

    SciTech Connect

    Lee, Jungsul; Choi, Kyungsun; Choi, Chulhee

    2010-01-01

    Mutant ubiquitin found in neurodegenerative diseases has been thought to hamper activation of transcription factor nuclear factor-kappa B (NF-{kappa}B) by inhibiting ubiquitin-proteasome system (UPS). It has been reported that ubiquitin also is involved in signal transduction in an UPS-independent manner. We used a modeling and simulation approach to delineate the roles of ubiquitin on NF-{kappa}B activation. Inhibition of proteasome complex increased maximal activation of IKK mainly by decreasing the UPS efficiency. On the contrary, mutant ubiquitin decreased maximal activity of IKK. Computational modeling showed that the inhibition effect of mutant ubiquitin is mainly attributed to decreased activity of UPS-independent function of ubiquitin. Collectively, our results suggest that mutant ubiquitin affects NF-{kappa}B activation in an UPS-independent manner.

  4. Chaotic features of nuclear structure and dynamics: selected topics

    NASA Astrophysics Data System (ADS)

    Zelevinsky, Vladimir; Volya, Alexander

    2016-03-01

    Quantum chaos has become an important element of our knowledge about physics of complex systems. In typical mesoscopic systems of interacting particles the dynamics invariably become chaotic when the level density, growing by combinatorial reasons, leads to the increasing probability of mixing simple mean-field (particle-hole) configurations. The resulting stationary states have exceedingly complicated structures that are comparable to those in random matrix theory. We discuss the main properties of mesoscopic quantum chaos and show that it can serve as a justification for application of statistical mechanics to mesoscopic systems. We show that quantum chaos becomes a powerful instrument for experimental, theoretical and computational work. The generalization to open systems and effects in the continuum are discussed with the help of the effective non-Hermitian Hamiltonian; it is shown how to formulate this approach for numerous problems of quantum signal transmission. The artificially introduced randomness can also be helpful for a deeper understanding of physics. We indicate the problems that require more investigation so as to be understood further.

  5. Clathrate Structure Determination by Combining Crystal Structure Prediction with Computational and Experimental (129) Xe NMR Spectroscopy.

    PubMed

    Selent, Marcin; Nyman, Jonas; Roukala, Juho; Ilczyszyn, Marek; Oilunkaniemi, Raija; Bygrave, Peter J; Laitinen, Risto; Jokisaari, Jukka; Day, Graeme M; Lantto, Perttu

    2017-01-23

    An approach is presented for the structure determination of clathrates using NMR spectroscopy of enclathrated xenon to select from a set of predicted crystal structures. Crystal structure prediction methods have been used to generate an ensemble of putative structures of o- and m-fluorophenol, whose previously unknown clathrate structures have been studied by (129) Xe NMR spectroscopy. The high sensitivity of the (129) Xe chemical shift tensor to the chemical environment and shape of the crystalline cavity makes it ideal as a probe for porous materials. The experimental powder NMR spectra can be used to directly confirm or reject hypothetical crystal structures generated by computational prediction, whose chemical shift tensors have been simulated using density functional theory. For each fluorophenol isomer one predicted crystal structure was found, whose measured and computed chemical shift tensors agree within experimental and computational error margins and these are thus proposed as the true fluorophenol xenon clathrate structures.

  6. SAMPSON Parallel Computation for Sensitivity Analysis of TEPCO's Fukushima Daiichi Nuclear Power Plant Accident

    NASA Astrophysics Data System (ADS)

    Pellegrini, M.; Bautista Gomez, L.; Maruyama, N.; Naitoh, M.; Matsuoka, S.; Cappello, F.

    2014-06-01

    On March 11th 2011 a high magnitude earthquake and consequent tsunami struck the east coast of Japan, resulting in a nuclear accident unprecedented in time and extents. After scram started at all power stations affected by the earthquake, diesel generators began operation as designed until tsunami waves reached the power plants located on the east coast. This had a catastrophic impact on the availability of plant safety systems at TEPCO's Fukushima Daiichi, leading to the condition of station black-out from unit 1 to 3. In this article the accident scenario is studied with the SAMPSON code. SAMPSON is a severe accident computer code composed of hierarchical modules to account for the diverse physics involved in the various phases of the accident evolution. A preliminary parallelization analysis of the code was performed using state-of-the-art tools and we demonstrate how this work can be beneficial to the nuclear safety analysis. This paper shows that inter-module parallelization can reduce the time to solution by more than 20%. Furthermore, the parallel code was applied to a sensitivity study for the alternative water injection into TEPCO's Fukushima Daiichi unit 3. Results show that the core melting progression is extremely sensitive to the amount and timing of water injection, resulting in a high probability of partial core melting for unit 3.

  7. A two-dimensional multiregion computer model for predicting nuclear excursions in aqueous homogeneous solution assemblies

    SciTech Connect

    Kimpland, R.H.; Kornreich, D.E.

    1996-02-01

    The reprocessing of nuclear fuel usually involves the process of chemical separation. The fuel, usually in oxide form, is first dissolved in some type of acid such as nitric, sulfuric, or hydrofluoric. This results in the fuel being transformed into a homogeneous aqueous fissile solution. In this form there may be a higher probability of an accidental criticality of the solution, especially when being transported through pipes or stored in vessels. Here, a new two-dimensional computer model for simulating power and pressure pulses in aqueous fissile solutions has been developed. This model includes a radiolytic gas production model that tracks the number of gas bubbles produced during an excursion. An equation of state has been developed that accounts for the production of inertial pressure due to a lag in thermal expansion and the creation of radiolytic gas bubbles. In addition, a study of various reactivity feedback mechanisms occurring during nuclear bursts has been made. The model`s predicted power and pressure pulses are compared with data from the KEWB and SILENE solution pulsed reactor experiments and have produced results that closely match the experimental data and that exhibit the main features of the experimental power and pressure traces.

  8. Technical basis for environmental qualification of computer-based safety systems in nuclear power plants

    SciTech Connect

    Korsah, K.; Wood, R.T.; Tanaka, T.J.; Antonescu, C.E.

    1997-10-01

    This paper summarizes the results of research sponsored by the US Nuclear Regulatory Commission (NRC) to provide the technical basis for environmental qualification of computer-based safety equipment in nuclear power plants. This research was conducted by the Oak Ridge National Laboratory (ORNL) and Sandia National Laboratories (SNL). ORNL investigated potential failure modes and vulnerabilities of microprocessor-based technologies to environmental stressors, including electromagnetic/radio-frequency interference, temperature, humidity, and smoke exposure. An experimental digital safety channel (EDSC) was constructed for the tests. SNL performed smoke exposure tests on digital components and circuit boards to determine failure mechanisms and the effect of different packaging techniques on smoke susceptibility. These studies are expected to provide recommendations for environmental qualification of digital safety systems by addressing the following: (1) adequacy of the present preferred test methods for qualification of digital I and C systems; (2) preferred standards; (3) recommended stressors to be included in the qualification process during type testing; (4) resolution of need for accelerated aging in qualification testing for equipment that is to be located in mild environments; and (5) determination of an appropriate approach to address smoke in a qualification program.

  9. A Network Model and Computational Approach for the Mo-99 Supply Chain for Nuclear Medicine

    NASA Astrophysics Data System (ADS)

    Nagurney, Ladimer; Nagurney, Anna

    2011-11-01

    Technetium-99m, produced from the decay of Molybdenum-99, is the most commonly used radioisotope for medical imaging, specifically in cardiac and cancer diagnostics. The MO-99 is produced in a small number of reactors and is processed and distributed worldwide. We have developed a tractable network model and computational approach for the design and redesign of the MO-99 supply chains. This topic is of special relevance to medical physics given the product's widespread use and the aging of the nuclear reactors where it is produced. This generalized network model, for which we derived formulae for the arc and path multipliers that capture the underlying physics of radioisotope decay, includes total operational cost minimization, and the minimization of cost associated with nuclear waste disposal, coupled with capacity investment (or disinvestment) costs. Its solution yields the optimal link capacities as well as the optimal MO-99 flows so that demand at the medical facilities is satisfied. We illustrate the framework with a Western Hemisphere case study. The framework provides the foundation for further empirical research and the basis for the modeling and analysis of supply chain networks for other very time-sensitive medical products.

  10. GPU Based General-Purpose Parallel computing to Solve Nuclear Reactor In-Core fuel Management Design and Operation Problem

    NASA Astrophysics Data System (ADS)

    Prayudhatama, D.; Waris, A.; Kurniasih, N.; Kurniadi, R.

    2010-06-01

    In-core fuel management study is a crucial activity in nuclear power plant design and operation. Its common problem is to find an optimum arrangement of fuel assemblies inside the reactor core. Main objective for this activity is to reduce the cost of generating electricity, which can be done by altering several physical properties of the nuclear reactor without violating any of the constraints imposed by operational and safety considerations. This research try to address the problem of nuclear fuel arrangement problem, which is, leads to the multi-objective optimization problem. However, the calculation of the reactor core physical properties itself is a heavy computation, which became obstacle in solving the optimization problem by using genetic algorithm optimization. This research tends to address that problem by using the emerging General Purpose Computation on Graphics Processing Units (GPGPU) techniques implemented by C language for CUDA (Compute Unified Device Architecture) parallel programming. By using this parallel programming technique, we develop parallelized nuclear reactor fitness calculation, which is involving numerical finite difference computation. This paper describes current prototype of the parallel algorithm code we have developed on CUDA, that performs one hundreds finite difference calculation for nuclear reactor fitness evaluation in parallel by using GPU G9 Hardware Series developed by NVIDIA.

  11. GPU Based General-Purpose Parallel computing to Solve Nuclear Reactor In-Core fuel Management Design and Operation Problem

    SciTech Connect

    Prayudhatama, D.; Waris, A.; Kurniasih, N.; Kurniadi, R.

    2010-06-22

    In-core fuel management study is a crucial activity in nuclear power plant design and operation. Its common problem is to find an optimum arrangement of fuel assemblies inside the reactor core. Main objective for this activity is to reduce the cost of generating electricity, which can be done by altering several physical properties of the nuclear reactor without violating any of the constraints imposed by operational and safety considerations. This research try to address the problem of nuclear fuel arrangement problem, which is, leads to the multi-objective optimization problem. However, the calculation of the reactor core physical properties itself is a heavy computation, which became obstacle in solving the optimization problem by using genetic algorithm optimization.This research tends to address that problem by using the emerging General Purpose Computation on Graphics Processing Units (GPGPU) techniques implemented by C language for CUDA (Compute Unified Device Architecture) parallel programming. By using this parallel programming technique, we develop parallelized nuclear reactor fitness calculation, which is involving numerical finite difference computation. This paper describes current prototype of the parallel algorithm code we have developed on CUDA, that performs one hundreds finite difference calculation for nuclear reactor fitness evaluation in parallel by using GPU G9 Hardware Series developed by NVIDIA.

  12. CASPER: a computer program used for structural analysis of carbohydrates.

    PubMed

    Jansson, P E; Kenne, L; Widmalm, G

    1991-11-01

    The computer program CASPER and its algorithms are described. The program is aimed at facilitating the determination of structures of oligosaccharides and regular polysaccharides, requiring as input either the one-dimensional 1H or 13C NMR spectrum or the 2D C,H-correlation NMR spectrum together with information on components and linkages. The databases, the method of simulating spectra, options of the program, and techniques for faster calculations are described as well as an example of a structural determination.

  13. Nuclear shapes: from earliest ideas to multiple shape coexisting structures

    NASA Astrophysics Data System (ADS)

    Heyde, K.; Wood, J. L.

    2016-08-01

    The concept of the atomic nucleus being characterized by an intrinsic property such as shape came as a result of high precision hyperfine studies in the field of atomic physics, which indicated a non-spherical nuclear charge distribution. Herein, we describe the various steps taken through ingenious experimentation and bold theoretical suggestions that mapped the way for later work in the early 50s by Aage Bohr, Ben Mottelson and James Rainwater. We lay out a long and winding road that marked, in the period of 50s to 70s, the way shell-model and collective-model concepts were reconciled. A rapid increase in both accelerator and detection methods (70s towards the early 2000s) opened new vistas into nuclear shapes, and their coexistence, in various regions of the nuclear mass table. Next, we outline a possible unified view of nuclear shapes: emphasizing decisive steps taken as well as questions remaining, next to the theoretical efforts that could result in an emerging understanding of nuclear shapes, building on the nucleus considered as a strongly interacting system of nucleons as the microscopic starting point.

  14. Designing a new structure for storing nuclear data. Progress of the Working Party for Evaluation Cooperation subgroup #38

    NASA Astrophysics Data System (ADS)

    Mattoon, C. M.; Beck, B. R.

    2015-12-01

    An international effort is underway to design a new structure for storing and using nuclear reaction data, with the goal of eventually replacing the current standard, ENDF-6 (see the formats manual at http://www.nndc.bnl.gov/csewg/docs/endf-manual.pdf). This effort, organized by the Working Party for Evaluation Cooperation, was initiated in 2012 and has resulted in a list of requirements and specifications for how the proposed new structure shall perform. The new structure will take advantage of new developments in computational tools, using a nested hierarchy to store data. The structure can be stored in text form (such as an XML file) for human readability and data sharing, or it can be stored in binary to optimize data access. In this paper, we present the progress towards completing the requirements, specifications and implementation of the new structure.

  15. Computational simulation for analysis and synthesis of impact resilient structure

    NASA Astrophysics Data System (ADS)

    Djojodihardjo, Harijono

    2013-10-01

    Impact resilient structures are of great interest in many engineering applications varying from civil, land vehicle, aircraft and space structures, to mention a few examples. To design such structure, one has to resort fundamental principles and take into account progress in analytical and computational approaches as well as in material science and technology. With such perspectives, this work looks at a generic beam and plate structure subject to impact loading and carry out analysis and numerical simulation. The first objective of the work is to develop a computational algorithm to analyze flat plate as a generic structure subjected to impact loading for numerical simulation and parametric study. The analysis will be based on dynamic response analysis. Consideration is given to the elastic-plastic region. The second objective is to utilize the computational algorithm for direct numerical simulation, and as a parallel scheme, commercial off-the shelf numerical code is utilized for parametric study, optimization and synthesis. Through such analysis and numerical simulation, effort is devoted to arrive at an optimum configuration in terms of loading, structural dimensions, material properties and composite lay-up, among others. Results will be discussed in view of practical applications.

  16. Frequency response modeling and control of flexible structures: Computational methods

    NASA Technical Reports Server (NTRS)

    Bennett, William H.

    1989-01-01

    The dynamics of vibrations in flexible structures can be conventiently modeled in terms of frequency response models. For structural control such models capture the distributed parameter dynamics of the elastic structural response as an irrational transfer function. For most flexible structures arising in aerospace applications the irrational transfer functions which arise are of a special class of pseudo-meromorphic functions which have only a finite number of right half place poles. Computational algorithms are demonstrated for design of multiloop control laws for such models based on optimal Wiener-Hopf control of the frequency responses. The algorithms employ a sampled-data representation of irrational transfer functions which is particularly attractive for numerical computation. One key algorithm for the solution of the optimal control problem is the spectral factorization of an irrational transfer function. The basis for the spectral factorization algorithm is highlighted together with associated computational issues arising in optimal regulator design. Options for implementation of wide band vibration control for flexible structures based on the sampled-data frequency response models is also highlighted. A simple flexible structure control example is considered to demonstrate the combined frequency response modeling and control algorithms.

  17. Computational design of proteins with novel structure and functions

    NASA Astrophysics Data System (ADS)

    Wei, Yang; Lu-Hua, Lai

    2016-01-01

    Computational design of proteins is a relatively new field, where scientists search the enormous sequence space for sequences that can fold into desired structure and perform desired functions. With the computational approach, proteins can be designed, for example, as regulators of biological processes, novel enzymes, or as biotherapeutics. These approaches not only provide valuable information for understanding of sequence-structure-function relations in proteins, but also hold promise for applications to protein engineering and biomedical research. In this review, we briefly introduce the rationale for computational protein design, then summarize the recent progress in this field, including de novo protein design, enzyme design, and design of protein-protein interactions. Challenges and future prospects of this field are also discussed. Project supported by the National Basic Research Program of China (Grant No. 2015CB910300), the National High Technology Research and Development Program of China (Grant No. 2012AA020308), and the National Natural Science Foundation of China (Grant No. 11021463).

  18. Total Absorption Study of Beta Decays Relevant for Nuclear Applications and Nuclear Structure

    SciTech Connect

    Algora, A.; Valencia, E.; Taín, J.L.; Jordan, M.D.; Agramunt, J.; Rubio, B.; Estevez, E.; Molina, F.; Montaner, A.; Guadilla, V.; Fallot, M.; Porta, A.; Zakari-Issoufou, A.-A.; Bui, V.M.; and others

    2014-06-15

    An overview is given of our activities related to the study of the beta decay of neutron rich nuclei relevant for nuclear applications. Recent results of the study of the beta decay of {sup 87,88}Br using a new segmented total absorption spectrometer are presented. The measurements were performed at the IGISOL facility using trap-assisted total absorption spectroscopy.

  19. Total Absorption Study of Beta Decays Relevant for Nuclear Applications and Nuclear Structure

    SciTech Connect

    Algora, A.; Valencia, E.; Tain, J. L.; Jordan, M. D.; Agramunt, J.; Rubio, B.; Estevez, E.; Molina, F.; Montaner, A.; Guadilla, V.; Fallot, M.; Podolyak, Zs.; Regan, P. H.; Gelletly, W.; Bowry, M.; Mason, P.; Farrelly, G. F.; Rissanen, J.; Eronen, T.; Moore, I.; Penttila, H.; Aysto, J.; Eloma, V.; Hakala, J.; Jokinen, A.; Kolkinen, V.; Reponen, M.; Sonnenschein, V.; Cano-Ott, D.; Martinez, T.; Mendoza, E.; Garcia, A. R.; Gomez-Hornillos, M. B.; Gorlychev, V.; Caballero-Folch, R.; Kondev, F. G.; Sonzogni, A. A.

    2014-06-01

    We present an overview of our activities related to the study of the beta decay of neutron rich nuclei relevant for nuclear applications. Recent results of the study of the beta decay of Br using a new segmented total absorption spectrometer are presented. Our measurements were performed at the IGISOL facility using trap-assisted total absorption spectroscopy.

  20. Computational Complexity of Current GPSG (Generalized Phrase Structure Grammar) Theory,

    DTIC Science & Technology

    1986-04-01

    universal RP also bears most directly on issues of natural language acquisition. The language learner evidently possesses a mechanism for selecting grammmars... language acquisition, while com- putational considerations demand that the recognition problem be characterized in terms of both input string and...theory to guide the construction of computationally efficient real-world natural language processing systems. At first glance, generalized phrase structure

  1. Computational Structures Technology for Airframes and Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Housner, Jerrold M. (Compiler); Starnes, James H., Jr. (Compiler); Hopkins, Dale A. (Compiler); Chamis, Christos C. (Compiler)

    1992-01-01

    This conference publication contains the presentations and discussions from the joint University of Virginia (UVA)/NASA Workshops. The presentations included NASA Headquarters perspectives on High Speed Civil Transport (HSCT), goals and objectives of the UVA Center for Computational Structures Technology (CST), NASA and Air Force CST activities, CST activities for airframes and propulsion systems in industry, and CST activities at Sandia National Laboratory.

  2. Computer program simplifies selection of structural steel columns

    NASA Technical Reports Server (NTRS)

    Vissing, G. S.

    1966-01-01

    Computer program rapidly selects appropriate size steel columns and base plates for construction of multistory structures. The program produces a printed record containing the size of a section required at a particular elevation, the stress produced by the loads, and the allowable stresses for that section.

  3. The NASA NASTRAN structural analysis computer program - New content

    NASA Technical Reports Server (NTRS)

    Weidman, D. J.

    1978-01-01

    Capabilities of a NASA-developed structural analysis computer program, NASTRAN, are evaluated with reference to finite-element modelling. Applications include the automotive industry as well as aerospace. It is noted that the range of sub-programs within NASTRAN has expanded, while keeping user cost low.

  4. Two-Year-Olds Compute Syntactic Structure On-Line

    ERIC Educational Resources Information Center

    Bernal, Savita; Dehaene-Lambertz, Ghislaine; Millotte, Severine; Christophe, Anne

    2010-01-01

    Syntax allows human beings to build an infinite number of new sentences from a finite stock of words. Because toddlers typically utter only one or two words at a time, they have been thought to have no syntax. Using event-related potentials (ERPs), we demonstrated that 2-year-olds do compute syntactic structure when listening to spoken sentences.…

  5. Alternative Goal Structures for Computer Game-Based Learning

    ERIC Educational Resources Information Center

    Ke, Fengfeng

    2008-01-01

    This field study investigated the application of cooperative, competitive, and individualistic goal structures in classroom use of computer math games and its impact on students' math performance and math learning attitudes. One hundred and sixty 5th-grade students were recruited and randomly assigned to Teams-Games-Tournament cooperative gaming,…

  6. Cardiac nuclear receptors: architects of mitochondrial structure and function.

    PubMed

    Vega, Rick B; Kelly, Daniel P

    2017-04-03

    The adult heart is uniquely designed and equipped to provide a continuous supply of energy in the form of ATP to support persistent contractile function. This high-capacity energy transduction system is the result of a remarkable surge in mitochondrial biogenesis and maturation during the fetal-to-adult transition in cardiac development. Substantial evidence indicates that nuclear receptor signaling is integral to dynamic changes in the cardiac mitochondrial phenotype in response to developmental cues, in response to diverse postnatal physiologic conditions, and in disease states such as heart failure. A subset of cardiac-enriched nuclear receptors serve to match mitochondrial fuel preferences and capacity for ATP production with changing energy demands of the heart. In this Review, we describe the role of specific nuclear receptors and their coregulators in the dynamic control of mitochondrial biogenesis and energy metabolism in the normal and diseased heart.

  7. Computational tools for experimental determination and theoretical prediction of protein structure

    SciTech Connect

    O`Donoghue, S.; Rost, B.

    1995-12-31

    This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. The authors intend to review the state of the art in the experimental determination of protein 3D structure (focus on nuclear magnetic resonance), and in the theoretical prediction of protein function and of protein structure in 1D, 2D and 3D from sequence. All the atomic resolution structures determined so far have been derived from either X-ray crystallography (the majority so far) or Nuclear Magnetic Resonance (NMR) Spectroscopy (becoming increasingly more important). The authors briefly describe the physical methods behind both of these techniques; the major computational methods involved will be covered in some detail. They highlight parallels and differences between the methods, and also the current limitations. Special emphasis will be given to techniques which have application to ab initio structure prediction. Large scale sequencing techniques increase the gap between the number of known proteins sequences and that of known protein structures. They describe the scope and principles of methods that contribute successfully to closing that gap. Emphasis will be given on the specification of adequate testing procedures to validate such methods.

  8. Symmetry-Adapted Ab Initio Shell Model for Nuclear Structure Calculations

    NASA Astrophysics Data System (ADS)

    Draayer, J. P.; Dytrych, T.; Launey, K. D.; Langr, D.

    2012-05-01

    An innovative concept, the symmetry-adapted ab initio shell model, that capitalizes on partial as well as exact symmetries that underpin the structure of nuclei, is discussed. This framework is expected to inform the leading features of nuclear structure and reaction data for light and medium mass nuclei, which are currently inaccessible by theory and experiment and for which predictions of modern phenomenological models often diverge. We use powerful computational and group-theoretical algorithms to perform ab initio CI (configuration-interaction) calculations in a model space spanned by SU(3) symmetry-adapted many-body configurations with the JISP16 nucleon-nucleon interaction. We demonstrate that the results for the ground states of light nuclei up through A = 16 exhibit a strong dominance of low-spin and high-deformation configurations together with an evident symplectic structure. This, in turn, points to the importance of using a symmetry-adapted framework, one based on an LS coupling scheme with the associated spatial configurations organized according to deformation.

  9. Studies on Nuclear Astrophysics and Exotic Structure at the Low-Energy RI Beam Facility CRIB

    NASA Astrophysics Data System (ADS)

    Yamaguchi, H.; Kahl, D.; Hayakawa, S.; Sakaguchi, Y.; Nakao, T.; Wakabayashi, Y.; Hashimoto, T.; Teranishi, T.; Kubono, S.; Cherubini, S.; Mazzocco, M.; Signorini, C.; Gulino, M.; Di Pietro, A.; Figuera, P.; La Cognata, M.; Lattuada, M.; Spitaleri, C.; Torresi, D.; Lee, P. S.; Lee, C. S.; Komatsubara, T.; Iwasa, N.; Okoda, Y.; Pierroutsakou, D.; Parascandolo, C.; La Commara, M.; Strano, E.; Boiano, C.; Boiano, A.; Manea, C.; Sánchez-Benítez, A. M.; Miyatake, H.; Watanabe, Y. X.; Ishiyama, H.; Jeong, S. C.; Imai, N.; Hirayama, Y.; Kimura, S.; Mukai, M.; Kim, Y. H.; Lin, C. J.; Jia, H. M.; Yan, L.; Yang, Y. Y.; Kawabata, T.; Kwon, Y. K.; Binh, D. N.; Khiem, L. H.; Duy, N. N.

    Studies on nuclear astrophysics, resonant structure, and nuclear reaction are going on at CRIB (CNS Radioactive Ion Beam separator), a low-energy RI beam separator operated by Center for Nuclear Study (CNS), the University of Tokyo. Two major methods used at CRIB to study nuclear reactions of astrophysical relevance are the resonant scattering, and direct measurements of (α,p) reactions using a thick-gas target. Several experiments for decay measurements and reaction mechanism are also performed using low-energy RI beams at CRIB. Some of the results from recent experiments at CRIB are discussed.

  10. OVERVIEW OF DEVELOPMENT OF P-CARES: PROBABILISTIC COMPUTER ANALYSIS FOR RAPID EVALUATION OF STRUCTURES.

    SciTech Connect

    NIE,J.; XU, J.; COSTANTINO, C.; THOMAS, V.

    2007-08-01

    Brookhaven National Laboratory (BNL) undertook an effort to revise the CARES (Computer Analysis for Rapid Evaluation of Structures) program under the auspices of the US Nuclear Regulatory Commission (NRC). The CARES program provided the NRC staff a capability to quickly check the validity and/or accuracy of the soil-structure interaction (SSI) models and associated data received from various applicants. The aim of the current revision was to implement various probabilistic simulation algorithms in CARES (referred hereinafter as P-CARES [1]) for performing the probabilistic site response and soil-structure interaction (SSI) analyses. This paper provides an overview of the development process of P-CARES, including the various probabilistic simulation techniques used to incorporate the effect of site soil uncertainties into the seismic site response and SSI analyses and an improved graphical user interface (GUI).

  11. Insight into the structure and stability of Tc and Re DMSA complexes: A computational study.

    PubMed

    Hernández-Valdés, Daniel; Blanco-González, Alejandro; García-Fleitas, Ariel; Rodríguez-Riera, Zalua; Meola, Giuseppe; Alberto, Roger; Jáuregui-Haza, Ulises

    2017-01-01

    Meso-2,3-dimercaptosuccinic acid (DMSA) is used in nuclear medicine as ligand for preparation of diagnostic and therapy radiopharmaceuticals. DMSA has been the subject of numerous investigations during the past three decades and new and significant information of the chemistry and pharmacology of DMSA complexes have emerged. In comparison to other ligands, the structure of some DMSA complexes is unclear up today. The structures and applications of DMSA complexes are strictly dependent on the chemical conditions of their preparation, especially pH and components ratio. A computational study of M-DMSA (M=Tc, Re) complexes has been performed using density functional theory. Different isomers for M(V) and M(III) complexes were studied. The pH influence over ligand structures was taken into account and the solvent effect was evaluated using an implicit solvation model. The fully optimized complex syn-endo Re((V))-DMSA shows a geometry similar to the X-ray data and was used to validate the methodology. Moreover, new alternative structures for the renal agent (99m)Tc((III))-DMSA were proposed and computationally studied. For two complex structures, a larger stability respect to that proposed in the literature was obtained. Furthermore, Tc((V))-DMSA complexes are more stable than Tc((III))-DMSA proposed structures. In general, Re complexes are more stable than the corresponding Tc ones.

  12. XOQDOQ: computer program for the meteorological evaluation of routine effluent releases at nuclear power stations. Final report

    SciTech Connect

    Sagendorf, J.F.; Goll, J.T.; Sandusky, W.F.

    1982-09-01

    Provided is a user's guide for the US Nuclear Regulatory Commission's (NRC) computer program X0QDOQ which implements Regulatory Guide 1.111. This NUREG supercedes NUREG-0324 which was published as a draft in September 1977. This program is used by the NRC meteorology staff in their independent meteorological evaluation of routine or anticipated intermittent releases at nuclear power stations. It operates in a batch input mode and has various options a user may select. Relative atmospheric dispersion and deposition factors are computed for 22 specific distances out to 50 miles from the site for each directional sector. From these results, values for 10 distance segments are computed. The user may also select other locations for which atmospheric dispersion deposition factors are computed. Program features, including required input data and output results, are described. A program listing and test case data input and resulting output are provided.

  13. [Computer volume reconstruction of the anatomical structure of the brain].

    PubMed

    Aĭvazian, A R; Budantsev, A Iu; Smolianinov, V V

    2003-01-01

    The possibility of constructing three-dimensional computer models of the brain and intrabrain structures on the basis of stereotaxic atlases for calculating the geometry of structures and modeling stereotaxic operations was considered. A special program (Contour-1) was developed on the basis of the Kristiansen-Zedenberg's and Ganapatchi-Denechi algorithms with the use of the OpenGL library. Some problems were revealed, which do not allow one to construct three-dimensional models of the geometry of intrabrain structures (breaks between the sections of the brain, insufficient accuracy of the alignment of the images of sections relative one another, etc.).

  14. Structural mode significance using INCA. [Interactive Controls Analysis computer program

    NASA Technical Reports Server (NTRS)

    Bauer, Frank H.; Downing, John P.; Thorpe, Christopher J.

    1990-01-01

    Structural finite element models are often too large to be used in the design and analysis of control systems. Model reduction techniques must be applied to reduce the structural model to manageable size. In the past, engineers either performed the model order reduction by hand or used distinct computer programs to retrieve the data, to perform the significance analysis and to reduce the order of the model. To expedite this process, the latest version of INCA has been expanded to include an interactive graphical structural mode significance and model order reduction capability.

  15. Computer-aided structural design of a lunar radio telescope

    NASA Technical Reports Server (NTRS)

    Akgul, Ferhat; Gerstle, Walter H.; Johnson, Stewart W.

    1990-01-01

    This paper describes a computer-aided structural design of the main reflector of a fully steerable radio telescope to be located (in the 21st century) on the moon, and presents the results of the structural analysis of the reflector. The reflector is a paraboloid with a surface area of 12,660 sq m and a focal ratio of 0.42. The reflector's surface will be covered by a 5.08 cm-thick sandwich panel made of thin-walled aluminum cells filled with low-density foam. The low weight of the design will be achieved by using graphite-epoxy as the structural material.

  16. Network Computing Infrastructure to Share Tools and Data in Global Nuclear Energy Partnership

    NASA Astrophysics Data System (ADS)

    Kim, Guehee; Suzuki, Yoshio; Teshima, Naoya

    CCSE/JAEA (Center for Computational Science and e-Systems/Japan Atomic Energy Agency) integrated a prototype system of a network computing infrastructure for sharing tools and data to support the U.S. and Japan collaboration in GNEP (Global Nuclear Energy Partnership). We focused on three technical issues to apply our information process infrastructure, which are accessibility, security, and usability. In designing the prototype system, we integrated and improved both network and Web technologies. For the accessibility issue, we adopted SSL-VPN (Security Socket Layer-Virtual Private Network) technology for the access beyond firewalls. For the security issue, we developed an authentication gateway based on the PKI (Public Key Infrastructure) authentication mechanism to strengthen the security. Also, we set fine access control policy to shared tools and data and used shared key based encryption method to protect tools and data against leakage to third parties. For the usability issue, we chose Web browsers as user interface and developed Web application to provide functions to support sharing tools and data. By using WebDAV (Web-based Distributed Authoring and Versioning) function, users can manipulate shared tools and data through the Windows-like folder environment. We implemented the prototype system in Grid infrastructure for atomic energy research: AEGIS (Atomic Energy Grid Infrastructure) developed by CCSE/JAEA. The prototype system was applied for the trial use in the first period of GNEP.

  17. A combined nuclear magnetic resonance and computational study of monohydroxyflavones applied to product ion mass spectra.

    PubMed

    Burns, Darcy C; Ellis, David A; Li, Hongxia; Lewars, Errol G; March, Raymond E

    2007-01-01

    A method is presented for the estimation of 13C-chemical shifts for carbon atoms in protonated and deprotonated molecules; in principle, this method can be applied to ions in general. Experimental 13C-chemical shifts were found to vary linearly with computed atomic charges using the PM3 method. Pseudo-13C-chemical shifts for atoms in protonated and deprotonated molecules can be estimated from computed atomic charges for such atoms using the above linear relationship. The pseudo-13C-chemical shifts obtained were applied to the rationalization of product ion mass spectra of protonated and deprotonated molecules of flavone and 3-, 5-, 6-, 7-, 2'-, 3'-, and 4'-hydroxyflavones, where product ion formation is due to either cross-ring cleavage of the C-ring (retro-Diels-Alder reaction) or to cleavage of a C-ring bond followed by loss of either a small neutral molecule or a radical. The total product ion abundance ratio of C-ring cross cleavage to C-ring bond cleavage, gamma, varied by a factor of 660 for deprotonated monohydroxyflavones, i.e., from 0.014:1 to 9.27:1. The magnitude of gamma, which is dependent on the relative bond orders within the C-ring of the protonated and deprotonated molecules of monohydroxyflavones, can be rationalized on the basis of the magnitudes of the 13C- and 1H-chemical shifts as determined by nuclear magnetic resonance spectroscopy.

  18. Nuclear Motion Driven Ultrafast Photodissociative Charge Transfer of the PENNA Cation: An Experimental and Computational Study.

    PubMed

    Sun, Shoutian; Mignolet, Benoit; Fan, Lin; Li, Wen; Levine, Raphael D; Remacle, Francoise

    2017-02-23

    Ultrafast nuclear driven charge transfer prior to dissociation is an important process in modular systems as was demonstrated experimentally in the bifunctional molecule 2-phenylethyl-N,N-dimethylamine (PENNA) in work by Lehr et al. ( J. Phys. Chem. A 2005 , 109 , 8074 ). The ultrafast dynamics of PENNA photoexcited to the three lowest electronic states of the cation (D0, D1, and D2) was studied using quantum chemistry and surface hoping. We show that a conical intersection, localized in the Franck-Condon region, between the D0 and the D1 states, leads to an ultrafast charge transfer, computed here to be on a time scale of 65 fs, between the phenyl and the amine charged subunits. On the D0 ground state, the dissociation proceeds on the 60 ps time scale through a 19 kcal/mol late barrier. The computed kinetic energy release is in good agreement with a new experimental measurement of PENNA ionization by an 800 nm 30 fs intense laser pulse.

  19. "Parking-garage" structures in nuclear astrophysics and cellular biophysics

    NASA Astrophysics Data System (ADS)

    Berry, D. K.; Caplan, M. E.; Horowitz, C. J.; Huber, Greg; Schneider, A. S.

    2016-11-01

    A striking shape was recently observed for the endoplasmic reticulum, a cellular organelle consisting of stacked sheets connected by helical ramps [Terasaki et al., Cell 154, 285 (2013), 10.1016/j.cell.2013.06.031]. This shape is interesting both for its biological function, to synthesize proteins using an increased surface area for ribosome factories, and its geometric properties that may be insensitive to details of the microscopic interactions. In the present work, we find very similar shapes in our molecular dynamics simulations of the nuclear pasta phases of dense nuclear matter that are expected deep in the crust of neutron stars. There are dramatic differences between nuclear pasta and terrestrial cell biology. Nuclear pasta is 14 orders of magnitude denser than the aqueous environs of the cell nucleus and involves strong interactions between protons and neutrons, while cellular-scale biology is dominated by the entropy of water and complex assemblies of biomolecules. Nonetheless, the very similar geometry suggests both systems may have similar coarse-grained dynamics and that the shapes are indeed determined by geometrical considerations, independent of microscopic details. Many of our simulations self-assemble into flat sheets connected by helical ramps. These ramps may impact the thermal and electrical conductivities, viscosity, shear modulus, and breaking strain of neutron star crust. The interaction we use, with Coulomb frustration, may provide a simple model system that reproduces many biologically important shapes.

  20. [Structure and Function of the Nuclear Receptor Constitutive Androstane Receptor].

    PubMed

    Inouye, Yoshio

    2016-01-01

    Animal defense mechanisms against both endogenous and exogenous toxic compounds function mainly through receptor-type transcription factors, including the constitutive androstane receptor (CAR). Following xenobiotic stimulation, CAR translocates into the nucleus and transactivates its target genes including oxygenic and conjugative enzymes and transporters in hepatocytes. We identified subcellular localization signals in the rat CAR: two nuclear localization signals (NLS1 and 2); two nuclear export signals (NES1 and 2); and a cytoplasmic retention region. The nuclear import of CAR is regulated by the importin-Ran system and microtubule network. Five splice variants (SV1-5) were identified in rat liver in addition to wild-type CAR. When expressed in immortalized cells, their artificial transcripts were inactive as transcription factors. A CAR mutant with three consecutive alanine residues inserted into the ligand-binding domain of CAR showed ligand-dependent activation of target genes in immortalized cells, which is in marked contrast to the constitutive transactivating nature of wild-type CAR. Using this assay system, androstenol and clotrimazole, both of which are inverse agonists of CAR, were classified as an antagonist and weak agonist, respectively. A member of the DEAD box DNA/RNA helicase family (DP97) and protein arginine methyltransferase 5 (PRMT5) were found to be gene (or promotor)-specific coactivators of CAR. The expression of the CAR gene might be under the control of clock genes mediated by the nuclear receptor Rev-erb-α.

  1. Nuclear Magnetic Resonance Coupling Constants and Electronic Structure in Molecules.

    ERIC Educational Resources Information Center

    Venanzi, Thomas J.

    1982-01-01

    Theory of nuclear magnetic resonance spin-spin coupling constants and nature of the three types of coupling mechanisms contributing to the overall spin-spin coupling constant are reviewed, including carbon-carbon coupling (neither containing a lone pair of electrons) and carbon-nitrogen coupling (one containing a lone pair of electrons).…

  2. Assessment of Titanium Aluminide Alloys for High-Temperature Nuclear Structural Applications

    NASA Astrophysics Data System (ADS)

    Zhu, Hanliang; Wei, Tao; Carr, David; Harrison, Robert; Edwards, Lyndon; Hoffelner, Wolfgang; Seo, Dongyi; Maruyama, Kouichi

    2012-12-01

    Titanium aluminide (TiAl) alloys exhibit high specific strength, low density, good oxidation, corrosion, and creep resistance at elevated temperatures, making them good candidate materials for aerospace and automotive applications. TiAl alloys also show excellent radiation resistance and low neutron activation, and they can be developed to have various microstructures, allowing different combinations of properties for various extreme environments. Hence, TiAl alloys may be used in advanced nuclear systems as high-temperature structural materials. Moreover, TiAl alloys are good materials to be used for fundamental studies on microstructural effects on irradiation behavior of advanced nuclear structural materials. This article reviews the microstructure, creep, radiation, and oxidation properties of TiAl alloys in comparison with other nuclear structural materials to assess the potential of TiAl alloys as candidate structural materials for future nuclear applications.

  3. Mechanistic Insights from Structural Analyses of Ran-GTPase-Driven Nuclear Export of Proteins and RNAs.

    PubMed

    Matsuura, Yoshiyuki

    2016-05-22

    Understanding how macromolecules are rapidly exchanged between the nucleus and the cytoplasm through nuclear pore complexes is a fundamental problem in biology. Exportins are Ran-GTPase-dependent nuclear transport factors that belong to the karyopherin-β family and mediate nuclear export of a plethora of proteins and RNAs, except for bulk mRNA nuclear export. Exportins bind cargo macromolecules in a Ran-GTP-dependent manner in the nucleus, forming exportin-cargo-Ran-GTP complexes (nuclear export complexes). Transient weak interactions between exportins and nucleoporins containing characteristic FG (phenylalanine-glycine) repeat motifs facilitate nuclear pore complex passage of nuclear export complexes. In the cytoplasm, nuclear export complexes are disassembled, thereby releasing the cargo. GTP hydrolysis by Ran promoted in the cytoplasm makes the disassembly reaction virtually irreversible and provides thermodynamic driving force for the overall export reaction. In the past decade, X-ray crystallography of some of the exportins in various functional states coupled with functional analyses, single-particle electron microscopy, molecular dynamics simulations, and small-angle solution X-ray scattering has provided rich insights into the mechanism of cargo binding and release and also begins to elucidate how exportins interact with the FG repeat motifs. The knowledge gained from structural analyses of nuclear export is being translated into development of clinically useful inhibitors of nuclear export to treat human diseases such as cancer and influenza.

  4. Computer-based procedure for field activities: Results from three evaluations at nuclear power plants

    SciTech Connect

    Oxstrand, Johanna; bly, Aaron; LeBlanc, Katya

    2014-09-01

    Nearly all activities that involve human interaction with the systems of a nuclear power plant are guided by procedures. The paper-based procedures (PBPs) currently used by industry have a demonstrated history of ensuring safety; however, improving procedure use could yield tremendous savings in increased efficiency and safety. One potential way to improve procedure-based activities is through the use of computer-based procedures (CBPs). Computer-based procedures provide the opportunity to incorporate context driven job aids, such as drawings, photos, just-in-time training, etc into CBP system. One obvious advantage of this capability is reducing the time spent tracking down the applicable documentation. Additionally, human performance tools can be integrated in the CBP system in such way that helps the worker focus on the task rather than the tools. Some tools can be completely incorporated into the CBP system, such as pre-job briefs, placekeeping, correct component verification, and peer checks. Other tools can be partly integrated in a fashion that reduces the time and labor required, such as concurrent and independent verification. Another benefit of CBPs compared to PBPs is dynamic procedure presentation. PBPs are static documents which limits the degree to which the information presented can be tailored to the task and conditions when the procedure is executed. The CBP system could be configured to display only the relevant steps based on operating mode, plant status, and the task at hand. A dynamic presentation of the procedure (also known as context-sensitive procedures) will guide the user down the path of relevant steps based on the current conditions. This feature will reduce the user’s workload and inherently reduce the risk of incorrectly marking a step as not applicable and the risk of incorrectly performing a step that should be marked as not applicable. As part of the Department of Energy’s (DOE) Light Water Reactors Sustainability Program

  5. Blind trials of computer-assisted structure elucidation software

    PubMed Central

    2012-01-01

    Background One of the largest challenges in chemistry today remains that of efficiently mining through vast amounts of data in order to elucidate the chemical structure for an unknown compound. The elucidated candidate compound must be fully consistent with the data and any other competing candidates efficiently eliminated without doubt by using additional data if necessary. It has become increasingly necessary to incorporate an in silico structure generation and verification tool to facilitate this elucidation process. An effective structure elucidation software technology aims to mimic the skills of a human in interpreting the complex nature of spectral data while producing a solution within a reasonable amount of time. This type of software is known as computer-assisted structure elucidation or CASE software. A systematic trial of the ACD/Structure Elucidator CASE software was conducted over an extended period of time by analysing a set of single and double-blind trials submitted by a global audience of scientists. The purpose of the blind trials was to reduce subjective bias. Double-blind trials comprised of data where the candidate compound was unknown to both the submitting scientist and the analyst. The level of expertise of the submitting scientist ranged from novice to expert structure elucidation specialists with experience in pharmaceutical, industrial, government and academic environments. Results Beginning in 2003, and for the following nine years, the algorithms and software technology contained within ACD/Structure Elucidator have been tested against 112 data sets; many of these were unique challenges. Of these challenges 9% were double-blind trials. The results of eighteen of the single-blind trials were investigated in detail and included problems of a diverse nature with many of the specific challenges associated with algorithmic structure elucidation such as deficiency in protons, structure symmetry, a large number of heteroatoms and poor quality

  6. Control mechanism of double-rotator-structure ternary optical computer

    NASA Astrophysics Data System (ADS)

    Kai, SONG; Liping, YAN

    2017-03-01

    Double-rotator-structure ternary optical processor (DRSTOP) has two characteristics, namely, giant data-bits parallel computing and reconfigurable processor, which can handle thousands of data bits in parallel, and can run much faster than computers and other optical computer systems so far. In order to put DRSTOP into practical application, this paper established a series of methods, namely, task classification method, data-bits allocation method, control information generation method, control information formatting and sending method, and decoded results obtaining method and so on. These methods form the control mechanism of DRSTOP. This control mechanism makes DRSTOP become an automated computing platform. Compared with the traditional calculation tools, DRSTOP computing platform can ease the contradiction between high energy consumption and big data computing due to greatly reducing the cost of communications and I/O. Finally, the paper designed a set of experiments for DRSTOP control mechanism to verify its feasibility and correctness. Experimental results showed that the control mechanism is correct, feasible and efficient.

  7. Distributed computer taxonomy based on O/S structure

    NASA Technical Reports Server (NTRS)

    Foudriat, Edwin C.

    1985-01-01

    The taxonomy considers the resource structure at the operating system level. It compares a communication based taxonomy with the new taxonomy to illustrate how the latter does a better job when related to the client's view of the distributed computer. The results illustrate the fundamental features and what is required to construct fully distributed processing systems. The problem of using network computers on the space station is addressed. A detailed discussion of the taxonomy is not given here. Information is given in the form of charts and diagrams that were used to illustrate a talk.

  8. Kaposi's sarcoma-associated herpesvirus polyadenylated nuclear RNA: a structural scaffold for nuclear, cytoplasmic and viral proteins.

    PubMed

    Sztuba-Solinska, Joanna; Rausch, Jason W; Smith, Rodman; Miller, Jennifer T; Whitby, Denise; Le Grice, Stuart F J

    2017-04-05

    Kaposi's sarcoma-associated herpes virus (KSHV) polyadenylated nuclear (PAN) RNA facilitates lytic infection, modulating the cellular immune response by interacting with viral and cellular proteins and DNA. Although a number nucleoprotein interactions involving PAN have been implicated, our understanding of binding partners and PAN RNA binding motifs remains incomplete. Herein, we used SHAPE-mutational profiling (SHAPE-MaP) to probe PAN in its nuclear, cytoplasmic or viral environments or following cell/virion lysis and removal of proteins. We thus characterized and put into context discrete RNA structural elements, including the cis-acting Mta responsive element and expression and nuclear retention element (1,2). By comparing mutational profiles in different biological contexts, we identified sites on PAN either protected from chemical modification by protein binding or characterized by a loss of structure. While some protein binding sites were selectively localized, others were occupied in all three biological contexts. Individual binding sites of select KSHV gene products on PAN RNA were also identified in in vitro experiments. This work constitutes the most extensive structural characterization of a viral lncRNA and interactions with its protein partners in discrete biological contexts, providing a broad framework for understanding the roles of PAN RNA in KSHV infection.

  9. Development of the NPL gamma-ray spectrometer NANA for traceable nuclear decay and structure studies.

    PubMed

    Lorusso, G; Shearman, R; Regan, P H; Judge, S M; Bell, S; Collins, S M; Larijani, C; Ivanov, P; Jerome, S M; Keightley, J D; Lalkovski, S; Pearce, A K; Podolyak, Zs

    2016-03-01

    We present a brief report on the progress towards the construction of the National Nuclear Array (NANA), a gamma-ray coincidence spectrometer for discrete-line nuclear structure and decay measurements. The proposed spectrometer will combine a gamma-ray energy resolution of approximately 3% at 1MeV with sub-nanosecond timing discrimination between successive gamma rays in mutually coincident decay cascades. We also review a number of recent measurements using coincidence fast-timing gamma-ray spectroscopy for nuclear structure studies, which have helped to inform the design criteria for the NANA spectrometer.

  10. Applications of a global nuclear-structure model to studies of the heaviest elements

    SciTech Connect

    Moeller, P.; Nix, J.R.

    1993-10-01

    We present some new results on heavy-element nuclear-structure properties calculated on the basis of the finite-range droplet model and folded-Yukawa single-particle potential. Specifically, we discuss calculations of nuclear ground-state masses and microscopic corrections, {alpha}-decay properties, {beta}-decay properties, fission potential-energy surfaces, and spontaneous-fission half-lives. These results, obtained in a global nuclear-structure approach, are particularly reliable for describing the stability properties of the heaviest elements.

  11. Co-ordination of the International Network of Nuclear Structure and Decay Data Evaluators

    SciTech Connect

    Ricard-McCutchan, E.; Dimitriou, P.; Nichols, A. L.

    2015-08-01

    The 21st meeting of the International Network of Nuclear Structure and Decay Data Evaluators was convened at the IAEA Headquarters, Vienna, from 20 to 24 April 2015 under the auspices of the IAEA Nuclear Data Section. This meeting was attended by 36 scientists from 15 Member States, plus IAEA staff, concerned with the compilation, evaluation and dissemination of nuclear structure and decay data. A summary of the meeting, data centre reports, various proposals considered, and actions agreed by the participants, as well as recommendations/conclusions are presented within this document.

  12. Synthesis, crystal structure and computational studies of 4-nitrobenzylphosphonic acid

    NASA Astrophysics Data System (ADS)

    Wilk, Magdalena; Jarzembska, Katarzyna N.; Janczak, Jan; Hoffmann, Józef; Videnova-Adrabinska, Veneta

    2014-09-01

    4-Nitrobenzylphosphonic acid (1a) has been synthesized and structurally characterized by vibrational spectroscopy (IR and Raman) and single-crystal X-ray diffraction. Additionally, Hirshfeld surface analysis and computational methods have been used to compare the intermolecular interactions in the crystal structures of 1a and its carboxylic analogue, 4-nitrobenzylcarboxylic acid (4-NBCA). The crystal structure analysis of 1a has revealed that the acid molecules are extended into helical chains along the b axis using one of the hydrogen bonds established between phosphonic groups. The second (P)Osbnd H⋯O(P) hydrogen bond cross-links the inversion-related chains to form a thick monolayer with phosphonic groups arranged inwards and aromatic rings outwards. The nitro groups serve to link the neighbouring monolayers by weak Csbnd H⋯O(N) hydrogen bonds. Computations have confirmed the great contribution of electrostatic interactions for the crystal lattice stability. The cohesive energy, computed for the crystal structure of 1a exceeds 200 kJ mol-1 in magnitude and is nearly twice as large as that of 4-NBCA. The calculated cohesive energy values have been further related to the results of thermal analyses.

  13. Computational simulation of acoustic fatigue for hot composite structures

    NASA Technical Reports Server (NTRS)

    Singhal, Surendra N.; Murthy, Pappu L. N.; Chamis, Christos C.; Nagpal, Vinod K.; Sutjahjo, Edhi

    1991-01-01

    Predictive methods/computer codes for the computational simulation of acoustic fatigue resistance of hot composite structures subjected to acoustic excitation emanating from an adjacent vibrating component are discussed. Select codes developed over the past two decades at the NASA Lewis Research Center are used. The codes include computation of acoustic noise generated from a vibrating component, degradation in material properties of a composite laminate at use temperature, dynamic response of acoustically excited hot multilayered composite structure, degradation in the first ply strength of the excited structure due to acoustic loading, and acoustic fatigue resistance of the excited structure, including the propulsion environment. Effects of the laminate lay-up and environment on the acoustic fatigue life are evaluated. The results show that, by keeping the angled plies on the outer surface of the laminate, a substantial increase in the acoustic fatigue life is obtained. The effect of environment (temperature and moisture) is to relieve the residual stresses leading to an increase in the acoustic fatigue life of the excited panel.

  14. Structural studies of RNA-protein complexes: A hybrid approach involving hydrodynamics, scattering, and computational methods.

    PubMed

    Patel, Trushar R; Chojnowski, Grzegorz; Astha; Koul, Amit; McKenna, Sean A; Bujnicki, Janusz M

    2016-12-08

    The diverse functional cellular roles played by ribonucleic acids (RNA) have emphasized the need to develop rapid and accurate methodologies to elucidate the relationship between the structure and function of RNA. Structural biology tools such as X-ray crystallography and Nuclear Magnetic Resonance are highly useful methods to obtain atomic-level resolution models of macromolecules. However, both methods have sample, time, and technical limitations that prevent their application to a number of macromolecules of interest. An emerging alternative to high-resolution structural techniques is to employ a hybrid approach that combines low-resolution shape information about macromolecules and their complexes from experimental hydrodynamic (e.g. analytical ultracentrifugation) and solution scattering measurements (e.g., solution X-ray or neutron scattering), with computational modeling to obtain atomic-level models. While promising, scattering methods rely on aggregation-free, monodispersed preparations and therefore the careful development of a quality control pipeline is fundamental to an unbiased and reliable structural determination. This review article describes hydrodynamic techniques that are highly valuable for homogeneity studies, scattering techniques useful to study the low-resolution shape, and strategies for computational modeling to obtain high-resolution 3D structural models of RNAs, proteins, and RNA-protein complexes.

  15. Crustal structure in Nevada and southern Idaho from nuclear explosions

    USGS Publications Warehouse

    Pakiser, L.C.; Hill, D.P.

    1962-01-01

    The time of first arrival of seismic waves generated by 4 underground nuclear explosions at the Nevada Test Site (NTS) and recorded along a line extending north into southern Idaho is expressed as T0 = 0. 00 + Δ/3.0 (assumed), T1 = 0 .40 + Δ/6.03, and T2 = 6.15 + Δ/7.84, where time is in seconds and the shot-detector distance (Δ) is in km. Assuming constant velocities and horizontal layers, crustal thickness in the vicinity of NTS was determined to be 28 km. Delays in the traveltime segment T2, which represents Pn, indicate that the crust may thicken to 32 km in northern Nevada. A third phase, expressed as T3 = 14.48 + Δ/7.84, was also recognized and has arrival times appropriate for SPS. Amplitudes of Pn were determined at 7 places from recordings of seismic waves from one underground nuclear explosion (ANTLER).

  16. Correlations in nuclear observables: Towards a synthesis of structural evolution

    SciTech Connect

    Casten, R.F.; Zamfir, N.V. ||; Brenner, D.S.

    1993-08-01

    Global plots of simple nuclear observables reveal new correlations that are compact and universal. These correlations highlight the behavior of ``deviant`` nuclei, disclosing the presence of degrees of freedom not otherwise visible. Correlations of yrast energies show that nearly all nuclei fall into a tripartite classification of seniority, anharmonic vibrator and rotor regimes. These regimes are connected by rapidly evolving zones showing critical phase transitional behavior.

  17. Nuclear structure studies with INGA coupled to a fast DDAQ

    SciTech Connect

    Palit, R.

    2014-08-14

    Studies of different types of nuclear excitation and isomers remain the main thrust area of the last experimental campaign using INGA at TIFR-BARC Pelletron Linac Facility at Mumbai. A digital data acquisition system has been coupled with the INGA which has improved the data throughput and better gain stability. About forty experiments that have been proposed in this experimental campaign. Selected results from these experiments will be discussed.

  18. Achievements and challenges in structural bioinformatics and computational biophysics

    PubMed Central

    Samish, Ilan; Bourne, Philip E.; Najmanovich, Rafael J.

    2015-01-01

    Motivation: The field of structural bioinformatics and computational biophysics has undergone a revolution in the last 10 years. Developments that are captured annually through the 3DSIG meeting, upon which this article reflects. Results: An increase in the accessible data, computational resources and methodology has resulted in an increase in the size and resolution of studied systems and the complexity of the questions amenable to research. Concomitantly, the parameterization and efficiency of the methods have markedly improved along with their cross-validation with other computational and experimental results. Conclusion: The field exhibits an ever-increasing integration with biochemistry, biophysics and other disciplines. In this article, we discuss recent achievements along with current challenges within the field. Contact: Rafael.Najmanovich@USherbrooke.ca PMID:25488929

  19. THE AIMS AND ACTIVITIES OF THE INTERNATIONAL NETWORK OF NUCLEAR STRUCTURE AND DECAY DATA EVALUATORS.

    SciTech Connect

    NICHOLS,A.L.; TULI, J.K.

    2007-04-22

    International Network of Nuclear Structure and Decay Data (NSDD) Evaluators consists of a number of evaluation groups and data service centers in several countries that appreciate the merits of working together to maintain and ensure the quality and comprehensive content of the ENSDF database (Evaluated Nuclear Structure Data File). Biennial meetings of the network are held under the auspices of the International Atomic Energy Agency (IAEA) to assign evaluation responsibilities, monitor progress, discuss improvements and emerging difficulties, and agree on actions to be undertaken by individual members. The evaluated data and bibliographic details are made available to users via various media, such as the journals ''Nuclear Physics A'' and ''Nuclear Data Sheets'', the World Wide Web, on CD-ROM, wall charts of the nuclides and ''Nuclear Wallet Cards''. While the ENSDF master database is maintained by the US National Nuclear Data Center at the Brookhaven National Laboratory, these data are also available from other nuclear data centers including the IAEA Nuclear Data Section. The Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy, in cooperation with the IAEA, organizes workshops on NSDD at regular intervals. The primary aims of these particular workshops are to provide hands-on training in the data evaluation processes, and to encourage new evaluators to participate in NSDD activities. The technical contents of these NSDD workshops are described, along with the rationale for the inclusion of various topics.

  20. A mechanism for the cortical computation of hierarchical linguistic structure.

    PubMed

    Martin, Andrea E; Doumas, Leonidas A A

    2017-03-01

    Biological systems often detect species-specific signals in the environment. In humans, speech and language are species-specific signals of fundamental biological importance. To detect the linguistic signal, human brains must form hierarchical representations from a sequence of perceptual inputs distributed in time. What mechanism underlies this ability? One hypothesis is that the brain repurposed an available neurobiological mechanism when hierarchical linguistic representation became an efficient solution to a computational problem posed to the organism. Under such an account, a single mechanism must have the capacity to perform multiple, functionally related computations, e.g., detect the linguistic signal and perform other cognitive functions, while, ideally, oscillating like the human brain. We show that a computational model of analogy, built for an entirely different purpose-learning relational reasoning-processes sentences, represents their meaning, and, crucially, exhibits oscillatory activation patterns resembling cortical signals elicited by the same stimuli. Such redundancy in the cortical and machine signals is indicative of formal and mechanistic alignment between representational structure building and "cortical" oscillations. By inductive inference, this synergy suggests that the cortical signal reflects structure generation, just as the machine signal does. A single mechanism-using time to encode information across a layered network-generates the kind of (de)compositional representational hierarchy that is crucial for human language and offers a mechanistic linking hypothesis between linguistic representation and cortical computation.

  1. A mechanism for the cortical computation of hierarchical linguistic structure

    PubMed Central

    Doumas, Leonidas A. A.

    2017-01-01

    Biological systems often detect species-specific signals in the environment. In humans, speech and language are species-specific signals of fundamental biological importance. To detect the linguistic signal, human brains must form hierarchical representations from a sequence of perceptual inputs distributed in time. What mechanism underlies this ability? One hypothesis is that the brain repurposed an available neurobiological mechanism when hierarchical linguistic representation became an efficient solution to a computational problem posed to the organism. Under such an account, a single mechanism must have the capacity to perform multiple, functionally related computations, e.g., detect the linguistic signal and perform other cognitive functions, while, ideally, oscillating like the human brain. We show that a computational model of analogy, built for an entirely different purpose—learning relational reasoning—processes sentences, represents their meaning, and, crucially, exhibits oscillatory activation patterns resembling cortical signals elicited by the same stimuli. Such redundancy in the cortical and machine signals is indicative of formal and mechanistic alignment between representational structure building and “cortical” oscillations. By inductive inference, this synergy suggests that the cortical signal reflects structure generation, just as the machine signal does. A single mechanism—using time to encode information across a layered network—generates the kind of (de)compositional representational hierarchy that is crucial for human language and offers a mechanistic linking hypothesis between linguistic representation and cortical computation. PMID:28253256

  2. Multilevel model reduction for uncertainty quantification in computational structural dynamics

    NASA Astrophysics Data System (ADS)

    Ezvan, O.; Batou, A.; Soize, C.; Gagliardini, L.

    2017-02-01

    This work deals with an extension of the reducedorder models (ROMs) that are classically constructed by modal analysis in linear structural dynamics for which the computational models are assumed to be uncertain. It is based on a multilevel projection strategy consisting in introducing three reduced-order bases that are obtained by using a spatial filtering methodology of local displacements. This filtering involves global shape functions for the kinetic energy. The proposed multilevel stochastic ROM is constructed by using the nonparametric probabilistic approach of uncertainties. It allows for affecting a specific level of uncertainties to each type of displacements associated with the corresponding vibration regime. The proposed methodology is applied to the computational model of an automobile structure, for which the multilevel stochastic ROM is identified with respect to experimental measurements. This identification is performed by solving a statistical inverse problem.

  3. Computational Study of Colloidal Droplet Interactions with Three Dimensional Structures

    DTIC Science & Technology

    2015-05-18

    SECURITY CLASSIFICATION OF: The colloidal droplet spreading on and sorption into a porous medium is important to 3D printing technology. In this study... colloidal fluid distribution in the porous structure after sorption of single/multiple droplets in powder beds. The spreading of the droplet on the surface...Feb-2015 Approved for Public Release; Distribution Unlimited Final Report: Computational Study of Colloidal Droplet Interactions with Three Dimensional

  4. Tracking Non-rigid Structures in Computer Simulations

    SciTech Connect

    Gezahegne, A; Kamath, C

    2008-01-10

    A key challenge in tracking moving objects is the correspondence problem, that is, the correct propagation of object labels from one time step to another. This is especially true when the objects are non-rigid structures, changing shape, and merging and splitting over time. In this work, we describe a general approach to tracking thousands of non-rigid structures in an image sequence. We show how we can minimize memory requirements and generate accurate results while working with only two frames of the sequence at a time. We demonstrate our results using data from computer simulations of a fluimix problem.

  5. Computational Methods for Structural Mechanics and Dynamics, part 1

    NASA Technical Reports Server (NTRS)

    Stroud, W. Jefferson (Editor); Housner, Jerrold M. (Editor); Tanner, John A. (Editor); Hayduk, Robert J. (Editor)

    1989-01-01

    The structural analysis methods research has several goals. One goal is to develop analysis methods that are general. This goal of generality leads naturally to finite-element methods, but the research will also include other structural analysis methods. Another goal is that the methods be amenable to error analysis; that is, given a physical problem and a mathematical model of that problem, an analyst would like to know the probable error in predicting a given response quantity. The ultimate objective is to specify the error tolerances and to use automated logic to adjust the mathematical model or solution strategy to obtain that accuracy. A third goal is to develop structural analysis methods that can exploit parallel processing computers. The structural analysis methods research will focus initially on three types of problems: local/global nonlinear stress analysis, nonlinear transient dynamics, and tire modeling.

  6. Structure-based Methods for Computational Protein Functional Site Prediction

    PubMed Central

    Dukka, B KC

    2013-01-01

    Due to the advent of high throughput sequencing techniques and structural genomic projects, the number of gene and protein sequences has been ever increasing. Computational methods to annotate these genes and proteins are even more indispensable. Proteins are important macromolecules and study of the function of proteins is an important problem in structural bioinformatics. This paper discusses a number of methods to predict protein functional site especially focusing on protein ligand binding site prediction. Initially, a short overview is presented on recent advances in methods for selection of homologous sequences. Furthermore, a few recent structural based approaches and sequence-and-structure based approaches for protein functional sites are discussed in details. PMID:24688745

  7. Prediction of RNA secondary structure, including pseudoknotting, by computer simulation.

    PubMed Central

    Abrahams, J P; van den Berg, M; van Batenburg, E; Pleij, C

    1990-01-01

    A computer program is presented which determines the secondary structure of linear RNA molecules by simulating a hypothetical process of folding. This process implies the concept of 'nucleation centres', regions in RNA which locally trigger the folding. During the simulation, the RNA is allowed to fold into pseudoknotted structures, unlike all other programs predicting RNA secondary structure. The simulation uses published, experimentally determined free energy values for nearest neighbour base pair stackings and loop regions, except for new extrapolated values for loops larger than seven nucleotides. The free energy value for a loop arising from pseudoknot formation is set to a single, estimated value of 4.2 kcal/mole. Especially in the case of long RNA sequences, our program appears superior to other secondary structure predicting programs described so far, as tests on tRNAs, the LSU intron of Tetrahymena thermophila and a number of plant viral RNAs show. In addition, pseudoknotted structures are often predicted successfully. The program is written in mainframe APL and is adapted to run on IBM compatible PCs, Atari ST and Macintosh personal computers. On an 8 MHz 8088 standard PC without coprocessor, using STSC APL, it folds a sequence of 700 nucleotides in one and a half hour. PMID:1693421

  8. Computer-Aided Design of RNA Origami Structures.

    PubMed

    Sparvath, Steffen L; Geary, Cody W; Andersen, Ebbe S

    2017-01-01

    RNA nanostructures can be used as scaffolds to organize, combine, and control molecular functionalities, with great potential for applications in nanomedicine and synthetic biology. The single-stranded RNA origami method allows RNA nanostructures to be folded as they are transcribed by the RNA polymerase. RNA origami structures provide a stable framework that can be decorated with functional RNA elements such as riboswitches, ribozymes, interaction sites, and aptamers for binding small molecules or protein targets. The rich library of RNA structural and functional elements combined with the possibility to attach proteins through aptamer-based binding creates virtually limitless possibilities for constructing advanced RNA-based nanodevices.In this chapter we provide a detailed protocol for the single-stranded RNA origami design method using a simple 2-helix tall structure as an example. The first step involves 3D modeling of a double-crossover between two RNA double helices, followed by decoration with tertiary motifs. The second step deals with the construction of a 2D blueprint describing the secondary structure and sequence constraints that serves as the input for computer programs. In the third step, computer programs are used to design RNA sequences that are compatible with the structure, and the resulting outputs are evaluated and converted into DNA sequences to order.

  9. The non-independence discussion about cycle structure in the computer language: the final simplification of computer language in the structural design

    NASA Astrophysics Data System (ADS)

    Yang, Peilu

    2013-03-01

    In the first place, the article discusses the theory, content, development, and questions about structured programming design. The further extension on this basement provides the cycle structure in computer language is the sequence structure, branch structure, and the cycle structure with independence. Through the deeply research by the writer, we find the non-independence and reach the final simplification about the computer language design. In the first, the writer provides the language structure of linear structure (I structure) and curvilinear structure (Y structure). This makes the computer language has high proficiency with simplification during the program exploration. The research in this article is corresponding with the widely used dualistic structure in the computer field. Moreover, it is greatly promote the evolution of computer language.

  10. PREFACE: International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010)

    NASA Astrophysics Data System (ADS)

    Lin, Simon C.; Shen, Stella; Neufeld, Niko; Gutsche, Oliver; Cattaneo, Marco; Fisk, Ian; Panzer-Steindel, Bernd; Di Meglio, Alberto; Lokajicek, Milos

    2011-12-01

    The International Conference on Computing in High Energy and Nuclear Physics (CHEP) was held at Academia Sinica in Taipei from 18-22 October 2010. CHEP is a major series of international conferences for physicists and computing professionals from the worldwide High Energy and Nuclear Physics community, Computer Science, and Information Technology. The CHEP conference provides an international forum to exchange information on computing progress and needs for the community, and to review recent, ongoing and future activities. CHEP conferences are held at roughly 18 month intervals, alternating between Europe, Asia, America and other parts of the world. Recent CHEP conferences have been held in Prauge, Czech Republic (2009); Victoria, Canada (2007); Mumbai, India (2006); Interlaken, Switzerland (2004); San Diego, California(2003); Beijing, China (2001); Padova, Italy (2000) CHEP 2010 was organized by Academia Sinica Grid Computing Centre. There was an International Advisory Committee (IAC) setting the overall themes of the conference, a Programme Committee (PC) responsible for the content, as well as Conference Secretariat responsible for the conference infrastructure. There were over 500 attendees with a program that included plenary sessions of invited speakers, a number of parallel sessions comprising around 260 oral and 200 poster presentations, and industrial exhibitions. We thank all the presenters, for the excellent scientific content of their contributions to the conference. Conference tracks covered topics on Online Computing, Event Processing, Software Engineering, Data Stores, and Databases, Distributed Processing and Analysis, Computing Fabrics and Networking Technologies, Grid and Cloud Middleware, and Collaborative Tools. The conference included excursions to various attractions in Northern Taiwan, including Sanhsia Tsu Shih Temple, Yingko, Chiufen Village, the Northeast Coast National Scenic Area, Keelung, Yehliu Geopark, and Wulai Aboriginal Village

  11. Spectral structure of electron antineutrinos from nuclear reactors.

    PubMed

    Dwyer, D A; Langford, T J

    2015-01-09

    Recent measurements of the positron energy spectrum obtained from inverse beta decay interactions of reactor electron antineutrinos show an excess in the 4 to 6 MeV region relative to current predictions. First-principles calculations of fission and beta decay processes within a typical pressurized water reactor core identify prominent fission daughter isotopes as a possible origin for this excess. These calculations also predict percent-level substructures in the antineutrino spectrum due to Coulomb effects in beta decay. Precise measurement of these substructures can elucidate the nuclear processes occurring within reactors. These substructures can be a systematic issue for measurements utilizing the detailed spectral shape.

  12. Nuclear Structure and Galactic γ-Ray Activity.

    PubMed

    Görres, J

    2000-01-01

    The observation of galactic γ lines following the decay of radioactive nuclei provides a direct link between nuclear physics experiments in earth-based laboratories and astrophysical observations with space-based observatories. Two examples are presented to illustrate this interplay: the measurement of the lifetime of (44)Ti to allow an improved determination of the (44)Ti mass of the supernova remnant Cassiopeia A from the observed γ ray activity and the measurements of excited states in (24)Si to determine the reaction rate of (23)Al(p, γ)(24)Si which might be important for a reduced production of (22)Na in novae.

  13. Role of zinc finger structure in nuclear localization of transcription factor Sp1

    SciTech Connect

    Ito, Tatsuo; Azumano, Makiko; Uwatoko, Chisana; Itoh, Kohji Kuwahara, Jun

    2009-02-27

    Transcription factor Sp1 is localized in the nucleus and regulates gene expression. Our previous study demonstrated that the carboxyl terminal region of Sp1 containing 3-zinc finger region as DNA binding domain can also serve as nuclear localization signal (NLS). However, the nuclear transport mechanism of Sp1 has not been well understood. In this study, we performed a gene expression study on mutant Sp1 genes causing a set of amino acid substitutions in zinc finger domains to elucidate nuclear import activity. Nuclear localization of the GFP-fused mutant Sp1 proteins bearing concomitant substitutions in the first and third zinc fingers was highly inhibited. These mutant Sp1 proteins had also lost the binding ability as to the GC box sequence. The results suggest that the overall tertiary structure formed by the three zinc fingers is essential for nuclear localization of Sp1 as well as dispersed basic amino acids within the zinc fingers region.

  14. Detection of malignant mesothelioma using nuclear structure of mesothelial cells in effusion cytology specimens.

    PubMed

    Tosun, Akif Burak; Yergiyev, Oleksandr; Kolouri, Soheil; Silverman, Jan F; Rohde, Gustavo K

    2015-04-01

    Mesothelioma is a form of cancer generally caused from previous exposure to asbestos. Although it was considered a rare neoplasm in the past, its incidence is increasing worldwide due to extensive use of asbestos. In the current practice of medicine, the gold standard for diagnosing mesothelioma is through a pleural biopsy with subsequent histologic examination of the tissue. The diagnostic tissue should demonstrate the invasion by the tumor and is obtained through thoracoscopy or open thoracotomy, both being highly invasive surgical operations. On the other hand, thoracocentesis, which is removal of effusion fluid from the pleural space, is a far less invasive procedure that can provide material for cytological examination. In this study, we aim at detecting and classifying malignant mesothelioma based on the nuclear chromatin distribution from digital images of mesothelial cells in effusion cytology specimens. Accordingly, a computerized method is developed to determine whether a set of nuclei belonging to a patient is benign or malignant. The quantification of chromatin distribution is performed by using the optimal transport-based linear embedding for segmented nuclei in combination with the modified Fisher discriminant analysis. Classification is then performed through a k-nearest neighborhood approach and a basic voting strategy. Our experiments on 34 different human cases result in 100% accurate predictions computed with blind cross validation. Experimental comparisons also show that the new method can significantly outperform standard numerical feature-type methods in terms of agreement with the clinical diagnosis gold standard. According to our results, we conclude that nuclear structure of mesothelial cells alone may contain enough information to separate malignant mesothelioma from benign mesothelial proliferations.

  15. Remote sensing of vegetation structure using computer vision

    NASA Astrophysics Data System (ADS)

    Dandois, Jonathan P.

    High-spatial resolution measurements of vegetation structure are needed for improving understanding of ecosystem carbon, water and nutrient dynamics, the response of ecosystems to a changing climate, and for biodiversity mapping and conservation, among many research areas. Our ability to make such measurements has been greatly enhanced by continuing developments in remote sensing technology---allowing researchers the ability to measure numerous forest traits at varying spatial and temporal scales and over large spatial extents with minimal to no field work, which is costly for large spatial areas or logistically difficult in some locations. Despite these advances, there remain several research challenges related to the methods by which three-dimensional (3D) and spectral datasets are joined (remote sensing fusion) and the availability and portability of systems for frequent data collections at small scale sampling locations. Recent advances in the areas of computer vision structure from motion (SFM) and consumer unmanned aerial systems (UAS) offer the potential to address these challenges by enabling repeatable measurements of vegetation structural and spectral traits at the scale of individual trees. However, the potential advances offered by computer vision remote sensing also present unique challenges and questions that need to be addressed before this approach can be used to improve understanding of forest ecosystems. For computer vision remote sensing to be a valuable tool for studying forests, bounding information about the characteristics of the data produced by the system will help researchers understand and interpret results in the context of the forest being studied and of other remote sensing techniques. This research advances understanding of how forest canopy and tree 3D structure and color are accurately measured by a relatively low-cost and portable computer vision personal remote sensing system: 'Ecosynth'. Recommendations are made for optimal

  16. High-spin nuclear structure studies with radioactive ion beams

    SciTech Connect

    Baktash, C.

    1992-12-31

    Two important developments in the sixties, namely the advent of heavy-ion accelerators and fabrication of Ge detectors, opened the way for the experimental studies of nuclear properties at high angular momentum. Addition of a new degree of freedom, namely spin, made it possible to observe such fascinating phenomena as occurrences and coexistence of a variety of novel shapes, rise, fall and occasionally rebirth of nuclear collectivity, and disappearance of pairing correlations. Today, with the promise of development of radioactive ion beams (RIB) and construction of the third-generation Ge-detection systems (GAMMASPHERE and EUROBALL), the authors are poised to explore new and equally fascinating phenomena that have been hitherto inaccessible. With the addition of yet another dimension, namely the isospin, they will be able to observe and verify predictions for exotic shapes as varied as rigid triaxiality, hyperdeformation and triaxial octupole shapes, or to investigate the T = 0 pairing correlations. In this paper, they shall review, separately for neutron-deficient and neutron-rich nuclei, these and a few other new high-spin physics opportunities that may be realized with RIB. Following this discussion, they shall present a list of the beam species, intensities and energies that are needed to fulfill these goals. The paper will conclude with a description of the experimental techniques and instrumentations that are required for these studies.

  17. Structure and Function of Latency-Associated Nuclear Antigen

    PubMed Central

    Verma, S. C.; Lan, K.

    2011-01-01

    Latency-associated nuclear antigen (LANA) encoded by open reading frame 73 (ORF73) is the major latent protein expressed in all forms of KSHV-associated malignancies. LANA is a large (222–234 kDa) nuclear protein that interacts with various cellular as well as viral proteins. LANA has been classified as an oncogenic protein as it dysregulates various cellular pathways including tumor suppressor pathways associated with pRb and p53 and can transform primary rat embryo fibroblasts in cooperation with the cellular oncogene Hras. It associates with GSK-3β, an important modulator of Wnt signaling pathway leading to the accumulation of cytoplasmic β-catenin, which upregulates Tcf/Lef regulated genes after entering into the nucleus. LANA also blocks the expression of RTA, the reactivation transcriptional activator, which is critical for the latency to lytic switch, and thus helps in maintaining viral latency. LANA tethers the viral episomal DNA to the host chromosomes by directly binding to its cognate binding sequence within the TR region of the genome through its C terminus and to the nucleosomes through the N terminus of the molecule. Tethering to the host chromosomes helps in efficient partitioning of the viral episomes in the dividing cells. Disruptions of LANA expression led to reduction in the episomal copies of the viral DNA, supporting its role in persistence of the viral DNA. The functions known so far suggest that LANA is a key player in KSHV-mediated pathogenesis. PMID:17089795

  18. Impact of pion dynamics on nuclear shell structure

    NASA Astrophysics Data System (ADS)

    Litvinova, Elena

    2015-10-01

    Spin-isospin response in exotic nuclear systems is investigated. It is found that in some nuclei excitations with pionic quantum numbers (0-, 1+, 2-, …) appear at very low energies with large transition probabilities, which is an indication of the vicinity of the onset of pion condensation. As an example, 2- components of the spin-dipole resonance in 78Ni and 132Sn are considered. The existence of such modes points out to the necessity of taking into account their coupling to other elementary modes of excitation, e.g. single-quasiparticle ones. This coupling is introduced in the theory for the first time. Thereby, both rho-meson and pion-exchange contributions to the nucleon-nucleon interaction are included in the relativistic framework beyond the Hartree-Fock approximation. Namely, classes of Feynman diagrams are selected according to their significance for nuclear spectroscopic characteristics, such as single-particle energies and strength functions, and included into the nucleonic self-energy in all orders of meson-exchange. As an illustration, the impact of these new contributions on the single-particle energies of 100Sn is discussed.

  19. Impact of pion dynamics on nuclear shell structure

    SciTech Connect

    Litvinova, Elena

    2015-10-15

    Spin-isospin response in exotic nuclear systems is investigated. It is found that in some nuclei excitations with pionic quantum numbers (0{sup −}, 1{sup +}, 2{sup −}, …) appear at very low energies with large transition probabilities, which is an indication of the vicinity of the onset of pion condensation. As an example, 2{sup −} components of the spin-dipole resonance in {sup 78}Ni and {sup 132}Sn are considered. The existence of such modes points out to the necessity of taking into account their coupling to other elementary modes of excitation, e.g. single-quasiparticle ones. This coupling is introduced in the theory for the first time. Thereby, both rho-meson and pion-exchange contributions to the nucleon-nucleon interaction are included in the relativistic framework beyond the Hartree-Fock approximation. Namely, classes of Feynman diagrams are selected according to their significance for nuclear spectroscopic characteristics, such as single-particle energies and strength functions, and included into the nucleonic self-energy in all orders of meson-exchange. As an illustration, the impact of these new contributions on the single-particle energies of {sup 100}Sn is discussed.

  20. Antibody humanization by structure-based computational protein design.

    PubMed

    Choi, Yoonjoo; Hua, Casey; Sentman, Charles L; Ackerman, Margaret E; Bailey-Kellogg, Chris

    2015-01-01

    Antibodies derived from non-human sources must be modified for therapeutic use so as to mitigate undesirable immune responses. While complementarity-determining region (CDR) grafting-based humanization techniques have been successfully applied in many cases, it remains challenging to maintain the desired stability and antigen binding affinity upon grafting. We developed an alternative humanization approach called CoDAH ("Computationally-Driven Antibody Humanization") in which computational protein design methods directly select sets of amino acids to incorporate from human germline sequences to increase humanness while maintaining structural stability. Retrospective studies show that CoDAH is able to identify variants deemed beneficial according to both humanness and structural stability criteria, even for targets lacking crystal structures. Prospective application to TZ47, a murine anti-human B7H6 antibody, demonstrates the approach. Four diverse humanized variants were designed, and all possible unique VH/VL combinations were produced as full-length IgG1 antibodies. Soluble and cell surface expressed antigen binding assays showed that 75% (6 of 8) of the computationally designed VH/VL variants were successfully expressed and competed with the murine TZ47 for binding to B7H6 antigen. Furthermore, 4 of the 6 bound with an estimated KD within an order of magnitude of the original TZ47 antibody. In contrast, a traditional CDR-grafted variant could not be expressed. These results suggest that the computational protein design approach described here can be used to efficiently generate functional humanized antibodies and provide humanized templates for further affinity maturation.

  1. Recent advances in computational structural reliability analysis methods

    NASA Technical Reports Server (NTRS)

    Thacker, Ben H.; Wu, Y.-T.; Millwater, Harry R.; Torng, Tony Y.; Riha, David S.

    1993-01-01

    The goal of structural reliability analysis is to determine the probability that the structure will adequately perform its intended function when operating under the given environmental conditions. Thus, the notion of reliability admits the possibility of failure. Given the fact that many different modes of failure are usually possible, achievement of this goal is a formidable task, especially for large, complex structural systems. The traditional (deterministic) design methodology attempts to assure reliability by the application of safety factors and conservative assumptions. However, the safety factor approach lacks a quantitative basis in that the level of reliability is never known and usually results in overly conservative designs because of compounding conservatisms. Furthermore, problem parameters that control the reliability are not identified, nor their importance evaluated. A summary of recent advances in computational structural reliability assessment is presented. A significant level of activity in the research and development community was seen recently, much of which was directed towards the prediction of failure probabilities for single mode failures. The focus is to present some early results and demonstrations of advanced reliability methods applied to structural system problems. This includes structures that can fail as a result of multiple component failures (e.g., a redundant truss), or structural components that may fail due to multiple interacting failure modes (e.g., excessive deflection, resonate vibration, or creep rupture). From these results, some observations and recommendations are made with regard to future research needs.

  2. Computational Chemistry for Nuclear Waste Characterization and Processing: Relativistic Quantum Chemistry of Actinides

    SciTech Connect

    Harrison, Robert J.; Bernholdt, David E.; Bursten, Bruce E.; De Jong, Wibe A.; Dixon, David A.; Dyall, Kenneth G.; Ermler, Walter V.; Fann, George I.; Hay, P. J.; Ismail Buchner, Nina; Kendall, Ricky A.; Li, Jun; Marino, Maria M.; Marsden, Colin J.; Martin, Richard L.; Minkoff, Michael; Nichols, Jeffrey A.; Nieplocha, Jarek; Pitzer, Russell M.; Pratt, Lawrence R.; Schreckenbach, Hans Georg; Seth, Michael C.; Shepard, Ron; Stevens, Rick L.; Tilson, Jeffrey L.; Wagner, Albert F.; Wang, Qi; Windus, Theresa L.; Wong, Adrian; Zhang, Zhiyong

    2002-08-02

    In the course of the 3 years we have conducted calculations on molecular structures containing actinides, lanthanides, and other heavy elements. Our calculations were done at the relativistically-correct, all-electron, 4-component calculations (DHF, MP2, and CCSD(T)), using density functional theory (DFT) with relativistic effective core potentials (RECPs), and various other methodologies. We studied the ground- and excited state structures, energetics, vibrational frequencies, and NMR, excitation and ionization spectra. In addition a considerable amount of codes and methodologies have been developed during the GC3 period, enabling us to do the extensive research described in this final report, and providing researchers worldwide with new computational chemistry tools. In this section we will give a brief overview of our activities and accomplishments, grouped by each research institution. A more extensive overview can be found in the appendices containing the full yearly reports.

  3. DETERMINING THE EFFECTS OF RADIATION ON AGING CONCRETE STRUCTURES OF NUCLEAR REACTORS

    SciTech Connect

    Serrato, M.

    2010-01-29

    The U.S. Department of Energy Office of Environmental Management (DOE-EM) is responsible for the Decontamination and Decommissioning (D&D) of nuclear facilities throughout the DOE Complex. Some of these facilities will be completely dismantled, while others will be partially dismantled and the remaining structure will be stabilized with cementitious fill materials. The latter is a process known as In-Situ Decommissioning (ISD). The ISD decision process requires a detailed understanding of the existing facility conditions, and operational history. System information and material properties are need for aged nuclear facilities. This literature review investigated the properties of aged concrete structures affected by radiation. In particular, this review addresses the Savannah River Site (SRS) isotope production nuclear reactors. The concrete in the reactors at SRS was not seriously damaged by the levels of radiation exposure. Loss of composite compressive strength was the most common effect of radiation induced damage documented at nuclear power plants.

  4. Aging Management of Nuclear Power Plant Concrete Structures - Overview and Suggested Research Topics

    SciTech Connect

    Naus, Dan J

    2008-01-01

    Nuclear power plant concrete structures are described and their operating experience noted. Primary considerations related to management of their aging are noted and an indication of their status provided: degradation mechanisms, damage models, and material performance; assessment and remediation (i.e., component selection, in-service inspection, nondestructive examinations, and remedial actions); and estimation of performance at present or some future point in time (i.e., application of structural reliability theory to the design and optimization of in-service inspection/maintenance strategies, and determination of the effects of degradation on plant risk). Several activities are identified that provide background information and data on areas of concern with respect to nondestructive examination of nuclear power plant concrete structures: inspection of thick-walled, heavily-reinforced sections, basemats, and inaccessible areas of the containment metallic pressure boundary. Topics are noted where additional research would be of benefit to aging management of nuclear power plant concrete structures.

  5. Nuclear structure corrections in the energy spectra of electronic and muonic deuterium

    SciTech Connect

    Faustov, R.N.; Martynenko, A.P.

    2003-05-01

    The one-loop nuclear structure corrections of order (Z{alpha}){sup 5} to the Lamb shift and hyperfine splitting of deuterium are calculated. The contribution of the deuteron structure effects to the isotope shifts (ep)-(ed) and ({mu}p)-({mu}d) in the interval 1S-2S is obtained on the basis of modern experimental data on the deuteron electromagnetic form factors. Comparison with similar contributions to the Lamb shift for electronic and muonic hydrogen shows that the relative contribution due to the nuclear structure increases on passing from hydrogen to deuterium.

  6. Changing nuclear landscape and unique PML structures during early epigenetic transitions of human embryonic stem cells.

    PubMed

    Butler, John T; Hall, Lisa L; Smith, Kelly P; Lawrence, Jeanne B

    2009-07-01

    The complex nuclear structure of somatic cells is important to epigenomic regulation, yet little is known about nuclear organization of human embryonic stem cells (hESC). Here we surveyed several nuclear structures in pluripotent and transitioning hESC. Observations of centromeres, telomeres, SC35 speckles, Cajal Bodies, lamin A/C and emerin, nuclear shape and size demonstrate a very different "nuclear landscape" in hESC. This landscape is remodeled during a brief transitional window, concomitant with or just prior to differentiation onset. Notably, hESC initially contain abundant signal for spliceosome assembly factor, SC35, but lack discrete SC35 domains; these form as cells begin to specialize, likely reflecting cell-type specific genomic organization. Concomitantly, nuclear size increases and shape changes as lamin A/C and emerin incorporate into the lamina. During this brief window, hESC exhibit dramatically different PML-defined structures, which in somatic cells are linked to gene regulation and cancer. Unlike the numerous, spherical somatic PML bodies, hES cells often display approximately 1-3 large PML structures of two morphological types: long linear "rods" or elaborate "rosettes", which lack substantial SUMO-1, Daxx, and Sp100. These occur primarily between Day 0-2 of differentiation and become rare thereafter. PML rods may be "taut" between other structures, such as centromeres, but clearly show some relationship with the lamina, where PML often abuts or fills a "gap" in early lamin A/C staining. Findings demonstrate that pluripotent hES cells have a markedly different overall nuclear architecture, remodeling of which is linked to early epigenomic programming and involves formation of unique PML-defined structures.

  7. Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin

    PubMed Central

    Dechat, Thomas; Pfleghaar, Katrin; Sengupta, Kaushik; Shimi, Takeshi; Shumaker, Dale K.; Solimando, Liliana; Goldman, Robert D.

    2008-01-01

    Over the past few years it has become evident that the intermediate filament proteins, the types A and B nuclear lamins, not only provide a structural framework for the nucleus, but are also essential for many aspects of normal nuclear function. Insights into lamin-related functions have been derived from studies of the remarkably large number of disease-causing mutations in the human lamin A gene. This review provides an up-to-date overview of the functions of nuclear lamins, emphasizing their roles in epigenetics, chromatin organization, DNA replication, transcription, and DNA repair. In addition, we discuss recent evidence supporting the importance of lamins in viral infections. PMID:18381888

  8. Nuclear dependence of structure functions in the shadowing region of deep inelastic scattering

    SciTech Connect

    Berger, E.L.; Qiu, Jianwei

    1988-07-27

    A discussion of nuclear shadowing in deep inelastic lepton scattering is presented. We show that the parton recombination model suggests that shadowing should begin to occur at larger values of Bjorken x as A increases. This expectation as well as that of weak dependence on Q/sup 2/, and the trend of the x dependence of the shadowing phenomenon are consistent with recent data. Shadowing at small x is combined with nuclear bound state effects, responsible for nuclear dependence at larger x, to provide description of the A dependence of the structure function for the entire range of x. 21 refs., 5 figs.

  9. Computation of records of streamflow at control structures

    USGS Publications Warehouse

    Collins, Dannie L.

    1977-01-01

    Traditional methods of computing streamflow records on large, low-gradient streams require a continuous record of water-surface slope over a natural channel reach. This slope must be of sufficient magnitude to be accuratly measured with available stage measuring devices. On highly regulated streams, this slope approaches zero during periods of low flow and accurate measurement is difficult. Methods are described to calibrate multipurpose regulating control structures to more accurately compute streamflow records on highly-regulated streams. Hydraulic theory, assuming steady, uniform flow during a computational interval, is described for five different types of flow control. The controls are: Tainter gates, hydraulic turbines, fixed spillways, navigation locks, and crest gates. Detailed calibration procedures are described for the five different controls as well as for several flow regimes for some of the controls. The instrumentation package and computer programs necessary to collect and process the field data are discussed. Two typical calibration procedures and measurement data are presented to illustrate the accuracy of the methods. (Woodard-USGS)

  10. Gas phase structures of peroxides: experiments and computational problems.

    PubMed

    Oberhammer, Heinz

    2015-02-02

    Gas-phase structures of several organic and inorganic peroxides X-O-O-X and X-O-O-X', which have been determined experimentally by gas electron diffraction and/or microwave spectroscopy, are discussed. The OO bond length in these peroxides varies from 1.481(8) Å in Me3 SiOOSiMe3 to 1.214(2) Å in FOOF and the dihedral angle ϕ(XO-OX) between 0° in HC(O)O-OH and near 180° in Bu(t) O-OBu(t) . Some of the peroxides cause problems for quantum chemistry, since several computational methods fail to reproduce the experimental structures. Extreme examples are MeO-OMe and FO-OF. In the case of MeO-OMe only about half of the more than 100 computational methods reported in the literature reproduce the experimentally determined double-minimum shape of the torsional potential around the OO bond correctly. For FO-OF only a small number of close to 200 computational methods reproduce the OO and OF bond lengths better than ±0.02 Å.

  11. Computational and theoretical aspects of biomolecular structure and dynamics

    SciTech Connect

    Garcia, A.E.; Berendzen, J.; Catasti, P., Chen, X.

    1996-09-01

    This is the final report for a project that sought to evaluate and develop theoretical, and computational bases for designing, performing, and analyzing experimental studies in structural biology. Simulations of large biomolecular systems in solution, hydrophobic interactions, and quantum chemical calculations for large systems have been performed. We have developed a code that implements the Fast Multipole Algorithm (FMA) that scales linearly in the number of particles simulated in a large system. New methods have been developed for the analysis of multidimensional NMR data in order to obtain high resolution atomic structures. These methods have been applied to the study of DNA sequences in the human centromere, sequences linked to genetic diseases, and the dynamics and structure of myoglobin.

  12. Software innovations in computed tomography for structural heart disease interventions.

    PubMed

    Hell, Michaela; Marwan, Mohamed; Gaede, Luise; Achenbach, Stephan

    2016-05-17

    Computed tomography (CT) provides high, isotropic spatial resolution and has become firmly established in pre-procedural imaging for structural heart disease interventions. It allows determination of the exact dimensions of the target structure, provides information regarding the access route and permits identification of fluoroscopic projection angles to provide optimal visualisation for device placement. Several software solutions are available and have been systematically evaluated in the context of transcatheter aortic valve implantation (TAVI). The use of software products to perform automated measurements can be useful, especially when the experience and expertise regarding evaluation of CT in the context of structural heart disease are limited. In scientific studies, software has been demonstrated to provide accurate support for annulus sizing and prosthesis selection, to aid in reliably identifying patients in whom a transfemoral access may be problematic, and to suggest suitable angulations for fluoroscopic imaging to achieve an orthogonal view onto the aortic valve during implantation.

  13. Global tree network for computing structures enabling global processing operations

    DOEpatents

    Blumrich; Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Steinmacher-Burow, Burkhard D.; Takken, Todd E.; Vranas, Pavlos M.

    2010-01-19

    A system and method for enabling high-speed, low-latency global tree network communications among processing nodes interconnected according to a tree network structure. The global tree network enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices are included that interconnect the nodes of the tree via links to facilitate performance of low-latency global processing operations at nodes of the virtual tree and sub-tree structures. The global operations performed include one or more of: broadcast operations downstream from a root node to leaf nodes of a virtual tree, reduction operations upstream from leaf nodes to the root node in the virtual tree, and point-to-point message passing from any node to the root node. The global tree network is configurable to provide global barrier and interrupt functionality in asynchronous or synchronized manner, and, is physically and logically partitionable.

  14. Nuclear Astrophysics and Structure Studies Using Low-energy RI Beams at CRIB

    SciTech Connect

    Yamaguchi, H.; Hashimoto, T.; Hayakawa, S.; Binh, D. N.; Kahl, D.; Kubono, S.

    2010-05-12

    CRIB (CNS Radioactive Ion Beam separator) is a low-energy RI beam separator at the Center for Nuclear Study (CNS) of the University of Tokyo. Using the RI beams at CRIB, Many measurements on proton and alpha resonance scatterings, (alpha,p) reactions, and others were peformed in recent years, mainly for studying astrophysical reactions and exotic nuclear structure. Among them, the results on the {sup 7}Be+p and {sup 7}Li+alpha resonance scatterings are presented.

  15. Electric monopole transitions: What they can tell us about nuclear structure

    SciTech Connect

    Zganjar, E.F.; Wood, J.L.

    1995-12-31

    A brief survey of E0 strength in a number of nuclei in different regions of the nuclear chart is presented. The connection between E0 strength and shape coexistence is reviewed. Nuclear structure information obtained from measurements of electric monopole transitions in {sup 184}Pt and {sup 187}Au is discussed. Plans for future experiments utilizing radioactive ion beams and E0 internal-pair-formation is presented.

  16. Nuclear electric propulsion system utilization for earth orbit transfer of large spacecraft structures

    NASA Technical Reports Server (NTRS)

    Silva, T. H.; Byers, D. C.

    1980-01-01

    The paper discusses a potential application of electric propulsion to perform orbit transfer of a large spacecraft structure to geosynchronous orbit (GEO) from LEO, utilizing a nuclear reactor space power source in the spacecraft on a shared basis. The discussions include spacecraft, thrust system, and nuclear reactor space power system concepts. Emphasis is placed on orbiter payload arrangements, spacecraft launch constraints, and spacecraft LEO assembly and deployment sequences.

  17. Systematic Analysis of the Functional Relevance of Nuclear Structure and Mechanics in Breast Cancer Progression

    DTIC Science & Technology

    2013-07-01

    ANSI Std. Z39.18 Systematic Analysis of the Functional Relevance of Nuclear Structure and Mechanics in Breast Cancer Progression Jan Lammerding... analysis of the functional consequences of changes in the expression of lamins (A, B1, B2, and C) and lamin B receptor on nuclear morphology and...enhanced passage), proliferation, and epithelial-to- mesenchymal transition (EMT). In addition, we proposed to conduct an analysis of samples

  18. Model inspired by nuclear pore complex suggests possible roles for nuclear transport receptors in determining its structure.

    PubMed

    Osmanović, Dino; Ford, Ian J; Hoogenboom, Bart W

    2013-12-17

    Nuclear transport receptors (NTRs) mediate nucleocytoplasmic transport via their affinity for unstructured proteins (polymers) in the nuclear pore complex (NPC). Here, we have modeled the effect of NTRs on polymeric structure in the nanopore confinement of the NPC central conduit. The model explicitly takes into account inter- and intramolecular interactions, as well as the finite size of the NTRs (∼20% of the NPC channel diameter). It reproduces various proposed scenarios for the channel structure, ranging from a central polymer condensate (selective phase) to brushlike polymer arrangements localized at the channel wall (virtual gate, reduction of dimensionality), with the transport receptors lining the polymer surface. In addition, it predicts a new structure in which NTRs become an integral part of the transport barrier by forming a cross-linked network with the unstructured proteins stretching across the pore. The model provides specific and distinctive predictions for the equilibrium spatial distributions of NTRs for these different scenarios that can be experimentally verified by, e.g., superresolution fluorescence microscopy. Moreover, it suggests mechanisms by which globular macromolecules (colloidal particles) can cause polymer-coated nanopores to switch between open and closed configurations, a possible explanation of the biological function of the NPC, and suggests potential technological applications for filtration and single-molecule sensing.

  19. Structure of Ni78 from First-Principles Computations

    DOE PAGES

    Hagen, Gaute; Univ. of Tennessee, Knoxville, TN; Jansen, Gustav R.; ...

    2016-10-17

    Doubly magic nuclei have a simple structure and are the cornerstones for entire regions of the nuclear chart. Theoretical insights into the supposedly doubly magic 78Ni and its neighbors are challenging because of the extreme neutron-to-proton ratio and the proximity of the continuum. In this study, we predict the Jπ = 2more » $$+\\atop{1}$$ state in 78Ni from a correlation with the Jπ = 2$$+\\atop{1}$$ state in 48Ca using chiral nucleon-nucleon and three-nucleon interactions. Our results confirm that 78Ni is doubly magic, and the predicted low-lying states of 79,80Ni open the way for shell-model studies of many more rare isotopes.« less

  20. Structural and functional analysis of Hikeshi, a new nuclear transport receptor of Hsp70s.

    PubMed

    Song, Jinsue; Kose, Shingo; Watanabe, Ai; Son, Se Young; Choi, Saehae; Hong, Hyerim; Yamashita, Eiki; Park, Il Yeong; Imamoto, Naoko; Lee, Soo Jae

    2015-03-01

    Hikeshi is a nuclear transport receptor required for cell survival after stress. It mediates heat-shock-induced nuclear import of 70 kDa heat-shock proteins (Hsp70s) through interactions with FG-nucleoporins (FG-Nups), which are proteins in nuclear pore complexes (NPCs). Here, the crystal structure of human Hikeshi is presented at 1.8 Å resolution. Hikeshi forms an asymmetric homodimer that is responsible for the interaction with Hsp70s. The asymmetry of Hikeshi arises from the distinct conformation of the C-terminal domain (CTD) and the flexibility of the linker regions of each monomer. Structure-guided mutational analyses showed that both the flexible linker region and the CTD are important for nuclear import of Hsp70. Pull-down assays revealed that only full-length Hsp70s can interact with Hikeshi. The N-terminal domain (NTD) consists of a jelly-roll/β-sandwich fold structure which contains hydrophobic pockets involved in FG-Nup recognition. A unique extended loop (E-loop) in the NTD is likely to regulate the interactions of Hikeshi with FG-Nups. The crystal structure of Hikeshi explains how Hikeshi participates in the regulation of nuclear import through the recognition of FG-Nups and which part of Hikeshi affects its binding to Hsp70. This study is the first to yield structural insight into this highly unique import receptor.

  1. Inspection of Nuclear Power Plant Structures - Overview of Methods and Related Applications

    SciTech Connect

    Naus, Dan J

    2009-05-01

    The objectives of this limited study were to provide an overview of the methods that are available for inspection of nuclear power plant reinforced concrete and metallic structures, and to provide an assessment of the status of methods that address inspection of thick, heavily-reinforced concrete and inaccessible areas of the containment metallic pressure boundary. In meeting these objectives a general description of nuclear power plant safety-related structures was provided as well as identification of potential degradation factors, testing and inspection requirements, and operating experience; methods for inspection of nuclear power plant reinforced concrete structures and containment metallic pressure boundaries were identified and described; and applications of nondestructive evaluation methods specifically related to inspection of thick-section reinforced concrete structures and inaccessible portions of containment metallic pressure boundaries were summarized. Recommendations are provided on utilization of test article(s) to further advance nondestructive evaluation methods related to thick-section, heavily-reinforced concrete and inaccessible portions of the metallic pressure boundary representative of nuclear power plant containments. Conduct of a workshop to provide an update on applications and needed developments for nondestructive evaluation of nuclear power plant structures would also be of benefit.

  2. Nuclear quantum effect and temperature dependency on the hydrogen-bonded structure of base pairs.

    PubMed

    Daido, Masashi; Kawashima, Yukio; Tachikawa, Masanori

    2013-10-30

    The structure of Watson-Crick-type adenine-thymine and guanine-cytosine pairs has been studied by hybrid Monte Carlo (HMC) and path integral hybrid Monte Carlo (PIHMC) simulations with the use of semiempirical PM6-DH+ method in the gas phase. We elucidated the nuclear quantum effect and temperature dependency on the hydrogen-bonded moiety of base pairs. It was shown that the contribution of nuclear quantum effect on the hydrogen-bonded structure is significant not only at low temperature 150 K but also at temperature as high as 450 K. The relative position of hydrogen-bonded proton between two heavy atoms and the nuclear quantum nature of the proton are also shown. Furthermore, we have applied principal component analysis to HMC and PIHMC simulations to analyze the nuclear quantum effect on intermolecular motions. We found that the ratio of Buckle mode (lowest vibrational mode from normal mode analysis) decreases due to the nuclear quantum effect, whereas that of Propeller mode (second lowest vibrational mode) increases. In addition, nonplanar structures of base pairs were found to become stable due to the nuclear quantum effect from two-dimensional free energy landscape along Buckle and Propeller modes.

  3. Computational methods for efficient structural reliability and reliability sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Wu, Y.-T.

    1993-01-01

    This paper presents recent developments in efficient structural reliability analysis methods. The paper proposes an efficient, adaptive importance sampling (AIS) method that can be used to compute reliability and reliability sensitivities. The AIS approach uses a sampling density that is proportional to the joint PDF of the random variables. Starting from an initial approximate failure domain, sampling proceeds adaptively and incrementally with the goal of reaching a sampling domain that is slightly greater than the failure domain to minimize over-sampling in the safe region. Several reliability sensitivity coefficients are proposed that can be computed directly and easily from the above AIS-based failure points. These probability sensitivities can be used for identifying key random variables and for adjusting design to achieve reliability-based objectives. The proposed AIS methodology is demonstrated using a turbine blade reliability analysis problem.

  4. Computational modelling of cohesive cracks in material structures

    NASA Astrophysics Data System (ADS)

    Vala, J.; Jarošová, P.

    2016-06-01

    Analysis of crack formation, considered as the creation of new surfaces in a material sample due to its microstructure, leads to nontrivial physical, mathematical and computational difficulties even in the rather simple case of quasistatic cohesive zone modelling inside the linear elastic theory. However, quantitative results from such evaluations are required in practice for the development and design of advanced materials, structures and technologies. Although most available software tools apply ad hoc computational predictions, this paper presents the proper formulation of such model problem, including its verification, and sketches the more-scale construction of finite-dimensional approximation of solutions, utilizing the finite element or similar techniques, together with references to original simulations results from engineering practice.

  5. Nuclear quantum effects in the structure and lineshapes of the N2 NEXAFS spectrum

    SciTech Connect

    Fatehi, Shervin; Schwartz, Craig P.; Saykally, Richard J.; Prendergast, David

    2009-12-04

    We study the relative ability of several models of the X-ray absorption spectrum to capture the Franck-Condon structure apparent from an experiment on gaseous nitrogen. In doing so, we adopt the Born-Oppenheimer approximation and a constrained density functional theory method for computing the energies of the X-ray-excited molecule. Starting from an otherwise classical model for the spectrum, we systematically introduce more realistic physics, first by substituting the quantum mechanical nuclear radial density in the bond separation R for the classical radial density, then by adding the effect of zero-point energy and other level shifts, and finally by including explicit rovibrational quantization of both the ground and excited states. The quantization is determined exactly, using a discrete variable representation. We show that the NEXAFS spectrum can be predicted semiquantiatively within this framework. We also address the possibility of non-trivial temperature dependence in the spectrum. Finally, we show that it is possible to improve the predicted spectrum by using constrained DFT in combination with more accurate potentials.

  6. The Air Force Nuclear Engineering Center Structural Activation and Integrity Evaluation

    DTIC Science & Technology

    1990-03-01

    structural members is required for a more precise ORIGEN2 computer output . ( 2 ) An operating schedule of the reactor for...A-1 Appendix B: ORIGEN2 Computer Code Input ................ B-i Appendix C: ORIGEN2 Results............................. C-i Appendix D...clides within reactor structural members. One such code is the ORIGEN2 computer code developed by Oak Ridge National Laboratory, Oak Ridge, Tennessee.

  7. Selectivity in ligand binding to uranyl compounds: A synthetic, structural, thermodynamic and computational study

    SciTech Connect

    Arnold, John

    2015-01-21

    The uranyl cation (UO₂²⁺) is the most abundant form of uranium on the planet. It is estimated that 4.5 billion tons of uranium in this form exist in sea water. The ability to bind and extract the uranyl cation from aqueous solution while separating it from other elements would provide a limitless source of nuclear fuel. A large body of research concerns the selective recognition and extraction of uranyl. A stable molecule, the cation has a linear O=U=O geometry. The short U-O bonds (1.78 Å) arise from the combination of uranium 5f/6d and oxygen 2p orbitals. Due to the oxygen moieties being multiply bonded, these sites were not thought to be basic enough for Lewis acidic coordination to be a viable approach to sequestration. The goal of this research is thus to broaden the coordination chemistry of the uranyl ion by studying new ligand systems via synthetic, structural, thermodynamic and computational methods. It is anticipated that this fundamental science will find use beyond actinide separation technologies in areas such as nuclear waste remediation and nuclear materials. The focus of this study is to synthesize uranyl complexes incorporating amidinate and guanidinate ligands. Both synthetic and computational methods are used to investigate novel equatorial ligand coordination and how this affects the basicity of the oxo ligands. Such an understanding will later apply to designing ligands incorporating functionalities that can bind uranyl both equatorially and axially for highly selective sequestration. Efficient and durable chromatography supports for lanthanide separation will be generated by (1) identifying robust peptoid-based ligands capable of binding different lanthanides with variable affinities, and (2) developing practical synthetic methods for the attachment of these ligands to Dowex ion exchange resins.

  8. Computer Modeling of the Earliest Cellular Structures and Functions

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Chipot, Christophe; Schweighofer, Karl

    2000-01-01

    In the absence of extinct or extant record of protocells (the earliest ancestors of contemporary cells). the most direct way to test our understanding of the origin of cellular life is to construct laboratory models of protocells. Such efforts are currently underway in the NASA Astrobiology Program. They are accompanied by computational studies aimed at explaining self-organization of simple molecules into ordered structures and developing designs for molecules that perform proto-cellular functions. Many of these functions, such as import of nutrients, capture and storage of energy. and response to changes in the environment are carried out by proteins bound to membrane< We will discuss a series of large-scale, molecular-level computer simulations which demonstrate (a) how small proteins (peptides) organize themselves into ordered structures at water-membrane interfaces and insert into membranes, (b) how these peptides aggregate to form membrane-spanning structures (eg. channels), and (c) by what mechanisms such aggregates perform essential proto-cellular functions, such as proton transport of protons across cell walls, a key step in cellular bioenergetics. The simulations were performed using the molecular dynamics method, in which Newton's equations of motion for each item in the system are solved iteratively. The problems of interest required simulations on multi-nanosecond time scales, which corresponded to 10(exp 6)-10(exp 8) time steps.

  9. Universality of Mallmann correlations for nuclear band structures

    NASA Astrophysics Data System (ADS)

    Bucurescu, D.; Zamfir, N. V.; Cǎta-Danil, G.; Ivaşcu, M.; Mǎrginean, N.

    2008-11-01

    It is shown that the Mallmann's energy ratio correlations, first time proposed 50 years ago for the ground state bands of the even-even nuclei, are universal: all band structures in collective nuclei obey the same systematics. Based on a second order anharmonic vibrator description, parameter-free recurrence relations are proposed for Mallmann-type energy ratios, which can be used to extrapolate band structures to higher spin.

  10. Computational derivation of structural alerts from large toxicology data sets.

    PubMed

    Ahlberg, Ernst; Carlsson, Lars; Boyer, Scott

    2014-10-27

    Structural alerts have been one of the backbones of computational toxicology and have applications in many areas including cosmetic, environmental, and pharmaceutical toxicology. The development of structural alerts has always involved a manual analysis of existing data related to a relevant end point followed by the determination of substructures that appear to be related to a specific outcome. The substructures are then analyzed for their utility in posterior validation studies, which at times have stretched over years or even decades. With higher throughput methods now being employed in many areas of toxicology, data sets are growing at an unprecedented rate. This growth has made manual analysis of data sets impractical in many cases. This report outlines a fully automatic method that highlights significant substructures for toxicologically important data sets. The method identifies important substructures by computationally breaking chemical structures into fragments and analyzing those fragments for their contribution to the given activity by the calculation of a p-value and a substructure accuracy. The method is intended to aid the expert in locating and analyzing alerts by automatic retrieval of alerts or by enhancing existing alerts. The method has been applied to a data set of AMES mutagenicity results and compared to the substructures generated by manual curation of this same data set as well as another computationally based substructure identification method. The results show that this method can retrieve significant substructures quickly, that the substructures are comparable and in some cases superior to those derived from manual curation, that the substructures found covers all previously known substructures, and that they can be used to make reasonably accurate predictions of AMES activity.

  11. Toward the atomic structure of the nuclear pore complex: when top down meets bottom up.

    PubMed

    Hoelz, André; Glavy, Joseph S; Beck, Martin

    2016-07-01

    Elucidating the structure of the nuclear pore complex (NPC) is a prerequisite for understanding the molecular mechanism of nucleocytoplasmic transport. However, owing to its sheer size and flexibility, the NPC is unapproachable by classical structure determination techniques and requires a joint effort of complementary methods. Whereas bottom-up approaches rely on biochemical interaction studies and crystal-structure determination of NPC components, top-down approaches attempt to determine the structure of the intact NPC in situ. Recently, both approaches have converged, thereby bridging the resolution gap from the higher-order scaffold structure to near-atomic resolution and opening the door for structure-guided experimental interrogations of NPC function.

  12. Towards the atomic structure of the Nuclear Pore Complex: When top down meets bottom up

    PubMed Central

    Hoelz, André; Glavy, Joseph S.; Beck, Martin

    2016-01-01

    Elucidating the structure of the nuclear pore complex (NPC) is a prerequisite for understanding the molecular mechanism of nucleocytoplasmic transport. However, due to sheer size and flexibility, the NPC is unapproachable by classical structure determination techniques and requires a joint effort of complementary methods. Whereas bottom up approaches rely on biochemical interaction studies and crystal structure determination of NPC components, top down approaches attempt to determine the structure of the intact NPC in situ. Recently, both approaches have converged, bridging the resolution gap from higher-order scaffold structure to near-atomic resolution and opening the door for structure-guided experimental interrogations of NPC function. PMID:27273515

  13. Nanoscale stiffness topography reveals structure and mechanics of the transport barrier in intact nuclear pore complexes.

    PubMed

    Bestembayeva, Aizhan; Kramer, Armin; Labokha, Aksana A; Osmanović, Dino; Liashkovich, Ivan; Orlova, Elena V; Ford, Ian J; Charras, Guillaume; Fassati, Ariberto; Hoogenboom, Bart W

    2015-01-01

    The nuclear pore complex (NPC) is the gate for transport between the cell nucleus and the cytoplasm. Small molecules cross the NPC by passive diffusion, but molecules larger than ∼5 nm must bind to nuclear transport receptors to overcome a selective barrier within the NPC. Although the structure and shape of the cytoplasmic ring of the NPC are relatively well characterized, the selective barrier is situated deep within the central channel of the NPC and depends critically on unstructured nuclear pore proteins, and is therefore not well understood. Here, we show that stiffness topography with sharp atomic force microscopy tips can generate nanoscale cross-sections of the NPC. The cross-sections reveal two distinct structures, a cytoplasmic ring and a central plug structure, which are consistent with the three-dimensional NPC structure derived from electron microscopy. The central plug persists after reactivation of the transport cycle and resultant cargo release, indicating that the plug is an intrinsic part of the NPC barrier. Added nuclear transport receptors accumulate on the intact transport barrier and lead to a homogenization of the barrier stiffness. The observed nanomechanical properties in the NPC indicate the presence of a cohesive barrier to transport and are quantitatively consistent with the presence of a central condensate of nuclear pore proteins in the NPC channel.

  14. Nuclear Structure of 97Mo from the (d, p) Reaction

    NASA Astrophysics Data System (ADS)

    Chowdhury, M. S.; Booth, W.

    The reaction 96Mo(d, p)97Mo has been studied at 12 MeV using the tandem Van de Graaff accelerator and a multi-channel magnetic spectrograph at the Atomic Weapon Research Establishment, Aldermaston, England. Angular distributions of protons are measured at 12 different angles from 5° to 87.5° at an interval of 7.5° and the reaction products are detected in nuclear emulsion plates. Thirty levels in the energy range from 0.000 to 2.458 MeV have been observed and absolute differential cross-sections for these levels have been measured. The data are analyzed in terms of the distorted-wave Born approximation (DWBA) theory of the direct reactions, and spins, parities and spectroscopic factors are deduced for various levels. Ambiguity in the spin assignments of d5/2 and d3/2 which is allowed in ln = 2(d, p) transition is removed by using the corresponding L-value of the 95 Mo(t, p)97Mo reaction at Et = 12 MeV. Determined value of the sum of spectroscopic factors for transfers of d5/2 neutrons suggests configuration mixing in the ground state of 96Mo. The properties of the levels in 97Mo are compared with previous experimental results and theoretical predictions.

  15. The Structure of the Nearest Nuclear Star Clusters

    NASA Astrophysics Data System (ADS)

    DiLullo, Christopher

    2015-01-01

    The occupation fraction of massive black holes in low-mass galaxies is a poorly constrained quantity. Understanding the rate at which tidal disruption events occur is critical to constraining the occupation fraction of black holes. It is known that most, if not all, galaxies with sub-Milky Way mass have a nuclear star cluster present. We have proposed to survey an extensive archive of HST observations of 80 galactic nuclei within 10 Mpc from Earth. At these distances, HST supplies us with adequate spatial resolution to create accurate surface brightness profiles that can then be used to create models of the nuclei's mass distribution and morphology. Our collaborators will use these data to generate models, based on black hole mass and cluster mass distribution, that predict occurrence rates of tidal disruption events. These models will then be compared to observations of tidal disruption events.We have begun the survey by generating models of the surface brightness profiles for two galaxies in our selection: M51 and NGC 404. I will discuss how these models were generated and what challenges were faced throughout the process. Finally, I present these models along with color maps and radial residual plots of each galaxy.

  16. RISKIND: A computer program for calculating radiological consequences and health risks from transportation of spent nuclear fuel

    SciTech Connect

    Yuan, Y.C.; Chen, S.Y.; LePoire, D.J.; Rothman, R.

    1993-02-01

    This report presents the technical details of RISIUND, a computer code designed to estimate potential radiological consequences and health risks to individuals and the collective population from exposures associated with the transportation of spent nuclear fuel. RISKIND is a user-friendly, semiinteractive program that can be run on an IBM or equivalent personal computer. The program language is FORTRAN-77. Several models are included in RISKIND that have been tailored to calculate the exposure to individuals under various incident-free and accident conditions. The incidentfree models assess exposures from both gamma and neutron radiation and can account for different cask designs. The accident models include accidental release, atmospheric transport, and the environmental pathways of radionuclides from spent fuels; these models also assess health risks to individuals and the collective population. The models are supported by databases that are specific to spent nuclear fuels and include a radionudide inventory and dose conversion factors.

  17. SInCRe—structural interactome computational resource for Mycobacterium tuberculosis

    PubMed Central

    Metri, Rahul; Hariharaputran, Sridhar; Ramakrishnan, Gayatri; Anand, Praveen; Raghavender, Upadhyayula S.; Ochoa-Montaño, Bernardo; Higueruelo, Alicia P.; Sowdhamini, Ramanathan; Chandra, Nagasuma R.; Blundell, Tom L.; Srinivasan, Narayanaswamy

    2015-01-01

    We have developed an integrated database for Mycobacterium tuberculosis H37Rv (Mtb) that collates information on protein sequences, domain assignments, functional annotation and 3D structural information along with protein–protein and protein–small molecule interactions. SInCRe (Structural Interactome Computational Resource) is developed out of CamBan (Cambridge and Bangalore) collaboration. The motivation for development of this database is to provide an integrated platform to allow easily access and interpretation of data and results obtained by all the groups in CamBan in the field of Mtb informatics. In-house algorithms and databases developed independently by various academic groups in CamBan are used to generate Mtb-specific datasets and are integrated in this database to provide a structural dimension to studies on tuberculosis. The SInCRe database readily provides information on identification of functional domains, genome-scale modelling of structures of Mtb proteins and characterization of the small-molecule binding sites within Mtb. The resource also provides structure-based function annotation, information on small-molecule binders including FDA (Food and Drug Administration)-approved drugs, protein–protein interactions (PPIs) and natural compounds that bind to pathogen proteins potentially and result in weakening or elimination of host–pathogen protein–protein interactions. Together they provide prerequisites for identification of off-target binding. Database URL: http://proline.biochem.iisc.ernet.in/sincre PMID:26130660

  18. Saccharomyces cerevisiae U1 small nuclear RNA secondary structure contains both universal and yeast-specific domains.

    PubMed Central

    Kretzner, L; Krol, A; Rosbash, M

    1990-01-01

    The five small nuclear RNAs (snRNAs) involved in mammalian pre-mRNA splicing (U1, U2, U4, U5, and U6) are well conserved in length, sequence, and especially secondary structure. These five snRNAs from Saccharomyces cerevisiae show notable size and sequence differences from their metazoan counterparts. This is most striking for the large S. cerevisiae U1 and U2 snRNAs, for which no secondary structure models currently exist. Because of the importance of U1 snRNA in the early steps of "spliceosome" assembly, we wanted to compare the highly conserved secondary structure of metazoan U1 snRNA (approximately 165 nucleotides) with that of S. cerevisiae U1 snRNA (568 nucleotides). To this end, we have cloned and sequenced the U1 gene from two other yeast species possessing large U1 RNAs. Using computer-derived structure predictions, phylogenetic comparisons, and structure probing, we have arrived at a secondary structure model for S. cerevisiae U1 snRNA. The results show that most elements of higher eukaryotic U1 snRNA secondary structure are conserved in S. cerevisiae. The hundreds of "extra" nucleotides of yeast U1 RNA, also highly structured, suggest that large insertions and/or deletions have occurred during the evolution of the U1 gene. Images PMID:2405391

  19. Natural Abundance 17O Nuclear Magnetic Resonance and Computational Modeling Studies of Lithium Based Liquid Electrolytes

    SciTech Connect

    Deng, Xuchu; Hu, Mary Y.; Wei, Xiaoliang; Wang, Wei; Chen, Zhong; Liu, Jun; Hu, Jian Z.

    2015-07-01

    Natural abundance 17O NMR measurements were conducted on electrolyte solutions consisting of Li[CF3SO2NSO2CF3] (LiTFSI) dissolved in the solvents of ethylene carbonate (EC), propylene carbonate (PC), ethyl methyl carbonate (EMC), and their mixtures at various concentrations. It was observed that 17O chemical shifts of solvent molecules change with the concentration of LiTFSI. The chemical shift displacements of carbonyl oxygen are evidently greater than those of ethereal oxygen, strongly indicating that Li+ ion is coordinated with carbonyl oxygen rather than ethereal oxygen. To understand the detailed molecular interaction, computational modeling of 17O chemical shifts was carried out on proposed solvation structures. By comparing the predicted chemical shifts with the experimental values, it is found that a Li+ ion is coordinated with four double bond oxygen atoms from EC, PC, EMC and TFSI- anion. In the case of excessive amount of solvents of EC, PC and EMC the Li+ coordinated solvent molecules are undergoing quick exchange with bulk solvent molecules, resulting in average 17O chemical shifts. Several kinds of solvation structures are identified, where the proportion of each structure in the liquid electrolytes investigated depends on the concentration of LiTFSI.

  20. Natural abundance 17O nuclear magnetic resonance and computational modeling studies of lithium based liquid electrolytes

    NASA Astrophysics Data System (ADS)

    Deng, Xuchu; Hu, Mary Y.; Wei, Xiaoliang; Wang, Wei; Chen, Zhong; Liu, Jun; Hu, Jian Zhi

    2015-07-01

    Natural abundance 17O NMR measurements were conducted on electrolyte solutions consisting of Li[CF3SO2NSO2CF3] (LiTFSI) dissolved in the solvents of ethylene carbonate (EC), propylene carbonate (PC), ethyl methyl carbonate (EMC), and their mixtures at various concentrations. It was observed that 17O chemical shifts of solvent molecules change with the concentration of LiTFSI. The chemical shift displacements of carbonyl oxygen are evidently greater than those of ethereal oxygen, strongly indicating that Li+ ion is coordinated with carbonyl oxygen rather than ethereal oxygen. To understand the detailed molecular interaction, computational modeling of 17O chemical shifts was carried out on proposed solvation structures. By comparing the predicted chemical shifts with the experimental values, it is found that a Li+ ion is coordinated with four double bond oxygen atoms from EC, PC, EMC and TFSI- anion. In the case of excessive amount of solvents of EC, PC and EMC the Li+ coordinated solvent molecules are undergoing quick exchange with bulk solvent molecules, resulting in average 17O chemical shifts. Several kinds of solvation structures are identified, where the proportion of each structure in the liquid electrolytes investigated depends on the concentration of LiTFSI.