Sample records for computational physics group

  1. The Impact of Internet Virtual Physics Laboratory Instruction on the Achievement in Physics, Science Process Skills and Computer Attitudes of 10th-Grade Students

    NASA Astrophysics Data System (ADS)

    Yang, Kun-Yuan; Heh, Jia-Sheng

    2007-10-01

    The purpose of this study was to investigate and compare the impact of Internet Virtual Physics Laboratory (IVPL) instruction with traditional laboratory instruction in physics academic achievement, performance of science process skills, and computer attitudes of tenth grade students. One-hundred and fifty students from four classes at one private senior high school in Taoyuan Country, Taiwan, R.O.C. were sampled. All four classes contained 75 students who were equally divided into an experimental group and a control group. The pre-test results indicated that the students' entry-level physics academic achievement, science process skills, and computer attitudes were equal for both groups. On the post-test, the experimental group achieved significantly higher mean scores in physics academic achievement and science process skills. There was no significant difference in computer attitudes between the groups. We concluded that the IVPL had potential to help tenth graders improve their physics academic achievement and science process skills.

  2. The effects of a computer skill training programme adopting social comparison and self-efficacy enhancement strategies on self-concept and skill outcome in trainees with physical disabilities.

    PubMed

    Tam, S F

    2000-10-15

    The aim of this controlled, quasi-experimental study was to evaluate the effects of both self-efficacy enhancement and social comparison training strategy on computer skills learning and self-concept outcome of trainees with physical disabilities. The self-efficacy enhancement group comprised 16 trainees, the tutorial training group comprised 15 trainees, and there were 25 subjects in the control group. Both the self-efficacy enhancement group and the tutorial training group received a 15 week computer skills training course, including generic Chinese computer operation, Chinese word processing and Chinese desktop publishing skills. The self-efficacy enhancement group received training with tutorial instructions that incorporated self-efficacy enhancement strategies and experienced self-enhancing social comparisons. The tutorial training group received behavioural learning-based tutorials only, and the control group did not receive any training. The following measurements were employed to evaluate the outcomes: the Self-Concept Questionnaire for the Physically Disabled Hong Kong Chinese (SCQPD), the computer self-efficacy rating scale and the computer performance rating scale. The self-efficacy enhancement group showed significantly better computer skills learning outcome, total self-concept, and social self-concept than the tutorial training group. The self-efficacy enhancement group did not show significant changes in their computer self-efficacy: however, the tutorial training group showed a significant lowering of their computer self-efficacy. The training strategy that incorporated self-efficacy enhancement and positive social comparison experiences maintained the computer self-efficacy of trainees with physical disabilities. This strategy was more effective in improving the learning outcome (p = 0.01) and self-concept (p = 0.05) of the trainees than the conventional tutorial-based training strategy.

  3. The effect of introducing computers into an introductory physics problem-solving laboratory

    NASA Astrophysics Data System (ADS)

    McCullough, Laura Ellen

    2000-10-01

    Computers are appearing in every type of classroom across the country. Yet they often appear without benefit of studying their effects. The research that is available on computer use in classrooms has found mixed results, and often ignores the theoretical and instructional contexts of the computer in the classroom. The University of Minnesota's physics department employs a cooperative-group problem solving pedagogy, based on a cognitive apprenticeship instructional model, in its calculus-based introductory physics course. This study was designed to determine possible negative effects of introducing a computerized data-acquisition and analysis tool into this pedagogy as a problem-solving tool for students to use in laboratory. To determine the effects of the computer tool, two quasi-experimental treatment groups were selected. The computer-tool group (N = 170) used a tool, designed for this study (VideoTool), to collect and analyze motion data in the laboratory. The control group (N = 170) used traditional non-computer equipment (spark tapes and Polaroid(TM) film). The curriculum was kept as similar as possible for the two groups. During the ten week academic quarter, groups were examined for effects on performance on conceptual tests and grades, attitudes towards the laboratory and the laboratory tools, and behaviors within cooperative groups. Possible interactions with gender were also examined. Few differences were found between the control and computer-tool groups. The control group received slightly higher scores on one conceptual test, but this difference was not educationally significant. The computer-tool group had slightly more positive attitudes towards using the computer tool than their counterparts had towards the traditional tools. The computer-tool group also perceived that they spoke more frequently about physics misunderstandings, while the control group felt that they discussed equipment difficulties more often. This perceptual difference interacted with gender, with the men in the control group more likely to discuss equipment difficulties than any other group. Overall, the differences between the control and quasi-experimental groups were minimal. It was concluded that carefully replacing traditional data collection and analysis tools with a computer tool had no negative effects on achievement, attitude, group behavior, and did not interact with gender.

  4. High Energy Physics

    Science.gov Websites

    Collider Physics Cosmic Frontier Cosmic Frontier Theory & Computing Detector R&D Electronic Design Theory Seminar Argonne >High Energy Physics Cosmic Frontier Theory & Computing Homepage General Cosmic Frontier Theory & Computing Group led the analysis to begin mapping dark matter. There have

  5. "Let's get physical": advantages of a physical model over 3D computer models and textbooks in learning imaging anatomy.

    PubMed

    Preece, Daniel; Williams, Sarah B; Lam, Richard; Weller, Renate

    2013-01-01

    Three-dimensional (3D) information plays an important part in medical and veterinary education. Appreciating complex 3D spatial relationships requires a strong foundational understanding of anatomy and mental 3D visualization skills. Novel learning resources have been introduced to anatomy training to achieve this. Objective evaluation of their comparative efficacies remains scarce in the literature. This study developed and evaluated the use of a physical model in demonstrating the complex spatial relationships of the equine foot. It was hypothesized that the newly developed physical model would be more effective for students to learn magnetic resonance imaging (MRI) anatomy of the foot than textbooks or computer-based 3D models. Third year veterinary medicine students were randomly assigned to one of three teaching aid groups (physical model; textbooks; 3D computer model). The comparative efficacies of the three teaching aids were assessed through students' abilities to identify anatomical structures on MR images. Overall mean MRI assessment scores were significantly higher in students utilizing the physical model (86.39%) compared with students using textbooks (62.61%) and the 3D computer model (63.68%) (P < 0.001), with no significant difference between the textbook and 3D computer model groups (P = 0.685). Student feedback was also more positive in the physical model group compared with both the textbook and 3D computer model groups. Our results suggest that physical models may hold a significant advantage over alternative learning resources in enhancing visuospatial and 3D understanding of complex anatomical architecture, and that 3D computer models have significant limitations with regards to 3D learning. © 2013 American Association of Anatomists.

  6. An Overview of the Computational Physics and Methods Group at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Randal Scott

    CCS Division was formed to strengthen the visibility and impact of computer science and computational physics research on strategic directions for the Laboratory. Both computer science and computational science are now central to scientific discovery and innovation. They have become indispensable tools for all other scientific missions at the Laboratory. CCS Division forms a bridge between external partners and Laboratory programs, bringing new ideas and technologies to bear on today’s important problems and attracting high-quality technical staff members to the Laboratory. The Computational Physics and Methods Group CCS-2 conducts methods research and develops scientific software aimed at the latest andmore » emerging HPC systems.« less

  7. Effect of Physical Education Teachers' Computer Literacy on Technology Use in Physical Education

    ERIC Educational Resources Information Center

    Kretschmann, Rolf

    2015-01-01

    Teachers' computer literacy has been identified as a factor that determines their technology use in class. The aim of this study was to investigate the relationship between physical education (PE) teachers' computer literacy and their technology use in PE. The study group consisted of 57 high school level in-service PE teachers. A survey was used…

  8. Computer-assisted instruction in curricula of physical therapist assistants.

    PubMed

    Thompson, E C

    1987-08-01

    This article compares the effectiveness of computer-assisted instruction (CAI) with written, programmed instruction between two groups of physical therapist assistant students. No significant difference in the amount of material learned or retained after completion of testing using either CAI or a written, programmed text was found in this group of 16 subjects. Learning style or attitude about computers did not correlate strongly with performance after the CAI. Findings suggest that more research is needed to support decisions related to fiscal allotments for computer use in college curricula.

  9. Web-Based Video-Coaching to Assist an Automated Computer-Tailored Physical Activity Intervention for Inactive Adults: A Randomized Controlled Trial.

    PubMed

    Alley, Stephanie; Jennings, Cally; Plotnikoff, Ronald C; Vandelanotte, Corneel

    2016-08-12

    Web-based physical activity interventions that apply computer tailoring have shown to improve engagement and behavioral outcomes but provide limited accountability and social support for participants. It is unknown how video calls with a behavioral expert in a Web-based intervention will be received and whether they improve the effectiveness of computer-tailored advice. The purpose of this study was to determine the feasibility and effectiveness of brief video-based coaching in addition to fully automated computer-tailored advice in a Web-based physical activity intervention for inactive adults. Participants were assigned to one of the three groups: (1) tailoring + video-coaching where participants received an 8-week computer-tailored Web-based physical activity intervention ("My Activity Coach") including 4 10-minute coaching sessions with a behavioral expert using a Web-based video-calling program (eg, Skype; n=52); (2) tailoring-only where participants received the same intervention without the coaching sessions (n=54); and (3) a waitlist control group (n=45). Demographics were measured at baseline, intervention satisfaction at week 9, and physical activity at baseline, week 9, and 6 months by Web-based self-report surveys. Feasibility was analyzed by comparing intervention groups on retention, adherence, engagement, and satisfaction using t tests and chi-square tests. Effectiveness was assessed using linear mixed models to compare physical activity changes between groups. A total of 23 tailoring + video-coaching participants, 30 tailoring-only participants, and 30 control participants completed the postintervention survey (83/151, 55.0% retention). A low percentage of tailoring + video-coaching completers participated in the coaching calls (11/23, 48%). However, the majority of those who participated in the video calls were satisfied with them (5/8, 71%) and had improved intervention adherence (9/11, 82% completed 3 or 4 modules vs 18/42, 43%, P=.01) and engagement (110 minutes spent on the website vs 78 minutes, P=.02) compared with other participants. There were no overall retention, adherence, engagement, and satisfaction differences between tailoring + video-coaching and tailoring-only participants. At 9 weeks, physical activity increased from baseline to postintervention in all groups (tailoring + video-coaching: +150 minutes/week; tailoring only: +123 minutes/week; waitlist control: +34 minutes/week). The increase was significantly higher in the tailoring + video-coaching group compared with the control group (P=.01). No significant difference was found between intervention groups and no significant between-group differences were found for physical activity change at 6 months. Only small improvements were observed when video-coaching was added to computer-tailored advice in a Web-based physical activity intervention. However, combined Web-based video-coaching and computer-tailored advice was effective in comparison with a control group. More research is needed to determine whether Web-based coaching is more effective than stand-alone computer-tailored advice. Australian New Zealand Clinical Trials Registry (ACTRN): 12614000339651; http://www.anzctr.org.au/TrialSearch.aspx?searchTxt=ACTRN12614000339651+&isBasic=True (Archived by WebCite at http://www.webcitation.org/6jTnOv0Ld).

  10. Web-Based Video-Coaching to Assist an Automated Computer-Tailored Physical Activity Intervention for Inactive Adults: A Randomized Controlled Trial

    PubMed Central

    Jennings, Cally; Plotnikoff, Ronald C; Vandelanotte, Corneel

    2016-01-01

    Background Web-based physical activity interventions that apply computer tailoring have shown to improve engagement and behavioral outcomes but provide limited accountability and social support for participants. It is unknown how video calls with a behavioral expert in a Web-based intervention will be received and whether they improve the effectiveness of computer-tailored advice. Objective The purpose of this study was to determine the feasibility and effectiveness of brief video-based coaching in addition to fully automated computer-tailored advice in a Web-based physical activity intervention for inactive adults. Methods Participants were assigned to one of the three groups: (1) tailoring + video-coaching where participants received an 8-week computer-tailored Web-based physical activity intervention (“My Activity Coach”) including 4 10-minute coaching sessions with a behavioral expert using a Web-based video-calling program (eg, Skype; n=52); (2) tailoring-only where participants received the same intervention without the coaching sessions (n=54); and (3) a waitlist control group (n=45). Demographics were measured at baseline, intervention satisfaction at week 9, and physical activity at baseline, week 9, and 6 months by Web-based self-report surveys. Feasibility was analyzed by comparing intervention groups on retention, adherence, engagement, and satisfaction using t tests and chi-square tests. Effectiveness was assessed using linear mixed models to compare physical activity changes between groups. Results A total of 23 tailoring + video-coaching participants, 30 tailoring-only participants, and 30 control participants completed the postintervention survey (83/151, 55.0% retention). A low percentage of tailoring + video-coaching completers participated in the coaching calls (11/23, 48%). However, the majority of those who participated in the video calls were satisfied with them (5/8, 71%) and had improved intervention adherence (9/11, 82% completed 3 or 4 modules vs 18/42, 43%, P=.01) and engagement (110 minutes spent on the website vs 78 minutes, P=.02) compared with other participants. There were no overall retention, adherence, engagement, and satisfaction differences between tailoring + video-coaching and tailoring-only participants. At 9 weeks, physical activity increased from baseline to postintervention in all groups (tailoring + video-coaching: +150 minutes/week; tailoring only: +123 minutes/week; waitlist control: +34 minutes/week). The increase was significantly higher in the tailoring + video-coaching group compared with the control group (P=.01). No significant difference was found between intervention groups and no significant between-group differences were found for physical activity change at 6 months. Conclusions Only small improvements were observed when video-coaching was added to computer-tailored advice in a Web-based physical activity intervention. However, combined Web-based video-coaching and computer-tailored advice was effective in comparison with a control group. More research is needed to determine whether Web-based coaching is more effective than stand-alone computer-tailored advice. Trial Registration Australian New Zealand Clinical Trials Registry (ACTRN): 12614000339651; http://www.anzctr.org.au/TrialSearch.aspx?searchTxt=ACTRN12614000339651+&isBasic=True (Archived by WebCite at http://www.webcitation.org/6jTnOv0Ld) PMID:27520283

  11. Comparison of gross anatomy test scores using traditional specimens vs. QuickTime Virtual Reality animated specimens

    NASA Astrophysics Data System (ADS)

    Maza, Paul Sadiri

    In recent years, technological advances such as computers have been employed in teaching gross anatomy at all levels of education, even in professional schools such as medical and veterinary medical colleges. Benefits of computer based instructional tools for gross anatomy include the convenience of not having to physically view or dissect a cadaver. Anatomy educators debate over the advantages versus the disadvantages of computer based resources for gross anatomy instruction. Many studies, case reports, and editorials argue for the increased use of computer based anatomy educational tools, while others discuss the necessity of dissection for various reasons important in learning anatomy, such as a three-dimensional physical view of the specimen, physical handling of tissues, interactions with fellow students during dissection, and differences between specific specimens. While many articles deal with gross anatomy education using computers, there seems to be a lack of studies investigating the use of computer based resources as an assessment tool for gross anatomy, specifically using the Apple application QuickTime Virtual Reality (QTVR). This study investigated the use of QTVR movie modules to assess if using computer based QTVR movie module assessments were equal in quality to actual physical specimen examinations. A gross anatomy course in the College of Veterinary Medicine at Cornell University was used as a source of anatomy students and gross anatomy examinations. Two groups were compared, one group taking gross anatomy examinations in a traditional manner, by viewing actual physical specimens and answering questions based on those specimens. The other group took the same examinations using the same specimens, but the specimens were viewed as simulated three-dimensional objects in a QTVR movie module. Sample group means for the assessments were compared. A survey was also administered asking students' perceptions of quality and user-friendliness of the QTVR movie modules. The comparison of the two sample group means of the examinations show that there was no difference in results between using QTVR movie modules to test gross anatomy knowledge versus using physical specimens. The results of this study are discussed to explain the benefits of using such computer based anatomy resources in gross anatomy assessments.

  12. Computer-based assistive technology device for use by children with physical disabilities: a cross-sectional study.

    PubMed

    Lidström, Helene; Almqvist, Lena; Hemmingsson, Helena

    2012-07-01

    To investigate the prevalence of children with physical disabilities who used a computer-based ATD, and to examine characteristics differences in children and youths who do or do not use computer-based ATDs, as well as, investigate differences that might influence the satisfaction of those two groups of children and youths when computers are being used for in-school and outside school activities. A cross-sectional survey about computer-based activities in and outside school (n = 287) and group comparisons. The prevalence of using computer-based ATDs was about 44 % (n = 127) of the children in this sample. These children were less satisfied with their computer use in education and outside school activities than the children who did not use an ATD. Improved coordination of the usage of computer-based ATDs in school and in the home, including service and support, could increase the opportunities for children with physical disabilities who use computer-based ATDs to perform the computer activities they want, need and are expected to do in school and outside school.

  13. The (cost-)effectiveness of a lifestyle physical activity intervention in addition to a work style intervention on the recovery from neck and upper limb symptoms in computer workers

    PubMed Central

    Bernaards, Claire M; Ariëns, Geertje AM; Hildebrandt, Vincent H

    2006-01-01

    Background Neck and upper limb symptoms are frequently reported by computer workers. Work style interventions are most commonly used to reduce work-related neck and upper limb symptoms but lifestyle physical activity interventions are becoming more popular to enhance workers health and reduce work-related symptoms. A combined approach targeting work style and lifestyle physical activity seems promising, but little is known on the effectiveness of such combined interventions. Methods/design The RSI@Work study is a randomised controlled trial that aims to assess the added value of a lifestyle physical activity intervention in addition to a work style intervention to reduce neck and upper limb symptoms in computer workers. Computer workers from seven Dutch companies with frequent or long-term neck and upper limb symptoms in the preceding six months and/or the last two weeks are randomised into three groups: (1) work style group, (2) work style and physical activity group, or (3) control group. The work style intervention consists of six group meetings in a six month period that take place at the workplace, during work time, and under the supervision of a specially trained counsellor. The goal of this intervention is to stimulate workplace adjustment and to improve body posture, the number and quality of breaks and coping behaviour with regard to high work demands. In the combined (work style and physical activity) intervention the additional goal is to increase moderate to heavy physical activity. The control group receives usual care. Primary outcome measures are degree of recovery, pain intensity, disability, number of days with neck and upper limb symptoms, and number of months without neck and upper limb symptoms. Outcome measures will be assessed at baseline and six and 12 months after randomisation. Cost-effectiveness of the group meetings will be assessed using an employer's perspective. Discussion This study will be one of the first to assess the added value of a lifestyle physical activity intervention in addition to a work style intervention in reducing neck and upper limb symptoms of computer workers. The results of the study are expected in 2007. PMID:17062141

  14. Using computer simulations to facilitate conceptual understanding of electromagnetic induction

    NASA Astrophysics Data System (ADS)

    Lee, Yu-Fen

    This study investigated the use of computer simulations to facilitate conceptual understanding in physics. The use of computer simulations in the present study was grounded in a conceptual framework drawn from findings related to the use of computer simulations in physics education. To achieve the goal of effective utilization of computers for physics education, I first reviewed studies pertaining to computer simulations in physics education categorized by three different learning frameworks and studies comparing the effects of different simulation environments. My intent was to identify the learning context and factors for successful use of computer simulations in past studies and to learn from the studies which did not obtain a significant result. Based on the analysis of reviewed literature, I proposed effective approaches to integrate computer simulations in physics education. These approaches are consistent with well established education principles such as those suggested by How People Learn (Bransford, Brown, Cocking, Donovan, & Pellegrino, 2000). The research based approaches to integrated computer simulations in physics education form a learning framework called Concept Learning with Computer Simulations (CLCS) in the current study. The second component of this study was to examine the CLCS learning framework empirically. The participants were recruited from a public high school in Beijing, China. All participating students were randomly assigned to two groups, the experimental (CLCS) group and the control (TRAD) group. Research based computer simulations developed by the physics education research group at University of Colorado at Boulder were used to tackle common conceptual difficulties in learning electromagnetic induction. While interacting with computer simulations, CLCS students were asked to answer reflective questions designed to stimulate qualitative reasoning and explanation. After receiving model reasoning online, students were asked to submit their revised answers electronically. Students in the TRAD group were not granted access to the CLCS material and followed their normal classroom routine. At the end of the study, both the CLCS and TRAD students took a post-test. Questions on the post-test were divided into "what" questions, "how" questions, and an open response question. Analysis of students' post-test performance showed mixed results. While the TRAD students scored higher on the "what" questions, the CLCS students scored higher on the "how" questions and the one open response questions. This result suggested that more TRAD students knew what kinds of conditions may or may not cause electromagnetic induction without understanding how electromagnetic induction works. Analysis of the CLCS students' learning also suggested that frequent disruption and technical trouble might pose threats to the effectiveness of the CLCS learning framework. Despite the mixed results of students' post-test performance, the CLCS learning framework revealed some limitations to promote conceptual understanding in physics. Improvement can be made by providing students with background knowledge necessary to understand model reasoning and incorporating the CLCS learning framework with other learning frameworks to promote integration of various physics concepts. In addition, the reflective questions in the CLCS learning framework may be refined to better address students' difficulties. Limitations of the study, as well as suggestions for future research, are also presented in this study.

  15. Les Houches 2017: Physics at TeV Colliders New Physics Working Group Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooijmans, G.; et al.

    We present the activities of the `New Physics' working group for the `Physics at TeV Colliders' workshop (Les Houches, France, 5--23 June, 2017). Our report includes new physics studies connected with the Higgs boson and its properties, direct search strategies, reinterpretation of the LHC results in the building of viable models and new computational tool developments.

  16. Reactivity effects in VVER-1000 of the third unit of the kalinin nuclear power plant at physical start-up. Computations in ShIPR intellectual code system with library of two-group cross sections generated by UNK code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zizin, M. N.; Zimin, V. G.; Zizina, S. N., E-mail: zizin@adis.vver.kiae.ru

    2010-12-15

    The ShIPR intellectual code system for mathematical simulation of nuclear reactors includes a set of computing modules implementing the preparation of macro cross sections on the basis of the two-group library of neutron-physics cross sections obtained for the SKETCH-N nodal code. This library is created by using the UNK code for 3D diffusion computation of first VVER-1000 fuel loadings. Computation of neutron fields in the ShIPR system is performed using the DP3 code in the two-group diffusion approximation in 3D triangular geometry. The efficiency of all groups of control rods for the first fuel loading of the third unit ofmore » the Kalinin Nuclear Power Plant is computed. The temperature, barometric, and density effects of reactivity as well as the reactivity coefficient due to the concentration of boric acid in the reactor were computed additionally. Results of computations are compared with the experiment.« less

  17. Reactivity effects in VVER-1000 of the third unit of the kalinin nuclear power plant at physical start-up. Computations in ShIPR intellectual code system with library of two-group cross sections generated by UNK code

    NASA Astrophysics Data System (ADS)

    Zizin, M. N.; Zimin, V. G.; Zizina, S. N.; Kryakvin, L. V.; Pitilimov, V. A.; Tereshonok, V. A.

    2010-12-01

    The ShIPR intellectual code system for mathematical simulation of nuclear reactors includes a set of computing modules implementing the preparation of macro cross sections on the basis of the two-group library of neutron-physics cross sections obtained for the SKETCH-N nodal code. This library is created by using the UNK code for 3D diffusion computation of first VVER-1000 fuel loadings. Computation of neutron fields in the ShIPR system is performed using the DP3 code in the two-group diffusion approximation in 3D triangular geometry. The efficiency of all groups of control rods for the first fuel loading of the third unit of the Kalinin Nuclear Power Plant is computed. The temperature, barometric, and density effects of reactivity as well as the reactivity coefficient due to the concentration of boric acid in the reactor were computed additionally. Results of computations are compared with the experiment.

  18. XXV IUPAP Conference on Computational Physics (CCP2013): Preface

    NASA Astrophysics Data System (ADS)

    2014-05-01

    XXV IUPAP Conference on Computational Physics (CCP2013) was held from 20-24 August 2013 at the Russian Academy of Sciences in Moscow, Russia. The annual Conferences on Computational Physics (CCP) present an overview of the most recent developments and opportunities in computational physics across a broad range of topical areas. The CCP series aims to draw computational scientists from around the world and to stimulate interdisciplinary discussion and collaboration by putting together researchers interested in various fields of computational science. It is organized under the auspices of the International Union of Pure and Applied Physics and has been in existence since 1989. The CCP series alternates between Europe, America and Asia-Pacific. The conferences are traditionally supported by European Physical Society and American Physical Society. This year the Conference host was Landau Institute for Theoretical Physics. The Conference contained 142 presentations, and, in particular, 11 plenary talks with comprehensive reviews from airbursts to many-electron systems. We would like to take this opportunity to thank our sponsors: International Union of Pure and Applied Physics (IUPAP), European Physical Society (EPS), Division of Computational Physics of American Physical Society (DCOMP/APS), Russian Foundation for Basic Research, Department of Physical Sciences of Russian Academy of Sciences, RSC Group company. Further conference information and images from the conference are available in the pdf.

  19. The Relationship between Attitudes of Prospective Physical Education Teachers towards Education Technologies and Computer Self-Efficacy Beliefs

    ERIC Educational Resources Information Center

    Kalemoglu Varol, Yaprak

    2014-01-01

    The aim of research is to investigate the relationship between attitudes of prospective physical education teacher towards education technologies and their computer self-efficacy beliefs. Relational research method has been used in the study. Study group consists of 337 prospective physical education teachers ("M"[subscript age] = 21.57…

  20. Effects of tailoring health messages on physical activity.

    PubMed

    Smeets, Tamara; Brug, J; de Vries, H

    2008-06-01

    Computer-tailored printed education can be a promising way of promoting physical activity. The present study tested whether computer-tailored feedback on physical activity is effective and whether there are differences between respondents with low and high motivation to change. Respondents (n = 487) were randomly assigned to a tailored intervention group or a no information control group. Physical activity and determinants were measured at baseline and after 3 months. At post-test, the motivated respondents in the control group were more likely not to meet the recommendation for physical activity than to meet it, and motivated respondents in the experimental group were more likely to engage in transport-related activities and showed more improvement over time for the total activity score than respondents in the control group (beta = 0.24, P = 0.02). Both groups improved their behaviour over time. No group differences in physical activity were found for the unmotivated respondents. The results showed that the effects of the tailored feedback were restricted to respondents who had a positive motivation to change at baseline. Possible explanations could be that unmotivated respondents were unwilling to read and process the information because they felt 'no need to change'. Alternatively, one tailored feedback letter may not have been sufficient for this unmotivated group.

  1. Revision by means of computer-mediated peer discussions

    NASA Astrophysics Data System (ADS)

    Soong, Benson; Mercer, Neil; Er, Siew Shin

    2010-05-01

    In this article, we provide a discussion on our revision method (termed prescriptive tutoring) aimed at revealing students' misconceptions and misunderstandings by getting them to solve physics problems with an anonymous partner via the computer. It is currently being implemented and evaluated in a public secondary school in Singapore, and statistical analysis of our initial small-scale study shows that students in the experimental group significantly outperformed students in both the control and alternative intervention groups. In addition, students in the experimental group perceived that they had gained improved understanding of the physics concepts covered during the intervention, and reported that they would like to continue revising physics concepts using the intervention methods.

  2. Configuring compute nodes of a parallel computer in an operational group into a plurality of independent non-overlapping collective networks

    DOEpatents

    Archer, Charles J.; Inglett, Todd A.; Ratterman, Joseph D.; Smith, Brian E.

    2010-03-02

    Methods, apparatus, and products are disclosed for configuring compute nodes of a parallel computer in an operational group into a plurality of independent non-overlapping collective networks, the compute nodes in the operational group connected together for data communications through a global combining network, that include: partitioning the compute nodes in the operational group into a plurality of non-overlapping subgroups; designating one compute node from each of the non-overlapping subgroups as a master node; and assigning, to the compute nodes in each of the non-overlapping subgroups, class routing instructions that organize the compute nodes in that non-overlapping subgroup as a collective network such that the master node is a physical root.

  3. Greek Undergraduate Physical Education Students' Basic Computer Skills

    ERIC Educational Resources Information Center

    Adamakis, Manolis; Zounhia, Katerina

    2013-01-01

    The purposes of this study were to determine how undergraduate physical education (PE) students feel about their level of competence concerning basic computer skills and to examine possible differences between groups (gender, specialization, high school graduation type, and high school direction). Although many students and educators believe…

  4. Using Computer-Assisted Argumentation Mapping to develop effective argumentation skills in high school advanced placement physics

    NASA Astrophysics Data System (ADS)

    Heglund, Brian

    Educators recognize the importance of reasoning ability for development of critical thinking skills, conceptual change, metacognition, and participation in 21st century society. There is a recognized need for students to improve their skills of argumentation, however, argumentation is not explicitly taught outside logic and philosophy---subjects that are not part of the K-12 curriculum. One potential way of supporting the development of argumentation skills in the K-12 context is through incorporating Computer-Assisted Argument Mapping to evaluate arguments. This quasi-experimental study tested the effects of such argument mapping software and was informed by the following two research questions: 1. To what extent does the collaborative use of Computer-Assisted Argumentation Mapping to evaluate competing theories influence the critical thinking skill of argument evaluation, metacognitive awareness, and conceptual knowledge acquisition in high school Advanced Placement physics, compared to the more traditional method of text tables that does not employ Computer-Assisted Argumentation Mapping? 2. What are the student perceptions of the pros and cons of argument evaluation in the high school Advanced Placement physics environment? This study examined changes in critical thinking skills, including argumentation evaluation skills, as well as metacognitive awareness and conceptual knowledge, in two groups: a treatment group using Computer-Assisted Argumentation Mapping to evaluate physics arguments, and a comparison group using text tables to evaluate physics arguments. Quantitative and qualitative methods for collecting and analyzing data were used to answer the research questions. Quantitative data indicated no significant difference between the experimental groups, and qualitative data suggested students perceived pros and cons of argument evaluation in the high school Advanced Placement physics environment, such as self-reported sense of improvement in argument evaluation and low perceived value of the learning task, respectively. The discussion presents implications for practice and research, such as introducing motivation scaffolds to support appreciation of task value, and addressing major differences between the design of this study and similar published studies, respectively. This work provides contributions in that it tested the effect of Computer-Assisted Argumentation Mapping on the critical thinking skills of twelfth-grade students within the context of evaluating physics arguments, a previously unexplored age group and domain.

  5. Efficacy of sequential or simultaneous interactive computer-tailored interventions for increasing physical activity and decreasing fat intake.

    PubMed

    Vandelanotte, Corneel; De Bourdeaudhuij, Ilse; Sallis, James F; Spittaels, Heleen; Brug, Johannes

    2005-04-01

    Little evidence exists about the effectiveness of "interactive" computer-tailored interventions and about the combined effectiveness of tailored interventions on physical activity and diet. Furthermore, it is unknown whether they should be executed sequentially or simultaneously. The purpose of this study was to examine (a) the effectiveness of interactive computer-tailored interventions for increasing physical activity and decreasing fat intake and (b) which intervening mode, sequential or simultaneous, is most effective in behavior change. Participants (N = 771) were randomly assigned to receive (a) the physical activity and fat intake interventions simultaneously at baseline, (b) the physical activity intervention at baseline and the fat intake intervention 3 months later, (c) the fat intake intervention at baseline and the physical activity intervention 3 months later, or (d) a place in the control group. Six months postbaseline, the results showed that the tailored interventions produced significantly higher physical activity scores, F(2, 573) = 11.4, p < .001, and lower fat intake scores, F(2, 565) = 31.4, p < .001, in the experimental groups when compared to the control group. For both behaviors, the sequential and simultaneous intervening modes showed to be effective; however, for the fat intake intervention and for the participants who did not meet the recommendation in the physical activity intervention, the simultaneous mode appeared to work better than the sequential mode.

  6. Nanostructure symmetry: Relevance for physics and computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dupertuis, Marc-André; Oberli, D. Y.; Karlsson, K. F.

    2014-03-31

    We review the research done in recent years in our group on the effects of nanostructure symmetry, and outline its relevance both for nanostructure physics and for computations of their electronic and optical properties. The exemples of C3v and C2v quantum dots are used. A number of surprises and non-trivial aspects are outlined, and a few symmetry-based tools for computing and analysis are shortly presented.

  7. Integrating computation into the undergraduate curriculum: A vision and guidelines for future developments

    NASA Astrophysics Data System (ADS)

    Chonacky, Norman; Winch, David

    2008-04-01

    There is substantial evidence of a need to make computation an integral part of the undergraduate physics curriculum. This need is consistent with data from surveys in both the academy and the workplace, and has been reinforced by two years of exploratory efforts by a group of physics faculty for whom computation is a special interest. We have examined past and current efforts at reform and a variety of strategic, organizational, and institutional issues involved in any attempt to broadly transform existing practice. We propose a set of guidelines for development based on this past work and discuss our vision of computationally integrated physics.

  8. Spatial ability in secondary school students: intra-sex differences based on self-selection for physical education.

    PubMed

    Tlauka, Michael; Williams, Jennifer; Williamson, Paul

    2008-08-01

    Past research has demonstrated consistent sex differences with men typically outperforming women on tests of spatial ability. However, less is known about intra-sex effects. In the present study, two groups of female students (physical education and non-physical education secondary students) and two corresponding groups of male students explored a large-scale virtual shopping centre. In a battery of tasks, spatial knowledge of the shopping centre as well as mental rotation ability were tested. Additional variables considered were circulating testosterone levels, the ratio of 2D:4D digit length, and computer experience. The results revealed both sex and intra-sex differences in spatial ability. Variables related to virtual navigation and computer ability and experience were found to be the most powerful predictors of group membership. Our results suggest that in female and male secondary students, participation in physical education and spatial skill are related.

  9. Reduction of collisional-radiative models for transient, atomic plasmas

    NASA Astrophysics Data System (ADS)

    Abrantes, Richard June; Karagozian, Ann; Bilyeu, David; Le, Hai

    2017-10-01

    Interactions between plasmas and any radiation field, whether by lasers or plasma emissions, introduce many computational challenges. One of these computational challenges involves resolving the atomic physics, which can influence other physical phenomena in the radiated system. In this work, a collisional-radiative (CR) model with reduction capabilities is developed to capture the atomic physics at a reduced computational cost. Although the model is made with any element in mind, the model is currently supplemented by LANL's argon database, which includes the relevant collisional and radiative processes for all of the ionic stages. Using the detailed data set as the true solution, reduction mechanisms in the form of Boltzmann grouping, uniform grouping, and quasi-steady-state (QSS), are implemented to compare against the true solution. Effects on the transient plasma stemming from the grouping methods are compared. Distribution A: Approved for public release; unlimited distribution, PA (Public Affairs) Clearance Number 17449. This work was supported by the Air Force Office of Scientific Research (AFOSR), Grant Number 17RQCOR463 (Dr. Jason Marshall).

  10. The efficacy of World Wide Web-mediated microcomputer-based laboratory activities in the high school physics classroom

    NASA Astrophysics Data System (ADS)

    Slykhuis, David A.

    This research project examined the efficacy of an online microcomputer-based laboratory based (MBL) physics unit. One hundred and fifty physics students from five high schools in North Carolina were divided into online and classroom groups. The classroom group completed the MBL unit in small groups with assistance from their teachers. The online groups completed the MBL unit in small groups using a website designed for this project for guidance. Pre- and post-unit content specific tests and surveys were given. Statistical analysis of the content tests showed significant development of conceptual understanding by the online group over the course of the unit. There was not a significant difference between the classroom and online group with relation to the amount of conceptual understanding developed. Correlations with post-test achievement showed that pre-test scores and math background were the most significant correlates with success. Computer related variables, such as computer comfort and online access, were only mildly correlated with the online group. Students' views about the nature of physics were not well developed prior to the unit and did not significantly change over the course of the unit. Examination of the students' physics conceptions after instruction revealed common alternative conceptions such as confusing position and velocity variables and incorrect interpretations of graphical features such as slope.

  11. A Methodological Study of a Computer-Managed Instructional Program in High School Physics.

    ERIC Educational Resources Information Center

    Denton, Jon James

    The purpose of this study was to develop and evaluate an instructional model which utilized the computer to produce individually prescribed instructional guides in physics at the secondary school level. The sample consisted of three classes. Of these, two were randomly selected to serve as the treatment groups, e.g., individualized instruction and…

  12. HEPLIB `91: International users meeting on the support and environments of high energy physics computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnstad, H.

    The purpose of this meeting is to discuss the current and future HEP computing support and environments from the perspective of new horizons in accelerator, physics, and computing technologies. Topics of interest to the Meeting include (but are limited to): the forming of the HEPLIB world user group for High Energy Physic computing; mandate, desirables, coordination, organization, funding; user experience, international collaboration; the roles of national labs, universities, and industry; range of software, Monte Carlo, mathematics, physics, interactive analysis, text processors, editors, graphics, data base systems, code management tools; program libraries, frequency of updates, distribution; distributed and interactive computing, datamore » base systems, user interface, UNIX operating systems, networking, compilers, Xlib, X-Graphics; documentation, updates, availability, distribution; code management in large collaborations, keeping track of program versions; and quality assurance, testing, conventions, standards.« less

  13. HEPLIB 91: International users meeting on the support and environments of high energy physics computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnstad, H.

    The purpose of this meeting is to discuss the current and future HEP computing support and environments from the perspective of new horizons in accelerator, physics, and computing technologies. Topics of interest to the Meeting include (but are limited to): the forming of the HEPLIB world user group for High Energy Physic computing; mandate, desirables, coordination, organization, funding; user experience, international collaboration; the roles of national labs, universities, and industry; range of software, Monte Carlo, mathematics, physics, interactive analysis, text processors, editors, graphics, data base systems, code management tools; program libraries, frequency of updates, distribution; distributed and interactive computing, datamore » base systems, user interface, UNIX operating systems, networking, compilers, Xlib, X-Graphics; documentation, updates, availability, distribution; code management in large collaborations, keeping track of program versions; and quality assurance, testing, conventions, standards.« less

  14. "MONSTROUS MOONSHINE" and Physics

    NASA Astrophysics Data System (ADS)

    Pushkin, A. V.

    The report presents some results obtained by the author on the quantum gravitation theory. Algebraic structure of this theory proves to be related to the commutative nonassociative Griess algebra. The theory symmetry is the automorphism group of Griess algebra: "Monster" simple group. Knowledge of the theory symmetry allows to compute observed physical values in the `zero' approximation. The report presents such computed results for values {m_{p}}/{m_{c}} and α, for the latter the `zero' approximation accuracy, controlled by the theory, being one order of magnitude higher than the accuracy of modern measurements.

  15. Measurement of the effect of physical exercise on the concentration of individuals with ADHD.

    PubMed

    Silva, Alessandro P; Prado, Sueli O S; Scardovelli, Terigi A; Boschi, Silvia R M S; Campos, Luiz C; Frère, Annie F

    2015-01-01

    Attention Deficit Hyperactivity Disorder (ADHD) mainly affects the academic performance of children and adolescents. In addition to bringing physical and mental health benefits, physical activity has been used to prevent and improve ADHD comorbidities; however, its effectiveness has not been quantified. In this study, the effect of physical activity on children's attention was measured using a computer game. Intense physical activity was promoted by a relay race, which requires a 5-min run without a rest interval. The proposed physical stimulus was performed with 28 volunteers: 14 with ADHD (GE-EF) and 14 without ADHD symptoms (GC-EF). After 5 min of rest, these volunteers accessed the computer game to accomplish the tasks in the shortest time possible. The computer game was also accessed by another 28 volunteers: 14 with ADHD (GE) and 14 without these symptoms (GC). The response time to solve the tasks that require attention was recorded. The results of the four groups were analyzed using D'Agostino statistical tests of normality, Kruskal-Wallis analyses of variance and post-hoc Dunn tests. The groups of volunteers with ADHD who performed exercise (GE-EF) showed improved performance for the tasks that require attention with a difference of 30.52% compared with the volunteers with ADHD who did not perform the exercise (GE). The (GE-EF) group showed similar performance (2.5% difference) with the volunteers in the (GC) group who have no ADHD symptoms and did not exercise. This study shows that intense exercise can improve the attention of children with ADHD and may help their school performance.

  16. Mark Stock | NREL

    Science.gov Websites

    , he started the Boston Virtual Reality Meetup group, develops physics plugins for games and demos for physically accurate lighting model, Second Conference on Computational Semiotics for Games and New Media

  17. Intertextuality and Multimodal Meanings in High School Physics: Written and Spoken Language in Computer-Supported Collaborative Student Discourse

    ERIC Educational Resources Information Center

    Tang, Kok-Sing; Tan, Seng-Chee

    2017-01-01

    The study in this article examines and illustrates the intertextual meanings made by a group of high school science students as they embarked on a knowledge building discourse to solve a physics problem. This study is situated in a computer-supported collaborative learning (CSCL) environment designed to support student learning through a science…

  18. High Energy Physics Forum for Computational Excellence: Working Group Reports (I. Applications Software II. Software Libraries and Tools III. Systems)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habib, Salman; Roser, Robert

    Computing plays an essential role in all aspects of high energy physics. As computational technology evolves rapidly in new directions, and data throughput and volume continue to follow a steep trend-line, it is important for the HEP community to develop an effective response to a series of expected challenges. In order to help shape the desired response, the HEP Forum for Computational Excellence (HEP-FCE) initiated a roadmap planning activity with two key overlapping drivers -- 1) software effectiveness, and 2) infrastructure and expertise advancement. The HEP-FCE formed three working groups, 1) Applications Software, 2) Software Libraries and Tools, and 3)more » Systems (including systems software), to provide an overview of the current status of HEP computing and to present findings and opportunities for the desired HEP computational roadmap. The final versions of the reports are combined in this document, and are presented along with introductory material.« less

  19. High Energy Physics Forum for Computational Excellence: Working Group Reports (I. Applications Software II. Software Libraries and Tools III. Systems)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habib, Salman; Roser, Robert; LeCompte, Tom

    2015-10-29

    Computing plays an essential role in all aspects of high energy physics. As computational technology evolves rapidly in new directions, and data throughput and volume continue to follow a steep trend-line, it is important for the HEP community to develop an effective response to a series of expected challenges. In order to help shape the desired response, the HEP Forum for Computational Excellence (HEP-FCE) initiated a roadmap planning activity with two key overlapping drivers -- 1) software effectiveness, and 2) infrastructure and expertise advancement. The HEP-FCE formed three working groups, 1) Applications Software, 2) Software Libraries and Tools, and 3)more » Systems (including systems software), to provide an overview of the current status of HEP computing and to present findings and opportunities for the desired HEP computational roadmap. The final versions of the reports are combined in this document, and are presented along with introductory material.« less

  20. Proceedings of the nineteenth LAMPF Users Group meeting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradbury, J.N.

    1986-02-01

    Separate abstracts were prepared for eight invited talks on various aspects of nuclear and particle physics as well as status reports on LAMPF and discussions of upgrade options. Also included in these proceedings are the minutes of the working groups for: energetic pion channel and spectrometer; high resolution spectrometer; high energy pion channel; neutron facilities; low-energy pion work; nucleon physics laboratory; stopped muon physics; solid state physics and material science; nuclear chemistry; and computing facilities. Recent LAMPF proposals are also briefly summarized. (LEW)

  1. The Usability of a Commercial Game Physics Engine to Develop Physics Educational Materials: An Investigation

    ERIC Educational Resources Information Center

    Price, Colin B.

    2008-01-01

    Commercial computer games contain "physics engine" components, responsible for providing realistic interactions among game objects. The question naturally arises of whether these engines can be used to develop educational materials for high school and university physics education. To answer this question, the author's group recently conducted a…

  2. A Methodological Study Evaluating a Pretutorial Computer-Compiled Instructional Program in High School Physics Instruction Initiated from Student-Teacher Selected Instructional Objectives. Final Report.

    ERIC Educational Resources Information Center

    Leonard, B. Charles; Denton, Jon J.

    A study sought to develop and evaluate an instructional model which utilized the computer to produce individually prescribed instructional guides to account for the idiosyncratic variations among students in physics classes at the secondary school level. The students in the treatment groups were oriented toward the practices of selecting…

  3. Relative Effectiveness of Computer-Supported Jigsaw II, STAD and TAI Cooperative Learning Strategies on Performance, Attitude, and Retention of Secondary School Students in Physics

    ERIC Educational Resources Information Center

    Gambari, Amosa Isiaka; Yusuf, Mudasiru Olalere

    2017-01-01

    This study investigated the relative effectiveness of computer-supported cooperative learning strategies on the performance, attitudes, and retention of secondary school students in physics. A purposive sampling technique was used to select four senior secondary schools from Minna, Nigeria. The students were allocated to one of four groups:…

  4. White-collar workers' self-reported physical symptoms associated with using computers.

    PubMed

    Korpinen, Leena; Pääkkönen, Rauno; Gobba, Fabriziomaria

    2012-01-01

    The aim of our work was to study the physical symptoms of upper- and lower-level white-collar workers using a questionnaire. The study was cross-sectional with a questionnaire posted to 15 000 working-age persons. The responses (6121) included 970 upper- and 1150 lower-level white-collar workers. In the upper- and lower-level white-collar worker groups, 45.7 and 56.0%, respectively, had experienced pain, numbness and aches in the neck either pretty often or more frequently. When comparing daily computer users and nonusers, there were significant differences in pain, numbness and aches in the neck or in the shoulders. In addition, age and gender influenced some physical symptoms. In the future, it is essential to take into account that working with computers can be especially associated with physical symptoms in the neck and in the shoulders when workers use computers daily.

  5. My Activity Coach - using video-coaching to assist a web-based computer-tailored physical activity intervention: a randomised controlled trial protocol.

    PubMed

    Alley, Stephanie; Jennings, Cally; Plotnikoff, Ronald C; Vandelanotte, Corneel

    2014-07-21

    There is a need for effective population-based physical activity interventions. The internet provides a good platform to deliver physical activity interventions and reach large numbers of people at low cost. Personalised advice in web-based physical activity interventions has shown to improve engagement and behavioural outcomes, though it is unclear if the effectiveness of such interventions may further be improved when providing brief video-based coaching sessions with participants. The purpose of this study is to determine the effectiveness, in terms of engagement, retention, satisfaction and physical activity changes, of a web-based and computer-tailored physical activity intervention with and without the addition of a brief video-based coaching session in comparison to a control group. Participants will be randomly assigned to one of three groups (tailoring + online video-coaching, tailoring-only and wait-list control). The tailoring + video-coaching participants will receive a computer-tailored web-based physical activity intervention ('My Activity Coach') with brief coaching sessions with a physical activity expert over an online video calling program (e.g. Skype). The tailoring-only participants will receive the intervention but not the counselling sessions. The primary time point's for outcome assessment will be immediately post intervention (week 9). The secondary time points will be at 6 and 12 months post-baseline. The primary outcome, physical activity change, will be assessed via the Active Australia Questionnaire (AAQ). Secondary outcome measures include correlates of physical activity (mediators and moderators), quality of life (measured via the SF-12v2), participant satisfaction, engagement (using web-site user statistics) and study retention. Study findings will inform researchers and practitioners about the feasibility and effectiveness of brief online video-coaching sessions in combination with computer-tailored physical activity advice. This may increase intervention effectiveness at an acceptable cost and will inform the development of future web-based physical activity interventions. ACTRN12614000339651Date: 31/03/2014.

  6. Computer architectures for computational physics work done by Computational Research and Technology Branch and Advanced Computational Concepts Group

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Slides are reproduced that describe the importance of having high performance number crunching and graphics capability. They also indicate the types of research and development underway at Ames Research Center to ensure that, in the near term, Ames is a smart buyer and user, and in the long-term that Ames knows the best possible solutions for number crunching and graphics needs. The drivers for this research are real computational physics applications of interest to Ames and NASA. They are concerned with how to map the applications, and how to maximize the physics learned from the results of the calculations. The computer graphics activities are aimed at getting maximum information from the three-dimensional calculations by using the real time manipulation of three-dimensional data on the Silicon Graphics workstation. Work is underway on new algorithms that will permit the display of experimental results that are sparse and random, the same way that the dense and regular computed results are displayed.

  7. Physical Webbing: Collaborative Kinesthetic Three-Dimensional Mind Maps[R

    ERIC Educational Resources Information Center

    Williams, Marian H.

    2012-01-01

    Mind Mapping has predominantly been used by individuals or collaboratively in groups as a paper-based or computer-generated learning strategy. In an effort to make Mind Mapping kinesthetic, collaborative, and three-dimensional, an innovative pedagogical strategy, termed Physical Webbing, was devised. In the Physical Web activity, groups…

  8. UTDallas Offline Computing System for B Physics with the Babar Experiment at SLAC

    NASA Astrophysics Data System (ADS)

    Benninger, Tracy L.

    1998-10-01

    The University of Texas at Dallas High Energy Physics group is building a high performance, large storage computing system for B physics research with the BaBar experiment (``factory'') at the Stanford Linear Accelerator Center. The goal of this system is to analyze one terabyte of complex Event Store data from BaBar in one to two days. The foundation of the computing system is a Sun E6000 Enterprise multiprocessor system, with additions of a Sun StorEdge L1800 Tape Library, a Sun Workstation for processing batch jobs, staging disks and interface cards. The design considerations, current status, projects underway, and possible upgrade paths will be discussed.

  9. LHC@Home: a BOINC-based volunteer computing infrastructure for physics studies at CERN

    NASA Astrophysics Data System (ADS)

    Barranco, Javier; Cai, Yunhai; Cameron, David; Crouch, Matthew; Maria, Riccardo De; Field, Laurence; Giovannozzi, Massimo; Hermes, Pascal; Høimyr, Nils; Kaltchev, Dobrin; Karastathis, Nikos; Luzzi, Cinzia; Maclean, Ewen; McIntosh, Eric; Mereghetti, Alessio; Molson, James; Nosochkov, Yuri; Pieloni, Tatiana; Reid, Ivan D.; Rivkin, Lenny; Segal, Ben; Sjobak, Kyrre; Skands, Peter; Tambasco, Claudia; Veken, Frederik Van der; Zacharov, Igor

    2017-12-01

    The LHC@Home BOINC project has provided computing capacity for numerical simulations to researchers at CERN since 2004, and has since 2011 been expanded with a wider range of applications. The traditional CERN accelerator physics simulation code SixTrack enjoys continuing volunteers support, and thanks to virtualisation a number of applications from the LHC experiment collaborations and particle theory groups have joined the consolidated LHC@Home BOINC project. This paper addresses the challenges related to traditional and virtualized applications in the BOINC environment, and how volunteer computing has been integrated into the overall computing strategy of the laboratory through the consolidated LHC@Home service. Thanks to the computing power provided by volunteers joining LHC@Home, numerous accelerator beam physics studies have been carried out, yielding an improved understanding of charged particle dynamics in the CERN Large Hadron Collider (LHC) and its future upgrades. The main results are highlighted in this paper.

  10. A randomized trial of the effects of reducing television viewing and computer use on body mass index in young children.

    PubMed

    Epstein, Leonard H; Roemmich, James N; Robinson, Jodie L; Paluch, Rocco A; Winiewicz, Dana D; Fuerch, Janene H; Robinson, Thomas N

    2008-03-01

    To assess the effects of reducing television viewing and computer use on children's body mass index (BMI) as a risk factor for the development of overweight in young children. Randomized controlled clinical trial. University children's hospital. Seventy children aged 4 to 7 years whose BMI was at or above the 75th BMI percentile for age and sex. Children were randomized to an intervention to reduce their television viewing and computer use by 50% vs a monitoring control group that did not reduce television viewing or computer use. Age- and sex-standardized BMI (zBMI), television viewing, energy intake, and physical activity were monitored every 6 months during 2 years. Children randomized to the intervention group showed greater reductions in targeted sedentary behavior (P < .001), zBMI (P < .05), and energy intake (P < .05) compared with the monitoring control group. Socioeconomic status moderated zBMI change (P = .01), with the experimental intervention working better among families of low socioeconomic status. Changes in targeted sedentary behavior mediated changes in zBMI (P < .05). The change in television viewing was related to the change in energy intake (P < .001) but not to the change in physical activity (P =.37). Reducing television viewing and computer use may have an important role in preventing obesity and in lowering BMI in young children, and these changes may be related more to changes in energy intake than to changes in physical activity.

  11. Computational electromagnetics: the physics of smooth versus oscillatory fields.

    PubMed

    Chew, W C

    2004-03-15

    This paper starts by discussing the difference in the physics between solutions to Laplace's equation (static) and Maxwell's equations for dynamic problems (Helmholtz equation). Their differing physical characters are illustrated by how the two fields convey information away from their source point. The paper elucidates the fact that their differing physical characters affect the use of Laplacian field and Helmholtz field in imaging. They also affect the design of fast computational algorithms for electromagnetic scattering problems. Specifically, a comparison is made between fast algorithms developed using wavelets, the simple fast multipole method, and the multi-level fast multipole algorithm for electrodynamics. The impact of the physical characters of the dynamic field on the parallelization of the multi-level fast multipole algorithm is also discussed. The relationship of diagonalization of translators to group theory is presented. Finally, future areas of research for computational electromagnetics are described.

  12. HEP Software Foundation Community White Paper Working Group - Detector Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apostolakis, J.

    A working group on detector simulation was formed as part of the high-energy physics (HEP) Software Foundation's initiative to prepare a Community White Paper that describes the main software challenges and opportunities to be faced in the HEP field over the next decade. The working group met over a period of several months in order to review the current status of the Full and Fast simulation applications of HEP experiments and the improvements that will need to be made in order to meet the goals of future HEP experimental programmes. The scope of the topics covered includes the main componentsmore » of a HEP simulation application, such as MC truth handling, geometry modeling, particle propagation in materials and fields, physics modeling of the interactions of particles with matter, the treatment of pileup and other backgrounds, as well as signal processing and digitisation. The resulting work programme described in this document focuses on the need to improve both the software performance and the physics of detector simulation. The goals are to increase the accuracy of the physics models and expand their applicability to future physics programmes, while achieving large factors in computing performance gains consistent with projections on available computing resources.« less

  13. Physics through the 1990s: Scientific interfaces and technological applications

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The volume examines the scientific interfaces and technological applications of physics. Twelve areas are dealt with: biological physics-biophysics, the brain, and theoretical biology; the physics-chemistry interface-instrumentation, surfaces, neutron and synchrotron radiation, polymers, organic electronic materials; materials science; geophysics-tectonics, the atmosphere and oceans, planets, drilling and seismic exploration, and remote sensing; computational physics-complex systems and applications in basic research; mathematics-field theory and chaos; microelectronics-integrated circuits, miniaturization, future trends; optical information technologies-fiber optics and photonics; instrumentation; physics applications to energy needs and the environment; national security-devices, weapons, and arms control; medical physics-radiology, ultrasonics, MNR, and photonics. An executive summary and many chapters contain recommendations regarding funding, education, industry participation, small-group university research and large facility programs, government agency programs, and computer database needs.

  14. National Test Bed Security and Communications Architecture Working Group Report

    DTIC Science & Technology

    1992-04-01

    computer systems via a physical medium. Most of those physical media are tappable or interceptable. This means that all the data that flows across the...provides the capability for NTBN nodes to support users operating in differing COIs to share the computing resources and communication media and for...representation. Again generally speaking, the NTBN must act as the high-speed, wide-bandwidth communications media that would provide the "near real-time

  15. Principles for the wise use of computers by children.

    PubMed

    Straker, L; Pollock, C; Maslen, B

    2009-11-01

    Computer use by children at home and school is now common in many countries. Child computer exposure varies with the type of computer technology available and the child's age, gender and social group. This paper reviews the current exposure data and the evidence for positive and negative effects of computer use by children. Potential positive effects of computer use by children include enhanced cognitive development and school achievement, reduced barriers to social interaction, enhanced fine motor skills and visual processing and effective rehabilitation. Potential negative effects include threats to child safety, inappropriate content, exposure to violence, bullying, Internet 'addiction', displacement of moderate/vigorous physical activity, exposure to junk food advertising, sleep displacement, vision problems and musculoskeletal problems. The case for child specific evidence-based guidelines for wise use of computers is presented based on children using computers differently to adults, being physically, cognitively and socially different to adults, being in a state of change and development and the potential to impact on later adult risk. Progress towards child-specific guidelines is reported. Finally, a set of guideline principles is presented as the basis for more detailed guidelines on the physical, cognitive and social impact of computer use by children. The principles cover computer literacy, technology safety, child safety and privacy and appropriate social, cognitive and physical development. The majority of children in affluent communities now have substantial exposure to computers. This is likely to have significant effects on child physical, cognitive and social development. Ergonomics can provide and promote guidelines for wise use of computers by children and by doing so promote the positive effects and reduce the negative effects of computer-child, and subsequent computer-adult, interaction.

  16. The effectiveness of interactive computer simulations on college engineering student conceptual understanding and problem-solving ability related to circular motion

    NASA Astrophysics Data System (ADS)

    Chien, Cheng-Chih

    In the past thirty years, the effectiveness of computer assisted learning was found varied by individual studies. Today, with drastic technical improvement, computers have been widely spread in schools and used in a variety of ways. In this study, a design model involving educational technology, pedagogy, and content domain is proposed for effective use of computers in learning. Computer simulation, constructivist and Vygotskian perspectives, and circular motion are the three elements of the specific Chain Model for instructional design. The goal of the physics course is to help students remove the ideas which are not consistent with the physics community and rebuild new knowledge. To achieve the learning goal, the strategies of using conceptual conflicts and using language to internalize specific tasks into mental functions were included. Computer simulations and accompanying worksheets were used to help students explore their own ideas and to generate questions for discussions. Using animated images to describe the dynamic processes involved in the circular motion may reduce the complexity and possible miscommunications resulting from verbal explanations. The effectiveness of the instructional material on student learning is evaluated. The results of problem solving activities show that students using computer simulations had significantly higher scores than students not using computer simulations. For conceptual understanding, on the pretest students in the non-simulation group had significantly higher score than students in the simulation group. There was no significant difference observed between the two groups in the posttest. The relations of gender, prior physics experience, and frequency of computer uses outside the course to student achievement were also studied. There were fewer female students than male students and fewer students using computer simulations than students not using computer simulations. These characteristics affect the statistical power for detecting differences. For the future research, more intervention of simulations may be introduced to explore the potential of computer simulation in helping students learning. A test for conceptual understanding with more problems and appropriate difficulty level may be needed.

  17. Scientific computations section monthly report, November 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckner, M.R.

    1993-12-30

    This progress report from the Savannah River Technology Center contains abstracts from papers from the computational modeling, applied statistics, applied physics, experimental thermal hydraulics, and packaging and transportation groups. Specific topics covered include: engineering modeling and process simulation, criticality methods and analysis, plutonium disposition.

  18. Using Virtual Pets to Promote Physical Activity in Children: An Application of the Youth Physical Activity Promotion Model.

    PubMed

    Ahn, Sun Joo Grace; Johnsen, Kyle; Robertson, Tom; Moore, James; Brown, Scott; Marable, Amanda; Basu, Aryabrata

    2015-01-01

    A virtual pet was developed based on the framework of the youth physical activity promotion model and tested as a vehicle for promoting physical activity in children. Children in the treatment group interacted with the virtual pet for three days, setting physical activity goals and teaching tricks to the virtual pet when their goals were met. The virtual pet became more fit and learned more sophisticated tricks as the children achieved activity goals. Children in the control group interacted with a computer system presenting equivalent features but without the virtual pet. Physical activity and goal attainment were evaluated using activity monitors. Results indicated that children in the treatment group engaged in 1.09 more hours of daily physical activity (156% more) than did those in the control group. Physical activity self-efficacy and beliefs served as mediators driving this increase in activity. Children that interacted with the virtual pet also expressed higher intentions than children in the control group to continue physical activity in the future. Theoretical and practical potentials of using a virtual pet to systematically promote physical activity in children are discussed.

  19. Computational Nanoelectronics and Nanotechnology at NASA ARC

    NASA Technical Reports Server (NTRS)

    Saini, Subhash; Kutler, Paul (Technical Monitor)

    1998-01-01

    Both physical and economic considerations indicate that the scaling era of CMOS will run out of steam around the year 2010. However, physical laws also indicate that it is possible to compute at a rate of a billion times present speeds with the expenditure of only one Watt of electrical power. NASA has long-term needs where ultra-small semiconductor devices are needed for critical applications: high performance, low power, compact computers for intelligent autonomous vehicles and Petaflop computing technology are some key examples. To advance the design, development, and production of future generation micro- and nano-devices, IT Modeling and Simulation Group has been started at NASA Ames with a goal to develop an integrated simulation environment that addresses problems related to nanoelectronics and molecular nanotechnology. Overview of nanoelectronics and nanotechnology research activities being carried out at Ames Research Center will be presented. We will also present the vision and the research objectives of the IT Modeling and Simulation Group including the applications of nanoelectronic based devices relevant to NASA missions.

  20. Computational Nanoelectronics and Nanotechnology at NASA ARC

    NASA Technical Reports Server (NTRS)

    Saini, Subhash

    1998-01-01

    Both physical and economic considerations indicate that the scaling era of CMOS will run out of steam around the year 2010. However, physical laws also indicate that it is possible to compute at a rate of a billion times present speeds with the expenditure of only one Watt of electrical power. NASA has long-term needs where ultra-small semiconductor devices are needed for critical applications: high performance, low power, compact computers for intelligent autonomous vehicles and Petaflop computing technolpgy are some key examples. To advance the design, development, and production of future generation micro- and nano-devices, IT Modeling and Simulation Group has been started at NASA Ames with a goal to develop an integrated simulation environment that addresses problems related to nanoelectronics and molecular nanotecnology. Overview of nanoelectronics and nanotechnology research activities being carried out at Ames Research Center will be presented. We will also present the vision and the research objectives of the IT Modeling and Simulation Group including the applications of nanoelectronic based devices relevant to NASA missions.

  1. My Activity Coach – Using video-coaching to assist a web-based computer-tailored physical activity intervention: a randomised controlled trial protocol

    PubMed Central

    2014-01-01

    Background There is a need for effective population-based physical activity interventions. The internet provides a good platform to deliver physical activity interventions and reach large numbers of people at low cost. Personalised advice in web-based physical activity interventions has shown to improve engagement and behavioural outcomes, though it is unclear if the effectiveness of such interventions may further be improved when providing brief video-based coaching sessions with participants. The purpose of this study is to determine the effectiveness, in terms of engagement, retention, satisfaction and physical activity changes, of a web-based and computer-tailored physical activity intervention with and without the addition of a brief video-based coaching session in comparison to a control group. Methods/Design Participants will be randomly assigned to one of three groups (tailoring + online video-coaching, tailoring-only and wait-list control). The tailoring + video-coaching participants will receive a computer-tailored web-based physical activity intervention (‘My Activity Coach’) with brief coaching sessions with a physical activity expert over an online video calling program (e.g. Skype). The tailoring-only participants will receive the intervention but not the counselling sessions. The primary time point’s for outcome assessment will be immediately post intervention (week 9). The secondary time points will be at 6 and 12 months post-baseline. The primary outcome, physical activity change, will be assessed via the Active Australia Questionnaire (AAQ). Secondary outcome measures include correlates of physical activity (mediators and moderators), quality of life (measured via the SF-12v2), participant satisfaction, engagement (using web-site user statistics) and study retention. Discussion Study findings will inform researchers and practitioners about the feasibility and effectiveness of brief online video-coaching sessions in combination with computer-tailored physical activity advice. This may increase intervention effectiveness at an acceptable cost and will inform the development of future web-based physical activity interventions. Trial registration ACTRN12614000339651Date: 31/03/2014. PMID:25047900

  2. Summer Institute for Physical Science Teachers

    NASA Astrophysics Data System (ADS)

    Maheswaranathan, Ponn; Calloway, Cliff

    2007-04-01

    A summer institute for physical science teachers was conducted at Winthrop University, June 19-29, 2006. Ninth grade physical science teachers at schools within a 50-mile radius from Winthrop were targeted. We developed a graduate level physics professional development course covering selected topics from both the physics and chemistry content areas of the South Carolina Science Standards. Delivery of the material included traditional lectures and the following new approaches in science teaching: hands-on experiments, group activities, computer based data collection, computer modeling, with group discussions & presentations. Two experienced master teachers assisted us during the delivery of the course. The institute was funded by the South Carolina Department of Education. The requested funds were used for the following: faculty salaries, the University contract course fee, some of the participants' room and board, startup equipment for each teacher, and indirect costs to Winthrop University. Startup equipment included a Pasco stand-alone, portable Xplorer GLX interface with sensors (temperature, voltage, pH, pressure, motion, and sound), and modeling software (Wavefunction's Spartan Student and Odyssey). What we learned and ideas for future K-12 teacher preparation initiatives will be presented.

  3. Establishing Mandatory Academic Degree Guidance for AFROTC (Air Force Reserve Officer Training Corps) Rated Officer Accessions

    DTIC Science & Technology

    1984-04-01

    Scientific- Architecture 4% 4% Technical Computer Sci 38% 37% Math 40% 40% Meteorology 6% 6% Physics 12 % 13% Nontechnical Quality Freeflow 2/ Quality...Architecture 4 Computer Sci 48 43 40 Math 30 35 38 Meteorology 6 6 6 Physics 12 12 12 Engineer Electrical 40% 50% 50% Aero Group 25 25 30 Other / 35 25 20...with Technical Degrees by Major Weapon System. . . 12 FIGURE 4 - Pilots with Technical Degrees by Category . . . . . . 13 FIGURE 5 - Regression

  4. [The effects of computer-use on adolescents].

    PubMed

    Stefănescu, C; Chele, Gabriela; Chiriţă, V; Chiriţă, Roxana; Mavros, M; Macarie, G; Ilinca, M

    2005-01-01

    Computers continue to play a vital role in today's generation. The need for information about the effects of computers on their users also increases. The purpose of this study is to investigate how children and adolescents use a computer and to explore the beneficial and harmful effects of computer use on children's mental and physical health. The studied group of samples comprised 69 subjects, aged between 13 and 18 years, who answered to a questionnaire. The parents of the children also answered another questionnaire with the same subject. Data have been statistically processed using the program SPSS. The results were obtained about computer use and the pathological use was identified. Some children spend much time on computers, 4% more than five hours/day. 41% of the parents believe that the usage of the computer is favorable to the children's mental and physical health and development, 49% of parents believe that the computer may be harmful. 1.4% of the children had pathological use of the computer.

  5. Freshman year computer engineering students' experiences for flipped physics lab class: An action research

    NASA Astrophysics Data System (ADS)

    Akı, Fatma Nur; Gürel, Zeynep

    2017-02-01

    The purpose of this research is to determine the university students' learning experiences about flipped-physics laboratory class. The research has been completed during the fall semester of 2015 at Computer Engineering Department of Istanbul Commerce University. In this research, also known as a teacher qualitative research design, action research method is preferred to use. The participants are ten people, including seven freshman and three junior year students of Computer Engineering Department. The research data was collected at the end of the semester with the focus group interview which includes structured and open-ended questions. And data was evaluated with categorical content analysis. According to the results, students have some similar and different learning experiences to flipped education method for physics laboratory class.

  6. Effectiveness of a Video-Versus Text-Based Computer-Tailored Intervention for Obesity Prevention after One Year: A Randomized Controlled Trial

    PubMed Central

    Cheung, Kei Long; Schwabe, Inga; Walthouwer, Michel J. L.; Oenema, Anke; de Vries, Hein

    2017-01-01

    Computer-tailored programs may help to prevent overweight and obesity, which are worldwide public health problems. This study investigated (1) the 12-month effectiveness of a video- and text-based computer-tailored intervention on energy intake, physical activity, and body mass index (BMI), and (2) the role of educational level in intervention effects. A randomized controlled trial in The Netherlands was conducted, in which adults were allocated to a video-based condition, text-based condition, or control condition, with baseline, 6 months, and 12 months follow-up. Outcome variables were self-reported BMI, physical activity, and energy intake. Mixed-effects modelling was used to investigate intervention effects and potential interaction effects. Compared to the control group, the video intervention group was effective regarding energy intake after 6 months (least squares means (LSM) difference = −205.40, p = 0.00) and 12 months (LSM difference = −128.14, p = 0.03). Only video intervention resulted in lower average daily energy intake after one year (d = 0.12). Educational role and BMI did not seem to interact with this effect. No intervention effects on BMI and physical activity were found. The video computer-tailored intervention was effective on energy intake after one year. This effect was not dependent on educational levels or BMI categories, suggesting that video tailoring can be effective for a broad range of risk groups and may be preferred over text tailoring. PMID:29065545

  7. Military Families In Transition: Stress, Resilience, And Well-Being

    DTIC Science & Technology

    2014-01-01

    Smith College of Engineering and Computer Science Professor, Department of Physics , College of Arts and Sciences Fellow: AIAA, ASME, APS, Institute...of Physics (UK) Syracuse University Richard E. Heyman, PhD Professor Family Translational Research Group Department of Cariology and Comprehensive...Pasquina, MD COL(R), USA Residency Director and Chair, Physical Medicine & Rehabilitation Uniformed Services University Walter Reed National

  8. Ambient belonging: how stereotypical cues impact gender participation in computer science.

    PubMed

    Cheryan, Sapna; Plaut, Victoria C; Davies, Paul G; Steele, Claude M

    2009-12-01

    People can make decisions to join a group based solely on exposure to that group's physical environment. Four studies demonstrate that the gender difference in interest in computer science is influenced by exposure to environments associated with computer scientists. In Study 1, simply changing the objects in a computer science classroom from those considered stereotypical of computer science (e.g., Star Trek poster, video games) to objects not considered stereotypical of computer science (e.g., nature poster, phone books) was sufficient to boost female undergraduates' interest in computer science to the level of their male peers. Further investigation revealed that the stereotypical broadcast a masculine stereotype that discouraged women's sense of ambient belonging and subsequent interest in the environment (Studies 2, 3, and 4) but had no similar effect on men (Studies 3, 4). This masculine stereotype prevented women's interest from developing even in environments entirely populated by other women (Study 2). Objects can thus come to broadcast stereotypes of a group, which in turn can deter people who do not identify with these stereotypes from joining that group.

  9. Does availability of physical activity and food outlets differ by race and income? Findings from an enumeration study in a health disparate region.

    PubMed

    Hill, Jennie L; Chau, Clarice; Luebbering, Candice R; Kolivras, Korine K; Zoellner, Jamie

    2012-09-06

    Low-income, ethnic/racial minorities and rural populations are at increased risk for obesity and related chronic health conditions when compared to white, urban and higher-socio-economic status (SES) peers. Recent systematic reviews highlight the influence of the built environment on obesity, yet very few of these studies consider rural areas or populations. Utilizing a CBPR process, this study advances community-driven causal models to address obesity by exploring the difference in resources for physical activity and food outlets by block group race and income in a small regional city that anchors a rural health disparate region. To guide this inquiry we hypothesized that lower income and racially diverse block groups would have fewer food outlets, including fewer grocery stores and fewer physical activity outlets. We further hypothesized that walkability, as defined by a computed walkability index, would be lower in the lower income block groups. Using census data and GIS, base maps of the region were created and block groups categorized by income and race. All food outlets and physical activity resources were enumerated and geocoded and a walkability index computed. Analyses included one-way MANOVA and spatial autocorrelation. In total, 49 stores, 160 restaurants and 79 physical activity outlets were enumerated. There were no differences in the number of outlets by block group income or race. Further, spatial analyses suggest that the distribution of outlets is dispersed across all block groups. Under the larger CPBR process, this enumeration study advances the causal models set forth by the community members to address obesity by providing an overview of the food and physical activity environment in this region. This data reflects the food and physical activity resources available to residents in the region and will aid many of the community-academic partners as they pursue intervention strategies targeting obesity.

  10. Workshop Physics Activity Guide, Module 4: Electricity and Magnetism

    NASA Astrophysics Data System (ADS)

    Laws, Priscilla W.

    2004-05-01

    The Workshop Physics Activity Guide is a set of student workbooks designed to serve as the foundation for a two-semester calculus-based introductory physics course. It consists of 28 units that interweave text materials with activities that include prediction, qualitative observation, explanation, equation derivation, mathematical modeling, quantitative experiments, and problem solving. Students use a powerful set of computer tools to record, display, and analyze data, as well as to develop mathematical models of physical phenomena. The design of many of the activities is based on the outcomes of physics education research. The Workshop Physics Activity Guide is supported by an Instructor's Website that: (1) describes the history and philosophy of the Workshop Physics Project; (2) provides advice on how to integrate the Guide into a variety of educational settings; (3) provides information on computer tools (hardware and software) and apparatus; and (4) includes suggested homework assignments for each unit. Log on to the Workshop Physics Project website at http://physics.dickinson.edu/ Workshop Physics is a component of the Physics Suite--a collection of materials created by a group of educational reformers known as the Activity Based Physics Group. The Physics Suite contains a broad array of curricular materials that are based on physics education research, including:

      Understanding Physics, by Cummings, Laws, Redish and Cooney (an introductory textbook based on the best-selling text by Halliday/Resnick/Walker) RealTime Physics Laboratory Modules Physics by Inquiry (intended for use in a workshop setting) Interactive Lecture Demonstration Tutorials in Introductory Physics Activity Based Tutorials (designed primarily for use in recitations)

    • The effectiveness of using multimedia computer simulations coupled with social constructivist pedagogy in a college introductory physics classroom

      NASA Astrophysics Data System (ADS)

      Chou, Chiu-Hsiang

      Electricity and Magnetism is legendarily considered a subject incomprehensible to the students in the college introductory level. From a social constructivist perspective, learners are encouraged to assess the quantity and the quality of prior knowledge in a subject domain and to co-construct shared knowledge and understanding by implementing and building on each other's ideas. They become challenged by new data and perspectives thus stimulate a reconceptualization of knowledge and to be actively engaged in discovering new meanings based on experiences grounded in the real-world phenomena they are expected to learn. This process is categorized as a conceptual change learning environment and can facilitate learning of E & M. Computer simulations are an excellent tool to assist the teacher and leaner in achieving these goals and were used in this study. This study examined the effectiveness of computer simulations within a conceptual change learning environment and compared it to more lecture-centered, traditional ways of teaching E & M. An experimental and control group were compared and the following differences were observed. Statistic analyses were done with ANOVA (F-test). The results indicated that the treatment group significantly outperformed the control group on the achievement test, F(1,54) = 12.34, p <.05 and the treatment group had a higher rate of improvement than the control group on two subscales: Isolation of Variables and Abstract Transformation. The results from the Maryland Physics Expectations Survey (MPEX) showed that the treatment students became more field independent and were aware of more fundamental role played by physics concepts in complex problem solving. The protocol analysis of structured interviews revealed that students in the treatment group tended to visualize the problem from different aspects and articulated what they thought in a more scientific approach. Responses to the instructional evaluation questionnaire indicated overwhelming positive ratings of appropriateness and instructional effectiveness of computer simulation instruction. In conclusion, the CSI developed and evaluated in this study provided opportunities for students to refine their preconceptions and practice using new understandings. It suggests substantial promise for the computer simulation in a classroom environment.

    • [Evaluation of the lifestyle of students of physiotherapy and technical & computer science basing on their diet and physical activity].

      PubMed

      Medrela-Kuder, Ewa

      2011-01-01

      The aim of the study was the evaluation of a dietary habits profile and physical activity of Physiotherapy and Technical & Computer Science students. The research involved a group of 174 non-full-time students of higher education institutions in Krakow aged between 22 and 27. 81 students of the surveyed studied Physiotherapy at the University of Physical Education, whereas 93 followed a course in Technical & Computer Science at the Pedagogical University. In this project a diagnostic survey method was used. The study revealed that the lifestyle of university youth left much to be desired. Dietary errors were exemplified by irregular meals intake, low consumption of fish, milk and dairy, snacking between meals on high calorie products with a poor nutrient content. With regard to physical activity, Physiotherapy students were characterised by more positive attitudes than those from Technical & Computer Science. Such physical activity forms as swimming, team sports, cycling and strolling were declared by the surveyed the most frequently. Health-oriented education should be introduced in such a way as to improve the knowledge pertaining to a health-promoting lifestyle as a means of prevention of numerous diseases.

    • Computationally-Guided Synthetic Control over Pore Size in Isostructural Porous Organic Cages

      PubMed Central

      2017-01-01

      The physical properties of 3-D porous solids are defined by their molecular geometry. Hence, precise control of pore size, pore shape, and pore connectivity are needed to tailor them for specific applications. However, for porous molecular crystals, the modification of pore size by adding pore-blocking groups can also affect crystal packing in an unpredictable way. This precludes strategies adopted for isoreticular metal–organic frameworks, where addition of a small group, such as a methyl group, does not affect the basic framework topology. Here, we narrow the pore size of a cage molecule, CC3, in a systematic way by introducing methyl groups into the cage windows. Computational crystal structure prediction was used to anticipate the packing preferences of two homochiral methylated cages, CC14-R and CC15-R, and to assess the structure–energy landscape of a CC15-R/CC3-S cocrystal, designed such that both component cages could be directed to pack with a 3-D, interconnected pore structure. The experimental gas sorption properties of these three cage systems agree well with physical properties predicted by computational energy–structure–function maps. PMID:28776015

    • PREFACE: Theory, Modelling and Computational methods for Semiconductors

      NASA Astrophysics Data System (ADS)

      Migliorato, Max; Probert, Matt

      2010-04-01

      These conference proceedings contain the written papers of the contributions presented at the 2nd International Conference on: Theory, Modelling and Computational methods for Semiconductors. The conference was held at the St Williams College, York, UK on 13th-15th Jan 2010. The previous conference in this series took place in 2008 at the University of Manchester, UK. The scope of this conference embraces modelling, theory and the use of sophisticated computational tools in Semiconductor science and technology, where there is a substantial potential for time saving in R&D. The development of high speed computer architectures is finally allowing the routine use of accurate methods for calculating the structural, thermodynamic, vibrational and electronic properties of semiconductors and their heterostructures. This workshop ran for three days, with the objective of bringing together UK and international leading experts in the field of theory of group IV, III-V and II-VI semiconductors together with postdocs and students in the early stages of their careers. The first day focused on providing an introduction and overview of this vast field, aimed particularly at students at this influential point in their careers. We would like to thank all participants for their contribution to the conference programme and these proceedings. We would also like to acknowledge the financial support from the Institute of Physics (Computational Physics group and Semiconductor Physics group), the UK Car-Parrinello Consortium, Accelrys (distributors of Materials Studio) and Quantumwise (distributors of Atomistix). The Editors Acknowledgements Conference Organising Committee: Dr Matt Probert (University of York) and Dr Max Migliorato (University of Manchester) Programme Committee: Dr Marco Califano (University of Leeds), Dr Jacob Gavartin (Accelrys Ltd, Cambridge), Dr Stanko Tomic (STFC Daresbury Laboratory), Dr Gabi Slavcheva (Imperial College London) Proceedings edited and compiled by Dr Max Migliorato and Dr Matt Probert

    • Sensitivity derivatives for advanced CFD algorithm and viscous modelling parameters via automatic differentiation

      NASA Technical Reports Server (NTRS)

      Green, Lawrence L.; Newman, Perry A.; Haigler, Kara J.

      1993-01-01

      The computational technique of automatic differentiation (AD) is applied to a three-dimensional thin-layer Navier-Stokes multigrid flow solver to assess the feasibility and computational impact of obtaining exact sensitivity derivatives typical of those needed for sensitivity analyses. Calculations are performed for an ONERA M6 wing in transonic flow with both the Baldwin-Lomax and Johnson-King turbulence models. The wing lift, drag, and pitching moment coefficients are differentiated with respect to two different groups of input parameters. The first group consists of the second- and fourth-order damping coefficients of the computational algorithm, whereas the second group consists of two parameters in the viscous turbulent flow physics modelling. Results obtained via AD are compared, for both accuracy and computational efficiency with the results obtained with divided differences (DD). The AD results are accurate, extremely simple to obtain, and show significant computational advantage over those obtained by DD for some cases.

    • EMG median frequency changes in the neck-shoulder stabilizers of symptomatic office workers when challenged by different physical stressors.

      PubMed

      Szeto, Grace Pui Yuk; Straker, Leon Melville; O'Sullivan, Peter Bruce

      2005-12-01

      The problem of work-related neck and upper limb disorders among computer users has been reported extensively in the literature, and commonly cited risk factors include static posture, speed and force of keyboard operation. The present study examined changes in median frequency (MF) of the neck-shoulder muscles in symptomatic and asymptomatic office workers when they were exposed to these three physical stressors. A quasi-experimental Case-Control design was used to examine MF changes in two groups of female office workers when they were subjected to controlled doses of computer work involving prolonged static posture, increased typing speed and increased typing force. The MF of four major neck-shoulder muscles were examined bilaterally and compared between groups. The MF changes over time-at-task did not clearly illustrate any muscle fatigue mechanism. However, Case Group consistently showed trends for higher MF than the Control Group, and this pattern was observed in response to all three physical stressors. The consistent group differences in MF suggest different muscle recruitment strategies between symptomatic and asymptomatic office workers. These results implied that symptomatic individuals had altered motor control, which may have important implications in understanding the etiology of work-related musculoskeletal disorders.

    • Final Technical Report for ARRA Funding

      DOE Office of Scientific and Technical Information (OSTI.GOV)

      Rusack, Roger; Mans, Jeremiah; Poling, Ronald

      Final technical report of the University of Minnesota experimental high energy physics group for ARRA support. The Cryogenic Dark Matter Experiment (CDMS) used the funds received to construct a new passive shield to protect a high-purity germanium detector located in the Soudan mine in Northern Minnesota from cosmic rays. The BESIII and the CMS groups purchased computing hardware to assemble computer farms for data analysis and to generate large volumes of simulated data for comparison with the data collected.

    • mHealth or eHealth? Efficacy, Use, and Appreciation of a Web-Based Computer-Tailored Physical Activity Intervention for Dutch Adults: A Randomized Controlled Trial.

      PubMed

      Gomez Quiñonez, Stefanie; Walthouwer, Michel Jean Louis; Schulz, Daniela Nadine; de Vries, Hein

      2016-11-09

      Until a few years ago, Web-based computer-tailored interventions were almost exclusively delivered via computer (eHealth). However, nowadays, interventions delivered via mobile phones (mHealth) are an interesting alternative for health promotion, as they may more easily reach people 24/7. The first aim of this study was to compare the efficacy of an mHealth and an eHealth version of a Web-based computer-tailored physical activity intervention with a control group. The second aim was to assess potential differences in use and appreciation between the 2 versions. We collected data among 373 Dutch adults at 5 points in time (baseline, after 1 week, after 2 weeks, after 3 weeks, and after 6 months). We recruited participants from a Dutch online research panel and randomly assigned them to 1 of 3 conditions: eHealth (n=138), mHealth (n=108), or control condition (n=127). All participants were asked to complete questionnaires at the 5 points in time. Participants in the eHealth and mHealth group received fully automated tailored feedback messages about their current level of physical activity. Furthermore, they received personal feedback aimed at increasing their amount of physical activity when needed. We used analysis of variance and linear regression analyses to examine differences between the 2 study groups and the control group with regard to efficacy, use, and appreciation. Participants receiving feedback messages (eHealth and mHealth together) were significantly more physically active after 6 months than participants in the control group (B=8.48, df=2, P=.03, Cohen d=0.27). We found a small effect size favoring the eHealth condition over the control group (B=6.13, df=2, P=.09, Cohen d=0.21). The eHealth condition had lower dropout rates (117/138, 84.8%) than the mHealth condition (81/108, 75.0%) and the control group (91/127, 71.7%). Furthermore, in terms of usability and appreciation, the eHealth condition outperformed the mHealth condition with regard to participants receiving (t 182 =3.07, P=.002) and reading the feedback messages (t 181 =2.34, P=.02), as well as the clarity of the messages (t 181 =1.99, P=.049). We tested 2 Web-based computer-tailored physical activity intervention versions (mHealth and eHealth) against a control condition with regard to efficacy, use, usability, and appreciation. The overall effect was mainly caused by the more effective eHealth intervention. The mHealth app was rated inferior to the eHealth version with regard to usability and appreciation. More research is needed to assess how both methods can complement each other. Netherlands Trial Register: NTR4503; http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=4503 (Archived by WebCite at http://www.webcitation.org/6lEi1x40s). ©Stefanie Gomez Quiñonez, Michel Jean Louis Walthouwer, Daniela Nadine Schulz, Hein de Vries. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 09.11.2016.

    • A comparison of traditional physical laboratory and computer-simulated laboratory experiences in relation to engineering undergraduate students' conceptual understandings of a communication systems topic

      NASA Astrophysics Data System (ADS)

      Javidi, Giti

      2005-07-01

      This study was designed to investigate an alternative to the use of traditional physical laboratory activities in a communication systems course. Specifically, this study examined whether as an alternative, computer simulation is as effective as physical laboratory activities in teaching college-level electronics engineering education students about the concepts of signal transmission, modulation and demodulation. Eighty undergraduate engineering students participated in the study, which was conducted at a southeastern four-year university. The students were randomly assigned to two groups. The groups were compared on understanding the concepts, remembering the concepts, completion time of the lab experiments and perception toward the laboratory experiments. The physical group's (n = 40) treatment was to conduct laboratory experiments in a physical laboratory. The students in this group used equipment in a controlled electronics laboratory. The Simulation group's (n = 40) treatment was to conduct similar experiments in a PC laboratory. The students in this group used a simulation program in a controlled PC lab. At the completion of the treatment, scores on a validated conceptual test were collected once after the treatment and again three weeks after the treatment. Attitude surveys and qualitative study were administered at the completion of the treatment. The findings revealed significant differences, in favor of the simulation group, between the two groups on both the conceptual post-test and the follow-up test. The findings also revealed significant correlation between simulation groups' attitude toward the simulation program and their post-test scores. Moreover, there was a significant difference between the two groups on their attitude toward their laboratory experience in favor of the simulation group. In addition, there was significant difference between the two groups on their lab completion time in favor of the simulation group. At the same time, the qualitative research has uncovered several issues not explored by the quantitative research. It was concluded that incorporating the recommendations acquired from the qualitative research, especially elements of incorporating hardware experience to avoid lack of hands-on skills, into the laboratory pedagogy should help improve students' experience regardless of the environment in which the laboratory is conducted.

    • Can Peer Instruction Be Effective in Upper-Division Computer Science Courses?

      ERIC Educational Resources Information Center

      Bailey Lee, Cynthia; Garcia, Saturnino; Porter, Leo

      2013-01-01

      Peer Instruction (PI) is an active learning pedagogical technique. PI lectures present students with a series of multiple-choice questions, which they respond to both individually and in groups. PI has been widely successful in the physical sciences and, recently, has been successfully adopted by computer science instructors in lower-division,…

  1. Characteristics of the Navy Laboratory Warfare Center Technical Workforce

    DTIC Science & Technology

    2013-09-29

    Mathematics and Information Science (M&IS) Actuarial Science 1510 Computer Science 1550 Gen. Math & Statistics 1501 Mathematics 1520 Operations...Admin. Network Systems & Data Communication Analysts Actuaries Mathematicians Operations Research Analyst Statisticians Social Science (SS...workforce was sub-divided into six broad occupational groups: Life Science , Physical Science , Engineering, Mathematics, Computer Science and Information

  2. Effectiveness of Computer Tailoring Versus Peer Support Web-Based Interventions in Promoting Physical Activity Among Insufficiently Active Canadian Adults With Type 2 Diabetes: Protocol for a Randomized Controlled Trial

    PubMed Central

    Côté, José

    2016-01-01

    Background Type 2 diabetes is a major challenge for Canadian public health authorities, and regular physical activity is a key factor in the management of this disease. Given that less than half of people with type 2 diabetes in Canada are sufficiently active to meet the Canadian Diabetes Association's guidelines, effective programs targeting the adoption of regular physical activity are in demand for this population. Many researchers have argued that Web-based interventions targeting physical activity are a promising avenue for insufficiently active populations; however, it remains unclear if this type of intervention is effective among people with type 2 diabetes. Objective This research project aims to evaluate the effectiveness of two Web-based interventions targeting the adoption of regular aerobic physical activity among insufficiently active adult Canadian Francophones with type 2 diabetes. Methods A 3-arm, parallel randomized controlled trial with 2 experimental groups and 1 control group was conducted in the province of Quebec, Canada. A total of 234 participants were randomized at a 1:1:1 ratio to receive an 8-week, fully automated, computer-tailored, Web-based intervention (experimental group 1); an 8-week peer support (ie, Facebook group) Web-based intervention (experimental group 2); or no intervention (control group) during the study period. Results The primary outcome of this study is self-reported physical activity level (total min/week of moderate-intensity aerobic physical activity). Secondary outcomes are attitude, social influence, self-efficacy, type of motivation, and intention. All outcomes are assessed at baseline and 3 and 9 months after baseline with a self-reported questionnaire filled directly on the study websites. Conclusions By evaluating and comparing the effectiveness of 2 Web-based interventions characterized by different behavior change perspectives, findings of this study will contribute to advances in the field of physical activity promotion in adult populations with type 2 diabetes. Trial Registration International Standard Randomized Controlled Trial Number (ISRCTN): ISRCTN15747108; http://www.isrctn.com/ISRCTN15747108 (Archived by WebCite at http://www.webcitation.org/6eJTi0m3r) PMID:26869015

  3. Workshop Physics Activity Guide, Module 2: Mechanics II, Momentum, Energy, Rotational and Harmonic Motion, and Chaos (Units 8 - 15)

    NASA Astrophysics Data System (ADS)

    Laws, Priscilla W.

    2004-05-01

    The Workshop Physics Activity Guide is a set of student workbooks designed to serve as the foundation for a two-semester calculus-based introductory physics course. It consists of 28 units that interweave text materials with activities that include prediction, qualitative observation, explanation, equation derivation, mathematical modeling, quantitative experiments, and problem solving. Students use a powerful set of computer tools to record, display, and analyze data, as well as to develop mathematical models of physical phenomena. The design of many of the activities is based on the outcomes of physics education research. The Workshop Physics Activity Guide is supported by an Instructor's Website that: (1) describes the history and philosophy of the Workshop Physics Project; (2) provides advice on how to integrate the Guide into a variety of educational settings; (3) provides information on computer tools (hardware and software) and apparatus; and (4) includes suggested homework assignments for each unit. Log on to the Workshop Physics Project website at http://physics.dickinson.edu/ Workshop Physics is a component of the Physics Suite--a collection of materials created by a group of educational reformers known as the Activity Based Physics Group. The Physics Suite contains a broad array of curricular materials that are based on physics education research, including:

      Understanding Physics, by Cummings, Laws, Redish and Cooney (an introductory textbook based on the best-selling text by Halliday/Resnick/Walker) RealTime Physics Laboratory Modules Physics by Inquiry (intended for use in a workshop setting) Interactive Lecture Demonstration Tutorials in Introductory Physics Activity Based Tutorials (designed primarily for use in recitations)

    • Computer-supported indirect-form lifestyle-modification support program using Lifestyle Intervention Support Software for Diabetes Prevention (LISS-DP) for people with a family history of type 2 diabetes in a medical checkup setting: a randomized controlled trial.

      PubMed

      Tokunaga-Nakawatase, Yuri; Nishigaki, Masakazu; Taru, Chiemi; Miyawaki, Ikuko; Nishida, Junko; Kosaka, Shiho; Sanada, Hiromi; Kazuma, Keiko

      2014-10-01

      To investigate the effect of a computer-supported indirect-form lifestyle-modification program using Lifestyle Intervention Support Software for Diabetes Prevention (LISS-DP), as a clinically feasible strategy for primary prevention, on diet and physical activity habits in adults with a family history of type 2 diabetes. This was a two-arm, randomized controlled trial: (1) lifestyle intervention (LI) group (n=70); (2) control (n=71). Healthy adults aged 30-60 years with a history of type 2 diabetes among their first-degree relatives were recruited. LI group received three times of lifestyle intervention using LISS-DP during six-month intervention period via mail. Lifestyle intervention group showed significantly greater decrease in energy intake six months after baseline, compared to control (-118.31 and -24.79 kcal/day, respectively, p=0.0099, Cohen's d=0.22), though the difference disappeared 1 year after from baseline. No difference was found in physical activity energy expenditure. A computer-based, non-face-to-face lifestyle intervention was effective on dietary habits, only during the intervention period. Further examination of the long-term effects of such intervention and physical activity is required. Copyright © 2014 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.

    • Physicist's simple access to protein structures: the computer program WHAT IF

      NASA Astrophysics Data System (ADS)

      Altenberg-Greulich, Brigitte; Zech, Stephan G.; Stehlik, Dietmar; Vriend, Gert

      2001-06-01

      We describe the computer program WHAT IF and its application to two physical examples. For the DNA binding protein, OCT-1 (pou domain) the location of amino acids with a sidechain amino group is shown. Such knowledge is required when staining this molecule with a fluorescence dye, which binds chemically to the amino terminus as well as amino groups in sidechains. The program shows that most sidechain amino groups are protected when DNA is bound to OCT-1, allowing selective staining of the amino terminal NH2 group. A protein stained this way can be used in fluorescence spectroscopic studies on function aspects of OCT-1.

    • Impact of Booster Breaks and Computer Prompts on Physical Activity and Sedentary Behavior Among Desk-Based Workers: A Cluster-Randomized Controlled Trial.

      PubMed

      Taylor, Wendell C; Paxton, Raheem J; Shegog, Ross; Coan, Sharon P; Dubin, Allison; Page, Timothy F; Rempel, David M

      2016-11-17

      The 15-minute work break provides an opportunity to promote health, yet few studies have examined this part of the workday. We studied physical activity and sedentary behavior among office workers and compared the results of the Booster Break program with those of a second intervention and a control group to determine whether the Booster Break program improved physical and behavioral health outcomes. We conducted a 3-arm, cluster-randomized controlled trial at 4 worksites in Texas from 2010 through 2013 to compare a group-based, structured Booster Break program to an individual-based computer-prompt intervention and a usual-break control group; we analyzed physiologic, behavioral, and employee measures such as work social support, quality of life, and perceived stress. We also identified consistent and inconsistent attendees of the Booster Break sessions. We obtained data from 175 participants (mean age, 43 y; 67% racial/ethnic minority). Compared with the other groups, the consistent Booster Break attendees had greater weekly pedometer counts (P < .001), significant decreases in sedentary behavior and self-reported leisure-time physical activity (P < .001), and a significant increase in triglyceride concentrations (P = .02) (levels remained within the normal range). Usual-break participants significantly increased their body mass index, whereas Booster Break participants maintained body mass index status during the 6 months. Overall, Booster Break participants were 6.8 and 4.3 times more likely to have decreases in BMI and weekend sedentary time, respectively, than usual-break participants. Findings varied among the 3 study groups; however, results indicate the potential for consistent attendees of the Booster Break intervention to achieve significant, positive changes related to physical activity, sedentary behavior, and body mass index.

    • Impact of Booster Breaks and Computer Prompts on Physical Activity and Sedentary Behavior Among Desk-Based Workers: A Cluster-Randomized Controlled Trial

      PubMed Central

      Paxton, Raheem J.; Shegog, Ross; Coan, Sharon P.; Dubin, Allison; Page, Timothy F.; Rempel, David M.

      2016-01-01

      Introduction The 15-minute work break provides an opportunity to promote health, yet few studies have examined this part of the workday. We studied physical activity and sedentary behavior among office workers and compared the results of the Booster Break program with those of a second intervention and a control group to determine whether the Booster Break program improved physical and behavioral health outcomes. Methods We conducted a 3-arm, cluster-randomized controlled trial at 4 worksites in Texas from 2010 through 2013 to compare a group-based, structured Booster Break program to an individual-based computer-prompt intervention and a usual-break control group; we analyzed physiologic, behavioral, and employee measures such as work social support, quality of life, and perceived stress. We also identified consistent and inconsistent attendees of the Booster Break sessions. Results We obtained data from 175 participants (mean age, 43 y; 67% racial/ethnic minority). Compared with the other groups, the consistent Booster Break attendees had greater weekly pedometer counts (P < .001), significant decreases in sedentary behavior and self-reported leisure-time physical activity (P < .001), and a significant increase in triglyceride concentrations (P = .02) (levels remained within the normal range). Usual-break participants significantly increased their body mass index, whereas Booster Break participants maintained body mass index status during the 6 months. Overall, Booster Break participants were 6.8 and 4.3 times more likely to have decreases in BMI and weekend sedentary time, respectively, than usual-break participants. Conclusion Findings varied among the 3 study groups; however, results indicate the potential for consistent attendees of the Booster Break intervention to achieve significant, positive changes related to physical activity, sedentary behavior, and body mass index. PMID:27854422

    • Energy Frontier Research With ATLAS: Final Report

      DOE Office of Scientific and Technical Information (OSTI.GOV)

      Butler, John; Black, Kevin; Ahlen, Steve

      2016-06-14

      The Boston University (BU) group is playing key roles across the ATLAS experiment: in detector operations, the online trigger, the upgrade, computing, and physics analysis. Our team has been critical to the maintenance and operations of the muon system since its installation. During Run 1 we led the muon trigger group and that responsibility continues into Run 2. BU maintains and operates the ATLAS Northeast Tier 2 computing center. We are actively engaged in the analysis of ATLAS data from Run 1 and Run 2. Physics analyses we have contributed to include Standard Model measurements (W and Z cross sections,more » t\\bar{t} differential cross sections, WWW^* production), evidence for the Higgs decaying to \\tau^+\\tau^-, and searches for new phenomena (technicolor, Z' and W', vector-like quarks, dark matter).« less

    • Direct Simulations of Coupled Transport and Reaction on Nano-Scale X-Ray Computed Tomography Images of Platinum Group Metal-Free Catalyst Cathodes

      DOE PAGES

      Ogawa, S.; Komini Babu, S.; Chung, H. T.; ...

      2016-08-22

      The nano/micro-scale geometry of polymer electrolyte fuel cell (PEFC) catalyst layers critically affects cell performance. The small length scales and complex structure of these composite layers make it challenging to analyze cell performance and physics at the particle scale by experiment. We present a computational method to simulate transport and chemical reaction phenomena at the pore/particle-scale and apply it to a PEFC cathode with platinum group metal free (PGM-free) catalyst. Here, we numerically solve the governing equations for the physics with heterogeneous oxygen diffusion coefficient and proton conductivity evaluated using the actual electrode structure and ionomer distribution obtained using nano-scalemore » resolution X-ray computed tomography (nano-CT). Using this approach, the oxygen concentration and electrolyte potential distributions imposed by the oxygen reduction reaction are solved and the impact of the catalyst layer structure on performance is evaluated.« less

    • Direct Simulations of Coupled Transport and Reaction on Nano-Scale X-Ray Computed Tomography Images of Platinum Group Metal-Free Catalyst Cathodes

      DOE Office of Scientific and Technical Information (OSTI.GOV)

      Ogawa, S.; Komini Babu, S.; Chung, H. T.

      The nano/micro-scale geometry of polymer electrolyte fuel cell (PEFC) catalyst layers critically affects cell performance. The small length scales and complex structure of these composite layers make it challenging to analyze cell performance and physics at the particle scale by experiment. We present a computational method to simulate transport and chemical reaction phenomena at the pore/particle-scale and apply it to a PEFC cathode with platinum group metal free (PGM-free) catalyst. Here, we numerically solve the governing equations for the physics with heterogeneous oxygen diffusion coefficient and proton conductivity evaluated using the actual electrode structure and ionomer distribution obtained using nano-scalemore » resolution X-ray computed tomography (nano-CT). Using this approach, the oxygen concentration and electrolyte potential distributions imposed by the oxygen reduction reaction are solved and the impact of the catalyst layer structure on performance is evaluated.« less

    • The Effect on Retention of Computer Assisted Instruction in Science Education

      ERIC Educational Resources Information Center

      Kara, Izzet

      2008-01-01

      The aim of this research is to determine the retention effect of Computer Assisted Instruction (CAI) on students' academic achievement for teaching the Physics topics. The research includes the Force and Pressure units of 7th grade Science Lesson. In this research, 132 students were structured as both control and experiment groups. Traditional…

    • Youth Self-Report of Physical and Sexual Abuse: A Latent Class Analysis

      ERIC Educational Resources Information Center

      Nooner, Kate B.; Litrownik, Alan J.; Thompson, Richard; Margolis, Benjamin; English, Diana J.; Knight, Elizabeth D.; Everson, Mark D.; Roesch, Scott

      2010-01-01

      Objective: To determine if meaningful groups of at-risk pre-adolescent youth could be identified based on their self-report of physical and sexual abuse histories. Methods: Youth participating in a consortium of ongoing longitudinal studies were interviewed using an audio-computer assisted self-interview (A-CASI) when they were approximately 12…

    • Sensible organizations: technology and methodology for automatically measuring organizational behavior.

      PubMed

      Olguin Olguin, Daniel; Waber, Benjamin N; Kim, Taemie; Mohan, Akshay; Ara, Koji; Pentland, Alex

      2009-02-01

      We present the design, implementation, and deployment of a wearable computing platform for measuring and analyzing human behavior in organizational settings. We propose the use of wearable electronic badges capable of automatically measuring the amount of face-to-face interaction, conversational time, physical proximity to other people, and physical activity levels in order to capture individual and collective patterns of behavior. Our goal is to be able to understand how patterns of behavior shape individuals and organizations. By using on-body sensors in large groups of people for extended periods of time in naturalistic settings, we have been able to identify, measure, and quantify social interactions, group behavior, and organizational dynamics. We deployed this wearable computing platform in a group of 22 employees working in a real organization over a period of one month. Using these automatic measurements, we were able to predict employees' self-assessments of job satisfaction and their own perceptions of group interaction quality by combining data collected with our platform and e-mail communication data. In particular, the total amount of communication was predictive of both of these assessments, and betweenness in the social network exhibited a high negative correlation with group interaction satisfaction. We also found that physical proximity and e-mail exchange had a negative correlation of r = -0.55 (p 0.01), which has far-reaching implications for past and future research on social networks.

    • Computationally-Guided Synthetic Control over Pore Size in Isostructural Porous Organic Cages

      DOE PAGES

      Slater, Anna G.; Reiss, Paul S.; Pulido, Angeles; ...

      2017-06-20

      The physical properties of 3-D porous solids are defined by their molecular geometry. Hence, precise control of pore size, pore shape, and pore connectivity are needed to tailor them for specific applications. However, for porous molecular crystals, the modification of pore size by adding pore-blocking groups can also affect crystal packing in an unpredictable way. This precludes strategies adopted for isoreticular metal-organic frameworks, where addition of a small group, such as a methyl group, does not affect the basic framework topology. Here, we narrow the pore size of a cage molecule, CC3, in a systematic way by introducing methyl groupsmore » into the cage windows. Computational crystal structure prediction was used to anticipate the packing preferences of two homochiral methylated cages, CC14-R and CC15-R, and to assess the structure-energy landscape of a CC15-R/CC3-S cocrystal, designed such that both component cages could be directed to pack with a 3-D, interconnected pore structure. The experimental gas sorption properties of these three cage systems agree well with physical properties predicted by computational energy-structure-function maps.« less

    • Computationally-Guided Synthetic Control over Pore Size in Isostructural Porous Organic Cages

      DOE Office of Scientific and Technical Information (OSTI.GOV)

      Slater, Anna G.; Reiss, Paul S.; Pulido, Angeles

      The physical properties of 3-D porous solids are defined by their molecular geometry. Hence, precise control of pore size, pore shape, and pore connectivity are needed to tailor them for specific applications. However, for porous molecular crystals, the modification of pore size by adding pore-blocking groups can also affect crystal packing in an unpredictable way. This precludes strategies adopted for isoreticular metal-organic frameworks, where addition of a small group, such as a methyl group, does not affect the basic framework topology. Here, we narrow the pore size of a cage molecule, CC3, in a systematic way by introducing methyl groupsmore » into the cage windows. Computational crystal structure prediction was used to anticipate the packing preferences of two homochiral methylated cages, CC14-R and CC15-R, and to assess the structure-energy landscape of a CC15-R/CC3-S cocrystal, designed such that both component cages could be directed to pack with a 3-D, interconnected pore structure. The experimental gas sorption properties of these three cage systems agree well with physical properties predicted by computational energy-structure-function maps.« less

    • DOE Office of Scientific and Technical Information (OSTI.GOV)

      Hanthorn, H.E.; Jaech, J.L.

      Results are given of a study to determine the optimum testing scheme consisting of drawing a group of optimum size from the population being tested, and retesting it, if required, in subgroups of optimum size. An exact computation of optimum grouping and subgrouping was made. Results are also given to indicate how much loss inefficiency occurs when physical limitations restrict the size of the original group. (J.R.D.)

    • Rationale, design and baseline characteristics of a randomized controlled trial of a web-based computer-tailored physical activity intervention for adults from Quebec City.

      PubMed

      Boudreau, François; Walthouwer, Michel Jean Louis; de Vries, Hein; Dagenais, Gilles R; Turbide, Ginette; Bourlaud, Anne-Sophie; Moreau, Michel; Côté, José; Poirier, Paul

      2015-10-09

      The relationship between physical activity and cardiovascular disease (CVD) protection is well documented. Numerous factors (e.g. patient motivation, lack of facilities, physician time constraints) can contribute to poor PA adherence. Web-based computer-tailored interventions offer an innovative way to provide tailored feedback and to empower adults to engage in regular moderate- to vigorous-intensity PA. To describe the rationale, design and content of a web-based computer-tailored PA intervention for Canadian adults enrolled in a randomized controlled trial (RCT). 244 men and women aged between 35 and 70 years, without CVD or physical disability, not participating in regular moderate- to vigorous-intensity PA, and familiar with and having access to a computer at home, were recruited from the Quebec City Prospective Urban and Rural Epidemiological (PURE) study centre. Participants were randomized into two study arms: 1) an experimental group receiving the intervention and 2) a waiting list control group. The fully automated web-based computer-tailored PA intervention consists of seven 10- to 15-min sessions over an 8-week period. The theoretical underpinning of the intervention is based on the I-Change Model. The aim of the intervention was to reach a total of 150 min per week of moderate- to vigorous-intensity aerobic PA. This study will provide useful information before engaging in a large RCT to assess the long-term participation and maintenance of PA, the potential impact of regular PA on CVD risk factors and the cost-effectiveness of a web-based computer-tailored intervention. ISRCTN36353353 registered on 24/07/2014.

    • Diet Quality and Physical Activity Outcome Improvements Resulting From a Church-Based Diet and Supervised Physical Activity Intervention for Rural, Southern, African American Adults: Delta Body and Soul III.

      PubMed

      Thomson, Jessica L; Goodman, Melissa H; Tussing-Humphreys, Lisa

      2015-09-01

      We assessed the effects of a 6-month, church-based, diet and supervised physical activity intervention, conducted between 2011 and 2012, on improving diet quality and increasing physical activity of Southern, African American adults. Using a quasi-experimental design, eight self-selected, eligible churches were assigned to intervention or control. Assessments included dietary, physical activity, anthropometric, and clinical measures. Mixed model regression analysis and McNemar's test were used to determine if within and between group differences were significant. Cohen's d effect sizes for selected outcomes also were computed and compared with an earlier, lower dose intervention. Retention rates were 84% (102/122) for control and 76% (219/287) for intervention participants. Diet quality components, including fruits, vegetables, discretionary calories, and total quality, improved significantly in the intervention group. Strength/flexibility physical activity also increased in the intervention group, while both aerobic and strength/flexibility physical activity significantly decreased in the control group. Effect sizes for selected health outcomes were larger in the current intervention as compared to an earlier, less intense iteration of the study. Results suggest that more frequent education sessions as well as supervised group physical activity may be key components to increasing the efficacy of behavioral lifestyle interventions in rural, Southern, African American adults. © 2015 Society for Public Health Education.

    • Increasing exercise capacity and quality of life of patients with heart failure through Wii gaming: the rationale, design and methodology of the HF-Wii study; a multicentre randomized controlled trial.

      PubMed

      Jaarsma, Tiny; Klompstra, Leonie; Ben Gal, Tuvia; Boyne, Josiane; Vellone, Ercole; Bäck, Maria; Dickstein, Kenneth; Fridlund, Bengt; Hoes, Arno; Piepoli, Massimo F; Chialà, Oronzo; Mårtensson, Jan; Strömberg, Anna

      2015-07-01

      Exercise is known to be beneficial for patients with heart failure (HF), and these patients should therefore be routinely advised to exercise and to be or to become physically active. Despite the beneficial effects of exercise such as improved functional capacity and favourable clinical outcomes, the level of daily physical activity in most patients with HF is low. Exergaming may be a promising new approach to increase the physical activity of patients with HF at home. The aim of this study is to determine the effectiveness of the structured introduction and access to a Wii game computer in patients with HF to improve exercise capacity and level of daily physical activity, to decrease healthcare resource use, and to improve self-care and health-related quality of life. A multicentre randomized controlled study with two treatment groups will include 600 patients with HF. In each centre, patients will be randomized to either motivational support only (control) or structured access to a Wii game computer (Wii). Patients in the control group will receive advice on physical activity and will be contacted by four telephone calls. Patients in the Wii group also will receive advice on physical activity along with a Wii game computer, with instructions and training. The primary endpoint will be exercise capacity at 3 months as measured by the 6 min walk test. Secondary endpoints include exercise capacity at 6 and 12 months, level of daily physical activity, muscle function, health-related quality of life, and hospitalization or death during the 12 months follow-up. The HF-Wii study is a randomized study that will evaluate the effect of exergaming in patients with HF. The findings can be useful to healthcare professionals and improve our understanding of the potential role of exergaming in the treatment and management of patients with HF. NCT01785121. © 2015 The Authors. European Journal of Heart Failure © 2015 European Society of Cardiology.

    • Cyber-physical approach to the network-centric robotics control task

      NASA Astrophysics Data System (ADS)

      Muliukha, Vladimir; Ilyashenko, Alexander; Zaborovsky, Vladimir; Lukashin, Alexey

      2016-10-01

      Complex engineering tasks concerning control for groups of mobile robots are developed poorly. In our work for their formalization we use cyber-physical approach, which extends the range of engineering and physical methods for a design of complex technical objects by researching the informational aspects of communication and interaction between objects and with an external environment [1]. The paper analyzes network-centric methods for control of cyber-physical objects. Robots or cyber-physical objects interact with each other by transmitting information via computer networks using preemptive queueing system and randomized push-out mechanism [2],[3]. The main field of application for the results of our work is space robotics. The selection of cyber-physical systems as a special class of designed objects is due to the necessity of integrating various components responsible for computing, communications and control processes. Network-centric solutions allow using universal means for the organization of information exchange to integrate different technologies for the control system.

  1. Exploration of factors that affect the comparative effectiveness of physical and virtual manipulatives in an undergraduate laboratory

    NASA Astrophysics Data System (ADS)

    Chini, Jacquelyn J.; Madsen, Adrian; Gire, Elizabeth; Rebello, N. Sanjay; Puntambekar, Sadhana

    2012-06-01

    Recent research results have failed to support the conventionally held belief that students learn physics best from hands-on experiences with physical equipment. Rather, studies have found that students who perform similar experiments with computer simulations perform as well or better on measures of conceptual understanding than their peers who used physical equipment. In this study, we explored how university-level nonscience majors’ understanding of the physics concepts related to pulleys was supported by experimentation with real pulleys and a computer simulation of pulleys. We report that when students use one type of manipulative (physical or virtual), the comparison is influenced both by the concept studied and the timing of the post-test. Students performed similarly on questions related to force and mechanical advantage regardless of the type of equipment used. On the other hand, students who used the computer simulation performed better on questions related to work immediately after completing the activities; however, the two groups performed similarly on the work questions on a test given one week later. Additionally, both sequences of experimentation (physical-virtual and virtual-physical) equally supported students’ understanding of all of the concepts. These results suggest that both the concept learned and the stability of learning gains should continue to be explored to improve educators’ ability to select the best learning experience for a given topic.

  2. A Comparative Study of Collaborative Learning in "Paper Scribbles" and "Group Scribbles"

    ERIC Educational Resources Information Center

    Hao, Chen Fang

    2010-01-01

    "Paper Scribbles" (PS) consisting of markers, vanguard sheets and 3M "Post-It" notes, is a pedagogical tool to harness collective intelligence of groups for collaborative learning in the classroom. Borrowing the key features of PS and yet avoiding some of their physical limitations, a computer-based tool called "Group…

  3. Use of ICT in School: A Comparison between Students with and without Physical Disabilities

    ERIC Educational Resources Information Center

    Lidstrom, Helene; Granlund, Mats; Hemmingsson, Helena

    2012-01-01

    The aim of this study was to determine the information and communication technologies use in school activities of two groups of students with physical disabilities, comprised of those who did and those who did not use a computer-based assistive technology device (ATD) and to make a comparison with students from the general population. In addition,…

  4. Problem-Based Labs and Group Projects in an Introductory University Physics Course

    ERIC Educational Resources Information Center

    Kohnle, Antje; Brown, C. Tom A.; Rae, Cameron F.; Sinclair, Bruce D.

    2012-01-01

    This article describes problem-based labs and analytical and computational project work we have been running at the University of St Andrews in an introductory physics course since 2008/2009. We have found the choice of topics, scaffolding of the process, timing in the year and facilitator guidance decisive for the success of these activities.…

  5. A Cluster Randomized Controlled Trial on the Effects of Technology-aided Testing and Feedback on Physical Activity and Biological Age Among Employees in a Medium-sized Enterprise.

    PubMed

    Liukkonen, Mika; Nygård, Clas-Håkan; Laukkanen, Raija

    2017-12-01

    It has been suggested that engaging technology can empower individuals to be more proactive about their health and reduce their health risks. The aim of the present intervention was to study the effects of technology-aided testing and feedback on physical activity and biological age of employees in a middle-sized enterprise. In all, 121 employees (mean age 42 ± 10 years) participated in the 12-month three-arm cluster randomized trial. The fitness measurement process (Body Age) determined the participants' biological age in years. Physical activity was measured with the International Physical Activity Questionnaire Short Form. Physical activity did not change during the intervention. Biological age (better fitness) improved in all groups statistically significantly ( p  < 0.001), but with no interaction effects. The mean changes (years) in the groups were -2.20 for the controls, -2.83 for the group receiving their biological age and feedback, and -2.31 for the group receiving their biological age, feedback, and a training computer. Technology-aided testing with feedback does not seem to change the amount of physical activity but may enhance physical fitness measured by biological age.

  6. The HEPiX Virtualisation Working Group: Towards a Grid of Clouds

    NASA Astrophysics Data System (ADS)

    Cass, Tony

    2012-12-01

    The use of virtual machine images, as for example with Cloud services such as Amazon's Elastic Compute Cloud, is attractive for users as they have a guaranteed execution environment, something that cannot today be provided across sites participating in computing grids such as the Worldwide LHC Computing Grid. However, Grid sites often operate within computer security frameworks which preclude the use of remotely generated images. The HEPiX Virtualisation Working Group was setup with the objective to enable use of remotely generated virtual machine images at Grid sites and, to this end, has introduced the idea of trusted virtual machine images which are guaranteed to be secure and configurable by sites such that security policy commitments can be met. This paper describes the requirements and details of these trusted virtual machine images and presents a model for their use to facilitate the integration of Grid- and Cloud-based computing environments for High Energy Physics.

  7. Differences in ergonomic and workstation factors between computer office workers with and without reported musculoskeletal pain.

    PubMed

    Rodrigues, Mirela Sant'Ana; Leite, Raquel Descie Veraldi; Lelis, Cheila Maira; Chaves, Thaís Cristina

    2017-01-01

    Some studies have suggested a causal relationship between computer work and the development of musculoskeletal disorders. However, studies considering the use of specific tools to assess workplace ergonomics and psychosocial factors in computer office workers with and without reported musculoskeletal pain are scarce. The aim of this study was to compare the ergonomic, physical, and psychosocial factors in computer office workers with and without reported musculoskeletal pain (MSP). Thirty-five computer office workers (aged 18-55 years) participated in the study. The following evaluations were completed: Rapid Upper Limb Assessment (RULA), Rapid Office Strain Assessment (ROSA), and Maastricht Upper Extremity Questionnaire revised Brazilian Portuguese version (MUEQ-Br revised). Student t-tests were used to make comparisons between groups. The computer office workers were divided into two groups: workers with reported MSP (WMSP, n = 17) and workers without positive report (WOMSP, n = 18). Those in the WMSP group showed significantly greater mean values in the total ROSA score (WMSP: 6.71 [CI95% :6.20-7.21] and WOMSP: 5.88 [CI95% :5.37-6.39], p = 0.01). The WMSP group also showed higher scores in the chair section of the ROSA, workstation of MUEQ-Br revised, and in the upper limb RULA score. The chair height and armrest sections from ROSA showed the higher mean values in workers WMSP compared to workers WOMSP. A positive moderate correlation was observed between ROSA and RULA total scores (R = 0.63, p < 0.001). Our results demonstrated that computer office workers who reported MSP had worse ergonomics indexes for chair workstation and worse physical risk related to upper limb (RULA upper limb section) than workers without pain. However, there were no observed differences in workers with and without MSP regarding work-related psychosocial factors. The results suggest that inadequate workstation conditions, specifically the chair height, arm and back rest, are linked to improper upper limb postures and that these factors are contributing to MSP in computer office workers.

  8. The Impact of a Computer-Based Activity Program on the Social Functioning of Children with Autistic Spectrum Disorder.

    PubMed

    Dickinson, Kathleen; Place, Maurice

    2016-06-01

    Problems with social functioning are a major area of difficulty for children with autism. Such problems have the potential to exert a negative influence on several aspects of the children's functioning, including their ability to access education. This study looked to examine if a computer-based activity program could improve the social functioning of these children. Using a pooled subject design, 100 children with autistic spectrum disorder were randomly allocated, controlling where possible for age and gender, to either an intervention or a control group. The children in the intervention group were encouraged to use the Nintendo (Kyoto, Japan) Wii™ and the software package "Mario & Sonic at the Olympics" in addition to their routine school physical education classes over a 9-month period. The control group attended only the routine physical education classes. After 1 year, analysis of the changes in the scores of teacher-completed measures of social functioning showed that boys in the intervention group had made statistically significant improvement in their functioning when compared with controls. The number of girls in the study was too small for any change to reach statistical significance. This type of intervention appears to have potential as a mechanism to produce improvement in the social functioning, at least of boys, as part of a physical education program.

  9. Cook-Levin Theorem Algorithmic-Reducibility/Completeness = Wilson Renormalization-(Semi)-Group Fixed-Points; ``Noise''-Induced Phase-Transitions (NITs) to Accelerate Algorithmics (``NIT-Picking'') REPLACING CRUTCHES!!!: Models: Turing-machine, finite-state-models, finite-automata

    NASA Astrophysics Data System (ADS)

    Young, Frederic; Siegel, Edward

    Cook-Levin theorem theorem algorithmic computational-complexity(C-C) algorithmic-equivalence reducibility/completeness equivalence to renormalization-(semi)-group phase-transitions critical-phenomena statistical-physics universality-classes fixed-points, is exploited via Siegel FUZZYICS =CATEGORYICS = ANALOGYICS =PRAGMATYICS/CATEGORY-SEMANTICS ONTOLOGY COGNITION ANALYTICS-Aristotle ``square-of-opposition'' tabular list-format truth-table matrix analytics predicts and implements ''noise''-induced phase-transitions (NITs) to accelerate versus to decelerate Harel [Algorithmics (1987)]-Sipser[Intro.Thy. Computation(`97)] algorithmic C-C: ''NIT-picking''(!!!), to optimize optimization-problems optimally(OOPO). Versus iso-''noise'' power-spectrum quantitative-only amplitude/magnitude-only variation stochastic-resonance, ''NIT-picking'' is ''noise'' power-spectrum QUALitative-type variation via quantitative critical-exponents variation. Computer-''science''/SEANCE algorithmic C-C models: Turing-machine, finite-state-models, finite-automata,..., discrete-maths graph-theory equivalence to physics Feynman-diagrams are identified as early-days once-workable valid but limiting IMPEDING CRUTCHES(!!!), ONLY IMPEDE latter-days new-insights!!!

  10. The first Italian doctorate (PhD Course) in Physics Education Research

    NASA Astrophysics Data System (ADS)

    Michelini, Marisa; Santi, Lorenzo

    2008-05-01

    The first PhD Italian course in Physics Education Research in Udine aims to qualify young researchers and teachers coming from all the Italian groups of research in the field. It becomes a context for developing research projects carried out following parallel research lines on: Teaching/Learning paths for didactic innovation, cognitive research, ICT for strategies to overcome conceptual knots in physics; E-learning for personalization; d) Computer on-line experiments and modelling; e) Teacher formation and training; f) Informal learning in science.

  11. When does a physical system compute?

    PubMed

    Horsman, Clare; Stepney, Susan; Wagner, Rob C; Kendon, Viv

    2014-09-08

    Computing is a high-level process of a physical system. Recent interest in non-standard computing systems, including quantum and biological computers, has brought this physical basis of computing to the forefront. There has been, however, no consensus on how to tell if a given physical system is acting as a computer or not; leading to confusion over novel computational devices, and even claims that every physical event is a computation. In this paper, we introduce a formal framework that can be used to determine whether a physical system is performing a computation. We demonstrate how the abstract computational level interacts with the physical device level, in comparison with the use of mathematical models in experimental science. This powerful formulation allows a precise description of experiments, technology, computation and simulation, giving our central conclusion: physical computing is the use of a physical system to predict the outcome of an abstract evolution . We give conditions for computing, illustrated using a range of non-standard computing scenarios. The framework also covers broader computing contexts, where there is no obvious human computer user. We introduce the notion of a 'computational entity', and its critical role in defining when computing is taking place in physical systems.

  12. When does a physical system compute?

    PubMed Central

    Horsman, Clare; Stepney, Susan; Wagner, Rob C.; Kendon, Viv

    2014-01-01

    Computing is a high-level process of a physical system. Recent interest in non-standard computing systems, including quantum and biological computers, has brought this physical basis of computing to the forefront. There has been, however, no consensus on how to tell if a given physical system is acting as a computer or not; leading to confusion over novel computational devices, and even claims that every physical event is a computation. In this paper, we introduce a formal framework that can be used to determine whether a physical system is performing a computation. We demonstrate how the abstract computational level interacts with the physical device level, in comparison with the use of mathematical models in experimental science. This powerful formulation allows a precise description of experiments, technology, computation and simulation, giving our central conclusion: physical computing is the use of a physical system to predict the outcome of an abstract evolution. We give conditions for computing, illustrated using a range of non-standard computing scenarios. The framework also covers broader computing contexts, where there is no obvious human computer user. We introduce the notion of a ‘computational entity’, and its critical role in defining when computing is taking place in physical systems. PMID:25197245

  13. A Validation Framework for the Long Term Preservation of High Energy Physics Data

    NASA Astrophysics Data System (ADS)

    Ozerov, Dmitri; South, David M.

    2014-06-01

    The study group on data preservation in high energy physics, DPHEP, is moving to a new collaboration structure, which will focus on the implementation of preservation projects, such as those described in the group's large scale report published in 2012. One such project is the development of a validation framework, which checks the compatibility of evolving computing environments and technologies with the experiments software for as long as possible, with the aim of substantially extending the lifetime of the analysis software, and hence of the usability of the data. The framework is designed to automatically test and validate the software and data of an experiment against changes and upgrades to the computing environment, as well as changes to the experiment software itself. Technically, this is realised using a framework capable of hosting a number of virtual machine images, built with different configurations of operating systems and the relevant software, including any necessary external dependencies.

  14. Effectiveness of computer-assisted interactive videodisc instruction in teaching rheumatology to physical and occupational therapy students.

    PubMed

    Sanford, M K; Hazelwood, S E; Bridges, A J; Cutts, J H; Mitchell, J A; Reid, J C; Sharp, G

    1996-01-01

    A computer-assisted interactive videodisc instructional program, HP-RHEUM was designed to teach clinical findings in arthritis to occupational and physical therapy students. Using the Rheumatology Image Library videodisc produced by the National Library of Medicine, HP-RHEUM consists of instructional modules which employ advance organizers, examples/nonexamples, summaries, and immediate feedback. To see if HP-RHEUM would be as effective as traditional classroom instruction, control data were collected in 1991 from 52 OT and PT students. Treatment data were collected from 61 students in 1992 when HP-RHEUM entirely replaced lectures. Identical pre- and post-tests consisted of 70 multiple choice questions, with 24 matched to slides. On the slide questions the HP-RHEUM group had significantly higher scores. Otherwise, there was no significant difference in performance between groups. HP-RHEUM provided an independent learning method and enhanced visual comprehension of rheumatologic disease concepts.

  15. Is physical activity differentially associated with different types of sedentary pursuits?

    PubMed

    Feldman, Debbie Ehrmann; Barnett, Tracie; Shrier, Ian; Rossignol, Michel; Abenhaim, Lucien

    2003-08-01

    To determine whether there is a relationship between the time adolescents spend in physical activity and time they spend in different sedentary pursuits: watching television, playing video games, working on computers, doing homework, and reading, taking into account the effect of part-time work on students' residual time. Cross-sectional cohort design. Seven hundred forty-three high school students from 2 inner-city public schools and 1 private school. Students completed a self-administered questionnaire that addressed time spent in physical activity, time spent in sedentary pursuits, musculoskeletal pain, and psychosocial issues and were also measured for height and weight. Main Outcome Measure Level of physical activity (low, moderate, high). There were more girls than boys in the low and moderate physical activity groups and more boys than girls in the high activity group. Ordinal logistic regression showed that increased time spent in "productive sedentary behavior" (reading or doing homework and working on computers) was associated with increased physical activity (odds ratio, 1.7; 95% confidence interval, 1.2-2.4), as was time spent working (odds ratio, 1.3; 95% confidence interval, 1.2-1.4). Time spent watching television and playing video games was not associated with decreased physical activity. Physical activity was not inversely associated with watching television or playing video games, but was positively associated with productive sedentary behavior and part-time work. Some students appear capable of managing their time better than others. Future studies should explore the ability of students to manage their time and also determine what characteristics are conducive to better time management.

  16. A new computer-based counselling system for the promotion of physical activity in patients with chronic diseases--results from a pilot study.

    PubMed

    Becker, Annette; Herzberg, Dominikus; Marsden, Nicola; Thomanek, Sabine; Jung, Hartmut; Leonhardt, Corinna

    2011-05-01

    To develop a computer-based counselling system (CBCS) for the improvement of attitudes towards physical activity in chronically ill patients and to pilot its efficacy and acceptance in primary care. The system is tailored to patients' disease and motivational stage. During a pilot study in five German general practices, patients answered questions before, directly and 6 weeks after using the CBCS. Outcome criteria were attitudes and self-efficacy. Qualitative interviews were performed to identify acceptance indicators. Seventy-nine patients participated (mean age: 64.5 years, 53% males; 38% without previous computer experience). Patients' affective and cognitive attitudes changed significantly, self-efficacy showed only minor changes. Patients mentioned no difficulties in interacting with the CBCS. However, perception of the system's usefulness was inconsistent. Computer-based counselling for physical activity related attitudes in patients with chronic diseases is feasible, but the circumstances of use with respect to the target group and its integration into the management process have to be clarified in future studies. This study adds to the understanding of computer-based counselling in primary health care. Acceptance indicators identified in this study will be validated as part of a questionnaire on technology acceptability in a subsequent study. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  17. Nuclear and Particle Physics Simulations: The Consortium of Upper-Level Physics Software

    NASA Astrophysics Data System (ADS)

    Bigelow, Roberta; Moloney, Michael J.; Philpott, John; Rothberg, Joseph

    1995-06-01

    The Consortium for Upper Level Physics Software (CUPS) has developed a comprehensive series of Nine Book/Software packages that Wiley will publish in FY `95 and `96. CUPS is an international group of 27 physicists, all with extensive backgrounds in the research, teaching, and development of instructional software. The project is being supported by the National Science Foundation (PHY-9014548), and it has received other support from the IBM Corp., Apple Computer Corp., and George Mason University. The Simulations being developed are: Astrophysics, Classical Mechanics, Electricity & Magnetism, Modern Physics, Nuclear and Particle Physics, Quantum Mechanics, Solid State, Thermal and Statistical, and Wave and Optics.

  18. Oklahoma Center for High Energy Physics (OCHEP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandi, S; Strauss, M J; Snow, J

    2012-02-29

    The DOE EPSCoR implementation grant, with the support from the State of Oklahoma and from the three universities, Oklahoma State University, University of Oklahoma and Langston University, resulted in establishing of the Oklahoma Center for High Energy Physics (OCHEP) in 2004. Currently, OCHEP continues to flourish as a vibrant hub for research in experimental and theoretical particle physics and an educational center in the State of Oklahoma. All goals of the original proposal were successfully accomplished. These include foun- dation of a new experimental particle physics group at OSU, the establishment of a Tier 2 computing facility for the Largemore » Hadron Collider (LHC) and Tevatron data analysis at OU and organization of a vital particle physics research center in Oklahoma based on resources of the three universities. OSU has hired two tenure-track faculty members with initial support from the grant funds. Now both positions are supported through OSU budget. This new HEP Experimental Group at OSU has established itself as a full member of the Fermilab D0 Collaboration and LHC ATLAS Experiment and has secured external funds from the DOE and the NSF. These funds currently support 2 graduate students, 1 postdoctoral fellow, and 1 part-time engineer. The grant initiated creation of a Tier 2 computing facility at OU as part of the Southwest Tier 2 facility, and a permanent Research Scientist was hired at OU to maintain and run the facility. Permanent support for this position has now been provided through the OU university budget. OCHEP represents a successful model of cooperation of several universities, providing the establishment of critical mass of manpower, computing and hardware resources. This led to increasing Oklahoma's impact in all areas of HEP, theory, experiment, and computation. The Center personnel are involved in cutting edge research in experimental, theoretical, and computational aspects of High Energy Physics with the research areas ranging from the search for new phenomena at the Fermilab Tevatron and the CERN Large Hadron Collider to theoretical modeling, computer simulation, detector development and testing, and physics analysis. OCHEP faculty members participating on the D0 collaboration at the Fermilab Tevatron and on the ATLAS collaboration at the CERN LHC have made major impact on the Standard Model (SM) Higgs boson search, top quark studies, B physics studies, and measurements of Quantum Chromodynamics (QCD) phenomena. The OCHEP Grid computing facility consists of a large computer cluster which is playing a major role in data analysis and Monte Carlo productions for both the D0 and ATLAS experiments. Theoretical efforts are devoted to new ideas in Higgs bosons physics, extra dimensions, neutrino masses and oscillations, Grand Unified Theories, supersymmetric models, dark matter, and nonperturbative quantum field theory. Theory members are making major contributions to the understanding of phenomena being explored at the Tevatron and the LHC. They have proposed new models for Higgs bosons, and have suggested new signals for extra dimensions, and for the search of supersymmetric particles. During the seven year period when OCHEP was partially funded through the DOE EPSCoR implementation grant, OCHEP members published over 500 refereed journal articles and made over 200 invited presentations at major conferences. The Center is also involved in education and outreach activities by offering summer research programs for high school teachers and college students, and organizing summer workshops for high school teachers, sometimes coordinating with the Quarknet programs at OSU and OU. The details of the Center can be found in http://ochep.phy.okstate.edu.« less

  19. Relativistic Few-Body Hadronic Physics Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polyzou, Wayne

    2016-06-20

    The goal of this research proposal was to use ``few-body'' methods to understand the structure and reactions of systems of interacting hadrons (neutrons, protons, mesons, quarks) over a broad range of energy scales. Realistic mathematical models of few-hadron systems have the advantage that they are sufficiently simple that they can be solved with mathematically controlled errors. These systems are also simple enough that it is possible to perform complete accurate experimental measurements on these systems. Comparison between theory and experiment puts strong constraints on the structure of the models. Even though these systems are ``simple'', both the experiments and computationsmore » push the limits of technology. The important property of ``few-body'' systems is that the ``cluster property'' implies that the interactions that appear in few-body systems are identical to the interactions that appear in complicated many-body systems. Of particular interest are models that correctly describe physics at distance scales that are sensitive to the internal structure of the individual nucleons. The Heisenberg uncertainty principle implies that in order to be sensitive to physics on distance scales that are a fraction of the proton or neutron radius, a relativistic treatment of quantum mechanics is necessary. The research supported by this grant involved 30 years of effort devoted to studying all aspects of interacting two and three-body systems. Realistic interactions were used to compute bound states of two- and three-nucleon, and two- and three-quark systems. Scattering observables for these systems were computed for a broad range of energies - from zero energy scattering to few GeV scattering, where experimental evidence of sub-nucleon degrees of freedom is beginning to appear. Benchmark calculations were produced, which when compared with calculations of other groups provided an essential check on these complicated calculations. In addition to computing bound state properties and scattering cross section, we also computed electron scattering cross sections in few-nucleon and few-quark systems, which are sensitive to the electric currents in these systems. We produced the definitive review on article on relativistic quantum mechanics, which and been used by many groups. In addition we developed and tested many computational techniques are used by other groups. Many of these techniques have applications in other areas of physics. The research benefited by collaborations with physicists from many different institutions and countries. It also involved working with seventeen undergraduate and graduate students.« less

  20. Children′s physical activity and screen time: qualitative comparison of views of parents of infants and preschool children

    PubMed Central

    2012-01-01

    Background While parents are central to the development of behaviours in their young children, little is known about how parents view their role in shaping physical activity and screen time behaviours. Methods Using an unstructured focus group design, parental views and practices around children′s physical activity and screen time (television and computer use) were explored with eight groups of new parents (n=61; child age <12 months) and eight groups of parents with preschool-aged (3–5 year old) children (n=36) in Melbourne, Australia. Results Parents generally believed children are naturally active, which may preclude their engagement in strategies designed to increase physical activity. While parents across both age groups shared many overarching views concerning parenting for children′s physical activity and screen time behaviours, some strategies and barriers differed depending on the age of the child. While most new parents were optimistic about their ability to positively influence their child′s behaviours, many parents of preschool-aged children seemed more resigned to strategies that worked for them, even when aware such strategies may not be ideal. Conclusions Interventions aiming to increase children′s physical activity and decrease screen time may need to tailor strategies to the age group of the child and address parents′ misconceptions and barriers to optimum parenting in these domains. PMID:23270548

  1. Feasibility, acceptability and efficacy of a web-based computer-tailored physical activity intervention for pregnant women - the Fit4Two randomised controlled trial.

    PubMed

    Hayman, Melanie; Reaburn, Peter; Browne, Matthew; Vandelanotte, Corneel; Alley, Stephanie; Short, Camille E

    2017-03-23

    Physical activity (PA) during pregnancy is associated with a variety of health benefits including a reduced risk of pregnancy related conditions such as pre-eclampsia and pregnancy-induced hypertension and leads to greater control over gestational weight gain. Despite these associated health benefits, very few pregnant women are sufficiently active. In an attempt to increase health outcomes, it is important to explore innovative ways to increase PA among pregnant women. Therefore, the aim of this study was to assess the feasibility, acceptability and efficacy of a four week web-based computer-tailored PA intervention among pregnant women. Seventy-seven participants were randomised into either: (1) an intervention group that received tailored PA advice and access to a resource library of articles relating to PA during pregnancy; or (2) a standard information group that only received access to the resources library. Objective moderate-to-vigorous physical activity (MVPA) was assessed at baseline and immediately post-intervention. Recruitment, attrition, intervention adherence, and website engagement were assessed. Questions on usability and satisfaction were administered post-intervention. Feasibility was demonstrated through acceptable recruitment (8.5 participants recruited and randomised/month), and attrition (25%). Acceptability among intervention group participants was positive with high intervention adherence (96% of 4 modules completed). High website engagement (participants logged in 1.6 times/week although only required to log in once per week), usability (75/100), and satisfaction outcomes were reported in both groups. However, participants in the intervention group viewed significantly more pages on the website (p < 0.05), reported that the website felt more personally relevant (p < 0.05), and significantly increased their MVPA from baseline to post-intervention (mean difference = 35.87 min), compared to the control group (mean difference = 9.83 min) (p < 0.05), suggesting efficacy. The delivery of a computer-tailored web-based intervention designed to increase PA in pregnant women is feasible, well accepted and associated with increases in short-term MVPA. Findings suggest the use of computer-tailored information leads to greater website engagement, satisfaction and greater PA levels among pregnant women compared to a generic information only website. The trial was 'retrospectively registered' with the Australian New Zealand Clinical Trials Registry ( ACTRN12614001105639 ) on 17 th October, 2014.

  2. Leisure time computer use and adolescent bone health--findings from the Tromsø Study, Fit Futures: a cross-sectional study.

    PubMed

    Winther, Anne; Ahmed, Luai Awad; Furberg, Anne-Sofie; Grimnes, Guri; Jorde, Rolf; Nilsen, Ole Andreas; Dennison, Elaine; Emaus, Nina

    2015-04-22

    Low levels of physical activity may have considerable negative effects on bone health in adolescence, and increasing screen time in place of sporting activity during growth is worrying. This study explored the associations between self-reported screen time at weekends and bone mineral density (BMD). In 2010/2011, 1038 (93%) of the region's first-year upper-secondary school students (15-18 years) attended the Tromsø Study, Fit Futures 1 (FF1). A follow-up survey (FF2) took place in 2012/2013. BMD at total hip, femoral neck and total body was measured as g/cm(²) by dual X-ray absorptiometry (GE Lunar prodigy). Lifestyle variables were self-reported, including questions on hours per day spent in front of television/computer during weekends and hours spent on leisure time physical activities. Complete data sets for 388/312 girls and 359/231 boys at FF1/FF2, respectively, were used in analyses. Sex stratified multiple regression analyses were performed. Many adolescents balanced 2-4 h screen time with moderate or high physical activity levels. Screen time was positively related to body mass index (BMI) in boys (p=0.002), who spent more time in front of the computer than girls did (p<0.001). In boys, screen time was adversely associated with BMDFF1 at all sites, and these associations remained robust to adjustments for age, puberty, height, BMI, physical activity, vitamin D levels, smoking, alcohol, calcium and carbonated drink consumption (p<0.05). Screen time was also negatively associated with total hip BMD(FF2) (p=0.031). In contrast, girls who spent 4-6 h in front of the computer had higher BMD than the reference (<2 h). In Norwegian boys, time spent on screen-based sedentary activity was negatively associated with BMD levels; this relationship persisted 2 years later. Such negative associations were not present among girls. Whether this surprising result is explained by biological differences remains unclear. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  3. Modern Physics Simulations

    NASA Astrophysics Data System (ADS)

    Brandt, Douglas; Hiller, John R.; Moloney, Michael J.

    1995-10-01

    The Consortium for Upper Level Physics Software (CUPS) has developed a comprehensive series of Nine Book/Software packages that Wiley will publish in FY `95 and `96. CUPS is an international group of 27 physicists, all with extensive backgrounds in the research, teaching, and development of instructional software. The project is being supported by the National Science Foundation (PHY-9014548), and it has received other support from the IBM Corp., Apple Computer Corp., and George Mason University. The Simulations being developed are: Astrophysics, Classical Mechanics, Electricity & Magnetism, Modern Physics, Nuclear and Particle Physics, Quantum Mechanics, Solid State, Thermal and Statistical, and Wave and Optics.

  4. The Influence of Using Momentum and Impulse Computer Simulation to Senior High School Students’ Concept Mastery

    NASA Astrophysics Data System (ADS)

    Kaniawati, I.; Samsudin, A.; Hasopa, Y.; Sutrisno, A. D.; Suhendi, E.

    2016-08-01

    This research is based on students’ lack of mastery of physics abstract concepts. Thus, this study aims to improve senior high school students’ mastery of momentum and impulse concepts with the use of computer simulation. To achieve these objectives, the research method employed was pre experimental design with one group pre-test post-test. A total of 36 science students of grade 11 in one of public senior high school in Bandung became the sample in this study. The instruments utilized to determine the increase of students’ concept mastery were pretest and posttest in the form of multiple choices. After using computer simulations in physics learning, students’ mastery of momentum and impulse concept has increased as indicated by the normalized gain of 0.64 with the medium category.

  5. College students and computers: assessment of usage patterns and musculoskeletal discomfort.

    PubMed

    Noack-Cooper, Karen L; Sommerich, Carolyn M; Mirka, Gary A

    2009-01-01

    A limited number of studies have focused on computer-use-related MSDs in college students, though risk factor exposure may be similar to that of workers who use computers. This study examined computer use patterns of college students, and made comparisons to a group of previously studied computer-using professionals. 234 students completed a web-based questionnaire concerning computer use habits and physical discomfort respondents specifically associated with computer use. As a group, students reported their computer use to be at least 'Somewhat likely' 18 out of 24 h/day, compared to 12 h for the professionals. Students reported more uninterrupted work behaviours than the professionals. Younger graduate students reported 33.7 average weekly computing hours, similar to hours reported by younger professionals. Students generally reported more frequent upper extremity discomfort than the professionals. Frequent assumption of awkward postures was associated with frequent discomfort. The findings signal a need for intervention, including, training and education, prior to entry into the workforce. Students are future workers, and so it is important to determine whether their increasing exposure to computers, prior to entering the workforce, may make it so they enter already injured or do not enter their chosen profession due to upper extremity MSDs.

  6. Grids, virtualization, and clouds at Fermilab

    DOE PAGES

    Timm, S.; Chadwick, K.; Garzoglio, G.; ...

    2014-06-11

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. To better serve this community, in 2004, the (then) Computing Division undertook the strategy of placing all of the High Throughput Computing (HTC) resources in a Campus Grid known as FermiGrid, supported by common shared services. In 2007, the FermiGrid Services group deployed a service infrastructure that utilized Xen virtualization, LVS network routing and MySQL circular replication to deliver highly available services that offered significant performance, reliability and serviceability improvements. This deployment was further enhanced through the deployment of a distributed redundant network core architecture andmore » the physical distribution of the systems that host the virtual machines across multiple buildings on the Fermilab Campus. In 2010, building on the experience pioneered by FermiGrid in delivering production services in a virtual infrastructure, the Computing Sector commissioned the FermiCloud, General Physics Computing Facility and Virtual Services projects to serve as platforms for support of scientific computing (FermiCloud 6 GPCF) and core computing (Virtual Services). Lastly, this work will present the evolution of the Fermilab Campus Grid, Virtualization and Cloud Computing infrastructure together with plans for the future.« less

  7. Grids, virtualization, and clouds at Fermilab

    NASA Astrophysics Data System (ADS)

    Timm, S.; Chadwick, K.; Garzoglio, G.; Noh, S.

    2014-06-01

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. To better serve this community, in 2004, the (then) Computing Division undertook the strategy of placing all of the High Throughput Computing (HTC) resources in a Campus Grid known as FermiGrid, supported by common shared services. In 2007, the FermiGrid Services group deployed a service infrastructure that utilized Xen virtualization, LVS network routing and MySQL circular replication to deliver highly available services that offered significant performance, reliability and serviceability improvements. This deployment was further enhanced through the deployment of a distributed redundant network core architecture and the physical distribution of the systems that host the virtual machines across multiple buildings on the Fermilab Campus. In 2010, building on the experience pioneered by FermiGrid in delivering production services in a virtual infrastructure, the Computing Sector commissioned the FermiCloud, General Physics Computing Facility and Virtual Services projects to serve as platforms for support of scientific computing (FermiCloud 6 GPCF) and core computing (Virtual Services). This work will present the evolution of the Fermilab Campus Grid, Virtualization and Cloud Computing infrastructure together with plans for the future.

  8. HEP Community White Paper on Software Trigger and Event Reconstruction: Executive Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albrecht, Johannes; et al.

    Realizing the physics programs of the planned and upgraded high-energy physics (HEP) experiments over the next 10 years will require the HEP community to address a number of challenges in the area of software and computing. For this reason, the HEP software community has engaged in a planning process over the past two years, with the objective of identifying and prioritizing the research and development required to enable the next generation of HEP detectors to fulfill their full physics potential. The aim is to produce a Community White Paper which will describe the community strategy and a roadmap for softwaremore » and computing research and development in HEP for the 2020s. The topics of event reconstruction and software triggers were considered by a joint working group and are summarized together in this document.« less

  9. HEP Community White Paper on Software Trigger and Event Reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albrecht, Johannes; et al.

    Realizing the physics programs of the planned and upgraded high-energy physics (HEP) experiments over the next 10 years will require the HEP community to address a number of challenges in the area of software and computing. For this reason, the HEP software community has engaged in a planning process over the past two years, with the objective of identifying and prioritizing the research and development required to enable the next generation of HEP detectors to fulfill their full physics potential. The aim is to produce a Community White Paper which will describe the community strategy and a roadmap for softwaremore » and computing research and development in HEP for the 2020s. The topics of event reconstruction and software triggers were considered by a joint working group and are summarized together in this document.« less

  10. Magnetohydrodynamics Carreau nanofluid flow over an inclined convective heated stretching cylinder with Joule heating

    NASA Astrophysics Data System (ADS)

    Khan, Imad; Shafquatullah; Malik, M. Y.; Hussain, Arif; Khan, Mair

    Current work highlights the computational aspects of MHD Carreau nanofluid flow over an inclined stretching cylinder with convective boundary conditions and Joule heating. The mathematical modeling of physical problem yields nonlinear set of partial differential equations. A suitable scaling group of variables is employed on modeled equations to convert them into non-dimensional form. The integration scheme Runge-Kutta-Fehlberg on the behalf of shooting technique is utilized to solve attained set of equations. The interesting aspects of physical problem (linear momentum, energy and nanoparticles concentration) are elaborated under the different parametric conditions through graphical and tabular manners. Additionally, the quantities (local skin friction coefficient, local Nusselt number and local Sherwood number) which are responsible to dig out the physical phenomena in the vicinity of stretched surface are computed and delineated by varying controlling flow parameters.

  11. CELSS science needs

    NASA Technical Reports Server (NTRS)

    Rummel, J. D.

    1986-01-01

    Questions and areas of study that need to be persued in order to develope a Controlled Ecological Life Support System are posed. Research topics needing attention are grouped under various leadings: ecology, genetics, plant pathology, cybernetics, chemistry, computer science, fluid dynamics, optics, and solid-state physics.

  12. Plato, Apollonius, and Klein: playing with spheres

    NASA Astrophysics Data System (ADS)

    Mantica, Giorgio; Bullett, Shaun

    We describe the group theoretical background and the numerical techniques which enable us to compute new families of Apollonian circle packings. We provide examples of these constructions and we motivate this research from the physical and the mathematical point of view.

  13. Student Use of Physics to Make Sense of Incomplete but Functional VPython Programs in a Lab Setting

    NASA Astrophysics Data System (ADS)

    Weatherford, Shawn A.

    2011-12-01

    Computational activities in Matter & Interactions, an introductory calculus-based physics course, have the instructional goal of providing students with the experience of applying the same set of a small number of fundamental principles to model a wide range of physical systems. However there are significant instructional challenges for students to build computer programs under limited time constraints, especially for students who are unfamiliar with programming languages and concepts. Prior attempts at designing effective computational activities were successful at having students ultimately build working VPython programs under the tutelage of experienced teaching assistants in a studio lab setting. A pilot study revealed that students who completed these computational activities had significant difficultly repeating the exact same tasks and further, had difficulty predicting the animation that would be produced by the example program after interpreting the program code. This study explores the interpretation and prediction tasks as part of an instructional sequence where students are asked to read and comprehend a functional, but incomplete program. Rather than asking students to begin their computational tasks with modifying program code, we explicitly ask students to interpret an existing program that is missing key lines of code. The missing lines of code correspond to the algebraic form of fundamental physics principles or the calculation of forces which would exist between analogous physical objects in the natural world. Students are then asked to draw a prediction of what they would see in the simulation produced by the VPython program and ultimately run the program to evaluate the students' prediction. This study specifically looks at how the participants use physics while interpreting the program code and creating a whiteboard prediction. This study also examines how students evaluate their understanding of the program and modification goals at the beginning of the modification task. While working in groups over the course of a semester, study participants were recorded while they completed three activities using these incomplete programs. Analysis of the video data showed that study participants had little difficulty interpreting physics quantities, generating a prediction, or determining how to modify the incomplete program. Participants did not base their prediction solely from the information from the incomplete program. When participants tried to predict the motion of the objects in the simulation, many turned to their knowledge of how the system would evolve if it represented an analogous real-world physical system. For example, participants attributed the real-world behavior of springs to helix objects even though the program did not include calculations for the spring to exert a force when stretched. Participants rarely interpreted lines of code in the computational loop during the first computational activity, but this changed during latter computational activities with most participants using their physics knowledge to interpret the computational loop. Computational activities in the Matter & Interactions curriculum were revised in light of these findings to include an instructional sequence of tasks to build a comprehension of the example program. The modified activities also ask students to create an additional whiteboard prediction for the time-evolution of the real-world phenomena which the example program will eventually model. This thesis shows how comprehension tasks identified by Palinscar and Brown (1984) as effective in improving reading comprehension are also effective in helping students apply their physics knowledge to interpret a computer program which attempts to model a real-world phenomena and identify errors in their understanding of the use, or omission, of fundamental physics principles in a computational model.

  14. The ATLAS Production System Evolution: New Data Processing and Analysis Paradigm for the LHC Run2 and High-Luminosity

    NASA Astrophysics Data System (ADS)

    Barreiro, F. H.; Borodin, M.; De, K.; Golubkov, D.; Klimentov, A.; Maeno, T.; Mashinistov, R.; Padolski, S.; Wenaus, T.; ATLAS Collaboration

    2017-10-01

    The second generation of the ATLAS Production System called ProdSys2 is a distributed workload manager that runs daily hundreds of thousands of jobs, from dozens of different ATLAS specific workflows, across more than hundred heterogeneous sites. It achieves high utilization by combining dynamic job definition based on many criteria, such as input and output size, memory requirements and CPU consumption, with manageable scheduling policies and by supporting different kind of computational resources, such as GRID, clouds, supercomputers and volunteer-computers. The system dynamically assigns a group of jobs (task) to a group of geographically distributed computing resources. Dynamic assignment and resources utilization is one of the major features of the system, it didn’t exist in the earliest versions of the production system where Grid resources topology was predefined using national or/and geographical pattern. Production System has a sophisticated job fault-recovery mechanism, which efficiently allows to run multi-Terabyte tasks without human intervention. We have implemented “train” model and open-ended production which allow to submit tasks automatically as soon as new set of data is available and to chain physics groups data processing and analysis with central production by the experiment. We present an overview of the ATLAS Production System and its major components features and architecture: task definition, web user interface and monitoring. We describe the important design decisions and lessons learned from an operational experience during the first year of LHC Run2. We also report the performance of the designed system and how various workflows, such as data (re)processing, Monte-Carlo and physics group production, users analysis, are scheduled and executed within one production system on heterogeneous computing resources.

  15. Can an evidence-based book club intervention delivered via a tablet computer improve physical activity in middle-aged women?

    PubMed

    Ehlers, Diane K; Huberty, Jennifer L; de Vreede, Gert-Jan

    2015-02-01

    Fewer than 50% of middle-aged women participate in regular physical activity (PA). Innovative approaches that engage women who may not otherwise participate in PA programs are warranted. The purpose of this study was to explore the acceptability and feasibility of a 12-week tablet-based book club for improving middle-aged women's PA. Thirty women (35-64 years of age) were randomized to the Fit Minded Tablet (n=15) and the Standard Fit Minded (i.e., face-to-face intervention) (n=15) groups. The Fit Minded Tablet was adapted from the Standard Fit Minded, a previously tested, theory-based book club intervention using books as a platform for discussion and group support to help women adopt regular PA. Both interventions met weekly for 3 months, for a total of 12 sessions. Tablet group participants accessed materials (e.g., e-books, workbook, live/recorded videoconferencing) via a tablet computer; Standard group participants received materials (e.g., printed books, workbook, live face-to-face meetings) in person. Feasibility (i.e., implementation and expansion) was assessed using process evaluation, qualitative interviews, satisfaction surveys, and quantitative outcome assessments. Women in the Tablet group attended fewer meetings (mean, 8.25) than women in the Standard group (mean, 9.9). Videoconferencing, digital literacy, and participant engagement limitations were observed in the Tablet group. Tablet participants enjoyed the e-books but thought technology barriers hindered their engagement during meetings. Women in both groups valued the support they received from other group members. Standard participants cited this support as a key contributor to their PA changes, whereas Tablet participants reported needing in-person contact to feel more connected. Given the popularity of tablet computers and the value that middle-aged women place on group interaction to support their PA behaviors, additional research is warranted to determine best strategies for optimizing social support, mitigating technology barriers, and improving engagement in online and mobile health promotion programs targeting middle-aged women.

  16. Perceived benefits and barriers to exercise among persons with physical disabilities or chronic health conditions within action or maintenance stages of exercise.

    PubMed

    Malone, Laurie A; Barfield, J P; Brasher, Joel D

    2012-10-01

    Information regarding factors that affect the initial step to exercise behavior change among persons with physical disabilities or chronic health conditions is available in the literature but much less is known regarding perceived benefits and barriers to exercise among those who are regularly active. The purpose of this study was to examine the perceived benefits and barriers to exercise among persons with physical disabilities or chronic health conditions within action or maintenance stages of exercise. Participants (n = 152) completed the Exercise Benefits and Barriers Scale (EBBS). For data analyses, disabilities and health conditions were grouped as neuromuscular, orthopedic, cardiovascular/pulmonary, or multiple conditions. Multivariate analysis of variance (MANOVA) was conducted to determine if mean differences on EBBS benefits and barriers scores existed among disability types, between sexes, among age groups, and between physical activity levels. Sum scores were computed to determine the strongest benefit and barrier responses. No significant mean differences in EBBS scores were found between disability types, sexes, age groups, or physical activity levels (p > 0.05). Strongest benefit responses varied by group. Strongest barrier responses were the same for all demographic groups: "Exercise tires me," "Exercise is hard work for me," and "I am fatigued by exercise." EBBS scores were similar across disability/health condition, sex, age, and physical activity level. Primary benefits reported were in the areas of improved physical performance and psychological outlook whereas the primary barriers were in the area of physical exertion. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Rationale, design, and baseline findings from Seamos Saludables: a randomized controlled trial testing the efficacy of a culturally and linguistically adapted, computer- tailored physical activity intervention for Latinas

    PubMed Central

    Pekmezi, Dori; Dunsiger, Shira; Gans, Kim; Bock, Beth; Gaskins, Ronnesia; Marquez, Becky; Lee, Christina; Neighbors, Charles; Jennings, Ernestine; Tilkemeier, Peter; Marcus, Bess

    2012-01-01

    Background Latinos are now the largest (and fastest growing) ethnic minority group in the United States. Latinas report high rates of physical inactivity and suffer disproportionately from obesity, diabetes, and other conditions that are associated with sedentary lifestyles. Effective physical activity interventions are urgently needed to address these health disparities. Method/Design An ongoing randomized controlled trial will test the efficacy of a home-based, individually tailored physical activity print intervention for Latinas (1R01NR011295). This program was culturally and linguistically adapted for the target population through extensive formative research (6 focus groups, 25 cognitive interviews, iterative translation process). This participant feedback was used to inform intervention development. Then, 268 sedentary Latinas were randomly assigned to receive either the Tailored Intervention or the Wellness Contact Control arm. The intervention, based on Social Cognitive Theory and the Transtheoretical Model, consists of six months of regular mailings of motivation-matched physical activity manuals and tip sheets and individually tailored feedback reports generated by a computer expert system, followed by a tapered dose of mailings during the second six months (maintenance phase). The main outcome is change in minutes/week of physical activity at six months and one year as measured by the 7-Day Physical Activity Recall (7-Day PAR). To validate these findings, accelerometer data will be collected at the same time points. Discussion High reach, low cost, culturally relevant interventions to encourage physical activity among Latinas could help reduce health disparities and thus have a substantial positive impact on public health. PMID:22789455

  18. Excellence in Physics Education Award Talk: Revitalizing Introductory Physics at Community Colleges and More

    NASA Astrophysics Data System (ADS)

    Hieggelke, Curtis

    2009-05-01

    This project started because many community college physics instructors wanted to improve the learning and understanding of their students in physics. However, these teachers, at that time, were isolated from many of the emerging developments in physics education research and computer technology such as MBL (microcomputer based laboratories). While there were some opportunities within the American Association of Physics Teachers to learn about recent educational developments, there was nothing targeted directly to the unique needs of the two-year college physics community; nor did many of the curriculum developers have much knowledge about this group. The initial goal of this project was to design and provide hands-on workshops to introduce new computer technology, software, curricular materials and approaches arising from physics education research to community college physics teachers. They would then have the background to decide if these new ideas were worthy of adoption and feasible at their institutions. NSF's Division of Undergraduate Education supported these workshop efforts by funding seven different grants from three different programs. These grants have led to 61 workshops with 52 workshop leaders, which were held at 23 community colleges in 14 states for over 1300 participants. This presentation will provide more details about these workshops, and about the subsequent development of the Conceptual Survey on Electricity and Magnetism, and a book on Ranking Tasks edited by us, but written by many participants in the early workshops. In addition, grants were received from NSF for the acquisition and development of computer lab technology that was later featured in some of the workshops. Finally, three NSF grants were received for the development of new educational materials called TIPERs (Tasks Inspired by Physics Education Research) that will be described.

  19. The Effect of the Computer Assisted Teaching and 7e Model of the Constructivist Learning Methods on the Achievements and Attitudes of High School Students

    ERIC Educational Resources Information Center

    Gönen, Selahattin; Kocakaya, Serhat; Inan, Cemil

    2006-01-01

    This study provides a comparative effect study of the Computer Assisted Teaching and the 7E model of the Constructivist Learning methods on attitudes and achievements of the students in physics classes. The experiments have been carried out in a private high school in Diyarbakir/Turkey on groups of first year students whose pre-test scores of…

  20. Effects of a Tailored Positive Psychology Intervention on Well-Being and Pain in Individuals With Chronic Pain and a Physical Disability: A Feasibility Trial.

    PubMed

    Müller, Rachel; Gertz, Kevin J; Molton, Ivan R; Terrill, Alexandra L; Bombardier, Charles H; Ehde, Dawn M; Jensen, Mark P

    2016-01-01

    To determine the feasibility, acceptability, and efficacy of a computer-based positive psychology intervention in individuals with a physical disability and chronic pain. Individuals with spinal cord injury, multiple sclerosis, neuromuscular disease, or postpolio syndrome and chronic pain were randomly assigned to a positive psychology or a control condition. Participants in the intervention group were instructed to practice 4 personalized positive psychology exercises. Participants in the control group were instructed to write about life details for 8 weeks. Participants completed online well-being and pain-related questionnaires at baseline, posttreatment, and at the 2.5-month follow-up, and rated treatment satisfaction at posttreatment. Ninety-six participants were randomized and 68 (70%) completed follow-up assessments. Participants in the positive psychology intervention group reported significant pretreatment to posttreatment improvements in pain intensity, pain control, pain catastrophizing, pain interference, life satisfaction, positive affect, and depression. Improvements in life satisfaction, depression, pain intensity, pain interference, and pain control were maintained to the 2.5-month follow-up. Participants in the control group reported significant pretreatment to posttreatment improvements in life satisfaction, and pretreatment to follow-up improvements in pain intensity and pain control. Significant between-group differences, favoring the treatment group, emerged for pretreatment to posttreatment improvements in pain intensity and pain control. Participants were similarly satisfied with both treatments. The results support the feasibility, acceptability, and potential efficacy of a computer-based positive psychology intervention for improving well-being and pain-related outcomes in individuals with physical disabilities and chronic pain, and indicate that a full trial of the intervention is warranted.

  1. Symbolic computation of equivalence transformations and parameter reduction for nonlinear physical models

    NASA Astrophysics Data System (ADS)

    Cheviakov, Alexei F.

    2017-11-01

    An efficient systematic procedure is provided for symbolic computation of Lie groups of equivalence transformations and generalized equivalence transformations of systems of differential equations that contain arbitrary elements (arbitrary functions and/or arbitrary constant parameters), using the software package GeM for Maple. Application of equivalence transformations to the reduction of the number of arbitrary elements in a given system of equations is discussed, and several examples are considered. The first computational example of generalized equivalence transformations where the transformation of the dependent variable involves an arbitrary constitutive function is presented. As a detailed physical example, a three-parameter family of nonlinear wave equations describing finite anti-plane shear displacements of an incompressible hyperelastic fiber-reinforced medium is considered. Equivalence transformations are computed and employed to radically simplify the model for an arbitrary fiber direction, invertibly reducing the model to a simple form that corresponds to a special fiber direction, and involves no arbitrary elements. The presented computation algorithm is applicable to wide classes of systems of differential equations containing arbitrary elements.

  2. Simulation Needs and Priorities of the Fermilab Intensity Frontier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elvira, V. D.; Genser, K. L.; Hatcher, R.

    2015-06-11

    Over a two-year period, the Physics and Detector Simulations (PDS) group of the Fermilab Scientific Computing Division (SCD), collected information from Fermilab Intensity Frontier experiments on their simulation needs and concerns. The process and results of these activities are documented here.

  3. Symmetry-conserving purification of quantum states within the density matrix renormalization group

    DOE PAGES

    Nocera, Alberto; Alvarez, Gonzalo

    2016-01-28

    The density matrix renormalization group (DMRG) algorithm was originally designed to efficiently compute the zero-temperature or ground-state properties of one-dimensional strongly correlated quantum systems. The development of the algorithm at finite temperature has been a topic of much interest, because of the usefulness of thermodynamics quantities in understanding the physics of condensed matter systems, and because of the increased complexity associated with efficiently computing temperature-dependent properties. The ancilla method is a DMRG technique that enables the computation of these thermodynamic quantities. In this paper, we review the ancilla method, and improve its performance by working on reduced Hilbert spaces andmore » using canonical approaches. Furthermore we explore its applicability beyond spins systems to t-J and Hubbard models.« less

  4. Gravitation, Symmetry and Undergraduates

    NASA Astrophysics Data System (ADS)

    Jorgensen, Jamie

    2001-04-01

    This talk will discuss "Project Petrov" Which is designed to investigate gravitational fields with symmetry. Project Petrov represents a collaboration involving physicists, mathematicians as well as graduate and undergraduate math and physics students. An overview of Project Petrov will be given, with an emphasis on students' contributions, including software to classify and generate Lie algebras, to classify isometry groups, and to compute the isometry group of a given metric.

  5. Simulation of Physical Experiments in Immersive Virtual Environments

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Wasfy, Tamer M.

    2001-01-01

    An object-oriented event-driven immersive Virtual environment is described for the creation of virtual labs (VLs) for simulating physical experiments. Discussion focuses on a number of aspects of the VLs, including interface devices, software objects, and various applications. The VLs interface with output devices, including immersive stereoscopic screed(s) and stereo speakers; and a variety of input devices, including body tracking (head and hands), haptic gloves, wand, joystick, mouse, microphone, and keyboard. The VL incorporates the following types of primitive software objects: interface objects, support objects, geometric entities, and finite elements. Each object encapsulates a set of properties, methods, and events that define its behavior, appearance, and functions. A container object allows grouping of several objects. Applications of the VLs include viewing the results of the physical experiment, viewing a computer simulation of the physical experiment, simulation of the experiments procedure, computational steering, and remote control of the physical experiment. In addition, the VL can be used as a risk-free (safe) environment for training. The implementation of virtual structures testing machines, virtual wind tunnels, and a virtual acoustic testing facility is described.

  6. Student Research in Computational Astrophysics

    NASA Astrophysics Data System (ADS)

    Blondin, J. M.

    1999-12-01

    Computational physics can shorten the long road from freshman physics major to independent research by providing students with powerful tools to deal with the complexities of modern research problems. At North Carolina State University we have introduced dozens of students to astrophysics research using the tools of computational fluid dynamics. We have used several formats for working with students, including the traditional approach of one-on-one mentoring, a more group-oriented format in which several students work together on one or more related projects, and a novel attempt to involve an entire class in a coordinated semester research project. The advantages and disadvantages of these formats will be discussed at length, but the single most important influence has been peer support. Having students work in teams or learn the tools of research together but tackle different problems has led to more positive experiences than a lone student diving into solo research. This work is supported by an NSF CAREER Award.

  7. ICT based technology to support play for children with severe physical disabilities.

    PubMed

    van den Heuvel, Renée; Lexis, Monique; de Witte, Luc

    2015-01-01

    Play is important for a child's development. Children with severe physical disabilities experience difficulties engaging in play. With the progress of technology the possibilities to support play are increasing. The purpose of this review was to gain insight into the possibilities and availability of ICT based technology to support play in children with severe physical disabilities. A systematic literature search within the databases PubMed, CINAHL, IEEE and ERIC was carried out. Three reviewers assessed titles and abstracts independently. Additionally, Google Scholar, conference proceedings and reference lists were used. The included publications reported on 27 different technologies, which can be classified into three main groups; robots, virtual reality systems and computer systems. There are several options that may have great potential in supporting play for this target group.

  8. A multipurpose computing center with distributed resources

    NASA Astrophysics Data System (ADS)

    Chudoba, J.; Adam, M.; Adamová, D.; Kouba, T.; Mikula, A.; Říkal, V.; Švec, J.; Uhlířová, J.; Vokáč, P.; Svatoš, M.

    2017-10-01

    The Computing Center of the Institute of Physics (CC IoP) of the Czech Academy of Sciences serves a broad spectrum of users with various computing needs. It runs WLCG Tier-2 center for the ALICE and the ATLAS experiments; the same group of services is used by astroparticle physics projects the Pierre Auger Observatory (PAO) and the Cherenkov Telescope Array (CTA). OSG stack is installed for the NOvA experiment. Other groups of users use directly local batch system. Storage capacity is distributed to several locations. DPM servers used by the ATLAS and the PAO are all in the same server room, but several xrootd servers for the ALICE experiment are operated in the Nuclear Physics Institute in Řež, about 10 km away. The storage capacity for the ATLAS and the PAO is extended by resources of the CESNET - the Czech National Grid Initiative representative. Those resources are in Plzen and Jihlava, more than 100 km away from the CC IoP. Both distant sites use a hierarchical storage solution based on disks and tapes. They installed one common dCache instance, which is published in the CC IoP BDII. ATLAS users can use these resources using the standard ATLAS tools in the same way as the local storage without noticing this geographical distribution. Computing clusters LUNA and EXMAG dedicated to users mostly from the Solid State Physics departments offer resources for parallel computing. They are part of the Czech NGI infrastructure MetaCentrum with distributed batch system based on torque with a custom scheduler. Clusters are installed remotely by the MetaCentrum team and a local contact helps only when needed. Users from IoP have exclusive access only to a part of these two clusters and take advantage of higher priorities on the rest (1500 cores in total), which can also be used by any user of the MetaCentrum. IoP researchers can also use distant resources located in several towns of the Czech Republic with a capacity of more than 12000 cores in total.

  9. The effects of a 2-year individualized and family-based lifestyle intervention on physical activity, sedentary behavior and diet in children.

    PubMed

    Viitasalo, Anna; Eloranta, Aino-Maija; Lintu, Niina; Väistö, Juuso; Venäläinen, Taisa; Kiiskinen, Sanna; Karjalainen, Panu; Peltola, Jaana; Lampinen, Eeva-Kaarina; Haapala, Eero A; Paananen, Jussi; Schwab, Ursula; Lindi, Virpi; Lakka, Timo A

    2016-06-01

    To investigate the effects of a long-term, individualized and family-based lifestyle intervention on physical activity, sedentary behavior and diet quality in children. We carried out a 2-year intervention study in a population sample of 506 children aged 6-8years in Finland in 2007-2012. We allocated the participants at baseline in the intervention and control group. We assessed physical activity and sedentary behavior by questionnaires and diet by food records. Total physical activity (+9min/d in intervention group vs. -5min/d in control group, p=0.001 for time*group interaction), unsupervised physical activity (+7min/d vs. -9min/d, p<0.001) and organized sports (+8min/d vs. +3min/d, p=0.001) increased in the intervention group but not in the control group. Using computer and playing video games increased less in the intervention group than in the control group (+9min/d vs. +19min/d, p=0.003). Consumption of vegetables (+12g/d vs. -12g/d, p=0.001), high-fat vegetable-oil based margarine (+10g/d vs. +3g/d, p<0.001) and low-fat milk (+69g/d vs. +11g/d, p=0.042) and intake of dietary fiber (+1.3g/d vs. +0.2g/d, p=0.023), vitamin C (+4.5mg/d vs. -7.2mg/d, p=0.042) and vitamin E (+1.4mg/d vs. +0.5mg/d, p=0.002) increased in the intervention group but not in the control group. Consumption of butter-based spreads increased in the control group but not in the intervention group (+2g/d vs. -1g/d, p=0.002). Individualized and family-based lifestyle intervention increased physical activity, attenuated increase in sedentary behavior and enhanced diet quality in children. ClinicalTrials.gov: NCT01803776. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. High-Productivity Computing in Computational Physics Education

    NASA Astrophysics Data System (ADS)

    Tel-Zur, Guy

    2011-03-01

    We describe the development of a new course in Computational Physics at the Ben-Gurion University. This elective course for 3rd year undergraduates and MSc. students is being taught during one semester. Computational Physics is by now well accepted as the Third Pillar of Science. This paper's claim is that modern Computational Physics education should deal also with High-Productivity Computing. The traditional approach of teaching Computational Physics emphasizes ``Correctness'' and then ``Accuracy'' and we add also ``Performance.'' Along with topics in Mathematical Methods and case studies in Physics the course deals a significant amount of time with ``Mini-Courses'' in topics such as: High-Throughput Computing - Condor, Parallel Programming - MPI and OpenMP, How to build a Beowulf, Visualization and Grid and Cloud Computing. The course does not intend to teach neither new physics nor new mathematics but it is focused on an integrated approach for solving problems starting from the physics problem, the corresponding mathematical solution, the numerical scheme, writing an efficient computer code and finally analysis and visualization.

  11. Computational Physics for Space Flight Applications

    NASA Technical Reports Server (NTRS)

    Reed, Robert A.

    2004-01-01

    This paper presents viewgraphs on computational physics for space flight applications. The topics include: 1) Introduction to space radiation effects in microelectronics; 2) Using applied physics to help NASA meet mission objectives; 3) Example of applied computational physics; and 4) Future directions in applied computational physics.

  12. Beta-Band Functional Connectivity is Reorganized in Mild Cognitive Impairment after Combined Computerized Physical and Cognitive Training

    PubMed Central

    Klados, Manousos A.; Styliadis, Charis; Frantzidis, Christos A.; Paraskevopoulos, Evangelos; Bamidis, Panagiotis D.

    2016-01-01

    Physical and cognitive idleness constitute significant risk factors for the clinical manifestation of age-related neurodegenerative diseases. In contrast, a physically and cognitively active lifestyle may restructure age-declined neuronal networks enhancing neuroplasticity. The present study, investigated the changes of brain's functional network in a group of elderly individuals at risk for dementia that were induced by a combined cognitive and physical intervention scheme. Fifty seniors meeting Petersen's criteria of Mild Cognitive Impairment were equally divided into an experimental (LLM), and an active control (AC) group. Resting state electroencephalogram (EEG) was measured before and after the intervention. Functional networks were estimated by computing the magnitude square coherence between the time series of all available cortical sources as computed by standardized low resolution brain electromagnetic tomography (sLORETA). A statistical model was used to form groups' characteristic weighted graphs. The introduced modulation was assessed by networks' density and nodes' strength. Results focused on the beta band (12–30 Hz) in which the difference of the two networks' density is maximum, indicating that the structure of the LLM cortical network changes significantly due to the intervention, in contrast to the network of AC. The node strength of LLM participants in the beta band presents a higher number of bilateral connections in the occipital, parietal, temporal and prefrontal regions after the intervention. Our results show that the combined training scheme reorganizes the beta-band functional connectivity of MCI patients. ClinicalTrials.gov Identifier: NCT02313935 https://clinicaltrials.gov/ct2/show/NCT02313935. PMID:26973445

  13. Effectiveness of a Web-Based Computer-Tailored Multiple-Lifestyle Intervention for People Interested in Reducing their Cardiovascular Risk: A Randomized Controlled Trial.

    PubMed

    Storm, Vera; Dörenkämper, Julia; Reinwand, Dominique Alexandra; Wienert, Julian; De Vries, Hein; Lippke, Sonia

    2016-04-11

    Web-based computer-tailored interventions for multiple health behaviors can improve the strength of behavior habits in people who want to reduce their cardiovascular risk. Nonetheless, few randomized controlled trials have tested this assumption to date. The study aim was to test an 8-week Web-based computer-tailored intervention designed to improve habit strength for physical activity and fruit and vegetable consumption among people who want to reduce their cardiovascular risk. In a randomized controlled design, self-reported changes in perceived habit strength, self-efficacy, and planning across different domains of physical activity as well as fruit and vegetable consumption were evaluated. This study was a randomized controlled trial involving an intervention group (n=403) and a waiting control group (n=387). Web-based data collection was performed in Germany and the Netherlands during 2013-2015. The intervention content was based on the Health Action Process Approach and involved personalized feedback on lifestyle behaviors, which indicated whether participants complied with behavioral guidelines for physical activity and fruit and vegetable consumption. There were three Web-based assessments: baseline (T0, N=790), a posttest 8 weeks after the baseline (T1, n=206), and a follow-up 3 months after the baseline (T2, n=121). Data analysis was conducted by analyzing variances and structural equation analysis. Significant group by time interactions revealed superior treatment effects for the intervention group, with substantially higher increases in self-reported habit strength for physical activity (F1,199=7.71, P=.006, Cohen's d=0.37) and fruit and vegetable consumption (F1,199=7.71, P=.006, Cohen's d=0.30) at posttest T1 for the intervention group. Mediation analyses yielded behavior-specific sequential mediator effects for T1 planning and T1 self-efficacy between the intervention and habit strength at follow-up T2 (fruit and vegetable consumption: beta=0.12, 95% CI 0.09-0.16, P<.001; physical activity: beta=0.04, 95% CI 0.02-0.06, P<.001). Our findings indicate the general effectiveness and practicality of Web-based computer-tailored interventions in terms of increasing self-reported habit strength for physical activity and fruit and vegetable consumption. Self-efficacy and planning may play major roles in the mechanisms that facilitate the habit strength of these behaviors; therefore, they should be actively promoted in Web-based interventions. Although the results need to take into account the high dropout rates and medium effect sizes, a large number of people were reached and changes in habit strength were achieved after 3 months. Clinicaltrials.gov NCT01909349; https://clinicaltrials.gov/ct2/show/NCT01909349 (Archived by WebCite at http://www.webcitation.org/6g5F0qoft) and Nederlands Trial Register NTR3706 http://www.trialregister.nl/ trialreg/admin/rctview.asp?TC=3706 (Archived by WebCite at http://www.webcitation.org/6g5F5HMLX).

  14. Effectiveness of a Web-Based Computer-Tailored Multiple-Lifestyle Intervention for People Interested in Reducing their Cardiovascular Risk: A Randomized Controlled Trial

    PubMed Central

    Dörenkämper, Julia; Reinwand, Dominique Alexandra; Wienert, Julian; De Vries, Hein; Lippke, Sonia

    2016-01-01

    Background Web-based computer-tailored interventions for multiple health behaviors can improve the strength of behavior habits in people who want to reduce their cardiovascular risk. Nonetheless, few randomized controlled trials have tested this assumption to date. Objective The study aim was to test an 8-week Web-based computer-tailored intervention designed to improve habit strength for physical activity and fruit and vegetable consumption among people who want to reduce their cardiovascular risk. In a randomized controlled design, self-reported changes in perceived habit strength, self-efficacy, and planning across different domains of physical activity as well as fruit and vegetable consumption were evaluated. Methods This study was a randomized controlled trial involving an intervention group (n=403) and a waiting control group (n=387). Web-based data collection was performed in Germany and the Netherlands during 2013-2015. The intervention content was based on the Health Action Process Approach and involved personalized feedback on lifestyle behaviors, which indicated whether participants complied with behavioral guidelines for physical activity and fruit and vegetable consumption. There were three Web-based assessments: baseline (T0, N=790), a posttest 8 weeks after the baseline (T1, n=206), and a follow-up 3 months after the baseline (T2, n=121). Data analysis was conducted by analyzing variances and structural equation analysis. Results Significant group by time interactions revealed superior treatment effects for the intervention group, with substantially higher increases in self-reported habit strength for physical activity (F1,199=7.71, P=.006, Cohen’s d=0.37) and fruit and vegetable consumption (F1,199=7.71, P=.006, Cohen’s d=0.30) at posttest T1 for the intervention group. Mediation analyses yielded behavior-specific sequential mediator effects for T1 planning and T1 self-efficacy between the intervention and habit strength at follow-up T2 (fruit and vegetable consumption: beta=0.12, 95% CI 0.09-0.16, P<.001; physical activity: beta=0.04, 95% CI 0.02-0.06, P<.001). Conclusions Our findings indicate the general effectiveness and practicality of Web-based computer-tailored interventions in terms of increasing self-reported habit strength for physical activity and fruit and vegetable consumption. Self-efficacy and planning may play major roles in the mechanisms that facilitate the habit strength of these behaviors; therefore, they should be actively promoted in Web-based interventions. Although the results need to take into account the high dropout rates and medium effect sizes, a large number of people were reached and changes in habit strength were achieved after 3 months. Trial Registration Clinicaltrials.gov NCT01909349; https://clinicaltrials.gov/ct2/show/NCT01909349 (Archived by WebCite at http://www.webcitation.org/6g5F0qoft) and Nederlands Trial Register NTR3706 http://www.trialregister.nl/ trialreg/admin/rctview.asp?TC=3706 (Archived by WebCite at http://www.webcitation.org/6g5F5HMLX) PMID:27068880

  15. The impact of working technique on physical loads - an exposure profile among newspaper editors.

    PubMed

    Lindegård, A; Wahlström, J; Hagberg, M; Hansson, G-A; Jonsson, P; Wigaeus Tornqvist, E

    2003-05-15

    The aim of this study was to investigate the possible associations between working technique, sex, symptoms and level of physical load in VDU-work. A study group of 32 employees in the editing department of a daily newspaper answered a questionnaire, about physical working conditions and symptoms from the neck and the upper extremities. Muscular load, wrist positions and computer mouse forces were measured. Working technique was assessed from an observation protocol for computer work. In addition ratings of perceived exertion and overall comfort were collected. The results showed that subjects classified as having a good working technique worked with less muscular load in the forearm (extensor carpi ulnaris p=0.03) and in the trapezius muscle on the mouse operating side (p=0.02) compared to subjects classified as having a poor working technique. Moreover there were no differences in gap frequency (number of episodes when muscle activity is below 2.5% of a reference contraction) or muscular rest (total duration of gaps) between the two working technique groups. Women in this study used more force (mean force p=0.006, peak force p=0.02) expressed as % MVC than the men when operating the computer mouse. No major differences were shown in muscular load, wrist postures, perceived exertion or perceived comfort between men and women or between cases and symptom free subjects. In conclusion a good working technique was associated with reduced muscular load in the forearm muscles and in the trapezius muscle on the mouse operating side. Moreover women used more force (mean force and peak force) than men when operating the click button (left button) of the computer mouse.

  16. [Physical activity in a probabilistic sample in the city of Rio de Janeiro].

    PubMed

    Gomes, V B; Siqueira, K S; Sichieri, R

    2001-01-01

    This study evaluated physical activity in a probabilistic sample of 4,331 individuals 12 years of age and older residing in the city of Rio de Janeiro, who participated in a household survey in 1996. Occupation and leisure activity were grouped according to categories of energy expenditure. The study also evaluated number of hours watching TV, using the computer, or playing video-games. Only 3.6% of males and 0.3% of females reported heavy occupational work. A full 59.8% of males and 77.8% of females reported never performing recreational physical activity, and there was an increase in this prevalence with age, especially for men. Women's leisure activities involved less energy expenditure and had a lower median duration than those of men. Mean daily TV/video/computer time was greater for women than for men. The greater the level of schooling, the higher the frequency of physical activity for both sexes. Analyzed jointly, these data show the low energy expenditure through physical activity by the population of the city of Rio de Janeiro. Women, the middle-aged, the elderly, and low-income individuals were at greatest risk of not performing recreational physical activity.

  17. Using spatial principles to optimize distributed computing for enabling the physical science discoveries

    PubMed Central

    Yang, Chaowei; Wu, Huayi; Huang, Qunying; Li, Zhenlong; Li, Jing

    2011-01-01

    Contemporary physical science studies rely on the effective analyses of geographically dispersed spatial data and simulations of physical phenomena. Single computers and generic high-end computing are not sufficient to process the data for complex physical science analysis and simulations, which can be successfully supported only through distributed computing, best optimized through the application of spatial principles. Spatial computing, the computing aspect of a spatial cyberinfrastructure, refers to a computing paradigm that utilizes spatial principles to optimize distributed computers to catalyze advancements in the physical sciences. Spatial principles govern the interactions between scientific parameters across space and time by providing the spatial connections and constraints to drive the progression of the phenomena. Therefore, spatial computing studies could better position us to leverage spatial principles in simulating physical phenomena and, by extension, advance the physical sciences. Using geospatial science as an example, this paper illustrates through three research examples how spatial computing could (i) enable data intensive science with efficient data/services search, access, and utilization, (ii) facilitate physical science studies with enabling high-performance computing capabilities, and (iii) empower scientists with multidimensional visualization tools to understand observations and simulations. The research examples demonstrate that spatial computing is of critical importance to design computing methods to catalyze physical science studies with better data access, phenomena simulation, and analytical visualization. We envision that spatial computing will become a core technology that drives fundamental physical science advancements in the 21st century. PMID:21444779

  18. Using spatial principles to optimize distributed computing for enabling the physical science discoveries.

    PubMed

    Yang, Chaowei; Wu, Huayi; Huang, Qunying; Li, Zhenlong; Li, Jing

    2011-04-05

    Contemporary physical science studies rely on the effective analyses of geographically dispersed spatial data and simulations of physical phenomena. Single computers and generic high-end computing are not sufficient to process the data for complex physical science analysis and simulations, which can be successfully supported only through distributed computing, best optimized through the application of spatial principles. Spatial computing, the computing aspect of a spatial cyberinfrastructure, refers to a computing paradigm that utilizes spatial principles to optimize distributed computers to catalyze advancements in the physical sciences. Spatial principles govern the interactions between scientific parameters across space and time by providing the spatial connections and constraints to drive the progression of the phenomena. Therefore, spatial computing studies could better position us to leverage spatial principles in simulating physical phenomena and, by extension, advance the physical sciences. Using geospatial science as an example, this paper illustrates through three research examples how spatial computing could (i) enable data intensive science with efficient data/services search, access, and utilization, (ii) facilitate physical science studies with enabling high-performance computing capabilities, and (iii) empower scientists with multidimensional visualization tools to understand observations and simulations. The research examples demonstrate that spatial computing is of critical importance to design computing methods to catalyze physical science studies with better data access, phenomena simulation, and analytical visualization. We envision that spatial computing will become a core technology that drives fundamental physical science advancements in the 21st century.

  19. Integrating numerical computation into the undergraduate education physics curriculum using spreadsheet excel

    NASA Astrophysics Data System (ADS)

    Fauzi, Ahmad

    2017-11-01

    Numerical computation has many pedagogical advantages: it develops analytical skills and problem-solving skills, helps to learn through visualization, and enhances physics education. Unfortunately, numerical computation is not taught to undergraduate education physics students in Indonesia. Incorporate numerical computation into the undergraduate education physics curriculum presents many challenges. The main challenges are the dense curriculum that makes difficult to put new numerical computation course and most students have no programming experience. In this research, we used case study to review how to integrate numerical computation into undergraduate education physics curriculum. The participants of this research were 54 students of the fourth semester of physics education department. As a result, we concluded that numerical computation could be integrated into undergraduate education physics curriculum using spreadsheet excel combined with another course. The results of this research become complements of the study on how to integrate numerical computation in learning physics using spreadsheet excel.

  20. Physical Chemistry of Reaction Dynamics in Ionic Liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margulis, Claudio Javier

    2016-10-31

    The Margulis group BES funded research at the University of Iowa is part of a broader collaborative effort that includes the groups of Blank (U. Minnesota), Castner (Rutgers U.), Maroncelli (Penn. State U.) and Wishart (BNL). The goal of this group of PIs is to better understand from an experimental and a theoretical perspective different aspects of photo-initiated electron transfer processes in a set of different room-temperature ionic-liquid systems. The Margulis contribution is theoretical and computational. Details are presented in the attached documentation.

  1. Physical Activity, Body Size, Intentional Weight Loss and Breast Cancer Risk: Fellowship

    DTIC Science & Technology

    2000-10-01

    unconditional logistic regression and were adjusted for physical activity at other time periods, age, body mass index , smoking status, postmenopausal hormone use ...This variable was used to evaluate tests for trend within the ’any vigorous activity’ group. Body mass index (BMI) was computed using recent weight... used to evaluate the relation of diabetes to the risk of endometrial cancer on the basis of body mass index (BMI). Cases (n = 723) were identified

  2. Parallel and Portable Monte Carlo Particle Transport

    NASA Astrophysics Data System (ADS)

    Lee, S. R.; Cummings, J. C.; Nolen, S. D.; Keen, N. D.

    1997-08-01

    We have developed a multi-group, Monte Carlo neutron transport code in C++ using object-oriented methods and the Parallel Object-Oriented Methods and Applications (POOMA) class library. This transport code, called MC++, currently computes k and α eigenvalues of the neutron transport equation on a rectilinear computational mesh. It is portable to and runs in parallel on a wide variety of platforms, including MPPs, clustered SMPs, and individual workstations. It contains appropriate classes and abstractions for particle transport and, through the use of POOMA, for portable parallelism. Current capabilities are discussed, along with physics and performance results for several test problems on a variety of hardware, including all three Accelerated Strategic Computing Initiative (ASCI) platforms. Current parallel performance indicates the ability to compute α-eigenvalues in seconds or minutes rather than days or weeks. Current and future work on the implementation of a general transport physics framework (TPF) is also described. This TPF employs modern C++ programming techniques to provide simplified user interfaces, generic STL-style programming, and compile-time performance optimization. Physics capabilities of the TPF will be extended to include continuous energy treatments, implicit Monte Carlo algorithms, and a variety of convergence acceleration techniques such as importance combing.

  3. Evaluation of a Stage-Based, Computer-Tailored Adjunct to Usual Care for Domestic Violence Offenders

    PubMed Central

    Levesque, Deborah A.; Ciavatta, Mary Margaret; Castle, Patricia H.; Prochaska, Janice M.; Prochaska, James O.

    2012-01-01

    Objective Research assessing the efficacy of court-mandated domestic violence treatment continues to yield inconsistent results. The current study examined whether Journey to Change, a Transtheoretical Model of Behavior Change-based treatment adjunct that consists of three computer-administered sessions and a print guide, could improve outcomes. Method 492 male domestic violence offenders attending court-mandated batterer treatment were assigned to Usual Care (UC) or Usual Care + Journey to Change (UC + Journey). Results Compared to UC, participants receiving UC + Journey were significantly more likely to be in the Action stage at the end of treatment, and to seek help and services outside of group. Based on victim reports, the UC + Journey group was significantly less likely than UC to engage in physical violence during the 12-month follow-up. Both groups were equally likely to drop out of court-mandated treatment and to have further domestic violence-related police involvement. However, among participants with police involvement, the UC + Journey group had lower rates of documented violence and physical injury. Conclusions The pattern of findings across the multiple outcomes suggests that the Journey to Change program holds promise for improving some outcomes for domestic violence offenders in treatment, and warrants further investigation. PMID:23412627

  4. Success of students in a college physics course with and without experiencing a high school course

    NASA Astrophysics Data System (ADS)

    Yager, Robert E.; Krajcik, Joseph S.

    High school students with high ability were enrolled in a standard college physics course for each of two summers with the same professor, same course outline, same textbook, same laboratories, and the same examinations. Half of each group had completed a high school physics course; half had not. Dormitory counselors were available for assistance and support. In addition, tutors were available in the laboratories to provide any help necessary with interpretation of lectures and performances in the laboratory, and with mathematical computation. Pre- and posttest measures concerning course content and attitude were given. After the eight-week summer instruction, the students who had not completed high school physics performed as well on the final course examination; there were no differences with respect to course grade or attitude toward physics. The group that had not completed high school physics used the tutors provided far more frequently than did students who had completed the high school course. When high-ability students are enrolled in college physics with tutors made available for needed assistance, there appears to be no advantage for students to complete the standard high school physics course.

  5. Effectiveness of basic life support instruction in physical education students--a pilot study.

    PubMed

    Bielec, Grzegorz; Klajman, Paweł; Pęczak-Graczyk, Alicja

    2014-01-01

    According to the literature, 40% of injuries affecting school-age children are sports related. The role of physical education students, as future teachers, seems to be of high importance in terms of protecting children's safety during sports classes. The aim is to evaluate the level of basic life support (BLS) knowledge and skills in physical education students instructed with the use of different methods. Second-year physical education students (n=104, M age=20±0.6 years) were randomly assigned to three groups: experimental 1 (E1), experimental 2 (E2), and control (C). Group E1 students participated in a 2-hour BLS course based on computer-assisted presentations. Group E2 trainees practiced BLS algorithm in pairs during a 2-hour course. No manikins were used in both intervention groups. Students of Group C were asked to learn BLS algorithm on their own. All groups fulfilled a 10-question multiple-choice test on BLS at the beginning and the end of the experiment. After completing the course participants performed BLS on a manikin. The results of knowledge test were not significant before an experiment but differed essentially among the groups afterward (analysis of variance contrast analysis, p<.05). Regardless of teaching method used, no significant differences were found among the students in preparatory BLS actions and cardiopulmonary resuscitation (CPR) performance on a manikin. The level of CPR performance was very low in all groups. Students of both intervention groups improved their BLS knowledge after the training. Teaching methods used in the current study seemed to be ineffective in terms of practical CPR skills. Access to greater number of modern manikins should improve the BLS training in physical education students. Moreover, permanent consultation on instructional methods with emergency medicine experts is recommended for university teachers.

  6. Clinical Trial of Tailored Activity and Eating Newsletters with Older Rural Women

    PubMed Central

    Walker, Susan Noble; Pullen, Carol H.; Boeckner, Linda; Hageman, Patricia A.; Hertzog, Melody; Oberdorfer, Maureen K.; Rutledge, Matthew J.

    2009-01-01

    Background Unhealthy diet and lack of physical activity increase rural midlife and older women’s risk for chronic diseases and premature death, and they are behind urban residents in meeting Healthy People 2010 objectives. Objectives To compare a tailored intervention based on the Health Promotion Model (HPM) and a generic intervention to increase physical activity and healthy eating among rural women. Methods In a randomized by site community-based controlled clinical trial, Wellness for Women, 225 women aged 50 to 69 years were recruited in two similar rural areas. Over 12 months, women received by mail either 18 generic newsletters or 18 newsletters computer-tailored on HPM behavior-specific cognitions (benefits, barriers, self-efficacy, and interpersonal support), activity, and eating. Outcomes at 6 and 12 months included behavioral markers and biomarkers of physical activity and eating. Data were analyzed by repeated measures ANOVA and χ2 tests (α < .05). Results Both groups significantly increased stretching and strengthening exercise and fruit and vegetable servings and decreased % calories from fat, while only the tailored group increased ≥ moderate intensity activity and decreased % calories from saturated fat from baseline to 6 months. Both groups increased stretching and strengthening exercise, while only the tailored group increased ≥ moderate activity and fruit and vegetable servings and decreased % calories from fat from baseline to 12 months. Both groups had several changes in biomarkers over the study. A higher proportion of women receiving tailored newsletters met Healthy People 2010 criteria for ≥ moderate activity, fruit and vegetable servings, and % calories from fat at 12 months. Discussion Mailed computer-tailored and generic print newsletters facilitated the adoption of change in both activity and eating over 6 months. Tailored newsletters were more efficacious in facilitating change over 12 months. PMID:19289928

  7. Studies of QCD structure in high-energy collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nadolsky, Pavel M.

    2016-06-26

    ”Studies of QCD structure in high-energy collisions” is a research project in theoretical particle physics at Southern Methodist University funded by US DOE Award DE-SC0013681. The award furnished bridge funding for one year (2015/04/15-2016/03/31) between the periods funded by Nadolsky’s DOE Early Career Research Award DE-SC0003870 (in 2010-2015) and a DOE grant DE-SC0010129 for SMU Department of Physics (starting in April 2016). The primary objective of the research is to provide theoretical predictions for Run-2 of the CERN Large Hadron Collider (LHC). The LHC physics program relies on state-of-the-art predictions in the field of quantum chromodynamics. The main effort ofmore » our group went into the global analysis of parton distribution functions (PDFs) employed by the bulk of LHC computations. Parton distributions describe internal structure of protons during ultrarelivistic collisions. A new generation of CTEQ parton distribution functions (PDFs), CT14, was released in summer 2015 and quickly adopted by the HEP community. The new CT14 parametrizations of PDFs were obtained using benchmarked NNLO calculations and latest data from LHC and Tevatron experiments. The group developed advanced methods for the PDF analysis and estimation of uncertainties in LHC predictions associated with the PDFs. We invented and refined a new ’meta-parametrization’ technique that streamlines usage of PDFs in Higgs boson production and other numerous LHC processes, by combining PDFs from various groups using multivariate stochastic sampling. In 2015, the PDF4LHC working group recommended to LHC experimental collaborations to use ’meta-parametrizations’ as a standard technique for computing PDF uncertainties. Finally, to include new QCD processes into the global fits, our group worked on several (N)NNLO calculations.« less

  8. Software Aspects of IEEE Floating-Point Computations for Numerical Applications in High Energy Physics

    ScienceCinema

    Arnold, Jeffrey

    2018-05-14

    Floating-point computations are at the heart of much of the computing done in high energy physics. The correctness, speed and accuracy of these computations are of paramount importance. The lack of any of these characteristics can mean the difference between new, exciting physics and an embarrassing correction. This talk will examine practical aspects of IEEE 754-2008 floating-point arithmetic as encountered in HEP applications. After describing the basic features of IEEE floating-point arithmetic, the presentation will cover: common hardware implementations (SSE, x87) techniques for improving the accuracy of summation, multiplication and data interchange compiler options for gcc and icc affecting floating-point operations hazards to be avoided. About the speaker: Jeffrey M Arnold is a Senior Software Engineer in the Intel Compiler and Languages group at Intel Corporation. He has been part of the Digital->Compaq->Intel compiler organization for nearly 20 years; part of that time, he worked on both low- and high-level math libraries. Prior to that, he was in the VMS Engineering organization at Digital Equipment Corporation. In the late 1980s, Jeff spent 2½ years at CERN as part of the CERN/Digital Joint Project. In 2008, he returned to CERN to spent 10 weeks working with CERN/openlab. Since that time, he has returned to CERN multiple times to teach at openlab workshops and consult with various LHC experiments. Jeff received his Ph.D. in physics from Case Western Reserve University.

  9. Utility of computer-assisted approaches for population surveillance of physical activity.

    PubMed

    Creamer, MeLisa; Bowles, Heather R; von Hofe, Belinda; Pettee Gabriel, Kelley; Kohl, Harold W; Bauman, Adrian

    2014-08-01

    Computer-assisted techniques may be a useful way to enhance physical activity surveillance and increase accuracy of reported behaviors. Evaluate the reliability and validity of a physical activity (PA) self-report instrument administered by telephone and internet. The telephone-administered Active Australia Survey was adapted into 2 forms for internet self-administration: survey questions only (internet-text) and with videos demonstrating intensity (internet-video). Data were collected from 158 adults (20-69 years, 61% female) assigned to telephone (telephone-interview) (n = 56), internet-text (n = 51), or internet-video (n = 51). Participants wore an accelerometer and completed a logbook for 7 days. Test-retest reliability was assessed using intraclass correlation coefficients (ICC). Convergent validity was assessed using Spearman correlations. Strong test-retest reliability was observed for PA variables in the internet-text (ICC = 0.69 to 0.88), internet-video (ICC = 0.66 to 0.79), and telephone-interview (ICC = 0.69 to 0.92) groups (P-values < 0.001). For total PA, correlations (ρ) between the survey and Actigraph+logbook were ρ = 0.47 for the internet-text group, ρ = 0.57 for the internet-video group, and ρ = 0.65 for the telephone-interview group. For vigorous-intensity activity, the correlations between the survey and Actigraph+logbook were 0.52 for internet-text, 0.57 for internet-video, and 0.65 for telephone-interview (P < .05). Internet-video of the survey had similar test-retest reliability and convergent validity when compared with the telephone-interview, and should continue to be developed.

  10. Pedagogy and/or technology: Making difference in improving students' problem solving skills

    NASA Astrophysics Data System (ADS)

    Hrepic, Zdeslav; Lodder, Katherine; Shaw, Kimberly A.

    2013-01-01

    Pen input computers combined with interactive software may have substantial potential for promoting active instructional methodologies and for facilitating students' problem solving ability. An excellent example is a study in which introductory physics students improved retention, conceptual understanding and problem solving abilities when one of three weekly lectures was replaced with group problem solving sessions facilitated with Tablet PCs and DyKnow software [1,2]. The research goal of the present study was to isolate the effect of the methodology itself (using additional time to teach problem solving) from that of the involved technology. In Fall 2011 we compared the performance of students taking the same introductory physics lecture course while enrolled in two separate problem-solving sections. One section used pen-based computing to facilitate group problem solving while the other section used low-tech methods for one third of the semester (covering Kinematics), and then traded technologies for the middle third of the term (covering Dynamics). Analysis of quiz, exam and standardized pre-post test results indicated no significant difference in scores of the two groups. Combining this result with those of previous studies implies primacy of pedagogy (collaborative problem solving itself) over technology for student learning in problem solving recitations.

  11. Multigroup computation of the temperature-dependent Resonance Scattering Model (RSM) and its implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghrayeb, S. Z.; Ouisloumen, M.; Ougouag, A. M.

    2012-07-01

    A multi-group formulation for the exact neutron elastic scattering kernel is developed. This formulation is intended for implementation into a lattice physics code. The correct accounting for the crystal lattice effects influences the estimated values for the probability of neutron absorption and scattering, which in turn affect the estimation of core reactivity and burnup characteristics. A computer program has been written to test the formulation for various nuclides. Results of the multi-group code have been verified against the correct analytic scattering kernel. In both cases neutrons were started at various energies and temperatures and the corresponding scattering kernels were tallied.more » (authors)« less

  12. Involving High School Students in Computational Physics University Research: Theory Calculations of Toluene Adsorbed on Graphene

    PubMed Central

    Borck, Øyvind; Gunnarsson, Linda; Lydmark, Pär

    2016-01-01

    To increase public awareness of theoretical materials physics, a small group of high school students is invited to participate actively in a current research projects at Chalmers University of Technology. The Chalmers research group explores methods for filtrating hazardous and otherwise unwanted molecules from drinking water, for example by adsorption in active carbon filters. In this project, the students use graphene as an idealized model for active carbon, and estimate the energy of adsorption of the methylbenzene toluene on graphene with the help of the atomic-scale calculational method density functional theory. In this process the students develop an insight into applied quantum physics, a topic usually not taught at this educational level, and gain some experience with a couple of state-of-the-art calculational tools in materials research. PMID:27505418

  13. Involving High School Students in Computational Physics University Research: Theory Calculations of Toluene Adsorbed on Graphene.

    PubMed

    Ericsson, Jonas; Husmark, Teodor; Mathiesen, Christoffer; Sepahvand, Benjamin; Borck, Øyvind; Gunnarsson, Linda; Lydmark, Pär; Schröder, Elsebeth

    2016-01-01

    To increase public awareness of theoretical materials physics, a small group of high school students is invited to participate actively in a current research projects at Chalmers University of Technology. The Chalmers research group explores methods for filtrating hazardous and otherwise unwanted molecules from drinking water, for example by adsorption in active carbon filters. In this project, the students use graphene as an idealized model for active carbon, and estimate the energy of adsorption of the methylbenzene toluene on graphene with the help of the atomic-scale calculational method density functional theory. In this process the students develop an insight into applied quantum physics, a topic usually not taught at this educational level, and gain some experience with a couple of state-of-the-art calculational tools in materials research.

  14. Human Pacman: A Mobile Augmented Reality Entertainment System Based on Physical, Social, and Ubiquitous Computing

    NASA Astrophysics Data System (ADS)

    Cheok, Adrian David

    This chapter details the Human Pacman system to illuminate entertainment computing which ventures to embed the natural physical world seamlessly with a fantasy virtual playground by capitalizing on infrastructure provided by mobile computing, wireless LAN, and ubiquitous computing. With Human Pacman, we have a physical role-playing computer fantasy together with real human-social and mobile-gaming that emphasizes on collaboration and competition between players in a wide outdoor physical area that allows natural wide-area human-physical movements. Pacmen and Ghosts are now real human players in the real world experiencing mixed computer graphics fantasy-reality provided by using the wearable computers on them. Virtual cookies and actual tangible physical objects are incorporated into the game play to provide novel experiences of seamless transitions between the real and virtual worlds. This is an example of a new form of gaming that anchors on physicality, mobility, social interaction, and ubiquitous computing.

  15. Conceptual understanding of screen media parenting: Report of a working group

    USDA-ARS?s Scientific Manuscript database

    Screen media (television, computers, and videogames) use has been linked to multiple child outcomes, including obesity. Parents can be an important influence on children's screen use. There has been an increase in the number of instruments available to assess parenting in feeding and physical activi...

  16. Project Solo; Newsletter Number Seven.

    ERIC Educational Resources Information Center

    Pittsburgh Univ., PA. Project Solo.

    The current curriculum modules under development at Project Solo are listed. The modules are grouped under the subject matter that they are designed to teach--algebra II, biology, calculus, chemistry, computer science, 12th grade math, physics, social science. Special programs written for use on the Hewlett-Packard Plotter are listed that may be…

  17. Workshop on Models for Plasma Spectroscopy

    NASA Astrophysics Data System (ADS)

    1993-09-01

    A meeting was held at St. Johns College, Oxford from Monday 27th to Thursday 30th of September 1993 to bring together a group of physicists working on computational modelling of plasma spectroscopy. The group came from the UK, France, Israel and the USA. The meeting was organized by myself, Dr. Steven Rose of RAL and Dr. R.W. Lee of LLNL. It was funded by the U.S. European Office of Aerospace Research and Development and by LLNL. The meeting grew out of a wish by a group of core participants to make available to practicing plasma physicists (particularly those engaged in the design and analysis of experiments) sophisticated numerical models of plasma physics. Additional plasma physicists attended the meeting in Oxford by invitation. These were experimentalists and users of plasma physics simulation codes whose input to the meeting was to advise the core group as to what was really needed.

  18. Identifying physical activity type in manual wheelchair users with spinal cord injury by means of accelerometers.

    PubMed

    García-Massó, X; Serra-Añó, P; Gonzalez, L M; Ye-Lin, Y; Prats-Boluda, G; Garcia-Casado, J

    2015-10-01

    This was a cross-sectional study. The main objective of this study was to develop and test classification algorithms based on machine learning using accelerometers to identify the activity type performed by manual wheelchair users with spinal cord injury (SCI). The study was conducted in the Physical Therapy department and the Physical Education and Sports department of the University of Valencia. A total of 20 volunteers were asked to perform 10 physical activities, lying down, body transfers, moving items, mopping, working on a computer, watching TV, arm-ergometer exercises, passive propulsion, slow propulsion and fast propulsion, while fitted with four accelerometers placed on both wrists, chest and waist. The activities were grouped into five categories: sedentary, locomotion, housework, body transfers and moderate physical activity. Different machine learning algorithms were used to develop individual and group activity classifiers from the acceleration data for different combinations of number and position of the accelerometers. We found that although the accuracy of the classifiers for individual activities was moderate (55-72%), with higher values for a greater number of accelerometers, grouped activities were correctly classified in a high percentage of cases (83.2-93.6%). With only two accelerometers and the quadratic discriminant analysis algorithm we achieved a reasonably accurate group activity recognition system (>90%). Such a system with the minimum of intervention would be a valuable tool for studying physical activity in individuals with SCI.

  19. Use of inpatient continuous passive motion versus no CPM in computer-assisted total knee arthroplasty.

    PubMed

    Alkire, Martha R; Swank, Michael L

    2010-01-01

    Continuous passive motion (CPM) has shown positive effects on tissue healing, edema, hemarthrosis, and joint function (L. Brosseau et al., 2004). CPM has also been shown to increase short-term early flexion and decrease length of stay (LOS) ( L. Brosseau et al., 2004; C. M. Chiarello, C. M. S. Gundersen, & T. O'Halloran, 2004). The benefits of CPM for the population of patients undergoing computer-assisted total knee arthroplasty (TKA) have not been examined. The primary objective of this study was to determine whether the use of CPM following computer-assisted TKA resulted in differences in range of motion, edema/drainage, functional ability, and pain. This was an experimental, prospective, randomized study of patients undergoing unilateral, computer-assisted TKA. The experimental group received CPM thrice daily and physical therapy (PT) twice daily during their hospitalization. The control group received PT twice daily and no CPM during the hospital stay. Both groups received PT after discharge. Measurement included Knee Society scores, Western Ontario McMaster Osteoarthritis Index values, range of motion, knee circumference, and HemoVac drainage. Data were collected at various intervals from preoperatively through 3 months. Although the control group was found to be higher functioning preoperatively, there was no statistically significant difference in flexion, edema or drainage, function, or pain between groups through the 3-month study period.

  20. Evaluation of patients with hepatic portal venous gas who can be treated with conservative therapy.

    PubMed

    Higashi, Takaaki; Hayashi, Hiromitsu; Takeyama, Hideaki; Arima, Kota; Taki, Katsunobu; Takamori, Hiroshi; Baba, Hideo

    2016-01-01

    Hepatic portal venous gas is an indication for emergency surgery and reportedly has a high mortality rate. However, these days, cases of hepatic portal venous gas associated with milder disease are increasing. In this report, we compared two groups to investigate whether there were any objective indicators for selecting conservative therapy. From July 2007 to August 2011, 19 patients with hepatic portal venous gas were evaluated at our hospital. The condition was diagnosed by computed tomography imaging. Vital signs, laboratory test results, and physical examination findings were compared. The A group included 12 patients who could be treated with conservative therapy. The B group included 7 patients who could not be treated with conservative therapy. The combined mortality rate was 31.5% (6/19 patients). There was a significant difference in the pulse rate and shock index. In the A group, none of the patients had signs of peritoneal irritation. However, in the B group, physical examination revealed signs of peritoneal irritation in all patients. Conservative therapy may be possible in patients with hepatic portal venous gas, depending on the cause. Evaluation of vital signs and serial changes on physical examination are important.

  1. Is the local linearity of space-time inherited from the linearity of probabilities?

    NASA Astrophysics Data System (ADS)

    Müller, Markus P.; Carrozza, Sylvain; Höhn, Philipp A.

    2017-02-01

    The appearance of linear spaces, describing physical quantities by vectors and tensors, is ubiquitous in all of physics, from classical mechanics to the modern notion of local Lorentz invariance. However, as natural as this seems to the physicist, most computer scientists would argue that something like a ‘local linear tangent space’ is not very typical and in fact a quite surprising property of any conceivable world or algorithm. In this paper, we take the perspective of the computer scientist seriously, and ask whether there could be any inherently information-theoretic reason to expect this notion of linearity to appear in physics. We give a series of simple arguments, spanning quantum information theory, group representation theory, and renormalization in quantum gravity, that supports a surprising thesis: namely, that the local linearity of space-time might ultimately be a consequence of the linearity of probabilities. While our arguments involve a fair amount of speculation, they have the virtue of being independent of any detailed assumptions on quantum gravity, and they are in harmony with several independent recent ideas on emergent space-time in high-energy physics.

  2. Using Research-Based Interactive Video Vignettes to Enhance Out-of-Class Learning in Introductory Physics

    NASA Astrophysics Data System (ADS)

    Laws, Priscilla W.; Willis, Maxine C.; Jackson, David P.; Koenig, Kathleen; Teese, Robert

    2015-02-01

    Ever since the first generalized computer-assisted instruction system (PLATO1) was introduced over 50 years ago, educators have been adding computer-based materials to their classes. Today many textbooks have complete online versions that include video lectures and other supplements. In the past 25 years the web has fueled an explosion of online homework and course management systems, both as blended learning and online courses. Meanwhile, introductory physics instructors have been implementing new approaches to teaching based on the outcomes of Physics Education Research (PER). A common theme of PER-based instruction has been the use of active-learning strategies designed to help students overcome alternative conceptions that they often bring to the study of physics.2 Unfortunately, while classrooms have become more active, online learning typically relies on passive lecture videos or Kahn-style3 tablet drawings. To bring active learning online, the LivePhoto Physics Group has been developing Interactive Video Vignettes (IVVs) that add interactivity and PER-based elements to short presentations. These vignettes incorporate web-based video activities that contain interactive elements and typically require students to make predictions and analyze real-world phenomena.

  3. Physics through the 1990s: An overview

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The volume details the interaction of physics and society, and presents a short summary of the progress in the major fields of physics and a summary of the other seven volumes of the Physics through the 1990s series, issues and recommended policy changes are described regarding funding, education, industry participation, small-group university research and large facility programs, government agency programs, and computer database needs. Three supplements report in detail on international issues in physics (the US position in the field, international cooperation and competition-especially on large projects, freedom for scientists, free flow of information, and education of foreign students), the education and supply of physicists (the changes in US physics education, employment and manpower, and demographics of the field), and the organization and support of physics (government, university, and industry research; facilities; national laboratories; and decision making). An executive summary contains recommendations for maintaining excellence in physics. A glossary of scientific terms is appended.

  4. Effect of Modeling Instruction on Concept Knowledge Among Ninth Grade Physics Students

    NASA Astrophysics Data System (ADS)

    Ditmore, Devin Alan

    A basic knowledge of physics concepts is the gateway to success through high-paying careers in science, technology, engineering, and mathematics (STEM). Many students show little understanding of concepts following traditional physics instruction. As an alternative to current lecture-based approaches for high school physics instruction, Piaget's theory of cognitive development supports using real scientific experiences to lead learners from concrete to formal understanding of complex concepts. Modeling instruction (MI) is a pedagogy that guides learners through genuine scientific experiences. This project study analyzed the effects of MI on 9th grade physics students' gains on the test measuring mastery of physics concepts, Force Concept Inventory (FCI). A quasi-experimental design was used to compare the FCI scores of a traditional lecture-taught control group to a treatment group taught using MI. A t test t(-.201) = 180.26, p = .841 comparing the groups and an analysis of variance F(2,181) = 5.20 comparing female to male students indicated MI had no significant positive effect on students. A partial eta squared of the effect size showed that 5.4% of the variance in FCI gains was accounted for by gender, favoring female participants for both groups. The significant relationship between content and gender bears further inquiry. A lesson plan guide was designed to help teachers use computer simulation technology within the MI curriculum. The project promotes positive social change by exploring further ways to help adolescents experience success in physics at the beginning of high school, leading to future success in all STEM areas.

  5. Computing the Baker-Campbell-Hausdorff series and the Zassenhaus product

    NASA Astrophysics Data System (ADS)

    Weyrauch, Michael; Scholz, Daniel

    2009-09-01

    The Baker-Campbell-Hausdorff (BCH) series and the Zassenhaus product are of fundamental importance for the theory of Lie groups and their applications in physics and physical chemistry. Standard methods for the explicit construction of the BCH and Zassenhaus terms yield polynomial representations, which must be translated into the usually required commutator representation. We prove that a new translation proposed recently yields a correct representation of the BCH and Zassenhaus terms. This representation entails fewer terms than the well-known Dynkin-Specht-Wever representation, which is of relevance for practical applications. Furthermore, various methods for the computation of the BCH and Zassenhaus terms are compared, and a new efficient approach for the calculation of the Zassenhaus terms is proposed. Mathematica implementations for the most efficient algorithms are provided together with comparisons of efficiency.

  6. Virtual gonio-spectrophotometer for validation of BRDF designs

    NASA Astrophysics Data System (ADS)

    Mihálik, Andrej; Ďurikovič, Roman

    2011-10-01

    Measurement of the appearance of an object consists of a group of measurements to characterize the color and surface finish of the object. This group of measurements involves the spectral energy distribution of propagated light measured in terms of reflectance and transmittance, and the spatial energy distribution of that light measured in terms of the bidirectional reflectance distribution function (BRDF). In this article we present the virtual gonio-spectrophotometer, a device that measures flux (power) as a function of illumination and observation. Virtual gonio-spectrophotometer measurements allow the determination of the scattering profile of specimens that can be used to verify the physical characteristics of the computer model used to simulate the scattering profile. Among the characteristics that we verify is the energy conservation of the computer model. A virtual gonio-spectrophotometer is utilized to find the correspondence between industrial measurements obtained from gloss meters and the parameters of a computer reflectance model.

  7. Occupational risk identification using hand-held or laptop computers.

    PubMed

    Naumanen, Paula; Savolainen, Heikki; Liesivuori, Jyrki

    2008-01-01

    This paper describes the Work Environment Profile (WEP) program and its use in risk identification by computer. It is installed into a hand-held computer or a laptop to be used in risk identification during work site visits. A 5-category system is used to describe the identified risks in 7 groups, i.e., accidents, biological and physical hazards, ergonomic and psychosocial load, chemicals, and information technology hazards. Each group contains several qualifying factors. These 5 categories are colour-coded at this stage to aid with visualization. Risk identification produces visual summary images the interpretation of which is facilitated by colours. The WEP program is a tool for risk assessment which is easy to learn and to use both by experts and nonprofessionals. It is especially well adapted to be used both in small and in larger enterprises. Considerable time is saved as no paper notes are needed.

  8. Adaptive implicit-explicit and parallel element-by-element iteration schemes

    NASA Technical Reports Server (NTRS)

    Tezduyar, T. E.; Liou, J.; Nguyen, T.; Poole, S.

    1989-01-01

    Adaptive implicit-explicit (AIE) and grouped element-by-element (GEBE) iteration schemes are presented for the finite element solution of large-scale problems in computational mechanics and physics. The AIE approach is based on the dynamic arrangement of the elements into differently treated groups. The GEBE procedure, which is a way of rewriting the EBE formulation to make its parallel processing potential and implementation more clear, is based on the static arrangement of the elements into groups with no inter-element coupling within each group. Various numerical tests performed demonstrate the savings in the CPU time and memory.

  9. Pc as Physics Computer for Lhc ?

    NASA Astrophysics Data System (ADS)

    Jarp, Sverre; Simmins, Antony; Tang, Hong; Yaari, R.

    In the last five years, we have seen RISC workstations take over the computing scene that was once controlled by mainframes and supercomputers. In this paper we will argue that the same phenomenon might happen again. A project, active since March this year in the Physics Data Processing group, of CERN's CN division is described where ordinary desktop PCs running Windows (NT and 3.11) have been used for creating an environment for running large LHC batch jobs (initially the DICE simulation job of Atlas). The problems encountered in porting both the CERN library and the specific Atlas codes are described together with some encouraging benchmark results when comparing to existing RISC workstations in use by the Atlas collaboration. The issues of establishing the batch environment (Batch monitor, staging software, etc.) are also covered. Finally a quick extrapolation of commodity computing power available in the future is touched upon to indicate what kind of cost envelope could be sufficient for the simulation farms required by the LHC experiments.

  10. The influence of common method bias on the relationship of the socio-ecological model in predicting physical activity behavior.

    PubMed

    Wingate, Savanna; Sng, Eveleen; Loprinzi, Paul D

    2018-01-01

    Background: The purpose of this study was to evaluate the extent, if any, that the association between socio-ecological parameters and physical activity may be influenced by common method bias (CMB). Methods: This study took place between February and May of 2017 at a Southeastern University in the United States. A randomized controlled experiment was employed among 119 young adults.Participants were randomized into either group 1 (the group we attempted to minimize CMB)or group 2 (control group). In group 1, CMB was minimized via various procedural remedies,such as separating the measurement of predictor and criterion variables by introducing a time lag (temporal; 2 visits several days apart), creating a cover story (psychological), and approximating measures to have data collected in different media (computer-based vs. paper and pencil) and different locations to control method variance when collecting self-report measures from the same source. Socio-ecological parameters (self-efficacy; friend support; family support)and physical activity were self-reported. Results: Exercise self-efficacy was significantly associated with physical activity. This association (β = 0.74, 95% CI: 0.33-1.1; P = 0.001) was only observed in group 2 (control), but not in group 1 (experimental group) (β = 0.03; 95% CI: -0.57-0.63; P = 0.91). The difference in these coefficients (i.e., β = 0.74 vs. β = 0.03) was statistically significant (P = 0.04). Conclusion: Future research in this field, when feasible, may wish to consider employing procedural and statistical remedies to minimize CMB.

  11. The influence of common method bias on the relationship of the socio-ecological model in predicting physical activity behavior

    PubMed Central

    Wingate, Savanna; Sng, Eveleen; Loprinzi, Paul D.

    2018-01-01

    Background: The purpose of this study was to evaluate the extent, if any, that the association between socio-ecological parameters and physical activity may be influenced by common method bias (CMB). Methods: This study took place between February and May of 2017 at a Southeastern University in the United States. A randomized controlled experiment was employed among 119 young adults.Participants were randomized into either group 1 (the group we attempted to minimize CMB)or group 2 (control group). In group 1, CMB was minimized via various procedural remedies,such as separating the measurement of predictor and criterion variables by introducing a time lag (temporal; 2 visits several days apart), creating a cover story (psychological), and approximating measures to have data collected in different media (computer-based vs. paper and pencil) and different locations to control method variance when collecting self-report measures from the same source. Socio-ecological parameters (self-efficacy; friend support; family support)and physical activity were self-reported. Results: Exercise self-efficacy was significantly associated with physical activity. This association (β = 0.74, 95% CI: 0.33-1.1; P = 0.001) was only observed in group 2 (control), but not in group 1 (experimental group) (β = 0.03; 95% CI: -0.57-0.63; P = 0.91). The difference in these coefficients (i.e., β = 0.74 vs. β = 0.03) was statistically significant (P = 0.04). Conclusion: Future research in this field, when feasible, may wish to consider employing procedural and statistical remedies to minimize CMB. PMID:29423361

  12. High energy physics at UC Riverside

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-07-01

    This report discusses progress made for the following two tasks: experimental high energy physics, Task A, and theoretical high energy physics, Task B. Task A1 covers hadron collider physics. Information for Task A1 includes: personnel/talks/publications; D0: proton-antiproton interactions at 2 TeV; SDC: proton-proton interactions at 40 TeV; computing facilities; equipment needs; and budget notes. The physics program of Task A2 has been the systematic study of leptons and hadrons. Information covered for Task A2 includes: personnel/talks/publications; OPAL at LEP; OPAL at LEP200; CMS at LHC; the RD5 experiment; LSND at LAMPF; and budget notes. The research activities of the Theorymore » Group are briefly discussed and a list of completed or published papers for this period is given.« less

  13. Software and languages for microprocessors

    NASA Astrophysics Data System (ADS)

    Williams, David O.

    1986-08-01

    This paper forms the basis for lectures given at the 6th Summer School on Computing Techniques in Physics, organised by the Computational Physics group of the European Physics Society, and held at the Hotel Ski, Nové Město na Moravě, Czechoslovakia, on 17-26 September 1985. Various types of microprocessor applications are discussed and the main emphasis of the paper is devoted to 'embedded' systems, where the software development is not carried out on the target microprocessor. Some information is provided on the general characteristics of microprocessor hardware. Various types of microprocessor operating system are compared and contrasted. The selection of appropriate languages and software environments for use with microprocessors is discussed. Mechanisms for interworking between different languages, including reasonable error handling, are treated. The CERN developed cross-software suite for the Motorola 68000 family is described. Some remarks are made concerning program tools applicable to microprocessors. PILS, a Portable Interactive Language System, which can be interpreted or compiled for a range of microprocessors, is described in some detail, and the implementation techniques are discussed.

  14. Public Elementary and Secondary Education in the '80s.

    ERIC Educational Resources Information Center

    Broudy, H. S.

    Privatism, vouchers, too many pressure groups, and a deemphasis of citizenship present the worst stumbling blocks to education. A five-point curriculum model includes: (1) the symbolics of information--the skills of language and computation; (2) the key concepts of a selected set of the physical sciences and mathematics; (3) developmental studies…

  15. The classification of lung cancers and their degree of malignancy by FTIR, PCA-LDA analysis, and a physics-based computational model.

    PubMed

    Kaznowska, E; Depciuch, J; Łach, K; Kołodziej, M; Koziorowska, A; Vongsvivut, J; Zawlik, I; Cholewa, M; Cebulski, J

    2018-08-15

    Lung cancer has the highest mortality rate of all malignant tumours. The current effects of cancer treatment, as well as its diagnostics, are unsatisfactory. Therefore it is very important to introduce modern diagnostic tools, which will allow for rapid classification of lung cancers and their degree of malignancy. For this purpose, the authors propose the use of Fourier Transform InfraRed (FTIR) spectroscopy combined with Principal Component Analysis-Linear Discriminant Analysis (PCA-LDA) and a physics-based computational model. The results obtained for lung cancer tissues, adenocarcinoma and squamous cell carcinoma FTIR spectra, show a shift in wavenumbers compared to control tissue FTIR spectra. Furthermore, in the FTIR spectra of adenocarcinoma there are no peaks corresponding to glutamate or phospholipid functional groups. Moreover, in the case of G2 and G3 malignancy of adenocarcinoma lung cancer, the absence of an OH groups peak was noticed. Thus, it seems that FTIR spectroscopy is a valuable tool to classify lung cancer and to determine the degree of its malignancy. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Physical exertion and immediate mental performance of sixth-grade children.

    PubMed

    McNaughten, D; Gabbard, C

    1993-12-01

    The intent of this investigation was to examine the potential influence of varying durations of physical exertion at different times of the day on immediate mathematical performance by 120 sixth-grade boys and girls. Subjects were assigned to two control and two treatment groups (Solomon Four-group Design), with treated subjects administered physical exertion (paced walking at controlled moderate intensity) for durations of 20, 30, and 40 min. at three different times of the school day [8:30 a.m., 11:50 a.m. (before lunch), 2:20 p.m.] over 3 weeks. After each exertion session, subjects were immediately administered a 90-sec. mathematical computation test. Analysis indicated no significant differences in mathematical performance at any duration in the morning, but scores were significantly higher at 11:50 a.m. and 2:20 p.m. at 30- and 40-min. durations in comparison to the 20-min. duration. There were no differences by gender of subject.

  17. Development of a Renormalization Group Approach to Multi-Scale Plasma Physics Computation

    DTIC Science & Technology

    2012-03-28

    with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1...NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: a . REPORT...code) 29-12-2008 Final Technical Report From 29-12-2008 To 16-95-2011 (STTR PHASE II) DEVELOPMENT OF A RENORMALIZATION GROUP APPROACH TO MULTI-SCALE

  18. The "Healthy Habits, Healthy Girls" randomized controlled trial for girls: study design, protocol, and baseline results.

    PubMed

    Leme, Ana Carolina Barco; Philippi, Sonia Tucunduva

    2015-07-01

    The purpose of this article is to describe the study design, protocol, and baseline results of the "Healthy Habits, Healthy Girls" program. The intervention is being evaluated through a randomized controlled trial in 10 public schools in the city of São Paulo, Brazil. Data on the following variables were collected and assessed at baseline and will be reevaluated at 7 and 12 months: body mass index, waist circumference, dietary intake, nutrition, physical activity, social cognitive mediators, physical activity level, sedentary behaviors, self-rated physical status, and overall self-esteem. According to the baseline results, 32.4% and 23.4% of girls were overweight in the intervention and control groups, respectively, and in both groups a higher percentage failed to meet daily recommendations for moderate and vigorous physical activity and maximum screen time (TV, computer, mobile devices). There were no significant differences between the groups for most of the variables, except age (p = 0.000) and waist circumference (p = 0.014). The study showed a gap in the Brazilian literature on protocols for randomized controlled trials to prevent obesity among youth. The current study may thus be an important initial contribution to the field.

  19. An e-health intervention designed to increase workday energy expenditure by reducing prolonged occupational sitting habits.

    PubMed

    Pedersen, Scott J; Cooley, Paul D; Mainsbridge, Casey

    2014-01-01

    Desk-based employees face multiple workplace health hazards such as insufficient physical activity and prolonged sitting. The objective of this study was to increase workday energy expenditure by interrupting prolonged occupational sitting time and introducing short-bursts of physical activity to employees' daily work habits. Over a 13-week period participants (n=17) in the intervention group were regularly exposed to a passive prompt delivered through their desktop computer that required them to stand up and engage in a short-burst of physical activity, while the control group (n=17) was not exposed to this intervention. Instead, the control group continued with their normal work routine. All participants completed a pre- and post- intervention survey to estimate workplace daily energy expenditure (calories). There was a significant 2 (Group) × 2 (Test) interaction, F (1, 32)=9.26, p < 0.05. The intervention group increased the calories expended during the workday from pre-test (M=866.29 ± 151.40) to post-test (M=1054.10 ± 393.24), whereas the control group decreased calories expended during the workday from pre-test (M=982.55 ± 315.66) to post-test (M=892.21 ± 255.36). An e-health intervention using a passive prompt was an effective mechanism for increasing employee work-related energy expenditure. Engaging employees in regular short-bursts of physical activity during the workday resulted in reduced sitting time, which may have long-term effects on the improvement of employee health.

  20. On the Computational Capabilities of Physical Systems. Part 1; The Impossibility of Infallible Computation

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.; Koga, Dennis (Technical Monitor)

    2000-01-01

    In this first of two papers, strong limits on the accuracy of physical computation are established. First it is proven that there cannot be a physical computer C to which one can pose any and all computational tasks concerning the physical universe. Next it is proven that no physical computer C can correctly carry out any computational task in the subset of such tasks that can be posed to C. This result holds whether the computational tasks concern a system that is physically isolated from C, or instead concern a system that is coupled to C. As a particular example, this result means that there cannot be a physical computer that can, for any physical system external to that computer, take the specification of that external system's state as input and then correctly predict its future state before that future state actually occurs; one cannot build a physical computer that can be assured of correctly 'processing information faster than the universe does'. The results also mean that there cannot exist an infallible, general-purpose observation apparatus, and that there cannot be an infallible, general-purpose control apparatus. These results do not rely on systems that are infinite, and/or non-classical, and/or obey chaotic dynamics. They also hold even if one uses an infinitely fast, infinitely dense computer, with computational powers greater than that of a Turing Machine. This generality is a direct consequence of the fact that a novel definition of computation - a definition of 'physical computation' - is needed to address the issues considered in these papers. While this definition does not fit into the traditional Chomsky hierarchy, the mathematical structure and impossibility results associated with it have parallels in the mathematics of the Chomsky hierarchy. The second in this pair of papers presents a preliminary exploration of some of this mathematical structure, including in particular that of prediction complexity, which is a 'physical computation analogue' of algorithmic information complexity. It is proven in that second paper that either the Hamiltonian of our universe proscribes a certain type of computation, or prediction complexity is unique (unlike algorithmic information complexity), in that there is one and only version of it that can be applicable throughout our universe.

  1. 2016 Final Reports from the Los Alamos National Laboratory Computational Physics Student Summer Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Runnels, Scott Robert; Bachrach, Harrison Ian; Carlson, Nils

    The two primary purposes of LANL’s Computational Physics Student Summer Workshop are (1) To educate graduate and exceptional undergraduate students in the challenges and applications of computational physics of interest to LANL, and (2) Entice their interest toward those challenges. Computational physics is emerging as a discipline in its own right, combining expertise in mathematics, physics, and computer science. The mathematical aspects focus on numerical methods for solving equations on the computer as well as developing test problems with analytical solutions. The physics aspects are very broad, ranging from low-temperature material modeling to extremely high temperature plasma physics, radiation transportmore » and neutron transport. The computer science issues are concerned with matching numerical algorithms to emerging architectures and maintaining the quality of extremely large codes built to perform multi-physics calculations. Although graduate programs associated with computational physics are emerging, it is apparent that the pool of U.S. citizens in this multi-disciplinary field is relatively small and is typically not focused on the aspects that are of primary interest to LANL. Furthermore, more structured foundations for LANL interaction with universities in computational physics is needed; historically interactions rely heavily on individuals’ personalities and personal contacts. Thus a tertiary purpose of the Summer Workshop is to build an educational network of LANL researchers, university professors, and emerging students to advance the field and LANL’s involvement in it.« less

  2. Kinematic state estimation and motion planning for stochastic nonholonomic systems using the exponential map.

    PubMed

    Park, Wooram; Liu, Yan; Zhou, Yu; Moses, Matthew; Chirikjian, Gregory S

    2008-04-11

    A nonholonomic system subjected to external noise from the environment, or internal noise in its own actuators, will evolve in a stochastic manner described by an ensemble of trajectories. This ensemble of trajectories is equivalent to the solution of a Fokker-Planck equation that typically evolves on a Lie group. If the most likely state of such a system is to be estimated, and plans for subsequent motions from the current state are to be made so as to move the system to a desired state with high probability, then modeling how the probability density of the system evolves is critical. Methods for solving Fokker-Planck equations that evolve on Lie groups then become important. Such equations can be solved using the operational properties of group Fourier transforms in which irreducible unitary representation (IUR) matrices play a critical role. Therefore, we develop a simple approach for the numerical approximation of all the IUR matrices for two of the groups of most interest in robotics: the rotation group in three-dimensional space, SO(3), and the Euclidean motion group of the plane, SE(2). This approach uses the exponential mapping from the Lie algebras of these groups, and takes advantage of the sparse nature of the Lie algebra representation matrices. Other techniques for density estimation on groups are also explored. The computed densities are applied in the context of probabilistic path planning for kinematic cart in the plane and flexible needle steering in three-dimensional space. In these examples the injection of artificial noise into the computational models (rather than noise in the actual physical systems) serves as a tool to search the configuration spaces and plan paths. Finally, we illustrate how density estimation problems arise in the characterization of physical noise in orientational sensors such as gyroscopes.

  3. 1999 LDRD Laboratory Directed Research and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rita Spencer; Kyle Wheeler

    This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  4. Laboratory Directed Research and Development FY 1998 Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Vigil; Kyle Wheeler

    This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  5. Laboratory directed research and development: FY 1997 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil, J.; Prono, J.

    1998-05-01

    This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  6. Assessment of nonequilibrium radiation computation methods for hypersonic flows

    NASA Technical Reports Server (NTRS)

    Sharma, Surendra

    1993-01-01

    The present understanding of shock-layer radiation in the low density regime, as appropriate to hypersonic vehicles, is surveyed. Based on the relative importance of electron excitation and radiation transport, the hypersonic flows are divided into three groups: weakly ionized, moderately ionized, and highly ionized flows. In the light of this division, the existing laboratory and flight data are scrutinized. Finally, an assessment of the nonequilibrium radiation computation methods for the three regimes in hypersonic flows is presented. The assessment is conducted by comparing experimental data against the values predicted by the physical model.

  7. A proposed protocol for acceptance and constancy control of computed tomography systems: a Nordic Association for Clinical Physics (NACP) work group report.

    PubMed

    Kuttner, Samuel; Bujila, Robert; Kortesniemi, Mika; Andersson, Henrik; Kull, Love; Østerås, Bjørn Helge; Thygesen, Jesper; Tarp, Ivanka Sojat

    2013-03-01

    Quality assurance (QA) of computed tomography (CT) systems is one of the routine tasks for medical physicists in the Nordic countries. However, standardized QA protocols do not yet exist and the QA methods, as well as the applied tolerance levels, vary in scope and extent at different hospitals. To propose a standardized protocol for acceptance and constancy testing of CT scanners in the Nordic Region. Following a Nordic Association for Clinical Physics (NACP) initiative, a group of medical physicists, with representatives from four Nordic countries, was formed. Based on international literature and practical experience within the group, a comprehensive standardized test protocol was developed. The proposed protocol includes tests related to the mechanical functionality, X-ray tube, detector, and image quality for CT scanners. For each test, recommendations regarding the purpose, equipment needed, an outline of the test method, the measured parameter, tolerance levels, and the testing frequency are stated. In addition, a number of optional tests are briefly discussed that may provide further information about the CT system. Based on international references and medical physicists' practical experiences, a comprehensive QA protocol for CT systems is proposed, including both acceptance and constancy tests. The protocol may serve as a reference for medical physicists in the Nordic countries.

  8. Just enough, but not too much interactivity leads to better clinical skills performance after a computer assisted learning module.

    PubMed

    Kalet, A L; Song, H S; Sarpel, U; Schwartz, R; Brenner, J; Ark, T K; Plass, J

    2012-01-01

    Well-designed computer-assisted instruction (CAI) can potentially transform medical education. Yet little is known about whether specific design features such as direct manipulation of the content yield meaningful gains in clinical learning. We designed three versions of a multimedia module on the abdominal exam incorporating different types of interactivity. As part of their physical diagnosis course, 162 second-year medical students were randomly assigned (1:1:1) to Watch, Click or Drag versions of the abdominal exam module. First, students' prior knowledge, spatial ability, and prior experience with abdominal exams were assessed. After using the module, students took a posttest; demonstrated the abdominal exam on a standardized patient; and wrote structured notes of their findings. Data from 143 students were analyzed. Baseline measures showed no differences among groups regarding prior knowledge, experience, or spatial ability. Overall there was no difference in knowledge across groups. However, physical exam scores were significantly higher for students in the Click group. A mid-range level of behavioral interactivity was associated with small to moderate improvements in performance of clinical skills. These improvements were likely mediated by enhanced engagement with the material, within the bounds of learners' cognitive capacity. These findings have implications for the design of CAI materials to teach procedural skills.

  9. Design and assessment of an interactive physics tutoring environment

    NASA Astrophysics Data System (ADS)

    Scott, Lisa Ann

    2001-07-01

    The application of scientific principles is an extremely important skill taught in undergraduate introductory science courses, yet many students emerge from such courses unable to reliably apply the scientific principles they have ostensibly learned. In an attempt to address this problem, the knowledge and thought processes needed to apply an important principle in introductory physics (Newton's law) were carefully analyzed. Reliable performance requires not only declarative knowledge but also corresponding procedural knowledge and the basic cognitive functions of deciding, implementing and assessing. Computer programs called guided-practice PALs (P&barbelow;ersonal A&barbelow;ssistants for Ḻearning) were developed to teach explicitly the knowledge and thought processes needed to apply Newton's law to solve problems. These programs employ a modified form of Palincsar and Brown's reciprocal-teaching strategy (1984) in which students and computers alternately coach each other, taking turns making decisions, implementing and assessing them. The computer programs make it practically feasible to provide students with individual guidance and feedback ordinarily unavailable in most courses. In a pilot study, the guided-practice PALs were found to be nearly as effective as individual tutoring by expert teachers and significantly more effective than the instruction provided in a well-taught physics course. This guided practice however is not sufficient to ensure that students develop the ability to perform independently. Accordingly, independent-performance PALs were developed which require students to work independently, receiving only the minimal feedback necessary to successfully complete the task. These independent-performance PALS are interspersed with guided-practice PALs to create an instructional environment which facilitates a gradual transition to independent performance. In a study designed to assess the efficacy of the PAL instruction, students in the PAL group used only guided-practice PALS and students in the PAL+ group used both guided-practice and independent-performance PALS. The performance of the PAL and PAL+ groups were compared to the performance of a Control group which received traditional instruction. The addition of the independent-performance PALS proved to be at least as effective as the guided-practice PALs alone, and both forms of PAL instruction were significantly more effective than traditional instruction.

  10. Physical Computing and Its Scope--Towards a Constructionist Computer Science Curriculum with Physical Computing

    ERIC Educational Resources Information Center

    Przybylla, Mareen; Romeike, Ralf

    2014-01-01

    Physical computing covers the design and realization of interactive objects and installations and allows students to develop concrete, tangible products of the real world, which arise from the learners' imagination. This can be used in computer science education to provide students with interesting and motivating access to the different topic…

  11. State-Transition Structures in Physics and in Computation

    NASA Astrophysics Data System (ADS)

    Petri, C. A.

    1982-12-01

    In order to establish close connections between physical and computational processes, it is assumed that the concepts of “state” and of “transition” are acceptable both to physicists and to computer scientists, at least in an informal way. The aim of this paper is to propose formal definitions of state and transition elements on the basis of very low level physical concepts in such a way that (1) all physically possible computations can be described as embedded in physical processes; (2) the computational aspects of physical processes can be described on a well-defined level of abstraction; (3) the gulf between the continuous models of physics and the discrete models of computer science can be bridged by simple mathematical constructs which may be given a physical interpretation; (4) a combinatorial, nonstatistical definition of “information” can be given on low levels of abstraction which may serve as a basis to derive higher-level concepts of information, e.g., by a statistical or probabilistic approach. Conceivable practical consequences are discussed.

  12. A Combination of Hand-held Models and Computer Imaging Programs Helps Students Answer Oral Questions about Molecular Structure and Function: A Controlled Investigation of Student Learning

    PubMed Central

    Peck, Ronald F.; Colton, Shannon; Morris, Jennifer; Chaibub Neto, Elias; Kallio, Julie

    2009-01-01

    We conducted a controlled investigation to examine whether a combination of computer imagery and tactile tools helps introductory cell biology laboratory undergraduate students better learn about protein structure/function relationships as compared with computer imagery alone. In all five laboratory sections, students used the molecular imaging program, Protein Explorer (PE). In the three experimental sections, three-dimensional physical models were made available to the students, in addition to PE. Student learning was assessed via oral and written research summaries and videotaped interviews. Differences between the experimental and control group students were not found in our typical course assessments such as research papers, but rather were revealed during one-on-one interviews with students at the end of the semester. A subset of students in the experimental group produced superior answers to some higher-order interview questions as compared with students in the control group. During the interview, students in both groups preferred to use either the hand-held models alone or in combination with the PE imaging program. Students typically did not use any tools when answering knowledge (lower-level thinking) questions, but when challenged with higher-level thinking questions, students in both the control and experimental groups elected to use the models. PMID:19255134

  13. Carpal tunnel syndrome and computer exposure at work in two large complementary cohorts.

    PubMed

    Mediouni, Z; Bodin, J; Dale, A M; Herquelot, E; Carton, M; Leclerc, A; Fouquet, N; Dumontier, C; Roquelaure, Y; Evanoff, B A; Descatha, A

    2015-09-09

    The boom in computer use and concurrent high rates in musculoskeletal complaints and carpal tunnel syndrome (CTS) among users have led to a controversy about a possible link. Most studies have used cross-sectional designs and shown no association. The present study used longitudinal data from two large complementary cohorts to evaluate a possible relationship between CTS and the performance of computer work. The Cosali cohort is a representative sample of a French working population that evaluated CTS using standardised clinical examinations and assessed self-reported computer use. The PrediCTS cohort study enrolled newly hired clerical, service and construction workers in several industries in the USA, evaluated CTS using symptoms and nerve conduction studies (NCS), and estimated exposures to computer work using a job exposure matrix. During a follow-up of 3-5 years, the association between new cases of CTS and computer work was calculated using logistic regression models adjusting for sex, age, obesity and relevant associated disorders. In the Cosali study, 1551 workers (41.8%) completed follow-up physical examinations; 36 (2.3%) participants were diagnosed with CTS. In the PrediCTS study, 711 workers (64.2%) completed follow-up evaluations, whereas 31 (4.3%) had new cases of CTS. The adjusted OR for the group with the highest exposure to computer use was 0.39 (0.17; 0.89) in the Cosali cohort and 0.16 (0.05; 0.59) in the PrediCTS cohort. Data from two large cohorts in two different countries showed no association between computer work and new cases of CTS among workers in diverse jobs with varying job exposures. CTS is far more common among workers in non-computer related jobs; prevention efforts and work-related compensation programmes should focus on workers performing forceful hand exertion. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  14. Localization of Unitary Braid Group Representations

    NASA Astrophysics Data System (ADS)

    Rowell, Eric C.; Wang, Zhenghan

    2012-05-01

    Governed by locality, we explore a connection between unitary braid group representations associated to a unitary R-matrix and to a simple object in a unitary braided fusion category. Unitary R-matrices, namely unitary solutions to the Yang-Baxter equation, afford explicitly local unitary representations of braid groups. Inspired by topological quantum computation, we study whether or not it is possible to reassemble the irreducible summands appearing in the unitary braid group representations from a unitary braided fusion category with possibly different positive multiplicities to get representations that are uniformly equivalent to the ones from a unitary R-matrix. Such an equivalence will be called a localization of the unitary braid group representations. We show that the q = e π i/6 specialization of the unitary Jones representation of the braid groups can be localized by a unitary 9 × 9 R-matrix. Actually this Jones representation is the first one in a family of theories ( SO( N), 2) for an odd prime N > 1, which are conjectured to be localizable. We formulate several general conjectures and discuss possible connections to physics and computer science.

  15. The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism

    NASA Astrophysics Data System (ADS)

    Clark, Martyn P.; Bierkens, Marc F. P.; Samaniego, Luis; Woods, Ross A.; Uijlenhoet, Remko; Bennett, Katrina E.; Pauwels, Valentijn R. N.; Cai, Xitian; Wood, Andrew W.; Peters-Lidard, Christa D.

    2017-07-01

    The diversity in hydrologic models has historically led to great controversy on the correct approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. In this paper, we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, provide examples of modeling advances that address these challenges, and define outstanding research needs. We illustrate how modeling advances have been made by groups using models of different type and complexity, and we argue for the need to more effectively use our diversity of modeling approaches in order to advance our collective quest for physically realistic hydrologic models.

  16. The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism

    NASA Astrophysics Data System (ADS)

    Clark, M. P.; Nijssen, B.; Wood, A.; Mizukami, N.; Newman, A. J.

    2017-12-01

    The diversity in hydrologic models has historically led to great controversy on the "correct" approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. In this paper, we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, provide examples of modeling advances that address these challenges, and define outstanding research needs. We illustrate how modeling advances have been made by groups using models of different type and complexity, and we argue for the need to more effectively use our diversity of modeling approaches in order to advance our collective quest for physically realistic hydrologic models.

  17. The use of computer-assisted image analysis in the evaluation of the effect of management systems on changes in the color, chemical composition and texture of m. longissimus dorsi in pigs.

    PubMed

    Zapotoczny, Piotr; Kozera, Wojciech; Karpiesiuk, Krzysztof; Pawłowski, Rodian

    2014-08-01

    The effect of management systems on selected physical properties and chemical composition of m. longissimus dorsi was studied in pigs. Muscle texture parameters were determined by computer-assisted image analysis, and the color of muscle samples was evaluated using a spectrophotometer. Highly significant correlations were observed between chemical composition and selected texture variables in the analyzed images. Chemical composition was not correlated with color or spectral distribution. Subject to the applied classification methods and groups of variables included in the classification model, the experimental groups were identified correctly in 35-95%. No significant differences in the chemical composition of m. longissimus dorsi were observed between experimental groups. Significant differences were noted in color lightness (L*) and redness (a*). Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Translation, Validation, and Reliability of the Dutch Late-Life Function and Disability Instrument Computer Adaptive Test.

    PubMed

    Arensman, Remco M; Pisters, Martijn F; de Man-van Ginkel, Janneke M; Schuurmans, Marieke J; Jette, Alan M; de Bie, Rob A

    2016-09-01

    Adequate and user-friendly instruments for assessing physical function and disability in older adults are vital for estimating and predicting health care needs in clinical practice. The Late-Life Function and Disability Instrument Computer Adaptive Test (LLFDI-CAT) is a promising instrument for assessing physical function and disability in gerontology research and clinical practice. The aims of this study were: (1) to translate the LLFDI-CAT to the Dutch language and (2) to investigate its validity and reliability in a sample of older adults who spoke Dutch and dwelled in the community. For the assessment of validity of the LLFDI-CAT, a cross-sectional design was used. To assess reliability, measurement of the LLFDI-CAT was repeated in the same sample. The item bank of the LLFDI-CAT was translated with a forward-backward procedure. A sample of 54 older adults completed the LLFDI-CAT, World Health Organization Disability Assessment Schedule 2.0, RAND 36-Item Short-Form Health Survey physical functioning scale (10 items), and 10-Meter Walk Test. The LLFDI-CAT was repeated in 2 to 8 days (mean=4.5 days). Pearson's r and the intraclass correlation coefficient (ICC) (2,1) were calculated to assess validity, group-level reliability, and participant-level reliability. A correlation of .74 for the LLFDI-CAT function scale and the RAND 36-Item Short-Form Health Survey physical functioning scale (10 items) was found. The correlations of the LLFDI-CAT disability scale with the World Health Organization Disability Assessment Schedule 2.0 and the 10-Meter Walk Test were -.57 and -.53, respectively. The ICC (2,1) of the LLFDI-CAT function scale was .84, with a group-level reliability score of .85. The ICC (2,1) of the LLFDI-CAT disability scale was .76, with a group-level reliability score of .81. The high percentage of women in the study and the exclusion of older adults with recent joint replacement or hospitalization limit the generalizability of the results. The Dutch LLFDI-CAT showed strong validity and high reliability when used to assess physical function and disability in older adults dwelling in the community. © 2016 American Physical Therapy Association.

  19. Computer-mediated and face-to-face communication in metastatic cancer support groups.

    PubMed

    Vilhauer, Ruvanee P

    2014-08-01

    To compare the experiences of women with metastatic breast cancer (MBC) in computer-mediated and face-to-face support groups. Interviews from 18 women with MBC, who were currently in computer-mediated support groups (CMSGs), were examined using interpretative phenomenological analysis. The CMSGs were in an asynchronous mailing list format; women communicated exclusively via email. All the women were also, or had previously been, in a face-to-face support group (FTFG). CMSGs had both advantages and drawbacks, relative to face-to-face groups (FTFGs), for this population. Themes examined included convenience, level of support, intimacy, ease of expression, range of information, and dealing with debilitation and dying. CMSGs may provide a sense of control and a greater level of support. Intimacy may take longer to develop in a CMSG, but women may have more opportunities to get to know each other. CMSGs may be helpful while adjusting to a diagnosis of MBC, because women can receive support without being overwhelmed by physical evidence of disability in others or exposure to discussions about dying before they are ready. However, the absence of nonverbal cues in CMSGs also led to avoidance of topics related to death and dying when women were ready to face them. Agendas for discussion, the presence of a facilitator or more time in CMSGs may attenuate this problem. The findings were discussed in light of prevailing research and theories about computer-mediated communication. They have implications for designing CMSGs for this population.

  20. Combination of inquiry learning model and computer simulation to improve mastery concept and the correlation with critical thinking skills (CTS)

    NASA Astrophysics Data System (ADS)

    Nugraha, Muhamad Gina; Kaniawati, Ida; Rusdiana, Dadi; Kirana, Kartika Hajar

    2016-02-01

    Among the purposes of physics learning at high school is to master the physics concepts and cultivate scientific attitude (including critical attitude), develop inductive and deductive reasoning skills. According to Ennis et al., inductive and deductive reasoning skills are part of critical thinking. Based on preliminary studies, both of the competence are lack achieved, it is seen from student learning outcomes is low and learning processes that are not conducive to cultivate critical thinking (teacher-centered learning). One of learning model that predicted can increase mastery concepts and train CTS is inquiry learning model aided computer simulations. In this model, students were given the opportunity to be actively involved in the experiment and also get a good explanation with the computer simulations. From research with randomized control group pretest-posttest design, we found that the inquiry learning model aided computer simulations can significantly improve students' mastery concepts than the conventional (teacher-centered) method. With inquiry learning model aided computer simulations, 20% of students have high CTS, 63.3% were medium and 16.7% were low. CTS greatly contribute to the students' mastery concept with a correlation coefficient of 0.697 and quite contribute to the enhancement mastery concept with a correlation coefficient of 0.603.

  1. Fermilab | Science at Fermilab | Experiments & Projects | Intensity

    Science.gov Websites

    Theory Computing High-performance Computing Grid Computing Networking Mass Storage Plan for the Future List Historic Results Inquiring Minds Questions About Physics Other High-Energy Physics Sites More About Particle Physics Library Visual Media Services Timeline History High-Energy Physics Accelerator

  2. UPR/Mayaguez High Energy Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendez, Hector

    This year the University of Puerto Rico at Mayaguez (UPRM) High Energy Physics (HEP) group continued with the ongoing research program outlined in the grant proposal. The program is centered on the Compact Muon Solenoid (CMS) experiment at the proton-proton (pp) collisions at the Large Hadron Collider (LHC) at CERN in Geneva, Switzerland. The main research focus is on data analysis and on the preparation for the High Luminosity (HL) LHC or experiment detector upgrade. The physics data analysis included Higgs Doublet Search and measurement of the (1) Λ 0 b branching fraction, (2) B meson mass, and (3) hyperonmore » θ - b lifetime. The detector upgrade included work on the preparations for the Forward Pixel (FPIX) detector Silicon Sensor Testing in a production run at Fermilab. In addition, the group has taken responsibilities on the Software Release through our former research associate Dr. Eric Brownson who acted until last December as a Level Two Offline Manager for the CMS Upgrade. In support of the CMS data analysis activities carried out locally, the UPRM group has built and maintains an excellent Tier3 analysis center in Mayaguez. This allowed us to analyze large data samples and to continue the development of algorithms for the upgrade tracking robustness we started several years ago, and we plan to resume in the near future. This project involves computer simulation of the radiation damage to be suffered at the higher luminosities of the upgraded LHC. This year we continued to serve as a source of outstanding students for the field of high energy physics. Three of our graduate students finished their MS work in May, 2014, Their theses research were on data analysis of heavy quark b-physics. All of them are currently enrolled at Ph.D. physics program across the nation. One of them (Hector Moreno) at New Mexico University (Hector Moreno), one at University of New Hampshire (Sandra Santiesteban) and one at University of Puerto Rico-Rio Piedras (Carlos Malca). The students H. Moreno and C. Malca has been directly supervised by Dr. Mendez and S. Santiesteban supervised by Dr. Ramirez. During the last 13 years, our group have graduated 23 MS students on experimental High Energy Physics data analysis and applied hardware techniques. Most of the students have been supported by DOE grants, included this grant. Since 2001, Dr. Mendez have directly supervised eleven students, Dr. Ramirez three students and the former PI (Dr. Lopez) nine students. These theses work are fully documented in the group web page (http://charma.uprm.edu). The High Energy Physics group at Mayaguez is small and presently consists of three Physics faculty members, the Senior Investigators Dr. Hector Mendez (Professor) and Dr. Juan Eduardo Ramirez (Professor), and Dr. Sudhir Malik who was just hired in July 2014. Dr. Ramirez is in charge of the UPRM Tier-3 computing and will be building the network bandwidth infrastructure for the campus, while Dr. Mendez will continues his effort in finishing the heavy quark physics data analysis and moving to work on SUSY analysis for the 2015 data. Our last grant application in 2012 was awarded only for 2013-2014. As a result our postdoc position was lost last month of March. Since then, we have hired Dr. Malik as a new faculty in order to reinforce the group and to continue our efforts with the CMS experiment. Our plan is to hire another junior faculty in the next two years to strengthen the HEP group even further. Dr. Mendez continues with QuarkNet activities involving an ever larger group of high school physics teachers from all around Puerto Rico.« less

  3. Development of a SaaS application probe to the physical properties of the Earth's interior: An attempt at moving HPC to the cloud

    NASA Astrophysics Data System (ADS)

    Huang, Qian

    2014-09-01

    Scientific computing often requires the availability of a massive number of computers for performing large-scale simulations, and computing in mineral physics is no exception. In order to investigate physical properties of minerals at extreme conditions in computational mineral physics, parallel computing technology is used to speed up the performance by utilizing multiple computer resources to process a computational task simultaneously thereby greatly reducing computation time. Traditionally, parallel computing has been addressed by using High Performance Computing (HPC) solutions and installed facilities such as clusters and super computers. Today, it has been seen that there is a tremendous growth in cloud computing. Infrastructure as a Service (IaaS), the on-demand and pay-as-you-go model, creates a flexible and cost-effective mean to access computing resources. In this paper, a feasibility report of HPC on a cloud infrastructure is presented. It is found that current cloud services in IaaS layer still need to improve performance to be useful to research projects. On the other hand, Software as a Service (SaaS), another type of cloud computing, is introduced into an HPC system for computing in mineral physics, and an application of which is developed. In this paper, an overall description of this SaaS application is presented. This contribution can promote cloud application development in computational mineral physics, and cross-disciplinary studies.

  4. On The Computational Capabilities of Physical Systems. Part 2; Relationship With Conventional Computer Science

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.; Koga, Dennis (Technical Monitor)

    2000-01-01

    In the first of this pair of papers, it was proven that there cannot be a physical computer to which one can properly pose any and all computational tasks concerning the physical universe. It was then further proven that no physical computer C can correctly carry out all computational tasks that can be posed to C. As a particular example, this result means that no physical computer that can, for any physical system external to that computer, take the specification of that external system's state as input and then correctly predict its future state before that future state actually occurs; one cannot build a physical computer that can be assured of correctly "processing information faster than the universe does". These results do not rely on systems that are infinite, and/or non-classical, and/or obey chaotic dynamics. They also hold even if one uses an infinitely fast, infinitely dense computer, with computational powers greater than that of a Turing Machine. This generality is a direct consequence of the fact that a novel definition of computation - "physical computation" - is needed to address the issues considered in these papers, which concern real physical computers. While this novel definition does not fit into the traditional Chomsky hierarchy, the mathematical structure and impossibility results associated with it have parallels in the mathematics of the Chomsky hierarchy. This second paper of the pair presents a preliminary exploration of some of this mathematical structure. Analogues of Chomskian results concerning universal Turing Machines and the Halting theorem are derived, as are results concerning the (im)possibility of certain kinds of error-correcting codes. In addition, an analogue of algorithmic information complexity, "prediction complexity", is elaborated. A task-independent bound is derived on how much the prediction complexity of a computational task can differ for two different reference universal physical computers used to solve that task, a bound similar to the "encoding" bound governing how much the algorithm information complexity of a Turing machine calculation can differ for two reference universal Turing machines. Finally, it is proven that either the Hamiltonian of our universe proscribes a certain type of computation, or prediction complexity is unique (unlike algorithmic information complexity), in that there is one and only version of it that can be applicable throughout our universe.

  5. 2015 Final Reports from the Los Alamos National Laboratory Computational Physics Student Summer Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Runnels, Scott Robert; Caldwell, Wendy; Brown, Barton Jed

    The two primary purposes of LANL’s Computational Physics Student Summer Workshop are (1) To educate graduate and exceptional undergraduate students in the challenges and applications of computational physics of interest to LANL, and (2) Entice their interest toward those challenges. Computational physics is emerging as a discipline in its own right, combining expertise in mathematics, physics, and computer science. The mathematical aspects focus on numerical methods for solving equations on the computer as well as developing test problems with analytical solutions. The physics aspects are very broad, ranging from low-temperature material modeling to extremely high temperature plasma physics, radiation transportmore » and neutron transport. The computer science issues are concerned with matching numerical algorithms to emerging architectures and maintaining the quality of extremely large codes built to perform multi-physics calculations. Although graduate programs associated with computational physics are emerging, it is apparent that the pool of U.S. citizens in this multi-disciplinary field is relatively small and is typically not focused on the aspects that are of primary interest to LANL. Furthermore, more structured foundations for LANL interaction with universities in computational physics is needed; historically interactions rely heavily on individuals’ personalities and personal contacts. Thus a tertiary purpose of the Summer Workshop is to build an educational network of LANL researchers, university professors, and emerging students to advance the field and LANL’s involvement in it. This report includes both the background for the program and the reports from the students.« less

  6. Opportunities for Computational Discovery in Basic Energy Sciences

    NASA Astrophysics Data System (ADS)

    Pederson, Mark

    2011-03-01

    An overview of the broad-ranging support of computational physics and computational science within the Department of Energy Office of Science will be provided. Computation as the third branch of physics is supported by all six offices (Advanced Scientific Computing, Basic Energy, Biological and Environmental, Fusion Energy, High-Energy Physics, and Nuclear Physics). Support focuses on hardware, software and applications. Most opportunities within the fields of~condensed-matter physics, chemical-physics and materials sciences are supported by the Officeof Basic Energy Science (BES) or through partnerships between BES and the Office for Advanced Scientific Computing. Activities include radiation sciences, catalysis, combustion, materials in extreme environments, energy-storage materials, light-harvesting and photovoltaics, solid-state lighting and superconductivity.~ A summary of two recent reports by the computational materials and chemical communities on the role of computation during the next decade will be provided. ~In addition to materials and chemistry challenges specific to energy sciences, issues identified~include a focus on the role of the domain scientist in integrating, expanding and sustaining applications-oriented capabilities on evolving high-performance computing platforms and on the role of computation in accelerating the development of innovative technologies. ~~

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arimura, Hidetaka, E-mail: arimurah@med.kyushu-u.ac.jp; Kamezawa, Hidemi; Jin, Ze

    Good relationships between computational image analysis and radiological physics have been constructed for increasing the accuracy of medical diagnostic imaging and radiation therapy in radiological physics. Computational image analysis has been established based on applied mathematics, physics, and engineering. This review paper will introduce how computational image analysis is useful in radiation therapy with respect to radiological physics.

  8. The role of computational physics in the liberal arts curriculum

    NASA Astrophysics Data System (ADS)

    Dominguez, Rachele; Huff, Benjamin

    2015-09-01

    The role of computational physics education varies dramatically from department to department. We will discuss a new computational physics course at Randolph-Macon College and our attempt to identify where it fits (or should fit) into the larger liberal arts curriculum and why. In doing so, we will describe the goals of the course, and how the liberal arts curriculum conditions the exploration of computational physics.

  9. Body image dissatisfaction, physical activity and screen-time in Spanish adolescents.

    PubMed

    Añez, Elizabeth; Fornieles-Deu, Albert; Fauquet-Ars, Jordi; López-Guimerà, Gemma; Puntí-Vidal, Joaquim; Sánchez-Carracedo, David

    2018-01-01

    This cross-sectional study contributes to the literature on whether body dissatisfaction is a barrier/facilitator to engaging in physical activity and to investigate the impact of mass-media messages via computer-time on body dissatisfaction. High-school students ( N = 1501) reported their physical activity, computer-time (homework/leisure) and body dissatisfaction. Researchers measured students' weight and height. Analyses revealed that body dissatisfaction was negatively associated with physical activity on both genders, whereas computer-time was associated only with girls' body dissatisfaction. Specifically, as computer-homework increased, body dissatisfaction decreased; as computer-leisure increased, body dissatisfaction increased. Weight-related interventions should improve body image and physical activity simultaneously, while critical consumption of mass-media interventions should include a computer component.

  10. Brain-Computer Interfaces and communication in paralysis: extinction of goal directed thinking in completely paralysed patients?

    PubMed Central

    Kübler, A.; Birbaumer, N.

    2008-01-01

    Objective To investigate the relationship between physical impairment and brain-computer interface (BCI) performance. Method We present a meta-analysis of 29 patients with amyotrophic lateral sclerosis and 6 with other severe neurological diseases in different stages of physical impairment who were trained with a BCI. In most cases voluntary regulation of slow cortical potentials has been used as input signal for BCI control. More recently sensorimotor rhythms and the P300 event-related brain potential were recorded. Results A strong correlation has been found between physical impairment and BCI performance, indicating that performance worsens as impairment increases. Seven patients were in the complete locked-in state (CLIS) with no communication possible. After removal of these patients from the analysis, the relationship between physical impairment and BCI performance disappeared. The lack of a relation between physical impairment and BCI performance was confirmed when adding BCI data of patients from other BCI research groups. Conclusions Basic communication (yes/no) was not restored in any of the CLIS patients with a BCI. Whether locked-in patients can transfer learned brain control to the CLIS remains an open empirical question. Significance Voluntary brain regulation for communication is possible in all stages of paralysis except the CLIS. PMID:18824406

  11. Framework and implementation for improving physics essential skills via computer-based practice: Vector math

    NASA Astrophysics Data System (ADS)

    Mikula, Brendon D.; Heckler, Andrew F.

    2017-06-01

    We propose a framework for improving accuracy, fluency, and retention of basic skills essential for solving problems relevant to STEM introductory courses, and implement the framework for the case of basic vector math skills over several semesters in an introductory physics course. Using an iterative development process, the framework begins with a careful identification of target skills and the study of specific student difficulties with these skills. It then employs computer-based instruction, immediate feedback, mastery grading, and well-researched principles from cognitive psychology such as interleaved training sequences and distributed practice. We implemented this with more than 1500 students over 2 semesters. Students completed the mastery practice for an average of about 13 min /week , for a total of about 2-3 h for the whole semester. Results reveal large (>1 SD ) pretest to post-test gains in accuracy in vector skills, even compared to a control group, and these gains were retained at least 2 months after practice. We also find evidence of improved fluency, student satisfaction, and that awarding regular course credit results in higher participation and higher learning gains than awarding extra credit. In all, we find that simple computer-based mastery practice is an effective and efficient way to improve a set of basic and essential skills for introductory physics.

  12. The Mental Activity and eXercise (MAX) trial: Effects on physical function and quality of life among older adults with cognitive complaints.

    PubMed

    Middleton, Laura E; Ventura, Maria I; Santos-Modesitt, Wendy; Poelke, Gina; Yaffe, Kristine; Barnes, Deborah E

    2018-01-01

    Older adults with cognitive complaints are vulnerable to dementia, physical impairments, and poor quality of life. Exercise and mental activity may improve physical function and health-related quality of life (HRQOL) but combinations have not been investigated systematically. The Mental Activity and eXercise (MAX) trial found that mental activity plus exercise over 12weeks improved cognitive function (primary outcome) in sedentary older adults with cognitive complaints. To investigate the effects of combinations of two mental activity and exercise programs on physical function and HRQOL (secondary outcomes). Participants (n=126, age 73±6years, 65% women) were randomized to 12weeks of exercise (aerobic exercise or stretching/toning, 3×60min/week) plus mental activity (computer-based cognitive training or educational DVDs, 3×60min/week) using a factorial design. Assessments included the Senior Fitness Test (physical function), Short Form-12 physical and mental sub-scales (HRQOL), and CHAMPS questionnaire (physical activity). There were no differences between groups at baseline (p>0.05). We observed improvements over time in most physical function measures [chair stands (p-for-time=0.001), arm curls (p-for-time<0.001), step test (p-for-time=0.003), sit & reach (p-for-time=0.01), and back scratch (p-for-time=0.04)] and in physical HRQOL (p-for-time=0.04). There were no differences in change between groups (group∗time p>0.05). Changes in most physical function measures and physical HRQOL correlated with physical activity changes. Combined mental activity and exercise interventions of various types can improve both physical function and physical HRQOL among sedentary older adults with cognitive complaints. Exercise control group design should be carefully considered as even light exercise may induce benefits in vulnerable older adults. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Effect of affordable technology on physical activity levels and mobility outcomes in rehabilitation: a protocol for the Activity and MObility UsiNg Technology (AMOUNT) rehabilitation trial.

    PubMed

    Hassett, Leanne; van den Berg, Maayken; Lindley, Richard I; Crotty, Maria; McCluskey, Annie; van der Ploeg, Hidde P; Smith, Stuart T; Schurr, Karl; Killington, Maggie; Bongers, Bert; Howard, Kirsten; Heritier, Stephane; Togher, Leanne; Hackett, Maree; Treacy, Daniel; Dorsch, Simone; Wong, Siobhan; Scrivener, Katharine; Chagpar, Sakina; Weber, Heather; Pearson, Ross; Sherrington, Catherine

    2016-06-06

    People with mobility limitations can benefit from rehabilitation programmes that provide a high dose of exercise. However, since providing a high dose of exercise is logistically challenging and resource-intensive, people in rehabilitation spend most of the day inactive. This trial aims to evaluate the effect of the addition of affordable technology to usual care on physical activity and mobility in people with mobility limitations admitted to inpatient aged and neurological rehabilitation units compared to usual care alone. A pragmatic, assessor blinded, parallel-group randomised trial recruiting 300 consenting rehabilitation patients with reduced mobility will be conducted. Participants will be individually randomised to intervention or control groups. The intervention group will receive technology-based exercise to target mobility and physical activity problems for 6 months. The technology will include the use of video and computer games/exercises and tablet applications as well as activity monitors. The control group will not receive any additional intervention and both groups will receive usual inpatient and outpatient rehabilitation care over the 6-month study period. The coprimary outcomes will be objectively assessed physical activity (proportion of the day spent upright) and mobility (Short Physical Performance Battery) at 6 months after randomisation. Secondary outcomes will include: self-reported and objectively assessed physical activity, mobility, cognition, activity performance and participation, utility-based quality of life, balance confidence, technology self-efficacy, falls and service utilisation. Linear models will assess the effect of group allocation for each continuously scored outcome measure with baseline scores entered as a covariate. Fall rates between groups will be compared using negative binomial regression. Primary analyses will be preplanned, conducted while masked to group allocation and use an intention-to-treat approach. The protocol has been approved by the relevant Human Research Ethics Committees and the results will be disseminated widely through peer-reviewed publication and conference presentations. ACTRN12614000936628. Pre-results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  14. A comparison between three electronic media and in-person learning for continuing education in physical rehabilitation.

    PubMed

    Lemaire, Edward; Greene, G

    2003-01-01

    We produced continuing education material in physical rehabilitation using a variety of electronic media. We compared four methods of delivering the learning modules: in person with a computer projector, desktop videoconferencing, Web pages and CD-ROM. Health-care workers at eight community hospitals and two nursing homes were asked to participate in the project. A total of 394 questionnaires were received for all modalities: 73 for in-person sessions, 50 for desktop conferencing, 227 for Web pages and 44 for CD-ROM. This represents a 100% response rate from the in-person, desktop conferencing and CD-ROM groups; the response rate for the Web group is unknown, since the questionnaires were completed online. Almost all participants found the modules to be helpful in their work. The CD-ROM group gave significantly higher ratings than the Web page group, although all four learning modalities received high ratings. A combination of all four modalities would be required to provide the best possible learning opportunity.

  15. Summary Report of Working Group 2: Computation

    NASA Astrophysics Data System (ADS)

    Stoltz, P. H.; Tsung, R. S.

    2009-01-01

    The working group on computation addressed three physics areas: (i) plasma-based accelerators (laser-driven and beam-driven), (ii) high gradient structure-based accelerators, and (iii) electron beam sources and transport [1]. Highlights of the talks in these areas included new models of breakdown on the microscopic scale, new three-dimensional multipacting calculations with both finite difference and finite element codes, and detailed comparisons of new electron gun models with standard models such as PARMELA. The group also addressed two areas of advances in computation: (i) new algorithms, including simulation in a Lorentz-boosted frame that can reduce computation time orders of magnitude, and (ii) new hardware architectures, like graphics processing units and Cell processors that promise dramatic increases in computing power. Highlights of the talks in these areas included results from the first large-scale parallel finite element particle-in-cell code (PIC), many order-of-magnitude speedup of, and details of porting the VPIC code to the Roadrunner supercomputer. The working group featured two plenary talks, one by Brian Albright of Los Alamos National Laboratory on the performance of the VPIC code on the Roadrunner supercomputer, and one by David Bruhwiler of Tech-X Corporation on recent advances in computation for advanced accelerators. Highlights of the talk by Albright included the first one trillion particle simulations, a sustained performance of 0.3 petaflops, and an eight times speedup of science calculations, including back-scatter in laser-plasma interaction. Highlights of the talk by Bruhwiler included simulations of 10 GeV accelerator laser wakefield stages including external injection, new developments in electromagnetic simulations of electron guns using finite difference and finite element approaches.

  16. Summary Report of Working Group 2: Computation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoltz, P. H.; Tsung, R. S.

    2009-01-22

    The working group on computation addressed three physics areas: (i) plasma-based accelerators (laser-driven and beam-driven), (ii) high gradient structure-based accelerators, and (iii) electron beam sources and transport [1]. Highlights of the talks in these areas included new models of breakdown on the microscopic scale, new three-dimensional multipacting calculations with both finite difference and finite element codes, and detailed comparisons of new electron gun models with standard models such as PARMELA. The group also addressed two areas of advances in computation: (i) new algorithms, including simulation in a Lorentz-boosted frame that can reduce computation time orders of magnitude, and (ii) newmore » hardware architectures, like graphics processing units and Cell processors that promise dramatic increases in computing power. Highlights of the talks in these areas included results from the first large-scale parallel finite element particle-in-cell code (PIC), many order-of-magnitude speedup of, and details of porting the VPIC code to the Roadrunner supercomputer. The working group featured two plenary talks, one by Brian Albright of Los Alamos National Laboratory on the performance of the VPIC code on the Roadrunner supercomputer, and one by David Bruhwiler of Tech-X Corporation on recent advances in computation for advanced accelerators. Highlights of the talk by Albright included the first one trillion particle simulations, a sustained performance of 0.3 petaflops, and an eight times speedup of science calculations, including back-scatter in laser-plasma interaction. Highlights of the talk by Bruhwiler included simulations of 10 GeV accelerator laser wakefield stages including external injection, new developments in electromagnetic simulations of electron guns using finite difference and finite element approaches.« less

  17. High Energy Density Physics and Exotic Acceleration Schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowan, T.; /General Atomics, San Diego; Colby, E.

    2005-09-27

    The High Energy Density and Exotic Acceleration working group took as our goal to reach beyond the community of plasma accelerator research with its applications to high energy physics, to promote exchange with other disciplines which are challenged by related and demanding beam physics issues. The scope of the group was to cover particle acceleration and beam transport that, unlike other groups at AAC, are not mediated by plasmas or by electromagnetic structures. At this Workshop, we saw an impressive advancement from years past in the area of Vacuum Acceleration, for example with the LEAP experiment at Stanford. And wemore » saw an influx of exciting new beam physics topics involving particle propagation inside of solid-density plasmas or at extremely high charge density, particularly in the areas of laser acceleration of ions, and extreme beams for fusion energy research, including Heavy-ion Inertial Fusion beam physics. One example of the importance and extreme nature of beam physics in HED research is the requirement in the Fast Ignitor scheme of inertial fusion to heat a compressed DT fusion pellet to keV temperatures by injection of laser-driven electron or ion beams of giga-Amp current. Even in modest experiments presently being performed on the laser-acceleration of ions from solids, mega-amp currents of MeV electrons must be transported through solid foils, requiring almost complete return current neutralization, and giving rise to a wide variety of beam-plasma instabilities. As keynote talks our group promoted Ion Acceleration (plenary talk by A. MacKinnon), which historically has grown out of inertial fusion research, and HIF Accelerator Research (invited talk by A. Friedman), which will require impressive advancements in space-charge-limited ion beam physics and in understanding the generation and transport of neutralized ion beams. A unifying aspect of High Energy Density applications was the physics of particle beams inside of solids, which is proving to be a very important field for diverse applications such as muon cooling, fusion energy research, and ultra-bright particle and radiation generation with high intensity lasers. We had several talks on these and other subjects, and many joint sessions with the Computational group, the EM Structures group, and the Beam Generation group. We summarize our groups' work in the following categories: vacuum acceleration schemes; ion acceleration; particle transport in solids; and applications to high energy density phenomena.« less

  18. TaylorActive--Examining the effectiveness of web-based personally-tailored videos to increase physical activity: a randomised controlled trial protocol.

    PubMed

    Vandelanotte, C; Short, C; Plotnikoff, R C; Hooker, C; Canoy, D; Rebar, A; Alley, S; Schoeppe, S; Mummery, W K; Duncan, M J

    2015-10-05

    Physical inactivity levels are unacceptably high and effective interventions that can increase physical activity in large populations at low cost are urgently needed. Web-based interventions that use computer-tailoring have shown to be effective, though people tend to 'skim' and 'scan' text on the Internet rather than thoroughly read it. The use of online videos is, however, popular and engaging. Therefore, the aim of this 3-group randomised controlled trial is to examine whether a web-based physical activity intervention that provides personally-tailored videos is more effective when compared with traditional personally-tailored text-based intervention and a control group. In total 510 Australians will be recruited through social media advertisements, e-mail and third party databases. Participants will be randomised to one of three groups: text-tailored, video-tailored, or control. All groups will gain access to the same web-based platform and a library containing brief physical activity articles. The text-tailored group will additionally have access to 8 sessions of personalised physical activity advice that is instantaneously generated based on responses to brief online surveys. The theory-based advice will be provided over a period of 3 months and address constructs such as self-efficacy, motivation, goal setting, intentions, social support, attitudes, barriers, outcome expectancies, relapse prevention and feedback on performance. Text-tailored participants will also be able to complete 7 action plans to help them plan what, when, where, who with, and how they will become more active. Participants in the video-tailored group will gain access to the same intervention content as those in the text-tailored group, however all sessions will be provided as personalised videos rather than text on a webpage. The control group will only gain access to the library with generic physical activity articles. The primary outcome is objectively measured physical activity. Secondary outcomes include website engagement and retention, quality of life, depression, anxiety, stress, sitting time, sleep and psychosocial correlates of physical activity. Outcomes will be measured at baseline, 3, and 9 months. This study presents an ideal opportunity to study the effectiveness of an isolated feature within a web-based physical activity intervention and the knowledge generated from this study will help to increase intervention effectiveness. Australian New-Zealand Clinical Trial Registry: ACTRN12615000057583 . Registered 22 January 2015. CQUniversity Ethics Project Number: H14/07-163.

  19. Prevalence of obesity and associated risk factors among adolescents in Ankara, Turkey.

    PubMed

    Ercan, Sırma; Dallar, Yıldız Bilge; Önen, Serdar; Engiz, Özlem

    2012-12-01

    The purpose of this study was to investigate the prevalence of and the risk factors associated with obesity among adolescents in Ankara, Turkey. The study was conducted in 26 schools in Ankara during the time period from September 2010 to March 2011. A total of 8848 adolescents aged 11-18 years were chosen using a population-based stratified cluster sampling method. Body mass index (BMI) of the participants was compared with the BMI references for Turkish children and adolescents to estimate the prevalence of overweight and obesity. A standardized questionnaire aiming to determine the sociodemographic characteristics, computer use, television (TV) watching, physical activity, and presence of obesity in the family was applied to the study group. The results showed that the overall prevalence of obesity among adolescents was 7.7% (8.4 % for females and 7.0% for males). It was observed that BMI increased as computer use increased. A greater proportion of the overweight and obese adolescents watched TV and use computer for more than 2 hours/day as compared to their normal-weight counterparts. The normal-weight subjects were found to show a higher participation in regular physical activity. Obesity prevalence among the families of obese adolescents was 56.5%. The prevalence of adolescent obesity in Ankara, Turkey is lower as compared to many European countries and to the United States. Computer use, watching TV, physical activity and family factors are important risk factors for obesity.

  20. Prevalence of Obesity and Associated Risk Factors Among Adolescents in Ankara, Turkey

    PubMed Central

    Ercan, Sırma; Dallar, Yıldız Bilge; Önen, Serdar; Engiz, Özlem

    2012-01-01

    Objective: The purpose of this study was to investigate the prevalence of and the risk factors associated with obesity among adolescents in Ankara, Turkey. Methods: The study was conducted in 26 schools in Ankara during the time period from September 2010 to March 2011. A total of 8848 adolescents aged 11-18 years were chosen using a population-based stratified cluster sampling method. Body mass index (BMI) of the participants was compared with the BMI references for Turkish children and adolescents to estimate the prevalence of overweight and obesity. A standardized questionnaire aiming to determine the sociodemographic characteristics, computer use, television (TV) watching, physical activity, and presence of obesity in the family was applied to the study group. Results: The results showed that the overall prevalence of obesity among adolescents was 7.7% (8.4 % for females and 7.0% for males). It was observed that BMI increased as computer use increased. A greater proportion of the overweight and obese adolescents watched TV and use computer for more than 2 hours/day as compared to their normal-weight counterparts. The normal-weight subjects were found to show a higher participation in regular physical activity. Obesity prevalence among the families of obese adolescents was 56.5%. Conclusions: The prevalence of adolescent obesity in Ankara, Turkey is lower as compared to many European countries and to the United States. Computer use, watching TV, physical activity and family factors are important risk factors for obesity. Conflict of interest:None declared. PMID:23149433

  1. PREFACE: New trends in Computer Simulations in Physics and not only in physics

    NASA Astrophysics Data System (ADS)

    Shchur, Lev N.; Krashakov, Serge A.

    2016-02-01

    In this volume we have collected papers based on the presentations given at the International Conference on Computer Simulations in Physics and beyond (CSP2015), held in Moscow, September 6-10, 2015. We hope that this volume will be helpful and scientifically interesting for readers. The Conference was organized for the first time with the common efforts of the Moscow Institute for Electronics and Mathematics (MIEM) of the National Research University Higher School of Economics, the Landau Institute for Theoretical Physics, and the Science Center in Chernogolovka. The name of the Conference emphasizes the multidisciplinary nature of computational physics. Its methods are applied to the broad range of current research in science and society. The choice of venue was motivated by the multidisciplinary character of the MIEM. It is a former independent university, which has recently become the part of the National Research University Higher School of Economics. The Conference Computer Simulations in Physics and beyond (CSP) is planned to be organized biannually. This year's Conference featured 99 presentations, including 21 plenary and invited talks ranging from the analysis of Irish myths with recent methods of statistical physics, to computing with novel quantum computers D-Wave and D-Wave2. This volume covers various areas of computational physics and emerging subjects within the computational physics community. Each section was preceded by invited talks presenting the latest algorithms and methods in computational physics, as well as new scientific results. Both parallel and poster sessions paid special attention to numerical methods, applications and results. For all the abstracts presented at the conference please follow the link http://csp2015.ac.ru/files/book5x.pdf

  2. Nonlinear dynamics as an engine of computation.

    PubMed

    Kia, Behnam; Lindner, John F; Ditto, William L

    2017-03-06

    Control of chaos teaches that control theory can tame the complex, random-like behaviour of chaotic systems. This alliance between control methods and physics-cybernetical physics-opens the door to many applications, including dynamics-based computing. In this article, we introduce nonlinear dynamics and its rich, sometimes chaotic behaviour as an engine of computation. We review our work that has demonstrated how to compute using nonlinear dynamics. Furthermore, we investigate the interrelationship between invariant measures of a dynamical system and its computing power to strengthen the bridge between physics and computation.This article is part of the themed issue 'Horizons of cybernetical physics'. © 2017 The Author(s).

  3. Automated Ecological Assessment of Physical Activity: Advancing Direct Observation.

    PubMed

    Carlson, Jordan A; Liu, Bo; Sallis, James F; Kerr, Jacqueline; Hipp, J Aaron; Staggs, Vincent S; Papa, Amy; Dean, Kelsey; Vasconcelos, Nuno M

    2017-12-01

    Technological advances provide opportunities for automating direct observations of physical activity, which allow for continuous monitoring and feedback. This pilot study evaluated the initial validity of computer vision algorithms for ecological assessment of physical activity. The sample comprised 6630 seconds per camera (three cameras in total) of video capturing up to nine participants engaged in sitting, standing, walking, and jogging in an open outdoor space while wearing accelerometers. Computer vision algorithms were developed to assess the number and proportion of people in sedentary, light, moderate, and vigorous activity, and group-based metabolic equivalents of tasks (MET)-minutes. Means and standard deviations (SD) of bias/difference values, and intraclass correlation coefficients (ICC) assessed the criterion validity compared to accelerometry separately for each camera. The number and proportion of participants sedentary and in moderate-to-vigorous physical activity (MVPA) had small biases (within 20% of the criterion mean) and the ICCs were excellent (0.82-0.98). Total MET-minutes were slightly underestimated by 9.3-17.1% and the ICCs were good (0.68-0.79). The standard deviations of the bias estimates were moderate-to-large relative to the means. The computer vision algorithms appeared to have acceptable sample-level validity (i.e., across a sample of time intervals) and are promising for automated ecological assessment of activity in open outdoor settings, but further development and testing is needed before such tools can be used in a diverse range of settings.

  4. Automated Ecological Assessment of Physical Activity: Advancing Direct Observation

    PubMed Central

    Carlson, Jordan A.; Liu, Bo; Sallis, James F.; Kerr, Jacqueline; Papa, Amy; Dean, Kelsey; Vasconcelos, Nuno M.

    2017-01-01

    Technological advances provide opportunities for automating direct observations of physical activity, which allow for continuous monitoring and feedback. This pilot study evaluated the initial validity of computer vision algorithms for ecological assessment of physical activity. The sample comprised 6630 seconds per camera (three cameras in total) of video capturing up to nine participants engaged in sitting, standing, walking, and jogging in an open outdoor space while wearing accelerometers. Computer vision algorithms were developed to assess the number and proportion of people in sedentary, light, moderate, and vigorous activity, and group-based metabolic equivalents of tasks (MET)-minutes. Means and standard deviations (SD) of bias/difference values, and intraclass correlation coefficients (ICC) assessed the criterion validity compared to accelerometry separately for each camera. The number and proportion of participants sedentary and in moderate-to-vigorous physical activity (MVPA) had small biases (within 20% of the criterion mean) and the ICCs were excellent (0.82–0.98). Total MET-minutes were slightly underestimated by 9.3–17.1% and the ICCs were good (0.68–0.79). The standard deviations of the bias estimates were moderate-to-large relative to the means. The computer vision algorithms appeared to have acceptable sample-level validity (i.e., across a sample of time intervals) and are promising for automated ecological assessment of activity in open outdoor settings, but further development and testing is needed before such tools can be used in a diverse range of settings. PMID:29194358

  5. Spin wave Feynman diagram vertex computation package

    NASA Astrophysics Data System (ADS)

    Price, Alexander; Javernick, Philip; Datta, Trinanjan

    Spin wave theory is a well-established theoretical technique that can correctly predict the physical behavior of ordered magnetic states. However, computing the effects of an interacting spin wave theory incorporating magnons involve a laborious by hand derivation of Feynman diagram vertices. The process is tedious and time consuming. Hence, to improve productivity and have another means to check the analytical calculations, we have devised a Feynman Diagram Vertex Computation package. In this talk, we will describe our research group's effort to implement a Mathematica based symbolic Feynman diagram vertex computation package that computes spin wave vertices. Utilizing the non-commutative algebra package NCAlgebra as an add-on to Mathematica, symbolic expressions for the Feynman diagram vertices of a Heisenberg quantum antiferromagnet are obtained. Our existing code reproduces the well-known expressions of a nearest neighbor square lattice Heisenberg model. We also discuss the case of a triangular lattice Heisenberg model where non collinear terms contribute to the vertex interactions.

  6. Comparing the cognitive differences resulting from modeling instruction: Using computer microworld and physical object instruction to model real world problems

    NASA Astrophysics Data System (ADS)

    Oursland, Mark David

    This study compared the modeling achievement of students receiving mathematical modeling instruction using the computer microworld, Interactive Physics, and students receiving instruction using physical objects. Modeling instruction included activities where students applied the (a) linear model to a variety of situations, (b) linear model to two-rate situations with a constant rate, (c) quadratic model to familiar geometric figures. Both quantitative and qualitative methods were used to analyze achievement differences between students (a) receiving different methods of modeling instruction, (b) with different levels of beginning modeling ability, or (c) with different levels of computer literacy. Student achievement was analyzed quantitatively through a three-factor analysis of variance where modeling instruction, beginning modeling ability, and computer literacy were used as the three independent factors. The SOLO (Structure of the Observed Learning Outcome) assessment framework was used to design written modeling assessment instruments to measure the students' modeling achievement. The same three independent factors were used to collect and analyze the interviews and observations of student behaviors. Both methods of modeling instruction used the data analysis approach to mathematical modeling. The instructional lessons presented problem situations where students were asked to collect data, analyze the data, write a symbolic mathematical equation, and use equation to solve the problem. The researcher recommends the following practice for modeling instruction based on the conclusions of this study. A variety of activities with a common structure are needed to make explicit the modeling process of applying a standard mathematical model. The modeling process is influenced strongly by prior knowledge of the problem context and previous modeling experiences. The conclusions of this study imply that knowledge of the properties about squares improved the students' ability to model a geometric problem more than instruction in data analysis modeling. The uses of computer microworlds such as Interactive Physics in conjunction with cooperative groups are a viable method of modeling instruction.

  7. Combined influence of healthy diet and active lifestyle on cardiovascular disease risk factors in adolescents.

    PubMed

    Cuenca-García, M; Ortega, F B; Ruiz, J R; González-Gross, M; Labayen, I; Jago, R; Martínez-Gómez, D; Dallongeville, J; Bel-Serrat, S; Marcos, A; Manios, Y; Breidenassel, C; Widhalm, K; Gottrand, F; Ferrari, M; Kafatos, A; Molnár, D; Moreno, L A; De Henauw, S; Castillo, M J; Sjöström, M

    2014-06-01

    To investigate the combined influence of diet quality and physical activity on cardiovascular disease (CVD) risk factors in adolescents, adolescents (n = 1513; 12.5-17.5 years) participating in the Healthy Lifestyle in Europe by Nutrition in Adolescence study were studied. Dietary intake was registered using a 24-h recall and a diet quality index was calculated. Physical activity was assessed by accelerometry. Lifestyle groups were computed as: healthy diet and active, unhealthy diet but active, healthy diet but inactive, and unhealthy diet and inactive. CVD risk factor measurements included cardiorespiratory fitness, adiposity indicators, blood lipid profile, blood pressure, and insulin resistance. A CVD risk score was computed. The healthy diet and active group had a healthier cardiorespiratory profile, fat mass index (FMI), triglycerides, and high-density lipoprotein cholesterol (HDL-C) levels and total cholesterol (TC)/HDL-C ratio (all P ≤ 0.05). Overall, active adolescents showed higher cardiorespiratory fitness, lower FMI, TC/HDL-C ratio, and homeostasis model assessment index and healthier blood pressure than their inactive peers with either healthy or unhealthy diet (all P ≤ 0.05). Healthy diet and active group had healthier CVD risk score compared with the inactive groups (all P ≤ 0.02). Thus, a combination of healthy diet and active lifestyle is associated with decreased CVD risk in adolescents. Moreover, an active lifestyle may reduce the adverse consequences of an unhealthy diet. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Quality of Life and Fitness in Children and Adolescents with Epilepsy (EpiFit).

    PubMed

    Rauchenzauner, Markus; Hagn, Claudia; Walch, Romana; Baumann, Matthias; Haberlandt, Edda; Frühwirth, Martin; Rostasy, Kevin

    2017-06-01

    Objective  The objective of this study was to evaluate the correlation between fitness and health-related quality of life (HRQoL) in children with idiopathic epilepsy compared with a healthy matched control group. Methods  In this study, 107 children conducted a 6-minute walk test, anthropometric parameters were measured, and HRQoL was assessed using a standardized questionnaire (KINDL-R). Children were divided into two groups: (1) the patient group ( n  = 48) and (2) the healthy control group ( n  = 59). Results  HRQoL of children with focal epilepsy was greater when compared with healthy children and children with generalized epilepsy. A significant association could be demonstrated for the 6-minute walk distance and mental wellbeing in children with epilepsy but not in healthy children. Furthermore, a negative correlation between the HRQoL and the amount of time spent in front of TV and computer in children with epilepsy and healthy children was seen. In children with focal epilepsy, a significant negative correlation could be shown between school sport and mental wellbeing as well as between school sport and self-esteem. Conclusion  HRQoL in children with idiopathic epilepsy is significantly associated with physical fitness and might be positively influenced by an adequate education of patients and parents, a reduction of consumption of computer and TV in combination with age- and disease-adapted physical activity and sports. Georg Thieme Verlag KG Stuttgart · New York.

  9. The CP-PACS parallel computer

    NASA Astrophysics Data System (ADS)

    Ukawa, Akira

    1998-05-01

    The CP-PACS computer is a massively parallel computer consisting of 2048 processing units and having a peak speed of 614 GFLOPS and 128 GByte of main memory. It was developed over the four years from 1992 to 1996 at the Center for Computational Physics, University of Tsukuba, for large-scale numerical simulations in computational physics, especially those of lattice QCD. The CP-PACS computer has been in full operation for physics computations since October 1996. In this article we describe the chronology of the development, the hardware and software characteristics of the computer, and its performance for lattice QCD simulations.

  10. News | Computing

    Science.gov Websites

    Support News Publications Computing for Experiments Computing for Neutrino and Muon Physics Computing for Collider Experiments Computing for Astrophysics Research and Development Accelerator Modeling ComPASS - Impact of Detector Simulation on Particle Physics Collider Experiments Daniel Elvira's paper "Impact

  11. Dynamic provisioning of a HEP computing infrastructure on a shared hybrid HPC system

    NASA Astrophysics Data System (ADS)

    Meier, Konrad; Fleig, Georg; Hauth, Thomas; Janczyk, Michael; Quast, Günter; von Suchodoletz, Dirk; Wiebelt, Bernd

    2016-10-01

    Experiments in high-energy physics (HEP) rely on elaborate hardware, software and computing systems to sustain the high data rates necessary to study rare physics processes. The Institut fr Experimentelle Kernphysik (EKP) at KIT is a member of the CMS and Belle II experiments, located at the LHC and the Super-KEKB accelerators, respectively. These detectors share the requirement, that enormous amounts of measurement data must be processed and analyzed and a comparable amount of simulated events is required to compare experimental results with theoretical predictions. Classical HEP computing centers are dedicated sites which support multiple experiments and have the required software pre-installed. Nowadays, funding agencies encourage research groups to participate in shared HPC cluster models, where scientist from different domains use the same hardware to increase synergies. This shared usage proves to be challenging for HEP groups, due to their specialized software setup which includes a custom OS (often Scientific Linux), libraries and applications. To overcome this hurdle, the EKP and data center team of the University of Freiburg have developed a system to enable the HEP use case on a shared HPC cluster. To achieve this, an OpenStack-based virtualization layer is installed on top of a bare-metal cluster. While other user groups can run their batch jobs via the Moab workload manager directly on bare-metal, HEP users can request virtual machines with a specialized machine image which contains a dedicated operating system and software stack. In contrast to similar installations, in this hybrid setup, no static partitioning of the cluster into a physical and virtualized segment is required. As a unique feature, the placement of the virtual machine on the cluster nodes is scheduled by Moab and the job lifetime is coupled to the lifetime of the virtual machine. This allows for a seamless integration with the jobs sent by other user groups and honors the fairshare policies of the cluster. The developed thin integration layer between OpenStack and Moab can be adapted to other batch servers and virtualization systems, making the concept also applicable for other cluster operators. This contribution will report on the concept and implementation of an OpenStack-virtualized cluster used for HEP workflows. While the full cluster will be installed in spring 2016, a test-bed setup with 800 cores has been used to study the overall system performance and dedicated HEP jobs were run in a virtualized environment over many weeks. Furthermore, the dynamic integration of the virtualized worker nodes, depending on the workload at the institute's computing system, will be described.

  12. Algorithmic-Reducibility = Renormalization-Group Fixed-Points; ``Noise''-Induced Phase-Transitions (NITs) to Accelerate Algorithmics (``NIT-Picking'') Replacing CRUTCHES!!!: Gauss Modular/Clock-Arithmetic Congruences = Signal X Noise PRODUCTS..

    NASA Astrophysics Data System (ADS)

    Siegel, J.; Siegel, Edward Carl-Ludwig

    2011-03-01

    Cook-Levin computational-"complexity"(C-C) algorithmic-equivalence reduction-theorem reducibility equivalence to renormalization-(semi)-group phase-transitions critical-phenomena statistical-physics universality-classes fixed-points, is exploited with Gauss modular/clock-arithmetic/model congruences = signal X noise PRODUCT reinterpretation. Siegel-Baez FUZZYICS=CATEGORYICS(SON of ``TRIZ''): Category-Semantics(C-S) tabular list-format truth-table matrix analytics predicts and implements "noise"-induced phase-transitions (NITs) to accelerate versus to decelerate Harel [Algorithmics(1987)]-Sipser[Intro. Theory Computation(1997) algorithmic C-C: "NIT-picking" to optimize optimization-problems optimally(OOPO). Versus iso-"noise" power-spectrum quantitative-only amplitude/magnitude-only variation stochastic-resonance, this "NIT-picking" is "noise" power-spectrum QUALitative-type variation via quantitative critical-exponents variation. Computer-"science" algorithmic C-C models: Turing-machine, finite-state-models/automata, are identified as early-days once-workable but NOW ONLY LIMITING CRUTCHES IMPEDING latter-days new-insights!!!

  13. Using mHealth Technology in a Self-Management Intervention to Promote Physical Activity Among Adults With Chronic Disabling Conditions: Randomized Controlled Trial.

    PubMed

    Plow, Matthew; Golding, Meghan

    2017-12-01

    Physical activity is considered a comprehensive approach for managing limitations in physical function among adults with chronic disabling conditions. However, adults with chronic disabling conditions often face many barriers to engaging in physical activity. A strategy to promote physical activity among adults with chronic disabling conditions is to encourage the use of mobile health (mHealth) apps. The objective of this pilot study was to examine the potential benefits of using commercially available mHealth apps in a self-management intervention among 46 adults with musculoskeletal or neurological conditions. Participants were randomized to one of 3 intervention groups: (1) mHealth-based self-management intervention, (2) paper-based self-management intervention, and (3) contact-control intervention. Participants in all 3 groups met in person once and received 3 follow-up phone calls with a trained graduate assistant. Participants in the mHealth-based and paper-based groups received a computer tablet or a paper diary, respectively, to facilitate goal setting, self-monitoring, and action planning. Participants in the contact-control group received information on healthy behaviors without being taught skills to change behaviors. The following outcomes were measured at baseline and at the 7th week: physical activity (Physical Activity and Disability Survey-revised), psychosocial factors (self-efficacy, self-regulation, and social support), and physical function (Patient Report Outcomes Measurement Information System, 6-min walk test, 1-min chair stands, and 1-min arm curls). Repeated-measures multivariate analysis of variance (MANOVA) indicated significant differences between groups in physical activity levels (Wilks λ=0.71, F 6,76 =2.34, P=.04). Both the mHealth-based and paper-based groups had large effect size increases in planned exercise and leisure-time physical activity compared with the contact-control group (Cohen d=1.20 and d=0.82, respectively). Repeated-measures MANOVA indicated nonsignificant differences between groups in psychosocial factors (Wilks λ=0.85, F 6,76 =1.10, P=.37). However, both the mHealth-based and paper-based groups had moderate effect size improvements in self-efficacy (d=0.48 and d=0.75, respectively) and self-regulation (d=0.59 and d=0.43, respectively) compared with the contact-control group. Repeated-measures MANOVA indicated nonsignificant differences between groups in physical function (Wilks λ=0.94, F 8,66 =0.27, P=.97). There were small and nonsignificant changes between the mHealth-based and paper-based groups with regard to most outcomes. However, the mHealth-based group had moderate effect size increases (d=0.47) in planned exercise and leisure-time physical activity compared with the paper-based group. We found that using commercially available mHealth apps in a self-management intervention shows promise in promoting physical activity among adults with musculoskeletal and neurological conditions. Further research is needed to identify the best ways of using commercially available mobile apps in self-management interventions. Clinicaltrials.gov NCT02833311; https://clinicaltrials.gov/ct2/show/NCT02833311 (Archived by WebCite at http://www.webcitation.org/6vDVSAw1w). ©Matthew Plow, Meghan Golding. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 01.12.2017.

  14. Effect of affordable technology on physical activity levels and mobility outcomes in rehabilitation: a protocol for the Activity and MObility UsiNg Technology (AMOUNT) rehabilitation trial

    PubMed Central

    Hassett, Leanne; van den Berg, Maayken; Lindley, Richard I; Crotty, Maria; McCluskey, Annie; van der Ploeg, Hidde P; Smith, Stuart T; Schurr, Karl; Killington, Maggie; Bongers, Bert; Howard, Kirsten; Heritier, Stephane; Togher, Leanne; Hackett, Maree; Treacy, Daniel; Dorsch, Simone; Wong, Siobhan; Scrivener, Katharine; Chagpar, Sakina; Weber, Heather; Pearson, Ross; Sherrington, Catherine

    2016-01-01

    Introduction People with mobility limitations can benefit from rehabilitation programmes that provide a high dose of exercise. However, since providing a high dose of exercise is logistically challenging and resource-intensive, people in rehabilitation spend most of the day inactive. This trial aims to evaluate the effect of the addition of affordable technology to usual care on physical activity and mobility in people with mobility limitations admitted to inpatient aged and neurological rehabilitation units compared to usual care alone. Methods and analysis A pragmatic, assessor blinded, parallel-group randomised trial recruiting 300 consenting rehabilitation patients with reduced mobility will be conducted. Participants will be individually randomised to intervention or control groups. The intervention group will receive technology-based exercise to target mobility and physical activity problems for 6 months. The technology will include the use of video and computer games/exercises and tablet applications as well as activity monitors. The control group will not receive any additional intervention and both groups will receive usual inpatient and outpatient rehabilitation care over the 6-month study period. The coprimary outcomes will be objectively assessed physical activity (proportion of the day spent upright) and mobility (Short Physical Performance Battery) at 6 months after randomisation. Secondary outcomes will include: self-reported and objectively assessed physical activity, mobility, cognition, activity performance and participation, utility-based quality of life, balance confidence, technology self-efficacy, falls and service utilisation. Linear models will assess the effect of group allocation for each continuously scored outcome measure with baseline scores entered as a covariate. Fall rates between groups will be compared using negative binomial regression. Primary analyses will be preplanned, conducted while masked to group allocation and use an intention-to-treat approach. Ethics and dissemination The protocol has been approved by the relevant Human Research Ethics Committees and the results will be disseminated widely through peer-reviewed publication and conference presentations. Trial registration number ACTRN12614000936628. Pre-results. PMID:27266776

  15. Automatic computation of transfer functions

    DOEpatents

    Atcitty, Stanley; Watson, Luke Dale

    2015-04-14

    Technologies pertaining to the automatic computation of transfer functions for a physical system are described herein. The physical system is one of an electrical system, a mechanical system, an electromechanical system, an electrochemical system, or an electromagnetic system. A netlist in the form of a matrix comprises data that is indicative of elements in the physical system, values for the elements in the physical system, and structure of the physical system. Transfer functions for the physical system are computed based upon the netlist.

  16. Randomized trial of amino acid mixture combined with physical activity promotion for abdominal fat reduction in overweight adults.

    PubMed

    Ueda, Keisuke; Sasai, Hiroyuki; Tsujimoto, Takehiko; Sanbongi, Chiaki; Ikegami, Shuji; Kobayashi, Hiroyuki; Shioya, Nobuhiko; Suzuki, Satoru; Nakata, Yoshio

    2018-01-01

    The purpose of this study was to test the efficacy of arginine, alanine, and phenylalanine mixture (A-mix) ingestion at 1,500 mg/day in combination with the promotion of physical activity for abdominal fat reduction in overweight adults. A placebo-controlled, double-blind, parallel-group, randomized trial for 12 weeks combined with a 4-week follow-up period was conducted at a single center in Minato-ku, Tokyo, Japan, between December 2016 and May 2017. Data were analyzed between June and August 2017. The study participants were 200 overweight adults within the age range of 20-64 years. The participants were randomly assigned to the A-mix group (n=100) or a placebo group (n=100) and were administered 500 mL of test beverage containing 1,500 or 0 mg of A-mix, respectively, for 12 weeks. All participants maintained a physically active lifestyle between week 0 and week 12 through monthly sessions of physical activity. The primary outcomes were the 12-week changes in the abdominal total, subcutaneous, and visceral fat areas, as assessed by computed tomography. Of the 200 enrolled participants, 199 (99%) accomplished the 12-week intervention and 4-week follow-up period. The per-protocol-based analysis for 194 participants demonstrated that the abdominal total fat area decreased significantly in the A-mix group compared with that in the placebo group (difference, 10.0 cm 2 ; 95% confidence interval [CI]: 0.4-19.6 cm 2 ; P =0.041). Comparable outcomes were obtained for the abdominal subcutaneous fat area (difference, 7.4 cm 2 ; 95% CI: 0.1-14.7 cm 2 ; P =0.047). No study-related unfavorable events occurred. A-mix supplementation in combination with physical activity promotion facilitated abdominal fat reduction in overweight adults.

  17. The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Martyn P.; Bierkens, Marc F. P.; Samaniego, Luis

    The diversity in hydrologic models has historically led to great controversy on the correct approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. Here, we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, provide examples of modeling advances that address these challenges, and define outstanding research needs. We also illustrate how modeling advances have been made by groups using models of different type and complexity,more » and we argue for the need to more effectively use our diversity of modeling approaches in order to advance our collective quest for physically realistic hydrologic models.« less

  18. The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism

    DOE PAGES

    Clark, Martyn P.; Bierkens, Marc F. P.; Samaniego, Luis; ...

    2017-07-11

    The diversity in hydrologic models has historically led to great controversy on the correct approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. Here, we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, provide examples of modeling advances that address these challenges, and define outstanding research needs. We also illustrate how modeling advances have been made by groups using models of different type and complexity,more » and we argue for the need to more effectively use our diversity of modeling approaches in order to advance our collective quest for physically realistic hydrologic models.« less

  19. Interventions with children and parents to improve physical activity and body mass index: a meta-analysis.

    PubMed

    Dellert, Jane Cerruti; Johnson, Portia

    2014-01-01

    Examine the effect of interventions with parents and children on children's physical activity and body mass index (BMI). Computerized searches for intervention studies published between 1990 and 2011 used multiple ProQuest databases, including unpublished dissertations and theses to minimize publication bias. English-language, intervention-testing studies of children, parents, or families with outcomes of physical activity or BMI were retrieved from peer-reviewed journals, dissertations, and theses. Eliminated studies had no control or comparison group; had no continuous outcome variable; had no physical activity/exercise and/or BMI as outcomes; or had incomplete statistics necessary for meta-analysis (means, standard deviations, or confidence intervals). Twenty-one studies met inclusion criteria. Quality criteria were control group, objective outcome variable measure, clarity of variable definitions, and number and reason for subject withdrawal. Meta-analysis on the raw difference of means estimated mean weighted effect size (MWES) assessed dispersion of effects and computed a summary effect. MWES for interventions with parents and children on physical activity (Z = 2.92; confidence interval [CI] = .09 to .48; p = .002) and on BMI for interventions with children alone (Z = -2.10; CI = -.16 to -.01; p = .02) was significant. A significant effect on physical activity but not on BMI was found when interventions included both parents and their children.

  20. Role of maternal occupational physical activity and psychosocial stressors on adverse birth outcomes.

    PubMed

    Lee, Laura J; Symanski, Elaine; Lupo, Philip J; Tinker, Sarah C; Razzaghi, Hilda; Chan, Wenyaw; Hoyt, Adrienne T; Canfield, Mark A

    2017-03-01

    We examined the association of an array of estimated maternal occupational physical activities and psychosocial stressors during pregnancy with odds for preterm birth (PTB) and small-for-gestational age (SGA). Data for infants born without major birth defects delivered from 1997 to 2009 whose mothers reported working at least 1 month during pregnancy were obtained from the National Birth Defects Prevention Study. We linked occupational codes to the US Department of Labor's Occupational Information Network, which provides estimates of exposure for multiple domains of physical activity and psychosocial stressors by occupational categories. We conducted factor analysis using principal components extraction with 17 occupational activities and calculated factor scores. ORs for PTB and SGA across quartiles of factor scores in each trimester were computed using logistic regression. Factor analysis grouped occupational domains into 4 groups based on factor loadings. These groups were 'occupational physical activity', 'interpersonal stressor', 'automated work' and 'job responsibility'. High levels of 'occupational physical activity' were significantly associated with SGA (adjusted OR (AOR) for highest quartile compared with lowest quartile of factor score: 1.36; 95% CIs 1.02 to 1.82; p for trend=0.001) and were also positively associated with PTB (AOR: 1.24; 95% CI 0.93 to 1.64; p for trend=0.01). No clear results were observed across domains of psychosocial stressors. Our findings expand understanding of associations between occupational physical activity and psychosocial stressors and PTB and SGA and suggest that additional research is needed to further examine these relationships. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  1. Education in applied and instrumental optics at the University of Helsinki

    NASA Astrophysics Data System (ADS)

    Stenman, Folke

    1997-12-01

    The teaching of applied and instrumental optics at the University of Helsinki Department of Physics originally grew out of the needs of the research group of molecular physics as a basis for the experimental work in the group. The training program starts with a one-year course for senior undergraduates and graduates comprising geometrical optics, eikonal theory, image forming components, matrix methods, optical instruments, the optics of laser beams, radiometry and photometry, ray tracing methods, optics of anisotropic media, diffraction theory, general image formation theory and Fourier optics. The course starts from fundamentals, but the mathematical level is kept adequate for serious work. Further applications are treated in courses on molecular spectroscopy, where ruled and holographic diffraction gratings (both plane and spherical), interferometric spectroscopy and imaging properties of spectral equipment are treated. Aspects of image analysis, information in optics, signal-to-noise ratio, etc. are treated in separate courses on Fourier method and digital spectral analysis. The applicability of optical techniques to various fields of physics and engineering and the analogies with them are especially brought out. Experimental and calculational and skills are stressed throughout. Computer programming is introduced as an indispensable tool for the optics practitioner, and the students are required to write programs of their own. The students gain practical experience, e.g., by working in the molecular physics group. Close cooperation is maintained with other research groups in laser physics, ultrasonics and physical chemistry. The training in optics has proved very useful, with students frequently ending up working in the industry on optics and spectroscopy problems. Parts of these courses have also been given at other universities and to engineers and scientists working in the industry.

  2. Combinatorial solutions to integrable hierarchies

    NASA Astrophysics Data System (ADS)

    Kazarian, M. E.; Lando, S. K.

    2015-06-01

    This paper reviews modern approaches to the construction of formal solutions to integrable hierarchies of mathematical physics whose coefficients are answers to various enumerative problems. The relationship between these approaches and the combinatorics of symmetric groups and their representations is explained. Applications of the results to the construction of efficient computations in problems related to models of quantum field theories are described. Bibliography: 34 titles.

  3. Management of eWork health issues: a new perspective on an old problem.

    PubMed

    Kirk, Elizabeth; Strong, Jenny

    2010-01-01

    Contact centres are vehicles for a rapidly growing group of knowledge workers, or eWorkers. Using computers and high-speed telecommunications connections as work tools, these employees spend long hours performing mentally demanding work while maintaining static, physically stressful, seated positions. The complex interplay between job demands, work environment, and individual differences combine to produce high levels of physical discomfort among eWorkers. This paper discusses a new view that has emerged, one that focuses on the management rather than the elimination of work related upper limb disorders (WRULD) and computer vision syndrome (CVS) issues that are prevalent among eWorkers. It also reviews a cultural shift among practitioners and business that moves towards a consultative process and the sharing of knowledge among all stakeholders. The controlled work conditions and large single location workforce found within contact centres provide the opportunity to understand the personal and industry cost of eWork injuries and the ability to develop and review new multifaceted interventions. Advances in training and workplace design aimed at decreasing discomfort and injury and reducing the associated economic burden may then be adapted for all eWorkforce groups.

  4. Variability of computational fluid dynamics solutions for pressure and flow in a giant aneurysm: the ASME 2012 Summer Bioengineering Conference CFD Challenge.

    PubMed

    Steinman, David A; Hoi, Yiemeng; Fahy, Paul; Morris, Liam; Walsh, Michael T; Aristokleous, Nicolas; Anayiotos, Andreas S; Papaharilaou, Yannis; Arzani, Amirhossein; Shadden, Shawn C; Berg, Philipp; Janiga, Gábor; Bols, Joris; Segers, Patrick; Bressloff, Neil W; Cibis, Merih; Gijsen, Frank H; Cito, Salvatore; Pallarés, Jordi; Browne, Leonard D; Costelloe, Jennifer A; Lynch, Adrian G; Degroote, Joris; Vierendeels, Jan; Fu, Wenyu; Qiao, Aike; Hodis, Simona; Kallmes, David F; Kalsi, Hardeep; Long, Quan; Kheyfets, Vitaly O; Finol, Ender A; Kono, Kenichi; Malek, Adel M; Lauric, Alexandra; Menon, Prahlad G; Pekkan, Kerem; Esmaily Moghadam, Mahdi; Marsden, Alison L; Oshima, Marie; Katagiri, Kengo; Peiffer, Véronique; Mohamied, Yumnah; Sherwin, Spencer J; Schaller, Jens; Goubergrits, Leonid; Usera, Gabriel; Mendina, Mariana; Valen-Sendstad, Kristian; Habets, Damiaan F; Xiang, Jianping; Meng, Hui; Yu, Yue; Karniadakis, George E; Shaffer, Nicholas; Loth, Francis

    2013-02-01

    Stimulated by a recent controversy regarding pressure drops predicted in a giant aneurysm with a proximal stenosis, the present study sought to assess variability in the prediction of pressures and flow by a wide variety of research groups. In phase I, lumen geometry, flow rates, and fluid properties were specified, leaving each research group to choose their solver, discretization, and solution strategies. Variability was assessed by having each group interpolate their results onto a standardized mesh and centerline. For phase II, a physical model of the geometry was constructed, from which pressure and flow rates were measured. Groups repeated their simulations using a geometry reconstructed from a micro-computed tomography (CT) scan of the physical model with the measured flow rates and fluid properties. Phase I results from 25 groups demonstrated remarkable consistency in the pressure patterns, with the majority predicting peak systolic pressure drops within 8% of each other. Aneurysm sac flow patterns were more variable with only a few groups reporting peak systolic flow instabilities owing to their use of high temporal resolutions. Variability for phase II was comparable, and the median predicted pressure drops were within a few millimeters of mercury of the measured values but only after accounting for submillimeter errors in the reconstruction of the life-sized flow model from micro-CT. In summary, pressure can be predicted with consistency by CFD across a wide range of solvers and solution strategies, but this may not hold true for specific flow patterns or derived quantities. Future challenges are needed and should focus on hemodynamic quantities thought to be of clinical interest.

  5. Bespoke physics for living technology.

    PubMed

    Ackley, David H

    2013-01-01

    In the physics of the natural world, basic tasks of life, such as homeostasis and reproduction, are extremely complex operations, requiring the coordination of billions of atoms even in simple cases. By contrast, artificial living organisms can be implemented in computers using relatively few bits, and copying a data structure is trivial. Of course, the physical overheads of the computers themselves are huge, but since their programmability allows digital "laws of physics" to be tailored like a custom suit, deploying living technology atop an engineered computational substrate might be as or more effective than building directly on the natural laws of physics, for a substantial range of desirable purposes. This article suggests basic criteria and metrics for bespoke physics computing architectures, describes one such architecture, and offers data and illustrations of custom living technology competing to reproduce while collaborating on an externally useful computation.

  6. Examining the effect of the computer-based educational package on quality of life and severity of hypogonadism symptoms in males.

    PubMed

    Afsharnia, Elahe; Pakgohar, Minoo; Khosravi, Shahla; Haghani, Hamid

    2018-06-01

    The objective of this study was to determine the effect of the computer-based educational package on men's QoL and the severity of their hypogonadism symptoms. A quasi-experimental study was conducted on 80 male employees. The data collection tool included the 'Aging Male Symptoms' (AMS) and 'Short Form-36' (SF36) questionnaires. Four sessions were held for the intervention group over a period of 4 weeks. Two months after training, QoL and the severity of hypogonadism symptoms were measured in both the intervention and control groups. The data were analyzed with SPSS 22 software and statistical tests, such as χ 2 , independent t-test, Fisher's exact test, and paired t-tests. Significant statistical changes were observed in the intervention group before and 2 months after the training in the QoL score in the overall dimensions of physical-psychological health and all its domains except for three domains of emotional role, social function, and pain. Furthermore, the paired t-tests showed significant differences between 2 months before and after the training in all the domains and the overall hypogonadism score in the intervention group. Based on our findings, the computer-based educational package has a positive effect on QoL and reduction of hypogonadism symptoms.

  7. Learning optimal quantum models is NP-hard

    NASA Astrophysics Data System (ADS)

    Stark, Cyril J.

    2018-02-01

    Physical modeling translates measured data into a physical model. Physical modeling is a major objective in physics and is generally regarded as a creative process. How good are computers at solving this task? Here, we show that in the absence of physical heuristics, the inference of optimal quantum models cannot be computed efficiently (unless P=NP ). This result illuminates rigorous limits to the extent to which computers can be used to further our understanding of nature.

  8. Displaying Computer Simulations Of Physical Phenomena

    NASA Technical Reports Server (NTRS)

    Watson, Val

    1991-01-01

    Paper discusses computer simulation as means of experiencing and learning to understand physical phenomena. Covers both present simulation capabilities and major advances expected in near future. Visual, aural, tactile, and kinesthetic effects used to teach such physical sciences as dynamics of fluids. Recommends classrooms in universities, government, and industry be linked to advanced computing centers so computer simulations integrated into education process.

  9. Silicon and germanium nanowire electronics: physics of conventional and unconventional transistors

    NASA Astrophysics Data System (ADS)

    Weber, Walter M.; Mikolajick, Thomas

    2017-06-01

    Research in the field of electronics of 1D group-IV semiconductor structures has attracted increasing attention over the past 15 years. The exceptional combination of the unique 1D electronic transport properties with the mature material know-how of highly integrated silicon and germanium technology holds the promise of enhancing state-of-the-art electronics. In addition of providing conduction channels that can bring conventional field effect transistors to the uttermost scaling limits, the physics of 1D group IV nanowires endows new device principles. Such unconventional silicon and germanium nanowire devices are contenders for beyond complementary metal oxide semiconductor (CMOS) computing by virtue of their distinct switching behavior and higher expressive value. This review conveys to the reader a systematic recapitulation and analysis of the physics of silicon and germanium nanowires and the most relevant CMOS and CMOS-like devices built from silicon and germanium nanowires, including inversion mode, junctionless, steep-slope, quantum well and reconfigurable transistors.

  10. Screened hybrid density functionals for solid-state chemistry and physics.

    PubMed

    Janesko, Benjamin G; Henderson, Thomas M; Scuseria, Gustavo E

    2009-01-21

    Density functional theory incorporating hybrid exchange-correlation functionals has been extraordinarily successful in providing accurate, computationally tractable treatments of molecular properties. However, conventional hybrid functionals can be problematic for solids. Their nonlocal, Hartree-Fock-like exchange term decays slowly and incorporates unphysical features in metals and narrow-bandgap semiconductors. This article provides an overview of our group's work on designing hybrid functionals for solids. We focus on the Heyd-Scuseria-Ernzerhof screened hybrid functional [J. Chem. Phys. 2003, 118, 8207], its applications to the chemistry and physics of solids and surfaces, and our efforts to build upon its successes.

  11. Computational Nuclear Physics and Post Hartree-Fock Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lietz, Justin; Sam, Novario; Hjorth-Jensen, M.

    We present a computational approach to infinite nuclear matter employing Hartree-Fock theory, many-body perturbation theory and coupled cluster theory. These lectures are closely linked with those of chapters 9, 10 and 11 and serve as input for the correlation functions employed in Monte Carlo calculations in chapter 9, the in-medium similarity renormalization group theory of dense fermionic systems of chapter 10 and the Green's function approach in chapter 11. We provide extensive code examples and benchmark calculations, allowing thereby an eventual reader to start writing her/his own codes. We start with an object-oriented serial code and end with discussions onmore » strategies for porting the code to present and planned high-performance computing facilities.« less

  12. An affordable, computerised, table-based exercise system for stroke survivors.

    PubMed

    King, Marcus; Hale, Leigh; Pekkari, Anna; Persson, Martin; Gregorsson, Malin; Nilsson, Mikaela

    2010-07-01

    Loss of hand function as a result of upper limb paresis after a stroke leads to reduced independence. Robotic-assisted therapy with virtual reality leads to improvements in motor function, but there is a need to improve the cost-benefit ratio of these therapies. This case series study investigated augmented reality computer games which provided a rewarded, goal-directed task to upper limb rehabilitation via a gravity supported reaching task. A computer game was developed to motivate chronic stroke survivors to undertake gravity supported reaching tasks performed on a table, and a focus group study investigated the application of this device for rehabilitation. From the focus group, a simple device was developed to improve the quality of the exercise and a further focus group study investigated a variety of computer games to determine motivations for undertaking rehabilitation exercises. Of the four participants in the case study, two showed improvement in ability to play the game and in arm function. Participants enjoyed playing a range of computer games and felt that the system provided a worthwhile exercise. Motivation for undertaking exercise with the system included: intellectual stimulation during game play, feedback such as game score, gaining physical benefits from the exercise, the system tolerating varying levels of disability, ability to relate to the game and ability to use the system in social groups. A low-cost device has been developed which increases the exercise of gravity supported reaching movements, provides goal-directed tasks with rewards and motivates the user to undertake extended rehabilitation.

  13. Perceived competence in computer use as a moderator of musculoskeletal strain in VDU work: an ergonomics intervention case.

    PubMed

    Tuomivaara, S; Ketola, R; Huuhtanen, P; Toivonen, R

    2008-02-01

    Musculoskeletal strain and other symptoms are common in visual display unit (VDU) work. Psychosocial factors are closely related to the outcome and experience of musculoskeletal strain. The user-computer relationship from the viewpoint of the quality of perceived competence in computer use was assessed as a psychosocial stress indicator. It was assumed that the perceived competence in computer use moderates the experience of musculoskeletal strain and the success of the ergonomics intervention. The participants (n = 124, female 58%, male 42%) worked with VDU for more than 4 h per week. They took part in an ergonomics intervention and were allocated into three groups: intensive; education; and reference group. Musculoskeletal strain, the level of ergonomics of the workstation assessed by the experts in ergonomics and amount of VDU work were estimated at the baseline and at the 10-month follow-up. Age, gender and the perceived competence in computer use were assessed at the baseline. The perceived competence in computer use predicted strain in the upper and the lower part of the body at the follow-up. The interaction effect shows that the intensive ergonomics intervention procedure was the most effective among participants with high perceived competence. The interpretation of the results was that an anxiety-provoking and stressful user-computer relationship prevented the participants from being motivated and from learning in the ergonomics intervention. In the intervention it is important to increase the computer competence along with the improvements of physical workstation and work organization.

  14. Control of complex physically simulated robot groups

    NASA Astrophysics Data System (ADS)

    Brogan, David C.

    2001-10-01

    Actuated systems such as robots take many forms and sizes but each requires solving the difficult task of utilizing available control inputs to accomplish desired system performance. Coordinated groups of robots provide the opportunity to accomplish more complex tasks, to adapt to changing environmental conditions, and to survive individual failures. Similarly, groups of simulated robots, represented as graphical characters, can test the design of experimental scenarios and provide autonomous interactive counterparts for video games. The complexity of writing control algorithms for these groups currently hinders their use. A combination of biologically inspired heuristics, search strategies, and optimization techniques serve to reduce the complexity of controlling these real and simulated characters and to provide computationally feasible solutions.

  15. CDAC Student Report: Summary of LLNL Internship

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herriman, Jane E.

    Multiple objectives motivated me to apply for an internship at LLNL: I wanted to experience the work environment at a national lab, to learn about research and job opportunities at LLNL in particular, and to gain greater experience with code development, particularly within the realm of high performance computing (HPC). This summer I was selected to participate in LLNL's Computational Chemistry and Material Science Summer Institute (CCMS). CCMS is a 10 week program hosted by the Quantum Simulations group leader, Dr. Eric Schwegler. CCMS connects graduate students to mentors at LLNL involved in similar re- search and provides weekly seminarsmore » on a broad array of topics from within chemistry and materials science. Dr. Xavier Andrade and Dr. Erik Draeger served as my co-mentors over the summer, and Dr. Andrade continues to mentor me now that CCMS has concluded. Dr. Andrade is a member of the Quantum Simulations group within the Physical and Life Sciences at LLNL, and Dr. Draeger leads the HPC group within the Center for Applied Scientific Computing (CASC). The two have worked together to develop Qb@ll, an open-source first principles molecular dynamics code that was the platform for my summer research project.« less

  16. Scheduling applications for execution on a plurality of compute nodes of a parallel computer to manage temperature of the nodes during execution

    DOEpatents

    Archer, Charles J; Blocksome, Michael A; Peters, Amanda E; Ratterman, Joseph D; Smith, Brian E

    2012-10-16

    Methods, apparatus, and products are disclosed for scheduling applications for execution on a plurality of compute nodes of a parallel computer to manage temperature of the plurality of compute nodes during execution that include: identifying one or more applications for execution on the plurality of compute nodes; creating a plurality of physically discontiguous node partitions in dependence upon temperature characteristics for the compute nodes and a physical topology for the compute nodes, each discontiguous node partition specifying a collection of physically adjacent compute nodes; and assigning, for each application, that application to one or more of the discontiguous node partitions for execution on the compute nodes specified by the assigned discontiguous node partitions.

  17. Indiana Wesleyan University SPS Physics Outreach to Rural Middle School and High School Students

    NASA Astrophysics Data System (ADS)

    Ostrander, Joshua; Rose, Heath; Burchell, Robert; Ramos, Roberto

    2013-03-01

    The Society of Physics Students chapter at Indiana Wesleyan University is unusual in that it has no physics major, only physics minors. Yet while just over a year old, IWU-SPS has been active in performing physics outreach to middle school and high school students, and the rural community of Grant County. Our year-old SPS chapter consists of majors from Chemistry, Nursing, Biology, Exercise Science, Computer Science, Psychology, Pastoral Studies, and Science Education, who share a common interest in physics and service to the community. IWU currently has a physics minor and is currently working to build a physics major program. Despite the intrinsic challenges, our multi-disciplinary group has been successful at using physics demonstration equipment and hands-on activities and their universal appeal to raise the interest in physics in Grant County. We report our experience, challenges, and successes with physics outreach. We describe in detail our two-pronged approach: raising the level of physics appreciation among the IWU student community and among pre-college students in a rural community of Indiana. Acknowledgements: We acknowledge the support of the Society of Physics Students through a Marsh White Outreach Award and a Blake Lilly Prize.

  18. The role of physicality in rich programming environments

    NASA Astrophysics Data System (ADS)

    Liu, Allison S.; Schunn, Christian D.; Flot, Jesse; Shoop, Robin

    2013-12-01

    Computer science proficiency continues to grow in importance, while the number of students entering computer science-related fields declines. Many rich programming environments have been created to motivate student interest and expertise in computer science. In the current study, we investigated whether a recently created environment, Robot Virtual Worlds (RVWs), can be used to teach computer science principles within a robotics context by examining its use in high-school classrooms. We also investigated whether the lack of physicality in these environments impacts student learning by comparing classrooms that used either virtual or physical robots for the RVW curriculum. Results suggest that the RVW environment leads to significant gains in computer science knowledge, that virtual robots lead to faster learning, and that physical robots may have some influence on algorithmic thinking. We discuss the implications of physicality in these programming environments for learning computer science.

  19. Preparing Students for Careers in Science and Industry with Computational Physics

    NASA Astrophysics Data System (ADS)

    Florinski, V. A.

    2011-12-01

    Funded by NSF CAREER grant, the University of Alabama (UAH) in Huntsville has launched a new graduate program in Computational Physics. It is universally accepted that today's physics is done on a computer. The program blends the boundary between physics and computer science by teaching student modern, practical techniques of solving difficult physics problems using diverse computational platforms. Currently consisting of two courses first offered in the Fall of 2011, the program will eventually include 5 courses covering methods for fluid dynamics, particle transport via stochastic methods, and hybrid and PIC plasma simulations. The UAH's unique location allows courses to be shaped through discussions with faculty, NASA/MSFC researchers and local R&D business representatives, i.e., potential employers of the program's graduates. Students currently participating in the program have all begun their research careers in space and plasma physics; many are presenting their research at this meeting.

  20. To What Extent Can Motor Imagery Replace Motor Execution While Learning a Fine Motor Skill?

    PubMed Central

    Sobierajewicz, Jagna; Szarkiewicz, Sylwia; Przekoracka-Krawczyk, Anna; Jaśkowski, Wojciech; van der Lubbe, Rob

    2016-01-01

    Motor imagery is generally thought to share common mechanisms with motor execution. In the present study, we examined to what extent learning a fine motor skill by motor imagery may substitute physical practice. Learning effects were assessed by manipulating the proportion of motor execution and motor imagery trials. Additionally, learning effects were compared between participants with an explicit motor imagery instruction and a control group. A Go/NoGo discrete sequence production (DSP) task was employed, wherein a five-stimulus sequence presented on each trial indicated the required sequence of finger movements after a Go signal. In the case of a NoGo signal, participants either had to imagine carrying out the response sequence (the motor imagery group), or the response sequence had to be withheld (the control group). Two practice days were followed by a final test day on which all sequences had to be executed. Learning effects were assessed by computing response times (RTs) and the percentages of correct responses (PCs). The electroencephalogram (EEG ) was additionally measured on this test day to examine whether motor preparation and the involvement of visual short term memory (VST M) depended on the amount of physical/mental practice. Accuracy data indicated strong learning effects. However, a substantial amount of physical practice was required to reach an optimal speed. EEG results suggest the involvement of VST M for sequences that had less or no physical practice in both groups. The absence of differences between the motor imagery and the control group underlines the possibility that motor preparation may actually resemble motor imagery. PMID:28154614

  1. To What Extent Can Motor Imagery Replace Motor Execution While Learning a Fine Motor Skill?

    PubMed

    Sobierajewicz, Jagna; Szarkiewicz, Sylwia; Przekoracka-Krawczyk, Anna; Jaśkowski, Wojciech; van der Lubbe, Rob

    2016-01-01

    Motor imagery is generally thought to share common mechanisms with motor execution. In the present study, we examined to what extent learning a fine motor skill by motor imagery may substitute physical practice. Learning effects were assessed by manipulating the proportion of motor execution and motor imagery trials. Additionally, learning effects were compared between participants with an explicit motor imagery instruction and a control group. A Go/NoGo discrete sequence production (DSP) task was employed, wherein a five-stimulus sequence presented on each trial indicated the required sequence of finger movements after a Go signal. In the case of a NoGo signal, participants either had to imagine carrying out the response sequence (the motor imagery group), or the response sequence had to be withheld (the control group). Two practice days were followed by a final test day on which all sequences had to be executed. Learning effects were assessed by computing response times (RTs) and the percentages of correct responses (PCs). The electroencephalogram (EEG ) was additionally measured on this test day to examine whether motor preparation and the involvement of visual short term memory (VST M) depended on the amount of physical/mental practice. Accuracy data indicated strong learning effects. However, a substantial amount of physical practice was required to reach an optimal speed. EEG results suggest the involvement of VST M for sequences that had less or no physical practice in both groups. The absence of differences between the motor imagery and the control group underlines the possibility that motor preparation may actually resemble motor imagery.

  2. Advanced Computing Tools and Models for Accelerator Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryne, Robert; Ryne, Robert D.

    2008-06-11

    This paper is based on a transcript of my EPAC'08 presentation on advanced computing tools for accelerator physics. Following an introduction I present several examples, provide a history of the development of beam dynamics capabilities, and conclude with thoughts on the future of large scale computing in accelerator physics.

  3. What Does "Fast" Mean? Understanding the Physical World through Computational Representations

    ERIC Educational Resources Information Center

    Parnafes, Orit

    2007-01-01

    This article concerns the development of conceptual understanding of a physical phenomenon through the use of computational representations. It examines how students make sense of and interpret computational representations, and how their understanding of the represented physical phenomenon develops in this process. Eight studies were conducted,…

  4. Can Motor Proficiency in Preschool Age Affect Physical Activity in Adolescence?

    PubMed

    Venetsanou, Fotini; Kambas, Antonis

    2017-05-01

    This study investigated if motor proficiency (MP) in preschool age associate with physical activity (PA) in adolescence. In 2004, the Bruininks-Oseretsky Test of Motor Proficiency-Short Form (BOTMP-SF) (7) was administered to 413 children, aged 4-6 years, who were classified to MP groups according to their BOTMP-SF total score (TS). In 2014, the PA of 106 former participants (47 boys, 59 girls) was measured with Omron pedometers. MP [three (high; above average; average)] × gender (two) ANOVA and Bonferroni tests were computed on average of steps/week. A significant interaction between the two factors was revealed (F = 15.27, p < .001, η 2 =.153), indicating that MP influenced male and female PA differently. Only in average MP group, males presented higher PA than females, whereas there were no differences between the two genders in the higher MP groups. Moreover, the only significant difference in PA among male groups was that between high and above average MP groups, while in females there were significant differences among all groups. High MP at preschool age positively associated with the PA in adolescence, especially in females. Emphasis on the development of proficient young movers might be beneficial for lifelong PA.

  5. Data-Informed Large-Eddy Simulation of Coastal Land-Air-Sea Interactions

    NASA Astrophysics Data System (ADS)

    Calderer, A.; Hao, X.; Fernando, H. J.; Sotiropoulos, F.; Shen, L.

    2016-12-01

    The study of atmospheric flows in coastal areas has not been fully addressed due to the complex processes emerging from the land-air-sea interactions, e.g., abrupt change in land topography, strong current shear, wave shoaling, and depth-limited wave breaking. The available computational tools that have been applied to study such littoral regions are mostly based on open-ocean assumptions, which most times do not lead to reliable solutions. The goal of the present study is to better understand some of these near-shore processes, employing the advanced computational tools, developed in our research group. Our computational framework combines a large-eddy simulation (LES) flow solver for atmospheric flows, a sharp-interface immersed boundary method that can deal with real complex topographies (Calderer et al., J. Comp. Physics 2014), and a phase-resolved, depth-dependent, wave model (Yang and Shen, J. Comp. Physics 2011). Using real measured data taken in the FRF station in Duck, North Carolina, we validate and demonstrate the predictive capabilities of the present computational framework, which are shown to be in overall good agreement with the measured data under different wind-wave scenarios. We also analyse the effects of some of the complex processes captured by our simulation tools.

  6. Computer-based, Jeopardy™-like game in general chemistry for engineering majors

    NASA Astrophysics Data System (ADS)

    Ling, S. S.; Saffre, F.; Kadadha, M.; Gater, D. L.; Isakovic, A. F.

    2013-03-01

    We report on the design of Jeopardy™-like computer game for enhancement of learning of general chemistry for engineering majors. While we examine several parameters of student achievement and attitude, our primary concern is addressing the motivation of students, which tends to be low in a traditionally run chemistry lectures. The effect of the game-playing is tested by comparing paper-based game quiz, which constitutes a control group, and computer-based game quiz, constituting a treatment group. Computer-based game quizzes are Java™-based applications that students run once a week in the second part of the last lecture of the week. Overall effectiveness of the semester-long program is measured through pretest-postest conceptual testing of general chemistry. The objective of this research is to determine to what extent this ``gamification'' of the course delivery and course evaluation processes may be beneficial to the undergraduates' learning of science in general, and chemistry in particular. We present data addressing gender-specific difference in performance, as well as background (pre-college) level of general science and chemistry preparation. We outline the plan how to extend such approach to general physics courses and to modern science driven electives, and we offer live, in-lectures examples of our computer gaming experience. We acknowledge support from Khalifa University, Abu Dhabi

  7. [Can family meals protect adolescents from obesity?].

    PubMed

    Tabak, Izabela; Jodkowska, Maria; Oblacińska, Anna; Mikiel-Kostyra, Krystyna

    2012-01-01

    To analyse the relationship between the frequency of family meals and the body weight of 13-year-olds and its selected determinants. The study was conducted in 2008 as the last stage in a prospective cohort study of 605 children. Questionnaires containing questions about the frequency of family meals, the general regularity of meals, fruit and vegetable consumption, physical activity and the number of hours spent watching television or at the computer were sent to 13-year-olds by mail. School nurses performed anthropometric measurements of the pupils' weight and height. Statistical analyses were performed, i.e. Pearson's correlations, the two-step cluster analysis and the logistic regression analysis. Most of the young people (80-90%) eat each of the main meals in the company of their parents at least once a week, 21% have breakfast with their parents every day, 41% - dinner, and 45% - supper. The frequency of family meals correlated negatively with the girls' BMI and the number of hours they spent watching television or at the computer, while positively with physical activity, regular meals and vegetable consumption in adolescents of both genders. The lowest mean values of BMI were found in a group of adolescents often eating family meals, the highest - in the group of young people who rarely ate family meals (over 20% of young people in this group were overweight), but the differences were statistically significant only for girls (p=0.025). The probability of less than 2 hours of sedentary behaviour daily, physical activity of at least 60 minutes per day and everyday vegetable and fruit consumption is twice as high in adolescents often consuming meals with their parents, and with the daily consumption of all the meals in this way - more than fourfold higher than in other groups. Family meals treated as a predictor of a healthy lifestyle can indirectly protect adolescents from overweight and obesity. Promoting family meals should be an important method of preventing obesity, particularly among teenage girls.

  8. Role of maternal occupational physical activity and psychosocial stressors on adverse birth outcomes

    PubMed Central

    Lee, Laura J; Symanski, Elaine; Lupo, Philip J; Tinker, Sarah C; Razzaghi, Hilda; Chan, Wenyaw; Hoyt, Adrienne T; Canfield, Mark A

    2016-01-01

    Objectives We examined the association of an array of estimated maternal occupational physical activities and psychosocial stressors during pregnancy with odds for preterm birth (PTB) and small-for-gestational age (SGA). Methods Data for infants born without major birth defects delivered from 1997 to 2009 whose mothers reported working at least 1 month during pregnancy were obtained from the National Birth Defects Prevention Study. We linked occupational codes to the US Department of Labor’s Occupational Information Network, which provides estimates of exposure for multiple domains of physical activity and psychosocial stressors by occupational categories. We conducted factor analysis using principal components extraction with 17 occupational activities and calculated factor scores. ORs for PTB and SGA across quartiles of factor scores in each trimester were computed using logistic regression. Results Factor analysis grouped occupational domains into 4 groups based on factor loadings. These groups were ‘occupational physical activity’, ‘interpersonal stressor’, ‘automated work’ and ‘job responsibility’. High levels of ‘occupational physical activity’ were significantly associated with SGA (adjusted OR (AOR) for highest quartile compared with lowest quartile of factor score: 1.36; 95% CIs 1.02 to 1.82; p for trend=0.001) and were also positively associated with PTB (AOR: 1.24; 95% CI 0.93 to 1.64; p for trend=0.01). No clear results were observed across domains of psychosocial stressors. Conclusions Our findings expand understanding of associations between occupational physical activity and psychosocial stressors and PTB and SGA and suggest that additional research is needed to further examine these relationships. PMID:27919059

  9. Computer- and web-based interventions to promote healthy eating among children and adolescents: a systematic review.

    PubMed

    Hamel, Lauren M; Robbins, Lorraine B

    2013-01-01

    To: (1) determine the effect of computer- and web-based interventions on improving eating behavior (e.g. increasing fruit and vegetable consumption; decreasing fat consumption) and/or diet-related physical outcomes (e.g. body mass index) among children and adolescents; and (2) examine what elements enhance success. Children and adolescents are the heaviest they have ever been. Excess weight can carry into adulthood and result in chronic health problems. Because of the capacity to reach large audiences of children and adolescents to promote healthy eating, computer- and web-based interventions hold promise for helping to curb this serious trend. However, evidence to support this approach is lacking. Systematic review using guidelines from the Cochrane Effective Practice and Organisation of Care Group. The following databases were searched for studies from 1998-2011: CINAHL; PubMed; Cochrane; PsycINFO; ERIC; and Proquest. Fifteen randomized controlled trials or quasi-experimental studies were analysed in a systematic review. Although a majority of interventions resulted in statistically significant positive changes in eating behavior and/or diet-related physical outcomes, interventions that included post intervention follow-up, ranging from 3-18 months, showed that changes were not maintained. Elements, such as conducting the intervention at school or using individually tailored feedback, may enhance success. Computer- and web-based interventions can improve eating behavior and diet-related physical outcomes among children and adolescents, particularly when conducted in schools and individually tailored. These interventions can complement and support nursing efforts to give preventive care; however, maintenance efforts are recommended. © 2012 Blackwell Publishing Ltd.

  10. Multiloop ghost vertices and the determination of the multiloop measure

    NASA Astrophysics Data System (ADS)

    West, P.

    1988-04-01

    Using the group-theoretic approach to string theory, the multiloop vertices previously computed are extended to include ghost oscillators. In accord with the approach, we show how demanding that zero-norm physical states decouple leads to a set of first-order differential equations which uniquely determine the multiloop measure. Permanent address: Mathematics Department, Kings College, Strand, London WC2R 2LS, UK.

  11. Determination of Physical Properties of Ionic Liquids Using Molecular Simulations

    DTIC Science & Technology

    2010-08-20

    That is, most groups rely on relatively short (100-500 ps) simulations and evaluate the viscosity via conventional Green - Kubo integration . In this...and can contribute to higher than expected viscosities . The liquid structure of the energetic ionic liquid 2-hydroxyethylhydrizinium nitrate was...claimed previously that neglect of polarizability leads to inaccuracies in the computed transport properties of ionic liquids such as viscosities

  12. Quantum chemical parameters in QSAR: what do I use when?

    USGS Publications Warehouse

    Hickey, James P.; Ostrander, Gary K.

    1996-01-01

    This chapter provides a brief overview of the numerous quantum chemical parameters that have been/are currently being used in quantitative structure activity relationships (QSAR), along with a representative bibliography. The parameters will be grouped according to their mechanistic interpretations, and representative biological and physical chemical applications will be mentioned. Parmater computation methods and the appropriate software are highlighted, as are sources for software.

  13. Methodes d'optimisation des parametres 2D du reflecteur dans un reacteur a eau pressurisee

    NASA Astrophysics Data System (ADS)

    Clerc, Thomas

    With a third of the reactors in activity, the Pressurized Water Reactor (PWR) is today the most used reactor design in the world. This technology equips all the 19 EDF power plants. PWRs fit into the category of thermal reactors, because it is mainly the thermal neutrons that contribute to the fission reaction. The pressurized light water is both used as the moderator of the reaction and as the coolant. The active part of the core is composed of uranium, slightly enriched in uranium 235. The reflector is a region surrounding the active core, and containing mostly water and stainless steel. The purpose of the reflector is to protect the vessel from radiations, and also to slow down the neutrons and reflect them into the core. Given that the neutrons participate to the reaction of fission, the study of their behavior within the core is capital to understand the general functioning of how the reactor works. The neutrons behavior is ruled by the transport equation, which is very complex to solve numerically, and requires very long calculation. This is the reason why the core codes that will be used in this study solve simplified equations to approach the neutrons behavior in the core, in an acceptable calculation time. In particular, we will focus our study on the diffusion equation and approximated transport equations, such as SPN or S N equations. The physical properties of the reflector are radically different from those of the fissile core, and this structural change causes important tilt in the neutron flux at the core/reflector interface. This is why it is very important to accurately design the reflector, in order to precisely recover the neutrons behavior over the whole core. Existing reflector calculation techniques are based on the Lefebvre-Lebigot method. This method is only valid if the energy continuum of the neutrons is discretized in two energy groups, and if the diffusion equation is used. The method leads to the calculation of a homogeneous reflector. The aim of this study is to create a computational scheme able to compute the parameters of heterogeneous, multi-group reflectors, with both diffusion and SPN/SN operators. For this purpose, two computational schemes are designed to perform such a reflector calculation. The strategy used in both schemes is to minimize the discrepancies between a power distribution computed with a core code and a reference distribution, which will be obtained with an APOLLO2 calculation based on the method Method Of Characteristics (MOC). In both computational schemes, the optimization parameters, also called control variables, are the diffusion coefficients in each zone of the reflector, for diffusion calculations, and the P-1 corrected macroscopic total cross-sections in each zone of the reflector, for SPN/SN calculations (or correction factors on these parameters). After a first validation of our computational schemes, the results are computed, always by optimizing the fast diffusion coefficient for each zone of the reflector. All the tools of the data assimilation have been used to reflect the different behavior of the solvers in the different parts of the core. Moreover, the reflector is refined in six separated zones, corresponding to the physical structure of the reflector. There will be then six control variables for the optimization algorithms. [special characters omitted]. Our computational schemes are then able to compute heterogeneous, 2-group or multi-group reflectors, using diffusion or SPN/SN operators. The optimization performed reduces the discrepancies distribution between the power computed with the core codes and the reference power. However, there are two main limitations to this study: first the homogeneous modeling of the reflector assemblies doesn't allow to properly describe its physical structure near the core/reflector interface. Moreover, the fissile assemblies are modeled in infinite medium, and this model reaches its limit at the core/reflector interface. These two problems should be tackled in future studies. (Abstract shortened by UMI.).

  14. Effects of ergonomic intervention on work-related upper extremity musculoskeletal disorders among computer workers: a randomized controlled trial.

    PubMed

    Esmaeilzadeh, Sina; Ozcan, Emel; Capan, Nalan

    2014-01-01

    The aim of the study was to determine effects of ergonomic intervention on work-related upper extremity musculoskeletal disorders (WUEMSDs) among computer workers. Four hundred computer workers answered a questionnaire on work-related upper extremity musculoskeletal symptoms (WUEMSS). Ninety-four subjects with WUEMSS using computers at least 3 h a day participated in a prospective, randomized controlled 6-month intervention. Body posture and workstation layouts were assessed by the Ergonomic Questionnaire. We used the Visual Analogue Scale to assess the intensity of WUEMSS. The Upper Extremity Function Scale was used to evaluate functional limitations at the neck and upper extremities. Health-related quality of life was assessed with the Short Form-36. After baseline assessment, those in the intervention group participated in a multicomponent ergonomic intervention program including a comprehensive ergonomic training consisting of two interactive sessions, an ergonomic training brochure, and workplace visits with workstation adjustments. Follow-up assessment was conducted after 6 months. In the intervention group, body posture (p < 0.001) and workstation layout (p = 0.002) improved over 6 months; furthermore, intensity (p < 0.001), duration (p < 0.001), and frequency (p = 0.009) of WUEMSS decreased significantly in the intervention group compared with the control group. Additionally, the functional status (p = 0.001), and physical (p < 0.001), and mental (p = 0.035) health-related quality of life improved significantly compared with the controls. There was no improvement of work day loss due to WUEMSS (p > 0.05). Ergonomic intervention programs may be effective in reducing ergonomic risk factors among computer workers and consequently in the secondary prevention of WUEMSDs.

  15. Effects of combined physical and cognitive training on fitness and neuropsychological outcomes in healthy older adults

    PubMed Central

    Desjardins-Crépeau, Laurence; Berryman, Nicolas; Fraser, Sarah A; Vu, Thien Tuong Minh; Kergoat, Marie-Jeanne; Li, Karen ZH; Bosquet, Laurent; Bherer, Louis

    2016-01-01

    Purpose Physical exercise and cognitive training have been shown to enhance cognition among older adults. However, few studies have looked at the potential synergetic effects of combining physical and cognitive training in a single study. Prior trials on combined training have led to interesting yet equivocal results. The aim of this study was to examine the effects of combined physical and cognitive interventions on physical fitness and neuropsychological performance in healthy older adults. Methods Seventy-six participants were randomly assigned to one of four training combinations using a 2×2 factorial design. The physical intervention was a mixed aerobic and resistance training program, and the cognitive intervention was a dual-task (DT) training program. Stretching and toning exercises and computer lessons were used as active control conditions. Physical and cognitive measures were collected pre- and postintervention. Results All groups showed equivalent improvements in measures of functional mobility. The aerobic–strength condition led to larger effect size in lower body strength, independently of cognitive training. All groups showed improved speed of processing and inhibition abilities, but only participants who took part in the DT training, independently of physical training, showed increased task-switching abilities. The level of functional mobility after intervention was significantly associated with task-switching abilities. Conclusion Combined training did not yield synergetic effects. However, DT training did lead to transfer effects on executive performance in neuropsychological tests. Both aerobic-resistance training and stretching-toning exercises can improve functional mobility in older adults. PMID:27698558

  16. Physical activity and sedentary time: male perceptions in a university work environment.

    PubMed

    George, Emma S; Kolt, Gregory S; Rosenkranz, Richard R; Guagliano, Justin M

    2014-03-01

    Promoting physical activity and reducing sedentary time in males can be challenging, and interventions tailored specifically for males are limited. Understanding male perceptions of physical activity and sedentary behavior is important to inform development of relevant interventions, especially for males working in an office setting. As part of a larger intervention study to increase physical activity and reduce sedentary time, male university employees aged 35 to 64 years were invited to partake in focus groups to discuss benefits, motivators, and barriers related to physical activity and sedentary time. Five semistructured focus group sessions, ranging from 50 to 70 minutes in duration, were conducted on two campuses at an Australian university. A total of 15 participants (9 academic/faculty staff and 6 professional staff), with a mean (± SD) age of 46.1 (±8.0) years took part in the study. Health and family were commonly discussed motivators for physical activity, whereas time constraints and work commitments were major barriers to physical activity participation. Sedentary time was a perceived "by-product" of participants' university employment, as a substantial proportion of their days were spent sitting, primarily at a computer. Participants believed that physical activity should be recognized as a legitimate activity at work, embedded within the university culture and endorsed using a top-down approach. It is important to encourage breaks in sedentary time and recognize physical activity as a legitimate health-promoting activity that is supported and encouraged during working hours. These findings can be used as a platform from which to develop targeted strategies to promote physical activity in male university employees.

  17. Kinematic state estimation and motion planning for stochastic nonholonomic systems using the exponential map

    PubMed Central

    Park, Wooram; Liu, Yan; Zhou, Yu; Moses, Matthew; Chirikjian, Gregory S.

    2010-01-01

    SUMMARY A nonholonomic system subjected to external noise from the environment, or internal noise in its own actuators, will evolve in a stochastic manner described by an ensemble of trajectories. This ensemble of trajectories is equivalent to the solution of a Fokker–Planck equation that typically evolves on a Lie group. If the most likely state of such a system is to be estimated, and plans for subsequent motions from the current state are to be made so as to move the system to a desired state with high probability, then modeling how the probability density of the system evolves is critical. Methods for solving Fokker-Planck equations that evolve on Lie groups then become important. Such equations can be solved using the operational properties of group Fourier transforms in which irreducible unitary representation (IUR) matrices play a critical role. Therefore, we develop a simple approach for the numerical approximation of all the IUR matrices for two of the groups of most interest in robotics: the rotation group in three-dimensional space, SO(3), and the Euclidean motion group of the plane, SE(2). This approach uses the exponential mapping from the Lie algebras of these groups, and takes advantage of the sparse nature of the Lie algebra representation matrices. Other techniques for density estimation on groups are also explored. The computed densities are applied in the context of probabilistic path planning for kinematic cart in the plane and flexible needle steering in three-dimensional space. In these examples the injection of artificial noise into the computational models (rather than noise in the actual physical systems) serves as a tool to search the configuration spaces and plan paths. Finally, we illustrate how density estimation problems arise in the characterization of physical noise in orientational sensors such as gyroscopes. PMID:20454468

  18. A Framework for Understanding Physics Students' Computational Modeling Practices

    NASA Astrophysics Data System (ADS)

    Lunk, Brandon Robert

    With the growing push to include computational modeling in the physics classroom, we are faced with the need to better understand students' computational modeling practices. While existing research on programming comprehension explores how novices and experts generate programming algorithms, little of this discusses how domain content knowledge, and physics knowledge in particular, can influence students' programming practices. In an effort to better understand this issue, I have developed a framework for modeling these practices based on a resource stance towards student knowledge. A resource framework models knowledge as the activation of vast networks of elements called "resources." Much like neurons in the brain, resources that become active can trigger cascading events of activation throughout the broader network. This model emphasizes the connectivity between knowledge elements and provides a description of students' knowledge base. Together with resources resources, the concepts of "epistemic games" and "frames" provide a means for addressing the interaction between content knowledge and practices. Although this framework has generally been limited to describing conceptual and mathematical understanding, it also provides a means for addressing students' programming practices. In this dissertation, I will demonstrate this facet of a resource framework as well as fill in an important missing piece: a set of epistemic games that can describe students' computational modeling strategies. The development of this theoretical framework emerged from the analysis of video data of students generating computational models during the laboratory component of a Matter & Interactions: Modern Mechanics course. Student participants across two semesters were recorded as they worked in groups to fix pre-written computational models that were initially missing key lines of code. Analysis of this video data showed that the students' programming practices were highly influenced by their existing physics content knowledge, particularly their knowledge of analytic procedures. While this existing knowledge was often applied in inappropriate circumstances, the students were still able to display a considerable amount of understanding of the physics content and of analytic solution procedures. These observations could not be adequately accommodated by the existing literature of programming comprehension. In extending the resource framework to the task of computational modeling, I model students' practices in terms of three important elements. First, a knowledge base includes re- sources for understanding physics, math, and programming structures. Second, a mechanism for monitoring and control describes students' expectations as being directed towards numerical, analytic, qualitative or rote solution approaches and which can be influenced by the problem representation. Third, a set of solution approaches---many of which were identified in this study---describe what aspects of the knowledge base students use and how they use that knowledge to enact their expectations. This framework allows us as researchers to track student discussions and pinpoint the source of difficulties. This work opens up many avenues of potential research. First, this framework gives researchers a vocabulary for extending Resource Theory to other domains of instruction, such as modeling how physics students use graphs. Second, this framework can be used as the basis for modeling expert physicists' programming practices. Important instructional implications also follow from this research. Namely, as we broaden the use of computational modeling in the physics classroom, our instructional practices should focus on helping students understand the step-by-step nature of programming in contrast to the already salient analytic procedures.

  19. Computational Physics' Greatest Hits

    NASA Astrophysics Data System (ADS)

    Bug, Amy

    2011-03-01

    The digital computer, has worked its way so effectively into our profession that now, roughly 65 years after its invention, it is virtually impossible to find a field of experimental or theoretical physics unaided by computational innovation. It is tough to think of another device about which one can make that claim. In the session ``What is computational physics?'' speakers will distinguish computation within the field of computational physics from this ubiquitous importance across all subfields of physics. This talk will recap the invited session ``Great Advances...Past, Present and Future'' in which five dramatic areas of discovery (five of our ``greatest hits'') are chronicled: The physics of many-boson systems via Path Integral Monte Carlo, the thermodynamic behavior of a huge number of diverse systems via Monte Carlo Methods, the discovery of new pharmaceutical agents via molecular dynamics, predictive simulations of global climate change via detailed, cross-disciplinary earth system models, and an understanding of the formation of the first structures in our universe via galaxy formation simulations. The talk will also identify ``greatest hits'' in our field from the teaching and research perspectives of other members of DCOMP, including its Executive Committee.

  20. Launching applications on compute and service processors running under different operating systems in scalable network of processor boards with routers

    DOEpatents

    Tomkins, James L [Albuquerque, NM; Camp, William J [Albuquerque, NM

    2009-03-17

    A multiple processor computing apparatus includes a physical interconnect structure that is flexibly configurable to support selective segregation of classified and unclassified users. The physical interconnect structure also permits easy physical scalability of the computing apparatus. The computing apparatus can include an emulator which permits applications from the same job to be launched on processors that use different operating systems.

  1. Computing the Free Energy Barriers for Less by Sampling with a Coarse Reference Potential while Retaining Accuracy of the Target Fine Model.

    PubMed

    Plotnikov, Nikolay V

    2014-08-12

    Proposed in this contribution is a protocol for calculating fine-physics (e.g., ab initio QM/MM) free-energy surfaces at a high level of accuracy locally (e.g., only at reactants and at the transition state for computing the activation barrier) from targeted fine-physics sampling and extensive exploratory coarse-physics sampling. The full free-energy surface is still computed but at a lower level of accuracy from coarse-physics sampling. The method is analytically derived in terms of the umbrella sampling and the free-energy perturbation methods which are combined with the thermodynamic cycle and the targeted sampling strategy of the paradynamics approach. The algorithm starts by computing low-accuracy fine-physics free-energy surfaces from the coarse-physics sampling in order to identify the reaction path and to select regions for targeted sampling. Thus, the algorithm does not rely on the coarse-physics minimum free-energy reaction path. Next, segments of high-accuracy free-energy surface are computed locally at selected regions from the targeted fine-physics sampling and are positioned relative to the coarse-physics free-energy shifts. The positioning is done by averaging the free-energy perturbations computed with multistep linear response approximation method. This method is analytically shown to provide results of the thermodynamic integration and the free-energy interpolation methods, while being extremely simple in implementation. Incorporating the metadynamics sampling to the algorithm is also briefly outlined. The application is demonstrated by calculating the B3LYP//6-31G*/MM free-energy barrier for an enzymatic reaction using a semiempirical PM6/MM reference potential. These modifications allow computing the activation free energies at a significantly reduced computational cost but at the same level of accuracy compared to computing full potential of mean force.

  2. Computing the Free Energy Barriers for Less by Sampling with a Coarse Reference Potential while Retaining Accuracy of the Target Fine Model

    PubMed Central

    2015-01-01

    Proposed in this contribution is a protocol for calculating fine-physics (e.g., ab initio QM/MM) free-energy surfaces at a high level of accuracy locally (e.g., only at reactants and at the transition state for computing the activation barrier) from targeted fine-physics sampling and extensive exploratory coarse-physics sampling. The full free-energy surface is still computed but at a lower level of accuracy from coarse-physics sampling. The method is analytically derived in terms of the umbrella sampling and the free-energy perturbation methods which are combined with the thermodynamic cycle and the targeted sampling strategy of the paradynamics approach. The algorithm starts by computing low-accuracy fine-physics free-energy surfaces from the coarse-physics sampling in order to identify the reaction path and to select regions for targeted sampling. Thus, the algorithm does not rely on the coarse-physics minimum free-energy reaction path. Next, segments of high-accuracy free-energy surface are computed locally at selected regions from the targeted fine-physics sampling and are positioned relative to the coarse-physics free-energy shifts. The positioning is done by averaging the free-energy perturbations computed with multistep linear response approximation method. This method is analytically shown to provide results of the thermodynamic integration and the free-energy interpolation methods, while being extremely simple in implementation. Incorporating the metadynamics sampling to the algorithm is also briefly outlined. The application is demonstrated by calculating the B3LYP//6-31G*/MM free-energy barrier for an enzymatic reaction using a semiempirical PM6/MM reference potential. These modifications allow computing the activation free energies at a significantly reduced computational cost but at the same level of accuracy compared to computing full potential of mean force. PMID:25136268

  3. Learning ion solid interactions hands-on: An activity based, inquiry oriented, graduate course

    NASA Astrophysics Data System (ADS)

    Braunstein, Gabriel

    2005-12-01

    Experimental work, using state of the art instrumentation, is integrated with lectures in a "real life", learning by discovery approach, in the Ion-Solid Interactions graduate/undergraduate course offered by the Department of Physics of the University of Central Florida. The lecture component of the course covers the underlying physical principles, and related scientific and technological applications, associated with the interaction of energetic ions with matter. In the experimental section the students form small groups and perform a variety of projects, experimental and computational, as part of a participative, inquiry oriented, learning process. In the most recent offering of the class, the students deposited a compound semiconductor thin film by dual-gun sputtering deposition, where each group aimed at a different stoichiometry of the same compound (Zn1-xSxOy). Then they analyzed the composition using Rutherford backscattering spectrometry, measured electrical transport properties using Hall effect and conductivity measurements, and determined the band gap using spectrophotometry. Finally the groups shared their results and each wrote a 'journal-like' technical article describing the entire work. In a different assignment, each group also developed a Monte Carlo computer program ('TRIM-like') to simulate the penetration of ions into a solid, in ion implantation, calculating the stopping cross-sections with approximate models, taught in class, which can be analytically solved. The combination of classroom/laboratory activities is very well received by the students. They gain real life experience operating state of the art equipment, and working in teams, while performing research-like projects, and simultaneously they learn the theoretical foundations of the discipline.

  4. Long term effects of self-determination theory and motivational interviewing in a web-based physical activity intervention: randomized controlled trial.

    PubMed

    Friederichs, Stijn A H; Oenema, Anke; Bolman, Catherine; Lechner, Lilian

    2015-08-18

    Our main objective in the current study was to evaluate the long-term effectiveness (12 months from baseline) of I Move (a web-based computer tailored physical activity intervention, based on self-determination theory and motivational interviewing). To this end, we compared I Move to a web-based computer tailored physical activity intervention based on traditional health behavior theories (Active Plus), and to a no-intervention control group. As a secondary objective, the present study aimed to identify participant characteristics that moderate the long term effects of I Move and Active Plus. A randomized controlled trial was conducted, comparing three research conditions: 1) the I Move condition, participants in this condition received I Move; 2) the Active Plus condition, participants in this condition received Active Plus; 3) the control condition; participants in this condition received no intervention and were placed on a waiting list. Main outcome measures were weekly minutes of moderate to vigorous physical activity and weekly days with minimal 30 min of physical activity. All measurements were taken by web-based questionnaires via the study website. Intervention effects were analyzed using multilevel linear regression analyses. At 12 months from baseline, I Move was found to be effective in increasing weekly minutes of moderate to vigorous physical activity (ES = .13), while Active Plus was not. In contrast, Active Plus was found to be effective in increasing weekly days with ≥ 30 min PA at 12 months (ES = .11), while I Move was not. No moderators of the effects of I Move were found. The results suggest that web-based computer tailored physical activity interventions might best include elements based on both self-determination theory/motivational interviewing and traditional health behavioral theories. To be more precise, it is arguable that the focus of the theoretical foundations, used in new web-based PA interventions should depend on the intended program outcome. In order to draw firm conclusions, however, more research on the effects of self-determination theory and motivational interviewing in web-based physical activity promotion is needed. Dutch Trial Register NTR4129.

  5. Antidepressant Use is Associated with Increased Energy Intake and Similar Levels of Physical Activity.

    PubMed

    Jensen-Otsu, Elsbeth; Austin, Gregory L

    2015-11-20

    Antidepressants have been associated with weight gain, but the causes are unclear. The aims of this study were to assess the association of antidepressant use with energy intake, macronutrient diet composition, and physical activity. We used data on medication use, energy intake, diet composition, and physical activity for 3073 eligible adults from the 2005-2006 National Health and Nutrition Examination Survey (NHANES). Potential confounding variables, including depression symptoms, were included in the models assessing energy intake, physical activity, and sedentary behavior. Antidepressant users reported consuming an additional (mean ± S.E.) 215 ± 73 kcal/day compared to non-users (p = 0.01). There were no differences in percent calories from sugar, fat, or alcohol between the two groups. Antidepressant users had similar frequencies of walking or biking, engaging in muscle-strengthening activities, and engaging in moderate or vigorous physical activity. Antidepressant users were more likely to use a computer for ≥2 h/day (OR 1.77; 95% CI: 1.09-2.90), but TV watching was similar between the two groups. These results suggest increased energy intake and sedentary behavior may contribute to weight gain associated with antidepressant use. Focusing on limiting food intake and sedentary behaviors may be important in mitigating the weight gain associated with antidepressant use.

  6. Antidepressant Use is Associated with Increased Energy Intake and Similar Levels of Physical Activity

    PubMed Central

    Jensen-Otsu, Elsbeth; Austin, Gregory L.

    2015-01-01

    Antidepressants have been associated with weight gain, but the causes are unclear. The aims of this study were to assess the association of antidepressant use with energy intake, macronutrient diet composition, and physical activity. We used data on medication use, energy intake, diet composition, and physical activity for 3073 eligible adults from the 2005–2006 National Health and Nutrition Examination Survey (NHANES). Potential confounding variables, including depression symptoms, were included in the models assessing energy intake, physical activity, and sedentary behavior. Antidepressant users reported consuming an additional (mean ± S.E.) 215 ± 73 kcal/day compared to non-users (p = 0.01). There were no differences in percent calories from sugar, fat, or alcohol between the two groups. Antidepressant users had similar frequencies of walking or biking, engaging in muscle-strengthening activities, and engaging in moderate or vigorous physical activity. Antidepressant users were more likely to use a computer for ≥2 h/day (OR 1.77; 95% CI: 1.09–2.90), but TV watching was similar between the two groups. These results suggest increased energy intake and sedentary behavior may contribute to weight gain associated with antidepressant use. Focusing on limiting food intake and sedentary behaviors may be important in mitigating the weight gain associated with antidepressant use. PMID:26610562

  7. PREFACE: 3rd Workshop on Theory, Modelling and Computational Methods for Semiconductors (TMCSIII)

    NASA Astrophysics Data System (ADS)

    Califano, Marco; Migliorato, Max; Probert, Matt

    2012-05-01

    These conference proceedings contain the written papers of the contributions presented at the 3rd International Conference on Theory, Modelling and Computational Methods for Semiconductor materials and nanostructures. The conference was held at the School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK on 18-20 January 2012. The previous conferences in this series took place in 2010 at St William's College, York and in 2008 at the University of Manchester, UK. The development of high-speed computer architectures is finally allowing the routine use of accurate methods for calculating the structural, thermodynamic, vibrational, optical and electronic properties of semiconductors and their hetero- and nano-structures. The scope of this conference embraces modelling, theory and the use of sophisticated computational tools in semiconductor science and technology, where there is substantial potential for time-saving in R&D. Theoretical approaches represented in this meeting included: Density Functional Theory, Tight Binding, Semiempirical Pseudopotential Methods, Effective Mass Models, Empirical Potential Methods and Multiscale Approaches. Topics included, but were not limited to: Optical and Transport Properties of Quantum Nanostructures including Colloids and Nanotubes, Plasmonics, Magnetic Semiconductors, Graphene, Lasers, Photonic Structures, Photovoltaic and Electronic Devices. This workshop ran for three days, with the objective of bringing together UK and international leading experts in the theoretical modelling of Group IV, III-V and II-VI semiconductors, as well as students, postdocs and early-career researchers. The first day focused on providing an introduction and overview of this vast field, aimed particularly at students, with several lectures given by recognised experts in various theoretical approaches. The following two days showcased some of the best theoretical research carried out in the UK in this field, with several contributions also from representatives of renowned theoretical groups from many European countries (Spain, France, Ireland, Germany, Italy, Poland, Denmark, Sweden, Serbia, Greece, etc.), as well as Asia (India) and Africa (Algeria, Tunisia and South Africa). We would like to thank all participants for making this a very successful meeting and for their contribution to the conference programme and these proceedings. We would also like to acknowledge the financial support from the Institute of Physics (Computational Physics group and Semiconductor Physics group), and QuantumWise (distributors of Atomistix). The Editors Acknowledgments Conference Organising Committee: Marco Califano (University of Leeds) Max Migliorato (University of Manchester) Matt Probert (University of York) Programme Committee: Stewart Clark (University of Durham) Aldo Di Carlo (University of Rome 'Tor Vergata', Italy) Ben Hourahine (University of Strathclyde) Lev Kantorovich (King's College London) Risto Nieminen (Helsinki University of Technology, Finland) Eoin O'Reilly (Tyndall Institute Cork, Republic of Ireland) Mauro Pereira (Sheffield Hallam University) John Robertson (University of Cambridge) Mervin Roy (University of Leicester) Stanko Tomic (University of Salford) David Whittaker (University of Sheffield) The proceedings were edited and compiled by Marco Califano, Max Migliorato and Matt Probert.

  8. Power Efficient Hardware Architecture of SHA-1 Algorithm for Trusted Mobile Computing

    NASA Astrophysics Data System (ADS)

    Kim, Mooseop; Ryou, Jaecheol

    The Trusted Mobile Platform (TMP) is developed and promoted by the Trusted Computing Group (TCG), which is an industry standard body to enhance the security of the mobile computing environment. The built-in SHA-1 engine in TMP is one of the most important circuit blocks and contributes the performance of the whole platform because it is used as key primitives supporting platform integrity and command authentication. Mobile platforms have very stringent limitations with respect to available power, physical circuit area, and cost. Therefore special architecture and design methods for low power SHA-1 circuit are required. In this paper, we present a novel and efficient hardware architecture of low power SHA-1 design for TMP. Our low power SHA-1 hardware can compute 512-bit data block using less than 7,000 gates and has a power consumption about 1.1 mA on a 0.25μm CMOS process.

  9. Computer codes developed and under development at Lewis

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1992-01-01

    The objective of this summary is to provide a brief description of: (1) codes developed or under development at LeRC; and (2) the development status of IPACS with some typical early results. The computer codes that have been developed and/or are under development at LeRC are listed in the accompanying charts. This list includes: (1) the code acronym; (2) select physics descriptors; (3) current enhancements; and (4) present (9/91) code status with respect to its availability and documentation. The computer codes list is grouped by related functions such as: (1) composite mechanics; (2) composite structures; (3) integrated and 3-D analysis; (4) structural tailoring; and (5) probabilistic structural analysis. These codes provide a broad computational simulation infrastructure (technology base-readiness) for assessing the structural integrity/durability/reliability of propulsion systems. These codes serve two other very important functions: they provide an effective means of technology transfer; and they constitute a depository of corporate memory.

  10. PREFACE: 15th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT2013)

    NASA Astrophysics Data System (ADS)

    Wang, Jianxiong

    2014-06-01

    This volume of Journal of Physics: Conference Series is dedicated to scientific contributions presented at the 15th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2013) which took place on 16-21 May 2013 at the Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China. The workshop series brings together computer science researchers and practitioners, and researchers from particle physics and related fields to explore and confront the boundaries of computing and of automatic data analysis and theoretical calculation techniques. This year's edition of the workshop brought together over 120 participants from all over the world. 18 invited speakers presented key topics on the universe in computer, Computing in Earth Sciences, multivariate data analysis, automated computation in Quantum Field Theory as well as computing and data analysis challenges in many fields. Over 70 other talks and posters presented state-of-the-art developments in the areas of the workshop's three tracks: Computing Technologies, Data Analysis Algorithms and Tools, and Computational Techniques in Theoretical Physics. The round table discussions on open-source, knowledge sharing and scientific collaboration stimulate us to think over the issue in the respective areas. ACAT 2013 was generously sponsored by the Chinese Academy of Sciences (CAS), National Natural Science Foundation of China (NFSC), Brookhaven National Laboratory in the USA (BNL), Peking University (PKU), Theoretical Physics Cernter for Science facilities of CAS (TPCSF-CAS) and Sugon. We would like to thank all the participants for their scientific contributions and for the en- thusiastic participation in all its activities of the workshop. Further information on ACAT 2013 can be found at http://acat2013.ihep.ac.cn. Professor Jianxiong Wang Institute of High Energy Physics Chinese Academy of Science Details of committees and sponsors are available in the PDF

  11. The challenges of developing computational physics: the case of South Africa

    NASA Astrophysics Data System (ADS)

    Salagaram, T.; Chetty, N.

    2013-08-01

    Most modern scientific research problems are complex and interdisciplinary in nature. It is impossible to study such problems in detail without the use of computation in addition to theory and experiment. Although it is widely agreed that students should be introduced to computational methods at the undergraduate level, it remains a challenge to do this in a full traditional undergraduate curriculum. In this paper, we report on a survey that we conducted of undergraduate physics curricula in South Africa to determine the content and the approach taken in the teaching of computational physics. We also considered the pedagogy of computational physics at the postgraduate and research levels at various South African universities, research facilities and institutions. We conclude that the state of computational physics training in South Africa, especially at the undergraduate teaching level, is generally weak and needs to be given more attention at all universities. Failure to do so will impact negatively on the countrys capacity to grow its endeavours generally in the field of computational sciences, with negative impacts on research, and in commerce and industry.

  12. Influence of Learning Strategy of Cognitive Conflict on Student Misconception in Computational Physics Course

    NASA Astrophysics Data System (ADS)

    Akmam, A.; Anshari, R.; Amir, H.; Jalinus, N.; Amran, A.

    2018-04-01

    Misconception is one of the factors causing students are not suitable in to choose a method for problem solving. Computational Physics course is a major subject in the Department of Physics FMIPA UNP Padang. The problem in Computational Physics learning lately is that students have difficulties in constructing knowledge. The indication of this problem was the student learning outcomes do not achieve mastery learning. The root of the problem is the ability of students to think critically weak. Student critical thinking can be improved using cognitive by conflict learning strategies. The research aims to determine the effect of cognitive conflict learning strategy to student misconception on the subject of Computational Physics Course at the Department of Physics, Faculty of Mathematics and Science, Universitas Negeri Padang. The experimental research design conducted after-before design cycles with a sample of 60 students by cluster random sampling. Data were analyzed using repeated Anova measurements. The cognitive conflict learning strategy has a significant effect on student misconception in the subject of Computational Physics Course.

  13. Development of a Computer-Assisted Instrumentation Curriculum for Physics Students: Using LabVIEW and Arduino Platform

    ERIC Educational Resources Information Center

    Kuan, Wen-Hsuan; Tseng, Chi-Hung; Chen, Sufen; Wong, Ching-Chang

    2016-01-01

    We propose an integrated curriculum to establish essential abilities of computer programming for the freshmen of a physics department. The implementation of the graphical-based interfaces from Scratch to LabVIEW then to LabVIEW for Arduino in the curriculum "Computer-Assisted Instrumentation in the Design of Physics Laboratories" brings…

  14. Effects of Computer-Assisted STAD, LTM and ICI Cooperative Learning Strategies on Nigerian Secondary School Students' Achievement, Gender and Motivation in Physics

    ERIC Educational Resources Information Center

    Gambari, Amosa Isiaka; Yusuf, Mudasiru Olalere; Thomas, David Akpa

    2015-01-01

    This study examined the effectiveness of computer-assisted instruction on Student Team Achievement Division (STAD) and Learning Together (LT) cooperative learning strategies on Nigerian secondary students' achievement and motivation in physics. The effectiveness of computer assisted instructional package (CAI) for teaching physics concepts in…

  15. Process evaluation of physical activity counselling with and without the use of mobile technology: A mixed methods study.

    PubMed

    Verwey, R; van der Weegen, S; Spreeuwenberg, M; Tange, H; van der Weijden, T; de Witte, L

    2016-01-01

    A monitoring-and-feedback tool was developed to stimulate physical activity by giving feedback on physical activity performance to patients and practice nurses. The tool consists of an activity monitor (accelerometer), wirelessly connected to a Smartphone and a web application. Use of this tool is combined with a behaviour change counselling protocol (the Self-management Support Programme) based on the Five A's model (Assess-Advise-Agree-Assist-Arrange). To examine the reach, implementation and satisfaction with the counselling protocol and the tool. A process evaluation was conducted in two intervention groups of a three-armed cluster randomised controlled trial, in which the counselling protocol was evaluated with (group 1, n=65) and without (group 2, n=66) the use of the tool using a mixed methods design. Sixteen family practices in the South of the Netherlands. Practice nurses (n=20) and their associated physically inactive patients (n=131), diagnosed with Chronic Obstructive Pulmonary Disease or Type 2 Diabetes, aged between 40 and 70 years old, and having access to a computer with an Internet connection. Semi structured interviews about the receipt of the intervention were conducted with the nurses and log files were kept regarding the consultations. After the intervention, questionnaires were presented to patients and nurses regarding compliance to and satisfaction with the interventions. Functioning and use of the tool were also evaluated by system and helpdesk logging. Eighty-six percent of patients (group 1: n=57 and group 2: n=56) and 90% of nurses (group 1: n=10 and group 2: n=9) responded to the questionnaires. The execution of the Self-management Support Programme was adequate; in 83% (group 1: n=52, group 2: n=57) of the patients, the number and planning of the consultations were carried out as intended. Eighty-eight percent (n=50) of the patients in group 1 used the tool until the end of the intervention period. Technical problems occurred in 58% (n=33). Participants from group 1 were significantly more positive: patients: χ(2)(2, N=113)=11.17, p=0.004, and nurses: χ(2)(2, N=19)=6.37, p=0.040. Use of the tool led to greater awareness of the importance of physical activity, more discipline in carrying it out and more enjoyment. The interventions were adequately executed and received as planned. Patients from both groups appreciated the focus on physical activity and personal attention given by the nurse. The most appreciated aspect of the combined intervention was the tool, although technical problems frequently occurred. Patients with the tool estimated more improvement of physical activity than patients without the tool. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. GPU computing in medical physics: a review.

    PubMed

    Pratx, Guillem; Xing, Lei

    2011-05-01

    The graphics processing unit (GPU) has emerged as a competitive platform for computing massively parallel problems. Many computing applications in medical physics can be formulated as data-parallel tasks that exploit the capabilities of the GPU for reducing processing times. The authors review the basic principles of GPU computing as well as the main performance optimization techniques, and survey existing applications in three areas of medical physics, namely image reconstruction, dose calculation and treatment plan optimization, and image processing.

  17. Computer usage among nurses in rural health-care facilities in South Africa: obstacles and challenges.

    PubMed

    Asah, Flora

    2013-04-01

    This study discusses factors inhibiting computer usage for work-related tasks among computer-literate professional nurses within rural healthcare facilities in South Africa. In the past two decades computer literacy courses have not been part of the nursing curricula. Computer courses are offered by the State Information Technology Agency. Despite this, there seems to be limited use of computers by professional nurses in the rural context. Focus group interviews held with 40 professional nurses from three government hospitals in northern KwaZulu-Natal. Contributing factors were found to be lack of information technology infrastructure, restricted access to computers and deficits in regard to the technical and nursing management support. The physical location of computers within the health-care facilities and lack of relevant software emerged as specific obstacles to usage. Provision of continuous and active support from nursing management could positively influence computer usage among professional nurses. A closer integration of information technology and computer literacy skills into existing nursing curricula would foster a positive attitude towards computer usage through early exposure. Responses indicated that change of mindset may be needed on the part of nursing management so that they begin to actively promote ready access to computers as a means of creating greater professionalism and collegiality. © 2011 Blackwell Publishing Ltd.

  18. Chapter 28: Theory SkyNode

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Norman, M. L.

    Here we present a working example of a Basic SkyNode serving theoretical data. The data is taken from the Simulated Cluster Archive (SCA), a set of simulated X-ray clusters, where each cluster was computed using four different physics models. The LCA Theory SkyNode (LCATheory) tables contain columns of the integrated physical properties of the clusters at various redshifts. The ease of setting up a Theory SkyNode is an important result, because it represents a clear way to present theory data to the Virtual Observatory. Also, our Theory SkyNode provides a prototype for additional simulated object catalogs, which will be created from other simulations by our group, and hopefully others.

  19. Computation of parton distributions from the quasi-PDF approach at the physical point

    NASA Astrophysics Data System (ADS)

    Alexandrou, Constantia; Bacchio, Simone; Cichy, Krzysztof; Constantinou, Martha; Hadjiyiannakou, Kyriakos; Jansen, Karl; Koutsou, Giannis; Scapellato, Aurora; Steffens, Fernanda

    2018-03-01

    We show the first results for parton distribution functions within the proton at the physical pion mass, employing the method of quasi-distributions. In particular, we present the matrix elements for the iso-vector combination of the unpolarized, helicity and transversity quasi-distributions, obtained with Nf = 2 twisted mass cloverimproved fermions and a proton boosted with momentum |p→| = 0.83 GeV. The momentum smearing technique has been applied to improve the overlap with the proton boosted state. Moreover, we present the renormalized helicity matrix elements in the RI' scheme, following the non-perturbative renormalization prescription recently developed by our group.

  20. Affine Kac-Moody symmetric spaces related with A1^{(1)}, A2^{(1)},} A2^{(2)}

    NASA Astrophysics Data System (ADS)

    Nayak, Saudamini; Pati, K. C.

    2014-08-01

    Symmetric spaces associated with Lie algebras and Lie groups which are Riemannian manifolds have recently got a lot of attention in various branches of Physics for their role in classical/quantum integrable systems, transport phenomena, etc. Their infinite dimensional counter parts have recently been discovered which are affine Kac-Moody symmetric spaces. In this paper we have (algebraically) explicitly computed the affine Kac-Moody symmetric spaces associated with affine Kac-Moody algebras A1^{(1)}, A2^{(1)}, A2^{(2)}. We hope these types of spaces will play similar roles as that of symmetric spaces in many physical systems.

  1. A randomised controlled trial testing a web-based, computer-tailored self-management intervention for people with or at risk for chronic obstructive pulmonary disease: a study protocol

    PubMed Central

    2013-01-01

    Background Chronic Obstructive Pulmonary Disease (COPD) is a major cause of morbidity and mortality. Effective self-management support interventions are needed to improve the health and functional status of people with COPD or at risk for COPD. Computer-tailored technology could be an effective way to provide this support. Methods/Design This paper presents the protocol of a randomised controlled trial testing the effectiveness of a web-based, computer-tailored self-management intervention to change health behaviours of people with or at risk for COPD. An intervention group will be compared to a usual care control group, in which the intervention group will receive a web-based, computer-tailored self-management intervention. Participants will be recruited from an online panel and through general practices. Outcomes will be measured at baseline and at 6 months. The primary outcomes will be smoking behaviour, measuring the 7-day point prevalence abstinence and physical activity, measured in minutes. Secondary outcomes will include dyspnoea score, quality of life, stages of change, intention to change behaviour and alternative smoking behaviour measures, including current smoking behaviour, 24-hour point prevalence abstinence, prolonged abstinence, continued abstinence and number of quit attempts. Discussion To the best of our knowledge, this will be the first randomised controlled trial to test the effectiveness of a web-based, computer-tailored self-management intervention for people with or at risk for COPD. The results will be important to explore the possible benefits of computer-tailored interventions for the self-management of people with or at risk for COPD and potentially other chronic health conditions. Dutch trial register NTR3421 PMID:23742208

  2. Computer Self-Efficacy, Computer Anxiety, Performance and Personal Outcomes of Turkish Physical Education Teachers

    ERIC Educational Resources Information Center

    Aktag, Isil

    2015-01-01

    The purpose of this study is to determine the computer self-efficacy, performance outcome, personal outcome, and affect and anxiety level of physical education teachers. Influence of teaching experience, computer usage and participation of seminars or in-service programs on computer self-efficacy level were determined. The subjects of this study…

  3. Challenges in Teaching Space Physics to Different Target Groups From Space Weather Forecasters to Heavy-weight Theorists

    NASA Astrophysics Data System (ADS)

    Koskinen, H. E.

    2008-12-01

    Plasma physics as the backbone of space physics is difficult and thus the space physics students need to have strong foundations in general physics, in particular in classical electrodynamics and thermodynamics, and master the basic mathematical tools for physicists. In many universities the number of students specializing in space physics at Master's and Doctoral levels is rather small and the students may have quite different preferences ranging from experimental approach to hard-core space plasma theory. This poses challenges in building up a study program that has both the variety and depth needed to motivate the best students to choose this field. At the University of Helsinki we require all beginning space physics students, regardless whether they enter the field as Master's or Doctoral degree students, to take a one-semester package consisting of plasma physics and its space applications. However, some compromises are necessary. For example, it is not at all clear, how thoroughly Landau damping should be taught at the first run or how deeply should the intricacies of collisionless reconnection be discussed. In both cases we have left the details to an optional course in advanced space physics, even with the risk that the student's appreciation of, e.g., reconnection may remain at the level of a magic wand. For learning experimental work, data analysis or computer simulations we have actively pursued arrangements for the Master's degree students to get a summer employments in active research groups, which usually lead to the Master's theses. All doctoral students are members of research groups and participate in experimental work, data analysis, simulation studies or theory development, or any combination of these. We emphasize strongly "learning by doing" all the way from the weekly home exercises during the lecture courses to the PhD theses which in Finland consist typically of 4-6 peer-reviewed articles with a comprehensive introductory part.

  4. Phase Field Modeling of Microstructure Development in Microgravity

    NASA Technical Reports Server (NTRS)

    Dantzig, Jonathan A.; Goldenfeld, Nigel

    2001-01-01

    This newly funded project seeks to extend our NASA-sponsored project on modeling of dendritic microstructures to facilitate collaboration between our research group and those of other NASA investigators. In our ongoing program, we have applied advanced computational techniques to study microstructural evolution in dendritic solidification, for both pure isolated dendrites and directionally solidified alloys. This work has enabled us to compute dendritic microstructures using both realistic material parameters and experimentally relevant processing conditions, thus allowing for the first time direct comparison of phase field computations with laboratory observations. This work has been well received by the materials science and physics communities, and has led to several opportunities for collaboration with scientists working on experimental investigations of pattern selection and segregation in solidification. While we have been able to pursue these collaborations to a limited extent, with some important findings, this project focuses specifically on those collaborations. We have two target collaborations: with Prof. Glicksman's group working on the Isothermal Dendritic Growth Experiment (IDGE), and with Prof. Poirier's group studying directional solidification in Pb-Sb alloys. These two space experiments match well with our two thrusts in modeling, one for pure materials, as in the IDGE, and the other directional solidification. Such collaboration will benefit all of the research groups involved, and will provide for rapid dissemination of the results of our work where it will have significant impact.

  5. A Modeling Framework for Optimal Computational Resource Allocation Estimation: Considering the Trade-offs between Physical Resolutions, Uncertainty and Computational Costs

    NASA Astrophysics Data System (ADS)

    Moslehi, M.; de Barros, F.; Rajagopal, R.

    2014-12-01

    Hydrogeological models that represent flow and transport in subsurface domains are usually large-scale with excessive computational complexity and uncertain characteristics. Uncertainty quantification for predicting flow and transport in heterogeneous formations often entails utilizing a numerical Monte Carlo framework, which repeatedly simulates the model according to a random field representing hydrogeological characteristics of the field. The physical resolution (e.g. grid resolution associated with the physical space) for the simulation is customarily chosen based on recommendations in the literature, independent of the number of Monte Carlo realizations. This practice may lead to either excessive computational burden or inaccurate solutions. We propose an optimization-based methodology that considers the trade-off between the following conflicting objectives: time associated with computational costs, statistical convergence of the model predictions and physical errors corresponding to numerical grid resolution. In this research, we optimally allocate computational resources by developing a modeling framework for the overall error based on a joint statistical and numerical analysis and optimizing the error model subject to a given computational constraint. The derived expression for the overall error explicitly takes into account the joint dependence between the discretization error of the physical space and the statistical error associated with Monte Carlo realizations. The accuracy of the proposed framework is verified in this study by applying it to several computationally extensive examples. Having this framework at hand aims hydrogeologists to achieve the optimum physical and statistical resolutions to minimize the error with a given computational budget. Moreover, the influence of the available computational resources and the geometric properties of the contaminant source zone on the optimum resolutions are investigated. We conclude that the computational cost associated with optimal allocation can be substantially reduced compared with prevalent recommendations in the literature.

  6. Sensitivity of a computer adaptive assessment for measuring functional mobility changes in children enrolled in a community fitness programme.

    PubMed

    Haley, Stephen M; Fragala-Pinkham, Maria; Ni, Pengsheng

    2006-07-01

    To examine the relative sensitivity to detect functional mobility changes with a full-length parent questionnaire compared with a computerized adaptive testing version of the questionnaire after a 16-week group fitness programme. Prospective, pre- and posttest study with a 16-week group fitness intervention. Three community-based fitness centres. Convenience sample of children (n = 28) with physical or developmental disabilities. A 16-week group exercise programme held twice a week in a community setting. A full-length (161 items) paper version of a mobility parent questionnaire based on the Pediatric Evaluation of Disability Inventory, but expanded to include expected skills of children up to 15 years old was compared with a 15-item computer adaptive testing version. Both measures were administered at pre- and posttest intervals. Both the full-length Pediatric Evaluation of Disability Inventory and the 15-item computer adaptive testing version detected significant changes between pre- and posttest scores, had large effect sizes, and standardized response means, with a modest decrease in the computer adaptive test as compared with the 161-item paper version. Correlations between the computer adaptive and paper formats across pre- and posttest scores ranged from r = 0.76 to 0.86. Both functional mobility test versions were able to detect positive functional changes at the end of the intervention period. Greater variability in score estimates was generated by the computerized adaptive testing version, which led to a relative reduction in sensitivity as defined by the standardized response mean. Extreme scores were generally more difficult for the computer adaptive format to estimate with as much accuracy as scores in the mid-range of the scale. However, the reduction in accuracy and sensitivity, which did not influence the group effect results in this study, is counterbalanced by the large reduction in testing burden.

  7. Do ergonomics improvements increase computer workers' productivity?: an intervention study in a call centre.

    PubMed

    Smith, Michael J; Bayehi, Antoinette Derjani

    2003-01-15

    This paper examines whether improving physical ergonomics working conditions affects worker productivity in a call centre with computer-intensive work. A field study was conducted at a catalogue retail service organization to explore the impact of ergonomics improvements on worker production. There were three levels of ergonomics interventions, each adding incrementally to the previous one. The first level was ergonomics training for all computer users accompanied by workstation ergonomics analysis leading to specific customized adjustments to better fit each worker (Group C). The second level added specific workstation accessories to improve the worker fit if the ergonomics analysis indicated a need for them (Group B). The third level met Group B requirements plus an improved chair (Group A). Productivity data was gathered from 72 volunteer participants who received ergonomics improvements to their workstations and 370 control subjects working in the same departments. Daily company records of production outputs for each worker were taken before ergonomics intervention (baseline) and 12 months after ergonomics intervention. Productivity improvement from baseline to 12 months post-intervention was examined across all ergonomics conditions combined, and also compared to the control group. The findings showed that worker performance increased for 50% of the ergonomics improvement participants and decreased for 50%. Overall, there was a 4.87% output increase for the ergonomics improvement group as compared to a 3.46% output decrease for the control group. The level of productivity increase varied by the type of the ergonomics improvements with Group C showing the best improvement (9.43%). Even though the average production improved, caution must be used in interpreting the findings since the ergonomics interventions were not successful for one-half of the participants.

  8. System, method and computer-readable medium for locating physical phenomena

    DOEpatents

    Weseman, Matthew T [Idaho Falls, ID; Rohrbaugh, David T [Idaho Falls, ID; Richardson, John G [Idaho Falls, ID

    2008-02-26

    A method, system and computer product for detecting the location of a deformation of a structure includes baselining a defined energy transmitting characteristic for each of the plurality of laterally adjacent conductors attached to the structure. Each of the plurality of conductors includes a plurality of segments coupled in series and having an associated unit value representative of the defined energy transmitting characteristic. The plurality of laterally adjacent conductors includes a plurality of identity groups with each identity group including at least one of the plurality of segments from each of the plurality of conductors. Each of the plurality of conductors are monitored for a difference in the defined energy transmitting characteristic when compared with a baseline energy transmitting characteristic for each of the plurality of conductors. When the difference exceeds a threshold value, a location of the deformation along the structure is calculated.

  9. Reading data stored in the state of metastable defects in silicon using band-band photoluminescence: Proof of concept and physical limits to the data storage density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rougieux, F. E.; Macdonald, D.

    2014-03-24

    The state of bistable defects in crystalline silicon such as iron-boron pairs or the boron-oxygen defect can be changed at room temperature. In this letter, we experimentally demonstrate that the chemical state of a group of defects can be changed to represent a bit of information. The state can then be read without direct contact via the intensity of the emitted band-band photoluminescence signal of the group of defects, via their impact on the carrier lifetime. The theoretical limit of the information density is then computed. The information density is shown to be low for two-dimensional storage but significant formore » three-dimensional data storage. Finally, we compute the maximum storage capacity as a function of the lower limit of the photoluminescence detector sensitivity.« less

  10. Some Issues in Programming Multi-Mini-Processors

    DTIC Science & Technology

    1975-01-01

    Hardware ^nd software are to be combined optimally to perform that specialized task. This in essence is the stategy followed by the BBN group in...large memory is directly addressable. MIXED SOLUTIONS The most promising approach appears to involve mixing several of the previous solutions...mini- or micro-computers. Possibly the problem will be solved by avoiding it. Some new minis are appearing on the market now with large physical

  11. Statistics, Computation, and Modeling in Cosmology

    NASA Astrophysics Data System (ADS)

    Jewell, Jeff; Guiness, Joe; SAMSI 2016 Working Group in Cosmology

    2017-01-01

    Current and future ground and space based missions are designed to not only detect, but map out with increasing precision, details of the universe in its infancy to the present-day. As a result we are faced with the challenge of analyzing and interpreting observations from a wide variety of instruments to form a coherent view of the universe. Finding solutions to a broad range of challenging inference problems in cosmology is one of the goals of the “Statistics, Computation, and Modeling in Cosmology” workings groups, formed as part of the year long program on ‘Statistical, Mathematical, and Computational Methods for Astronomy’, hosted by the Statistical and Applied Mathematical Sciences Institute (SAMSI), a National Science Foundation funded institute. Two application areas have emerged for focused development in the cosmology working group involving advanced algorithmic implementations of exact Bayesian inference for the Cosmic Microwave Background, and statistical modeling of galaxy formation. The former includes study and development of advanced Markov Chain Monte Carlo algorithms designed to confront challenging inference problems including inference for spatial Gaussian random fields in the presence of sources of galactic emission (an example of a source separation problem). Extending these methods to future redshift survey data probing the nonlinear regime of large scale structure formation is also included in the working group activities. In addition, the working group is also focused on the study of ‘Galacticus’, a galaxy formation model applied to dark matter-only cosmological N-body simulations operating on time-dependent halo merger trees. The working group is interested in calibrating the Galacticus model to match statistics of galaxy survey observations; specifically stellar mass functions, luminosity functions, and color-color diagrams. The group will use subsampling approaches and fractional factorial designs to statistically and computationally efficiently explore the Galacticus parameter space. The group will also use the Galacticus simulations to study the relationship between the topological and physical structure of the halo merger trees and the properties of the resulting galaxies.

  12. Interdisciplinary concepts for design and implementation of mixed reality interactive neurorehabilitation systems for stroke.

    PubMed

    Baran, Michael; Lehrer, Nicole; Duff, Margaret; Venkataraman, Vinay; Turaga, Pavan; Ingalls, Todd; Rymer, W Zev; Wolf, Steven L; Rikakis, Thanassis

    2015-03-01

    Interactive neurorehabilitation (INR) systems provide therapy that can evaluate and deliver feedback on a patient's movement computationally. There are currently many approaches to INR design and implementation, without a clear indication of which methods to utilize best. This article presents key interactive computing, motor learning, and media arts concepts utilized by an interdisciplinary group to develop adaptive, mixed reality INR systems for upper extremity therapy of patients with stroke. Two INR systems are used as examples to show how the concepts can be applied within: (1) a small-scale INR clinical study that achieved integrated improvement of movement quality and functionality through continuously supervised therapy and (2) a pilot study that achieved improvement of clinical scores with minimal supervision. The notion is proposed that some of the successful approaches developed and tested within these systems can form the basis of a scalable design methodology for other INR systems. A coherent approach to INR design is needed to facilitate the use of the systems by physical therapists, increase the number of successful INR studies, and generate rich clinical data that can inform the development of best practices for use of INR in physical therapy. © 2015 American Physical Therapy Association.

  13. Microcomputers in a Beginning Tertiary Physics Course.

    ERIC Educational Resources Information Center

    Pearce, J. M.; O'Brien, R.

    1986-01-01

    Describes a college-level physics course which focuses on both physics knowledge/skills and use of microcomputers. Types of experiments done with the computers and how students use the computers to treat data are considered. (JN)

  14. Interactive Computation for Undergraduates: The Next Generation

    NASA Astrophysics Data System (ADS)

    Kolan, Amy J.

    2017-05-01

    A generation ago (29 years ago), Leo Kadanoff and Michael Vinson created the Computers, Chaos, and Physics course. A major pedagogical thrust of this course was to help students form and test hypotheses via computer simulation of small problems in physics. Recently, this aspect of the 1987 course has been revived for use with first year physics undergraduate students at St. Olaf College.

  15. Analyzing Log Files to Predict Students' Problem Solving Performance in a Computer-Based Physics Tutor

    ERIC Educational Resources Information Center

    Lee, Young-Jin

    2015-01-01

    This study investigates whether information saved in the log files of a computer-based tutor can be used to predict the problem solving performance of students. The log files of a computer-based physics tutoring environment called Andes Physics Tutor was analyzed to build a logistic regression model that predicted success and failure of students'…

  16. Effect of addiction to computer games on physical and mental health of female and male students of guidance school in city of isfahan.

    PubMed

    Zamani, Eshrat; Chashmi, Maliheh; Hedayati, Nasim

    2009-01-01

    This study aimed to investigate the effects of addiction to computer games on physical and mental health of students. The study population includes all students in the second year of public guidance schools in the city of Isfahan in the educational year of 2009-2010. The sample size includes 564 students selected by multiple steps stratified sampling. Dependent variables include general health in dimensions of physical health, anxiety and sleeplessness and impaired social functioning. Data were collected using General Health Questionnaire (GHQ-28) scale and a questionnaire on addiction to computer games. Pearson's correlation coefficient and structural model were used for data analysis. There was a significant positive correlation between students' computer games addiction and their physical and mental health in dimensions of physical health, anxiety and sleeplessness There was a significant negative relationship between addictions to computer games and impaired social functioning. The results of this study are in agreement with the findings of other studies around the world. As the results show, addiction to computer games affects various dimensions of health and increases physical problems, anxiety and depression, while decreases social functioning disorder.

  17. Effect of Addiction to Computer Games on Physical and Mental Health of Female and Male Students of Guidance School in City of Isfahan

    PubMed Central

    Zamani, Eshrat; Chashmi, Maliheh; Hedayati, Nasim

    2009-01-01

    Background: This study aimed to investigate the effects of addiction to computer games on physical and mental health of students. Methods: The study population includes all students in the second year of public guidance schools in the city of Isfahan in the educational year of 2009-2010. The sample size includes 564 students selected by multiple steps stratified sampling. Dependent variables include general health in dimensions of physical health, anxiety and sleeplessness and impaired social functioning. Data were collected using General Health Questionnaire (GHQ-28) scale and a questionnaire on addiction to computer games. Pearson's correlation coefficient and structural model were used for data analysis. Findings: There was a significant positive correlation between students' computer games addiction and their physical and mental health in dimensions of physical health, anxiety and sleeplessness There was a significant negative relationship between addictions to computer games and impaired social functioning. Conclusion: The results of this study are in agreement with the findings of other studies around the world. As the results show, addiction to computer games affects various dimensions of health and increases physical problems, anxiety and depression, while decreases social functioning disorder. PMID:24494091

  18. Computational Studies for Underground Coal Gasification (UCG) Process

    NASA Astrophysics Data System (ADS)

    Chatterjee, Dipankar

    2017-07-01

    Underground coal gasification (UCG) is a well proven technology in order to access the coal lying either too deep underground, or is otherwise too costly to be extracted using the conventional mining methods. UCG product gas is commonly used as a chemical feedstock or as fuel for power generation. During the UCG process, a cavity is formed in the coal seam during its conversion to gaseous products. The cavity grows in a three-dimensional fashion as the gasification proceeds. The UCG process is indeed a result of several complex interactions of various geo-thermo-mechanical processes such as the fluid flow, heat and mass transfer, chemical reactions, water influx, thermo-mechanical failure, and other geological aspects. The rate of the growth of this cavity and its shape will have a significant impact on the gas flow patterns, chemical kinetics, temperature distributions, and finally the quality of the product gas. It has been observed that there is insufficient information available in the literature to provide clear insight into these issues. It leaves us with a great opportunity to investigate and explore the UCG process, both from the experimental as well as theoretical perspectives. In the development and exploration of new research, experiment is undoubtedly very important. However, due to the excessive cost involvement with experimentation it is not always recommended for the complicated process like UCG. Recently, with the advent of the high performance computational facilities it is quite possible to make alternative experimentation numerically of many physically involved problems using certain computational tools like CFD (computational fluid dynamics). In order to gain a comprehensive understanding of the underlying physical phenomena, modeling strategies have frequently been utilized for the UCG process. Keeping in view the above, the various modeling strategies commonly deployed for carrying out mathematical modeling of UCG process are described here in a concise manner. The available strategies are categorized in several groups and their salient features are discussed in order to have a good understanding of the underlying physical phenomena. This would likely to be a valuable documentation in order to understand the physical process of UCG and will pave to formulate new and involved modeling and simulation techniques for computationally modeling the UCG process.

  19. Richard Feynman and computation

    NASA Astrophysics Data System (ADS)

    Hey, Tony

    1999-04-01

    The enormous contribution of Richard Feynman to modern physics is well known, both to teaching through his famous Feynman Lectures on Physics, and to research with his Feynman diagram approach to quantum field theory and his path integral formulation of quantum mechanics. Less well known perhaps is his long-standing interest in the physics of computation and this is the subject of this paper. Feynman lectured on computation at Caltech for most of the last decade of his life, first with John Hopfield and Carver Mead, and then with Gerry Sussman. The story of how these lectures came to be written up as the Feynman Lectures on Computation is briefly recounted. Feynman also discussed the fundamentals of computation with other legendary figures of the computer science and physics community such as Ed Fredkin, Rolf Landauer, Carver Mead, Marvin Minsky and John Wheeler. He was also instrumental in stimulating developments in both nanotechnology and quantum computing. During the 1980s Feynman re-visited long-standing interests both in parallel computing with Geoffrey Fox and Danny Hillis, and in reversible computation and quantum computing with Charles Bennett, Norman Margolus, Tom Toffoli and Wojciech Zurek. This paper records Feynman's links with the computational community and includes some reminiscences about his involvement with the fundamentals of computing.

  20. WLCG and IPv6 - The HEPiX IPv6 working group

    DOE PAGES

    Campana, S.; K. Chadwick; Chen, G.; ...

    2014-06-11

    The HEPiX (http://www.hepix.org) IPv6 Working Group has been investigating the many issues which feed into the decision on the timetable for the use of IPv6 (http://www.ietf.org/rfc/rfc2460.txt) networking protocols in High Energy Physics (HEP) Computing, in particular in the Worldwide Large Hadron Collider (LHC) Computing Grid (WLCG). RIPE NCC, the European Regional Internet Registry (RIR), ran out ofIPv4 addresses in September 2012. The North and South America RIRs are expected to run out soon. In recent months it has become more clear that some WLCG sites, including CERN, are running short of IPv4 address space, now without the possibility of applyingmore » for more. This has increased the urgency for the switch-on of dual-stack IPv4/IPv6 on all outward facing WLCG services to allow for the eventual support of IPv6-only clients. The activities of the group include the analysis and testing of the readiness for IPv6 and the performance of many required components, including the applications, middleware, management and monitoring tools essential for HEP computing. Many WLCG Tier 1/2 sites are participants in the group's distributed IPv6 testbed and the major LHC experiment collaborations are engaged in the testing. We are constructing a group web/wiki which will contain useful information on the IPv6 readiness of the various software components and a knowledge base (http://hepix-ipv6.web.cern.ch/knowledge-base). Furthermore, this paper describes the work done by the working group and its future plans.« less

  1. WLCG and IPv6 - the HEPiX IPv6 working group

    NASA Astrophysics Data System (ADS)

    Campana, S.; Chadwick, K.; Chen, G.; Chudoba, J.; Clarke, P.; Eliáš, M.; Elwell, A.; Fayer, S.; Finnern, T.; Goossens, L.; Grigoras, C.; Hoeft, B.; Kelsey, D. P.; Kouba, T.; López Muñoz, F.; Martelli, E.; Mitchell, M.; Nairz, A.; Ohrenberg, K.; Pfeiffer, A.; Prelz, F.; Qi, F.; Rand, D.; Reale, M.; Rozsa, S.; Sciaba, A.; Voicu, R.; Walker, C. J.; Wildish, T.

    2014-06-01

    The HEPiX (http://www.hepix.org) IPv6 Working Group has been investigating the many issues which feed into the decision on the timetable for the use of IPv6 (http://www.ietf.org/rfc/rfc2460.txt) networking protocols in High Energy Physics (HEP) Computing, in particular in the Worldwide Large Hadron Collider (LHC) Computing Grid (WLCG). RIPE NCC, the European Regional Internet Registry (RIR), ran out ofIPv4 addresses in September 2012. The North and South America RIRs are expected to run out soon. In recent months it has become more clear that some WLCG sites, including CERN, are running short of IPv4 address space, now without the possibility of applying for more. This has increased the urgency for the switch-on of dual-stack IPv4/IPv6 on all outward facing WLCG services to allow for the eventual support of IPv6-only clients. The activities of the group include the analysis and testing of the readiness for IPv6 and the performance of many required components, including the applications, middleware, management and monitoring tools essential for HEP computing. Many WLCG Tier 1/2 sites are participants in the group's distributed IPv6 testbed and the major LHC experiment collaborations are engaged in the testing. We are constructing a group web/wiki which will contain useful information on the IPv6 readiness of the various software components and a knowledge base (http://hepix-ipv6.web.cern.ch/knowledge-base). This paper describes the work done by the working group and its future plans.

  2. Development of the Physical Activity Interactive Recall (PAIR) for Aboriginal children

    PubMed Central

    Lévesque, Lucie; Cargo, Margaret; Salsberg, Jon

    2004-01-01

    Background Aboriginal children in Canada are at increased risk for type 2 diabetes. Given that physical inactivity is an important modifiable risk factor for type 2 diabetes, prevention efforts targeting Aboriginal children include interventions to enhance physical activity involvement. These types of interventions require adequate assessment of physical activity patterns to identify determinants, detect trends, and evaluate progress towards intervention goals. The purpose of this study was to develop a culturally appropriate interactive computer program to self-report physical activity for Kanien'kehá:ka (Mohawk) children that could be administered in a group setting. This was an ancillary study of the ongoing Kahnawake Schools Diabetes Prevention Project (KSDPP). Methods During Phase I, focus groups were conducted to understand how children describe and graphically depict type, intensity and duration of physical activity. Sixty-six students (40 girls, 26 boys, mean age = 8.8 years, SD = 1.8) from four elementary schools in three eastern Canadian Kanien'kehá:ka communities participated in 15 focus groups. Children were asked to discuss and draw about physical activity. Content analysis of focus groups informed the development of a school-day and non-school-day version of the physical activity interactive recall (PAIR). In Phase II, pilot-tests were conducted in two waves with 17 and 28 children respectively to assess the content validity of PAIR. Observation, videotaping, and interviews were conducted to obtain children's feedback on PAIR content and format. Results Children's representations of activity type and activity intensity were used to compile a total of 30 different physical activity and 14 non-physical activity response choices with accompanying intensity options. Findings from the pilot tests revealed that Kanien'kehá:ka children between nine and 13 years old could answer PAIR without assistance. Content validity of PAIR was judged to be adequate. PAIR was judged to be comprehensive, acceptable, and enjoyable by the children. Conclusions Results indicate that PAIR may be acceptable to children between nine and 13 years old, with most in this age range able to complete PAIR without assistance. The flexibility of its programming makes PAIR an easily adaptable tool to accommodate diverse populations, different seasons, and changing trends in physical activity involvement. PMID:15169559

  3. How Computer-Assisted Teaching in Physics Can Enhance Student Learning

    ERIC Educational Resources Information Center

    Karamustafaoglu, O.

    2012-01-01

    Simple harmonic motion (SHM) is an important topic for physics or science students and has wide applications all over the world. Computer simulations are applications of special interest in physics teaching because they support powerful modeling environments involving physics concepts. This article is aimed to compare the effect of…

  4. The Design of a Computer Table for the Physically Handicapped Student.

    ERIC Educational Resources Information Center

    Fitterman, L. Jeffrey

    The paper describes the development of a computer table for physically handicapped students including persons with moderate to severe cerebral palsy, muscular dystrophy, uncontrolled epilepsy, and paralysis due to physical trauma. The project first reviewed furniture currently available for the physically handicapped and then conducted ergonomic…

  5. Mapping University Students' Epistemic Framing of Computational Physics Using Network Analysis

    ERIC Educational Resources Information Center

    Bodin, Madelen

    2012-01-01

    Solving physics problem in university physics education using a computational approach requires knowledge and skills in several domains, for example, physics, mathematics, programming, and modeling. These competences are in turn related to students' beliefs about the domains as well as about learning. These knowledge and beliefs components are…

  6. Computer Integrated Manufacturing: Physical Modelling Systems Design. A Personal View.

    ERIC Educational Resources Information Center

    Baker, Richard

    A computer-integrated manufacturing (CIM) Physical Modeling Systems Design project was undertaken in a time of rapid change in the industrial, business, technological, training, and educational areas in Australia. A specification of a manufacturing physical modeling system was drawn up. Physical modeling provides a flexibility and configurability…

  7. Why I think Computational Physics has been the most valuable part of my undergraduate physics education

    NASA Astrophysics Data System (ADS)

    Parsons, Matthew

    2015-04-01

    Computational physics is a rich and vibrant field in its own right, but often not given the attention that it should receive in the typical undergraduate physics curriculum. It appears that the partisan theorist vs. experimentalist view is still pervasive in academia, or at least still portrayed to students, while in fact there is a continuous spectrum of opportunities in between these two extremes. As a case study, I'll give my perspective as a graduating physics student with examples of computational coursework at Drexel University and research opportunities that this experience has led to.

  8. Network-Physics(NP) Bec DIGITAL(#)-VULNERABILITY Versus Fault-Tolerant Analog

    NASA Astrophysics Data System (ADS)

    Alexander, G. K.; Hathaway, M.; Schmidt, H. E.; Siegel, E.

    2011-03-01

    Siegel[AMS Joint Mtg.(2002)-Abs.973-60-124] digits logarithmic-(Newcomb(1881)-Weyl(1914; 1916)-Benford(1938)-"NeWBe"/"OLDbe")-law algebraic-inversion to ONLY BEQS BEC:Quanta/Bosons= digits: Synthesis reveals EMP-like SEVERE VULNERABILITY of ONLY DIGITAL-networks(VS. FAULT-TOLERANT ANALOG INvulnerability) via Barabasi "Network-Physics" relative-``statics''(VS.dynamics-[Willinger-Alderson-Doyle(Not.AMS(5/09)]-]critique); (so called)"Quantum-computing is simple-arithmetic(sans division/ factorization); algorithmic-complexities: INtractibility/ UNdecidability/ INefficiency/NONcomputability / HARDNESS(so MIScalled) "noise"-induced-phase-transitions(NITS) ACCELERATION: Cook-Levin theorem Reducibility is Renormalization-(Semi)-Group fixed-points; number-Randomness DEFINITION via WHAT? Query(VS. Goldreich[Not.AMS(02)] How? mea culpa)can ONLY be MBCS "hot-plasma" versus digit-clumping NON-random BEC; Modular-arithmetic Congruences= Signal X Noise PRODUCTS = clock-model; NON-Shor[Physica A,341,586(04)] BEC logarithmic-law inversion factorization:Watkins number-thy. U stat.-phys.); P=/=NP TRIVIAL Proof: Euclid!!! [(So Miscalled) computational-complexity J-O obviation via geometry.

  9. Percolation in education and application in the 21st century

    NASA Astrophysics Data System (ADS)

    Adler, Joan; Elfenbaum, Shaked; Sharir, Liran

    2017-03-01

    Percolation, "so simple you could teach it to your wife" (Chuck Newman, last century) is an ideal system to introduce young students to phase transitions. Two recent projects in the Computational Physics group at the Technion make this easy. One is a set of analog models to be mounted on our walls and enable visitors to switch between samples to see which mixtures of glass and metal objects have a percolating current. The second is a website enabling the creation of stereo samples of two and three dimensional clusters (suited for viewing with Oculus rift) on desktops, tablets and smartphones. Although there have been many physical applications for regular percolation in the past, for Bootstrap Percolation, where only sites with sufficient occupied neighbours remain active, there have not been a surfeit of condensed matter applications. We have found that the creation of diamond membranes for quantum computers can be modeled with a bootstrap process of graphitization in diamond, enabling prediction of optimal processing procedures.

  10. Summer Institute for High School Teachers

    NASA Astrophysics Data System (ADS)

    Maheswaranathan, Ponn; Calloway, Cliff

    2008-04-01

    We have conducted again a summer institute for high-school teachers in South Carolina at Winthrop University. The target audience were 9th grade physical science teachers in schools within a 50-mile radius from Winthrop. We developed a graduate level physics professional development course covering selected topics from the physics and chemistry content areas of the South Carolina Science Standards. Delivery of the material included the traditional lectures and the following innovative approaches in science teaching: hands-on experiments, group activities, computer based data collection, group discussions, and presentations. Two master teachers assisted us during the delivery of the course which took place in June 20-29, 2007 using Winthrop facilities. Requested funds were used for the following: salary for us and master teachers, contract course fee, some of the participants' room and board, startup equipment for all the teachers, and indirect costs to Winthrop University. Startup equipment included Pasco's stand-alone and portable Xplorer GLX interface and sensors (temperature, voltage, pH, pressure, motion, and sound). What we learned and ideas for continued K-12 teacher preparation initiatives will be presented.

  11. Risk factors for obesity in children and adults.

    PubMed

    Siddarth, Divya

    2013-08-01

    The purpose of this study was to determine whether modifiable lifestyle factors such as eating habits, physical activity, and screen-viewing time, as well as ethnicity, sex, and family income level, were associated with obesity in children and adults and whether the associations differed across age groups. The data were drawn from the National Health and Nutrition Examination Survey 2009-2010. Multivariable logistic regression analyses were used, with obesity (defined as a body mass index of >30 kg/m for adults and ≥95th percentile for children of the same age and sex) as the outcome variable. For children, screen-viewing (TV/computer) time was the only significant factor; in contrast, for adolescents, eating habits were the only significant predictor. For young and middle-aged adults, lack of physical exercise and time spent in sedentary activities were the determinants of obesity, whereas for older adults, both eating habits and physical activity measures were related to obesity. Distinct lifestyle factors have significant associations with obesity in different age groups, and this study underscores the need for age-specific intervention programs to address the obesity epidemic.

  12. Evaluation of multiple-scale 3D characterization for coal physical structure with DCM method and synchrotron X-ray CT.

    PubMed

    Wang, Haipeng; Yang, Yushuang; Yang, Jianli; Nie, Yihang; Jia, Jing; Wang, Yudan

    2015-01-01

    Multiscale nondestructive characterization of coal microscopic physical structure can provide important information for coal conversion and coal-bed methane extraction. In this study, the physical structure of a coal sample was investigated by synchrotron-based multiple-energy X-ray CT at three beam energies and two different spatial resolutions. A data-constrained modeling (DCM) approach was used to quantitatively characterize the multiscale compositional distributions at the two resolutions. The volume fractions of each voxel for four different composition groups were obtained at the two resolutions. Between the two resolutions, the difference for DCM computed volume fractions of coal matrix and pores is less than 0.3%, and the difference for mineral composition groups is less than 0.17%. This demonstrates that the DCM approach can account for compositions beyond the X-ray CT imaging resolution with adequate accuracy. By using DCM, it is possible to characterize a relatively large coal sample at a relatively low spatial resolution with minimal loss of the effect due to subpixel fine length scale structures.

  13. Capitalizing on Community: the Small College Environment and the Development of Researchers

    NASA Astrophysics Data System (ADS)

    Stoneking, M. R.

    2014-03-01

    Liberal arts colleges constitute an important source of and training ground for future scientists. At Lawrence University, we take advantage of our small college environment to prepare physics students for research careers by complementing content acquisition with skill development and project experience distributed throughout the curriculum and with co-curricular elements that are tied to our close-knit supportive physics community. Small classes and frequent contact between physics majors and faculty members offer opportunities for regular and detailed feedback on the development of research relevant skills such as laboratory record-keeping, data analysis, electronic circuit design, computational programming, experimental design and modification, and scientific communication. Part of our approach is to balance collaborative group work on small projects (such as Arduino-based electronics projects and optical design challenges) with independent work (on, for example, advanced laboratory experimental extensions and senior capstone projects). Communal spaces and specialized facilities (experimental and computational) and active on-campus research programs attract eager students to the program, establish a community-based atmosphere, provide unique opportunities for the development of research aptitude, and offer opportunities for genuine contribution to a research program. Recently, we have also been encouraging innovativetendencies in physics majors through intentional efforts to develop personal characteristics, encouraging students to become more tolerant of ambiguity, risk-taking, initiative-seeking, and articulate. Indicators of the success of our approach include the roughly ten physics majors who graduate each year and our program's high ranking among institutions whose graduates go on to receive the Ph.D. in physics. Work supported in part by the National Science Foundation.

  14. Is Sedentary Lifestyle Associated With Testicular Function? A Cross-Sectional Study of 1,210 Men.

    PubMed

    Priskorn, Lærke; Jensen, Tina Kold; Bang, Anne Kirstine; Nordkap, Loa; Joensen, Ulla Nordström; Lassen, Tina Harmer; Olesen, Inge Ahlmann; Swan, Shanna H; Skakkebaek, Niels E; Jørgensen, Niels

    2016-08-15

    Based on cross-sectional data on 1,210 healthy young Danish men, we investigated whether sedentary lifestyle was associated with testicular function (semen quality and reproductive hormones) independent of physical activity. The men were invited to participate in the study between 2008 and 2012, when they attended a compulsory medical examination to determine their fitness for military service. Information on sedentary behavior (television watching and computer time) and physical activity was obtained by questionnaire. The men had a physical examination, delivered a semen sample, and had a blood sample drawn. Time spent watching television, but not time sitting in front of a computer, was associated with lower sperm counts. Men who watched television more than 5 hours/day had an adjusted sperm concentration of 37 million/mL (95% confidence interval (CI): 30, 44) versus 52 million/mL (95% CI: 43, 62) among men who did not watch television; total sperm counts in those 2 groups were 104 million (95% CI: 84, 126) and 158 million (95% CI: 130, 189), respectively. Furthermore, an increase in follicle-stimulating hormone and decreases in testosterone and the testosterone/luteinizing hormone ratio were detected in men watching many hours of television. Self-rated physical fitness, but not time spent on physical activity, was positively associated with sperm counts. © The Author 2016. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. The 3d International Workshop on Computational Electronics

    NASA Astrophysics Data System (ADS)

    Goodnick, Stephen M.

    1994-09-01

    The Third International Workshop on Computational Electronics (IWCE) was held at the Benson Hotel in downtown Portland, Oregon, on May 18, 19, and 20, 1994. The workshop was devoted to a broad range of topics in computational electronics related to the simulation of electronic transport in semiconductors and semiconductor devices, particularly those which use large computational resources. The workshop was supported by the National Science Foundation (NSF), the Office of Naval Research and the Army Research Office, as well as local support from the Oregon Joint Graduate Schools of Engineering and the Oregon Center for Advanced Technology Education. There were over 100 participants in the Portland workshop, of which more than one quarter represented research groups outside of the United States from Austria, Canada, France, Germany, Italy, Japan, Switzerland, and the United Kingdom. There were a total 81 papers presented at the workshop, 9 invited talks, 26 oral presentations and 46 poster presentations. The emphasis of the contributions reflected the interdisciplinary nature of computational electronics with researchers from the Chemistry, Computer Science, Mathematics, Engineering, and Physics communities participating in the workshop.

  16. Cumulative trauma disorder risk for children using computer products: results of a pilot investigation with a student convenience sample.

    PubMed

    Burke, Adam; Peper, Erik

    2002-01-01

    Cumulative trauma disorder is a major health problem for adults. Despite a growing understanding of adult cumulative trauma disorder, however, little is known about the risks for younger populations. This investigation examined issues related to child/adolescent computer product use and upper body physical discomfort. A convenience sample of 212 students, grades 1-12, was interviewed at their homes by a college-age sibling or relative. One of the child's parents was also interviewed. A 22-item questionnaire was used for data-gathering. Questionnaire items included frequency and duration of use, type of computer products/games and input devices used, presence of physical discomfort, and parental concerns related to the child's computer use. Many students experienced physical discomfort attributed to computer use, such as wrist pain (30%) and back pain (15%). Specific computer activities-such as using a joystick or playing noneducational games-were significantly predictive of physical discomfort using logistic multiple regression. Many parents reported difficulty getting their children off the computer (46%) and that their children spent less time outdoors (35%). Computer product use within this cohort was associated with self-reported physical discomfort. Results suggest a need for more extensive study, including multiyear longitudinal surveys.

  17. Comparing motivational, self-regulatory and habitual processes in a computer-tailored physical activity intervention in hospital employees - protocol for the PATHS randomised controlled trial.

    PubMed

    Kwasnicka, Dominika; Vandelanotte, Corneel; Rebar, Amanda; Gardner, Benjamin; Short, Camille; Duncan, Mitch; Crook, Dawn; Hagger, Martin S

    2017-05-26

    Most people do not engage in sufficient physical activity to confer health benefits and to reduce risk of chronic disease. Healthcare professionals frequently provide guidance on physical activity, but often do not meet guideline levels of physical activity themselves. The main objective of this study is to develop and test the efficacy of a tailored intervention to increase healthcare professionals' physical activity participation and quality of life, and to reduce work-related stress and absenteeism. This is the first study to compare the additive effects of three forms of a tailored intervention using different techniques from behavioural theory, which differ according to their focus on motivational, self-regulatory and/or habitual processes. Healthcare professionals (N = 192) will be recruited from four hospitals in Perth, Western Australia, via email lists, leaflets, and posters to participate in the four group randomised controlled trial. Participants will be randomised to one of four conditions: (1) education only (non-tailored information only), (2) education plus intervention components to enhance motivation, (3) education plus components to enhance motivation and self-regulation, and (4) education plus components to enhance motivation, self-regulation and habit formation. All intervention groups will receive a computer-tailored intervention administered via a web-based platform and will receive supporting text-messages containing tailored information, prompts and feedback relevant to each condition. All outcomes will be assessed at baseline, and at 3-month follow-up. The primary outcome assessed in this study is physical activity measured using activity monitors. Secondary outcomes include: quality of life, stress, anxiety, sleep, and absenteeism. Website engagement, retention, preferences and intervention fidelity will also be evaluated as well as potential mediators and moderators of intervention effect. This is the first study to examine a tailored, technology-supported intervention aiming to increase physical activity in healthcare professionals. The study will evaluate whether including additional theory-based behaviour change techniques aimed at promoting motivation, self-regulation and habit will lead to increased physical activity participation relative to information alone. The online platform developed in this study has potential to deliver efficient, scalable and personally-relevant intervention that can be translated to other occupational settings. Australian New-Zealand Clinical Trial Registry: ACTRN12616000462482, submitted 29/03/2016, prospectively registered 8/04/2016.

  18. Proceedings of the Finnish-Russian Symposium on Information Technology in Modern Physics Classroom (Halsinki, Finland, April 21-24, 1993). Research Report 123.

    ERIC Educational Resources Information Center

    Ahtee, Maija, Ed.; Meisalo, Veijo, Ed.; Lavonen, Jari, Ed.

    The 15 conference papers in this report address a variety of issues such as computer applications in mechanics and optics, three-dimensional representation in physics teaching, computers in the physics laboratory, information technologies, the perceptual approach in physics education, improving students' conceptual understanding in physics, using…

  19. Scholarly literature and the press: scientific impact and social perception of physics computing

    NASA Astrophysics Data System (ADS)

    Pia, M. G.; Basaglia, T.; Bell, Z. W.; Dressendorfer, P. V.

    2014-06-01

    The broad coverage of the search for the Higgs boson in the mainstream media is a relative novelty for high energy physics (HEP) research, whose achievements have traditionally been limited to scholarly literature. This paper illustrates the results of a scientometric analysis of HEP computing in scientific literature, institutional media and the press, and a comparative overview of similar metrics concerning representative particle physics measurements. The picture emerging from these scientometric data documents the relationship between the scientific impact and the social perception of HEP physics research versus that of HEP computing. The results of this analysis suggest that improved communication of the scientific and social role of HEP computing via press releases from the major HEP laboratories would be beneficial to the high energy physics community.

  20. Utilizing lung sounds analysis for the evaluation of acute asthma in small children.

    PubMed

    Tinkelman, D G; Lutz, C; Conner, B

    1991-09-01

    One of the most difficult aspects of management of acute asthma in the small child is the clinician's inability to quantitate the response or lack of response to bronchodilator agents because of the inability of a child this age to perform objective lung measurements in the acute state. The present study was designed to evaluate bronchodilator responsiveness in children between 2 and 6 years of age with wheezing by means of a computerized lung sound analysis, computer digitized airway phonopneumonography. Children between ages 2 and 6 who were experiencing acute exacerbations of asthma were included in this study population. The 43 children were evaluated by physical examination, pulmonary function testing, if possible, by use of (spirometry or peak flow meter) and transmission of lung sounds to a computer using an electronic stethoscope to obtain a phonopneumograph with sound intensity level determinations during tidal breathing. A control group of 20 known asthmatic patients between the ages of 8 and 52 years who also presented to the office with acute asthma were evaluated similarly. In each of these individuals, a physical examination was followed by complete spirometry as well as computer digitized airway phonopneumonography recordings. Following initial measurements, all patients were treated with nebulized albuterol (0.25 mL in 2 mL of saline). Five minutes after completion of the nebulization all patients were reexamined and repeat pulmonary function tests were performed followed by CDAP recordings. In the study group of children, the mean pretreatment sound intensity level was 1,694 (range 557 to 4,950 SD +/- 745).(ABSTRACT TRUNCATED AT 250 WORDS)

  1. PREFACE: IUPAP C20 Conference on Computational Physics (CCP 2011)

    NASA Astrophysics Data System (ADS)

    Troparevsky, Claudia; Stocks, George Malcolm

    2012-12-01

    Increasingly, computational physics stands alongside experiment and theory as an integral part of the modern approach to solving the great scientific challenges of the day on all scales - from cosmology and astrophysics, through climate science, to materials physics, and the fundamental structure of matter. Computational physics touches aspects of science and technology with direct relevance to our everyday lives, such as communication technologies and securing a clean and efficient energy future. This volume of Journal of Physics: Conference Series contains the proceedings of the scientific contributions presented at the 23rd Conference on Computational Physics held in Gatlinburg, Tennessee, USA, in November 2011. The annual Conferences on Computational Physics (CCP) are dedicated to presenting an overview of the most recent developments and opportunities in computational physics across a broad range of topical areas and from around the world. The CCP series has been in existence for more than 20 years, serving as a lively forum for computational physicists. The topics covered by this conference were: Materials/Condensed Matter Theory and Nanoscience, Strongly Correlated Systems and Quantum Phase Transitions, Quantum Chemistry and Atomic Physics, Quantum Chromodynamics, Astrophysics, Plasma Physics, Nuclear and High Energy Physics, Complex Systems: Chaos and Statistical Physics, Macroscopic Transport and Mesoscopic Methods, Biological Physics and Soft Materials, Supercomputing and Computational Physics Teaching, Computational Physics and Sustainable Energy. We would like to take this opportunity to thank our sponsors: International Union of Pure and Applied Physics (IUPAP), IUPAP Commission on Computational Physics (C20), American Physical Society Division of Computational Physics (APS-DCOMP), Oak Ridge National Laboratory (ORNL), Center for Defect Physics (CDP), the University of Tennessee (UT)/ORNL Joint Institute for Computational Sciences (JICS) and Cray, Inc. We are grateful to the committees that helped put the conference together, especially the local organizing committee. Particular thanks are also due to a number of ORNL staff who spent long hours with the administrative details. We are pleased to express our thanks to the conference administrator Ann Strange (ORNL/CDP) for her responsive and efficient day-to-day handling of this event, Sherry Samples, Assistant Conference Administrator (ORNL), Angie Beach and the ORNL Conference Office, and Shirley Shugart (ORNL) and Fern Stooksbury (ORNL) who created and maintained the conference website. Editors: G Malcolm Stocks (ORNL) and M Claudia Troparevsky (UT) http://ccp2011.ornl.gov Chair: Dr Malcolm Stocks (ORNL) Vice Chairs: Adriana Moreo (ORNL/UT) James Guberrnatis (LANL) Local Program Committee: Don Batchelor (ORNL) Jack Dongarra (UTK/ORNL) James Hack (ORNL) Robert Harrison (ORNL) Paul Kent (ORNL) Anthony Mezzacappa (ORNL) Adriana Moreo (ORNL) Witold Nazarewicz (UT) Loukas Petridis (ORNL) David Schultz (ORNL) Bill Shelton (ORNL) Claudia Troparevsky (ORNL) Mina Yoon (ORNL) International Advisory Board Members: Joan Adler (Israel Institute of Technology, Israel) Constantia Alexandrou (University of Cyprus, Cyprus) Claudia Ambrosch-Draxl (University of Leoben, Austria) Amanda Barnard (CSIRO, Australia) Peter Borcherds (University of Birmingham, UK) Klaus Cappelle (UFABC, Brazil) Giovanni Ciccotti (Università degli Studi di Roma 'La Sapienza', Italy) Nithaya Chetty (University of Pretoria, South Africa) Charlotte Froese-Fischer (NIST, US) Giulia A. Galli (University of California, Davis, US) Gillian Gehring (University of Sheffield, UK) Guang-Yu Guo (National Taiwan University, Taiwan) Sharon Hammes-Schiffer (Penn State, US) Alex Hansen (Norweigan UST) Duane D. Johnson (University of Illinois at Urbana-Champaign, US) David Landau (University of Georgia, US) Joaquin Marro (University of Granada, Spain) Richard Martin (UIUC, US) Todd Martinez (Stanford University, US) Bill McCurdy (Lawrence Berkeley National Laboratory, US) Ingrid Mertig (Martin Luther University, Germany) Alejandro Muramatsu (Universitat Stuttgart, Germany) Richard Needs (Cavendish Laboratory, UK) Giuseppina Orlandini (University of Trento, Italy) Martin Savage (University of Washington, US) Thomas Schulthess (ETH, Switzerland) Dzidka Szotek (Daresbury Laboratory, UK) Hideaki Takabe (Osaka University, Japan) William M. Tang (Princeton University, US) James Vary (Iowa State, US) Enge Wang (Chinese Academy of Science, China) Jian-Guo Wang (Institute of Applied Physics and Computational Mathematics, China) Jian-Sheng Wang (National University, Singapore) Dan Wei (Tsinghua University, China) Tony Williams (University of Adelaide, Australia) Rudy Zeller (Julich, Germany) Conference Administrator: Ann Strange (ORNL)

  2. PREFACE: 14th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2011)

    NASA Astrophysics Data System (ADS)

    Teodorescu, Liliana; Britton, David; Glover, Nigel; Heinrich, Gudrun; Lauret, Jérôme; Naumann, Axel; Speer, Thomas; Teixeira-Dias, Pedro

    2012-06-01

    ACAT2011 This volume of Journal of Physics: Conference Series is dedicated to scientific contributions presented at the 14th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2011) which took place on 5-7 September 2011 at Brunel University, UK. The workshop series, which began in 1990 in Lyon, France, brings together computer science researchers and practitioners, and researchers from particle physics and related fields in order to explore and confront the boundaries of computing and of automatic data analysis and theoretical calculation techniques. It is a forum for the exchange of ideas among the fields, exploring and promoting cutting-edge computing, data analysis and theoretical calculation techniques in fundamental physics research. This year's edition of the workshop brought together over 100 participants from all over the world. 14 invited speakers presented key topics on computing ecosystems, cloud computing, multivariate data analysis, symbolic and automatic theoretical calculations as well as computing and data analysis challenges in astrophysics, bioinformatics and musicology. Over 80 other talks and posters presented state-of-the art developments in the areas of the workshop's three tracks: Computing Technologies, Data Analysis Algorithms and Tools, and Computational Techniques in Theoretical Physics. Panel and round table discussions on data management and multivariate data analysis uncovered new ideas and collaboration opportunities in the respective areas. This edition of ACAT was generously sponsored by the Science and Technology Facility Council (STFC), the Institute for Particle Physics Phenomenology (IPPP) at Durham University, Brookhaven National Laboratory in the USA and Dell. We would like to thank all the participants of the workshop for the high level of their scientific contributions and for the enthusiastic participation in all its activities which were, ultimately, the key factors in the success of the workshop. Further information on ACAT 2011 can be found at http://acat2011.cern.ch Dr Liliana Teodorescu Brunel University ACATgroup The PDF also contains details of the workshop's committees and sponsors.

  3. Engineering physics and mathematics division

    NASA Astrophysics Data System (ADS)

    Sincovec, R. F.

    1995-07-01

    This report provides a record of the research activities of the Engineering Physics and Mathematics Division for the period 1 Jan. 1993 - 31 Dec. 1994. This report is the final archival record of the EPM Division. On 1 Oct. 1994, ORELA was transferred to Physics Division and on 1 Jan. 1995, the Engineering Physics and Mathematics Division and the Computer Applications Division reorganized to form the Computer Science and Mathematics Division and the Computational Physics and Engineering Division. Earlier reports in this series are identified on the previous pages, along with the progress reports describing ORNL's research in the mathematical sciences prior to 1984 when those activities moved into the Engineering Physics and Mathematics Division.

  4. Identifying socio-demographic and socioeconomic determinants of health inequalities in a diverse London community: the South East London Community Health (SELCoH) study.

    PubMed

    Hatch, Stephani L; Frissa, Souci; Verdecchia, Maria; Stewart, Robert; Fear, Nicola T; Reichenberg, Abraham; Morgan, Craig; Kankulu, Bwalya; Clark, Jennifer; Gazard, Billy; Medcalf, Robert; Hotopf, Matthew

    2011-11-11

    Responses to public health need require information on the distribution of mental and physical ill health by demographic and socioeconomic factors at the local community level. The South East London Community Health (SELCoH) study is a community psychiatric and physical morbidity survey. Trained interviewers conducted face-to-face computer assisted interviews with 1698 adults aged 16 years and over, from 1076 randomly selected private households in two south London boroughs. We compared the prevalence of common mental disorders, hazardous alcohol use, long standing illness and general physical health by demographic and socioeconomic indicators. Unadjusted and models adjusted for demographic and socioeconomic indicators are presented for all logistic regression models. Of those in the sample, 24.2% reported common mental disorder and 44.9% reported having a long standing illness, with 15.7% reporting hazardous alcohol consumption and 19.2% rating their health as fair or poor. The pattern of indicators identifying health inequalities for common mental disorder, poor general health and having a long term illness is similar; individuals who are socioeconomically disadvantaged have poorer health and physical health worsens as age increases for all groups. The prevalence of poor health outcomes by ethnic group suggests that there are important differences between groups, particularly for common mental disorder and poor general health. Higher socioeconomic status was protective for common mental disorder, fair or poor health and long standing illness, but those with higher socioeconomic status reported higher levels of hazardous alcohol use. The proportion of participants who met the criteria for common mental disorder with co-occurring functional limitations was similar or greater to those with poor physical health. Health service providers and policy makers should prioritise high risk, socially defined groups in combating inequalities in individual and co-occurring poor mental and physical problems. In population terms, poor mental health has a similar or greater burden on functional impairment than long term conditions and perceived health.

  5. Assessing the Integration of Computational Modeling and ASU Modeling Instruction in the High School Physics Classroom

    NASA Astrophysics Data System (ADS)

    Aiken, John; Schatz, Michael; Burk, John; Caballero, Marcos; Thoms, Brian

    2012-03-01

    We describe the assessment of computational modeling in a ninth grade classroom in the context of the Arizona Modeling Instruction physics curriculum. Using a high-level programming environment (VPython), students develop computational models to predict the motion of objects under a variety of physical situations (e.g., constant net force), to simulate real world phenomenon (e.g., car crash), and to visualize abstract quantities (e.g., acceleration). The impact of teaching computation is evaluated through a proctored assignment that asks the students to complete a provided program to represent the correct motion. Using questions isomorphic to the Force Concept Inventory we gauge students understanding of force in relation to the simulation. The students are given an open ended essay question that asks them to explain the steps they would use to model a physical situation. We also investigate the attitudes and prior experiences of each student using the Computation Modeling in Physics Attitudinal Student Survey (COMPASS) developed at Georgia Tech as well as a prior computational experiences survey.

  6. Nicholas Metropolis Award for Outstanding Doctoral Thesis Work in Computational Physics: Quantum many-body physics of ultracold molecules in optical lattices: models and simulation methods

    NASA Astrophysics Data System (ADS)

    Wall, Michael

    2014-03-01

    Experimental progress in generating and manipulating synthetic quantum systems, such as ultracold atoms and molecules in optical lattices, has revolutionized our understanding of quantum many-body phenomena and posed new challenges for modern numerical techniques. Ultracold molecules, in particular, feature long-range dipole-dipole interactions and a complex and selectively accessible internal structure of rotational and hyperfine states, leading to many-body models with long range interactions and many internal degrees of freedom. Additionally, the many-body physics of ultracold molecules is often probed far from equilibrium, and so algorithms which simulate quantum many-body dynamics are essential. Numerical methods which are to have significant impact in the design and understanding of such synthetic quantum materials must be able to adapt to a variety of different interactions, physical degrees of freedom, and out-of-equilibrium dynamical protocols. Matrix product state (MPS)-based methods, such as the density-matrix renormalization group (DMRG), have become the de facto standard for strongly interacting low-dimensional systems. Moreover, the flexibility of MPS-based methods makes them ideally suited both to generic, open source implementation as well as to studies of the quantum many-body dynamics of ultracold molecules. After introducing MPSs and variational algorithms using MPSs generally, I will discuss my own research using MPSs for many-body dynamics of long-range interacting systems. In addition, I will describe two open source implementations of MPS-based algorithms in which I was involved, as well as educational materials designed to help undergraduates and graduates perform research in computational quantum many-body physics using a variety of numerical methods including exact diagonalization and static and dynamic variational MPS methods. Finally, I will mention present research on ultracold molecules in optical lattices, such as the exploration of many-body physics with polyatomic molecules, and the next generation of open source matrix product state codes. This work was performed in the research group of Prof. Lincoln D. Carr.

  7. Computing in Secondary Physics at Armdale, W.A.

    ERIC Educational Resources Information Center

    Smith, Clifton L.

    1976-01-01

    An Australian secondary school physics course utilizing an electronic programmable calculator and computer is described. Calculation techniques and functions, programming techniques, and simulation of physical systems are detailed. A summary of student responses to the program is included. (BT)

  8. "FIND Technology": investigating the feasibility, efficacy and safety of controller-free interactive digital rehabilitation technology in an inpatient stroke population: study protocol for a randomized controlled trial.

    PubMed

    Bird, M L; Cannell, J; Callisaya, M L; Moles, E; Rathjen, A; Lane, K; Tyson, A; Smith, S

    2016-04-16

    Stroke results in significant disability, which can be reduced by physical rehabilitation. High levels of repetition and activity are required in rehabilitation, but patients are typically sedentary. Using clinically relevant and fun computer games may be one way to achieve increased activity in rehabilitation. A single-blind randomized controlled trial will be conducted to evaluate the feasibility, efficacy and safety of novel stroke-specific rehabilitation software. This software uses controller-free client interaction and inertial motion sensors. Elements of feasibility include recruitment into the trial, ongoing participation (adherence and dropout), perceived benefit, enjoyment and ease of use of the games. Efficacy will be determined by measuring activity and using upper-limb tasks as well as measures of balance and mobility. The hypothesis that the intervention group will have increased levels of physical activity within rehabilitation and improved physical outcomes compared with the control group will be tested. Results from this study will provide a basis for discussion of feasibility of this interactive video technological solution in an inpatient situation. Differences in activity levels between groups will be the primary measure of efficacy. It will also provide data on measures of upper-limb function, balance and mobility. ACTRN12614000427673 . Prospectively registered 17 April 2014.

  9. Logistics in the Computer Lab.

    ERIC Educational Resources Information Center

    Cowles, Jim

    1989-01-01

    Discusses ways to provide good computer laboratory facilities for elementary and secondary schools. Topics discussed include establishing the computer lab and selecting hardware; types of software; physical layout of the room; printers; networking possibilities; considerations relating to the physical environment; and scheduling methods. (LRW)

  10. Reviews, Software.

    ERIC Educational Resources Information Center

    Science Teacher, 1988

    1988-01-01

    Reviews two computer software packages for use in physical science, physics, and chemistry classes. Includes "Physics of Model Rocketry" for Apple II, and "Black Box" for Apple II and IBM compatible computers. "Black Box" is designed to help students understand the concept of indirect evidence. (CW)

  11. Science and technology camp for girls. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-12-31

    This document reports on the success of Pacific University`s camp held during the summers of 1992 and 1993; ultimate goal of this summer day camp was to increase the number of women in technical and scientific fields. Some experimentation was done with the age groups (7th and 8th grade girls). The curriculum was biology, chemistry, physics, and mathematics/computer science. Laboratory work and field trips were emphasized, along with socialization.

  12. Educating Company Grade Officers in Military Operations Other Than War

    DTIC Science & Technology

    1999-04-01

    easier access for students unable to be physically present where training is held; new technology which allows students to view videotape segments...created by simply taking in-resident lesson plans and materials and placing them on a CD-Rom or in printed coursebooks . In contrast, distance learning...Demonstration Perf; Gp=Group project; Ip=Individual project;L=Lecture; R=Reading; S=Seminar discussion;W=Wargame Media C=Computer; CD=CD-ROM;Co= Coursebook ; P

  13. Computing in high-energy physics

    DOE PAGES

    Mount, Richard P.

    2016-05-31

    I present a very personalized journey through more than three decades of computing for experimental high-energy physics, pointing out the enduring lessons that I learned. This is followed by a vision of how the computing environment will evolve in the coming ten years and the technical challenges that this will bring. I then address the scale and cost of high-energy physics software and examine the many current and future challenges, particularly those of management, funding and software-lifecycle management. Lastly, I describe recent developments aimed at improving the overall coherence of high-energy physics software.

  14. Computing in high-energy physics

    NASA Astrophysics Data System (ADS)

    Mount, Richard P.

    2016-04-01

    I present a very personalized journey through more than three decades of computing for experimental high-energy physics, pointing out the enduring lessons that I learned. This is followed by a vision of how the computing environment will evolve in the coming ten years and the technical challenges that this will bring. I then address the scale and cost of high-energy physics software and examine the many current and future challenges, particularly those of management, funding and software-lifecycle management. Finally, I describe recent developments aimed at improving the overall coherence of high-energy physics software.

  15. Computing in high-energy physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mount, Richard P.

    I present a very personalized journey through more than three decades of computing for experimental high-energy physics, pointing out the enduring lessons that I learned. This is followed by a vision of how the computing environment will evolve in the coming ten years and the technical challenges that this will bring. I then address the scale and cost of high-energy physics software and examine the many current and future challenges, particularly those of management, funding and software-lifecycle management. Lastly, I describe recent developments aimed at improving the overall coherence of high-energy physics software.

  16. An Adaptive QSE-reduced Nuclear Reaction Network for Silicon Burning

    NASA Astrophysics Data System (ADS)

    Parete-Koon, Suzanne; Hix, W.; Thielemann, F.

    2008-03-01

    The nuclei of the "iron peak" are formed in massive stars shortly before core collapse and during their supernova outbursts as well as during thermonuclear supernovae. Complete and incomplete silicon burning during these events are responsible for the production of a wide range of nuclei with atomic mass numbers from 28 to 64. Because of the large number of nuclei involved, accurate modeling of silicon burning is computationally expensive. However, examination of the physics of silicon burning has revealed that the nuclear evolution is dominated by large groups of nuclei in mutual equilibrium. We present an improvement on our hybrid equilibrium-network scheme which takes advantage of this quasi-equilibrium in order to reduce the number of independent variables calculated. Because the size and membership of these groups vary as the temperature, density and electron faction change, achieving maximal efficiency requires dynamic adjustment of group number and membership. Toward this end, we are implementing a scheme beginning with a single QSE (NSE) group at appropriately high temperature, then progressing through 2, 3 and 4 group stages (with successively more independent variables) as temperature declines. This combination allows accurate prediction of the nuclear abundance evolution, deleptonization and energy generation at a further reduced computational cost when compared to a conventional nuclear reaction network or our previous 3 fixed group QSE-reduced network. During silicon burning, the resultant QSE-reduced network is up to 20 times faster than the full network it replaces without significant loss of accuracy. These reductions in computational cost and the number of species evolved make QSE-reduced networks well suited for inclusion within hydrodynamic simulations, particularly in multi-dimensional applications. This work has been supported by the National Science Foundation, by the Department of Energy's Scientic Discovery through Advanced Computing Programs, and by the Joint Institute for Heavy Ion Research at ORNL.

  17. Development of a Computer-Assisted Instrumentation Curriculum for Physics Students: Using LabVIEW and Arduino Platform

    NASA Astrophysics Data System (ADS)

    Kuan, Wen-Hsuan; Tseng, Chi-Hung; Chen, Sufen; Wong, Ching-Chang

    2016-06-01

    We propose an integrated curriculum to establish essential abilities of computer programming for the freshmen of a physics department. The implementation of the graphical-based interfaces from Scratch to LabVIEW then to LabVIEW for Arduino in the curriculum `Computer-Assisted Instrumentation in the Design of Physics Laboratories' brings rigorous algorithm and syntax protocols together with imagination, communication, scientific applications and experimental innovation. The effectiveness of the curriculum was evaluated via statistical analysis of questionnaires, interview responses, the increase in student numbers majoring in physics, and performance in a competition. The results provide quantitative support that the curriculum remove huge barriers to programming which occur in text-based environments, helped students gain knowledge of programming and instrumentation, and increased the students' confidence and motivation to learn physics and computer languages.

  18. Computer Simulations of Quantum Theory of Hydrogen Atom for Natural Science Education Students in a Virtual Lab

    ERIC Educational Resources Information Center

    Singh, Gurmukh

    2012-01-01

    The present article is primarily targeted for the advanced college/university undergraduate students of chemistry/physics education, computational physics/chemistry, and computer science. The most recent software system such as MS Visual Studio .NET version 2010 is employed to perform computer simulations for modeling Bohr's quantum theory of…

  19. Near real-time traffic routing

    NASA Technical Reports Server (NTRS)

    Yang, Chaowei (Inventor); Xie, Jibo (Inventor); Zhou, Bin (Inventor); Cao, Ying (Inventor)

    2012-01-01

    A near real-time physical transportation network routing system comprising: a traffic simulation computing grid and a dynamic traffic routing service computing grid. The traffic simulator produces traffic network travel time predictions for a physical transportation network using a traffic simulation model and common input data. The physical transportation network is divided into a multiple sections. Each section has a primary zone and a buffer zone. The traffic simulation computing grid includes multiple of traffic simulation computing nodes. The common input data includes static network characteristics, an origin-destination data table, dynamic traffic information data and historical traffic data. The dynamic traffic routing service computing grid includes multiple dynamic traffic routing computing nodes and generates traffic route(s) using the traffic network travel time predictions.

  20. The Quantum Measurement Problem and Physical reality: A Computation Theoretic Perspective

    NASA Astrophysics Data System (ADS)

    Srikanth, R.

    2006-11-01

    Is the universe computable? If yes, is it computationally a polynomial place? In standard quantum mechanics, which permits infinite parallelism and the infinitely precise specification of states, a negative answer to both questions is not ruled out. On the other hand, empirical evidence suggests that NP-complete problems are intractable in the physical world. Likewise, computational problems known to be algorithmically uncomputable do not seem to be computable by any physical means. We suggest that this close correspondence between the efficiency and power of abstract algorithms on the one hand, and physical computers on the other, finds a natural explanation if the universe is assumed to be algorithmic; that is, that physical reality is the product of discrete sub-physical information processing equivalent to the actions of a probabilistic Turing machine. This assumption can be reconciled with the observed exponentiality of quantum systems at microscopic scales, and the consequent possibility of implementing Shor's quantum polynomial time algorithm at that scale, provided the degree of superposition is intrinsically, finitely upper-bounded. If this bound is associated with the quantum-classical divide (the Heisenberg cut), a natural resolution to the quantum measurement problem arises. From this viewpoint, macroscopic classicality is an evidence that the universe is in BPP, and both questions raised above receive affirmative answers. A recently proposed computational model of quantum measurement, which relates the Heisenberg cut to the discreteness of Hilbert space, is briefly discussed. A connection to quantum gravity is noted. Our results are compatible with the philosophy that mathematical truths are independent of the laws of physics.

  1. Computations in Plasma Physics.

    ERIC Educational Resources Information Center

    Cohen, Bruce I.; Killeen, John

    1983-01-01

    Discusses contributions of computers to research in magnetic and inertial-confinement fusion, charged-particle-beam propogation, and space sciences. Considers use in design/control of laboratory and spacecraft experiments and in data acquisition; and reviews major plasma computational methods and some of the important physics problems they…

  2. Testing the activitystat hypothesis: a randomised controlled trial protocol.

    PubMed

    Gomersall, Sjaan; Maher, Carol; Norton, Kevin; Dollman, Jim; Tomkinson, Grant; Esterman, Adrian; English, Coralie; Lewis, Nicole; Olds, Tim

    2012-10-08

    The activitystat hypothesis proposes that when physical activity or energy expenditure is increased or decreased in one domain, there will be a compensatory change in another domain to maintain an overall, stable level of physical activity or energy expenditure. To date, there has been no experimental study primarily designed to test the activitystat hypothesis in adults. The aim of this trial is to determine the effect of two different imposed exercise loads on total daily energy expenditure and physical activity levels. This study will be a randomised, multi-arm, parallel controlled trial. Insufficiently active adults (as determined by the Active Australia survey) aged 18-60 years old will be recruited for this study (n=146). Participants must also satisfy the Sports Medicine Australia Pre-Exercise Screening System and must weigh less than 150 kg. Participants will be randomly assigned to one of three groups using a computer-generated allocation sequence. Participants in the Moderate exercise group will receive an additional 150 minutes of moderate to vigorous physical activity per week for six weeks, and those in the Extensive exercise group will receive an additional 300 minutes of moderate to vigorous physical activity per week for six weeks. Exercise targets will be accumulated through both group and individual exercise sessions monitored by heart rate telemetry. Control participants will not be given any instructions regarding lifestyle. The primary outcome measures are activity energy expenditure (doubly labeled water) and physical activity (accelerometry). Secondary measures will include resting metabolic rate via indirect calorimetry, use of time, maximal oxygen consumption and several anthropometric and physiological measures. Outcome measures will be conducted at baseline (zero weeks), mid- and end-intervention (three and six weeks) with three (12 weeks) and six month (24 week) follow-up. All assessors will be blinded to group allocation. This protocol has been specifically designed to test the activitystat hypothesis while taking into account the key conceptual and methodological considerations of testing a biologically regulated homeostatic feedback loop. Results of this study will be an important addition to the growing literature and debate concerning the possible existence of an activitystat. Australian New Zealand Clinical Trials Registry ACTRN12610000248066.

  3. Testing the activitystat hypothesis: a randomised controlled trial protocol

    PubMed Central

    2012-01-01

    Background The activitystat hypothesis proposes that when physical activity or energy expenditure is increased or decreased in one domain, there will be a compensatory change in another domain to maintain an overall, stable level of physical activity or energy expenditure. To date, there has been no experimental study primarily designed to test the activitystat hypothesis in adults. The aim of this trial is to determine the effect of two different imposed exercise loads on total daily energy expenditure and physical activity levels. Methods This study will be a randomised, multi-arm, parallel controlled trial. Insufficiently active adults (as determined by the Active Australia survey) aged 18–60 years old will be recruited for this study (n=146). Participants must also satisfy the Sports Medicine Australia Pre-Exercise Screening System and must weigh less than 150 kg. Participants will be randomly assigned to one of three groups using a computer-generated allocation sequence. Participants in the Moderate exercise group will receive an additional 150 minutes of moderate to vigorous physical activity per week for six weeks, and those in the Extensive exercise group will receive an additional 300 minutes of moderate to vigorous physical activity per week for six weeks. Exercise targets will be accumulated through both group and individual exercise sessions monitored by heart rate telemetry. Control participants will not be given any instructions regarding lifestyle. The primary outcome measures are activity energy expenditure (doubly labeled water) and physical activity (accelerometry). Secondary measures will include resting metabolic rate via indirect calorimetry, use of time, maximal oxygen consumption and several anthropometric and physiological measures. Outcome measures will be conducted at baseline (zero weeks), mid- and end-intervention (three and six weeks) with three (12 weeks) and six month (24 week) follow-up. All assessors will be blinded to group allocation. Discussion This protocol has been specifically designed to test the activitystat hypothesis while taking into account the key conceptual and methodological considerations of testing a biologically regulated homeostatic feedback loop. Results of this study will be an important addition to the growing literature and debate concerning the possible existence of an activitystat. Trial registration Australian New Zealand Clinical Trials Registry ACTRN12610000248066 PMID:23043381

  4. An Adaptive QSE-reduced Nuclear Reaction Network for Silicon Burning

    NASA Astrophysics Data System (ADS)

    Parete-Koon, Suzanne; Hix, William Raphael; Thielemann, Friedrich-Karl

    2010-02-01

    The nuclei of the ``iron peak'' are formed late in the evolution of massive stars and during supernovae. Silicon burning during these events is responsible for the production of a wide range of nuclei with atomic mass numbers from 28 to 64. The large number of nuclei involved make accurate modeling of silicon burning computationally expensive. Examination of the physics of silicon burning reveals that the nuclear evolution is dominated by large groups of nuclei in mutual equilibrium. We present an improvement on our hybrid equilibrium-network scheme that takes advantage of this quasi-equilibrium (QSE) to reduce the number of independent variables calculated. Because the membership and number of these groups vary as the temperature, density and electron faction change, achieving maximal efficiency requires dynamic adjustment of group number and membership. The resultant QSE-reduced network is up to 20 times faster than the full network it replaces without significant loss of accuracy. These reductions in computational cost and the number of species evolved make QSE-reduced networks well suited for inclusion within hydrodynamic simulations, particularly in multi-dimensional applications. )

  5. Heterocyclic energetic materials: Synthesis, characterization and computational design

    NASA Astrophysics Data System (ADS)

    Tsyshevsky, Roman; Pagoria, Philip; Smirnov, Aleksander; Kuklja, Maija

    2017-06-01

    Achievement of the tailored properties (high performance, low sensitivity, etc.) in targeted new energetic materials (EM) remains a great challenge. Recently, attention of researchers has shifted from conventional nitroester-, nitramine-, and nitroaromatic-based explosives to new heterocyclic EM with oxygen- and nitrogenrich molecular structures. They have increased densities and formation enthalpies complemented by attractive performance and high stability to external stimuli. We will demonstrate that oxadiazol-containing heterocycles offer a convenient playground to probe specific chemical functional groups as building blocks for design of EM. We discuss a joint experimental and computational approach for design, characterization, synthesis, and modeling of novel heterocyclic EM. Combinatorically, we comprehensively analyzed how overall stability and performance of each material in the family (BNFF, LLM-172, LLM-175, LLM-191, LLM-192, LLM-200) depends upon their chemical composition and details of the molecular structure (such as a substitution of a nitro group by an amino group and 1,2,5-oxadiazole fragment by 1,2,3- or 1,2,4-oxadiazol ring). We will also discuss proposed new EM with predicted superior chemical and physical properties. P. Pagoria, R. Tsyshevsky, A. Smirnov.

  6. Molecular structure activity on pharmaceutical applications of Phenacetin using spectroscopic investigation

    NASA Astrophysics Data System (ADS)

    Madanagopal, A.; Periandy, S.; Gayathri, P.; Ramalingam, S.; Xavier, S.

    2017-01-01

    The pharmaceutical compound; Phenacetin was investigated by analyzing FT-IR, FT-Raman and 1H &13C NMR spectra. The hybrid efficient computational calculations performed for computing physical and chemical parameters. The cause of pharmaceutical activity due to the substitutions; carboxylic, methyl and amine groups in appropriate positions on the pedestal compound was deeply investigated. Moreover, 13C NMR and 1H NMR chemical shifts correlated with TMS standard to explain the truth of compositional ratio of base and ligand groups. The bathochromic shift due to chromophores over the energy levels in UV-Visible region was strongly emphasized the Anti-inflammatory chemical properties. The chemical stability was pronounced by the strong kubo gap which showed the occurring of charge transformation within the molecule. The occurrence of the chemical reaction was feasibly interpreted by Gibbs free energy profile. The standard vibrational analysis stressed the active participation of composed ligand groups for the existence of the analgesic as well as antipyretic properties of the Phenacetin compound. The strong dipole interaction energy utilization for the transition among non-vanishing donor and acceptor for composition of the molecular structure was interpreted.

  7. Projectile and Circular Motion: A Model Four-Week Unit of Study for a High School Physics Class Using Physics Courseware.

    ERIC Educational Resources Information Center

    Geigel, Joan; And Others

    A self-paced program designed to integrate the use of computers and physics courseware into the regular classroom environment is offered for physics high school teachers in this module on projectile and circular motion. A diversity of instructional strategies including lectures, demonstrations, videotapes, computer simulations, laboratories, and…

  8. Research Activity in Computational Physics utilizing High Performance Computing: Co-authorship Network Analysis

    NASA Astrophysics Data System (ADS)

    Ahn, Sul-Ah; Jung, Youngim

    2016-10-01

    The research activities of the computational physicists utilizing high performance computing are analyzed by bibliometirc approaches. This study aims at providing the computational physicists utilizing high-performance computing and policy planners with useful bibliometric results for an assessment of research activities. In order to achieve this purpose, we carried out a co-authorship network analysis of journal articles to assess the research activities of researchers for high-performance computational physics as a case study. For this study, we used journal articles of the Scopus database from Elsevier covering the time period of 2004-2013. We extracted the author rank in the physics field utilizing high-performance computing by the number of papers published during ten years from 2004. Finally, we drew the co-authorship network for 45 top-authors and their coauthors, and described some features of the co-authorship network in relation to the author rank. Suggestions for further studies are discussed.

  9. Project - based teaching and other methods to make learning more attractive

    NASA Astrophysics Data System (ADS)

    Švecová, Libuše; Vlková, Iva

    2017-01-01

    This contribution presents the results of a research carried out at secondary schools in the Moravian-Silesian Region. This research involved a total of 120 pupils and focused on project teaching with the emphasis on pupil inquiry activity and the connection of their knowledge in the fields of physics and biology. To verify pupil inquiry activity, the tasks on the worksheets have been designed specifically to measure physical quantities on the human body by computer-aided measuring processes. To support pupil inquiry activity, group work was selected as the organization method of teaching. Audio recording and pedagogical observations were used as the research tools for assessment and a consequent evaluation of acquired data.

  10. Laboratory-directed research and development: FY 1996 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil, J.; Prono, J.

    1997-05-01

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects` principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear andmore » particle physics, and (9) biosciences.« less

  11. Enabling Grid Computing resources within the KM3NeT computing model

    NASA Astrophysics Data System (ADS)

    Filippidis, Christos

    2016-04-01

    KM3NeT is a future European deep-sea research infrastructure hosting a new generation neutrino detectors that - located at the bottom of the Mediterranean Sea - will open a new window on the universe and answer fundamental questions both in particle physics and astrophysics. International collaborative scientific experiments, like KM3NeT, are generating datasets which are increasing exponentially in both complexity and volume, making their analysis, archival, and sharing one of the grand challenges of the 21st century. These experiments, in their majority, adopt computing models consisting of different Tiers with several computing centres and providing a specific set of services for the different steps of data processing such as detector calibration, simulation and data filtering, reconstruction and analysis. The computing requirements are extremely demanding and, usually, span from serial to multi-parallel or GPU-optimized jobs. The collaborative nature of these experiments demands very frequent WAN data transfers and data sharing among individuals and groups. In order to support the aforementioned demanding computing requirements we enabled Grid Computing resources, operated by EGI, within the KM3NeT computing model. In this study we describe our first advances in this field and the method for the KM3NeT users to utilize the EGI computing resources in a simulation-driven use-case.

  12. Deaf/hard-of-hearing and other postsecondary learners' retention of STEM content with tablet computer-based notes.

    PubMed

    Stinson, Michael S; Elliot, Lisa B; Easton, Donna

    2014-04-01

    Four groups of postsecondary students, 25 who were deaf/hard of hearing (D/HH), 25 with a learning disability, 25 who were English language learners (ELLs), and 25 without an identified disability studied notes that included text and graphical information based on a physics or a marine biology lecture. The latter 3 groups were normally hearing. All groups had higher scores on post- than on pretests for each lecture, with each group showing generally similar gains in amount of material learned from the pretest to the posttest. For each lecture, the D/HH students scored lower on the pre- and posttests than the other 3 groups of participants. Results indicated that students acquired measurable amounts of information from studying these types of notes for relatively short periods and that the notes have equal potential to support the acquisition of information by each of these groups of students.

  13. Computer use, symptoms, and quality of life.

    PubMed

    Hayes, John R; Sheedy, James E; Stelmack, Joan A; Heaney, Catherine A

    2007-08-01

    To model the effects of computer use on reported visual and physical symptoms and to measure the effects upon quality of life measures. A survey of 1000 university employees (70.5% adjusted response rate) assessed visual and physical symptoms, job, physical and mental demands, ability to control/influence work, amount of work at a computer, computer work environment, relations with others at work, life and job satisfaction, and quality of life. Data were analyzed to determine whether self-reported eye symptoms are associated with perceived quality of life. The study also explored the factors that are associated with eye symptoms. Structural equation modeling and multiple regression analyses were used to assess the hypotheses. Seventy percent of the employees used some form of vision correction during computer use, 2.9% used glasses specifically prescribed for computer use, and 8% had had refractive surgery. Employees spent an average of 6 h per day at the computer. In a multiple regression framework, the latent variable eye symptoms was significantly associated with a composite quality of life variable (p = 0.02) after adjusting for job quality, job satisfaction, supervisor relations, co-worker relations, mental and physical load of the job, and job demand. Age and gender were not significantly associated with symptoms. After adjusting for age, gender, ergonomics, hours at the computer, and exercise, eye symptoms were significantly associated with physical symptoms (p < 0.001) accounting for 48% of the variance. Environmental variability at work was associated with eye symptoms and eye symptoms demonstrated a significant impact on quality of life and physical symptoms.

  14. EDITORIAL: Student undergraduate laboratory and project work

    NASA Astrophysics Data System (ADS)

    Schumacher, Dieter

    2007-05-01

    During the last decade 'labwork' courses at university level have changed significantly. The beginning of this development was indicated and partly initiated by the EU-project 'Labwork in Science Education' funded by the European Community (1999-2001). The present special issue of the European Journal of Physics focuses on a multitude of different aspects of this process. The aim of this publication is to improve the exchange of experience and to promote this important trend. In physics research labs a silent revolution has taken place. Today the personal computer is omnipresent. It controls the experiment via stepping motors, piezo-microdrives etc, it monitors all parameters and collects the experimental data with the help of smart sensors. In particular, computer-based modern scanning and imaging techniques open the possibility of creating really new types of experiments. The computer allows data storage and processing on the one hand and simulation and modelling on the other. These processes occur in parallel or may even be interwoven. The web plays an important role in modern science for inquiry, communication, cooperation and publication. Traditional labwork courses do not prepare students for the many resulting demands. Therefore it is necessary to redefine the learning targets and to reconsider the learning methods. Two contributions show exemplarily how modern experimental devices could find their way into students' labs. In the article 'Infrared thermal imaging as a tool in university physics education' by Klaus-Peter Möllmann and Michael Vollmer we can see that infrared thermal imaging is a valuable tool in physics education at university level. It can help to visualize and thereby enhance understanding of physical phenomena of mechanics, thermal physics, electromagnetism, optics and radiation physics. The contribution 'Using Peltier cells to study solid-liquid-vapor transitions and supercooling' by Giacomo Torzo, Isabella Soletta and Mario Branca proves that new experiments which illustrate both fundamental physics and modern technology can be realized even with a small budget. Traditional labwork courses often provide a catalogue of well known experiments. The students must first learn the theoretical background. They then assemble the setup from specified equipment, collect the data and perform the default data processing. However, there is no way to learn to swim without water. In order to achieve a constructivist access to learning, 'project labs' are needed. In a project labwork course a small group of students works as a team on a mini research project. The students have to specify the question of research, develop a suitable experimental setup, conduct the experiment and find a suitable way to evaluate the data. Finally they must present their results e.g. in the framework of a public poster session. Three contributions refer to this approach, however they focus on different aspects: 'Project laboratory for first-year students' by Gorazd Planinšič, 'RealTime Physics: active learning laboratories' by David Sokoloff et al and 'Labs outside labs: miniprojects at a spring camp for future physics teachers' by Leos Dvorák. Is it possible to prepare the students specifically for project labwork? This question is answered by the contribution 'A new labwork course for physics students: devices, methods and research projects' by Knut Neumann and Manuela Welzel. The two main parts of the labwork course cover first experimental devices (e.g. multimeters, oscilloscopes, different sensors, operational amplifiers, step motors, AD/DA-converters). Then subjects such as data processing, consideration of measurement uncertainties, keeping records or using tools like LABVIEW etc are focused on. Another concrete proposal for a new curriculum is provided by James Sharp et al, in 'Computer based learning in an undergraduate physics laboratory: interfacing and instrument control using MATLAB'. One can well imagine that project labs will be the typical learning environment for physics students in the future. However, the details of this change should be based on a better understanding of the learning process in a students' lab. A deeper insight is given by the contribution of Claudia von Aufschnaiter and Stefan von Aufschnaiter in 'University students' activities, thinking and learning during laboratory work'. A second important alteration has taken place in physics education during the last decade. The so-called new media have changed the world of learning and teaching to an unprecedented extent. Learning with new media is often much more related to physics labwork than to traditional lectures or seminars (e.g. small learning groups, problem based learning, a high level of interactivity). We need to take these new tools into consideration as suitable amendment (blended learning) or substitution (e-learning, distance learning) of labwork courses. The developments with presumably the highest impact on physics education are modelling tools, interactive screen experiments and remote labs. Under 'modelling tools', all computer programs are summarized which enable the simulation of a physical process based on an explicit or implicit given formula. Many commercial program packages are available. The application of modelling tools in labwork courses permits a tight binding of theory and experiment. This is particularly valid and necessary in the case of project work. An interactive screen experiment (ISE) is a computer assisted representation of a physical experiment. When watching a video clip of an experiment students are forced to be passive observers. In the case of an ISE they can manipulate the setup on the screen with the help of a hand-like mouse pointer and the computer will show the appropriate result. The ISE consists of a large number of digital photos taken from the real experiment. From an epistemological point of view an ISE has the character of an experiment and can be used to discover or to prove a physical law. Many more details and an overview of possible applications can be found in the contribution 'Multimedia representation of experiments in physics' by Juergen Kirstein and Volkhard Nordmeier. A remotely controlled lab (RCL) or 'remote lab' (RL) is a physical experiment which can be remotely controlled via web-interface (server) and client-PC. During recent years a lot of RLs have appeared and also disappeared on the web. At first sight it seems fascinating to use a rare and sophisticated experiment from any PC which is connected to the web. However, in order to provide such a high level experiment continuously and to manage the schedule for sequential access, an enormous amount of manpower is necessary. Sebastian Gröber et al describe their efforts to provide a number of useful RCLs in the contribution 'Experimenting from a distance—remotely controlled laboratory (RCL)'. At many universities, physics labwork courses are also provided for students of other disciplines. Usually these groups are significantly larger than the group of physics students. Labwork courses for these groups must account for the specific objectives and students' learning conditions (previous knowledge, motivation). Heike Theyßen describes a targeted labwork course especially designed for medical students: 'Towards targeted labwork in physics as a subsidiary subject: enhancing the learning efficiency by new didactical concepts and media'. The term 'targeted' refers to the specific choice of content and methods regarding the students' learning conditions as well as the objectives of the labwork course. These differ significantly from those of labwork courses for physics students. In this case two targeted learning environments were developed, implemented and evaluated by means of several comparative studies. Both learning environments differ from traditional physics labwork courses in their objectives, didactical concept, content and experimental setups. One of them is a hypermedia learning environment, in which the real experiments are represented by ISEs. We are just at the beginning of the process of developing new labwork courses. Students' labs are often provided for large learning groups. Therefore the development of new methods as well as the acquisition of new equipment demands a large amount of investment. Using the paths of communication and cooperation established in science, we can optimize the process of renewal in order to spare manpower and financial means. Robert Lambourne exemplarily presented the cooperation project piCETL in his article 'Laboratory-based teaching and the Physics Innovations Centre for Excellence in Teaching and Learning'. The articles show that the renewal process has many different facets. New concepts are in demand as well as new experimental setups; the new media as well as the recent progress in didactic research have a strong influence on the trends. All aspects are closely linked, which can be seen by the number of mutual citations in the contributions. In order to give the reader an orientation we have structured the content of this special issue along the following lines: • successful new ideas for student labs and projects • new roles of student labs and project work • information and communication technology in laboratory and project work. This special issue provides an overview and examples of best practice as well as general concepts and personal contacts as stimuli for an enhancement of the renewal of labwork courses at university level.

  15. An Adaptive Mesh Algorithm: Mesh Structure and Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scannapieco, Anthony J.

    2016-06-21

    The purpose of Adaptive Mesh Refinement is to minimize spatial errors over the computational space not to minimize the number of computational elements. The additional result of the technique is that it may reduce the number of computational elements needed to retain a given level of spatial accuracy. Adaptive mesh refinement is a computational technique used to dynamically select, over a region of space, a set of computational elements designed to minimize spatial error in the computational model of a physical process. The fundamental idea is to increase the mesh resolution in regions where the physical variables are represented bymore » a broad spectrum of modes in k-space, hence increasing the effective global spectral coverage of those physical variables. In addition, the selection of the spatially distributed elements is done dynamically by cyclically adjusting the mesh to follow the spectral evolution of the system. Over the years three types of AMR schemes have evolved; block, patch and locally refined AMR. In block and patch AMR logical blocks of various grid sizes are overlaid to span the physical space of interest, whereas in locally refined AMR no logical blocks are employed but locally nested mesh levels are used to span the physical space. The distinction between block and patch AMR is that in block AMR the original blocks refine and coarsen entirely in time, whereas in patch AMR the patches change location and zone size with time. The type of AMR described herein is a locally refi ned AMR. In the algorithm described, at any point in physical space only one zone exists at whatever level of mesh that is appropriate for that physical location. The dynamic creation of a locally refi ned computational mesh is made practical by a judicious selection of mesh rules. With these rules the mesh is evolved via a mesh potential designed to concentrate the nest mesh in regions where the physics is modally dense, and coarsen zones in regions where the physics is modally sparse.« less

  16. The impact of supercomputers on experimentation: A view from a national laboratory

    NASA Technical Reports Server (NTRS)

    Peterson, V. L.; Arnold, J. O.

    1985-01-01

    The relative roles of large scale scientific computers and physical experiments in several science and engineering disciplines are discussed. Increasing dependence on computers is shown to be motivated both by the rapid growth in computer speed and memory, which permits accurate numerical simulation of complex physical phenomena, and by the rapid reduction in the cost of performing a calculation, which makes computation an increasingly attractive complement to experimentation. Computer speed and memory requirements are presented for selected areas of such disciplines as fluid dynamics, aerodynamics, aerothermodynamics, chemistry, atmospheric sciences, astronomy, and astrophysics, together with some examples of the complementary nature of computation and experiment. Finally, the impact of the emerging role of computers in the technical disciplines is discussed in terms of both the requirements for experimentation and the attainment of previously inaccessible information on physical processes.

  17. PREFACE: 4th Workshop on Theory, Modelling and Computational Methods for Semiconductors (TMCSIV)

    NASA Astrophysics Data System (ADS)

    Tomić, Stanko; Probert, Matt; Migliorato, Max; Pal, Joydeep

    2014-06-01

    These conference proceedings contain the written papers of the contributions presented at the 4th International Conference on Theory, Modelling and Computational Methods for Semiconductor materials and nanostructures. The conference was held at the MediaCityUK, University of Salford, Manchester, UK on 22-24 January 2014. The previous conferences in this series took place in 2012 at the University of Leeds, in 2010 at St William's College, York and in 2008 at the University of Manchester, UK. The development of high-performance computer architectures is finally allowing the routine use of accurate methods for calculating the structural, thermodynamic, vibrational, optical and electronic properties of semiconductors and their hetero- and nano-structures. The scope of this conference embraces modelling, theory and the use of sophisticated computational tools in semiconductor science and technology, where there is substantial potential for time-saving in R&D. Theoretical approaches represented in this meeting included: Density Functional Theory, Semi-empirical Electronic Structure Methods, Multi-scale Approaches, Modelling of PV devices, Electron Transport, and Graphene. Topics included, but were not limited to: Optical Properties of Quantum Nanostructures including Colloids and Nanotubes, Plasmonics, Magnetic Semiconductors, Photonic Structures, and Electronic Devices. This workshop ran for three days, with the objective of bringing together UK and international leading experts in the theoretical modelling of Group IV, III-V and II-VI semiconductors, as well as students, postdocs and early-career researchers. The first day focused on providing an introduction and overview of this vast field, aimed particularly at students, with several lectures given by recognized experts in various theoretical approaches. The following two days showcased some of the best theoretical research carried out in the UK in this field, with several contributions also from representatives of renowned theoretical groups from many European countries (Spain, France, Ireland, Germany, Switzerland, Luxemburg, Norway, Italy, Poland, Denmark, Sweden, Serbia, etc.), as well as Asia (Iran, Japan) and USA. We would like to thank all participants for making this a very successful meeting and for their contribution to the conference programme and these proceedings. We would also like to acknowledge the financial support from the Institute of Physics (Semiconductor Physics Group and Computational Physics Group), EPSRC-UK, the CECAM UK-Hartree Node, CCP9, and Quantum Wise (distributors of Atomistix). The Editors Acknowledgments Conference Organising Committee: Stanko Tomić (Chair, University of Salford) Matt Probert (University of York) Max Migliorato (University of Manchester) Joydeep Pal (University of Manchester) Programme Committee: David Whittaker (University of Sheffield, UK) John Robertson (University of Cambridge, UK) Risto Nieminen (Helsinki University of Technology Finland) Eoin O'Reilly (Tyndall Institute Cork Republic of Ireland) Marco Califano (University of Leeds, UK) Stewart Clark (University of Durham, UK) Stanko Tomić (University of Salford, UK) Mauro Pereira (Sheffield Hallam University, UK) Aldo Di Carlo (University of Rome ''Tor Vergata,'' Italy) Lev Kantorovich (King's College London, UK) Mervin Roy (University of Leicester, UK) Ben Hourahine (University of Strathclyde, UK) Rita Magri (University of Modena and Reggio Emilia, Italy) Zoran Ikonic (University of Leeds) John Barker (University of Glasgow) The proceedings were edited and compiled by Joydeep Pal, Max Migliorato and Stanko Tomić.

  18. Security Analysis of Smart Grid Cyber Physical Infrastructures Using Modeling and Game Theoretic Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abercrombie, Robert K; Sheldon, Frederick T.

    Cyber physical computing infrastructures typically consist of a number of sites are interconnected. Its operation critically depends both on cyber components and physical components. Both types of components are subject to attacks of different kinds and frequencies, which must be accounted for the initial provisioning and subsequent operation of the infrastructure via information security analysis. Information security analysis can be performed using game theory implemented in dynamic Agent Based Game Theoretic (ABGT) simulations. Such simulations can be verified with the results from game theory analysis and further used to explore larger scale, real world scenarios involving multiple attackers, defenders, andmore » information assets. We concentrated our analysis on the electric sector failure scenarios and impact analyses by the NESCOR Working Group Study, From the Section 5 electric sector representative failure scenarios; we extracted the four generic failure scenarios and grouped them into three specific threat categories (confidentiality, integrity, and availability) to the system. These specific failure scenarios serve as a demonstration of our simulation. The analysis using our ABGT simulation demonstrates how to model the electric sector functional domain using a set of rationalized game theoretic rules decomposed from the failure scenarios in terms of how those scenarios might impact the cyber physical infrastructure network with respect to CIA.« less

  19. Changes in Men's Physical Activity and Healthy Eating Knowledge and Behavior as a Result of Program Exposure: Findings From the Workplace POWERPLAY Program.

    PubMed

    Caperchione, Cristina M; Stolp, Sean; Bottorff, Joan L; Oliffe, John L; Johnson, Steven T; Seaton, Cherisse; Sharp, Paul; Jones-Bricker, Margaret; Lamont, Sonia; Errey, Sally; Healy, Theresa; Medhurst, Kerensa; Christian, Holly; Klitch, Megan

    2016-12-01

    The purpose of this study was to examine changes in physical activity and healthy eating knowledge and behaviors associated with the level of exposure to POWERPLAY, a men-centered workplace health promotion program. This study is based on a quasi-experimental prepost design. Using a computer assisted telephone interview survey, data regarding program exposure and physical activity and health eating knowledge and behaviors were collected from men (N = 103) in 4 workplaces. Exposure scores were calculated and participants were categorized as having low (n = 54) or high exposure (n = 49) to POWERPLAY. Compared with the low exposure group, those reporting high exposure scored significantly higher on physical activity knowledge (F (1, 99) =14.17, P < .001, eta2 = .125) and health eating knowledge (F (1, 99) =14.37, P = .001, eta2 = .111). The high exposure group also reported significantly more minutes walked place to place (F (2, 206) = 3.91, P = .022, eta 2 = .037) and on minutes walked for leisure (F (2, 230) = 3.08, P = .048, eta 2 = .026). POWERPLAY shows significant promise as a workplace health promotion approach and may have an even greater impact when program exposure is augmented with environmental and policy changes.

  20. Practical Issues in Developing a Culturally Tailored Physical Activity Promotion Program for Chinese and Korean American Midlife Women: A Pilot Study

    PubMed Central

    Chee, Wonshik; Kim, Sangmi; Chu, Tsung-Lan; Ji, Xiaopeng; Zhang, Jingwen; Chee, Eunice; Im, Eun-Ok

    2016-01-01

    Background With advances in computer technologies, Web-based interventions are widely accepted and welcomed by health care providers and researchers. Although the benefits of Web-based interventions on physical activity promotion have been documented, the programs have rarely targeted Asian Americans, including Asian American midlife women. Subsequently, culturally competent Web-based physical activity programs for Asian Americans may be necessary. Objective The purpose of our study was to explore practical issues in developing and implementing a culturally competent Web-based physical activity promotion program for 2 groups of Asian American women—Chinese American and Korean American midlife women—and to provide implications for future research. Methods While conducting the study, the research team members wrote individual memos on issues and their inferences on plausible reasons for the issues. The team had group discussions each week and kept the minutes of the discussions. Then, the memos and minutes were analyzed using a content analysis method. Results We identified practical issues in 4 major idea categories: (1) bilingual translators’ language orientations, (2) cultural sensitivity requirement, (3) low response rate, interest, and retention, and (4) issues in implementation logistics. Conclusions Based on the issues, we make several suggestions for the use of bilingual translators, motivational strategies, and implementation logistics. PMID:27872035

  1. Implementing Computer Based Laboratories

    NASA Astrophysics Data System (ADS)

    Peterson, David

    2001-11-01

    Physics students at Francis Marion University will complete several required laboratory exercises utilizing computer-based Vernier probes. The simple pendulum, the acceleration due to gravity, simple harmonic motion, radioactive half lives, and radiation inverse square law experiments will be incorporated into calculus-based and algebra-based physics courses. Assessment of student learning and faculty satisfaction will be carried out by surveys and test results. Cost effectiveness and time effectiveness assessments will be presented. Majors in Computational Physics, Health Physics, Engineering, Chemistry, Mathematics and Biology take these courses, and assessments will be categorized by major. To enhance the computer skills of students enrolled in the courses, MAPLE will be used for further analysis of the data acquired during the experiments. Assessment of these enhancement exercises will also be presented.

  2. The Entangled Histories of Physics and Computation

    NASA Astrophysics Data System (ADS)

    Rodriguez, Cesar

    2007-03-01

    The history of physics and computation intertwine in a fascinating manner that is relevant to the field of quantum computation. This talk focuses of the interconnections between both by examining their rhyming philosophies, recurrent characters and common themes. Leibniz not only was one of the lead figures of calculus, but also left his footprint in physics and invented the concept of a universal computational language. This last idea was further developed by Boole, Russell, Hilbert and G"odel. Physicists such as Boltzmann and Maxwell also established the foundation of the field of information theory later developed by Shannon. The war efforts of von Neumann and Turing can be juxtaposed to the Manhattan Project. Professional and personal connections of these characters to the development of physics will be emphasized. Recently, new cryptographic developments lead to a reexamination of the fundamentals of quantum mechanics, while quantum computation is discovering a new perspective on the nature of information itself.

  3. The effects of modeling instruction on high school physics academic achievement

    NASA Astrophysics Data System (ADS)

    Wright, Tiffanie L.

    The purpose of this study was to explore whether Modeling Instruction, compared to traditional lecturing, is an effective instructional method to promote academic achievement in selected high school physics classes at a rural middle Tennessee high school. This study used an ex post facto , quasi-experimental research methodology. The independent variables in this study were the instructional methods of teaching. The treatment variable was Modeling Instruction and the control variable was traditional lecture instruction. The Treatment Group consisted of participants in Physical World Concepts who received Modeling Instruction. The Control Group consisted of participants in Physical Science who received traditional lecture instruction. The dependent variable was gains scores on the Force Concepts Inventory (FCI). The participants for this study were 133 students each in both the Treatment and Control Groups (n = 266), who attended a public, high school in rural middle Tennessee. The participants were administered the Force Concepts Inventory (FCI) prior to being taught the mechanics of physics. The FCI data were entered into the computer-based Statistical Package for the Social Science (SPSS). Two independent samples t-tests were conducted to answer the research questions. There was a statistically significant difference between the treatment and control groups concerning the instructional method. Modeling Instructional methods were found to be effective in increasing the academic achievement of students in high school physics. There was no statistically significant difference between FCI gains scores for gender. Gender was found to have no effect on the academic achievement of students in high school physics classes. However, even though there was not a statistically significant difference, female students' gains scores were higher than male students' gains scores when Modeling Instructional methods of teaching were used. Based on these findings, it is recommended that high school science teachers should use Modeling Instructional methods of teaching daily in their classrooms. A recommendation for further research is to expand the Modeling Instructional methods of teaching into different content areas, (i.e., reading and language arts) to explore academic achievement gains.

  4. Alternative expression of the Bloch wave group velocity in loss-less periodic media using the electromagnetic field energy

    NASA Astrophysics Data System (ADS)

    Deparis, Olivier; Lambin, Philippe

    2018-01-01

    In periodic optical media, the group velocity is defined as the gradient with respect to wave-vector of the corresponding Bloch mode frequency dispersion curve, forming the photonic band structure. Instead of deducing it from the numerically computed photonic crystal band structure, the group velocity can be calculated directly from the integral of the Poynting vector over the crystal unit cell, the physical meaning of which is immediately perceivable. The related formula, which can be regarded as the application of Hellmann-Feynman theorem to electromagnetism, has been reported previously though without proof. We provide hereafter a full derivation of that formula starting from Maxwell's equations and we discuss its usefulness in photonics.

  5. Development of a computer-tailored physical activity intervention for prostate and colorectal cancer patients and survivors: OncoActive.

    PubMed

    Golsteijn, R H J; Bolman, C; Volders, E; Peels, D A; de Vries, H; Lechner, L

    2017-06-26

    Cancer and cancer treatment coincide with substantial negative physical, psychological and psychosocial problems. Physical activity (PA) can positively affect the negative effects of cancer and cancer treatment and thereby increase quality of life in CPS. Nevertheless, only a minority of CPS meet PA guidelines. We developed the OncoActive (OncoActief in Dutch) intervention: a computer-tailored PA program to stimulate PA in prostate and colorectal CPS, because to our knowledge there are only a few PA interventions for these specific cancer types in the Netherlands METHODS: The OncoActive intervention was developed through systematic adaptation of a proven effective, evidence-based, computer-tailored PA intervention for adults over fifty, called Active Plus. The Intervention Mapping (IM) protocol was used to guide the systematic adaptation. A literature study and interviews with prostate and colorectal CPS and health care professionals revealed that both general and cancer-specific PA determinants are important and should be addressed. Change objectives, theoretical methods and applications and the actual program content were adapted to address the specific needs, beliefs and cancer-related issues of prostate and colorectal CPS. Intervention participants received tailored PA advice three times, on internet and with printed materials, and a pedometer to set goals to improve PA. Pre- and pilot tests showed that the intervention was highly appreciated (target group) and regarded safe and feasible (healthcare professionals). The effectiveness of the intervention is being evaluated in a randomized controlled trial (RCT) (n = 428), consisting of an intervention group and a usual care waiting-list control group, with follow-up measurements at three, six and twelve months. Participants are recruited from seventeen hospitals and with posters, flyers and calls in several media. Using the Intervention Mapping protocol resulted in a systematically adapted, theory and evidence-based intervention providing tailored PA advice to prostate and colorectal CPS. If the intervention turns out to be effective in increasing PA, as evaluated in a RCT, possibilities for nationwide implementation and extension to other cancer types will be explored. The study is registered in the Dutch Trial Register (NTR4296) on November 23rd 2013 and can be accessed at http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=4296 .

  6. Computational models of music perception and cognition I: The perceptual and cognitive processing chain

    NASA Astrophysics Data System (ADS)

    Purwins, Hendrik; Herrera, Perfecto; Grachten, Maarten; Hazan, Amaury; Marxer, Ricard; Serra, Xavier

    2008-09-01

    We present a review on perception and cognition models designed for or applicable to music. An emphasis is put on computational implementations. We include findings from different disciplines: neuroscience, psychology, cognitive science, artificial intelligence, and musicology. The article summarizes the methodology that these disciplines use to approach the phenomena of music understanding, the localization of musical processes in the brain, and the flow of cognitive operations involved in turning physical signals into musical symbols, going from the transducers to the memory systems of the brain. We discuss formal models developed to emulate, explain and predict phenomena involved in early auditory processing, pitch processing, grouping, source separation, and music structure computation. We cover generic computational architectures of attention, memory, and expectation that can be instantiated and tuned to deal with specific musical phenomena. Criteria for the evaluation of such models are presented and discussed. Thereby, we lay out the general framework that provides the basis for the discussion of domain-specific music models in Part II.

  7. Computers in Physical Education.

    ERIC Educational Resources Information Center

    Sydow, James Armin

    Although computers have potential applications in the elementary and secondary physical education curriculum, current usage is minimal when compared to other disciplines. However, present trends indicate a substantial growth in the use of the computer in a supportive role in assisting the teacher in the management of instructional activities.…

  8. Algodoo: A Tool for Encouraging Creativity in Physics Teaching and Learning

    NASA Astrophysics Data System (ADS)

    Gregorcic, Bor; Bodin, Madelen

    2017-01-01

    Algodoo (http://www.algodoo.com) is a digital sandbox for physics 2D simulations. It allows students and teachers to easily create simulated "scenes" and explore physics through a user-friendly and visually attractive interface. In this paper, we present different ways in which students and teachers can use Algodoo to visualize and solve physics problems, investigate phenomena and processes, and engage in out-of-school activities and projects. Algodoo, with its approachable interface, inhabits a middle ground between computer games and "serious" computer modeling. It is suitable as an entry-level modeling tool for students of all ages and can facilitate discussions about the role of computer modeling in physics.

  9. Using Virtual Pets to Increase Fruit and Vegetable Consumption in Children: A Technology-Assisted Social Cognitive Theory Approach.

    PubMed

    Ahn, Sun Joo Grace; Johnsen, Kyle; Moore, James; Brown, Scott; Biersmith, Melanie; Ball, Catherine

    2016-02-01

    A virtual pet in the form of a mid-sized dog was developed based on the framework of social cognitive theory and tested as a vehicle for promoting fruit and vegetable (F&V) consumption in children. Three groups of children (N = 68) between the ages of 7 and 13 years were studied: baseline (no treatment), computer only, and virtual dog. Children in the virtual dog condition interacted with the virtual dog for 3 days, setting F&V consumption goals and receiving evaluation and reinforcement based on whether they met their self-set goals. Children vicariously experienced future health outcomes of F&V consumption by seeing, hearing, and feeling their virtual dog's physical and mental health improve or deteriorate based on their F&V consumption in the physical world. Children in the computer only condition interacted with a computer system that presented equivalent features, but without the virtual dog. Children in the baseline condition did not receive any experimental treatment. Results indicated that children in the virtual dog condition chose to be served significantly more F&V than those in the computer only or baseline conditions did. However, children in the virtual dog condition were unable to consume significantly more F&V than those in the computer only condition, although children in those two conditions consumed more F&V than the baseline condition. Food preferences did not differ significantly across the three conditions before and after the experimental treatments. Theoretical and practical potentials of using a virtual pet to promote F&V consumption systematically in children are discussed.

  10. A computer-based physics laboratory apparatus: Signal generator software

    NASA Astrophysics Data System (ADS)

    Thanakittiviroon, Tharest; Liangrocapart, Sompong

    2005-09-01

    This paper describes a computer-based physics laboratory apparatus to replace expensive instruments such as high-precision signal generators. This apparatus uses a sound card in a common personal computer to give sinusoidal signals with an accurate frequency that can be programmed to give different frequency signals repeatedly. An experiment on standing waves on an oscillating string uses this apparatus. In conjunction with interactive lab manuals, which have been developed using personal computers in our university, we achieve a complete set of low-cost, accurate, and easy-to-use equipment for teaching a physics laboratory.

  11. Evidence-based guidelines for the wise use of computers by children: physical development guidelines.

    PubMed

    Straker, L; Maslen, B; Burgess-Limerick, R; Johnson, P; Dennerlein, J

    2010-04-01

    Computer use by children is common and there is concern over the potential impact of this exposure on child physical development. Recently principles for child-specific evidence-based guidelines for wise use of computers have been published and these included one concerning the facilitation of appropriate physical development. This paper reviews the evidence and presents detailed guidelines for this principle. The guidelines include encouraging a mix of sedentary and whole body movement tasks, encouraging reasonable postures during computing tasks through workstation, chair, desk, display and input device selection and adjustment and special issues regarding notebook computer use and carriage, computing skills and responding to discomfort. The evidence limitations highlight opportunities for future research. The guidelines themselves can inform parents and teachers, equipment designers and suppliers and form the basis of content for teaching children the wise use of computers. STATEMENT OF RELEVANCE: Many children use computers and computer-use habits formed in childhood may track into adulthood. Therefore child-computer interaction needs to be carefully managed. These guidelines inform those responsible for children to assist in the wise use of computers.

  12. Obesity and diet awareness among Polish children and adolescents in small towns and villages.

    PubMed

    Stankiewicz, Marta; Pieszko, Magdalena; Sliwińska, Aleksandra; Małgorzewicz, Sylwia; Wierucki, Łukasz; Zdrojewski, Tomasz; Wyrzykowski, Bogdan; Łysiak-Szydłowska, Wiesława

    2014-03-01

    In addition to genetic predispositions and environmental factors, healthy lifestyle education is very important for children and adolescents. The purpose of this research was to estimate the number of overweight and obese children and adolescents from small towns and villages and to find out an association between health awareness in children and the risk of becoming overweight or obese. The research was conducted in 1,515 healthy children aged 6-18 years from small towns and villages in Poland. Overweight was diagnosed when BMI for age and sex was over the 90th percentile; obesity--when it was over the 95th percentile. The study consisted of a lifestyle interview and anthropometrical measurements. The lifestyle interview was conducted with the use of an anonymous questionnaire form and included questions about food frequency, diet habits and physical activity. The research was analysed using the SAS System for Windows, release 8.02. Overweight status was diagnosed in 9.0% and obesity in 5.1% of respondents. Excess body mass was statistically more frequently diagnosed in girls than in boys aged 14-18 years. Girls of this age group significantly more frequently chose wholemeal bread, smoked sausages, meat and poultry as products that are believed to keep them fit. Older children substantially more often indicated that stress, smoking cigarettes, consuming fatty meat, sweets, being obese, and a lack of physical activity are factors that damage health. Boys spent more time in front of a computer or TV than girls; in the older group of children, the phenomenon even intensified. Awareness of healthy lifestyle behaviour is not sufficient to maintain optimal body mass. Knowledge about proper eating habits is better among girls than among boys, especially in the older age groups. However, in older groups, there was less physical activity due to spending more time in front of TV or the computer. High percentage of obese/overweight children and insufficient knowledge of nutrition may consequently result in increased risk of cardio-vascular diseases in adult population.

  13. Cognition, interaction and ageing: an Internet workshops exploratory study.

    PubMed

    Xavier, André; Sales, Márcia; Ramos, Luiz; Anção, Meide; Sigulem, Daniel

    2004-01-01

    Gerontology is known more and more as an interdisciplinary and functional knowledge. Geriatrics as one of its branches intends to make possible longevity with health. World population ageing occurs along with important economical and social inequalities for elder people, which are likely to be more affected by deficiencies (physical and/or cognitive) than younger groups. With the purpose of minimizing these deficiencies, Internet Workshops were accomplished, with a retired group of senior persons. This research was developed to bring together principles of Human-Computer Interaction, informatics, accessibility and gerontology in order to promote Digital Inclusion to this growing population and a methodology to virtual cognitive rehabilitation.

  14. Teaching ocean wave forecasting using computer-generated visualization and animation—Part 2: swell forecasting

    NASA Astrophysics Data System (ADS)

    Whitford, Dennis J.

    2002-05-01

    This paper, the second of a two-part series, introduces undergraduate students to ocean wave forecasting using interactive computer-generated visualization and animation. Verbal descriptions and two-dimensional illustrations are often insufficient for student comprehension. Fortunately, the introduction of computers in the geosciences provides a tool for addressing this problem. Computer-generated visualization and animation, accompanied by oral explanation, have been shown to be a pedagogical improvement to more traditional methods of instruction. Cartographic science and other disciplines using geographical information systems have been especially aggressive in pioneering the use of visualization and animation, whereas oceanography has not. This paper will focus on the teaching of ocean swell wave forecasting, often considered a difficult oceanographic topic due to the mathematics and physics required, as well as its interdependence on time and space. Several MATLAB ® software programs are described and offered to visualize and animate group speed, frequency dispersion, angular dispersion, propagation, and wave height forecasting of deep water ocean swell waves. Teachers may use these interactive visualizations and animations without requiring an extensive background in computer programming.

  15. PREFACE: 1st International Workshop on Theoretical and Computational Physics: Condensed Matter, Soft Matter and Materials Physics & 38th National Conference on Theoretical Physics

    NASA Astrophysics Data System (ADS)

    2014-09-01

    This volume contains selected papers presented at the 38th National Conference on Theoretical Physics (NCTP-38) and the 1st International Workshop on Theoretical and Computational Physics: Condensed Matter, Soft Matter and Materials Physics (IWTCP-1). Both the conference and the workshop were held from 29 July to 1 August 2013 in Pullman hotel, Da Nang, Vietnam. The IWTCP-1 was a new activity of the Vietnamese Theoretical Physics Society (VTPS) organized in association with the 38th National Conference on Theoretical Physics (NCTP-38), the most well-known annual scientific forum dedicated to the dissemination of the latest development in the field of theoretical physics within the country. The IWTCP-1 was also an External Activity of the Asia Pacific Center for Theoretical Physics (APCTP). The overriding goal of the IWTCP is to provide an international forum for scientists and engineers from academia to share ideas, problems and solution relating to the recent advances in theoretical physics as well as in computational physics. The main IWTCP motivation is to foster scientific exchanges between the Vietnamese theoretical and computational physics community and world-wide scientists as well as to promote high-standard level of research and education activities for young physicists in the country. About 110 participants coming from 10 countries participated in the conference and the workshop. 4 invited talks, 18 oral contributions and 46 posters were presented at the conference. In the workshop we had one keynote lecture and 9 invited talks presented by international experts in the fields of theoretical and computational physics, together with 14 oral and 33 poster contributions. The proceedings were edited by Nguyen Tri Lan, Trinh Xuan Hoang, and Nguyen Ai Viet. We would like to thank all invited speakers, participants and sponsors for making the conference and the workshop successful. Nguyen Ai Viet Chair of NCTP-38 and IWTCP-1

  16. Predicting Physical Activity and Healthy Nutrition Behaviors Using Social Cognitive Theory: Cross-Sectional Survey among Undergraduate Students in Chongqing, China.

    PubMed

    Xu, Xianglong; Pu, Yang; Sharma, Manoj; Rao, Yunshuang; Cai, Yilin; Zhao, Yong

    2017-11-05

    (1) Background: Generally suggested public health measures to reduce obesity were to limit television (TV) viewing, enhance daily physical activities, enable the consumption of fruit and vegetables, and reduce sugar-sweetened beverage intake. This study analyzed the extent to which selected social cognitive theory constructs can predict these behaviors among Chinese undergraduate students. (2) Methods: This cross-sectional study included 1976 undergraduate students from six universities in Chongqing, China. A self-administered five-point Likert common physical activity and nutrition behavior scale based on social cognitive theory was utilized. (3) Results: This study included 687 (34.77%) males and 1289 (65.23%) females. A total of 60.14% of the students engaged in exercise for less than 30 min per day. Approximately 16.5%of the participants spent at least 4 h watching TV and sitting in front of a computer daily. Approximately 79% of the participants consumed less than five cups of fruit and vegetables daily. Undergraduate students who had high self-efficacy scores had more leisure time physical activities. Those who have high expectation scores had considerable time watching TV and sitting in front of a computer. Undergraduate students who had high expectation and self-efficacy scores had substantially low consumption of sugar-sweetened beverages. Those who had high self-efficacy scores consumed considerable amounts of fruit and vegetables. Furthermore, the type of university, BMI group, gender, age, lack of siblings, and grade level were associated with the aforementioned four behaviors. (4) Conclusion: Physical inactivity and unhealthy nutrition behaviors are common among undergraduate students. This study used social cognitive theory to provide several implications for limiting the TV viewing, enhancing daily physical activities, consuming fruit and vegetables, and reducing sugar-sweetened beverage intake among undergraduate students.

  17. Predicting Physical Activity and Healthy Nutrition Behaviors Using Social Cognitive Theory: Cross-Sectional Survey among Undergraduate Students in Chongqing, China

    PubMed Central

    Pu, Yang; Sharma, Manoj; Rao, Yunshuang; Cai, Yilin; Zhao, Yong

    2017-01-01

    (1) Background: Generally suggested public health measures to reduce obesity were to limit television (TV) viewing, enhance daily physical activities, enable the consumption of fruit and vegetables, and reduce sugar-sweetened beverage intake. This study analyzed the extent to which selected social cognitive theory constructs can predict these behaviors among Chinese undergraduate students. (2) Methods: This cross-sectional study included 1976 undergraduate students from six universities in Chongqing, China. A self-administered five-point Likert common physical activity and nutrition behavior scale based on social cognitive theory was utilized. (3) Results: This study included 687 (34.77%) males and 1289 (65.23%) females. A total of 60.14% of the students engaged in exercise for less than 30 min per day. Approximately 16.5% of the participants spent at least 4 h watching TV and sitting in front of a computer daily. Approximately 79% of the participants consumed less than five cups of fruit and vegetables daily. Undergraduate students who had high self-efficacy scores had more leisure time physical activities. Those who have high expectation scores had considerable time watching TV and sitting in front of a computer. Undergraduate students who had high expectation and self-efficacy scores had substantially low consumption of sugar-sweetened beverages. Those who had high self-efficacy scores consumed considerable amounts of fruit and vegetables. Furthermore, the type of university, BMI group, gender, age, lack of siblings, and grade level were associated with the aforementioned four behaviors. (4) Conclusion: Physical inactivity and unhealthy nutrition behaviors are common among undergraduate students. This study used social cognitive theory to provide several implications for limiting the TV viewing, enhancing daily physical activities, consuming fruit and vegetables, and reducing sugar-sweetened beverage intake among undergraduate students. PMID:29113089

  18. Patient‐centred physical therapy is (cost‐) effective in increasing physical activity and reducing frailty in older adults with mobility problems: a randomized controlled trial with 6 months follow‐up

    PubMed Central

    Staal, J Bart; van der Wees, Philip J.; Adang, Eddy M. M.; Akkermans, Reinier; Olde Rikkert, Marcel G. M.; Nijhuis‐van der Sanden, Maria W. G.

    2015-01-01

    Abstract Background Despite the well‐known health benefits of physical activity, it is a great challenge to stay physically active for frail–older adults with mobility limitations. The aim of this study was to test the (cost‐) effectiveness of a patient‐centred physical therapy strategy (Coach2Move) in which individualized treatment (motivational interviewing, physical examination, individualized goal setting, coaching and advice on self management, and physical training) is combined to increase physical activity level and physical fitness and, thereby, to decrease the level of frailty. Methods A randomized controlled trial was performed in 13 physical therapy practices with measurements at 3 and 6 months. Eligible patients were aged 70 years or over and had mobility problems (i.e. difficulties with walking, moving, getting up and changing position from bed or chair to standing, or stair climbing). The primary outcome was physical activity (total and moderate intensity) in minutes per day. Secondary outcomes were as follows: frailty, walking speed and distance, mobility, and quality of life. Data were analysed using linear mixed models for repeated measurements. Healthcare costs and quality‐adjusted life years (QALYs) were computed and combined using net monetary benefit (NMB) for different willingness to pay thresholds. Data on costs, QALYs, and NMBs were analysed using linear mixed models. Results One hundred and thirty patients participated in this study. At 6 months, the between‐group difference was significant for moderate‐intensity physical activity in favour of the Coach2Move group [mean difference: 17.9 min per day; 95% confidence interval (CI) 4.0 to 34.9; P = 0.012]. The between‐group difference for total physical activity was 14.1 min per day (95% CI −6.6 to 34.9; P = 0.182). Frailty decreased more in the Coach2Move group compared with usual care [mean difference: −0.03 (95% CI: −0.06 to −0.00; P = 0.027)]. Compared with usual treatment, the Coach2Move strategy resulted in cost savings (€849.8; 95% CI: 1607 to 90; P = 0.028), an improvement in QALYs, (0.02; 95% CI: 0.00 to 0.03; P = 0.03), and a higher NMB at every willingness to pay threshold. Conclusions Older adults with mobility problems are able to safely increase physical activity in their own environment and reduce frailty. This study emphasizes both the potential cost‐effectiveness of a patient‐centred approach in the frail elderly and the importance of physical activity promotion in older adults with mobility limitations. PMID:27239405

  19. Patient-centred physical therapy is (cost-) effective in increasing physical activity and reducing frailty in older adults with mobility problems: a randomized controlled trial with 6 months follow-up.

    PubMed

    de Vries, Nienke M; Staal, J Bart; van der Wees, Philip J; Adang, Eddy M M; Akkermans, Reinier; Olde Rikkert, Marcel G M; Nijhuis-van der Sanden, Maria W G

    2016-09-01

    Despite the well-known health benefits of physical activity, it is a great challenge to stay physically active for frail-older adults with mobility limitations. The aim of this study was to test the (cost-) effectiveness of a patient-centred physical therapy strategy (Coach2Move) in which individualized treatment (motivational interviewing, physical examination, individualized goal setting, coaching and advice on self management, and physical training) is combined to increase physical activity level and physical fitness and, thereby, to decrease the level of frailty. A randomized controlled trial was performed in 13 physical therapy practices with measurements at 3 and 6 months. Eligible patients were aged 70 years or over and had mobility problems (i.e. difficulties with walking, moving, getting up and changing position from bed or chair to standing, or stair climbing). The primary outcome was physical activity (total and moderate intensity) in minutes per day. Secondary outcomes were as follows: frailty, walking speed and distance, mobility, and quality of life. Data were analysed using linear mixed models for repeated measurements. Healthcare costs and quality-adjusted life years (QALYs) were computed and combined using net monetary benefit (NMB) for different willingness to pay thresholds. Data on costs, QALYs, and NMBs were analysed using linear mixed models. One hundred and thirty patients participated in this study. At 6 months, the between-group difference was significant for moderate-intensity physical activity in favour of the Coach2Move group [mean difference: 17.9 min per day; 95% confidence interval (CI) 4.0 to 34.9; P = 0.012]. The between-group difference for total physical activity was 14.1 min per day (95% CI -6.6 to 34.9; P = 0.182). Frailty decreased more in the Coach2Move group compared with usual care [mean difference: -0.03 (95% CI: -0.06 to -0.00; P = 0.027)]. Compared with usual treatment, the Coach2Move strategy resulted in cost savings (€849.8; 95% CI: 1607 to 90; P = 0.028), an improvement in QALYs, (0.02; 95% CI: 0.00 to 0.03; P = 0.03), and a higher NMB at every willingness to pay threshold. Older adults with mobility problems are able to safely increase physical activity in their own environment and reduce frailty. This study emphasizes both the potential cost-effectiveness of a patient-centred approach in the frail elderly and the importance of physical activity promotion in older adults with mobility limitations.

  20. Validating an operational physical method to compute surface radiation from geostationary satellites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengupta, Manajit; Dhere, Neelkanth G.; Wohlgemuth, John H.

    We developed models to compute global horizontal irradiance (GHI) and direct normal irradiance (DNI) over the last three decades. These models can be classified as empirical or physical based on the approach. Empirical models relate ground-based observations with satellite measurements and use these relations to compute surface radiation. Physical models consider the physics behind the radiation received at the satellite and create retrievals to estimate surface radiation. Furthermore, while empirical methods have been traditionally used for computing surface radiation for the solar energy industry, the advent of faster computing has made operational physical models viable. The Global Solar Insolation Projectmore » (GSIP) is a physical model that computes DNI and GHI using the visible and infrared channel measurements from a weather satellite. GSIP uses a two-stage scheme that first retrieves cloud properties and uses those properties in a radiative transfer model to calculate GHI and DNI. Developed for polar orbiting satellites, GSIP has been adapted to NOAA's Geostationary Operation Environmental Satellite series and can run operationally at high spatial resolutions. Our method holds the possibility of creating high quality datasets of GHI and DNI for use by the solar energy industry. We present an outline of the methodology and results from running the model as well as a validation study using ground-based instruments.« less

  1. A Framework for Understanding Physics Students' Computational Modeling Practices

    ERIC Educational Resources Information Center

    Lunk, Brandon Robert

    2012-01-01

    With the growing push to include computational modeling in the physics classroom, we are faced with the need to better understand students' computational modeling practices. While existing research on programming comprehension explores how novices and experts generate programming algorithms, little of this discusses how domain content…

  2. Is thinking computable?

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.

    1990-01-01

    Strong artificial intelligence claims that conscious thought can arise in computers containing the right algorithms even though none of the programs or components of those computers understand which is going on. As proof, it asserts that brains are finite webs of neurons, each with a definite function governed by the laws of physics; this web has a set of equations that can be solved (or simulated) by a sufficiently powerful computer. Strong AI claims the Turing test as a criterion of success. A recent debate in Scientific American concludes that the Turing test is not sufficient, but leaves intact the underlying premise that thought is a computable process. The recent book by Roger Penrose, however, offers a sharp challenge, arguing that the laws of quantum physics may govern mental processes and that these laws may not be computable. In every area of mathematics and physics, Penrose finds evidence of nonalgorithmic human activity and concludes that mental processes are inherently more powerful than computational processes.

  3. Beam and Plasma Physics Research

    DTIC Science & Technology

    1990-06-01

    La di~raDy in high power microwave computations and thi-ory and high energy plasma computations and theory. The HPM computations concentrated on...2.1 REPORT INDEX 7 2.2 TASK AREA 2: HIGH-POWER RF EMISSION AND CHARGED- PARTICLE BEAM PHYSICS COMPUTATION , MODELING AND THEORY 10 2.2.1 Subtask 02-01...Vulnerability of Space Assets 22 2.2.6 Subtask 02-06, Microwave Computer Program Enhancements 22 2.2.7 Subtask 02-07, High-Power Microwave Transvertron Design 23

  4. The association between acculturation and recreational computer use among Latino adolescents in California.

    PubMed

    Shi, L; van Meijgaard, J; Simon, P

    2012-08-01

    Physical inactivity like recreational computer use is a likely factor in the rising obesity prevalence among Latino adolescents. Using the data from California Health Interview Survey, we test the hypothesis whether acculturation is associated with recreational computer use among Latino adolescents. We run linear regressions of the weekly time spent on recreational computer use among Latino adolescents, stratified first by gender and then by age group (12-14 and 15-17 years). Years living in the United States and language at home are used as key variables for acculturation. For all four sub-populations, living in the United States for less than 5 years is significantly associated with fewer hours on recreational computer use, compared with those US-born. Among female adolescents, those who lived in the United States for 10 years or more spent fewer hours on recreational computer use than those US-born. Among adolescents under 15, speaking English only and speaking English plus another language are both significantly associated with more hours on recreational computer use, compared with those who speak a non-English language at home. Educators and health professionals should heed the Latino adolescents' possible increase in recreational computer use. © 2012 The Authors. Pediatric Obesity © 2012 International Association for the Study of Obesity.

  5. Country and Gender-Specific Achievement of Healthy Nutrition and Physical Activity Guidelines: Latent Class Analysis of 6266 University Students in Egypt, Libya, and Palestine.

    PubMed

    El Ansari, Walid; Berg-Beckhoff, Gabriele

    2017-07-11

    Research on healthy behaviour such as physical activity and healthy nutrition and their combination is lacking among university students in Arab countries. The current survey assessed healthy nutrition, and moderate/vigorous physical activity (PA) of 6266 students in Egypt, Libya, and Palestine. We computed a nutrition guideline achievement index using WHO recommendation, as well as the achievement of PA recommendations using guidelines for adults of the American Heart Association guidelines. Latent class regression analysis identified homogenous groups of male and female students, based on their achievements of both guidelines. We examined associations between group membership and achievement of guidelines. A three-class solution model best fitted the data, generating three student Groups: "Healthy Eaters" (7.7% of females, 10.8% of males), "Physically Active" (21.7% of females, 25.8% of males), and "Low Healthy Behaviour" (70.6% of females, 63.4% of males). We did not observe a latent class that exhibited combined healthy behaviours (physically active and healthy eaters), and there were no major differences between countries. We observed a very low rate of healthy nutrition (≈10% of students achieved greater than four of the eight nutrition guidelines), with little gender differences across the countries. About 18-47% of students achieved the PA guidelines, depending on country and gender, more often among males. Few females achieved the PA guidelines, particularly in Libya and Palestine. Culturally adapted multi-behavioural interventions need to encourage healthy lifestyles, nutrition and PA behaviours. National policies need to promote active living while addressing cultural, geographic, and other barriers to young adults' engagement in PA.

  6. The Seamos Saludables Study

    PubMed Central

    Marcus, Bess H.; Dunsiger, Shira I.; Pekmezi, Dori W.; Larsen, Britta A.; Bock, Beth C.; Gans, Kim M.; Marquez, Becky; Morrow, Kathleen M.; Tilkemeier, Peter

    2013-01-01

    Background Latinas in the U.S. are less physically active than non-Latino white women, and also report higher levels of diabetes, obesity, and other conditions related to inactivity. Interventions are needed to address disparities in this high-risk group. Purpose To evaluate the efficacy of a culturally adapted, Spanish-language, individually tailored, computer expert system–driven physical activity print-based intervention for adult Latinas. Design RCT. Setting/participants Participants were 266 inactive adult Latinas who participated between 2009 and 2012. Intervention Participants were randomized to one of two treatment arms: a 6-month tailored physical activity intervention condition or wellness contact control. For both conditions, print materials were delivered by mail. Main outcome measures The main outcome measure was change in weekly moderate to vigorous physical activity (MVPA) measured by the 7-Day Physical Activity Recall interview, which was administered at baseline and post-intervention (6 months). Participants also wore accelerometers for a week at baseline and follow-up. Analyses were conducted in 2013. Results Increases in minutes/week of MVPA measured by the 7-Day PAR were significantly greater in the intervention group compared to the control group (mean difference=41.36, SE=7.93, p<0.01). This difference was corroborated by accelerometer readings (rho=0.44, p<0.01). Further, results indicate that intervention participants had greater increases in self-efficacy, cognitive processes and behavioral processes at 3 months compared to control paricipants (p’s<0.05). Conclusions The tailored Spanish-language intervention was effective in increasing MVPA among predominantly low-income, less-acculturated Latinas. Such print-based interventions are poised for widespread dissemination, and thus may help address health disparities. PMID:24139773

  7. Country and Gender-Specific Achievement of Healthy Nutrition and Physical Activity Guidelines: Latent Class Analysis of 6266 University Students in Egypt, Libya, and Palestine

    PubMed Central

    El Ansari, Walid; Berg-Beckhoff, Gabriele

    2017-01-01

    Research on healthy behaviour such as physical activity and healthy nutrition and their combination is lacking among university students in Arab countries. The current survey assessed healthy nutrition, and moderate/vigorous physical activity (PA) of 6266 students in Egypt, Libya, and Palestine. We computed a nutrition guideline achievement index using WHO recommendation, as well as the achievement of PA recommendations using guidelines for adults of the American Heart Association guidelines. Latent class regression analysis identified homogenous groups of male and female students, based on their achievements of both guidelines. We examined associations between group membership and achievement of guidelines. A three-class solution model best fitted the data, generating three student Groups: “Healthy Eaters” (7.7% of females, 10.8% of males), “Physically Active” (21.7% of females, 25.8% of males), and “Low Healthy Behaviour” (70.6% of females, 63.4% of males). We did not observe a latent class that exhibited combined healthy behaviours (physically active and healthy eaters), and there were no major differences between countries. We observed a very low rate of healthy nutrition (≈10% of students achieved greater than four of the eight nutrition guidelines), with little gender differences across the countries. About 18–47% of students achieved the PA guidelines, depending on country and gender, more often among males. Few females achieved the PA guidelines, particularly in Libya and Palestine. Culturally adapted multi-behavioural interventions need to encourage healthy lifestyles, nutrition and PA behaviours. National policies need to promote active living while addressing cultural, geographic, and other barriers to young adults’ engagement in PA. PMID:28696407

  8. Non-adiabatic holonomic quantum computation in linear system-bath coupling

    PubMed Central

    Sun, Chunfang; Wang, Gangcheng; Wu, Chunfeng; Liu, Haodi; Feng, Xun-Li; Chen, Jing-Ling; Xue, Kang

    2016-01-01

    Non-adiabatic holonomic quantum computation in decoherence-free subspaces protects quantum information from control imprecisions and decoherence. For the non-collective decoherence that each qubit has its own bath, we show the implementations of two non-commutable holonomic single-qubit gates and one holonomic nontrivial two-qubit gate that compose a universal set of non-adiabatic holonomic quantum gates in decoherence-free-subspaces of the decoupling group, with an encoding rate of . The proposed scheme is robust against control imprecisions and the non-collective decoherence, and its non-adiabatic property ensures less operation time. We demonstrate that our proposed scheme can be realized by utilizing only two-qubit interactions rather than many-qubit interactions. Our results reduce the complexity of practical implementation of holonomic quantum computation in experiments. We also discuss the physical implementation of our scheme in coupled microcavities. PMID:26846444

  9. Non-adiabatic holonomic quantum computation in linear system-bath coupling.

    PubMed

    Sun, Chunfang; Wang, Gangcheng; Wu, Chunfeng; Liu, Haodi; Feng, Xun-Li; Chen, Jing-Ling; Xue, Kang

    2016-02-05

    Non-adiabatic holonomic quantum computation in decoherence-free subspaces protects quantum information from control imprecisions and decoherence. For the non-collective decoherence that each qubit has its own bath, we show the implementations of two non-commutable holonomic single-qubit gates and one holonomic nontrivial two-qubit gate that compose a universal set of non-adiabatic holonomic quantum gates in decoherence-free-subspaces of the decoupling group, with an encoding rate of (N - 2)/N. The proposed scheme is robust against control imprecisions and the non-collective decoherence, and its non-adiabatic property ensures less operation time. We demonstrate that our proposed scheme can be realized by utilizing only two-qubit interactions rather than many-qubit interactions. Our results reduce the complexity of practical implementation of holonomic quantum computation in experiments. We also discuss the physical implementation of our scheme in coupled microcavities.

  10. Optimizing Resource Utilization in Grid Batch Systems

    NASA Astrophysics Data System (ADS)

    Gellrich, Andreas

    2012-12-01

    On Grid sites, the requirements of the computing tasks (jobs) to computing, storage, and network resources differ widely. For instance Monte Carlo production jobs are almost purely CPU-bound, whereas physics analysis jobs demand high data rates. In order to optimize the utilization of the compute node resources, jobs must be distributed intelligently over the nodes. Although the job resource requirements cannot be deduced directly, jobs are mapped to POSIX UID/GID according to the VO, VOMS group and role information contained in the VOMS proxy. The UID/GID then allows to distinguish jobs, if users are using VOMS proxies as planned by the VO management, e.g. ‘role=production’ for Monte Carlo jobs. It is possible to setup and configure batch systems (queuing system and scheduler) at Grid sites based on these considerations although scaling limits were observed with the scheduler MAUI. In tests these limitations could be overcome with a home-made scheduler.

  11. First results from a combined analysis of CERN computing infrastructure metrics

    NASA Astrophysics Data System (ADS)

    Duellmann, Dirk; Nieke, Christian

    2017-10-01

    The IT Analysis Working Group (AWG) has been formed at CERN across individual computing units and the experiments to attempt a cross cutting analysis of computing infrastructure and application metrics. In this presentation we will describe the first results obtained using medium/long term data (1 months — 1 year) correlating box level metrics, job level metrics from LSF and HTCondor, IO metrics from the physics analysis disk pools (EOS) and networking and application level metrics from the experiment dashboards. We will cover in particular the measurement of hardware performance and prediction of job duration, the latency sensitivity of different job types and a search for bottlenecks with the production job mix in the current infrastructure. The presentation will conclude with the proposal of a small set of metrics to simplify drawing conclusions also in the more constrained environment of public cloud deployments.

  12. Physical effects and cognitive function after exercising "Rue-si-dad-ton" (exercise using the posture of the hermit doing body contortion): a randomized controlled pilot trial.

    PubMed

    Tanasugarn, Lokachet; Natearpha, Pasit; Kongsakon, Ronnakorn; Chaosaowapa, Marshima; Choatwongwachira, Woraphon; Seanglaw, Dussadee; Kiratisin, Pattarachai; Namatra, Chakrapong; Srinonprasert, Varalak; Nimmannnit, Akarin; Vannabhum, Manmas; Laohapand, Tawee; Kuptniratsaikul, Vilai

    2015-03-01

    This study aims to preliminarily evaluate effect on physical properties of shoulder joints and cognitive function after practicing Rue-si-dad-ton, a Thai traditional exercise using the postures of the hermit doing body contortion which still lacks systematically conducted evidence-based regarding its benefits. Thirty-seven participants who have routinely worked on computer at least 3 hours per day were recruited and randomized into intervention (n = 19) or control group (n = 18). Physical effect on shoulder joints was evaluated by measuring shoulder range of motion (ROM) and evaluating shoulder function with the American Shoulder & Elbow Surgeons Standardized Shoulder Assessment Form. Cognitive function was determined by Verbal Fluency Test, Trail Maker B Test, and Digit Span Test. Both study groups were assessed by all tests at the beginning and at the end of study by blinded assessors. The intervention group performed 3 postures of Rue-si-dad-ton exercise (an hour per day for 4 days by a well-trained instructor) before thefinal measurement. Only left and right shoulder flexion of the intervention group (p-value = 0.006 and 0.010 respectively) showed significant increment compared with the control group using ANCOVA test with baseline adjusted as covariate. Other variables, including joint and cognitive function, indicated no significant changes between groups. No complications from exercise were found during the study Rue-si-dad-ton may safely help improve range of joint motion with potential benefit for joint and cognitive function. Additional extensive studies with adequate number of participants and longer period of exercise are warranted.

  13. Effects of feedback-based balance and core resistance training vs. Pilates training on balance and muscle function in older women: a randomized-controlled trial.

    PubMed

    Markovic, Goran; Sarabon, Nejc; Greblo, Zrinka; Krizanic, Valerija

    2015-01-01

    Aging is associated with decline in physical function that could result in the development of physical impairment and disability. Hence, interventions that simultaneously challenge balance ability, trunk (core) and extremity strength of older adults could be particularly effective in preserving and enhancing these physical functions. The purpose of this study was to compare the effects of feedback-based balance and core resistance training utilizing the a special computer-controlled device (Huber®) with the conventional Pilates training on balance ability, neuromuscular function and body composition of healthy older women. Thirty-four older women (age: 70±4 years) were randomly assigned to a Huber group (n=17) or Pilates group (n=17). Both groups trained for 8 weeks, 3 times a week. Maximal isometric strength of the trunk flexors, extensors, and lateral flexors, leg power, upper-body strength, single- and dual-task static balance, and body composition were measured before and after the intervention programs. Significant group×time interactions and main effects of time (p<0.05) were found for body composition, balance ability in standard and dual-task conditions, all trunk muscle strength variables, and leg power in favor of the Huber group. The observed improvements in balance ability under both standard and dual-task conditions in the Huber group were mainly the result of enhanced postural control in medial-lateral direction (p<0.05). Feedback-based balance and core resistance training proved to be more effective in improving single- and dual-task balance ability, trunk muscle strength, leg power, and body composition of healthy older women than the traditional Pilates training. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Comparing the Psychometric Properties of Two Physical Activity Self-Efficacy Instruments in Urban, Adolescent Girls: Validity, Measurement Invariance, and Reliability

    PubMed Central

    Voskuil, Vicki R.; Pierce, Steven J.; Robbins, Lorraine B.

    2017-01-01

    Aims: This study compared the psychometric properties of two self-efficacy instruments related to physical activity. Factorial validity, cross-group and longitudinal invariance, and composite reliability were examined. Methods: Secondary analysis was conducted on data from a group randomized controlled trial investigating the effect of a 17-week intervention on increasing moderate to vigorous physical activity among 5th–8th grade girls (N = 1,012). Participants completed a 6-item Physical Activity Self-Efficacy Scale (PASE) and a 7-item Self-Efficacy for Exercise Behaviors Scale (SEEB) at baseline and post-intervention. Confirmatory factor analyses for intervention and control groups were conducted with Mplus Version 7.4 using robust weighted least squares estimation. Model fit was evaluated with the chi-square index, comparative fit index, and root mean square error of approximation. Composite reliability for latent factors with ordinal indicators was computed from Mplus output using SAS 9.3. Results: Mean age of the girls was 12.2 years (SD = 0.96). One-third of the girls were obese. Girls represented a diverse sample with over 50% indicating black race and an additional 19% identifying as mixed or other race. Both instruments demonstrated configural invariance for simultaneous analysis of cross-group and longitudinal invariance based on alternative fit indices. However, simultaneous metric invariance was not met for the PASE or the SEEB instruments. Partial metric invariance for the simultaneous analysis was achieved for the PASE with one factor loading identified as non-invariant. Partial metric invariance was not met for the SEEB. Longitudinal scalar invariance was achieved for both instruments in the control group but not the intervention group. Composite reliability for the PASE ranged from 0.772 to 0.842. Reliability for the SEEB ranged from 0.719 to 0.800 indicating higher reliability for the PASE. Reliability was more stable over time in the control group for both instruments. Conclusions: Results suggest that the intervention influenced how girls responded to indicator items. Neither of the instruments achieved simultaneous metric invariance making it difficult to assess mean differences in PA self-efficacy between groups. PMID:28824487

  15. “Workshop Astronomy” at Dickinson College

    NASA Astrophysics Data System (ADS)

    Morgan, Windsor A., Jr.

    2006-12-01

    Dickinson College, a 2400-student liberal arts college in Carlisle, Pennsylvania, is recognized for the development of Workshop Physics. This innovative, calculus-based introductory course combines physics lectures and laboratories with integrated hands-on, small-group sessions. It allows students to do experiments, so that they will make their own observations and, with the guidance of the professor discover the principles of physics themselves. Since spring 2006, I have been developing an introductory solar-system astronomy course in the “Workshop” format at Dickinson. Students participate in discussions with their classmates and investigate astronomical concepts with computer simulations and guided inquiry. I emphasize “practical” astronomy (such as lunar phases, sky motions, and seasons) and physics concepts (such as density and Doppler shift); thus, my students become familiar with the basics of astronomy before developing a better understanding of the solar system. In my paper, I will discuss class activities and will evaluate their efficacy based on a comparison with traditionally-taught astronomy courses.

  16. Department of Defense Laboratory Civilian Science and Engineering Workforce - 2011

    DTIC Science & Technology

    2011-05-01

    Attorney 130 Foreign Affairs 633 Physical Therapist 1222 Patent Attorney 131 International Relations 644 Medical Technologist 1301 General Physical ... physical movement of people. Governments in many industrialized countries increasingly view the immigration of skilled S&E workers as an important...series and their associated increases are individuals in computer science (+77/2.6%), physics (+67/4.6%), computer engineering (+58/2.7%), general

  17. The use of physical and virtual manipulatives in an undergraduate mechanical engineering (Dynamics) course

    NASA Astrophysics Data System (ADS)

    Pan, Edward A.

    Science, technology, engineering, and mathematics (STEM) education is a national focus. Engineering education, as part of STEM education, needs to adapt to meet the needs of the nation in a rapidly changing world. Using computer-based visualization tools and corresponding 3D printed physical objects may help nontraditional students succeed in engineering classes. This dissertation investigated how adding physical or virtual learning objects (called manipulatives) to courses that require mental visualization of mechanical systems can aid student performance. Dynamics is one such course, and tends to be taught using lecture and textbooks with static diagrams of moving systems. Students often fail to solve the problems correctly and an inability to mentally visualize the system can contribute to student difficulties. This study found no differences between treatment groups on quantitative measures of spatial ability and conceptual knowledge. There were differences between treatments on measures of mechanical reasoning ability, in favor of the use of physical and virtual manipulatives over static diagrams alone. There were no major differences in student performance between the use of physical and virtual manipulatives. Students used the physical and virtual manipulatives to test their theories about how the machines worked, however their actual time handling the manipulatives was extremely limited relative to the amount of time they spent working on the problems. Students used the physical and virtual manipulatives as visual aids when communicating about the problem with their partners, and this behavior was also seen with Traditional group students who had to use the static diagrams and gesture instead. The explanations students gave for how the machines worked provided evidence of mental simulation; however, their causal chain analyses were often flawed, probably due to attempts to decrease cognitive load. Student opinions about the static diagrams and dynamic models varied by type of model (static, physical, virtual), but were generally favorable. The Traditional group students, however, indicated that the lack of adequate representation of motion in the static diagrams was a problem, and wished they had access to the physical and virtual models.

  18. Digital Rock Physics of hydrate-bearing sediments: Determination of effective elastic properties on the microscale

    NASA Astrophysics Data System (ADS)

    Sell, Kathleen; Saenger, Erik H.; Quintal, Beatriz; Enzmann, Frieder; Kersten, Michael

    2017-04-01

    To date, very little is known about the distribution of natural gas hydrates in sedimentary matrices and its influence on the seismic properties of the host rock, in particular at low hydrate concentration. Digital rock physics offers a unique approach to this issue yet requires good quality, high resolution 3D representations for the accurate modelling of petrophysical and transport properties. Although such models are readily available via in-situ synchrotron radiation X-ray tomography the analysis of such data asks for complex workflows and high computational power to maintain valuable results. More recently digital rock physics took also on data from a fairly new group of techniques focused on in-situ studies recreating complex settings that cannot be easily accessed by conventional means. Here, we present a best-practise procedure complementing high-resolution synchrotron-tomography data of hydrate-bearing sedimentary matrices from Chaouachi et al. (2015) with data post-processing, including image enhancement and segmentation as well as exemplary numerical simulations of acoustic wave propagation in 3D on realistic rock using the derived results. A combination of the tomography and 3D modelling opens a path to a more reliable deduction of properties of gas hydrate bearing sediments without a reliance on idealised and frequently imprecise models (Sell et al. 2016). The advantage of this method over traditional, often oversimplified models lays in a more faithful description of complex pore geometries and microstructures found in natural formations (Andrä et al., 2013b, a). References: Chaouachi, M., Falenty, A., Sell, K., Enzmann, F., Kersten, M., Haberthür, D., and Kuhs, W. F.: Microstructural evolution of gas hydrates in sedimentary matrices observed with synchrotron x-ray computed tomographic microscopy, Geochem. Geophy. Geosy., 16, 1711-1722, 2015. Sell, K., E. H. Saenger, A. Falenty, M. Chaouachi, D. Haberthür, F. Enzmann, W. F. Kuhs, and M. Kersten: On the path to the digital rock physics of gas hydrate-bearing sediments - processing of in situ synchrotron-tomography data, Solid Earth, 7(4), 1243-1258, 2016. Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Saenger, E. H., Sain, R., Saxena, N., Ricker, S., Wiegmann, A., and Zhan, X.: Digital rock physics benchmarks - Part II: Computing effective properties, Comput. Geosci., 50, 33-43, 2013a. Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Saenger, E. H., Sain, R., Saxena, N., Ricker, S., Wiegmann, A., and Zhan, X.: Digital rock physics benchmarks - Part I: Imaging and segmentation, Comput. Geosci., 50, 25-32, 2013b.

  19. Virtualization and cloud computing in dentistry.

    PubMed

    Chow, Frank; Muftu, Ali; Shorter, Richard

    2014-01-01

    The use of virtualization and cloud computing has changed the way we use computers. Virtualization is a method of placing software called a hypervisor on the hardware of a computer or a host operating system. It allows a guest operating system to run on top of the physical computer with a virtual machine (i.e., virtual computer). Virtualization allows multiple virtual computers to run on top of one physical computer and to share its hardware resources, such as printers, scanners, and modems. This increases the efficient use of the computer by decreasing costs (e.g., hardware, electricity administration, and management) since only one physical computer is needed and running. This virtualization platform is the basis for cloud computing. It has expanded into areas of server and storage virtualization. One of the commonly used dental storage systems is cloud storage. Patient information is encrypted as required by the Health Insurance Portability and Accountability Act (HIPAA) and stored on off-site private cloud services for a monthly service fee. As computer costs continue to increase, so too will the need for more storage and processing power. Virtual and cloud computing will be a method for dentists to minimize costs and maximize computer efficiency in the near future. This article will provide some useful information on current uses of cloud computing.

  20. Bringing Computational Thinking into the High School Science and Math Classroom

    NASA Astrophysics Data System (ADS)

    Trouille, Laura; Beheshti, E.; Horn, M.; Jona, K.; Kalogera, V.; Weintrop, D.; Wilensky, U.; University CT-STEM Project, Northwestern; University CenterTalent Development, Northwestern

    2013-01-01

    Computational thinking (for example, the thought processes involved in developing algorithmic solutions to problems that can then be automated for computation) has revolutionized the way we do science. The Next Generation Science Standards require that teachers support their students’ development of computational thinking and computational modeling skills. As a result, there is a very high demand among teachers for quality materials. Astronomy provides an abundance of opportunities to support student development of computational thinking skills. Our group has taken advantage of this to create a series of astronomy-based computational thinking lesson plans for use in typical physics, astronomy, and math high school classrooms. This project is funded by the NSF Computing Education for the 21st Century grant and is jointly led by Northwestern University’s Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), the Computer Science department, the Learning Sciences department, and the Office of STEM Education Partnerships (OSEP). I will also briefly present the online ‘Astro Adventures’ courses for middle and high school students I have developed through NU’s Center for Talent Development. The online courses take advantage of many of the amazing online astronomy enrichment materials available to the public, including a range of hands-on activities and the ability to take images with the Global Telescope Network. The course culminates with an independent computational research project.

  1. [Effects of acupuncture on quality of life in children with spastic cerebral palsy].

    PubMed

    Liu, Zhen-huan; Pan, Pei-guang; Ma, Mei-mei

    2007-03-01

    To investigate the effect of acupuncture in children with spastic cerebral palsy (SCP). One hundred SCP children, 2 to 7 years old, were randomly assigned to two groups equally. The control group was treated with rehabilitation training using Bobath and Vojta physical training methods and the acupuncture group treated also with the same training but with acupuncture conducted additionally. The therapeutic course was 3-12 months arranged according to the state of illness. The total effective rate, development quotient (DQ), improvement rate of brain hypogenesis and atrophy showed by skull CT, and recovery rate of cerebral emission computed tomography (ECT) were all higher in the acupuncture group than those in the control group (all P < 0.01). Acupuncture obviously promotes the compensation of cerebral function and shows a favorable effect in improving quality of life of the children with SCP.

  2. How robotics programs influence young women's career choices : a grounded theory model

    NASA Astrophysics Data System (ADS)

    Craig, Cecilia Dosh-Bluhm

    The fields of engineering, computer science, and physics have a paucity of women despite decades of intervention by universities and organizations. Women's graduation rates in these fields continue to stagnate, posing a critical problem for society. This qualitative grounded theory (GT) study sought to understand how robotics programs influenced young women's career decisions and the program's effect on engineering, physics, and computer science career interests. To test this, a study was mounted to explore how the FIRST (For Inspiration and Recognition of Science and Technology) Robotics Competition (FRC) program influenced young women's college major and career choices. Career theories suggested that experiential programs coupled with supportive relationships strongly influence career decisions, especially for science, technology, engineering, and mathematics careers. The study explored how and when young women made career decisions and how the experiential program and! its mentors and role models influenced career choice. Online focus groups and interviews (online and face-to-face) with 10 female FRC alumnae and GT processes (inductive analysis, open coding, categorizations using mind maps and content clouds) were used to generate a general systems theory style model of the career decision process for these young women. The study identified gender stereotypes and other career obstacles for women. The study's conclusions include recommendations to foster connections to real-world challenges, to develop training programs for mentors, and to nurture social cohesion, a mostly untapped area. Implementing these recommendations could help grow a critical mass of women in engineering, physics, and computer science careers, a social change worth pursuing.

  3. Modified animal model and computer-assisted approach for dentoalveolar distraction osteogenesis to reconstruct unilateral maxillectomy defect.

    PubMed

    Feng, Zhihong; Zhao, Jinlong; Zhou, Libin; Dong, Yan; Zhao, Yimin

    2009-10-01

    The purpose of this report is to show the establishment of an animal model with a unilateral maxilla defect, application of virtual reality and rapid prototyping in the surgical planning for dentoalveolar distraction osteogenesis (DO). Two adult dogs were used to develop an animal model with a unilateral maxillary defect. The 3-dimensional model of the canine craniofacial skeleton was reconstructed with computed tomography data using the software Mimics, version 12.0 (Materialise Group, Leuven, Belgium). A virtual individual distractor was designed and transferred onto the model with the defect, and the osteotomies and distraction processes were simulated. A precise casting technique and numeric control technology were applied to produce the titanium distraction device, which was installed on the physical model with the defect, which was generated using Selective Laser Sintering technology, and the in vitro simulation of osteotomies and DO was done. The 2 dogs survived the operation and were lively. The osteotomies and distraction process were simulated successfully whether on the virtual or the physical model. The bone transport could be distracted to the desired position both in the virtual environment and on the physical model. The novel method to develop an animal model with a unilateral maxillary defect was feasible, and the animal model was suitable to develop the reconstruction method for unilateral maxillary defect cases with dentoalveolar DO. Computer-assisted surgical planning and simulation improved the reliability of the maxillofacial surgery, especially for the complex cases. The novel idea to reconstruct the unilateral maxillary defect with dentoalveolar DO was proved through the model experiment.

  4. Testing a Dutch web-based tailored lifestyle programme among adults: a study protocol.

    PubMed

    Schulz, Daniela N; Kremers, Stef Pj; van Osch, Liesbeth Adm; Schneider, Francine; van Adrichem, Mathieu Jg; de Vries, Hein

    2011-02-16

    Smoking, high alcohol consumption, unhealthy eating habits and physical inactivity often lead to (chronic) diseases, such as cardiovascular diseases and cancer. Tailored online interventions have been proven to be effective in changing health behaviours. The aim of this study is to test and compare the effectiveness of two different tailoring strategies for changing lifestyle compared to a control group using a multiple health behaviour web-based approach. In our Internet-based tailored programme, the five lifestyle behaviours of smoking, alcohol intake, fruit consumption, vegetable consumption, and physical activity are addressed. This randomized controlled trial, conducted among Dutch adults, includes two experimental groups (i.e., a sequential behaviour tailoring condition and a simultaneous behaviour tailoring condition) and a control group. People in the sequential behaviour tailoring condition obtain feedback on whether their lifestyle behaviours meet the Dutch recommendations. Using a step-by-step approach, they are stimulated to continue with a computer tailored module to change only one unhealthy behaviour first. In the course of the study, they can proceed to change a second behaviour. People in the simultaneous behaviour tailoring condition receive computer tailored feedback about all their unhealthy behaviours during their first visit as a stimulation to change all unhealthy behaviours. The experimental groups can re-visit the website and can then receive ipsative feedback (i.e., current scores are compared to previous scores in order to give feedback about potential changes). The (difference in) effectiveness of the different versions of the programme will be tested and compared to a control group, in which respondents only receive a short health risk appraisal. Programme evaluations will assess satisfaction with and appreciation and personal relevance of the intervention among the respondents. Finally, potential subgroup differences pertaining to gender, age and socioeconomic status regarding the behaviour effects and programme evaluation will be assessed. Research regarding multiple behaviour change is in its infancy. We study how to offer multiple behaviour change interventions optimally. Using these results could strengthen the effectiveness of web-based computer-tailoring lifestyle programmes. This study will yield new results about the need for differential lifestyle approaches using Internet-based expert systems and potential differences in subgroups concerning the effectiveness and appreciation. Dutch Trial Register NTR2168.

  5. Active Learning Strategies for Introductory Light and Optics

    NASA Astrophysics Data System (ADS)

    Sokoloff, David R.

    2016-01-01

    There is considerable evidence that traditional approaches are ineffective in teaching physics concepts, including light and optics concepts. A major focus of the work of the Activity Based Physics Group has been on the development of active learning curricula like RealTime Physics (RTP) labs and Interactive Lecture Demonstrations (ILDs). Among the characteristics of these curricula are: (1) use of a learning cycle in which students are challenged to compare predictions—discussed with their peers in small groups—to observations of the physical world, (2) use of guided hands-on work to construct basic concepts from observations, and (3) use of computer-based tools. It has been possible to change the lecture and laboratory learning environments at a large number of universities, colleges, and high schools without changing the structure of the introductory course. For example, in the United States, nearly 200 physics departments have adopted RTP, and many others use pre-publication, open-source versions or have adopted the RTP approach to develop their own labs. Examples from RTP and ILDs (including optics magic tricks) are described in this paper.

  6. Elders' nonadherence, its assessment, and computer assisted instruction for medication recall training.

    PubMed

    Leirer, V O; Morrow, D G; Pariante, G M; Sheikh, J I

    1988-10-01

    This study investigates three questions related to the problem of medication nonadherence among elders. First, does recall failure play a significant role in nonadherence? Recent research suggests that it may not. Second, can the new portable bar code scanner technology be used to study nonadherence? Other forms of monitoring are obtrusive or inaccurate. Finally, can inexpensive computer assisted instructions (CAI) be used to teach mnemonic techniques specifically designed to improve medication schedule recall? Current research on memory training teaches nonspecific mnemonics and uses the expensive classroom approach. Results of the present study suggest that physically active and cognitively alert elders do have significant nonadherence (control group = 32.0%) problems related to forgetting and that CAI courseware can significantly reduce (medication recall training group = 10.0%) this form of nonadherence. Portable bar code technology proved easy to use by elderly patients and provided detailed information about the type of forgetting underlying nonadherence. Most significant recall failure was in the complete forgetting to take medication rather than delays in medicating or overmedicating.

  7. Sorption of poly(hexamethylenebiguanide) on cellulose: mechanism of binding and molecular recognition.

    PubMed

    Blackburn, Richard S; Harvey, Anna; Kettle, Lorna L; Payne, John D; Russell, Stephen J

    2006-06-20

    Antimicrobial agents such as poly(hexamethylene biguanide) (PHMB) find application in medical, apparel, and household textile sectors; although it is understood that certain concentrations need to be applied to achieve suitable performance, there has been very little work published concerning the interactions of the polymer and its adsorption mechanism on cellulose. In this paper, such physical chemistry parameters are examined and related to computational chemistry studies. Adsorption isotherms were constructed: at low concentrations, these were typical Langmuir isotherms; at higher concentrations, they were more indicative of Freundlich isotherms, attributed to a combination of electrostatic and hydrogen-bonding forces, which endorsed computational chemistry proposals. At lower concentrations, electrostatic interactions between PHMB and carboxylic acid groups in the cellulose dominate with a contribution to binding through hydrogen bonding; as the concentration of PHMB increases, hydrogen bonding with cellulose becomes increasingly dominant. At high PHMB concentrations, observations of increasing PHMB adsorption are attributed to monolayer aggregation and multilayer stacking of PHMB through electrostatic interactions with counterions and hydrogen bonding of biguanide groups.

  8. Parallel Computing:. Some Activities in High Energy Physics

    NASA Astrophysics Data System (ADS)

    Willers, Ian

    This paper examines some activities in High Energy Physics that utilise parallel computing. The topic includes all computing from the proposed SIMD front end detectors, the farming applications, high-powered RISC processors and the large machines in the computer centers. We start by looking at the motivation behind using parallelism for general purpose computing. The developments around farming are then described from its simplest form to the more complex system in Fermilab. Finally, there is a list of some developments that are happening close to the experiments.

  9. B, D and K decays

    NASA Astrophysics Data System (ADS)

    Buchalla, G.; Komatsubara, T. K.; Muheim, F.; Silvestrini, L.; Artuso, M.; Asner, D. M.; Ball, P.; Baracchini, E.; Bell, G.; Beneke, M.; Berryhill, J.; Bevan, A.; Bigi, I. I.; Blanke, M.; Bobeth, Ch.; Bona, M.; Borzumati, F.; Browder, T.; Buanes, T.; Buchmüller, O.; Buras, A. J.; Burdin, S.; Cassel, D. G.; Cavanaugh, R.; Ciuchini, M.; Colangelo, P.; Crosetti, G.; Dedes, A.; de Fazio, F.; Descotes-Genon, S.; Dickens, J.; Doležal, Z.; Dürr, S.; Egede, U.; Eggel, C.; Eigen, G.; Fajfer, S.; Feldmann, Th.; Ferrandes, R.; Gambino, P.; Gershon, T.; Gibson, V.; Giorgi, M.; Gligorov, V. V.; Golob, B.; Golutvin, A.; Grossman, Y.; Guadagnoli, D.; Haisch, U.; Hazumi, M.; Heinemeyer, S.; Hiller, G.; Hitlin, D.; Huber, T.; Hurth, T.; Iijima, T.; Ishikawa, A.; Isidori, G.; Jäger, S.; Khodjamirian, A.; Koppenburg, P.; Lagouri, T.; Langenegger, U.; Lazzeroni, C.; Lenz, A.; Lubicz, V.; Lucha, W.; Mahlke, H.; Melikhov, D.; Mescia, F.; Misiak, M.; Nakao, M.; Napolitano, J.; Nikitin, N.; Nierste, U.; Oide, K.; Okada, Y.; Paradisi, P.; Parodi, F.; Patel, M.; Petrov, A. A.; Pham, T. N.; Pierini, M.; Playfer, S.; Polesello, G.; Policicchio, A.; Poschenrieder, A.; Raimondi, P.; Recksiegel, S.; Řezníček, P.; Robert, A.; Rosner, J. L.; Ruggiero, G.; Sarti, A.; Schneider, O.; Schwab, F.; Simula, S.; Sivoklokov, S.; Slavich, P.; Smith, C.; Smizanska, M.; Soni, A.; Speer, T.; Spradlin, P.; Spranger, M.; Starodumov, A.; Stech, B.; Stocchi, A.; Stone, S.; Tarantino, C.; Teubert, F.; T'jampens, S.; Toms, K.; Trabelsi, K.; Trine, S.; Uhlig, S.; Vagnoni, V.; van Hunen, J. J.; Weiglein, G.; Weiler, A.; Wilkinson, G.; Xie, Y.; Yamauchi, M.; Zhu, G.; Zupan, J.; Zwicky, R.

    2008-09-01

    The present report documents the results of Working Group 2: B, D and K decays, of the workshop on Flavor in the Era of the LHC, held at CERN from November 2005 through March 2007. With the advent of the LHC, we will be able to probe New Physics (NP) up to energy scales almost one order of magnitude larger than it has been possible with present accelerator facilities. While direct detection of new particles will be the main avenue to establish the presence of NP at the LHC, indirect searches will provide precious complementary information, since most probably it will not be possible to measure the full spectrum of new particles and their couplings through direct production. In particular, precision measurements and computations in the realm of flavor physics are expected to play a key role in constraining the unknown parameters of the Lagrangian of any NP model emerging from direct searches at the LHC. The aim of Working Group 2 was twofold: on the one hand, to provide a coherent up-to-date picture of the status of flavor physics before the start of the LHC; on the other hand, to initiate activities on the path towards integrating information on NP from high- p T and flavor data. This report is organized as follows: in Sect. 1, we give an overview of NP models, focusing on a few examples that have been discussed in some detail during the workshop, with a short description of the available computational tools for flavor observables in NP models. Section 2 contains a concise discussion of the main theoretical problem in flavor physics: the evaluation of the relevant hadronic matrix elements for weak decays. Section 3 contains a detailed discussion of NP effects in a set of flavor observables that we identified as “benchmark channels” for NP searches. The experimental prospects for flavor physics at future facilities are discussed in Sect. 4. Finally, Sect. 5 contains some assessments on the work done at the workshop and the prospects for future developments.

  10. Health-related morphological characteristics and physiological fitness in connection with nutritional, socio-economic status, occupational workload of tea garden workers.

    PubMed

    Sengupta, Pallav; Sahoo, Sobhana

    2014-09-01

    Reports on the cardiorespiratory fitness and body composition of male workers engaged in processing of tea leaves in factories within the tea-estates of West Bengal, under the influence of physiological workload, are quite scanty. This cross-sectional study was conducted to evaluate morphometric characteristics based on physiological status and physical fitness of tea factory laborers who are continuously exposed to tea dust in their work environment for more than two years. Subjects were divided into control and tea garden workers groups. Height and weight were measured and the body mass index (BMI) was computed. Physiological parameters such as resting heart rate, blood pressure, fitness variables like physical fitness index (PFI), energy expenditure (EE), handgrip strength and anthropometric parameters like mid-upper arm (MUAC), thigh circumference (TC), head circumference (HC) and waist-to-hip ratio (WHR) were measured. Body surface area (BSA), BMI, body fat percentage and fitness variables (PFI, EE) showed significant difference (p < 0.05) between the two groups. Anthropometric measures (MUAC, TC, HC, WHR) reflected poor status among laborers. The present study shows that the majority of workers had ectomorph stature, good physical fitness, but had poor nutritional status (BMI and WHR).

  11. Methods of Mathematical and Computational Physics for Industry, Science, and Technology

    NASA Astrophysics Data System (ADS)

    Melnik, Roderick V. N.; Voss, Frands

    2006-11-01

    Many industrial problems provide scientists with important and challenging problems that need to be solved today rather than tomorrow. The key role of mathematical physics, modelling, and computational methodologies in addressing such problems continues to increase. Science has never been exogenous to applied research. Gigantic ships and steam engines, repeating catapult of Dionysius and the Antikythera `computer' invented around 80BC are just a few examples demonstrating a profound link between theoretical and applied science in the ancient world. Nowadays, many industrial problems are typically approached by groups of researchers who are working as a team bringing their expertise to the success of the entire enterprise. Since the late 1960s several groups of European mathematicians and scientists have started organizing regular meetings, seeking new challenges from industry and contributing to the solution of important industrial problems. In particular, this often took the format of week-long workshops originally initiated by the Oxford Study Groups with Industry in 1968. Such workshops are now held in many European countries (typically under the auspices of the European Study Groups with Industry - ESGI), as well as in Australia, Canada, the United States, and other countries around the world. Problems given by industrial partners are sometimes very difficult to complete within a week. However, during a week of brainstorming activities these problems inevitably stimulate developing fruitful new ideas, new approaches, and new collaborations. At the same time, there are cases where as soon as the problem is formulated mathematically, it is relatively easy to solve. Hence, putting the industrial problem into a mathematical framework, based on physical laws, often provides a key element to the success. In addition to this important first step, the value in such cases is the real, practical applicability of the results obtained for an industrial partner who presents the problem. Under both outlined scenarios, scientists and mathematicians are provided with an opportunity to challenge themselves with real-world problems and to work together in a team on important industrial issues. This issue is a result of selected contributions by participants of the meeting that took place in the Sønderborg area of Denmark, one of the most important centers for information technology, telecommunication and electronics in the country. The meeting was hosted by the University of Southern Denmark in a picturesque area of Southern Jutland. It brought together about 65 participants, among whom were professional mathematicians, engineers, physicists, and industrial participants. The meeting was a truly international one, with delegates from four major Danish Universities, the UK, Norway, Italy, Czech Republic, Turkey, China, Germany, Latvia, Canada, the United States, and Finland. Five challenging projects were presented by leading industrial companies, including Grundfos, Danfoss Industrial Control, Unisensor, and Danfoss Flow Division (now Siemens). The meeting featured also the Mathematics for Industry Workshop with several distinguished international speakers. This volume of Journal of Physics: Conference Series on `Methods of Mathematical and Computational Physics for Industry, Science, and Technology' contains contributions from some of the participants of the workshop as well as the papers produced as a result of collaborative efforts with the above mentioned industrial companies. We would like to thank all authors and participants for their contributions and for bearing with us during the review process and preparation of this issue. We thank also all our referees for their timely and detailed reports. The publication of the proceedings of this meeting in Denmark was delayed due to problems with a previous publisher. We are very grateful that Journal of Physics: Conference Series kindly agreed to publish the proceedings rapidly at this late stage. As industrial problems become increasingly multidisciplinary, their successful solutions are often contingent on effective collaborative efforts between scientists, mathematicians, industrialists, and engineers. This volume has provided several examples of such collaborative efforts in the context of real-world industrial problems along with the analysis of important physics-based mathematical models applicable in a range of industrial contexts. Roderick V N Melnik, Professor of Mathematical Modelling, Syddansk Universitet (Denmark) and Professor and Canada Research Chair, Wilfrid Laurier University, Waterloo, Canada E-mail: rmelnik@wlu.ca Frands Voss, Director of the Mads Clausen Institute, Syddansk Universitet (Denmark)

  12. An investigation of the use of microcomputer-based laboratory simulations in promoting conceptual understanding in secondary physics instruction

    NASA Astrophysics Data System (ADS)

    Tomshaw, Stephen G.

    Physics education research has shown that students bring alternate conceptions to the classroom which can be quite resistant to traditional instruction methods (Clement, 1982; Halloun & Hestenes, 1985; McDermott, 1991). Microcomputer-based laboratory (MBL) experiments that employ an active-engagement strategy have been shown to improve student conceptual understanding in high school and introductory university physics courses (Thornton & Sokoloff, 1998). These (MBL) experiments require a specialized computer interface, type-specific sensors (e.g. motion detectors, force probes, accelerometers), and specialized software in addition to the standard physics experimental apparatus. Tao and Gunstone (1997) have shown that computer simulations used in an active engagement environment can also lead to conceptual change. This study investigated 69 secondary physics students' use of computer simulations of MBL activities in place of the hands-on MBL laboratory activities. The average normalized gain in students' conceptual understanding was measured using the Force and Motion Conceptual Evaluation (FMCE). Student attitudes towards physics and computers were probed using the Views About Science Survey (VASS) and the Computer Attitude Scale (CAS). While it may be possible to obtain an equivalent level of conceptual understanding using computer simulations in combination with an active-engagement environment, this study found no significant gains in students' conceptual understanding ( = -0.02) after they completed a series of nine simulated experiments from the Tools for Scientific Thinking curriculum (Thornton & Sokoloff, 1990). The absence of gains in conceptual understanding may indicate that either the simulations were ineffective in promoting conceptual change or problems with the implementation of the treatment inhibited its effectiveness. There was a positive shift in students' attitudes towards physics in the VASS dimensions of structure and reflective thinking, while there was a negative shift in students' attitudes towards computers in the CAS subscales of anxiety and usefulness. The negative shift in attitudes towards computers may be due to the additional time and work required by the students to perform the simulation experiments with no apparent reward in terms of their physics grade. Suggestions for future research include a qualitative element to observe student interactions and alternate formats for the simulations themselves.

  13. On-line computer system for use with low- energy nuclear physics experiments is reported

    NASA Technical Reports Server (NTRS)

    Gemmell, D. S.

    1969-01-01

    Computer program handles data from low-energy nuclear physics experiments which utilize the ND-160 pulse-height analyzer and the PHYLIS computing system. The program allows experimenters to choose from about 50 different basic data-handling functions and to prescribe the order in which these functions will be performed.

  14. Fast emulation of track reconstruction in the CMS simulation

    NASA Astrophysics Data System (ADS)

    Komm, Matthias; CMS Collaboration

    2017-10-01

    Simulated samples of various physics processes are a key ingredient within analyses to unlock the physics behind LHC collision data. Samples with more and more statistics are required to keep up with the increasing amounts of recorded data. During sample generation, significant computing time is spent on the reconstruction of charged particle tracks from energy deposits which additionally scales with the pileup conditions. In CMS, the FastSimulation package is developed for providing a fast alternative to the standard simulation and reconstruction workflow. It employs various techniques to emulate track reconstruction effects in particle collision events. Several analysis groups in CMS are utilizing the package, in particular those requiring many samples to scan the parameter space of physics models (e.g. SUSY) or for the purpose of estimating systematic uncertainties. The strategies for and recent developments in this emulation are presented, including a novel, flexible implementation of tracking emulation while retaining a sufficient, tuneable accuracy.

  15. ARIES: Enabling Visual Exploration and Organization of Art Image Collections.

    PubMed

    Crissaff, Lhaylla; Wood Ruby, Louisa; Deutch, Samantha; DuBois, R Luke; Fekete, Jean-Daniel; Freire, Juliana; Silva, Claudio

    2018-01-01

    Art historians have traditionally used physical light boxes to prepare exhibits or curate collections. On a light box, they can place slides or printed images, move the images around at will, group them as desired, and visual-ly compare them. The transition to digital images has rendered this workflow obsolete. Now, art historians lack well-designed, unified interactive software tools that effectively support the operations they perform with physi-cal light boxes. To address this problem, we designed ARIES (ARt Image Exploration Space), an interactive image manipulation system that enables the exploration and organization of fine digital art. The system allows images to be compared in multiple ways, offering dynamic overlays analogous to a physical light box, and sup-porting advanced image comparisons and feature-matching functions, available through computational image processing. We demonstrate the effectiveness of our system to support art historians tasks through real use cases.

  16. Lattice QCD Calculations in Nuclear Physics towards the Exascale

    NASA Astrophysics Data System (ADS)

    Joo, Balint

    2017-01-01

    The combination of algorithmic advances and new highly parallel computing architectures are enabling lattice QCD calculations to tackle ever more complex problems in nuclear physics. In this talk I will review some computational challenges that are encountered in large scale cold nuclear physics campaigns such as those in hadron spectroscopy calculations. I will discuss progress in addressing these with algorithmic improvements such as multi-grid solvers and software for recent hardware architectures such as GPUs and Intel Xeon Phi, Knights Landing. Finally, I will highlight some current topics for research and development as we head towards the Exascale era This material is funded by the U.S. Department of Energy, Office Of Science, Offices of Nuclear Physics, High Energy Physics and Advanced Scientific Computing Research, as well as the Office of Nuclear Physics under contract DE-AC05-06OR23177.

  17. Implementing the SU(2) Symmetry for the DMRG

    NASA Astrophysics Data System (ADS)

    Alvarez, Gonzalo

    2010-03-01

    In the Density Matrix Renormalization Group (DMRG) algorithm (White, 1992), Hamiltonian symmetries play an important role. Using symmetries, the matrix representation of the Hamiltonian can be blocked. Diagonalizing each matrix block is more efficient than diagonalizing the original matrix. This talk will explain how the DMRG++ codefootnotetextarXiv:0902.3185 or Computer Physics Communications 180 (2009) 1572-1578. has been extended to handle the non-local SU(2) symmetry in a model independent way. Improvements in CPU times compared to runs with only local symmetries will be discussed for typical tight-binding models of strongly correlated electronic systems. The computational bottleneck of the algorithm, and the use of shared memory parallelization will also be addressed. Finally, a roadmap for future work on DMRG++ will be presented.

  18. The Beginner's Guide to Wind Tunnels with TunnelSim and TunnelSys

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.; Galica, Carol A.; Vila, Anthony J.

    2010-01-01

    The Beginner's Guide to Wind Tunnels is a Web-based, on-line textbook that explains and demonstrates the history, physics, and mathematics involved with wind tunnels and wind tunnel testing. The Web site contains several interactive computer programs to demonstrate scientific principles. TunnelSim is an interactive, educational computer program that demonstrates basic wind tunnel design and operation. TunnelSim is a Java (Sun Microsystems Inc.) applet that solves the continuity and Bernoulli equations to determine the velocity and pressure throughout a tunnel design. TunnelSys is a group of Java applications that mimic wind tunnel testing techniques. Using TunnelSys, a team of students designs, tests, and post-processes the data for a virtual, low speed, and aircraft wing.

  19. Universe creation on a computer

    NASA Astrophysics Data System (ADS)

    McCabe, Gordon

    The purpose of this paper is to provide an account of the epistemology and metaphysics of universe creation on a computer. The paper begins with F.J. Tipler's argument that our experience is indistinguishable from the experience of someone embedded in a perfect computer simulation of our own universe, hence we cannot know whether or not we are part of such a computer program ourselves. Tipler's argument is treated as a special case of epistemological scepticism, in a similar vein to 'brain-in-a-vat' arguments. It is argued that Tipler's hypothesis that our universe is a program running on a digital computer in another universe, generates empirical predictions, and is therefore a falsifiable hypothesis. The computer program hypothesis is also treated as a hypothesis about what exists beyond the physical world, and is compared with Kant's metaphysics of noumena. It is argued that if our universe is a program running on a digital computer, then our universe must have compact spatial topology, and the possibilities of observationally testing this prediction are considered. The possibility of testing the computer program hypothesis with the value of the density parameter Ω0 is also analysed. The informational requirements for a computer to represent a universe exactly and completely are considered. Consequent doubt is thrown upon Tipler's claim that if a hierarchy of computer universes exists, we would not be able to know which 'level of implementation' our universe exists at. It is then argued that a digital computer simulation of a universe, or any other physical system, does not provide a realisation of that universe or system. It is argued that a digital computer simulation of a physical system is not objectively related to that physical system, and therefore cannot exist as anything else other than a physical process occurring upon the components of the computer. It is concluded that Tipler's sceptical hypothesis, and a related hypothesis from Bostrom, cannot be true: it is impossible that our own experience is indistinguishable from the experience of somebody embedded in a digital computer simulation because it is impossible for anybody to be embedded in a digital computer simulation.

  20. Computer vision uncovers predictors of physical urban change.

    PubMed

    Naik, Nikhil; Kominers, Scott Duke; Raskar, Ramesh; Glaeser, Edward L; Hidalgo, César A

    2017-07-18

    Which neighborhoods experience physical improvements? In this paper, we introduce a computer vision method to measure changes in the physical appearances of neighborhoods from time-series street-level imagery. We connect changes in the physical appearance of five US cities with economic and demographic data and find three factors that predict neighborhood improvement. First, neighborhoods that are densely populated by college-educated adults are more likely to experience physical improvements-an observation that is compatible with the economic literature linking human capital and local success. Second, neighborhoods with better initial appearances experience, on average, larger positive improvements-an observation that is consistent with "tipping" theories of urban change. Third, neighborhood improvement correlates positively with physical proximity to the central business district and to other physically attractive neighborhoods-an observation that is consistent with the "invasion" theories of urban sociology. Together, our results provide support for three classical theories of urban change and illustrate the value of using computer vision methods and street-level imagery to understand the physical dynamics of cities.

  1. Computer vision uncovers predictors of physical urban change

    PubMed Central

    Naik, Nikhil; Kominers, Scott Duke; Raskar, Ramesh; Glaeser, Edward L.; Hidalgo, César A.

    2017-01-01

    Which neighborhoods experience physical improvements? In this paper, we introduce a computer vision method to measure changes in the physical appearances of neighborhoods from time-series street-level imagery. We connect changes in the physical appearance of five US cities with economic and demographic data and find three factors that predict neighborhood improvement. First, neighborhoods that are densely populated by college-educated adults are more likely to experience physical improvements—an observation that is compatible with the economic literature linking human capital and local success. Second, neighborhoods with better initial appearances experience, on average, larger positive improvements—an observation that is consistent with “tipping” theories of urban change. Third, neighborhood improvement correlates positively with physical proximity to the central business district and to other physically attractive neighborhoods—an observation that is consistent with the “invasion” theories of urban sociology. Together, our results provide support for three classical theories of urban change and illustrate the value of using computer vision methods and street-level imagery to understand the physical dynamics of cities. PMID:28684401

  2. Computational and Theoretical Study of the Physical Constraints on Chemotaxis

    NASA Astrophysics Data System (ADS)

    Varennes, Julien

    Cell chemotaxis is crucial to many biological functions including development, wound healing, and cancer metastasis. Chemotaxis is the process in which cells migrate in response to chemical concentration gradients. Recent experiments show that cells are capable of detecting shallow gradients as small as a 1% concentration difference, and multicellular groups can improve on this by an additional order of magnitude. Examples from morphogenesis and metastasis demonstrate collective response to gradients equivalent to a 1 molecule difference in concentration across a cell body. While the physical constraints to cell gradient sensing are well understood, how the sensory information leads to cell migration, and coherent multicellular movement in the case of collectives, remains poorly understood. Here we examine how extrinsic sensory noise leads to error in chemotactic performance. First, we study single cell chemotaxis and use both simulations and analytical models to place physical constraints on chemotactic performance. Next we turn our attention to collective chemotaxis. We examine how collective cell interactions can improve chemotactic performance. We develop a novel model for quantifying the physical limit to chemotactic precision for two stereotypical modes of collective chemotaxis. Finally, we conclude by examining the effects of intercellular communication on collective chemotaxis. We use simulations to test how well collectives can chemotax through very shallow gradients with the help of communication. By studying these computational and theoretical models of individual and collective chemotaxis, we address the gap in knowledge between chemical sensing and directed migration.

  3. Do Elite and Amateur Soccer Players Outperform Non-Athletes on Neurocognitive Functioning? A Study Among 8-12 Year Old Children.

    PubMed

    Verburgh, Lot; Scherder, Erik J A; Van Lange, Paul A M; Oosterlaan, Jaap

    2016-01-01

    Research suggested a positive association between physical fitness and neurocognitive functioning in children. Aim of the present study is to investigate possible dose-response relationships between diverse daily physical activities and a broad range of neurocognitive functions in preadolescent children. Furthermore, the relationship between several sedentary behaviours, including TV-watching, gaming and computer time, and neurocognitive functioning will be investigated in this group of children. A total of 168 preadolescent boys, aged 8 to 12 years, were recruited from various locations, including primary schools, an amateur soccer club, and a professional soccer club, to increase variability in the amount of participation in sports. All children performed neurocognitive tasks measuring inhibition, short term memory, working memory, attention and information processing speed. Regression analyses examined the predictive power of a broad range of physical activities, including sports, active transport to school, physical education (PE), outdoor play, and sedentary behaviour such as TV-watching and gaming, for neurocognitive functioning. Time spent in sports significantly accounted for the variance in inhibition, short term memory, working memory and lapses of attention, where more time spent in sports was associated with better performance. Outdoor play was also positively associated with working memory. In contrast, time spent on the computer was negatively associated with inhibition. Results of the current study suggest a positive relationship between participation in sports and several important neurocognitive functions. Interventions are recommended to increase sports participation and to reduce sedentary behaviour in preadolescent children.

  4. Effects of Computer-Assisted Jigsaw II Cooperative Learning Strategy on Physics Achievement and Retention

    ERIC Educational Resources Information Center

    Gambari, Isiaka Amosa; Yusuf, Mudasiru Olalere

    2016-01-01

    This study investigated the effects of computer-assisted Jigsaw II cooperative strategy on physics achievement and retention. The study also determined how moderating variables of achievement levels as it affects students' performance in physics when Jigsaw II cooperative learning is used as an instructional strategy. Purposive sampling technique…

  5. America COMPETES Act and the FY2010 Budget

    DTIC Science & Technology

    2009-06-29

    Outstanding Junior Investigator, Fusion Energy Sciences Plasma Physics Junior Faculty Development; Advanced Scientific Computing Research Early Career...the Fusion Energy Sciences Graduate Fellowships.2 If members of Congress agree with this contention, these America COMPETES Act programs were...Physics Outstanding Junior Investigator, Fusion Energy Sciences Plasma Physics Junior Faculty Development; Advanced Scientific Computing Research Early

  6. A comparative evaluation of teaching methods in an introductory neuroscience course for physical therapy students.

    PubMed

    Willett, Gilbert M; Sharp, J Graham; Smith, Lynette M

    2008-01-01

    The use of computer-based instruction (CBI) in physical therapy education is growing, but its effectiveness compared to lecture is undefined. This study compared CBI to lecture in an introductory neuroscience course for students in their first year of a 3 year professional program leading to the Doctor of Physical Therapy Degree. Twenty-eight students participated in 2003 and 34 in 2004. A randomized, cross-over design was employed. The course was divided into two sections with an exam after each. Students in one group participated in CBI during the first half of the course and lecture during the second half with the order of participation reversed for the other group. A 6 months post-course review exam was also administered. Exam scores, study time, and student opinions regarding teaching methods were collected after each half of the course. Course development costs for both teaching approaches were also documented. There were no statistically significant differences in exam scores between participant groups. CBI students spent less time studying. Student did not distinguish a major preference for either instruction method. Many students preferred that CBI be used as a complementary rather than mutually exclusive instructional method. Lecture-based instruction was much less expensive than CBI. Lecture-based instruction was more cost effective than CBI, but CBI was more time efficient in terms of student learning.

  7. Large calculation of the flow over a hypersonic vehicle using a GPU

    NASA Astrophysics Data System (ADS)

    Elsen, Erich; LeGresley, Patrick; Darve, Eric

    2008-12-01

    Graphics processing units are capable of impressive computing performance up to 518 Gflops peak performance. Various groups have been using these processors for general purpose computing; most efforts have focussed on demonstrating relatively basic calculations, e.g. numerical linear algebra, or physical simulations for visualization purposes with limited accuracy. This paper describes the simulation of a hypersonic vehicle configuration with detailed geometry and accurate boundary conditions using the compressible Euler equations. To the authors' knowledge, this is the most sophisticated calculation of this kind in terms of complexity of the geometry, the physical model, the numerical methods employed, and the accuracy of the solution. The Navier-Stokes Stanford University Solver (NSSUS) was used for this purpose. NSSUS is a multi-block structured code with a provably stable and accurate numerical discretization which uses a vertex-based finite-difference method. A multi-grid scheme is used to accelerate the solution of the system. Based on a comparison of the Intel Core 2 Duo and NVIDIA 8800GTX, speed-ups of over 40× were demonstrated for simple test geometries and 20× for complex geometries.

  8. A Web Browsing System by Eye-gaze Input

    NASA Astrophysics Data System (ADS)

    Abe, Kiyohiko; Owada, Kosuke; Ohi, Shoichi; Ohyama, Minoru

    We have developed an eye-gaze input system for people with severe physical disabilities, such as amyotrophic lateral sclerosis (ALS) patients. This system utilizes a personal computer and a home video camera to detect eye-gaze under natural light. The system detects both vertical and horizontal eye-gaze by simple image analysis, and does not require special image processing units or sensors. We also developed the platform for eye-gaze input based on our system. In this paper, we propose a new web browsing system for physically disabled computer users as an application of the platform for eye-gaze input. The proposed web browsing system uses a method of direct indicator selection. The method categorizes indicators by their function. These indicators are hierarchized relations; users can select the felicitous function by switching indicators group. This system also analyzes the location of selectable object on web page, such as hyperlink, radio button, edit box, etc. This system stores the locations of these objects, in other words, the mouse cursor skips to the object of candidate input. Therefore it enables web browsing at a faster pace.

  9. Image model: new perspective for image processing and computer vision

    NASA Astrophysics Data System (ADS)

    Ziou, Djemel; Allili, Madjid

    2004-05-01

    We propose a new image model in which the image support and image quantities are modeled using algebraic topology concepts. The image support is viewed as a collection of chains encoding combination of pixels grouped by dimension and linking different dimensions with the boundary operators. Image quantities are encoded using the notion of cochain which associates values for pixels of given dimension that can be scalar, vector, or tensor depending on the problem that is considered. This allows obtaining algebraic equations directly from the physical laws. The coboundary and codual operators, which are generic operations on cochains allow to formulate the classical differential operators as applied for field functions and differential forms in both global and local forms. This image model makes the association between the image support and the image quantities explicit which results in several advantages: it allows the derivation of efficient algorithms that operate in any dimension and the unification of mathematics and physics to solve classical problems in image processing and computer vision. We show the effectiveness of this model by considering the isotropic diffusion.

  10. The Impact and Promise of Open-Source Computational Material for Physics Teaching

    NASA Astrophysics Data System (ADS)

    Christian, Wolfgang

    2017-01-01

    A computer-based modeling approach to teaching must be flexible because students and teachers have different skills and varying levels of preparation. Learning how to run the ``software du jour'' is not the objective for integrating computational physics material into the curriculum. Learning computational thinking, how to use computation and computer-based visualization to communicate ideas, how to design and build models, and how to use ready-to-run models to foster critical thinking is the objective. Our computational modeling approach to teaching is a research-proven pedagogy that predates computers. It attempts to enhance student achievement through the Modeling Cycle. This approach was pioneered by Robert Karplus and the SCIS Project in the 1960s and 70s and later extended by the Modeling Instruction Program led by Jane Jackson and David Hestenes at Arizona State University. This talk describes a no-cost open-source computational approach aligned with a Modeling Cycle pedagogy. Our tools, curricular material, and ready-to-run examples are freely available from the Open Source Physics Collection hosted on the AAPT-ComPADRE digital library. Examples will be presented.

  11. Affine Kac-Moody symmetric spaces related with A{sub 1}{sup (1)}, A{sub 2}{sup (1)}, A{sub 2}{sup (2)}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nayak, Saudamini, E-mail: anumama.nayak07@gmail.com; Pati, K. C., E-mail: kcpati@nitrkl.ac.in

    Symmetric spaces associated with Lie algebras and Lie groups which are Riemannian manifolds have recently got a lot of attention in various branches of Physics for their role in classical/quantum integrable systems, transport phenomena, etc. Their infinite dimensional counter parts have recently been discovered which are affine Kac-Moody symmetric spaces. In this paper we have (algebraically) explicitly computed the affine Kac-Moody symmetric spaces associated with affine Kac-Moody algebras A{sub 1}{sup (1)},A{sub 2}{sup (1)},A{sub 2}{sup (2)}. We hope these types of spaces will play similar roles as that of symmetric spaces in many physical systems.

  12. Final Report: High Energy Physics at the Energy Frontier at Louisiana Tech

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawyer, Lee; Wobisch, Markus; Greenwood, Zeno D.

    The Louisiana Tech University High Energy Physics group has developed a research program aimed at experimentally testing the Standard Model of particle physics and searching for new phenomena through a focused set of analyses in collaboration with the ATLAS experiment at the Large Hadron Collider (LHC) at the CERN laboratory in Geneva. This research program includes involvement in the current operation and maintenance of the ATLAS experiment and full involvement in Phase 1 and Phase 2 upgrades in preparation for future high luminosity (HL-LHC) operation of the LHC. Our focus is solely on the ATLAS experiment at the LHC, withmore » some related detector development and software efforts. We have established important service roles on ATLAS in five major areas: Triggers, especially jet triggers; Data Quality monitoring; grid computing; GPU applications for upgrades; and radiation testing for upgrades. Our physics research is focused on multijet measurements and top quark physics in final states containing tau leptons, which we propose to extend into related searches for new phenomena. Focusing on closely related topics in the jet and top analyses and coordinating these analyses in our group has led to high efficiency and increased visibility inside the ATLAS collaboration and beyond. Based on our work in the DØ experiment in Run II of the Fermilab Tevatron Collider, Louisiana Tech has developed a reputation as one of the leading institutions pursuing jet physics studies. Currently we are applying this expertise to the ATLAS experiment, with several multijet analyses in progress.« less

  13. Software Reviews.

    ERIC Educational Resources Information Center

    Science and Children, 1990

    1990-01-01

    Reviewed are seven computer software packages for IBM and/or Apple Computers. Included are "Windows on Science: Volume 1--Physical Science"; "Science Probe--Physical Science"; "Wildlife Adventures--Grizzly Bears"; "Science Skills--Development Programs"; "The Clean Machine"; "Rock Doctor";…

  14. Revolution or flight from reality? The IoP Education Group Conference 1999

    NASA Astrophysics Data System (ADS)

    Dobson, Ken

    1999-09-01

    The 1999 Education Group Conference attracted some 60 teachers and educationalists to the salubrious outskirts of the city of Leicester on 2 3 July. The title of the conference was The ICT revolution: just how will ICT change my physics teaching? For those not au courant with current jargon ICT stands for Information and Communications Technology, or, in short, computers. ICT was certainly to the fore from the presenters, who practised what they preached. Every talk was delivered using Microsoft PowerPoint, obsolescent overhead projectors serving only as laptop stands. Animated slides, computer generated and controlled, were projected on to a screen and supplemented as required by (fairly) instant live excerpts from relevant computer programs. The theme of the conference was set by the opening discussion led by the trio PowerPoint, Ian Lawrence (chairman of the Institute of Physics Education Group) and Philip Britton (vice-chair). They gave us the slogan Physics first! with technology, however brilliant or politically correct, only significant and valuable insofar as it helped students learn physics. And learning is a social activity: any system that places one child in front of a computer screen for hours on end should be suspect. Much the same could be said of a voltmeter, of course, and the minimal situation must include a pair of students and a teacher as well as the apparatus. Another message: think of the computer system as just another piece of equipment whose use is determined by the learning task, not as an item that determines the task. Figure 1. Jason Wye, Secretary of the Education Group, opening the Conference. It may not be surprising that the level-headed delegates agreed whole-heartedly with these sentiments, but they were also supported and reinforced by all the speakers as the conference went on. The first speaker was Jerry Wellington, ex-physics teacher, now at the University of Sheffield. In his presentation `Multimedia in science teaching: friend or foe?', he gave us a useful overview (with `live' excerpts) of a number of multimedia CD-ROMs - the good, the bad and the ugly. The organizers arranged the programme so that each presentation was followed by group discussion about the points raised (or skated over) by the presenter, and Jerry, with customary efficiency, had listed these. In brief:

    • Multimedia can be misleading, making science too clean and `easy' compared with messy experiments that don't always work.
    • Many good CD-ROMs are American, with different spelling etc. Is this a problem?
    • The best-selling CD-ROMs are revision aids: knowledge-rich, skill-poor, packaged as a commodity. They are used at home, with little or no teacher involvement. Good or bad?
    • How `authentic' is learning via multimedia? A subtle point too deep to be considered here.
    • Multimedia can be motivating: almost as good as TV - compared with the poor old teacher with a piece of chalk.
    The discussion groups took these points head-on: choose appropriate activities to back up or precede the multimedia; Americanization is inevitable; teachers can enrich - and know their students (who appreciate being known); the novelty of multimedia wears off with time, teachers go on for ever. Laurence Rogers (University of Leicester) has produced a number of computer programs that help students use and make sense of graphs. He spoke about the latest version of his Insight program. Essentially, this allows students and teachers to delve into the meaning of graphs, attacking concepts which we physicists tend to take for granted but are serious stumbling blocks for students. This fact may go unrecognized, as it seemed to with the audience, who thought in general that the cure was more complex than the disease. Maybe the ideas were too new: one teacher was a user of the program and found it extremely useful. In view of the increasing use we make of graphs and the ease with which spreadsheet programs generate them, this topic merits a closer look. The first day finished with a `Show and tell' session. Half a dozen delegates showed items of ICT that they had developed themselves or downloaded from the Internet. All of interest - too varied and complex to describe here, but look out for Leicester University's Challenger Learning Centre (space and astronomy) which gets on (limited) stream in October, and a really useful sample of excellent computerized astronomy activities from Gettysburg University. Day 2 of the conference maintained the high standard of Day 1. It began with a presentation by Steve Dickens of Dixon's City Technology College. Technology colleges were `invented' by the last government to provide well-funded schools with a technological bias, the funding coming from a combination of industry and central government. The Dixon College provides computers at a rate of one per four students; all students have e-mail addresses and see computer use integrated into all subjects. Many have computers at home. So computer literacy is not a problem for either staff or students. Steve gave us examples of how the College makes use of its comparatively rich resources, but again emphasized that the prime objective of any activity or lesson was learning - and only if computer systems and programs could help in this were they used. All this fitted into the key messages that the conference was developing. Discussion centred this time around provision of equipment, time for `free' access, and the attitudes of teachers to ICT. A quick survey showed that about one-third of the delegates were confident that their schools or colleges would be as well-equipped as Dixon's in the very near future. There was a tantalizing glimpse of a change in methods of learning from a strongly teacher-directed experience to a form of `supported self- study'. We saw the danger of a development in which some students (perhaps most) had computers at home whilst a more impoverished group did not - yet another feature of a divided society. There seems to be an equally deep divide between ICT enthusiasts (and those of us willing to give it a go) and the entrenched opponents who from `fear of flying' or a deep conservatism are almost rabidly opposed to ICT. It will need more than merely technical training to overcome such a negative attitude to ICT. The next session brought us into contact with a possibly less high-flown but to me a more exciting application of ICT - enthusing real children with basic common-or-garden physics. John Scaife of Sheffield University showed us a way of using ICT that, like a well-known beverage, reaches the parts that others do not reach. Instant nostalgia hit the more elderly participants as they saw that he was using the old and much loved BBC computer - but it will also work (with more fuss and bother) on a PC. It was simple enough: a motion sensor connected to a piece of neat software (Laurence Rogers again). You stand in front of it and it draws a horizontal line on the screen. Move about and the line slopes or wiggles. You are challenged to move in such a way that your `graph' matches a preset line. Add metre rules to introduce some measuring and we have the kind of maths-based but concrete activity that lies at the heart of physics. Students were quoted (from a Doncaster comprehensive school): `I enjoyed using the motion sensor - it looked boring but it was OK. (higher praise hath no man)' `It is fun but you also have to think to work out how you should move to copy the pattern on the screen. I learnt that to copy steeper slopes you have to move faster ... this is because you have to move further in the same amount of time.' `Whoever said `A picture tells a thousand words' must have been a physics teacher.' All this was backed up with appropriate research linked to the algorithm PEOR - Predict (what should happen), Explain (your prediction), Observe, React (comment, discuss ...). This is all very Vygotskian (we learned) - and it is constructivism in action. Brilliant, I thought. In a parallel session Ian Lawrence demonstrated the use of ICT (via CD-ROM) in the IOP's new Advancing Physics A-level course. It gives an extremely flexible and user-friendly set of resources for teaching physics that all A-level students and teachers should find useful and indeed stimulating. It has working simulations, details of lab activities, extension readings, questions and an A-to-Z Wordlist that is a revision tool on its own. At an anticipated price of #10 it is a sure-fire buy. Roger Frost is a well-known author and expert on making use of ICT. He is also a very funny `presenter', with a firm grasp of reality and a keen eye for the incidental absurdities often associated with the higher technology. He took us through a wide range of ideas and programs that were seriously enriching, finishing with a demonstration of a yet to be released piece of datalogging software and associated sensors (from Pasco Scientific) that seem likely to revolutionize this aspect of ICT. In the final session Ian Lawrence and Philip Britton reprised their opening talk with the aim of getting some `action points' that the Education Group could use in forming opinions and/or lobbying authority. For interactive ICT you need a set of laptops (otherwise no bench-space) and an electronic projector or white-board. Start saving now. This conference is not the end of discussion: you can join in the online conference by e-mailing PTNC_request@iop.org, saying `subscribe PTNC your.e-mail address' Useful follow-ups Jerry Wellington: report on evaluation of ICT use available at www.chemistryschool.com Useful astronomy programs downloadable (unzip needed) from www.gettysburg.edu/academics/~physics/clea/CLEAhome.html

  15. A prototype computer-aided modelling tool for life-support system models

    NASA Technical Reports Server (NTRS)

    Preisig, H. A.; Lee, Tae-Yeong; Little, Frank

    1990-01-01

    Based on the canonical decomposition of physical-chemical-biological systems, a prototype kernel has been developed to efficiently model alternative life-support systems. It supports (1) the work in an interdisciplinary group through an easy-to-use mostly graphical interface, (2) modularized object-oriented model representation, (3) reuse of models, (4) inheritance of structures from model object to model object, and (5) model data base. The kernel is implemented in Modula-II and presently operates on an IBM PC.

  16. Study of the structure of turbulent shear flows at supersonic speeds and high Reynolds number

    NASA Technical Reports Server (NTRS)

    Smits, A. J.; Bogdonoff, S. M.

    1984-01-01

    A major effort to improve the accuracies of turbulence measurement techniques is described including the development and testing of constant temperature hot-wire anemometers which automatically compensate for frequency responses. Calibration and data acquisition techniques for normal and inclined wires operated in the constant temperature mode, flow geometries, and physical models to explain the observed behavior of flows are discussed, as well as cooperation with computational groups in the calculation of compression corner flows.

  17. My voice looks like that? A hands-on and textbook free approach to learning physics

    NASA Astrophysics Data System (ADS)

    Piacsek, Andrew

    2009-05-01

    Many physics departments offer a ``Physics of Music'' course that is intended for non-majors. This topic appeals to a broad cross-section of students, in part because people recognize that it represents a rare window into the abstruse world of physics from a familiar vantage point. Conversely, physics educators recognize that an interdisciplinary course such as this offers an important opportunity to convey the methods and habits of scientific thinking (let alone some principles of acoustics) to a population that has shunned math and science since high school. In this presentation, I will describe an effective approach to teaching this topic, which has evolved over the past twelve years at Central Washington University. In particular, I will emphasize three elements that distinguish this approach: the sequence of topics, a computer-intensive lab experience, and the use of the internet in lieu of a traditional textbook. The rewards and pitfalls of including small group research projects as part of the class will also be discussed. Information about PHYS103 at CWU can be found at http://www.cwu.edu/˜physics/courses/103/index.html.

  18. A breakthrough for experiencing and understanding simulated physics

    NASA Technical Reports Server (NTRS)

    Watson, Val

    1988-01-01

    The use of computer simulation in physics research is discussed, focusing on improvements to graphic workstations. Simulation capabilities and applications of enhanced visualization tools are outlined. The elements of an ideal computer simulation are presented and the potential for improving various simulation elements is examined. The interface between the human and the computer and simulation models are considered. Recommendations are made for changes in computer simulation practices and applications of simulation technology in education.

  19. Neuromorphic computing enabled by physics of electron spins: Prospects and perspectives

    NASA Astrophysics Data System (ADS)

    Sengupta, Abhronil; Roy, Kaushik

    2018-03-01

    “Spintronics” refers to the understanding of the physics of electron spin-related phenomena. While most of the significant advancements in this field has been driven primarily by memory, recent research has demonstrated that various facets of the underlying physics of spin transport and manipulation can directly mimic the functionalities of the computational primitives in neuromorphic computation, i.e., the neurons and synapses. Given the potential of these spintronic devices to implement bio-mimetic computations at very low terminal voltages, several spin-device structures have been proposed as the core building blocks of neuromorphic circuits and systems to implement brain-inspired computing. Such an approach is expected to play a key role in circumventing the problems of ever-increasing power dissipation and hardware requirements for implementing neuro-inspired algorithms in conventional digital CMOS technology. Perspectives on spin-enabled neuromorphic computing, its status, and challenges and future prospects are outlined in this review article.

  20. Undergraduate computational physics projects on quantum computing

    NASA Astrophysics Data System (ADS)

    Candela, D.

    2015-08-01

    Computational projects on quantum computing suitable for students in a junior-level quantum mechanics course are described. In these projects students write their own programs to simulate quantum computers. Knowledge is assumed of introductory quantum mechanics through the properties of spin 1/2. Initial, more easily programmed projects treat the basics of quantum computation, quantum gates, and Grover's quantum search algorithm. These are followed by more advanced projects to increase the number of qubits and implement Shor's quantum factoring algorithm. The projects can be run on a typical laptop or desktop computer, using most programming languages. Supplementing resources available elsewhere, the projects are presented here in a self-contained format especially suitable for a short computational module for physics students.

  1. Application of computational physics within Northrop

    NASA Technical Reports Server (NTRS)

    George, M. W.; Ling, R. T.; Mangus, J. F.; Thompkins, W. T.

    1987-01-01

    An overview of Northrop programs in computational physics is presented. These programs depend on access to today's supercomputers, such as the Numerical Aerodynamical Simulator (NAS), and future growth on the continuing evolution of computational engines. Descriptions here are concentrated on the following areas: computational fluid dynamics (CFD), computational electromagnetics (CEM), computer architectures, and expert systems. Current efforts and future directions in these areas are presented. The impact of advances in the CFD area is described, and parallels are drawn to analagous developments in CEM. The relationship between advances in these areas and the development of advances (parallel) architectures and expert systems is also presented.

  2. Effects of Computer-Assisted STAD, LTM and ICI Cooperative Learning Strategies on Nigerian Secondary School Students' Achievement, Gender and Motivation in Physics

    ERIC Educational Resources Information Center

    Gambrari, Isiaka Amosa; Yusuf, Mudasiru Olalere; Thomas, David Akpa

    2015-01-01

    This study examined the effectiveness of computer-assisted instruction on Student Team Achievement Division (STAD) and Learning Together Model (LTM) cooperative learning strategies on Nigerian secondary students' achievement and motivation in physics. The efficacy of Authors developed computer assisted instructional package (CAI) for teaching…

  3. Computational mechanics and physics at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    South, Jerry C., Jr.

    1987-01-01

    An overview is given of computational mechanics and physics at NASA Langley Research Center. Computational analysis is a major component and tool in many of Langley's diverse research disciplines, as well as in the interdisciplinary research. Examples are given for algorithm development and advanced applications in aerodynamics, transition to turbulence and turbulence simulation, hypersonics, structures, and interdisciplinary optimization.

  4. The Use of a PDP-11/20 Computer in a Non-Calculus General Physics Course.

    ERIC Educational Resources Information Center

    Yu, David U. L.

    Computer-assisted instruction supplements traditional methods in a non-calculus physics course offered at Seattle Pacific College. Thirty-five science majors enrolled in the first quarter and 32 continued in the second term. The hardware for the course consists of a PDP-11/20 computer and eight teletype terminals; additional peripheral equipment…

  5. Statistical physics of hard combinatorial optimization: Vertex cover problem

    NASA Astrophysics Data System (ADS)

    Zhao, Jin-Hua; Zhou, Hai-Jun

    2014-07-01

    Typical-case computation complexity is a research topic at the boundary of computer science, applied mathematics, and statistical physics. In the last twenty years, the replica-symmetry-breaking mean field theory of spin glasses and the associated message-passing algorithms have greatly deepened our understanding of typical-case computation complexity. In this paper, we use the vertex cover problem, a basic nondeterministic-polynomial (NP)-complete combinatorial optimization problem of wide application, as an example to introduce the statistical physical methods and algorithms. We do not go into the technical details but emphasize mainly the intuitive physical meanings of the message-passing equations. A nonfamiliar reader shall be able to understand to a large extent the physics behind the mean field approaches and to adjust the mean field methods in solving other optimization problems.

  6. Relativity in a Rock Field: A Study of Physics Learning with a Computer Game

    ERIC Educational Resources Information Center

    Carr, David; Bossomaier, Terry

    2011-01-01

    The "Theory of Special Relativity" is widely regarded as a difficult topic for learners in physics to grasp, as it reformulates fundamental conceptions of space, time and motion, and predominantly deals with situations outside of everyday experience. In this paper, we describe embedding the physics of relativity into a computer game, and…

  7. A brief structured education programme enhances self-care practices and improves glycaemic control in Malaysians with poorly controlled diabetes.

    PubMed

    Tan, M Y; Magarey, J M; Chee, S S; Lee, L F; Tan, M H

    2011-10-01

    We assessed the effectiveness of a brief structured diabetes education programme based on the concept of self-efficacy on self-care and glycaemic control using single-blind study design. One hundred and sixty-four participants with poorly controlled diabetes from two settings were randomized using computer-generated list into control (n = 82) and intervention (n = 82) groups, of which 151 completed the study. Monthly interventions over 12 weeks addressed the self-care practices of diet, physical activity, medication adherence and self-monitoring of blood glucose (SMBG). These self-care practices were assessed at Weeks 0 and 12 using pre- and post-questionnaires in both groups together with glycated haemoglobin A1c (HbA1c) and diabetes knowledge. In the intention-to-treat analysis (n = 164), the intervention group improved their SMBG (P = <0.001), physical activity (P = 0.001), HbA1c (P = 0.03), diabetes knowledge (P = <0.001) and medication adherence. At Week 12, HbA1c difference adjusted for SMBG frequency, medication adherence and weight change remained significant (P = 0.03) compared with control group. For within group comparisons, diabetes knowledge (P = <0.001), HbA1c level (P = <0.001), SMBG (P = <0.001) and medication adherence (P = 0.008) improved from baseline in the intervention group. In the control group, only diabetes knowledge improved (P = <0.001). These findings can contribute to the development of self-management diabetes education in Malaysia.

  8. Transient Three-Dimensional Analysis of Nozzle Side Load in Regeneratively Cooled Engines

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2005-01-01

    Three-dimensional numerical investigations on the start-up side load physics for a regeneratively cooled, high-aspect-ratio nozzle were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet condition based on an engine system simulation. Computations were performed for both the adiabatic and cooled walls in order to understand the effect of boundary conditions. Finite-rate chemistry was used throughout the study so that combustion effect is always included. The results show that three types of shock evolution are responsible for side loads: generation of combustion wave; transitions among free-shock separation, restricted-shock separation, and simultaneous free-shock and restricted shock separations; along with oscillation of shocks across the lip. Wall boundary conditions drastically affect the computed side load physics: the adiabatic nozzle prefers free-shock separation while the cooled nozzle favors restricted-shock separation, resulting in higher peak side load for the cooled nozzle than that of the adiabatic nozzle. By comparing the computed physics with those of test observations, it is concluded that cooled wall is a more realistic boundary condition, and the oscillation of the restricted-shock separation flow pattern across the lip along with its associated tangential shock motion are the dominant side load physics for a regeneratively cooled, high aspect-ratio rocket engine.

  9. Effects of a home-based physical rehabilitation program on physical disability after hip fracture: a randomized controlled trial.

    PubMed

    Edgren, Johanna; Salpakoski, Anu; Sihvonen, Sanna E; Portegijs, Erja; Kallinen, Mauri; Arkela, Marja; Jäntti, Pirkko; Vanhatalo, Jukka; Pekkonen, Mika; Rantanen, Taina; Heinonen, Ari; Sipilä, Sarianna

    2015-04-01

    Fewer than half of the patients with hip fracture will regain the prefracture level of physical functioning. This secondary analysis of a randomized controlled trial investigated the effects of a multicomponent home-based rehabilitation program (ProMo) on physical disability after hip fracture. Randomized, controlled, parallel-group trial. Rehabilitation in participants' homes; measurements in university-based laboratory and local hospital. Population-based clinical sample of community-dwelling people older than 60 years (n = 81) operated for hip fracture were randomized into intervention and control groups. The year-long intervention aimed at restoring mobility. It included evaluation and modification of environmental hazards, guidance for safe walking, pain management, home exercise, physical activity counseling, and standard care. Physical disability was assessed by a questionnaire at baseline, and 3, 6, and 12 months thereafter. Sum scores were computed for basic (ADLs) and instrumental activities of daily living (IADLs). A higher score indicated more difficulty. GEE models were constructed to analyze the effect of the intervention. In the intention-to-treat analysis, no intervention effect was observed for sum scores. For the single disability items, borderline significant positive effects were observed for preparing food and handling medication (interaction P = .061 and P = .061, respectively). In the per-protocol analysis, the mean differences between groups were -0.4 points (SE 0.5), -1.7 (0.7), and -1.2 (0.7) at 3, 6, and 12 months for ADLs and -1.0 (1.2), -3.2 (1.5), and -2.5 (1.4) for IADLs, correspondingly. The current analyses suggest that home-based rehabilitation may reduce disability among older people after hip fracture. The present results need to be confirmed in a study with larger sample size. Potentially a more task-oriented rehabilitation approach might gain more benefits. Current Controlled Trials (ISRCTN53680197). Copyright © 2015 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  10. Predicting Forearm Physical Exposures During Computer Work Using Self-Reports, Software-Recorded Computer Usage Patterns, and Anthropometric and Workstation Measurements.

    PubMed

    Huysmans, Maaike A; Eijckelhof, Belinda H W; Garza, Jennifer L Bruno; Coenen, Pieter; Blatter, Birgitte M; Johnson, Peter W; van Dieën, Jaap H; van der Beek, Allard J; Dennerlein, Jack T

    2017-12-15

    Alternative techniques to assess physical exposures, such as prediction models, could facilitate more efficient epidemiological assessments in future large cohort studies examining physical exposures in relation to work-related musculoskeletal symptoms. The aim of this study was to evaluate two types of models that predict arm-wrist-hand physical exposures (i.e. muscle activity, wrist postures and kinematics, and keyboard and mouse forces) during computer use, which only differed with respect to the candidate predicting variables; (i) a full set of predicting variables, including self-reported factors, software-recorded computer usage patterns, and worksite measurements of anthropometrics and workstation set-up (full models); and (ii) a practical set of predicting variables, only including the self-reported factors and software-recorded computer usage patterns, that are relatively easy to assess (practical models). Prediction models were build using data from a field study among 117 office workers who were symptom-free at the time of measurement. Arm-wrist-hand physical exposures were measured for approximately two hours while workers performed their own computer work. Each worker's anthropometry and workstation set-up were measured by an experimenter, computer usage patterns were recorded using software and self-reported factors (including individual factors, job characteristics, computer work behaviours, psychosocial factors, workstation set-up characteristics, and leisure-time activities) were collected by an online questionnaire. We determined the predictive quality of the models in terms of R2 and root mean squared (RMS) values and exposure classification agreement to low-, medium-, and high-exposure categories (in the practical model only). The full models had R2 values that ranged from 0.16 to 0.80, whereas for the practical models values ranged from 0.05 to 0.43. Interquartile ranges were not that different for the two models, indicating that only for some physical exposures the full models performed better. Relative RMS errors ranged between 5% and 19% for the full models, and between 10% and 19% for the practical model. When the predicted physical exposures were classified into low, medium, and high, classification agreement ranged from 26% to 71%. The full prediction models, based on self-reported factors, software-recorded computer usage patterns, and additional measurements of anthropometrics and workstation set-up, show a better predictive quality as compared to the practical models based on self-reported factors and recorded computer usage patterns only. However, predictive quality varied largely across different arm-wrist-hand exposure parameters. Future exploration of the relation between predicted physical exposure and symptoms is therefore only recommended for physical exposures that can be reasonably well predicted. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  11. Novel physical constraints on implementation of computational processes

    NASA Astrophysics Data System (ADS)

    Wolpert, David; Kolchinsky, Artemy

    Non-equilibrium statistical physics permits us to analyze computational processes, i.e., ways to drive a physical system such that its coarse-grained dynamics implements some desired map. It is now known how to implement any such desired computation without dissipating work, and what the minimal (dissipationless) work is that such a computation will require (the so-called generalized Landauer bound\\x9D). We consider how these analyses change if we impose realistic constraints on the computational process. First, we analyze how many degrees of freedom of the system must be controlled, in addition to the ones specifying the information-bearing degrees of freedom, in order to avoid dissipating work during a given computation, when local detailed balance holds. We analyze this issue for deterministic computations, deriving a state-space vs. speed trade-off, and use our results to motivate a measure of the complexity of a computation. Second, we consider computations that are implemented with logic circuits, in which only a small numbers of degrees of freedom are coupled at a time. We show that the way a computation is implemented using circuits affects its minimal work requirements, and relate these minimal work requirements to information-theoretic measures of complexity.

  12. Preface to advances in numerical simulation of plasmas

    NASA Astrophysics Data System (ADS)

    Parker, Scott E.; Chacon, Luis

    2016-10-01

    This Journal of Computational Physics Special Issue, titled ;Advances in Numerical Simulation of Plasmas,; presents a snapshot of the international state of the art in the field of computational plasma physics. The articles herein are a subset of the topics presented as invited talks at the 24th International Conference on the Numerical Simulation of Plasmas (ICNSP), August 12-14, 2015 in Golden, Colorado. The choice of papers was highly selective. The ICNSP is held every other year and is the premier scientific meeting in the field of computational plasma physics.

  13. In Search of the Physics: The Interplay of Experiment and Computation in Airframe Noise Research: Flap-Edge Noise

    NASA Technical Reports Server (NTRS)

    Streett, C. L.; Lockard, D. P.; Singer, B. A.; Khorrami, M. R.; Choudhari, M. M.

    2003-01-01

    The LaRC investigative process for airframe noise has proven to be a useful guide for elucidation of the physics of flow-induced noise generation over the last five years. This process, relying on a close interplay between experiment and computation, is described and demonstrated here on the archetypal problem of flap-edge noise. Some detailed results from both experiment and computation are shown to illustrate the process, and a description of the multi-source physics seen in this problem is conjectured.

  14. Embedded Process Modeling, Analogy-Based Option Generation and Analytical Graphic Interaction for Enhanced User-Computer Interaction: An Interactive Storyboard of Next Generation User-Computer Interface Technology. Phase 1

    DTIC Science & Technology

    1988-03-01

    structure of the interface is a mapping from the physical world [for example, the use of icons, which S have inherent meaning to users but represent...design alternatives. Mechanisms for linking the user to the computer include physical devices (keyboards), actions taken with the devices (keystrokes...VALUATION AIDES TEMLATEI IITCOM1I LATOR IACTICAL KNOWLEDGE ACGIUISITION MICNnII t 1 Fig. 9. INTACVAL. * OtJiCTs ARE PHYSICAL ENTITIES OR CONCEPTUAL EN

  15. Examination of print and telephone channels for physical activity promotion: Rationale, design, and baseline data from Project STRIDE.

    PubMed

    Marcus, Bess H; Napolitano, Melissa A; King, Abby C; Lewis, Beth A; Whiteley, Jessica A; Albrecht, Anna E; Parisi, Alfred F; Bock, Beth C; Pinto, Bernardine M; Sciamanna, Christopher A; Jakicic, John M; Papandonatos, George D

    2007-01-01

    Project STRIDE is a 4-year randomized controlled trial comparing two computer-based expert system guided intervention delivery channels (phone vs. print) for physical activity adoption and short-term maintenance among previously sedentary adults. Sedentary adults (n=239) were randomized to one of the following (1) telephone-based, individualized motivationally-tailored feedback; (2) print-based, individualized motivationally-tailored feedback; (3) contact-control delayed treatment group (received intervention after 12 months as control). This paper: (1) outlines the study design, rationale, and participant sample; and (2) describes relationships between baseline variables to better understand their influence on the efficacy of the intervention. Participants averaged 19.8+/-25.0 min of physical activity/week that was at least of moderate intensity, with no group differences. The average estimated VO(2) at 85% of maximum heart rate was 25.6 ml/kg/min. Body fat was 34.1% for women and 23.2% for men and the BMI of the sample averaged 28.5 kg/m(2). Project STRIDE examines non face-to-face approaches for promoting physical activity behavior. It has unique features including a direct comparison of an expert system guided intervention delivered via phone or print. Future analyses will examine the cost-effectiveness of the interventions and this will likely yield important information for policy-makers.

  16. Computational manufacturing as a bridge between design and production.

    PubMed

    Tikhonravov, Alexander V; Trubetskov, Michael K

    2005-11-10

    Computational manufacturing of optical coatings is a research area that can be placed between theoretical designing and practical manufacturing in the same way that computational physics can be placed between theoretical and experimental physics. Investigations in this area have been performed for more than 30 years under the name of computer simulation of manufacturing and monitoring processes. Our goal is to attract attention to the increasing importance of computational manufacturing at the current state of the art in the design and manufacture of optical coatings and to demonstrate possible applications of this research tool.

  17. Computational manufacturing as a bridge between design and production

    NASA Astrophysics Data System (ADS)

    Tikhonravov, Alexander V.; Trubetskov, Michael K.

    2005-11-01

    Computational manufacturing of optical coatings is a research area that can be placed between theoretical designing and practical manufacturing in the same way that computational physics can be placed between theoretical and experimental physics. Investigations in this area have been performed for more than 30 years under the name of computer simulation of manufacturing and monitoring processes. Our goal is to attract attention to the increasing importance of computational manufacturing at the current state of the art in the design and manufacture of optical coatings and to demonstrate possible applications of this research tool.

  18. Efficacy of a Multimodal Cognitive Rehabilitation Including Psychomotor and Endurance Training in Parkinson's Disease

    PubMed Central

    Reuter, I.; Mehnert, S.; Sammer, G.; Oechsner, M.; Engelhardt, M.

    2012-01-01

    Mild cognitive impairment, especially executive dysfunction might occur early in the course of Parkinson's disease. Cognitive training is thought to improve cognitive performance. However, transfer of improvements achieved in paper and pencil tests into daily life has been difficult. The aim of the current study was to investigate whether a multimodal cognitive rehabilitation programme including physical exercises might be more successful than cognitive training programmes without motor training. 240 PD-patients were included in the study and randomly allocated to three treatment arms, group A cognitive training, group B cognitive training and transfer training and group C cognitive training, transfer training and psychomotor and endurance training. The primary outcome measure was the ADAS-Cog. The secondary outcome measure was the SCOPA-Cog. Training was conducted for 4 weeks on a rehabilitation unit, followed by 6 months training at home. Caregivers received an education programme. The combination of cognitive training using paper and pencil and the computer, transfer training and physical training seems to have the greatest effect on cognitive function. Thus, patients of group C showed the greatest improvement on the ADAS-Cog and SCOPA-COG and were more likely to continue with the training programme after the study. PMID:23008772

  19. Characteristics associated with willingness to participate in a randomized controlled behavioral clinical trial using home-based personal computers and a webcam.

    PubMed

    Dodge, Hiroko H; Katsumata, Yuriko; Zhu, Jian; Mattek, Nora; Bowman, Molly; Gregor, Mattie; Wild, Katherine; Kaye, Jeffrey A

    2014-12-23

    Trials aimed at preventing cognitive decline through cognitive stimulation among those with normal cognition or mild cognitive impairment are of significant importance in delaying the onset of dementia and reducing dementia prevalence. One challenge in these prevention trials is sample recruitment bias. Those willing to volunteer for these trials could be socially active, in relatively good health, and have high educational levels and cognitive function. These participants' characteristics could reduce the generalizability of study results and, more importantly, mask trial effects. We developed a randomized controlled trial to examine whether conversation-based cognitive stimulation delivered through personal computers, a webcam and the internet would have a positive effect on cognitive function among older adults with normal cognition or mild cognitive impairment. To examine the selectivity of samples, we conducted a mass mail-in survey distribution among community-dwelling older adults, assessing factors associated with a willingness to participate in the trial. Two thousand mail-in surveys were distributed to retirement communities in order to collect data on demographics, the nature and frequency of social activities, personal computer use and additional health-related variables, and interest in the prevention study. We also asked for their contact information if they were interested in being contacted as potential participants in the trial. Of 1,102 surveys returned (55.1% response rate), 983 surveys had complete data for all the variables of interest. Among them, 309 showed interest in the study and provided their contact information (operationally defined as the committed with interest group), 74 provided contact information without interest in the study (committed without interest group), 66 showed interest, but provided no contact information (interest only group), and 534 showed no interest and provided no contact information (no interest group). Compared with the no interest group, the committed with interest group were more likely to be personal computer users (odds ratio (OR) = 2.78), physically active (OR = 1.03) and had higher levels of loneliness (OR = 1.16). Increasing potential participants' familiarity with a personal computer and the internet before trial recruitment could increase participation rates and improve the generalizability of future studies of this type. The trial was registered on 29 March 2012 at ClinicalTirals.gov (ID number NCT01571427).

  20. Group refractive index reconstruction with broadband interferometric confocal microscopy

    PubMed Central

    Marks, Daniel L.; Schlachter, Simon C.; Zysk, Adam M.; Boppart, Stephen A.

    2010-01-01

    We propose a novel method of measuring the group refractive index of biological tissues at the micrometer scale. The technique utilizes a broadband confocal microscope embedded into a Mach–Zehnder interferometer, with which spectral interferograms are measured as the sample is translated through the focus of the beam. The method does not require phase unwrapping and is insensitive to vibrations in the sample and reference arms. High measurement stability is achieved because a single spectral interferogram contains all the information necessary to compute the optical path delay of the beam transmitted through the sample. Included are a physical framework defining the forward problem, linear solutions to the inverse problem, and simulated images of biologically relevant phantoms. PMID:18451922

Top