America COMPETES Act and the FY2010 Budget
2009-06-29
Outstanding Junior Investigator, Fusion Energy Sciences Plasma Physics Junior Faculty Development; Advanced Scientific Computing Research Early Career...the Fusion Energy Sciences Graduate Fellowships.2 If members of Congress agree with this contention, these America COMPETES Act programs were...Physics Outstanding Junior Investigator, Fusion Energy Sciences Plasma Physics Junior Faculty Development; Advanced Scientific Computing Research Early
Research briefing on contemporary problems in plasma science
NASA Technical Reports Server (NTRS)
1991-01-01
An overview is presented of the broad perspective of all plasma science. Detailed discussions are given of scientific opportunities in various subdisciplines of plasma science. The first subdiscipline to be discussed is the area where the contemporary applications of plasma science are the most widespread, low temperature plasma science. Opportunities for new research and technology development that have emerged as byproducts of research in magnetic and inertial fusion are then highlighted. Then follows a discussion of new opportunities in ultrafast plasma science opened up by recent developments in laser and particle beam technology. Next, research that uses smaller scale facilities is discussed, first discussing non-neutral plasmas, and then the area of basic plasma experiments. Discussions of analytic theory and computational plasma physics and of space and astrophysical plasma physics are then presented.
Computations in Plasma Physics.
ERIC Educational Resources Information Center
Cohen, Bruce I.; Killeen, John
1983-01-01
Discusses contributions of computers to research in magnetic and inertial-confinement fusion, charged-particle-beam propogation, and space sciences. Considers use in design/control of laboratory and spacecraft experiments and in data acquisition; and reviews major plasma computational methods and some of the important physics problems they…
A PICKSC Science Gateway for enabling the common plasma physicist to run kinetic software
NASA Astrophysics Data System (ADS)
Hu, Q.; Winjum, B. J.; Zonca, A.; Youn, C.; Tsung, F. S.; Mori, W. B.
2017-10-01
Computer simulations offer tremendous opportunities for studying plasmas, ranging from simulations for students that illuminate fundamental educational concepts to research-level simulations that advance scientific knowledge. Nevertheless, there is a significant hurdle to using simulation tools. Users must navigate codes and software libraries, determine how to wrangle output into meaningful plots, and oftentimes confront a significant cyberinfrastructure with powerful computational resources. Science gateways offer a Web-based environment to run simulations without needing to learn or manage the underlying software and computing cyberinfrastructure. We discuss our progress on creating a Science Gateway for the Particle-in-Cell and Kinetic Simulation Software Center that enables users to easily run and analyze kinetic simulations with our software. We envision that this technology could benefit a wide range of plasma physicists, both in the use of our simulation tools as well as in its adaptation for running other plasma simulation software. Supported by NSF under Grant ACI-1339893 and by the UCLA Institute for Digital Research and Education.
America COMPETES Act and the FY2010 Budget
2009-06-15
Outstanding Junior Investigator, Nuclear Physics Outstanding Junior Investigator, Fusion Energy Sciences Plasma Physics Junior Faculty Development...Spallation Neutron Source Instrumentation Fellowships, and the Fusion Energy Sciences Graduate Fellowships.2 If members of Congress agree with this...Nuclear Physics Outstanding Junior Investigator, Fusion Energy Sciences Plasma Physics Junior Faculty Development; Advanced Scientific Computing
Scientific Discovery through Advanced Computing in Plasma Science
NASA Astrophysics Data System (ADS)
Tang, William
2005-03-01
Advanced computing is generally recognized to be an increasingly vital tool for accelerating progress in scientific research during the 21st Century. For example, the Department of Energy's ``Scientific Discovery through Advanced Computing'' (SciDAC) Program was motivated in large measure by the fact that formidable scientific challenges in its research portfolio could best be addressed by utilizing the combination of the rapid advances in super-computing technology together with the emergence of effective new algorithms and computational methodologies. The imperative is to translate such progress into corresponding increases in the performance of the scientific codes used to model complex physical systems such as those encountered in high temperature plasma research. If properly validated against experimental measurements and analytic benchmarks, these codes can provide reliable predictive capability for the behavior of a broad range of complex natural and engineered systems. This talk reviews recent progress and future directions for advanced simulations with some illustrative examples taken from the plasma science applications area. Significant recent progress has been made in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics, giving increasingly good agreement between experimental observations and computational modeling. This was made possible by the combination of access to powerful new computational resources together with innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning a huge range in time and space scales. In particular, the plasma science community has made excellent progress in developing advanced codes for which computer run-time and problem size scale well with the number of processors on massively parallel machines (MPP's). A good example is the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPP's to produce three-dimensional, general geometry, nonlinear particle simulations which have accelerated progress in understanding the nature of plasma turbulence in magnetically-confined high temperature plasmas. These calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In general, results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. The associated scientific excitement should serve to stimulate improved cross-cutting collaborations with other fields and also to help attract bright young talent to the computational science area.
Preliminary Development of a Computational Model of a Dielectric Barrier Discharge
2004-12-01
Gerhard Pietsch . "Microdischarges in Air-Fed Ozonizers," Journal of Physics D: Applied Physics, Vol 24, 1991, pp 564-572. 14 Baldur Eliasson. "Modeling...Gibalov and Gerhard Pietsch . "Two-dimensional Modeling of the Dielectric Barrier Discharge in Air," Plasma Sources Science Technology, 1 (1992), pp. 166...Computer Modeling," IEEE Transactions on Plasma Science, 27 (1), February 1999, pp 36-37. 19 Valentin I Gibalov and Gerhard J. Pietsch . "The
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahlburg, Jill; Corones, James; Batchelor, Donald
Fusion is potentially an inexhaustible energy source whose exploitation requires a basic understanding of high-temperature plasmas. The development of a science-based predictive capability for fusion-relevant plasmas is a challenge central to fusion energy science, in which numerical modeling has played a vital role for more than four decades. A combination of the very wide range in temporal and spatial scales, extreme anisotropy, the importance of geometric detail, and the requirement of causality which makes it impossible to parallelize over time, makes this problem one of the most challenging in computational physics. Sophisticated computational models are under development for many individualmore » features of magnetically confined plasmas and increases in the scope and reliability of feasible simulations have been enabled by increased scientific understanding and improvements in computer technology. However, full predictive modeling of fusion plasmas will require qualitative improvements and innovations to enable cross coupling of a wider variety of physical processes and to allow solution over a larger range of space and time scales. The exponential growth of computer speed, coupled with the high cost of large-scale experimental facilities, makes an integrated fusion simulation initiative a timely and cost-effective opportunity. Worldwide progress in laboratory fusion experiments provides the basis for a recent FESAC recommendation to proceed with a burning plasma experiment (see FESAC Review of Burning Plasma Physics Report, September 2001). Such an experiment, at the frontier of the physics of complex systems, would be a huge step in establishing the potential of magnetic fusion energy to contribute to the world’s energy security. An integrated simulation capability would dramatically enhance the utilization of such a facility and lead to optimization of toroidal fusion plasmas in general. This science-based predictive capability, which was cited in the FESAC integrated planning document (IPPA, 2000), represents a significant opportunity for the DOE Office of Science to further the understanding of fusion plasmas to a level unparalleled worldwide.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Choong-Seock; Greenwald, Martin; Riley, Katherine
The additional computing power offered by the planned exascale facilities could be transformational across the spectrum of plasma and fusion research — provided that the new architectures can be efficiently applied to our problem space. The collaboration that will be required to succeed should be viewed as an opportunity to identify and exploit cross-disciplinary synergies. To assess the opportunities and requirements as part of the development of an overall strategy for computing in the exascale era, the Exascale Requirements Review meeting of the Fusion Energy Sciences (FES) community was convened January 27–29, 2016, with participation from a broad range ofmore » fusion and plasma scientists, specialists in applied mathematics and computer science, and representatives from the U.S. Department of Energy (DOE) and its major computing facilities. This report is a summary of that meeting and the preparatory activities for it and includes a wealth of detail to support the findings. Technical opportunities, requirements, and challenges are detailed in this report (and in the recent report on the Workshop on Integrated Simulation). Science applications are described, along with mathematical and computational enabling technologies. Also see http://exascaleage.org/fes/ for more information.« less
NASA Astrophysics Data System (ADS)
Kuzenov, V. V.
2017-12-01
The paper is devoted to the theoretical and computational study of compression and energy release for magneto-inertial plasma confinement. This approach makes it possible to create new high-density plasma sources, apply them in materials science experiments, and use them in promising areas of power engineering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The vision described here builds on the present U.S. activities in fusion plasma and materials science relevant to the energy goal and extends plasma science at the frontier of discovery. The plan is founded on recommendations made by the National Academies, a number of recent studies by the Fusion Energy Sciences Advisory Committee (FESAC), and the Administration’s views on the greatest opportunities for U.S. scientific leadership.This report highlights five areas of critical importance for the U.S. fusion energy sciences enterprise over the next decade: 1) Massively parallel computing with the goal of validated whole-fusion-device modeling will enable a transformation inmore » predictive power, which is required to minimize risk in future fusion energy development steps; 2) Materials science as it relates to plasma and fusion sciences will provide the scientific foundations for greatly improved plasma confinement and heat exhaust; 3) Research in the prediction and control of transient events that can be deleterious to toroidal fusion plasma confinement will provide greater confidence in machine designs and operation with stable plasmas; 4) Continued stewardship of discovery in plasma science that is not expressly driven by the energy goal will address frontier science issues underpinning great mysteries of the visible universe and help attract and retain a new generation of plasma/fusion science leaders; 5) FES user facilities will be kept world-leading through robust operations support and regular upgrades. Finally, we will continue leveraging resources among agencies and institutions and strengthening our partnerships with international research facilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sprague, Michael A.; Boldyrev, Stanislav; Fischer, Paul
This report details the impact exascale will bring to turbulent-flow simulations in applied science and technology. The need for accurate simulation of turbulent flows is evident across the DOE applied-science and engineering portfolios, including combustion, plasma physics, nuclear-reactor physics, wind energy, and atmospheric science. The workshop brought together experts in turbulent-flow simulation, computational mathematics, and high-performance computing. Building upon previous ASCR workshops on exascale computing, participants defined a research agenda and path forward that will enable scientists and engineers to continually leverage, engage, and direct advances in computational systems on the path to exascale computing.
Preparing Students for Careers in Science and Industry with Computational Physics
NASA Astrophysics Data System (ADS)
Florinski, V. A.
2011-12-01
Funded by NSF CAREER grant, the University of Alabama (UAH) in Huntsville has launched a new graduate program in Computational Physics. It is universally accepted that today's physics is done on a computer. The program blends the boundary between physics and computer science by teaching student modern, practical techniques of solving difficult physics problems using diverse computational platforms. Currently consisting of two courses first offered in the Fall of 2011, the program will eventually include 5 courses covering methods for fluid dynamics, particle transport via stochastic methods, and hybrid and PIC plasma simulations. The UAH's unique location allows courses to be shaped through discussions with faculty, NASA/MSFC researchers and local R&D business representatives, i.e., potential employers of the program's graduates. Students currently participating in the program have all begun their research careers in space and plasma physics; many are presenting their research at this meeting.
RF Antenna Design for a Helicon Plasma Source
NASA Astrophysics Data System (ADS)
Godden, Katarina; Stassel, Brendan; Warta, Daniel; Yep, Isaac; Hicks, Nathaniel; Munk, Jens
2017-10-01
A helicon plasma source is under development for the new Plasma Science and Engineering Laboratory at the University of Alaska Anchorage. The helicon source is of a type comprising Pyrex and stainless steel cylindrical sections, joined to an ultrahigh vacuum chamber. A radio frequency (RF) helical antenna surrounds the Pyrex chamber, as well as DC solenoidal magnetic field coils. This presentation focuses on the design of the RF helical antenna and RF matching network, such that helicon wave power is coupled to argon plasma with minimal reflected power to the RF amplifier. The amplifier output is selectable between 2-30 MHz, with forward c.w. power up to 1.5 kW. Details and computer simulation of the antenna geometry, materials, and power matching will be presented, as well as the matching network of RF transmission line, tuning capacitors, and cooling system. An initial computational study of power coupling to the plasma will also be described. Supported by U.S. NSF/DOE Partnership in Basic Plasma Science and Engineering Grant PHY-1619615, by the Alaska Space Grant Program, and by UAA Innovate 2017.
Advanced computations in plasma physics
NASA Astrophysics Data System (ADS)
Tang, W. M.
2002-05-01
Scientific simulation in tandem with theory and experiment is an essential tool for understanding complex plasma behavior. In this paper we review recent progress and future directions for advanced simulations in magnetically confined plasmas with illustrative examples chosen from magnetic confinement research areas such as microturbulence, magnetohydrodynamics, magnetic reconnection, and others. Significant recent progress has been made in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics, giving increasingly good agreement between experimental observations and computational modeling. This was made possible by innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales together with access to powerful new computational resources. In particular, the fusion energy science community has made excellent progress in developing advanced codes for which computer run-time and problem size scale well with the number of processors on massively parallel machines (MPP's). A good example is the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPP's to produce three-dimensional, general geometry, nonlinear particle simulations which have accelerated progress in understanding the nature of turbulence self-regulation by zonal flows. It should be emphasized that these calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In general, results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. The associated scientific excitement should serve to stimulate improved cross-cutting collaborations with other fields and also to help attract bright young talent to plasma science.
Berkeley Lab - Science Video Glossary
source neutrino astronomy protein crystallography quantum dot supercomputing supernova synchrotron universe neutrino astronomy supernova Earth Science atmospheric aerosols bioremediation carbon cycle nanotechnology neutrino neutrino astronomy O, P petabytes petaflop computing photon plasma plasmon protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sovinec, Carl
The objective of the Plasma Science and Innovation Center (PSI-Center) is to develop and deploy computational models that simulate conditions in smaller, concept-exploration plasma experiments. The PSIC group at the University of Wisconsin-Madison, led by Prof. Carl Sovinec, uses and enhances the Non-Ideal Magnetohydrodynamics with Rotation, Open Discussion (NIMROD) code, to simulate macroscopic plasma dynamics in a number of magnetic confinement configurations. These numerical simulations provide information on how magnetic fields and plasma flows evolve over all three spatial dimensions, which supplements the limited access of diagnostics in plasma experiments. The information gained from simulation helps explain how plasma evolves.more » It is also used to engineer more effective plasma confinement systems, reducing the need for building many experiments to cover the physical parameter space. The ultimate benefit is a more cost-effective approach to the development of fusion energy for peaceful power production. The supplemental funds provided by the American Recovery and Reinvestment Act of 2009 were used to purchase computer components that were assembled into a 48-core system with 256 Gb of shared memory. The system was engineered and constructed by the group's system administrator at the time, Anthony Hammond. It was successfully used by then graduate student, Dr. John O'Bryan, for computing magnetic relaxation dynamics that occur during experimental tests of non-inductive startup in the Pegasus Toroidal Experiment (pegasus.ep.wisc.edu). Dr. O'Bryan's simulations provided the first detailed explanation of how the driven helical filament of electrical current evolves into a toroidal tokamak-like plasma configuration.« less
TOPICAL REVIEW: Advances and challenges in computational plasma science
NASA Astrophysics Data System (ADS)
Tang, W. M.; Chan, V. S.
2005-02-01
Scientific simulation, which provides a natural bridge between theory and experiment, is an essential tool for understanding complex plasma behaviour. Recent advances in simulations of magnetically confined plasmas are reviewed in this paper, with illustrative examples, chosen from associated research areas such as microturbulence, magnetohydrodynamics and other topics. Progress has been stimulated, in particular, by the exponential growth of computer speed along with significant improvements in computer technology. The advances in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics have produced increasingly good agreement between experimental observations and computational modelling. This was enabled by two key factors: (a) innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales and (b) access to powerful new computational resources. Excellent progress has been made in developing codes for which computer run-time and problem-size scale well with the number of processors on massively parallel processors (MPPs). Examples include the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPPs to produce three-dimensional, general geometry, nonlinear particle simulations that have accelerated advances in understanding the nature of turbulence self-regulation by zonal flows. These calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In looking towards the future, the current results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. This should produce the scientific excitement which will help to (a) stimulate enhanced cross-cutting collaborations with other fields and (b) attract the bright young talent needed for the future health of the field of plasma science.
Advances and challenges in computational plasma science
NASA Astrophysics Data System (ADS)
Tang, W. M.
2005-02-01
Scientific simulation, which provides a natural bridge between theory and experiment, is an essential tool for understanding complex plasma behaviour. Recent advances in simulations of magnetically confined plasmas are reviewed in this paper, with illustrative examples, chosen from associated research areas such as microturbulence, magnetohydrodynamics and other topics. Progress has been stimulated, in particular, by the exponential growth of computer speed along with significant improvements in computer technology. The advances in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics have produced increasingly good agreement between experimental observations and computational modelling. This was enabled by two key factors: (a) innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales and (b) access to powerful new computational resources. Excellent progress has been made in developing codes for which computer run-time and problem-size scale well with the number of processors on massively parallel processors (MPPs). Examples include the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPPs to produce three-dimensional, general geometry, nonlinear particle simulations that have accelerated advances in understanding the nature of turbulence self-regulation by zonal flows. These calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In looking towards the future, the current results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. This should produce the scientific excitement which will help to (a) stimulate enhanced cross-cutting collaborations with other fields and (b) attract the bright young talent needed for the future health of the field of plasma science.
Conference Grant Proposal for ICOPS 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Safronova, Alla
ICOPS (International Conference on Plasma Science) is an internationally renowned, well-attended annual conference that involves topics of direct interest to the Office of Fusion Energy Sciences of Department of Energy. In particular, ICOPS 2016 emphasized both the traditional areas of plasma science and the new areas of growth that include but are not limited to Fusion (Inertial, Magnetic and Alternate Concepts), Particle Acceleration with Laser and Beams, High Energy Density Matter, Laser Produced Plasma, Fast Z-pinches, Computational Plasma Physics, Plasma Diagnostics, and such frontiers as studying Warm Dense Matter using the X-ray free electron lasers. The travel support of themore » students at ICOPS comes usually from sponsor organizations. Increasing the participation of outstanding students at ICOPS 2016 who are the first authors of the abstracts and are selected to receive the travel support based on the scientific merit of the submitted abstracts is crucial for the creation of the new generation of the plasma physicists.« less
Advanced Computation in Plasma Physics
NASA Astrophysics Data System (ADS)
Tang, William
2001-10-01
Scientific simulation in tandem with theory and experiment is an essential tool for understanding complex plasma behavior. This talk will review recent progress and future directions for advanced simulations in magnetically-confined plasmas with illustrative examples chosen from areas such as microturbulence, magnetohydrodynamics, magnetic reconnection, and others. Significant recent progress has been made in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics, giving increasingly good agreement between experimental observations and computational modeling. This was made possible by innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales together with access to powerful new computational resources. In particular, the fusion energy science community has made excellent progress in developing advanced codes for which computer run-time and problem size scale well with the number of processors on massively parallel machines (MPP's). A good example is the effective usage of the full power of multi-teraflop MPP's to produce 3-dimensional, general geometry, nonlinear particle simulations which have accelerated progress in understanding the nature of turbulence self-regulation by zonal flows. It should be emphasized that these calculations, which typically utilized billions of particles for tens of thousands time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In general, results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. The associated scientific excitement should serve to stimulate improved cross-cutting collaborations with other fields and also to help attract bright young talent to plasma science.
Surface currents on the plasma-vacuum interface in MHD equilibria
NASA Astrophysics Data System (ADS)
Hanson, James D.
2016-10-01
The VMEC non-axisymmetric MHD equilibrium code can compute free-boundary equilibria. Since VMEC assumes that magnetic fields within the plasma form closed and nested flux surfaces, the plasma-vacuum interface is a flux surface, and the total magnetic field there has no normal component. VMEC imposes this condition of zero normal field using the potential formulation of Merkel, and solves a Neumann problem for the magnetic potential in the exterior region. This boundary condition necessarily admits the possibility of a surface current on the plasma-vacuum interface. While this current may be small in MHD equilibrium, this current may be readily computed in terms of a magnetic potential in both the interior and exterior regions. Examples of the surface current for VMEC equilibria will be shown. This material is based upon work supported by Auburn University and the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under Award Number DE-FG02-03ER54692.
Data reduction and analysis of HELIOS plasma wave data
NASA Technical Reports Server (NTRS)
Anderson, Roger R.
1988-01-01
Reduction of data acquired from the HELIOS Solar Wind Plasma Wave Experiments on HELIOS 1 and 2 was continued. Production of 24 hour survey plots of the HELIOS 1 plasma wave data were continued and microfilm copies were submitted to the National Space Science Data Center. Much of the effort involved the shock memory from both HELIOS 1 and 2. This data had to be deconvoluted and time ordered before it could be displayed and plotted in an organized form. The UNIVAX 418-III computer was replaced by a DEC VAX 11/780 computer. In order to continue the reduction and analysis of the data set, all data reduction and analysis computer programs had to be rewritten.
NASA Astrophysics Data System (ADS)
The Naval Research Laboratory (Washington, D.C.) formed the Space Plasma Branch within its Plasma Physics Division on July 1. Vithal Patel, former Program Director of Magnetospheric Physics, National Science Foundation, also joined NRL on the same date as Associate Superintendent of the Plasma Physics Division. Barret Ripin is head of the newly organized branch. The Space Plasma branch will do basic and applied space plasma research using a multidisciplinary approach. It consolidates traditional rocket and satellite space experiments, space plasma theory and computation, with laboratory space-related experiments. About 40 research scientists, postdoctoral fellows, engineers, and technicians are divided among its five sections. The Theory and Computation sections are led by Joseph Huba and Joel Fedder, the Space Experiments section is led by Paul Rodriguez, and the Pharos Laser Facility and Laser Experiments sections are headed by Charles Manka and Jacob Grun.
NASA Astrophysics Data System (ADS)
2014-11-01
The VI Republican Scientific Technical Conference "Low-temperature plasma during the deposition of functional coatings" took place from 4 to 7 November 2014 at the Academy of Sciences of the Republic of Tatarstan and the Kazan Federal University. The conference was chaired by a Member of the Academy of Sciences of the Republic of Tatarstan Nail Kashapov -Professor, Doctor of Technical Sciences- a member of the Scientific and Technical Council of the Ministry of Economy of the Republic of Tatarstan. At the conference, the participants discussed a wide range of issues affecting the theoretical and computational aspects of research problems in the physics and technology of low-temperature plasma. A series of works were devoted to the study of thin films obtained by low-temperature plasma. This year work dedicated to the related field of heat mass transfer in multiphase media and low-temperature plasma was also presented. Of special interest were reports on the exploration of gas discharges with liquid electrolytic electrotrodes and the study of dusty plasmas. Kashapov Nail, D.Sc., Professor (Kazan Federal University)
NASA Astrophysics Data System (ADS)
Woodbury, D.; Kubota, S.; Johnson, I.
2014-10-01
Computer simulations of electromagnetic wave propagation in magnetized plasmas are an important tool for both plasma heating and diagnostics. For active millimeter-wave and microwave diagnostics, accurately modeling the evolution of the beam parameters for launched, reflected or scattered waves in a toroidal plasma requires that calculations be done using the full 3-D geometry. Previously, we reported on the application of GPGPU (General-Purpose computing on Graphics Processing Units) to a 3-D vacuum Maxwell code using the FDTD (Finite-Difference Time-Domain) method. Tests were done for Gaussian beam propagation with a hard source antenna, utilizing the parallel processing capabilities of the NVIDIA K20M. In the current study, we have modified the 3-D code to include a soft source antenna and an induced current density based on the cold plasma approximation. Results from Gaussian beam propagation in an inhomogeneous anisotropic plasma, along with comparisons to ray- and beam-tracing calculations will be presented. Additional enhancements, such as advanced coding techniques for improved speedup, will also be investigated. Supported by U.S. DoE Grant DE-FG02-99-ER54527 and in part by the U.S. DoE, Office of Science, WDTS under the Science Undergraduate Laboratory Internship program.
A symbiotic approach to fluid equations and non-linear flux-driven simulations of plasma dynamics
NASA Astrophysics Data System (ADS)
Halpern, Federico
2017-10-01
The fluid framework is ubiquitous in studies of plasma transport and stability. Typical forms of the fluid equations are motivated by analytical work dating several decades ago, before computer simulations were indispensable, and can be, therefore, not optimal for numerical computation. We demonstrate a new first-principles approach to obtaining manifestly consistent, skew-symmetric fluid models, ensuring internal consistency and conservation properties even in discrete form. Mass, kinetic, and internal energy become quadratic (and always positive) invariants of the system. The model lends itself to a robust, straightforward discretization scheme with inherent non-linear stability. A simpler, drift-ordered form of the equations is obtained, and first results of their numerical implementation as a binary framework for bulk-fluid global plasma simulations are demonstrated. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, Theory Program, under Award No. DE-FG02-95ER54309.
Toward a first-principles integrated simulation of tokamak edge plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, C S; Klasky, Scott A; Cummings, Julian
2008-01-01
Performance of the ITER is anticipated to be highly sensitive to the edge plasma condition. The edge pedestal in ITER needs to be predicted from an integrated simulation of the necessary firstprinciples, multi-scale physics codes. The mission of the SciDAC Fusion Simulation Project (FSP) Prototype Center for Plasma Edge Simulation (CPES) is to deliver such a code integration framework by (1) building new kinetic codes XGC0 and XGC1, which can simulate the edge pedestal buildup; (2) using and improving the existing MHD codes ELITE, M3D-OMP, M3D-MPP and NIMROD, for study of large-scale edge instabilities called Edge Localized Modes (ELMs); andmore » (3) integrating the codes into a framework using cutting-edge computer science technology. Collaborative effort among physics, computer science, and applied mathematics within CPES has created the first working version of the End-to-end Framework for Fusion Integrated Simulation (EFFIS), which can be used to study the pedestal-ELM cycles.« less
High-fidelity plasma codes for burn physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooley, James; Graziani, Frank; Marinak, Marty
Accurate predictions of equation of state (EOS), ionic and electronic transport properties are of critical importance for high-energy-density plasma science. Transport coefficients inform radiation-hydrodynamic codes and impact diagnostic interpretation, which in turn impacts our understanding of the development of instabilities, the overall energy balance of burning plasmas, and the efficacy of self-heating from charged-particle stopping. Important processes include thermal and electrical conduction, electron-ion coupling, inter-diffusion, ion viscosity, and charged particle stopping. However, uncertainties in these coefficients are not well established. Fundamental plasma science codes, also called high-fidelity plasma codes, are a relatively recent computational tool that augments both experimental datamore » and theoretical foundations of transport coefficients. This paper addresses the current status of HFPC codes and their future development, and the potential impact they play in improving the predictive capability of the multi-physics hydrodynamic codes used in HED design.« less
Summer Research Experiences with a Laboratory Tokamak
NASA Astrophysics Data System (ADS)
Farley, N.; Mauel, M.; Navratil, G.; Cates, C.; Maurer, D.; Mukherjee, S.; Shilov, M.; Taylor, E.
1998-11-01
Columbia University's Summer Research Program for Secondary School Science Teachers seeks to improve middle and high school student understanding of science. The Program enhances science teachers' understanding of the practice of science by having them participate for two consecutive summers as members of laboratory research teams led by Columbia University faculty. In this poster, we report the research and educational activities of two summer internships with the HBT-EP research tokamak. Research activities have included (1) computer data acquisition and the representation of complex plasma wave phenomena as audible sounds, and (2) the design and construction of pulsed microwave systems to experience the design and testing of special-purpose equipment in order to achieve a specific technical goal. We also present an overview of the positive impact this type of plasma research involvement has had on high school science teaching.
Outcomes from the DOE Workshop on Turbulent Flow Simulation at the Exascale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sprague, Michael; Boldyrev, Stanislav; Chang, Choong-Seock
This paper summarizes the outcomes from the Turbulent Flow Simulation at the Exascale: Opportunities and Challenges Workshop, which was held 4-5 August 2015, and was sponsored by the U.S. Department of Energy Office of Advanced Scientific Computing Research. The workshop objective was to define and describe the challenges and opportunities that computing at the exascale will bring to turbulent-flow simulations in applied science and technology. The need for accurate simulation of turbulent flows is evident across the U.S. Department of Energy applied-science and engineering portfolios, including combustion, plasma physics, nuclear-reactor physics, wind energy, and atmospheric science. The workshop brought togethermore » experts in turbulent-flow simulation, computational mathematics, and high-performance computing. Building upon previous ASCR workshops on exascale computing, participants defined a research agenda and path forward that will enable scientists and engineers to continually leverage, engage, and direct advances in computational systems on the path to exascale computing.« less
Plasma Processing with a One Atmosphere Uniform Glow Discharge Plasma (OAUGDP)
NASA Astrophysics Data System (ADS)
Reece Roth, J.
2000-10-01
The vast majority of all industrial plasma processing is conducted with glow discharges at pressures below 10 torr. This has limited applications to high value workpieces as a result of the large capital cost of vacuum systems and the production constraints of batch processing. It has long been recognized that glow discharges would play a much larger industrial role if they could be operated at one atmosphere. The One Atmosphere Uniform Glow Discharge Plasma (OAUGDP) has been developed at the University of Tennessee Plasma Sciences Laboratory. The OAUGDP is non-thermal RF plasma with the time-resolved characteristics of a classical low pressure DC normal glow discharge. An interdisciplinary team was formed to conduct exploratory investigations of the physics and applications of the OAUGDP. This team includes collaborators from the UTK Textiles and Nonwovens Development Center (TANDEC) and the Departments of Electrical and Computer Engineering, Microbiology, Food Science and Technology, and Mechanical and Aerospace Engineering and Engineering Science. Exploratory tests were conducted on a variety of potential plasma processing and other applications. These include the use of OAUGDP to sterilize medical and dental equipment and air filters; diesel soot removal; plasma aerodynamic effects; electrohydrodynamic (EDH) flow control of the neutral working gas; increasing the surface energy of materials; increasing the wettability and wickability of fabrics; and plasma deposition and directional etching. A general overview of these topics will be presented.
The new space and earth science information systems at NASA's archive
NASA Technical Reports Server (NTRS)
Green, James L.
1990-01-01
The on-line interactive systems of the National Space Science Data Center (NSSDC) are examined. The worldwide computer network connections that allow access to NSSDC users are outlined. The services offered by the NSSDC new technology on-line systems are presented, including the IUE request system, ozone TOMS data, and data sets on astrophysics, atmospheric science, land sciences, and space plasma physics. Plans for future increases in the NSSDC data holdings are considered.
The new space and Earth science information systems at NASA's archive
NASA Technical Reports Server (NTRS)
Green, James L.
1990-01-01
The on-line interactive systems of the National Space Science Data Center (NSSDC) are examined. The worldwide computer network connections that allow access to NSSDC users are outlined. The services offered by the NSSDC new technology on-line systems are presented, including the IUE request system, Total Ozone Mapping Spectrometer (TOMS) data, and data sets on astrophysics, atmospheric science, land sciences, and space plasma physics. Plans for future increases in the NSSDC data holdings are considered.
Particle-in-cell code library for numerical simulation of the ECR source plasma
NASA Astrophysics Data System (ADS)
Shirkov, G.; Alexandrov, V.; Preisendorf, V.; Shevtsov, V.; Filippov, A.; Komissarov, R.; Mironov, V.; Shirkova, E.; Strekalovsky, O.; Tokareva, N.; Tuzikov, A.; Vatulin, V.; Vasina, E.; Fomin, V.; Anisimov, A.; Veselov, R.; Golubev, A.; Grushin, S.; Povyshev, V.; Sadovoi, A.; Donskoi, E.; Nakagawa, T.; Yano, Y.
2003-05-01
The project ;Numerical simulation and optimization of ion accumulation and production in multicharged ion sources; is funded by the International Science and Technology Center (ISTC). A summary of recent project development and the first version of a computer code library for simulation of electron-cyclotron resonance (ECR) source plasmas based on the particle-in-cell method are presented.
AFRL Research in Plasma-Assisted Combustion
2013-10-23
Scramjet propulsion Non-equilibrium flows Diagnostics for scramjet controls Boundary-layer transition Structural sciences for...hypersonic vehicles Computational sciences for hypersonic flight 3 DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution Overview Research...within My Division HIFiRE-5 Vehicle Launched 23 April 2012 can payload transition section Orion S-30 Focus on hypersonic flight: scalability
Laboratory and Space Plasma Studies
NASA Astrophysics Data System (ADS)
Hyman, Ellis
1996-08-01
The work performed by Science Applications International Corporation (SAIC), encompasses a wide range of topics in experimental, computational, and analytical laboratory and space plasma physics. The accomplishments described in this report have been in support of the programs of the Laser Plasma Branch (Code 6730) and other segments of the Plasma Physics Division at the Naval Research Laboratory (NRL) and cover the period 27 September 1993 to August 1, 1996. SAIC's efforts have been supported by sub-contracts or consulting agreements with Pulse Sciences, Inc., Clark Richardson, and Biskup Consulting Engineers, Pharos Technical Enterprises, Plex Corporation, Cornell University, Stevens Institute of Technology, the University of Connecticut, Plasma Materials and Technologies, Inc., and GaSonics International, Inc. In the following discussions section we will describe each of the topics investigated and the results obtained. Much of the research work has resulted in journal publications and NRL Memorandum Reports in which the investigation is described in detail. These reports are included as Appendices to this Final Report.
Message From the Editor for Contributions to the 2012 Real Time Conference Issue of TNS
NASA Astrophysics Data System (ADS)
Schmeling, Sascha Marc
2013-10-01
The papers in this special issue were originally presented at the 18th IEEE-NPSS Real Time Conference (RT2012) on Computing Applications in Nuclear and Plasma Sciences, held in Berkeley, California, USA, in June 2012. These contributions come from a broad range of fields of application, including Astrophysics, Medical Imaging, Nuclear and Plasma Physics, Particle Accelerators, and Particle Physics Experiments.
NASA Astrophysics Data System (ADS)
Chapman, B. E.
2017-10-01
MST progress in advancing the RFP for (1) fusion plasma confinement with ohmic heating and minimal external magnetization, (2) predictive capability in toroidal confinement physics, and (3) basic plasma physics is summarized. Validation of key plasma models is a program priority, which is enhanced by programmable power supplies (PPS) to maximize inductive capability. The existing PPS enables access to very low plasma current, down to Ip =0.02 MA. This greatly expands the Lundquist number range S =104 -108 and allows nonlinear, 3D MHD computation using NIMROD and DEBS with dimensionless parameters that overlap those of MST plasmas. A new, second PPS will allow simultaneous PPS control of the Bp and Bt circuits. The PPS also enables MST tokamak operation, thus far focused on disruptions and RMP suppression of runaway electrons. Gyrokinetic modeling with GENE predicts unstable TEM in improved-confinement RFP plasmas. Measured fluctuations have TEM properties including a density-gradient threshold larger than for tokamak plasmas. Turbulent energization of an electron tail occurs during sawtooth reconnection. Probe measurements hint that drift waves are also excited via the turbulent cascade in standard RFP plasmas. Exploration of basic plasma science frontiers in MST RFP and tokamak plasmas is proposed as part of WiPPL, a basic science user facility. Work supported by USDoE.
Laboratory directed research and development. FY 1995 progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vigil, J.; Prono, J.
1996-03-01
This document presents an overview of Laboratory Directed Research and Development Programs at Los Alamos. The nine technical disciplines in which research is described include materials, engineering and base technologies, plasma, fluids, and particle beams, chemistry, mathematics and computational science, atmic and molecular physics, geoscience, space science, and astrophysics, nuclear and particle physics, and biosciences. Brief descriptions are provided in the above programs.
Integrated Computer Controlled Glow Discharge Tube
NASA Astrophysics Data System (ADS)
Kaiser, Erik; Post-Zwicker, Andrew
2002-11-01
An "Interactive Plasma Display" was created for the Princeton Plasma Physics Laboratory to demonstrate the characteristics of plasma to various science education outreach programs. From high school students and teachers, to undergraduate students and visitors to the lab, the plasma device will be a key component in advancing the public's basic knowledge of plasma physics. The device is fully computer controlled using LabVIEW, a touchscreen Graphical User Interface [GUI], and a GPIB interface. Utilizing a feedback loop, the display is fully autonomous in controlling pressure, as well as in monitoring the safety aspects of the apparatus. With a digital convectron gauge continuously monitoring pressure, the computer interface analyzes the input signals, while making changes to a digital flow controller. This function works independently of the GUI, allowing the user to simply input and receive a desired pressure; quickly, easily, and intuitively. The discharge tube is a 36" x 4"id glass cylinder with 3" side port. A 3000 volt, 10mA power supply, is used to breakdown the plasma. A 300 turn solenoid was created to demonstrate the magnetic pinching of a plasma. All primary functions of the device are controlled through the GUI digital controllers. This configuration allows for operators to safely control the pressure (100mTorr-1Torr), magnetic field (0-90Gauss, 7amps, 10volts), and finally, the voltage applied across the electrodes (0-3000v, 10mA).
Response function of modulated grid Faraday cup plasma instruments
NASA Technical Reports Server (NTRS)
Barnett, A.; Olbert, S.
1986-01-01
Modulated grid Faraday cup plasma analyzers are a very useful tool for making in situ measurements of space plasmas. One of their great attributes is that their simplicity permits their angular response function to be calculated theoretically. An expression is derived for this response function by computing the trajectories of the charged particles inside the cup. The Voyager plasma science experiment is used as a specific example. Two approximations to the rigorous response function useful for data analysis are discussed. Multisensor analysis of solar wind data indicates that the formulas represent the true cup response function for all angles of incidence with a maximum error of only a few percent.
Bridging the PSI Knowledge Gap: A Multi-Scale Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wirth, Brian D.
2015-01-08
Plasma-surface interactions (PSI) pose an immense scientific hurdle in magnetic confinement fusion and our present understanding of PSI in confinement environments is highly inadequate; indeed, a recent Fusion Energy Sciences Advisory Committee report found that 4 out of the 5 top five fusion knowledge gaps were related to PSI. The time is appropriate to develop a concentrated and synergistic science effort that would expand, exploit and integrate the wealth of laboratory ion-beam and plasma research, as well as exciting new computational tools, towards the goal of bridging the PSI knowledge gap. This effort would broadly advance plasma and material sciences,more » while providing critical knowledge towards progress in fusion PSI. This project involves the development of a Science Center focused on a new approach to PSI science; an approach that both exploits access to state-of-the-art PSI experiments and modeling, as well as confinement devices. The organizing principle is to develop synergistic experimental and modeling tools that treat the truly coupled multi-scale aspect of the PSI issues in confinement devices. This is motivated by the simple observation that while typical lab experiments and models allow independent manipulation of controlling variables, the confinement PSI environment is essentially self-determined with few outside controls. This means that processes that may be treated independently in laboratory experiments, because they involve vastly different physical and time scales, will now affect one another in the confinement environment. Also, lab experiments cannot simultaneously match all exposure conditions found in confinement devices typically forcing a linear extrapolation of lab results. At the same time programmatic limitations prevent confinement experiments alone from answering many key PSI questions. The resolution to this problem is to usefully exploit access to PSI science in lab devices, while retooling our thinking from a linear and de-coupled extrapolation to a multi-scale, coupled approach. The PSI Plasma Center consisted of three equal co-centers; one located at the MIT Plasma Science and Fusion Center, one at UC San Diego Center for Energy Research and one at the UC Berkeley Department of Nuclear Engineering, which moved to the University of Tennessee, Knoxville (UTK) with Professor Brian Wirth in July 2010. The Center had three co-directors: Prof. Dennis Whyte led the MIT co-center, the UCSD co-center was led by Dr. Russell Doerner, and Prof. Brian Wirth led the UCB/UTK center. The directors have extensive experience in PSI and material research, and have been internationally recognized in the magnetic fusion, materials and plasma research fields. The co-centers feature keystone PSI experimental and modeling facilities dedicated to PSI science: the DIONISOS/CLASS facility at MIT, the PISCES facility at UCSD, and the state-of-the-art numerical modeling capabilities at UCB/UTK. A collaborative partner in the center is Sandia National Laboratory at Livermore (SNL/CA), which has extensive capabilities with low energy ion beams and surface diagnostics, as well as supporting plasma facilities, including the Tritium Plasma Experiment, all of which significantly augment the Center. Interpretive, continuum material models are available through SNL/CA, UCSD and MIT. The participating institutions of MIT, UCSD, UCB/UTK, SNL/CA and LLNL brought a formidable array of experimental tools and personnel abilities into the PSI Plasma Center. Our work has focused on modeling activities associated with plasma surface interactions that are involved in effects of He and H plasma bombardment on tungsten surfaces. This involved performing computational material modeling of the surface evolution during plasma bombardment using molecular dynamics modeling. The principal outcomes of the research efforts within the combined experimental – modeling PSI center are to provide a knowledgebase of the mechanisms of surface degradation, and the influence of the surface on plasma conditions.« less
Message From the Editor for Contributions to the 2010 Real Time Conference Issue of TNS
NASA Astrophysics Data System (ADS)
Schmeling, Sascha Marc
2011-08-01
The 72 papers in this special issue were originally presented at the 17th IEEE-NPSS Real Time Conference (RT2010) on Computing Applications in Nuclear and Plasma Sciences, held in Lisbon, Portugal in May 2010.
Thermodynamic and Transport Properties of Real Air Plasma in Wide Range of Temperature and Pressure
NASA Astrophysics Data System (ADS)
Wang, Chunlin; Wu, Yi; Chen, Zhexin; Yang, Fei; Feng, Ying; Rong, Mingzhe; Zhang, Hantian
2016-07-01
Air plasma has been widely applied in industrial manufacture. In this paper, both dry and humid air plasmas' thermodynamic and transport properties are calculated in temperature 300-100000 K and pressure 0.1-100 atm. To build a more precise model of real air plasma, over 70 species are considered for composition. Two different methods, the Gibbs free energy minimization method and the mass action law method, are used to determinate the composition of the air plasma in a different temperature range. For the transport coefficients, the simplified Chapman-Enskog method developed by Devoto has been applied using the most recent collision integrals. It is found that the presence of CO2 has almost no effect on the properties of air plasma. The influence of H2O can be ignored except in low pressure air plasma, in which the saturated vapor pressure is relatively high. The results will serve as credible inputs for computational simulation of air plasma. supported by the National Key Basic Research Program of China (973 Program)(No. 2015CB251002), National Natural Science Foundation of China (Nos. 51521065, 51577145), the Science and Technology Project Funds of the Grid State Corporation (SGTYHT/13-JS-177), the Fundamental Research Funds for the Central Universities, and State Grid Corporation Project (GY71-14-004)
SciDAC GSEP: Gyrokinetic Simulation of Energetic Particle Turbulence and Transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Zhihong
Energetic particle (EP) confinement is a key physics issue for burning plasma experiment ITER, the crucial next step in the quest for clean and abundant energy, since ignition relies on self-heating by energetic fusion products (α-particles). Due to the strong coupling of EP with burning thermal plasmas, plasma confinement property in the ignition regime is one of the most uncertain factors when extrapolating from existing fusion devices to the ITER tokamak. EP population in current tokamaks are mostly produced by auxiliary heating such as neutral beam injection (NBI) and radio frequency (RF) heating. Remarkable progress in developing comprehensive EP simulationmore » codes and understanding basic EP physics has been made by two concurrent SciDAC EP projects GSEP funded by the Department of Energy (DOE) Office of Fusion Energy Science (OFES), which have successfully established gyrokinetic turbulence simulation as a necessary paradigm shift for studying the EP confinement in burning plasmas. Verification and validation have rapidly advanced through close collaborations between simulation, theory, and experiment. Furthermore, productive collaborations with computational scientists have enabled EP simulation codes to effectively utilize current petascale computers and emerging exascale computers. We review here key physics progress in the GSEP projects regarding verification and validation of gyrokinetic simulations, nonlinear EP physics, EP coupling with thermal plasmas, and reduced EP transport models. Advances in high performance computing through collaborations with computational scientists that enable these large scale electromagnetic simulations are also highlighted. These results have been widely disseminated in numerous peer-reviewed publications including many Phys. Rev. Lett. papers and many invited presentations at prominent fusion conferences such as the biennial International Atomic Energy Agency (IAEA) Fusion Energy Conference and the annual meeting of the American Physics Society, Division of Plasma Physics (APS-DPP).« less
First-Principles Equation of State and Shock Compression of Warm Dense Aluminum and Hydrocarbons
NASA Astrophysics Data System (ADS)
Driver, Kevin; Soubiran, Francois; Zhang, Shuai; Militzer, Burkhard
2017-10-01
Theoretical studies of warm dense plasmas are a key component of progress in fusion science, defense science, and astrophysics programs. Path integral Monte Carlo (PIMC) and density functional theory molecular dynamics (DFT-MD), two state-of-the-art, first-principles, electronic-structure simulation methods, provide a consistent description of plasmas over a wide range of density and temperature conditions. Here, we combine high-temperature PIMC data with lower-temperature DFT-MD data to compute coherent equations of state (EOS) for aluminum and hydrocarbon plasmas. Subsequently, we derive shock Hugoniot curves from these EOSs and extract the temperature-density evolution of plasma structure and ionization behavior from pair-correlation function analyses. Since PIMC and DFT-MD accurately treat effects of atomic shell structure, we find compression maxima along Hugoniot curves attributed to K-shell and L-shell ionization, which provide a benchmark for widely-used EOS tables, such as SESAME and LEOS, and more efficient models. LLNL-ABS-734424. Funding provided by the DOE (DE-SC0010517) and in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Computational resources provided by Blue Waters (NSF ACI1640776) and NERSC. K. Driver's and S. Zhang's current address is Lawrence Livermore Natl. Lab, Livermore, CA, 94550, USA.
Bartschat, Klaus; Kushner, Mark J.
2016-01-01
Electron collisions with atoms, ions, molecules, and surfaces are critically important to the understanding and modeling of low-temperature plasmas (LTPs), and so in the development of technologies based on LTPs. Recent progress in obtaining experimental benchmark data and the development of highly sophisticated computational methods is highlighted. With the cesium-based diode-pumped alkali laser and remote plasma etching of Si3N4 as examples, we demonstrate how accurate and comprehensive datasets for electron collisions enable complex modeling of plasma-using technologies that empower our high-technology–based society. PMID:27317740
2004-07-01
steadily for the past fifteen years, while memory latency and bandwidth have improved much more slowly. For example, Intel processor clock rates38 have... processor and memory performance) all greatly restrict the ability to achieve high levels of performance for science, engineering, and national...sub-nuclear distances. Guide experiments to identify transition from quantum chromodynamics to quark -gluon plasma. Accelerator Physics Accurate
Message From the Editor for Contributions to the 2007 Real Time Conference Issue of TNS
NASA Astrophysics Data System (ADS)
Dufey, Jean-Pierre
2008-02-01
This issue presents 67 papers which were originally presented at the 15th IEEE-NPSS Real Time Conference (RT2007) on Computing Applications in Nuclear and Plasma Sciences held at Fermilab, Batavia, IL, April 29-May 4, 2007.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spentzouris, Panagiotis; /Fermilab; Cary, John
The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessarymore » accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.« less
Promoting Pre-college Science Education
NASA Astrophysics Data System (ADS)
Taylor, P. L.; Lee, R. L.
2000-10-01
The Fusion Education Program, with continued support from DOE, has strengthened its interactions with educators in promoting pre-college science education for students. Projects aggressively pursued this year include an on-site, college credited, laboratory-based 10-day educator workshop on plasma and fusion science; completion of `Starpower', a fusion power plant simulation on interactive CD; expansion of scientist visits to classrooms; broadened participation in an internet-based science olympiad; and enhancements to the tours of the DIII-D Facility. In the workshop, twelve teachers used bench top devices to explore basic plasma physics. Also included were radiation experiments, computer aided drafting, techniques to integrate fusion science and technology in the classroom, and visits to a University Physics lab and the San Diego Supercomputer Center. Our ``Scientist in a Classroom'' program reached more than 2200 students at 20 schools. Our `Starpower' CD allows a range of interactive learning from the effects of electric and magnetic fields on charged particles to operation of a Tokamak-based power plant. Continuing tours of the DIII-D facility were attended by more than 800 students this past year.
EDITORIAL: Plasma Surface Interactions for Fusion
NASA Astrophysics Data System (ADS)
2006-05-01
Because plasma-boundary physics encompasses some of the most important unresolved issues for both the International Thermonuclear Experimental Reactor (ITER) project and future fusion power reactors, there is a strong interest in the fusion community for better understanding and characterization of plasma wall interactions. Chemical and physical sputtering cause the erosion of the limiters/divertor plates and vacuum vessel walls (made of C, Be and W, for example) and degrade fusion performance by diluting the fusion fuel and excessively cooling the core, while carbon redeposition could produce long-term in-vessel tritium retention, degrading the superior thermo-mechanical properties of the carbon materials. Mixed plasma-facing materials are proposed, requiring optimization for different power and particle flux characteristics. Knowledge of material properties as well as characteristics of the plasma material interaction are prerequisites for such optimizations. Computational power will soon reach hundreds of teraflops, so that theoretical and plasma science expertise can be matched with new experimental capabilities in order to mount a strong response to these challenges. To begin to address such questions, a Workshop on New Directions for Advanced Computer Simulations and Experiments in Fusion-Related Plasma Surface Interactions for Fusion (PSIF) was held at the Oak Ridge National Laboratory from 21 to 23 March, 2005. The purpose of the workshop was to bring together researchers in fusion related plasma wall interactions in order to address these topics and to identify the most needed and promising directions for study, to exchange opinions on the present depth of knowledge of surface properties for the main fusion-related materials, e.g., C, Be and W, especially for sputtering, reflection, and deuterium (tritium) retention properties. The goal was to suggest the most important next steps needed for such basic computational and experimental work to be facilitated by researchers in fusion, material, and physical sciences. Representatives from many fusion research laboratories attended, and 25 talks were given, the majority of them making up the content of these Workshop proceedings. The presentations of all talks and further information on the Workshop are available at http://www-cfadc.phy.ornl.gov/psif/home.html. The workshop talks dealt with identification of needs from the perspective of integrated fusion simulation and ITER design, recent developments and perspectives on computation of plasma-facing surface properties using the current and expected new generation of computation capability, and with the status of dedicated laboratory experiments which characterize the underlying processes of PSIF. The Workshop summary and conclusions are being published in Nuclear Fusion 45 (2005). We are indebted to Lynda Saddiq and Fay Ownby, secretaries in the Physics Division of ORNL, whose special efforts, devotion, and expertise made possible both the Workshop and these Proceedings. J T Hogan, P S Krstic and F W Meyer Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6372, USA
CICART Center For Integrated Computation And Analysis Of Reconnection And Turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharjee, Amitava
CICART is a partnership between the University of New Hampshire (UNH) and Dartmouth College. CICART addresses two important science needs of the DoE: the basic understanding of magnetic reconnection and turbulence that strongly impacts the performance of fusion plasmas, and the development of new mathematical and computational tools that enable the modeling and control of these phenomena. The principal participants of CICART constitute an interdisciplinary group, drawn from the communities of applied mathematics, astrophysics, computational physics, fluid dynamics, and fusion physics. It is a main premise of CICART that fundamental aspects of magnetic reconnection and turbulence in fusion devices, smaller-scalemore » laboratory experiments, and space and astrophysical plasmas can be viewed from a common perspective, and that progress in understanding in any of these interconnected fields is likely to lead to progress in others. The establishment of CICART has strongly impacted the education and research mission of a new Program in Integrated Applied Mathematics in the College of Engineering and Applied Sciences at UNH by enabling the recruitment of a tenure-track faculty member, supported equally by UNH and CICART, and the establishment of an IBM-UNH Computing Alliance. The proposed areas of research in magnetic reconnection and turbulence in astrophysical, space, and laboratory plasmas include the following topics: (A) Reconnection and secondary instabilities in large high-Lundquist-number plasmas, (B) Particle acceleration in the presence of multiple magnetic islands, (C) Gyrokinetic reconnection: comparison with fluid and particle-in-cell models, (D) Imbalanced turbulence, (E) Ion heating, and (F) Turbulence in laboratory (including fusion-relevant) experiments. These theoretical studies make active use of three high-performance computer simulation codes: (1) The Magnetic Reconnection Code, based on extended two-fluid (or Hall MHD) equations, in an Adaptive Mesh Refinement (AMR) framework, (2) the Particle Simulation Code, a fully electromagnetic 3D Particle-In-Cell (PIC) code that includes a collision operator, and (3) GS2, an Eulerian, electromagnetic, kinetic code that is widely used in the fusion program, and simulates the nonlinear gyrokinetic equations, together with a self-consistent set of Maxwell’s equations.« less
The response function of modulated grid Faraday cup plasma instruments
NASA Technical Reports Server (NTRS)
Barnett, A.; Olbert, S.
1986-01-01
Modulated grid Faraday cup plasma analyzers are a very useful tool for making in situ measurements of space plasmas. One of their great attributes is that their simplicity permits their angular response function to be calculated theoretically. An expression is derived for this response function by computing the trajectories of the charged particles inside the cup. The Voyager Plasma Science (PLS) experiment is used as a specific example. Two approximations to the rigorous response function useful for data analysis are discussed. The theoretical formulas were tested by multi-sensor analysis of solar wind data. The tests indicate that the formulas represent the true cup response function for all angles of incidence with a maximum error of only a few percent.
Implementation of a plasma-neutral model in NIMROD
NASA Astrophysics Data System (ADS)
Taheri, S.; Shumlak, U.; King, J. R.
2016-10-01
Interaction between plasma fluid and neutral species is of great importance in the edge region of magnetically confined fusion plasmas. The presence of neutrals can have beneficial effects such as fueling burning plasmas and quenching the disruptions in tokamaks, as well as deleterious effects like depositing high energy particles on the vessel wall. The behavior of edge plasmas in magnetically confined systems has been investigated using computational approaches that utilize the fluid description for the plasma and Monte Carlo transport for neutrals. In this research a reacting plasma-neutral model is implemented in NIMROD to study the interaction between plasma and neutral fluids. This model, developed by E. T. Meier and U. Shumlak, combines a single-fluid magnetohydrodynamic (MHD) plasma model with a gas dynamic neutral fluid model which accounts for electron-impact ionization, radiative recombination, and resonant charge exchange. Incorporating this model into NIMROD allows the study of the interaction between neutrals and plasma in a variety of plasma science problems. An accelerated plasma moving through a neutral gas background in a coaxial electrode configuration is modeled, and the results are compared with previous calculations from the HiFi code.
The Integrated Plasma Simulator: A Flexible Python Framework for Coupled Multiphysics Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foley, Samantha S; Elwasif, Wael R; Bernholdt, David E
2011-11-01
High-fidelity coupled multiphysics simulations are an increasingly important aspect of computational science. In many domains, however, there has been very limited experience with simulations of this sort, therefore research in coupled multiphysics often requires computational frameworks with significant flexibility to respond to the changing directions of the physics and mathematics. This paper presents the Integrated Plasma Simulator (IPS), a framework designed for loosely coupled simulations of fusion plasmas. The IPS provides users with a simple component architecture into which a wide range of existing plasma physics codes can be inserted as components. Simulations can take advantage of multiple levels ofmore » parallelism supported in the IPS, and can be controlled by a high-level ``driver'' component, or by other coordination mechanisms, such as an asynchronous event service. We describe the requirements and design of the framework, and how they were implemented in the Python language. We also illustrate the flexibility of the framework by providing examples of different types of simulations that utilize various features of the IPS.« less
NASA Technical Reports Server (NTRS)
1981-01-01
The Voyager spacecraft and experiments are described. The spacecraft description includes the structure and configuration, communications systems, power supplies, computer command subsystems, and the science platform. The experiments discussed are investigations of cosmic rays, low-energy charged particles, magnetic fields, and plasma waves, along with studies in radio astronomy photopolarimetry. The tracking and data acquisition procedures for the missions are presented.
NASA Astrophysics Data System (ADS)
Karimabadi, Homa
2012-03-01
Recent advances in simulation technology and hardware are enabling breakthrough science where many longstanding problems can now be addressed for the first time. In this talk, we focus on kinetic simulations of the Earth's magnetosphere and magnetic reconnection process which is the key mechanism that breaks the protective shield of the Earth's dipole field, allowing the solar wind to enter the Earth's magnetosphere. This leads to the so-called space weather where storms on the Sun can affect space-borne and ground-based technological systems on Earth. The talk will consist of three parts: (a) overview of a new multi-scale simulation technique where each computational grid is updated based on its own unique timestep, (b) Presentation of a new approach to data analysis that we refer to as Physics Mining which entails combining data mining and computer vision algorithms with scientific visualization to extract physics from the resulting massive data sets. (c) Presentation of several recent discoveries in studies of space plasmas including the role of vortex formation and resulting turbulence in magnetized plasmas.
Message From the Editor for Contributions to the 2016 Real Time Conference Issue of TNS
NASA Astrophysics Data System (ADS)
Schmeling, Sascha Marc
2017-06-01
This issue of the IEEE Transactions on Nuclear Science (TNS) is devoted to the 20th IEEE-NPSS Real Time Conference (RT2016) on Computing Applications in Nuclear and Plasma Sciences held in Padua, Italy, in June 2016. A total of 90 papers presented at the conference were submitted for possible publication in TNS. This conference issue presents 46 papers, which have been accepted so far after a thorough peer review process. These contributions come from a very broad range of fields of application, including Astrophysics, Medical Imaging, Nuclear and Plasma Physics, Particle Accelerators, and Particle Physics Experiments. Several papers were close to being accepted but did not make it into this special issue. They will be considered for further publication.
One-dimensional hybrid model of plasma-solid interaction in argon plasma at higher pressures
NASA Astrophysics Data System (ADS)
Jelínek, P.; Hrach, R.
2007-04-01
One of problems important in the present plasma science is the surface treatment of materials at higher pressures, including the atmospheric pressure plasma. The theoretical analysis of processes in such plasmas is difficult, because the theories derived for collisionless or slightly collisional plasma lose their validity at medium and high pressures, therefore the methods of computational physics are being widely used. There are two basic ways, how to model the physical processes taking place during the interaction of plasma with immersed solids. The first technique is the particle approach, the second one is called the fluid modelling. Both these approaches have their limitations-small efficiency of particle modelling and limited accuracy of fluid models. In computer modelling is endeavoured to use advantages by combination of these two approaches, this combination is named hybrid modelling. In our work one-dimensional hybrid model of plasma-solid interaction has been developed for an electropositive plasma at higher pressures. We have used hybrid model for this problem only as the test for our next applications, e.g. pulsed discharge, RF discharge, etc. The hybrid model consists of a combined molecular dynamics-Monte Carlo model for fast electrons and fluid model for slow electrons and positive argon ions. The latter model also contains Poisson's equation, to obtain a self-consistent electric field distribution. The derived results include the spatial distributions of electric potential, concentrations and fluxes of individual charged species near the substrate for various pressures and for various probe voltage bias.
NASA Astrophysics Data System (ADS)
Shukla, P. K.; Stenflo, L.
2005-01-01
The "International Workshop on Theoretical Plasma Physics: Modern Plasma Science was held at the Abdus Salam International Centre for Theoretical Physics (Abdus Salam ICTP), Trieste, Italy during the period 5 16 July 2004. The workshop was organized by P K Shukla, R Bingham, S M Mahajan, J T Mendonça, L Stenflo, and others. The workshop enters into a series of previous biennial activities that we have held at the Abdus Salam ICTP since 1989. The scientific program of the workshop was split into two parts. In the first week, most of the lectures dealt with problems concerning astrophysical plasmas, while in the second week, diversity was introduced in order to address the important role of plasma physics in modern areas of science and technology. Here, attention was focused on cross-disciplinary topics including Schrödinger-like models, which are common in plasma physics, nonlinear optics, quantum engineering (Bose-Einstein condensates), and nonlinear fluid mechanics, as well as emerging topics in fundamental theoretical and computational plasma physics, space and dusty plasma physics, laser-plasma interactions, etc. The workshop was attended by approximately hundred-twenty participants from the developing countries, Europe, USA, and Japan. A large number of participants were young researchers from both the developing and industrial countries, as the directors of the workshop tried to keep a good balance in inviting senior and younger generations of theoretical, computational and experimental plasma physicists to our Trieste activities. In the first week, there were extensive discussions on the physics of electromagnetic wave emissions from pulsar magnetospheres, relativistic magnetohydrodynamics of astrophysical objects, different scale sizes turbulence and structures in astrophysics. The scientific program of the second week included five review talks (60 minutes) and about thirty invited topical lectures (30 minutes). In addition, during the two weeks, there were more than seventy poster papers in three sessions. The latter provided opportunities for younger physicists to display the results of their recent work and to obtain comments from the other participants. During the period 11 16 July 2004 at the Abdus Salam ICTP, we focused on nonlinear effects that are common in plasmas, fluids, nonlinear optics, and condensed matter physics. In addition, we concentrated on collective processes in space and dusty plasmas, as well as in astrophysics and intense laser-plasma interactions. Also presented were modern topics of nonlinear neutrino-plasma interactions, nonlinear quantum electrodynamics, quark-gluon plasmas, and high-energy astrophysics. This reflects that plasma physics is a truly cross-disciplinary and very fascinating science with many potential applications. The workshop was attended by several distinguished invited speakers. Most of the contributions from the second week of our Trieste workshop appear in this Topical Issue of Physica Scripta, which will be distributed to all the participants. The organizers are grateful to Professor Katepalli Raju Sreenivasan, the director of the Abdus Salam ICTP, for his generous support and warm hospitality in Trieste. The Editors appreciate their colleagues and co-organizers for their constant and wholehearted support in our endeavours of publishing this Topical Issue of Physica Scripta. We highly value the excellent work of Mrs Ave Lusenti and Dr. Brian Stewart at the Abdus Salam ICTP. Thanks are also due to the European Commission for supporting our activity through the Research Training Networks entitled "Complex Plasmas" and "Turbulent Boundary Layers". Finally, we would like to express our gratitude to the Abdus Salam ICTP for providing financial support to our workshop in Trieste. Besides, the workshop directors thank the speakers and the attendees for their contributions which resulted in the success of our Trieste workshop 2004. Specifically, we appreciate the speakers for delivering excellent talks, supplying well prepared manuscripts for publication, and enhancing the plasma physics activity at the Abdus Salam ICTP.
Real Time Conference 2016 Overview
NASA Astrophysics Data System (ADS)
Luchetta, Adriano
2017-06-01
This is a special issue of the IEEE Transactions on Nuclear Science containing papers from the invited, oral, and poster presentation of the 20th Real Time Conference (RT2016). The conference was held June 6-10, 2016, at Centro Congressi Padova “A. Luciani,” Padova, Italy, and was organized by Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA) and the Istituto Nazionale di Fisica Nucleare. The Real Time Conference is multidisciplinary and focuses on the latest developments in real-time techniques in high-energy physics, nuclear physics, astrophysics and astroparticle physics, nuclear fusion, medical physics, space instrumentation, nuclear power instrumentation, general radiation instrumentation, and real-time security and safety. Taking place every second year, it is sponsored by the Computer Application in Nuclear and Plasma Sciences technical committee of the IEEE Nuclear and Plasma Sciences Society. RT2016 attracted more than 240 registrants, with a large proportion of young researchers and engineers. It had an attendance of 67 students from many countries.
Single-shot ultrafast tomographic imaging by spectral multiplexing
NASA Astrophysics Data System (ADS)
Matlis, N. H.; Axley, A.; Leemans, W. P.
2012-10-01
Computed tomography has profoundly impacted science, medicine and technology by using projection measurements scanned over multiple angles to permit cross-sectional imaging of an object. The application of computed tomography to moving or dynamically varying objects, however, has been limited by the temporal resolution of the technique, which is set by the time required to complete the scan. For objects that vary on ultrafast timescales, traditional scanning methods are not an option. Here we present a non-scanning method capable of resolving structure on femtosecond timescales by using spectral multiplexing of a single laser beam to perform tomographic imaging over a continuous range of angles simultaneously. We use this technique to demonstrate the first single-shot ultrafast computed tomography reconstructions and obtain previously inaccessible structure and position information for laser-induced plasma filaments. This development enables real-time tomographic imaging for ultrafast science, and offers a potential solution to the challenging problem of imaging through scattering surfaces.
NASA Astrophysics Data System (ADS)
Koehn, Patrick Leo
The plasma environment at Mercury is a rich laboratory for studying the interaction of the solar wind with a planet. Three primary populations of ions exist at Mercury: solar wind, magnetospheric particles, and pickup ions. Pickup ions are generated through the ionization of Mercury's exosphere or are sputtered particles from the Mercury surface. A comprehensive mission to Mercury should include a sensor that is able to determine the dynamical properties and composition of all three plasma components. The Fast Imaging Plasma Spectrometer (FIPS) is an instrument to measure the composition of these ion populations and their three-dimensional velocity distribution functions. It is lightweight, fast, and has a very large field of view, and these properties made possible its accommodation within the highly mass- constrained payload of MESSENGER (MErcury: Surface, Space ENvironment, GEochemistry, Ranging) mission, a Mercury orbiter. This work details the development cycle of FIPS, from concept to prototype testing. It begins with science studies of the magnetospheric and pickup ion environments of Mercury, using state-of-the-art computer simulations to produce static and quasi-dynamic magnetospheric systems. Predictions are made of the spatially variable plasma environment at Mercury, and the temporally varying magnetosphere-solar wind interaction is examined. Pickup ion studies provide insights to particle loss mechanisms and the nature of the radar-bright regions at the Hermean poles. These studies produce science requirements for successfully measuring this environment with an orbiting mass spectrometer. With these science requirements in mind, a concept for a new electrostatic analyzer is created. This concept is considered from a theoretical standpoint, and compared with other, similarly performing instruments, both of the past and currently in use. The development cycle continues with instrument simulation, which allows the design to be adjusted to fit within the science requirements of the mission. Finally, a prototype electrostatic is constructed and tested in a space- simulating vacuum chamber system. The results of these tests are compared with the simulation results, and ultimately shown to fit within the science requirements for the MESSENGER mission.
Plasma Physics at the National Science Foundation
NASA Astrophysics Data System (ADS)
Lukin, Vyacheslav
2017-10-01
The Town Meeting on Plasma Physics at the National Science Foundation will provide an opportunity for Q&A about the variety of NSF programs and solicitations relevant to a broad cross-section of the academic plasma science community, from graduating college seniors to senior leaders in the field, and from plasma astrophysics to basic physics to plasma engineering communities. We will discuss recent NSF-hosted events, research awards, and multi-agency partnerships aimed at enabling the progress of science in plasma science and engineering. Future outlook for plasma physics and broader plasma science support at NSF, with an emphasis on how you can help NSF to help the community, will be speculated upon within the uncertainty of the federal budgeting process.
Study of Plasma Liner Driven Magnetized Target Fusion Via Advanced Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samulyak, Roman V.; Brookhaven National Lab.; Parks, Paul
The feasibility of the plasma liner driven Magnetized Target Fusion (MTF) via terascale numerical simulations will be assessed. In the MTF concept, a plasma liner, formed by merging of a number (60 or more) of radial, highly supersonic plasma jets, implodes on the target in the form of two compact plasma toroids, and compresses it to conditions of the fusion ignition. By avoiding major difficulties associated with both the traditional laser driven inertial confinement fusion and solid liner driven MTF, the plasma liner driven MTF potentially provides a low-cost and fast R&D path towards the demonstration of practical fusion energy.more » High fidelity numerical simulations of full nonlinear models associated with the plasma liner MTF using state-of-art numerical algorithms and terascale computing are necessary in order to resolve uncertainties and provide guidance for future experiments. At Stony Brook University, we have developed unique computational capabilities that ideally suite the MTF problem. The FronTier code, developed in collaboration with BNL and LANL under DOE funding including SciDAC for the simulation of 3D multi-material hydro and MHD flows, has beenbenchmarked and used for fundamental and engineering problems in energy science applications. We have performed 3D simulations of converging supersonic plasma jets, their merger and the formation of the plasma liner, and a study of the corresponding oblique shock problem. We have studied the implosion of the plasma liner on the magnetized plasma target by resolving Rayleigh-Taylor instabilities in 2D and 3D and other relevant physics and estimate thermodynamic conditions of the target at the moment of maximum compression and the hydrodynamic efficiency of the method.« less
1999 LDRD Laboratory Directed Research and Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rita Spencer; Kyle Wheeler
This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less
Laboratory Directed Research and Development FY 1998 Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Vigil; Kyle Wheeler
This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less
Laboratory directed research and development: FY 1997 progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vigil, J.; Prono, J.
1998-05-01
This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less
Role of Laboratory Plasma Experiments in exploring the Physics of Solar Eruptions
NASA Astrophysics Data System (ADS)
Tripathi, S.
2017-12-01
Solar eruptive events are triggered over a broad range of spatio-temporal scales by a variety of fundamental processes (e.g., force-imbalance, magnetic-reconnection, electrical-current driven instabilities) associated with arched magnetoplasma structures in the solar atmosphere. Contemporary research on solar eruptive events is at the forefront of solar and heliospheric physics due to its relevance to space weather. Details on the formation of magnetized plasma structures on the Sun, storage of magnetic energy in such structures over a long period (several Alfven transit times), and their impulsive eruptions have been recorded in numerous observations and simulated in computer models. Inherent limitations of space observations and uncontrolled nature of solar eruptions pose significant challenges in testing theoretical models and developing the predictive capability for space-weather. The pace of scientific progress in this area can be significantly boosted by tapping the potential of appropriately scaled laboratory plasma experiments to compliment solar observations, theoretical models, and computer simulations. To give an example, recent results from a laboratory plasma experiment on arched magnetic flux ropes will be presented and future challenges will be discussed. (Work supported by National Science Foundation, USA under award number 1619551)
NASA Astrophysics Data System (ADS)
Hur, Min Young; Verboncoeur, John; Lee, Hae June
2014-10-01
Particle-in-cell (PIC) simulations have high fidelity in the plasma device requiring transient kinetic modeling compared with fluid simulations. It uses less approximation on the plasma kinetics but requires many particles and grids to observe the semantic results. It means that the simulation spends lots of simulation time in proportion to the number of particles. Therefore, PIC simulation needs high performance computing. In this research, a graphic processing unit (GPU) is adopted for high performance computing of PIC simulation for low temperature discharge plasmas. GPUs have many-core processors and high memory bandwidth compared with a central processing unit (CPU). NVIDIA GeForce GPUs were used for the test with hundreds of cores which show cost-effective performance. PIC code algorithm is divided into two modules which are a field solver and a particle mover. The particle mover module is divided into four routines which are named move, boundary, Monte Carlo collision (MCC), and deposit. Overall, the GPU code solves particle motions as well as electrostatic potential in two-dimensional geometry almost 30 times faster than a single CPU code. This work was supported by the Korea Institute of Science Technology Information.
Hollow laser plasma self-confined microjet generation
NASA Astrophysics Data System (ADS)
Sizyuk, Valeryi; Hassanein, Ahmed; CenterMaterials under Extreme Environment Team
2017-10-01
Hollow laser beam produced plasma (LPP) devices are being used for the generation of the self-confined cumulative microjet. Most important place by this LPP device construction is achieving of an annular distribution of the laser beam intensity by spot. An integrated model is being developed to detailed simulation of the plasma generation and evolution inside the laser beam channel. The model describes in two temperature approximation hydrodynamic processes in plasma, laser absorption processes, heat conduction, and radiation energy transport. The total variation diminishing scheme in the Lax-Friedrich formulation for the description of plasma hydrodynamic is used. Laser absorption and radiation transport models on the base of Monte Carlo method are being developed. Heat conduction part on the implicit scheme with sparse matrixes using is realized. The developed models are being integrated into HEIGHTS-LPP computer simulation package. The integrated modeling of the hollow beam laser plasma generation showed the self-confinement and acceleration of the plasma microjet inside the laser channel. It was found dependence of the microjet parameters including radiation emission on the hole and beam radiuses ratio. This work is supported by the National Science Foundation, PIRE project.
Laboratory-directed research and development: FY 1996 progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vigil, J.; Prono, J.
1997-05-01
This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects` principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear andmore » particle physics, and (9) biosciences.« less
Synthesis of Silicon Nanoparticles in Inductively Coupled Plasmas
NASA Astrophysics Data System (ADS)
Markosyan, Aram H.; Le Picard, Romain; Girshick, Steven L.; Kushner, Mark J.
2016-09-01
The synthesis of silicon nanoparticles (Si-NPs) is being investigated for their use in photo-emitting electronics, photovoltaics, and biotechnology. The ability to control the size and mono-disperse nature of Si-NPs is important to optimizing these applications. In this paper we discuss results from a computational investigation of Si-NP formation and growth in an inductively coupled plasma (ICP) reactor with the goal of achieving this control. We use a two dimensional numerical model where the algorithms for the kinetics of NP formation are self-consistently coupled with a plasma hydrodynamics simulation. The reactor modeled here resembles a GEC reference cell through which, for the base case, a mixture of Ar/SiH4 = 70/30 flows at 150 sccm at a pressure of 100 mTorr. In continuous wave mode, three coils located on top of the reactor deliver 150 W. The electric plasma potential confines negatively charged particles at the center of the discharge, increasing the residence time of negative NPs, which enables the NPs to potentially grow to large and controllable sizes of many to 100s nm. We discuss methods of controlling NP growth rates by varying the mole fraction and flow rate of SiH4, and using a pulsed plasma by varying the pulse period and duty cycle. Work supported by DOE Office of Fusion Energy Science and National Science Foundation.
The Science on Saturday Program at Princeton Plasma Physics Laboratory
NASA Astrophysics Data System (ADS)
Bretz, N.; Lamarche, P.; Lagin, L.; Ritter, C.; Carroll, D. L.
1996-11-01
The Science on Saturday Program at Princeton Plasma Physics Laboratory consists of a series of Saturday morning lectures on various topics in science by scientists, engineers, educators, and others with an interesting story. This program has been in existence for over twelve years and has been advertised to and primarily aimed at the high school level. Topics ranging from superconductivity to computer animation and gorilla conservation to pharmaceutical design have been covered. Lecturers from the staff of Princeton, Rutgers, AT and T, Bristol Meyers Squibb, and many others have participated. Speakers have ranged from Nobel prize winners, astronauts, industrialists, educators, engineers, and science writers. Typically, there are eight to ten lectures starting in January. A mailing list has been compiled for schools, science teachers, libraries, and museums in the Princeton area. For the past two years AT and T has sponsored buses for Trenton area students to come to these lectures and an effort has been made to publicize the program to these students. The series has been very popular, frequently overfilling the 300 seat PPPL auditorium. As a result, the lectures are videotaped and broadcast to a large screen TV for remote viewing. Lecturers are encouraged to interact with the audience and ample time is provided for questions.
Efficient quasi-monoenergetic ion beams from laser-driven relativistic plasmas
Palaniyappan, Sasi; Huang, Chengkun; Gautier, Donald C.; Hamilton, Christopher E.; Santiago, Miguel A.; Kreuzer, Christian; Sefkow, Adam B.; Shah, Rahul C.; Fernández, Juan C.
2015-01-01
Table-top laser–plasma ion accelerators have many exciting applications, many of which require ion beams with simultaneous narrow energy spread and high conversion efficiency. However, achieving these requirements has been elusive. Here we report the experimental demonstration of laser-driven ion beams with narrow energy spread and energies up to 18 MeV per nucleon and ∼5% conversion efficiency (that is 4 J out of 80-J laser). Using computer simulations we identify a self-organizing scheme that reduces the ion energy spread after the laser exits the plasma through persisting self-generated plasma electric (∼1012 V m−1) and magnetic (∼104 T) fields. These results contribute to the development of next generation compact accelerators suitable for many applications such as isochoric heating for ion-fast ignition and producing warm dense matter for basic science. PMID:26657147
Educational Outreach at the M.I.T. Plasma Fusion Center
NASA Astrophysics Data System (ADS)
Censabella, V.
1996-11-01
Educational outreach at the MIT Plasma Fusion Center consists of volunteers working together to increase the public's knowledge of fusion and plasma-related experiments. Seeking to generate excitement about science, engineering and mathematics, the PFC holds a number of outreach activities throughout the year, such as Middle and High School Outreach Days. Outreach also includes the Mr. Magnet Program, which uses an interactive strategy to engage elementary school children. Included in this year's presentation will be a new and improved C-MOD Jr, a confinement video game which helps students to discover how computers manipulate magnetic pulses to keep a plasma confined for as long as possible. Also on display will be an educational toy created by the Cambridge Physics Outlet, a PFC spin-off company. The PFC maintains a Home Page on the World Wide Web, which can be reached at http://cmod2.pfc.mit.edu/.
Efficient quasi-monoenergetic ion beams from laser-driven relativistic plasmas
Palaniyappan, Sasi; Huang, Chengkun; Gautier, Donald C.; ...
2015-12-11
Here, table-top laser–plasma ion accelerators have many exciting applications, many of which require ion beams with simultaneous narrow energy spread and high conversion efficiency. However, achieving these requirements has been elusive. Here we report the experimental demonstration of laser-driven ion beams with narrow energy spread and energies up to 18 MeV per nucleon and ~5% conversion efficiency (that is 4 J out of 80-J laser). Using computer simulations we identify a self-organizing scheme that reduces the ion energy spread after the laser exits the plasma through persisting self-generated plasma electric (~10 12 V m –1) and magnetic (~10 4 T)more » fields. These results contribute to the development of next generation compact accelerators suitable for many applications such as isochoric heating for ion-fast ignition and producing warm dense matter for basic science.« less
State of the art in medical applications using non-thermal atmospheric pressure plasma
NASA Astrophysics Data System (ADS)
Tanaka, Hiromasa; Ishikawa, Kenji; Mizuno, Masaaki; Toyokuni, Shinya; Kajiyama, Hiroaki; Kikkawa, Fumitaka; Metelmann, Hans-Robert; Hori, Masaru
2017-12-01
Plasma medical science is a novel interdisciplinary field that combines studies on plasma science and medical science, with the anticipation that understanding the scientific principles governing plasma medical science will lead to innovations in the field. Non-thermal atmospheric pressure plasma has been used for medical treatments, such as for cancer, blood coagulation, and wound healing. The interactions that occur between plasma and cells/tissues have been analyzed extensively. Direct and indirect treatment of cells with plasma has broadened the applications of non-thermal atmospheric pressure plasma in medicine. Examples of indirect treatment include plasma-assisted immune-therapy and plasma-activated medium. Controlling intracellular redox balance may be key in plasma cancer treatment. Animal studies are required to test the effectiveness and safety of these treatments for future clinical applications.
The Center for Multiscale Plasma Dynamics, Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gombosi, Tamas I.
The University of Michigan participated in the joint UCLA/Maryland fusion science center focused on plasma physics problems for which the traditional separation of the dynamics into microscale and macroscale processes breaks down. These processes involve large scale flows and magnetic fields tightly coupled to the small scale, kinetic dynamics of turbulence, particle acceleration and energy cascade. The interaction between these vastly disparate scales controls the evolution of the system. The enormous range of temporal and spatial scales associated with these problems renders direct simulation intractable even in computations that use the largest existing parallel computers. Our efforts focused on twomore » main problems: the development of Hall MHD solvers on solution adaptive grids and the development of solution adaptive grids using generalized coordinates so that the proper geometry of inertial confinement can be taken into account and efficient refinement strategies can be obtained.« less
Building an infrastructure at PICKSC for the educational use of kinetic software tools
NASA Astrophysics Data System (ADS)
Mori, W. B.; Decyk, V. K.; Tableman, A.; Fonseca, R. A.; Tsung, F. S.; Hu, Q.; Winjum, B. J.; Amorim, L. D.; An, W.; Dalichaouch, T. N.; Davidson, A.; Joglekar, A.; Li, F.; May, J.; Touati, M.; Xu, X. L.; Yu, P.
2016-10-01
One aim of the Particle-In-Cell and Kinetic Simulation Center (PICKSC) at UCLA is to coordinate a community development of educational software for undergraduate and graduate courses in plasma physics and computer science. The rich array of physical behaviors exhibited by plasmas can be difficult to grasp by students. If they are given the ability to quickly and easily explore plasma physics through kinetic simulations, and to make illustrative visualizations of plasma waves, particle motion in electromagnetic fields, instabilities, or other phenomena, then they can be equipped with first-hand experiences that inform and contextualize conventional texts and lectures. We are developing an infrastructure for any interested persons to take our kinetic codes, run them without any prerequisite knowledge, and explore desired scenarios. Furthermore, we are actively interested in any ideas or input from other plasma physicists. This poster aims to illustrate what we have developed and gather a community of interested users and developers. Supported by NSF under Grant ACI-1339893.
Preface to the Special Issue on Thunderstorm Effects in the Atmosphere-Ionosphere System
NASA Astrophysics Data System (ADS)
Gordillo-Vázquez, F. J.; Luque, A.
2013-11-01
The first summer school of the "Thunderstorm Effects in the Atmosphere-Ionosphere System" (TEA-IS) funded by the European Science Foundation through its Research Network Programme took place in Torremolinos (Spain) on June 17-22, 2012. The meeting gathered almost 100 scientists with different backgrounds (plasma physics, electrical and signal engineering, geophysics, space physics and computational science) coming from 20 countries, both from inside and outside TEA-IS member countries. We very briefly comment here on the five review papers included in this Special Issue of Surveys in Geophysics devoted to the 2012 TEA-IS summer school.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2008-09-01
Low temperature plasma science (LTPS) is a field on the verge of an intellectual revolution. Partially ionized plasmas (often referred to as gas discharges) are used for an enormous range of practical applications, from light sources and lasers to surgery and making computer chips, among many others. The commercial and technical value of low temperature plasmas (LTPs) is well established. Modern society would simply be less advanced in the absence of LTPs. Much of this benefit has resulted from empirical development. As the technology becomes more complex and addresses new fields, such as energy and biotechnology, empiricism rapidly becomes inadequatemore » to advance the state of the art. The focus of this report is that which is less well understood about LTPs - namely, that LTPS is a field rich in intellectually exciting scientific challenges and that addressing these challenges will result in even greater societal benefit by placing the development of plasma technologies on a solid science foundation. LTPs are unique environments in many ways. Their nonequilibrium and chemically active behavior deviate strongly from fully ionized plasmas, such as those found in magnetically confined fusion or high energy density plasmas. LTPs are strongly affected by the presence of neutral species-chemistry adds enormous complexity to the plasma environment. A weakly to partially ionized gas is often characterized by strong nonequilibrium in the velocity and energy distributions of its neutral and charged constituents. In nonequilibrium LTP, electrons are generally hot (many to tens of electron volts), whereas ions and neutrals are cool to warm (room temperature to a few tenths of an electron volt). Ions and neutrals in thermal LTP can approach or exceed an electron volt in temperature. At the same time, ions may be accelerated across thin sheath boundary layers to impact surfaces, with impact energies ranging up to thousands of electron volts. These moderately energetic electrons can efficiently create reactive radical fragments and vibrationally and electronically excited species from collisions with neutral molecules. These chemically active species can produce unique structures in the gas phase and on surfaces, structures that cannot be produced in other ways, at least not in an economically meaningful way. Photons generated by electron impact excited species in the plasma can interact more or less strongly with other species in the plasma or with the plasma boundaries, or they can escape from the plasma. The presence of boundaries around the plasma creates strong gradients where plasma properties change dramatically. It is in these boundary regions where externally generated electromagnetic radiation interacts most strongly with the plasma, often producing unique responses. And it is at bounding surfaces where complex plasma-surface interactions occur. The intellectual challenges associated with LTPS center on several themes, and these are discussed in the chapters that follow this overview. These themes are plasma-surface interactions; kinetic, nonlinear properties of LTP; plasmas in multiphase media; scaling laws for LTP; and crosscutting themes: diagnostics, modeling, and fundamental data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Azevedo, Eduardo; Abbott, Stephen; Koskela, Tuomas
The XGC fusion gyrokinetic code combines state-of-the-art, portable computational and algorithmic technologies to enable complicated multiscale simulations of turbulence and transport dynamics in ITER edge plasma on the largest US open-science computer, the CRAY XK7 Titan, at its maximal heterogeneous capability, which have not been possible before due to a factor of over 10 shortage in the time-to-solution for less than 5 days of wall-clock time for one physics case. Frontier techniques such as nested OpenMP parallelism, adaptive parallel I/O, staging I/O and data reduction using dynamic and asynchronous applications interactions, dynamic repartitioning.
NASA Astrophysics Data System (ADS)
Yang, Y. M.; Buccino, D.; Folkner, W. M.; Oudrhiri, K.; Phipps, P. H.; Parisi, M.; Kahan, D. S.
2017-12-01
Interplanetary and Earth ionosphere plasma electrons can have significant impacts on radio frequency signal propagation such as telecommunication between spacecraft and the Deep Space Network (DSN). On 27 August 2016, the first closest approach of The Juno spacecraft (Perijove 1) provided an opportunity to observe plasma electrons inside of the Io plasma torus using radio science measurements from Juno. Here, we report on the derivations of plasma electron content in the Io plasma torus by using two-way coherent radio science measurements made from Juno's Gravity Science Instrument and the Deep Space Network. During Perijove 1, Juno spacecraft passed through the inner region (perijove altitude of 1.06 Jovian Radii) between Jupiter and the Io plasma torus. Significant plasma electron variations of up to 30 TEC units were observed while the radio link between Juno and the DSN traveled through the Io plasma torus. In this research, we compare observations made by open-loop and closed-loop processes using different frequency radio signals, corresponding Io plasma torus model simulations, and other Earth ionosphere observations. The results of three-dimensional Io plasma model simulations are consistent with observations with some discrepancies. Results are shown to improve our understanding of the Io plasma torus effect on Juno gravity science measurements and its calibrations to reduce the corresponding (non-gravity field induced) radio frequency shift.
Center for Extended Magnetohydrodynamic Modeling Cooperative Agreement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carl R. Sovinec
The Center for Extended Magnetohydrodynamic Modeling (CEMM) is developing computer simulation models for predicting the behavior of magnetically confined plasmas. Over the first phase of support from the Department of Energy’s Scientific Discovery through Advanced Computing (SciDAC) initiative, the focus has been on macroscopic dynamics that alter the confinement properties of magnetic field configurations. The ultimate objective is to provide computational capabilities to predict plasma behavior—not unlike computational weather prediction—to optimize performance and to increase the reliability of magnetic confinement for fusion energy. Numerical modeling aids theoretical research by solving complicated mathematical models of plasma behavior including strong nonlinear effectsmore » and the influences of geometrical shaping of actual experiments. The numerical modeling itself remains an area of active research, due to challenges associated with simulating multiple temporal and spatial scales. The research summarized in this report spans computational and physical topics associated with state of the art simulation of magnetized plasmas. The tasks performed for this grant are categorized according to whether they are primarily computational, algorithmic, or application-oriented in nature. All involve the development and use of the Non-Ideal Magnetohydrodynamics with Rotation, Open Discussion (NIMROD) code, which is described at http://nimrodteam.org. With respect to computation, we have tested and refined methods for solving the large algebraic systems of equations that result from our numerical approximations of the physical model. Collaboration with the Terascale Optimal PDE Solvers (TOPS) SciDAC center led us to the SuperLU_DIST software library [http://crd.lbl.gov/~xiaoye/SuperLU/] for solving large sparse matrices using direct methods on parallel computers. Switching to this solver library boosted NIMROD’s performance by a factor of five in typical large nonlinear simulations, which has been publicized as a success story of SciDAC-fostered collaboration. Furthermore, the SuperLU software does not assume any mathematical symmetry, and its generality provides an important capability for extending the physical model beyond magnetohydrodynamics (MHD). With respect to algorithmic and model development, our most significant accomplishment is the development of a new method for solving plasma models that treat electrons as an independent plasma component. These ‘two-fluid’ models encompass MHD and add temporal and spatial scales that are beyond the response of the ion species. Implementation and testing of a previously published algorithm did not prove successful for NIMROD, and the new algorithm has since been devised, analyzed, and implemented. Two-fluid modeling, an important objective of the original NIMROD project, is now routine in 2D applications. Algorithmic components for 3D modeling are in place and tested; though, further computational work is still needed for efficiency. Other algorithmic work extends the ion-fluid stress tensor to include models for parallel and gyroviscous stresses. In addition, our hot-particle simulation capability received important refinements that permitted completion of a benchmark with the M3D code. A highlight of our applications work is the edge-localized mode (ELM) modeling, which was part of the first-ever computational Performance Target for the DOE Office of Fusion Energy Science, see http://www.science.doe.gov/ofes/performancetargets.shtml. Our efforts allowed MHD simulations to progress late into the nonlinear stage, where energy is conducted to the wall location. They also produced a two-fluid ELM simulation starting from experimental information and demonstrating critical drift effects that are characteristic of two-fluid physics. Another important application is the internal kink mode in a tokamak. Here, the primary purpose of the study has been to benchmark the two main code development lines of CEMM, NIMROD and M3D, on a relevant nonlinear problem. Results from the two codes show repeating nonlinear relaxation events driven by the kink mode over quantitatively comparable timescales. The work has launched a more comprehensive nonlinear benchmarking exercise, where realistic transport effects have an important role.« less
Computationally efficient description of relativistic electron beam transport in dense plasma
NASA Astrophysics Data System (ADS)
Polomarov, Oleg; Sefkov, Adam; Kaganovich, Igor; Shvets, Gennady
2006-10-01
A reduced model of the Weibel instability and electron beam transport in dense plasma is developed. Beam electrons are modeled by macro-particles and the background plasma is represented by electron fluid. Conservation of generalized vorticity and quasineutrality of the plasma-beam system are used to simplify the governing equations. Our approach is motivated by the conditions of the FI scenario, where the beam density is likely to be much smaller than the plasma density and the beam energy is likely to be very high. For this case the growth rate of the Weibel instability is small, making the modeling of it by conventional PICs exceedingly time consuming. The present approach does not require resolving the plasma period and only resolves a plasma collisionless skin depth and is suitable for modeling a long-time behavior of beam-plasma interaction. An efficient code based on this reduced description is developed and benchmarked against the LSP PIC code. The dynamics of low and high current electron beams in dense plasma is simulated. Special emphasis is on peculiarities of its non-linear stages, such as filament formation and merger, saturation and post-saturation field and energy oscillations. *Supported by DOE Fusion Science through grant DE-FG02-05ER54840.
Moriguchi, Yu; Lee, Dae-Sung; Thamina, Khair; Masuda, Kazuto; Itsuki, Dai; Yoshikawa, Hideki; Hamaguchi, Satoshi; Myoui, Akira
2018-01-01
In the physiochemical sciences, plasma is used to describe an ionized gas. Previous studies have implicated plasma surface treatment in the enhancement of hydrophilicity of implanted musculoskeletal reconstructive materials. Hydroxyapatite (HA) ceramics, widely used in bone tissue regeneration, have made great advancements to skeletal surgery. In the present study, we investigate the impact of low-pressure plasma on the interconnected porous calcium hydroxyapatite (IP-CHA) both in vitro and in vivo. Our results indicate that dielectric barrier discharge (DBD) plasma, when used with oxygen, can augment the hydrophilicity of non-porous HA surfaces and the osteoconductivity of the IP-CHA disc via increased water penetration of inner porous structures, as demonstrated through microfocus computed tomography (μCT) assay. In vivo implantation of plasma-treated IP-CHA displayed superior bone ingrowth than untreated IP-CHA. Though plasma-treated IP-CHA did not alter osteoblast cell proliferation, it accelerated osteogenic differentiation of seeded marrow mesenchymal stem cells. In vitro X-ray photoelectron spectroscopy (XPS) revealed that this plasma treatment increases levels of oxygen, rather than nitrogen, on the plasma-treated IP-CHA surface. These findings suggest that plasma treatment, an easy and simple processing, can significantly improve the osteoconductive potential of commonly used artificial bones such as IP-CHA. Further optimization of plasma treatment and longer-term follow-up of in vivo application are required toward its clinical application. PMID:29538457
Shear and bulk viscosity of high-temperature gluon plasma
NASA Astrophysics Data System (ADS)
Zhang, Le; Hou, De-Fu
2018-05-01
We calculate the shear viscosity (η) and bulk viscosity (ζ) to entropy density (s) ratios η/s and ζ/s of a gluon plasma system in kinetic theory, including both the elastic {gg}≤ftrightarrow {gg} forward scattering and the inelastic soft gluon bremsstrahlung {gg}≤ftrightarrow {ggg} processes. Due to the suppressed contribution to η and ζ in the {gg}≤ftrightarrow {gg} forward scattering and the effective g≤ftrightarrow {gg} gluon splitting, Arnold, Moore and Yaffe (AMY) and Arnold, Dogan and Moore (ADM) have got the leading order computations for η and ζ in high-temperature QCD matter. In this paper, we calculate the correction to η and ζ in the soft gluon bremsstrahlung {gg}≤ftrightarrow {ggg} process with an analytic method. We find that the contribution of the collision term from the {gg}≤ftrightarrow {ggg} soft gluon bremsstrahlung process is just a small perturbation to the {gg}≤ftrightarrow {gg} scattering process and that the correction is at ∼5% level. Then, we obtain the bulk viscosity of the gluon plasma for the number-changing process. Furthermore, our leading-order result for bulk viscosity is the formula \\zeta \\propto \\tfrac{{α }s2{T}3}{ln}{α }s-1} in high-temperature gluon plasma. Supported by Ministry of Science and Technology of China (MSTC) under the “973” Project (2015CB856904(4)) and National Natural Science Foundation of China (11735007, 11521064)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckman, P.; Martin, D.; Drugan, C.
2010-11-23
This year the Argonne Leadership Computing Facility (ALCF) delivered nearly 900 million core hours of science. The research conducted at their leadership class facility touched our lives in both minute and massive ways - whether it was studying the catalytic properties of gold nanoparticles, predicting protein structures, or unearthing the secrets of exploding stars. The authors remained true to their vision to act as the forefront computational center in extending science frontiers by solving pressing problems for our nation. Our success in this endeavor was due mainly to the Department of Energy's (DOE) INCITE (Innovative and Novel Computational Impact onmore » Theory and Experiment) program. The program awards significant amounts of computing time to computationally intensive, unclassified research projects that can make high-impact scientific advances. This year, DOE allocated 400 million hours of time to 28 research projects at the ALCF. Scientists from around the world conducted the research, representing such esteemed institutions as the Princeton Plasma Physics Laboratory, National Institute of Standards and Technology, and European Center for Research and Advanced Training in Scientific Computation. Argonne also provided Director's Discretionary allocations for research challenges, addressing such issues as reducing aerodynamic noise, critical for next-generation 'green' energy systems. Intrepid - the ALCF's 557-teraflops IBM Blue/Gene P supercomputer - enabled astounding scientific solutions and discoveries. Intrepid went into full production five months ahead of schedule. As a result, the ALCF nearly doubled the days of production computing available to the DOE Office of Science, INCITE awardees, and Argonne projects. One of the fastest supercomputers in the world for open science, the energy-efficient system uses about one-third as much electricity as a machine of comparable size built with more conventional parts. In October 2009, President Barack Obama recognized the excellence of the entire Blue Gene series by awarding it to the National Medal of Technology and Innovation. Other noteworthy achievements included the ALCF's collaboration with the National Energy Research Scientific Computing Center (NERSC) to examine cloud computing as a potential new computing paradigm for scientists. Named Magellan, the DOE-funded initiative will explore which science application programming models work well within the cloud, as well as evaluate the challenges that come with this new paradigm. The ALCF obtained approval for its next-generation machine, a 10-petaflops system to be delivered in 2012. This system will allow us to resolve ever more pressing problems, even more expeditiously through breakthrough science in the years to come.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sovinec, Carl R.
The University of Wisconsin-Madison component of the Plasma Science and Innovation Center (PSI Center) contributed to modeling capabilities and algorithmic efficiency of the Non-Ideal Magnetohydrodynamics with Rotation (NIMROD) Code, which is widely used to model macroscopic dynamics of magnetically confined plasma. It also contributed to the understanding of direct-current (DC) injection of electrical current for initiating and sustaining plasma in three spherical torus experiments: the Helicity Injected Torus-II (HIT-II), the Pegasus Toroidal Experiment, and the National Spherical Torus Experiment (NSTX). The effort was funded through the PSI Center's cooperative agreement with the University of Washington and Utah State University overmore » the period of March 1, 2005 - August 31, 2016. In addition to the computational and physics accomplishments, the Wisconsin effort contributed to the professional education of four graduate students and two postdoctoral research associates. The modeling for HIT-II and Pegasus was directly supported by the cooperative agreement, and contributions to the NSTX modeling were in support of work by Dr. Bickford Hooper, who was funded through a separate grant. Our primary contribution to model development is the implementation of detailed closure relations for collisional plasma. Postdoctoral associate Adam Bayliss implemented the temperature-dependent effects of Braginskii's parallel collisional ion viscosity. As a graduate student, John O'Bryan added runtime options for Braginskii's models and Ji's K2 models of thermal conduction with magnetization effects and thermal equilibration. As a postdoctoral associate, O'Bryan added the magnetization effects for ion viscosity. Another area of model development completed through the PSI-Center is the implementation of Chodura's phenomenological resistivity model. Finally, we investigated and tested linear electron parallel viscosity, leveraged by support from the Center for Extended Magnetohydrodynamic Modeling (CEMM). Work on algorithmic efficiency improved NIMROD's element-based computations. We reordered arrays and eliminated a level of looping for computations over the data points that are used for numerical integration over elements. Moreover, the reordering allows fewer and larger communication calls when using distributed-memory parallel computation, thereby avoiding a data starvation problem that limited parallel scaling over NIMROD's Fourier components for the periodic coordinate. Together with improved parallel preconditioning, work that was supported by CEMM, these developments allowed NIMROD's first scaling to over 10,000 processor cores. Another algorithm improvement supported by the PSI Center is nonlinear numerical diffusivities for implicit advection. We also developed the Stitch code to enhance the flexibility of NIMROD's preprocessing. Our simulations of HIT-II considered conditions with and without fluctuation-induced amplification of poloidal flux, but our validation efforts focused on conditions without amplification. A significant finding is that NIMROD reproduces the dependence of net plasma current as the imposed poloidal flux is varied. The modeling of Pegasus startup from localized DC injectors predicted that development of a tokamak-like configuration occurs through a sequence of current-filament merger events. Comparison of experimentally measured and numerically computed cross-power spectra enhance confidence in NIMROD's simulation of magnetic fluctuations; however, energy confinement remains an open area for further research. Our contributions to the NSTX study include adaptation of the helicity-injection boundary conditions from the HIT-II simulations and support for linear analysis and computation of 3D current-driven instabilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Runnels, Scott Robert; Bachrach, Harrison Ian; Carlson, Nils
The two primary purposes of LANL’s Computational Physics Student Summer Workshop are (1) To educate graduate and exceptional undergraduate students in the challenges and applications of computational physics of interest to LANL, and (2) Entice their interest toward those challenges. Computational physics is emerging as a discipline in its own right, combining expertise in mathematics, physics, and computer science. The mathematical aspects focus on numerical methods for solving equations on the computer as well as developing test problems with analytical solutions. The physics aspects are very broad, ranging from low-temperature material modeling to extremely high temperature plasma physics, radiation transportmore » and neutron transport. The computer science issues are concerned with matching numerical algorithms to emerging architectures and maintaining the quality of extremely large codes built to perform multi-physics calculations. Although graduate programs associated with computational physics are emerging, it is apparent that the pool of U.S. citizens in this multi-disciplinary field is relatively small and is typically not focused on the aspects that are of primary interest to LANL. Furthermore, more structured foundations for LANL interaction with universities in computational physics is needed; historically interactions rely heavily on individuals’ personalities and personal contacts. Thus a tertiary purpose of the Summer Workshop is to build an educational network of LANL researchers, university professors, and emerging students to advance the field and LANL’s involvement in it.« less
Town Meeting on Plasma Physics at the National Science Foundation
NASA Astrophysics Data System (ADS)
2015-11-01
We invite you to the Town Meeting on the role of the National Science Foundation (NSF) in supporting basic and applied research in Plasma Physics in the U.S. The overarching goal of NSF is to promote the progress of science and to enable training of the next generation of scientists and engineers at US colleges and universities. In this context, the role of the NSF Physics Division in leading the nearly 20 year old NSF/DOE Partnership in Basic Plasma Science and Engineering serves as an example of the long history of NSF support for basic plasma physics research. Yet, the NSF interest in maintaining a healthy university research base in plasma sciences extends across the Foundation. A total of five NSF Divisions are participating in the most recent Partnership solicitation, and a host of other multi-disciplinary and core programs provide opportunities for scientists to perform research on applications of plasma physics to Space & Solar Physics, Astrophysics, Accelerator Science, Material Science, Plasma Medicine, and many sub-disciplines within Engineering. This Town Meeting will provide a chance to discuss the full range of relevant NSF funding opportunities, and to begin a conversation on the present and future role of NSF in stewarding basic plasma science and engineering research at US colleges and universities. We would like to particularly encourage early career scientists and graduate students to participate in this Town Meeting, though everyone is invited to join what we hope to be a lively discussion.
The 2017 Plasma Roadmap: Low temperature plasma science and technology
USDA-ARS?s Scientific Manuscript database
Journal of Physics D: Applied Physics published the first Plasma Roadmap in 2012 consisting of the individual perspectives of 16 leading experts in the various sub-fields of low temperature plasma science and technology. The 2017 Plasma Roadmap is the first update of a planned series of periodic upd...
A Fast MHD Code for Gravitationally Stratified Media using Graphical Processing Units: SMAUG
NASA Astrophysics Data System (ADS)
Griffiths, M. K.; Fedun, V.; Erdélyi, R.
2015-03-01
Parallelization techniques have been exploited most successfully by the gaming/graphics industry with the adoption of graphical processing units (GPUs), possessing hundreds of processor cores. The opportunity has been recognized by the computational sciences and engineering communities, who have recently harnessed successfully the numerical performance of GPUs. For example, parallel magnetohydrodynamic (MHD) algorithms are important for numerical modelling of highly inhomogeneous solar, astrophysical and geophysical plasmas. Here, we describe the implementation of SMAUG, the Sheffield Magnetohydrodynamics Algorithm Using GPUs. SMAUG is a 1-3D MHD code capable of modelling magnetized and gravitationally stratified plasma. The objective of this paper is to present the numerical methods and techniques used for porting the code to this novel and highly parallel compute architecture. The methods employed are justified by the performance benchmarks and validation results demonstrating that the code successfully simulates the physics for a range of test scenarios including a full 3D realistic model of wave propagation in the solar atmosphere.
Converging Resonance Cones in the LAPTAG plasma
NASA Astrophysics Data System (ADS)
Katz, Cami; Ha, Chris; Gekelman, Walter; Pribyl, Patrick; Agmon, Nathan; Wise, Joe; Baker, Bob
2013-10-01
The LAPTAG laboratory is a high school outreach effort that has a 1.5m long 50 cm diameter magnetized plasma device. The plasma is produced by an ICP source (1X109 < n < 5X1011 cm-3) and has computer controlled data acquisition. Ring antennas are used to produce converging resonance cones. The experiment was performed in the quiescent plasma afterglow. The electrostatic cones were produced by rf applied to the rings (80 < f < 120 MHz), where fRF < f
EUV laser produced and induced plasmas for nanolithography
NASA Astrophysics Data System (ADS)
Sizyuk, Tatyana; Hassanein, Ahmed
2017-10-01
EUV produced plasma sources are being extensively studied for the development of new technology for computer chips production. Challenging tasks include optimization of EUV source efficiency, producing powerful source in 2 percentage bandwidth around 13.5 nm for high volume manufacture (HVM), and increasing the lifetime of collecting optics. Mass-limited targets, such as small droplet, allow to reduce contamination of chamber environment and mirror surface damage. However, reducing droplet size limits EUV power output. Our analysis showed the requirement for the target parameters and chamber conditions to achieve 500 W EUV output for HVM. The HEIGHTS package was used for the simulations of laser produced plasma evolution starting from laser interaction with solid target, development and expansion of vapor/plasma plume with accurate optical data calculation, especially in narrow EUV region. Detailed 3D modeling of mix environment including evolution and interplay of plasma produced by lasers from Sn target and plasma produced by in-band and out-of-band EUV radiation in ambient gas, used for the collecting optics protection and cleaning, allowed predicting conditions in entire LPP system. Effect of these conditions on EUV photon absorption and collection was analyzed. This work is supported by the National Science Foundation, PIRE project.
Exploring Ultrahigh-Intensity Laser-Plasma Interaction Physics with QED Particle-in-Cell Simulations
NASA Astrophysics Data System (ADS)
Luedtke, S. V.; Yin, L.; Labun, L. A.; Albright, B. J.; Stark, D. J.; Bird, R. F.; Nystrom, W. D.; Hegelich, B. M.
2017-10-01
Next generation high-intensity lasers are reaching intensity regimes where new physics-quantum electrodynamics (QED) corrections to otherwise classical plasma dynamics-becomes important. Modeling laser-plasma interactions in these extreme settings presents a challenge to traditional particle-in-cell (PIC) codes, which either do not have radiation reaction or include only classical radiation reaction. We discuss a semi-classical approach to adding quantum radiation reaction and photon production to the PIC code VPIC. We explore these intensity regimes with VPIC, compare with results from the PIC code PSC, and report on ongoing work to expand the capability of VPIC in these regimes. This work was supported by the U.S. DOE, Los Alamos National Laboratory Science program, LDRD program, NNSA (DE-NA0002008), and AFOSR (FA9550-14-1-0045). HPC resources provided by TACC, XSEDE, and LANL Institutional Computing.
PREFACE: 26th Symposium on Plasma Science for Materials (SPSM-26)
NASA Astrophysics Data System (ADS)
2014-06-01
26th Symposium on Plasma Science for Materials (SPSM-26) Takayuki Watanabe The 26th Symposium on Plasma Science for Materials (SPSM-26) was held in Fukuoka, Japan on September 23-24, 2013. SPSM has been held annually since 1988 under the sponsorship of The 153rd Committee on Plasma Materials Science, Japan Society for the Promotion of Science (JSPS). This symposium is one of the major activities of the Committee, which is organized by researchers in academia and industry for the purpose of advancing intersectional scientific information exchange and discussion of science and technology of plasma materials processing. Plasma processing have attracted extensive attention due to their unique advantages, and it is expected to be utilized for a number of innovative industrial applications such as synthesis of high-quality and high-performance nanomaterials. The advantages of plasmas including high chemical reactivity in accordance with required chemical reactions are beneficial for innovative processing. In recent years, plasma materials processing with reactive plasmas has been extensively employed in the fields of environmental issues and biotechnology. This conference seeks to bring different scientific communities together to create a forum for discussing the latest developments and issues. The conference provides a platform for the exploration of both fundamental topics and new applications of plasmas by the contacts between science, technology, and industry. The conference was organized in plenary lectures, invited, contributed oral presentations, and poster sessions. At this meeting, we had 142 participants from 10 countries and 104 presentations, including 11 invited presentations. This year, we arranged special topical sessions that cover Plasma Medicine and Biotechnologies, Business and Academia Cooperation, Plasma with Liquids, Plasma Processes for Nanomaterials, together with Basic, Electronics, and Thermal Plasma sessions. This special issue presents 28 papers that are selected via strict peer-review process from full papers submitted for the proceedings of the conference. The topics range from basic physics and chemistry of plasma processing to a broad variety of materials processing and environmental applications. This proceeding offers an overview on the recent advances in thermal and non-equilibrium plasmas as well as the challenges ahead in the field of plasma research and applications among engineers and scientists. It is an honor to present this volume of Journal of Physics: Conference Series and we deeply thank the authors for their enthusiastic and high-grade contribution. The editors hope that this proceeding will be useful and helpful for deepening our understanding of science and technology of plasma materials processing and also for stimulating further development of the plasma technology. Finally, I would like to thank the organizing committee and organizing secretariat of SPSM-26, and the participants of the conference for contribution to a successful and exciting meeting. The conference was chaired by Prof. Masaharu Shiratani, Kyushu University. I would also like to thank the financial support from The 153rd Committee on Plasma Materials Science. Editors of SPMS-26 Prof Takayuki Watanabe, Kyushu University, Japan Prof Makoto Sekine, Nagoya University, Japan Prof Takanori Ichiki, The University of Tokyo, Japan Prof Masaharu Shiratani, Kyushu University, Japan Prof Akimitsu Hatta, Kochi University of Technology, Japan Sponsors and Supporting Organization: The 153rd Committee on Plasma Materials Science, Japan Society for the Promotion of Science
NASA Astrophysics Data System (ADS)
Reece Roth, J.
2004-11-01
The majority of industrial plasma processing with glow discharges has been conducted at pressures below 10 torr. This tends to limit applications to high value workpieces as a result of the high capital cost of vacuum systems and the production constraints of batch processing. It has long been recognized that glow discharge plasmas would play a much larger industrial role if they could be generated at one atmosphere. The One Atmosphere Uniform Glow Discharge Plasma (OAUGDP), developed at the University of Tennessee's Plasma Sciences Laboratory, is a non-thermal RF plasma operating on displacement currents with the time-resolved characteristics of a classical low pressure DC normal glow discharge. As a glow discharge, the OAUGDP operates with maximum electrical efficiency at the Stoletow point, where the energy input per ion-electron pair is a minimum [1, 2]. Several interdisciplinary teams have investigated potential applications of the OAUGDP. These teams included collaborators from the UTK Textiles and Nonwovens Development Center (TANDEC), and the Departments of Electrical and Computer Engineering, Microbiology, and Food Science and Technology, as well as the NASA Langley Research Center. The potential applications of the OAUGDP have all been at one atmosphere and room temperature, using air as the working gas. These applications include sterilizing medical and dental equipment; sterilizable air filters to deal with the "sick building syndrome"; removal of soot from Diesel engine exhaust; subsonic plasma aerodynamic effects, including flow re-attachment to airfoils and boundary layer modification; electrohydrodynamic (EDH) flow control of working gases; increasing the surface energy of materials; improving the adhesion of paints and electroplated layers: improving the wettability and wickability of fabrics; stripping of photoresist; and plasma deposition and directional etching of potential microelectronic relevance. [1] J. R. Roth, Industrial Plasma Engineering: Volume I, Principles. Institute of Physics Publishing, Bristol and Philadelphia 1995, ISBN 0-7503-0318-2. [2] Roth, J. R. Industrial Plasma Engineering: Volume II Applications to Nonthermal Plasma Processing Institute of Physics Publishing, Bristol and Philadelphia. 2001, ISBN 0-7503-0545-2.
1999-11-30
This graphic shows the computer simulation of a black hole from start to finish. Plasma is falling slowly toward the black hole in a (at the upper left). The plasma has a magnetic field, shown by the white lines. It picks up speed as it falls toward the hole in b (at the upper right), c (lower left) and d (lower right). However, the rotating black hole twists up space itself (and the magnetic field lines) and ejects electromagnetic power along the north and south poles above the black hole. The red and white color shows the immense electromagnetic power output, which eventually will pick up particles and form squirting jets. This simulation was conducted using supercomputers at Japan's National Institute for Fusion Science. http://photojournal.jpl.nasa.gov/catalog/PIA04206
Collaborative Research: Tomographic imaging of laser-plasma structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Downer, Michael
The interaction of intense short laser pulses with ionized gases, or plasmas, underlies many applications such as acceleration of elementary particles, production of energy by laser fusion, generation of x-ray and far-infrared “terahertz” pulses for medical and materials probing, remote sensing of explosives and pollutants, and generation of guide stars. Such laser-plasma interactions create tiny electron density structures (analogous to the wake behind a boat) inside the plasma in the shape of waves, bubbles and filaments that move at the speed of light, and evolve as they propagate. Prior to recent work by the PI of this proposal, detailed knowledgemore » of such structures came exclusively from intensive computer simulations. Now “snapshots” of these elusive, light-velocity structures can be taken in the laboratory using dynamic variant of holography, the technique used to produce ID cards and DVDs, and dynamic variant of tomography, the technique used in medicine to image internal bodily organs. These fast visualization techniques are important for understanding, improving and scaling the above-mentioned applications of laser-plasma interactions. In this project, we accomplished three things: 1) We took holographic pictures of a laser-driven plasma-wave in the act of accelerating electrons to high energy, and used computer simulations to understand the pictures. 2) Using results from this experiment to optimize the performance of the accelerator, and the brightness of x-rays that it emits. These x-rays will be useful for medical and materials science applications. 3) We made technical improvements to the holographic technique that enables us to see finer details in the recorded pictures. Four refereed journal papers were published, and two students earned PhDs and moved on to scientific careers in US National Laboratories based on their work under this project.« less
Plasma Science and Applications at the Intel Science Fair: A Retrospective
NASA Astrophysics Data System (ADS)
Berry, Lee
2009-11-01
For the past five years, the Coalition for Plasma Science (CPS) has presented an award for a plasma project at the Intel International Science and Engineering Fair (ISEF). Eligible projects have ranged from grape-based plasma production in a microwave oven to observation of the effects of viscosity in a fluid model of quark-gluon plasma. Most projects have been aimed at applications, including fusion, thrusters, lighting, materials processing, and GPS improvements. However diagnostics (spectroscopy), technology (magnets), and theory (quark-gluon plasmas) have also been represented. All of the CPS award-winning projects so far have been based on experiments, with two awards going to women students and three to men. Since the award was initiated, both the number and quality of plasma projects has increased. The CPS expects this trend to continue, and looks forward to continuing its work with students who are excited about the possibilities of plasma. You too can share this excitement by judging at the 2010 fair in San Jose on May 11-12.
GITR Simulation of Helium Exposed Tungsten Erosion and Redistribution in PISCES-A
NASA Astrophysics Data System (ADS)
Younkin, T. R.; Green, D. L.; Doerner, R. P.; Nishijima, D.; Drobny, J.; Canik, J. M.; Wirth, B. D.
2017-10-01
The extreme heat, charged particle, and neutron flux / fluence to plasma facing materials in magnetically confined fusion devices has motivated research to understand, predict, and mitigate the associated detrimental effects. Of relevance to the ITER divertor is the helium interaction with the tungsten divertor, the resulting erosion and migration of impurities. The linear plasma device PISCES A has performed dedicated experiments for high (4x10-22 m-2s-1) and low (4x10-21 m-2s-1) flux, 250 eV He exposed tungsten targets to assess the net and gross erosion of tungsten and volumetric transport. The temperature of the target was held between 400 and 600 degrees C. We present results of the erosion / migration / re-deposition of W during the experiment from the GITR (Global Impurity Transport) code coupled to materials response models. In particular, the modeled and experimental W I emission spectroscopy data for the 429.4 nm wavelength and net erosion through target and collector mass difference measurements are compared. Overall, the predictions are in good agreement with experiments. This material is supported by the US DOE, Office of Science, Office of Fusion Energy Sciences and Office of Advanced Scientific Computing Research through the SciDAC program on Plasma-Surface Interactions.
Plasma Physics/Fusion Energy Education at the Liberty Science Center
NASA Astrophysics Data System (ADS)
Zwicker, Andrew; Delooper, John; Carpe, Andy; Amara, Joe; Butnick, Nancy; Lynch, Ellen; Osowski, Jeff
2007-11-01
The Liberty Science Center (LSC) is the largest (300,000 sq. ft.) education resource in the New Jersey-New York City region. A major 109 million expansion and renewal was recently completed. Accordingly, PPPL has expanded the science education collaboration with the Center into three innovative, hands-on programs. On the main floor, a new fusion exhibit is one of the focuses of ``Energy Quest.'' This includes a DC glow discharge tube with a permanent external magnet allowing visitors to manipulate the plasma while reading information on plasma creation and fusion energy. In the section of LSC dedicated to intensive science investigations (20,000 sq. ft) we have added ``Live from NSTX'' which will give students an opportunity to connect via video-conferencing to the NSTX control room during plasma operations. A prototype program was completed in May, 2007 with three high school physics classes and will be expanded when NSTX resumes operation. Finally, a plasma physics laboratory in this area will have a fully functioning, research-grade plasma source that will allow long-term visitors an opportunity to perform experiments in plasma processing, plasma spectroscopy, and dusty plasmas.
NASA Astrophysics Data System (ADS)
Watanabe, Takayuki; Kaneko, Toshio; Sekine, Makoto; Tanaka, Yasunori
2013-06-01
The 11th Asia-Pacific Conference on Plasma Science and Technology (APCPST-11) was held in Kyoto, Japan on 2-5 October 2012 with the 25th Symposium on Plasma Science for Materials (SPSM-25). SPSM has been held annually since 1988 under the sponsorship of The 153rd Committee on Plasma Materials Science, Japan Society for the Promotion of Science (JSPS). This symposium is one of the major activities of the Committee, which is organized by researchers in academia and industry for the purpose of advancing intersectional scientific information exchange and discussion of science and technology of plasma materials processing. APCPST and SPSM are jointly held biennially to survey the current status of low temperature and thermal plasma physics and chemistry for industrial applications. The whole area of plasma processing was covered from fundamentals to applications. Previous meetings were held in China, Japan, Korea, and Australia, attended by scientists from the Asia-Pacific and other countries. The joint conference was organized in plenary lectures, invited, contributed oral presentations and poster sessions. At this meeting, we had 386 participants from 10 countries and 398 presentations, including 26 invited presentations. This year, we arranged special topical sessions that covered green innovation, life innovation, and technical reports from industry. This conference seeks to bring the plasma community together and to create a forum for discussing the latest developments and issues, the challenges ahead in the field of plasma research and applications among engineers and scientists in Asia, the Pacific Rim, as well as Europe. This volume presents 44 papers that were selected via a strict peer-review process from full papers submitted for the proceedings of the conference. The topics range from the basic physics and chemistry of plasma processing to a broad variety of materials processing and environmental applications. This volume offers an overview of recent advances in thermal and non-equilibrium plasmas as well as on more new and innovative developments in the field of life innovation, green innovation and a technical report session. The editors hope that this volume will be useful and helpful for deepening our understanding of science and technology of plasma materials processing and also for stimulating further development of the plasma technology. Finally, we would like to thank the conference chairmen, the members of the organizing committee, the advisory committee, the executive committee, the program committee, the publication committee, organizing secretariat and financial support from The 153rd Committee on Plasma Materials Science, JSPS. Sponsors and Supporting Organization: The 153rd Committee on Plasma Materials Science, Japan Society for the Promotion of Science Organizing Committee Chairperson: Osamu Tsuji, SAMCO Corporation, Japan Advisory Committee Chairperson: Akihisa Matsuda, Osaka University, Japan Executive Committee Chairperson: Masaru Hori, Nagoya University, Japan Program Committee Chairperson: Takamasa Ishigaki, Hosei University, Japan Publication Committee Chairperson: Takayuki Watanabe, Kyushu University Editors of APCPST-11 and SPMS-25 Professor Takayuki Watanabe, Kyushu University, Japan Professor Toshio Kaneko, Tohoku University, Japan Professor Makoto Sekine, Nagoya University, Japan Professor Yasunori Tanaka, Kanazawa University, Japan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Runnels, Scott Robert; Caldwell, Wendy; Brown, Barton Jed
The two primary purposes of LANL’s Computational Physics Student Summer Workshop are (1) To educate graduate and exceptional undergraduate students in the challenges and applications of computational physics of interest to LANL, and (2) Entice their interest toward those challenges. Computational physics is emerging as a discipline in its own right, combining expertise in mathematics, physics, and computer science. The mathematical aspects focus on numerical methods for solving equations on the computer as well as developing test problems with analytical solutions. The physics aspects are very broad, ranging from low-temperature material modeling to extremely high temperature plasma physics, radiation transportmore » and neutron transport. The computer science issues are concerned with matching numerical algorithms to emerging architectures and maintaining the quality of extremely large codes built to perform multi-physics calculations. Although graduate programs associated with computational physics are emerging, it is apparent that the pool of U.S. citizens in this multi-disciplinary field is relatively small and is typically not focused on the aspects that are of primary interest to LANL. Furthermore, more structured foundations for LANL interaction with universities in computational physics is needed; historically interactions rely heavily on individuals’ personalities and personal contacts. Thus a tertiary purpose of the Summer Workshop is to build an educational network of LANL researchers, university professors, and emerging students to advance the field and LANL’s involvement in it. This report includes both the background for the program and the reports from the students.« less
2016-08-25
AFRL-AFOSR-UK-TR-2016-0029 Intense Plasma-Waveguide Terahertz Sources for High-Field THz probe science with ultrafast lasers for Solid State Physics...Plasma-Waveguide Terahertz Sources for High-Field THz probe science with ultrafast lasers for Solid State Physics, 5a. CONTRACT NUMBER 5b. GRANT...an existing high energy laser system, has been applied to the study of intense terahertz radiation generated in gaseous plasmas in purpose
NASA Astrophysics Data System (ADS)
Hebner, Greg
2010-11-01
Products and consumer goods that utilize low temperature plasmas at some point in their creation touch and enrich our lives on almost a continuous basis. Examples are many but include the tremendous advances in microelectronics and the pervasive nature of the internet, advanced material coatings that increase the strength and reliability of products from turbine engines to potato chip bags, and the recent national emphasis on energy efficient lighting and compact fluorescent bulbs. Each of these products owes their contributions to energy security and international competiveness to fundamental research investments. However, it would be a mistake to believe that the great commercial success of these products implies a robust understanding of the complicated interactions inherent in plasma systems. Rather, current development of the next generation of low temperature plasma enabled products and processes is clearly exposing a new set of exciting scientific challenges that require leaps in fundamental understanding and interdisciplinary research teams. Emerging applications such as liquid-plasma systems to improve water quality and remediate hazardous chemicals, plasma-assisted combustion to increase energy efficiency and reduce emissions, and medical applications promise to improve our lives and the environment only if difficult science questions are solved. This talk will take a brief look back at the role of low temperature plasma science in enabling entirely new markets and then survey the next generation of emerging plasma applications. The emphasis will be on describing the key science questions and the opportunities for scientific cross cutting collaborations that underscore the need for increased outreach on the part of the plasma science community to improve visibility at the federal program level. This work is supported by the DOE, Office of Science for Fusion Energy Sciences, and Sandia National Laboratories, a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostuk, M.; Uram, T. D.; Evans, T.
For the first time, an automatically triggered, between-pulse fusion science analysis code was run on-demand at a remotely located supercomputer at Argonne Leadership Computing Facility (ALCF, Lemont, IL) in support of in-process experiments being performed at DIII-D (San Diego, CA). This represents a new paradigm for combining geographically distant experimental and high performance computing (HPC) facilities to provide enhanced data analysis that is quickly available to researchers. Enhanced analysis improves the understanding of the current pulse, translating into a more efficient use of experimental resources, and to the quality of the resultant science. The analysis code used here, called SURFMN,more » calculates the magnetic structure of the plasma using Fourier transform. Increasing the number of Fourier components provides a more accurate determination of the stochastic boundary layer near the plasma edge by better resolving magnetic islands, but requires 26 minutes to complete using local DIII-D resources, putting it well outside the useful time range for between pulse analysis. These islands relate to confinement and edge localized mode (ELM) suppression, and may be controlled by adjusting coil currents for the next pulse. Argonne has ensured on-demand execution of SURFMN by providing a reserved queue, a specialized service that launches the code after receiving an automatic trigger, and with network access from the worker nodes for data transfer. Runs are executed on 252 cores of ALCF’s Cooley cluster and the data is available locally at DIII-D within three minutes of triggering. The original SURFMN design limits additional improvements with more cores, however our work shows a path forward where codes that benefit from thousands of processors can run between pulses.« less
Kostuk, M.; Uram, T. D.; Evans, T.; ...
2018-02-01
For the first time, an automatically triggered, between-pulse fusion science analysis code was run on-demand at a remotely located supercomputer at Argonne Leadership Computing Facility (ALCF, Lemont, IL) in support of in-process experiments being performed at DIII-D (San Diego, CA). This represents a new paradigm for combining geographically distant experimental and high performance computing (HPC) facilities to provide enhanced data analysis that is quickly available to researchers. Enhanced analysis improves the understanding of the current pulse, translating into a more efficient use of experimental resources, and to the quality of the resultant science. The analysis code used here, called SURFMN,more » calculates the magnetic structure of the plasma using Fourier transform. Increasing the number of Fourier components provides a more accurate determination of the stochastic boundary layer near the plasma edge by better resolving magnetic islands, but requires 26 minutes to complete using local DIII-D resources, putting it well outside the useful time range for between pulse analysis. These islands relate to confinement and edge localized mode (ELM) suppression, and may be controlled by adjusting coil currents for the next pulse. Argonne has ensured on-demand execution of SURFMN by providing a reserved queue, a specialized service that launches the code after receiving an automatic trigger, and with network access from the worker nodes for data transfer. Runs are executed on 252 cores of ALCF’s Cooley cluster and the data is available locally at DIII-D within three minutes of triggering. The original SURFMN design limits additional improvements with more cores, however our work shows a path forward where codes that benefit from thousands of processors can run between pulses.« less
NASA Astrophysics Data System (ADS)
Vincena, S.; Gekelman, W.; Pribyl, P.; Tang, S., W.,; Papadopoulos, K.
2017-10-01
Shear Alfven waves are a fundamental mode in magnetized plasmas. Propagating near the ion cyclotron frequency, these waves are often termed electromagnetic ion cyclotron (EMIC) waves and can involve multiple ion species. Near the earth, for example, the wave may interact resonantly with oxygen ions at altitudes ranging from 1000 to 2000 km. The waves may either propagate from space towards the earth (possibly involving mode conversion), or be generated by RF transmitters on the ground. These preliminary experiments are motivated by theoretical predictions that such waves can pitch-angle scatter relativistic electrons trapped in the earth's dipole field. EMIC waves are launched in the Large Plasma Device at UCLA's Basic Plasma Science Facility in plasmas with single and multiple ion species into magnetic field gradients where ion cyclotron resonance is satisfied. We report here on the frequency and k-spectra in the critical layer and how they compare with theoretical predictions in computing an effective diffusion coefficient for high-energy electrons. Funding is provided by the NSF, DoE, and AFSOR.
Iterative Addition of Kinetic Effects to Cold Plasma RF Wave Solvers
NASA Astrophysics Data System (ADS)
Green, David; Berry, Lee; RF-SciDAC Collaboration
2017-10-01
The hot nature of fusion plasmas requires a wave vector dependent conductivity tensor for accurate calculation of wave heating and current drive. Traditional methods for calculating the linear, kinetic full-wave plasma response rely on a spectral method such that the wave vector dependent conductivity fits naturally within the numerical method. These methods have seen much success for application to the well-confined core plasma of tokamaks. However, quantitative prediction of high power RF antenna designs for fusion applications has meant a requirement of resolving the geometric details of the antenna and other plasma facing surfaces for which the Fourier spectral method is ill-suited. An approach to enabling the addition of kinetic effects to the more versatile finite-difference and finite-element cold-plasma full-wave solvers was presented by where an operator-split iterative method was outlined. Here we expand on this approach, examine convergence and present a simplified kinetic current estimator for rapidly updating the right-hand side of the wave equation with kinetic corrections. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.
NASA Astrophysics Data System (ADS)
Liu, Yunpeng; Li, Huan; Li, Yanlong; Hang, Shuang; Tang, Xiaobin
2017-11-01
Recent advances in X-ray science have witnessed the X-ray communication (XCOM), a new revolutionary technology first proposed by NASA since 2007. In combination with the advanced modulated X-ray source, XCOM shows a promising prospect for helping to alleviate the occurrence of inevitable blackout communication by using the regular radio frequency (RF) signal, paving the way towards realizing real-time communication during spacecraft reentry into atmosphere. Here, we acquired the detailed information of electron density distribution of plasma sheath encountered during vehicle reentry through Computational Fluid Dynamics simulation. Based on these derived parameters, Finite-difference Time-domain method was employed to investigate the transmission properties of X-rays through the plasma sheath, and the results indicated that X-ray transmission was not influenced by the reentry plasma sheath at different reentry altitudes and spacecraft surface positions compared with RF signal. In addition, 2D Particle-In-Cell simulation was also adopted to provide deeper insight into the transmission properties and physical mechanisms of X-ray carrier propagating through the plasma sheath, and results showed that the transmission coefficient was over 0.994 and the observation of plasma channel effect was also an important signature, which was of great importance to X-ray propagating through the plasma sheath.
Helping Teachers Teach Plasma Physics
NASA Astrophysics Data System (ADS)
Correll, Donald
2008-11-01
Lawrence Livermore National Laboratory's E/O program in Fusion Science and Plasma Physics now includes both `pre-service' as well as `in-service' high school science teacher professional development activities. Teachers are instructed and mentored by `master teachers' and LLNL plasma researchers working in concert. The Fusion/Plasma E/O program exploits a unique science education partnership that exists between LLNL's Science Education Program and the UC Davis Edward Teller Education Center. For `in-service' teachers, the Fusion & Astrophysics Teacher Research Academy (TRA) has four levels of workshops that are designed to give in-service high school science teachers experience in promoting and conducting research, most notably in the filed of plasma spectroscopy. Participating teachers in all four TRA levels may earn up to ten units of graduate credit from Cal-State University East Bay, and may apply these units toward a Masters of Science in Education. For `pre-service' teachers, the Science Teacher and Researcher (STAR) program, as a partnership with the California State University System, includes attracting undergraduate science majors to teaching careers by allowing them to pursue professional identities as both a research scientist as well as a science teacher. Participating `pre-service' STAR students are provided research internships at LLNL and work closely with the `in-service' TRA teachers. Results from the continuum `pre-service' to `in-service' science teacher professional development programs will be presented.
Parallel programming of industrial applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heroux, M; Koniges, A; Simon, H
1998-07-21
In the introductory material, we overview the typical MPP environment for real application computing and the special tools available such as parallel debuggers and performance analyzers. Next, we draw from a series of real applications codes and discuss the specific challenges and problems that are encountered in parallelizing these individual applications. The application areas drawn from include biomedical sciences, materials processing and design, plasma and fluid dynamics, and others. We show how it was possible to get a particular application to run efficiently and what steps were necessary. Finally we end with a summary of the lessons learned from thesemore » applications and predictions for the future of industrial parallel computing. This tutorial is based on material from a forthcoming book entitled: "Industrial Strength Parallel Computing" to be published by Morgan Kaufmann Publishers (ISBN l-55860-54).« less
Atmospheric Gaseous Plasma with Large Dimensions
NASA Astrophysics Data System (ADS)
Korenev, Sergey
2012-10-01
The forming of atmospheric plasma with large dimensions using electrical discharge typically uses the Dielectric Barrier Discharge (DBD). The study of atmospheric DBD was shown some problems related to homogeneous volume plasma. The volume of this plasma determines by cross section and gas gap between electrode and dielectric. The using of electron beam for volume ionization of air molecules by CW relativistic electron beams was shown the high efficiency of this process [1, 2]. The main advantage of this approach consists in the ionization of gas molecules by electrons in longitudinal direction determines by their kinetic energy. A novel method for forming of atmospheric homogeneous plasma with large volume dimensions using ionization of gas molecules by pulsed non-relativistic electron beams is presented in the paper. The results of computer modeling for delivered doses of electron beams in gases and ionization are discussed. The structure of experimental bench with plasma diagnostics is considered. The preliminary results of forming atmospheric plasma with ionization gas molecules by pulsed nanosecond non-relativistic electron beam are given. The analysis of potential applications for atmospheric volume plasma is presented. Reference: [1] S. Korenev. ``The ionization of air by scanning relativistic high power CW electron beam,'' 2002 IEEE International Conference on Plasma Science. May 2002, Alberta, Canada. [2] S. Korenev, I. Korenev. ``The propagation of high power CW scanning electron beam in air.'' BEAMS 2002: 14th International Conference on High-Power Particle Beams, Albuquerque, New Mexico (USA), June 2002, AIP Conference Proceedings Vol. 650(1), pp. 373-376. December 17.
Sahu, Bibhuti Bhusan; Han, Jeon Geon; Kersten, Holger
2017-02-15
Understanding the science and engineering of thin films using plasma assisted deposition methods with controlled growth and microstructure is a key issue in modern nanotechnology, impacting both fundamental research and technological applications. Different plasma parameters like electrons, ions, radical species and neutrals play a critical role in nucleation and growth and the corresponding film microstructure as well as plasma-induced surface chemistry. The film microstructure is also closely associated with deposition energy which is controlled by electrons, ions, radical species and activated neutrals. The integrated studies on the fundamental physical properties that govern the plasmas seek to determine their structure and modification capabilities under specific experimental conditions. There is a requirement for identification, determination, and quantification of the surface activity of the species in the plasma. Here, we report a detailed study of hydrogenated amorphous and crystalline silicon (c-Si:H) processes to investigate the evolution of plasma parameters using a theoretical model. The deposition processes undertaken using a plasma enhanced chemical vapor deposition method are characterized by a reactive mixture of hydrogen and silane. Later, various contributions of energy fluxes on the substrate are considered and modeled to investigate their role in the growth of the microstructure of the deposited film. Numerous plasma diagnostic tools are used to compare the experimental data with the theoretical results. The film growth and microstructure are evaluated in light of deposition energy flux under different operating conditions.
Meteor Observations as Big Data Citizen Science
NASA Astrophysics Data System (ADS)
Gritsevich, M.; Vinkovic, D.; Schwarz, G.; Nina, A.; Koschny, D.; Lyytinen, E.
2016-12-01
Meteor science represents an excellent example of the citizen science project, where progress in the field has been largely determined by amateur observations. Over the last couple of decades technological advancements in observational techniques have yielded drastic improvements in the quality, quantity and diversity of meteor data, while even more ambitious instruments are about to become operational. This empowers meteor science to boost its experimental and theoretical horizons and seek more advanced scientific goals. We review some of the developments that push meteor science into the Big Data era that requires more complex methodological approaches through interdisciplinary collaborations with other branches of physics and computer science. We argue that meteor science should become an integral part of large surveys in astronomy, aeronomy and space physics, and tackle the complexity of micro-physics of meteor plasma and its interaction with the atmosphere. The recent increased interest in meteor science triggered by the Chelyabinsk fireball helps in building the case for technologically and logistically more ambitious meteor projects. This requires developing new methodological approaches in meteor research, with Big Data science and close collaboration between citizen science, geoscience and astronomy as critical elements. We discuss possibilities for improvements and promote an opportunity for collaboration in meteor science within the currently established BigSkyEarth http://bigskyearth.eu/ network.
Increasing Plasma Parameters using Sheared Flow Stabilization of a Z-Pinch
NASA Astrophysics Data System (ADS)
Shumlak, Uri
2016-10-01
Recent experiments on the ZaP Flow Z-Pinch at the University of Washington have been successful in compressing the plasma column to smaller radii, producing the predicted increases in plasma density (1018 cm-3), temperature (200 eV), and magnetic fields (4 T), while maintaining plasma stability for many Alfven times (over 40 μs) using sheared plasma flows. These results indicate the suitability of the device as a discovery science platform for astrophysical and high energy density plasma research, and keeps open a possible path to achieving burning plasma conditions in a compact fusion device. Long-lived Z-pinch plasmas have been produced with dimensions of 1 cm radius and 100 cm long that are stabilized by sheared axial flows for over 1000 Alfven radial transit times. The observed plasma stability is coincident with the presence of a sheared flow as measured by time-resolved multi-chord ion Doppler spectroscopy applied to impurity ion radiation. These measurements yield insights into the evolution of the velocity profile and show that the stabilizing behavior of flow shear agrees with theoretical calculations and 2-D MHD computational simulations. The flow shear value, extent, and duration are shown to be consistent with theoretical models of the plasma viscosity, which places a design constraint on the maximum axial length of a sheared flow stabilized Z-pinch. Measurements of the magnetic field topology indicate simultaneous azimuthal symmetry and axial uniformity along the entire 100 cm length of the Z-pinch plasma. Separate control of plasma acceleration and compression have increased the accessible plasma parameters and have generated stable plasmas with radii below 0.5 cm, as measured with a high resolution digital holographic interferometer. This work was supported by Grants from U.S. DOE, NNSA, and ARPA-E.
Science and technology in the stockpile stewardship program, S & TR reprints
DOE Office of Scientific and Technical Information (OSTI.GOV)
Storm, E
This document reports on these topics: Computer Simulations in Support of National Security; Enhanced Surveillance of Aging Weapons; A New Precision Cutting Tool: The Femtosecond Laser; Superlasers as a Tool of Stockpile Stewardship; Nova Laser Experiments and Stockpile Stewardship; Transforming Explosive Art into Science; Better Flash Radiography Using the FXR; Preserving Nuclear Weapons Information; Site 300Õs New Contained Firing Facility; The Linear Electric Motor: Instability at 1,000 gÕs; A Powerful New Tool to Detect Clandestine Nuclear Tests; High Explosives in Stockpile Surveillance Indicate Constancy; Addressing a Cold War Legacy with a New Way to Produce TATB; JumpinÕ Jupiter! Metallic Hydrogen;more » Keeping the Nuclear Stockpile Safe, Secure, and Reliable; The Multibeam FabryÐPerot Velocimeter: Efficient Measurements of High Velocities; Theory and Modeling in Material Science; The Diamond Anvil Cell; Gamma-Ray Imaging Spectrometry; X-Ray Lasers and High-Density Plasma« less
FOREWORD: 23rd National Symposium on Plasma Science & Technology (PLASMA-2008)
NASA Astrophysics Data System (ADS)
Das, A. K.
2010-01-01
The Twentieth Century has been a defining period for Plasma Science and Technology. The state of ionized matter, so named by Irving Langmuir in the early part of twentieth century, has now evolved in to a multidisciplinary area with scientists and engineers from various specializations working together to exploit the unique properties of the plasma medium. There have been great improvements in the basic understanding of plasmas as a many body system bound by complex collective Coulomb interactions of charges, atoms, molecules, free radicals and photons. Simultaneously, many advanced plasma based technologies are increasingly being implemented for industrial and societal use. The emergence of the multination collaborative project International Thermonuclear Experimental Reactor (ITER) project has provided the much needed boost to the researchers working on thermonuclear fusion plasmas. In addition, the other plasma applications like MHD converters, hydrogen generation, advanced materials (synthesis, processing and surface modification), environment (waste beneficiation, air and water pollution management), nanotechnology (synthesis, deposition and etching), light production, heating etc are actively being pursued in governmental and industrial sectors. For India, plasma science and technology has traditionally remained an important area of research. It was nearly a century earlier that the Saha ionization relation pioneered the way to interpret experimental data from a vast range of near equilibrium plasmas. Today, Indian research contributions and technology demonstration capabilities encompass thermonuclear fusion devices, nonlinear plasma phenomena, plasma accelerators, beam plasma interactions, dusty and nonneutral plasmas, industrial plasmas and plasma processing of materials, nano synthesis and structuring, astrophysical and space plasmas etc. India's participation in the ITER programme is now reflected in increased interest in the research and development efforts on Tokamak technology and physics of magnetized fusion plasmas. Our industries have already adopted a large number of plasma processes related to manufacturing, lighting and surface engineering. Indian universities and National Institutes have successfully taken up research projects and building of demonstration equipment that are being used in strategic as well as other industrial applications. In addition, and more importantly, plasma science has triggered research and development effort in many related areas like power supplies, specialized instrumentation and controls, magnets, diagnostics and monitoring, lasers, electron beams, vacuum systems, thermal engineering, material science, fluid dynamics, molecular and nano engineering, molecular chemistry etc. In short, plasma science and technology in India has reached a stage of maturity that can be harnessed for industrial and societal use. The expertise and core competence developed over the years need to be sustained through interactions among researchers as well as nurturing of new research efforts. The Annual Plasma Symposiums have eminently worked towards achievement of that purpose. Like all years, Plasma - 2008 is built around the entire national effort in this field with a special focus on 'Plasmas in Nuclear Fuel Cycle (PANFC)'. The program includes several plenary lectures, invited talks and contributed papers. The manuscripts have been peer reviewed and compiled in the form of Conference Proceedings. I am sure that the online proceedings will be useful and serve as a valuable reference material for active researchers in this field. I would like to take this opportunity to gratefully acknowledge the help and guidance of the National Advisory Committee Chaired by Professor P K Kaw, Director, Institute of Plasma Research, Gandhinagar during the organization of this symposium. My sincere thanks to Dr S Banerjee, Director, Bhabha Atomic Research Center, an acknowledged expert in the field of Materials Science and Technology, for delivering the key note address to set the tenor of the symposium. I would also like to thank the Plasma Science Society of India (PSSI) for agreeing to hold this important event at BARC. Thanks are due to Dr L M Gantayet, Director, BTDG, BARC and chairman, Scientific Program Committee and all my colleagues in the Symposium Organizing Committee who have made this symposium possible. Finally, our thanks to all the Funding agencies, Board of Research in Nuclear Science, Department of Science and Technology, The Board of Fusion Research, and all industrial exhibitor and sponsors for their unstinted support and encouragement. Dr A K Das Chairman, Organizing Committee Bhabha Atomic Research Center, Mumbai
Fully implicit adaptive mesh refinement algorithm for reduced MHD
NASA Astrophysics Data System (ADS)
Philip, Bobby; Pernice, Michael; Chacon, Luis
2006-10-01
In the macroscopic simulation of plasmas, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. Traditional approaches based on explicit time integration techniques and fixed meshes are not suitable for this challenge, as such approaches prevent the modeler from using realistic plasma parameters to keep the computation feasible. We propose here a novel approach, based on implicit methods and structured adaptive mesh refinement (SAMR). Our emphasis is on both accuracy and scalability with the number of degrees of freedom. As a proof-of-principle, we focus on the reduced resistive MHD model as a basic MHD model paradigm, which is truly multiscale. The approach taken here is to adapt mature physics-based technology to AMR grids, and employ AMR-aware multilevel techniques (such as fast adaptive composite grid --FAC-- algorithms) for scalability. We demonstrate that the concept is indeed feasible, featuring near-optimal scalability under grid refinement. Results of fully-implicit, dynamically-adaptive AMR simulations in challenging dissipation regimes will be presented on a variety of problems that benefit from this capability, including tearing modes, the island coalescence instability, and the tilt mode instability. L. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) B. Philip, M. Pernice, and L. Chac'on, Lecture Notes in Computational Science and Engineering, accepted (2006)
Engaging high school students as plasma science outreach ambassadors
NASA Astrophysics Data System (ADS)
Wendt, Amy; Boffard, John
2017-10-01
Exposure to plasma science among future scientists and engineers is haphazard. In the U.S., plasma science is rare (or absent) in mainstream high school and introductory college physics curricula. As a result, talented students may be drawn to other careers simply due to a lack of awareness of the stimulating science and wide array of fulfilling career opportunities involving plasmas. In the interest of enabling informed decisions about career options, we have initiated an outreach collaboration with the Madison West High School Rocket Club. Rocket Club members regularly exhibit their activities at public venues, including large-scale expos that draw large audiences of all ages. Building on their historical emphasis on small scale rockets with chemical motors, we worked with the group to add a new feature to their exhibit that highlights plasma-based spacecraft propulsion for interplanetary probes. This new exhibit includes a model satellite with a working (low power) plasma thruster. The participating high school students led the development process, to be described, and enthusiastically learned to articulate concepts related to plasma thruster operation and to compare the relative advantages of chemical vs. plasma/electrical propulsion systems for different scenarios. Supported by NSF Grant PHY-1617602.
Programmable calculator software for computation of the plasma binding of ligands.
Conner, D P; Rocci, M L; Larijani, G E
1986-01-01
The computation of the extent of plasma binding of a ligand to plasma constituents using radiolabeled ligand and equilibrium dialysis is complex and tedious. A computer program for the HP-41C Handheld Computer Series (Hewlett-Packard) was developed to perform these calculations. The first segment of the program constructs a standard curve for quench correction of post-dialysis plasma and buffer samples, using either external standard ratio (ESR) or sample channels ratio (SCR) techniques. The remainder of the program uses the counts per minute, SCR or ESR, and post-dialysis volume of paired plasma and buffer samples generated from the dialysis procedure to compute the extent of binding after correction for background radiation, counting efficiency, and intradialytic shifts of fluid between plasma and buffer compartments during dialysis. This program greatly simplifies the analysis of equilibrium dialysis data and has been employed in the analysis of dexamethasone binding in normal and uremic sera.
Electrode Configurations in Atmospheric Pressure Plasma Jets
NASA Astrophysics Data System (ADS)
Lietz, Amanda M.; Kushner, Mark J.
2016-09-01
Atmospheric pressure plasma jets (APPJs) are being studied for emerging medical applications including cancer treatment and wound healing. APPJs typically consist of a dielectric tube through which a rare gas flows, sometimes with an O2 or H2O impurity. In this paper, we present results from a computational study of APPJs using nonPDPSIM, a 2-D plasma hydrodynamics model, with the goal of providing insights on how the placement of electrodes can influence the production of reactive species. Gas consisting of He/O2 = 99.5/0.5 is flowed through a capillary tube at 2 slpm into humid air, and a pulsed DC voltage is applied. An APPJ with two external ring electrodes will be compared with one having a powered electrode inside and a ground electrode on the outside. The consequences on ionization wave propagation and the production of reactive oxygen and nitrogen species (RONS) will be discussed. Changing the electrode configuration can concentrate the power deposition in volumes having different gas composition, resulting in different RONS production. An internal electrode can result in increased production of NOx and HNOx by increasing propagation of the ionization wave through the He dominated plume to outside of the tube where humid air is diffusing into the plume. Work supported by US DOE Office of Fusion Energy Science and the National Science Foundation.
Global Geospace Science/Polar Plasma Laboratory: POLAR
NASA Technical Reports Server (NTRS)
1996-01-01
The Global Geospace Science (GGS) Project is discussed as part of the International Solar-Terrestrial Physics (ISTP) Science Initiative. The objectives of Polar Plasma Laboratory (POLAR), one of the two spacecraft to be used by the Project to fill critical gaps in the scientific understanding of solar and plasma physics, are outlined. POLAR Laboratory is described, along with POLAR instrumentation, support subsystems, and orbits. Launch vehicle and injection into orbit are also addressed.
Kinetic and radiation-hydrodynamic modeling of x-ray heating in laboratory photoionized plasmas
NASA Astrophysics Data System (ADS)
Mancini, Roberto
2017-06-01
In experiments performed at the Z facility of Sandia National Laboratories a cm-scale cell filled with neon gas was driven by the burst of broadband x-rays emitted at the collapse of a wire-array z-pinch turning the gas into a photoionized plasma. Transmission spectroscopy of a narrowband portion of the x-ray flux was used to diagnose the plasma. The data show a highly-ionized neon plasma with a rich line absorption spectrum that permits the extraction of the ionization distribution among Be-, Li-, He- and H-like ions. Analysis of the spectra produced atomic ground and low excited state areal densities in these ions, and from the ratio of first-excited to ground state populations in Li-like neon a temperature of 19±4eV was extracted to characterize the x-ray heating of the plasma. To interpret this observation, we have performed data-constrained view-factor calculations of the spectral distribution of the x-ray drive, self-consistent modeling of electron and atomic kinetics, and radiation-hydrodynamic simulations. For the conditions of the experiment, the electron distribution thermalizes quickly, has a negligible high-energy tail, and is very well approximated by a single Maxwellian distribution. Radiation-hydrodynamic simulations with either LTE or NLTE (i.e. non-equilibrium) atomic physics provide a more complete modeling of the experiment. We found that in order to compute electron temperatures consistent with observation inline non-equilibrium collisional-radiative neon atomic kinetics needs to be taken into account. We discuss the details of LTE and NLTE simulations, and the impact of atomic physics on the radiation heating and cooling rates that determine the plasma temperature. This work was sponsored in part by DOE Office of Science Grant DE-SC0014451, and the Z Facility Fundamental Science Program of SNL.
Inertial Confinement Fusion quarterly report, January-March 1998, volume 8, number 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruer, W
1998-03-31
The coupling of laser light with plasmas is one of the key physics issues for the use of high-power lasers for inertial fusion, high-energy-density physics, and scientific stockpile stewardship. The coupling physics is extremely rich and challenging, particularly in the large plasmas to be accessed on the National Ignition Facility (NIF). The coupling mechanisms span the gamut from classical inverse bremsstrahlung absorption to a variety of nonlinear optical processes. These include stimulated Raman scattering (SRS) from electron plasma waves, stimulated Brillouin scattering (SBS) from ion sound waves, resonant decay into electron plasma and ion sound waves, and laser beam filamentation.more » These processes depend on laser intensity and produce effects such as changes in the efficiency and location of the energy deposition or generation of a component of very energetic electrons, which can preheat capsules. Coupling physics issues have an extremely high leverage. The coupling models are clearly very important ingredients for detailed calculations of laser-irradiated target behavior. Improved understanding and models enable a more efficient use of laser facilities, which becomes even more important as these facilities become larger and more expensive. Advances in the understanding also allow a more timely and cost-effective identification of new applications of high-power lasers, such as for generation of high-temperature hohlraums and compact x-ray sources, or for discovery of advanced fusion schemes. Finally, the interaction of intense electromagnetic waves with ionized media is a fundamental topic of interest to numerous areas of applied science and is an excellent test bed for advancing plasma science and computational modeling of complex phenomena. This issue of the ICF Quarterly Report is dedicated to laser--plasma interactions. The eight articles present a cross section of the broad progress in understanding the key interaction issues, such as laser beam bending, spraying, and scattering, as well as scaling the Nova results to NIF.« less
Educational Outreach at the MIT Plasma Science and Fusion Center
NASA Astrophysics Data System (ADS)
Thomas, P.; Rivenberg, P.; Censabella, V.
2002-11-01
At the MIT PSFC, student and staff volunteers work together to increase the public's knowledge of fusion science and plasma technology. Seeking to generate excitement in young people about science and engineering, the PSFC hosts a number of educational outreach activities throughout the year, including Middle and High School Outreach Days. The PSFC also has an in-school science-demonstration program on the theme of magnetism. As ``Mr. Magnet," Technical Supervisor Paul Thomas brings a truck-load of hands-on demonstrations to K-12 schools, challenging students to help him with experiments. While teaching fundamentals of magnetism and electricity he shows that science is fun for all, and that any student can have a career in science. This year he reached 82 schools -- 30,000 teachers and students. He has recently expanded his teaching to include an interactive demonstration of plasma, encouraging participants to investigate plasma properties with audiovisual, electromagnetic, and spectroscopic techniques. He has also developed a workshop for middle school on how to build an electromagnet.
The Caltech Concurrent Computation Program - Project description
NASA Technical Reports Server (NTRS)
Fox, G.; Otto, S.; Lyzenga, G.; Rogstad, D.
1985-01-01
The Caltech Concurrent Computation Program wwhich studies basic issues in computational science is described. The research builds on initial work where novel concurrent hardware, the necessary systems software to use it and twenty significant scientific implementations running on the initial 32, 64, and 128 node hypercube machines have been constructed. A major goal of the program will be to extend this work into new disciplines and more complex algorithms including general packages that decompose arbitrary problems in major application areas. New high-performance concurrent processors with up to 1024-nodes, over a gigabyte of memory and multigigaflop performance are being constructed. The implementations cover a wide range of problems in areas such as high energy and astrophysics, condensed matter, chemical reactions, plasma physics, applied mathematics, geophysics, simulation, CAD for VLSI, graphics and image processing. The products of the research program include the concurrent algorithms, hardware, systems software, and complete program implementations.
Plasma Detachment Mechanisms in Propulsive Magnetic Nozzles
2013-03-07
distribution is unlimited. 41A. Fruchtman, Phys. Rev. Lett. 96, 065002 (2006). 42M. Merino and E. Ahedo, IEEE Trans. Plasma Sci. 39, 2938 (2011). 43J...Ahedo, E., “Simulation of plasma flows in divergent magnetic nozzles,” IEEE Transactions on Plasma Science, Vol. 39, No. 11, 2011, pp. 2938 –2939...Plasma Science, Vol. 39, No. 11, 2011, pp. 2938 –2939. 14Zucrow, M. and Hoffman, J., Gas dynamics, Wiley, New York, 1976. 15Ahedo, E., “Parametric analysis
Preface to advances in numerical simulation of plasmas
NASA Astrophysics Data System (ADS)
Parker, Scott E.; Chacon, Luis
2016-10-01
This Journal of Computational Physics Special Issue, titled ;Advances in Numerical Simulation of Plasmas,; presents a snapshot of the international state of the art in the field of computational plasma physics. The articles herein are a subset of the topics presented as invited talks at the 24th International Conference on the Numerical Simulation of Plasmas (ICNSP), August 12-14, 2015 in Golden, Colorado. The choice of papers was highly selective. The ICNSP is held every other year and is the premier scientific meeting in the field of computational plasma physics.
Educational Outreach at the MIT Plasma Science and Fusion Center
NASA Astrophysics Data System (ADS)
Rivenberg, Paul; Thomas, Paul
2004-11-01
At the MIT PSFC student and staff volunteers work together to increase the public's knowledge of fusion science and plasma technology. Seeking to generate excitement in young people about science and engineering, the PSFC hosts a number of educational outreach activities and tours throughout the year, including Middle and High School Outreach Days. The PSFC also has an in-school science demonstration program on the theme of magnetism. As ''Mr. Magnet'' Technical Supervisor Paul Thomas brings a truck-load of hands-on demonstrations to K-12 schools, challenging students to help him with experiments. While teaching fundamentals of magnetism and electricity he shows that science is fun for all, and that any student can have a career in science. This year he taught at 75 schools and other events, reaching 30,000 teachers and students. He has expanded his teaching to include an interactive demonstration of plasma, encouraging participants to investigate plasma properties with audiovisual, electromagnetic, and spectroscopic techniques. The PSFC's continuing involvement with the MIT Museum and the Boston Museum of Science also helps familiarize the public with the fourth state of matter.
Know Your Discipline: Teaching the Philosophy of Computer Science
ERIC Educational Resources Information Center
Tedre, Matti
2007-01-01
The diversity and interdisciplinarity of computer science and the multiplicity of its uses in other sciences make it hard to define computer science and to prescribe how computer science should be carried out. The diversity of computer science also causes friction between computer scientists from different branches. Computer science curricula, as…
Deuterium sputtering of Li and Li-O films
NASA Astrophysics Data System (ADS)
Nelson, Andrew; Buzi, Luxherta; Kaita, Robert; Koel, Bruce
2017-10-01
Lithium wall coatings have been shown to enhance the operational plasma performance of many fusion devices, including NSTX and other tokamaks, by reducing the global wall recycling coefficient. However, pure lithium surfaces are extremely difficult to maintain in experimental fusion devices due to both inevitable oxidation and codeposition from sputtering of hot plasma facing components. Sputtering of thin lithium and lithium oxide films on a molybdenum target by energetic deuterium ion bombardment was studied in laboratory experiments conducted in a surface science apparatus. A Colutron ion source was used to produce a monoenergetic, mass-selected ion beam. Measurements were made under ultrahigh vacuum conditions as a function of surface temperature (90-520 K) using x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and temperature programmed desorption (TPD). Results are compared with computer simulations conducted on a temperature-dependent data-calibrated (TRIM) model.
The Voyager 2 Encounter with the Uranian System.
ERIC Educational Resources Information Center
Stone, E. C.; Miner, E. D.
1986-01-01
A series of 12 reports on the Voyager Two experiments in the Uranian system. Reports are included on: (1) imaging science; (2) photometry; (3) infrared; (4) ultraviolet; (5) radio science; (6) magnetic fields; (7) plasma; (8) charged particles; (9) magnetosphere (hot plasma and radiation); (10) radion observations; and (11) plasma waves. An…
Summary Report of Working Group 2: Computation
NASA Astrophysics Data System (ADS)
Stoltz, P. H.; Tsung, R. S.
2009-01-01
The working group on computation addressed three physics areas: (i) plasma-based accelerators (laser-driven and beam-driven), (ii) high gradient structure-based accelerators, and (iii) electron beam sources and transport [1]. Highlights of the talks in these areas included new models of breakdown on the microscopic scale, new three-dimensional multipacting calculations with both finite difference and finite element codes, and detailed comparisons of new electron gun models with standard models such as PARMELA. The group also addressed two areas of advances in computation: (i) new algorithms, including simulation in a Lorentz-boosted frame that can reduce computation time orders of magnitude, and (ii) new hardware architectures, like graphics processing units and Cell processors that promise dramatic increases in computing power. Highlights of the talks in these areas included results from the first large-scale parallel finite element particle-in-cell code (PIC), many order-of-magnitude speedup of, and details of porting the VPIC code to the Roadrunner supercomputer. The working group featured two plenary talks, one by Brian Albright of Los Alamos National Laboratory on the performance of the VPIC code on the Roadrunner supercomputer, and one by David Bruhwiler of Tech-X Corporation on recent advances in computation for advanced accelerators. Highlights of the talk by Albright included the first one trillion particle simulations, a sustained performance of 0.3 petaflops, and an eight times speedup of science calculations, including back-scatter in laser-plasma interaction. Highlights of the talk by Bruhwiler included simulations of 10 GeV accelerator laser wakefield stages including external injection, new developments in electromagnetic simulations of electron guns using finite difference and finite element approaches.
Summary Report of Working Group 2: Computation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoltz, P. H.; Tsung, R. S.
2009-01-22
The working group on computation addressed three physics areas: (i) plasma-based accelerators (laser-driven and beam-driven), (ii) high gradient structure-based accelerators, and (iii) electron beam sources and transport [1]. Highlights of the talks in these areas included new models of breakdown on the microscopic scale, new three-dimensional multipacting calculations with both finite difference and finite element codes, and detailed comparisons of new electron gun models with standard models such as PARMELA. The group also addressed two areas of advances in computation: (i) new algorithms, including simulation in a Lorentz-boosted frame that can reduce computation time orders of magnitude, and (ii) newmore » hardware architectures, like graphics processing units and Cell processors that promise dramatic increases in computing power. Highlights of the talks in these areas included results from the first large-scale parallel finite element particle-in-cell code (PIC), many order-of-magnitude speedup of, and details of porting the VPIC code to the Roadrunner supercomputer. The working group featured two plenary talks, one by Brian Albright of Los Alamos National Laboratory on the performance of the VPIC code on the Roadrunner supercomputer, and one by David Bruhwiler of Tech-X Corporation on recent advances in computation for advanced accelerators. Highlights of the talk by Albright included the first one trillion particle simulations, a sustained performance of 0.3 petaflops, and an eight times speedup of science calculations, including back-scatter in laser-plasma interaction. Highlights of the talk by Bruhwiler included simulations of 10 GeV accelerator laser wakefield stages including external injection, new developments in electromagnetic simulations of electron guns using finite difference and finite element approaches.« less
Development of hybrid computer plasma models for different pressure regimes
NASA Astrophysics Data System (ADS)
Hromadka, Jakub; Ibehej, Tomas; Hrach, Rudolf
2016-09-01
With increased performance of contemporary computers during last decades numerical simulations became a very powerful tool applicable also in plasma physics research. Plasma is generally an ensemble of mutually interacting particles that is out of the thermodynamic equilibrium and for this reason fluid computer plasma models give results with only limited accuracy. On the other hand, much more precise particle models are often limited only on 2D problems because of their huge demands on the computer resources. Our contribution is devoted to hybrid modelling techniques that combine advantages of both modelling techniques mentioned above, particularly to their so-called iterative version. The study is focused on mutual relations between fluid and particle models that are demonstrated on the calculations of sheath structures of low temperature argon plasma near a cylindrical Langmuir probe for medium and higher pressures. Results of a simple iterative hybrid plasma computer model are also given. The authors acknowledge the support of the Grant Agency of Charles University in Prague (project 220215).
The role of platelet rich plasma in musculoskeletal science
Ahmad, Zafar; Howard, Daniel; Brooks, Roger A; Wardale, John; Henson, Fran MD; Getgood, Alan; Rushton, Neil
2012-01-01
The idea of using platelet rich plasma (PRP) in medicine has been around since the 1970s. It is only more recently that its use has been employed in the area of musculoskeletal science. Platelet rich plasma in this area has received much media attention being used by many celebrity sports athletes for musculoskeletal injuries. Therefore it is important for the musculoskeletal practitioner to be aware of the concepts surrounding its use and application. In this article we cover what platelet rich plasma is, how it is prepared and administered, its potential clinical application, and what the current literature discusses in the various areas of musculoskeletal science. PMID:22768374
Dusty (complex) plasmas: recent developments, advances, and unsolved problems
NASA Astrophysics Data System (ADS)
Popel, Sergey
The area of dusty (complex) plasma research is a vibrant subfield of plasma physics that be-longs to frontier research in physical sciences. This area is intrinsically interdisciplinary and encompasses astrophysics, planetary science, atmospheric science, magnetic fusion energy sci-ence, and various applied technologies. The research in dusty plasma started after two major discoveries in very different areas: (1) the discovery by the Voyager 2 spacecraft in 1980 of the radial spokes in Saturn's B ring, and (2) the discovery of the early 80's growth of contaminating dust particles in plasma processing. Dusty plasmas are ubiquitous in the universe; examples are proto-planetary and solar nebulae, molecular clouds, supernovae explosions, interplanetary medium, circumsolar rings, and asteroids. Within the solar system, we have planetary rings (e.g., Saturn and Jupiter), Martian atmosphere, cometary tails and comae, dust clouds on the Moon, etc. Close to the Earth, there are noctilucent clouds and polar mesospheric summer echoes, which are clouds of tiny (charged) ice particles that are formed in the summer polar mesosphere at the altitudes of about 82-95 km. Dust and dusty plasmas are also found in the vicinity of artificial satellites and space stations. Dust also turns out to be common in labo-ratory plasmas, such as in the processing of semiconductors and in tokamaks. In processing plasmas, dust particles are actually grown in the discharge from the reactive gases used to form the plasmas. An example of the relevance of industrial dusty plasmas is the growth of silicon microcrystals for improved solar cells in the future. In fact, nanostructured polymorphous sili-con films provide solar cells with high and time stable efficiency. These nano-materials can also be used for the fabrication of ultra-large-scale integration circuits, display devices, single elec-tron devices, light emitting diodes, laser diodes, and others. In microelectronic industries, dust has to be kept under control in the manufacture of microchips, otherwise charged dust particles (also known as killer particles) can destroy electronic circuits. In magnetic fusion research using tokamaks, one realizes that the absorption of tritium by dust fragments could cause a serious health hazard. The evaporation of dust particles could also lead to bremsstrahlung adversely affecting the energy gain of the tokamaks or other fusion devices. The specific features of dusty plasmas are a possibility of the formation of dust Coulomb lattices and the anomalous dissi-pation arising due to the interplay between plasmas and charged dust grains. These features determine new physics of dusty plasmas including, in particular, phase transitions and critical point phenomena, wave propagation, nonlinear effects and turbulence, dissipative and coherent structures, etc. The present review covers the main aspects of the area of dusty (complex) plasma research. The author acknowledges the financial support of the Division of Earth Sci-ences, Russian Academy of Sciences (the basic research program "Nanoscale particles in nature and technogenic products: conditions of existence, physical and chemical properties, and mech-anisms of formation"'), of the Division of Physical Sciences, Russian Academy of Sciences (the basic research program "Plasma physics in the Solar system"), of the Dynasty Foundation, as well as of the Russian Foundation for Basic Research.
Relaunch of the Interactive Plasma Physics Educational Experience (IPPEX)
NASA Astrophysics Data System (ADS)
Dominguez, A.; Rusaitis, L.; Zwicker, A.; Stotler, D. P.
2015-11-01
In the late 1990's PPPL's Science Education Department developed an innovative online site called the Interactive Plasma Physics Educational Experience (IPPEX). It featured (among other modules) two Java based applications which simulated tokamak physics: A steady state tokamak (SST) and a time dependent tokamak (TDT). The physics underlying the SST and the TDT are based on the ASPECT code which is a global power balance code developed to evaluate the performance of fusion reactor designs. We have relaunched the IPPEX site with updated modules and functionalities: The site itself is now dynamic on all platforms. The graphic design of the site has been modified to current standards. The virtual tokamak programming has been redone in Javascript, taking advantage of the speed and compactness of the code. The GUI of the tokamak has been completely redesigned, including more intuitive representations of changes in the plasma, e.g., particles moving along magnetic field lines. The use of GPU accelerated computation provides accurate and smooth visual representations of the plasma. We will present the current version of IPPEX as well near term plans of incorporating real time NSTX-U data into the simulation.
Liquid Metals as Plasma-facing Materials for Fusion Energy Systems: From Atoms to Tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, Howard A.; Koel, Bruce E.; Bernasek, Steven L.
The objective of our studies was to advance our fundamental understanding of liquid metals as plasma-facing materials for fusion energy systems, with a broad scope: from atoms to tokamaks. The flow of liquid metals offers solutions to significant problems of the plasma-facing materials for fusion energy systems. Candidate metals include lithium, tin, gallium, and their eutectic combinations. However, such liquid metal solutions can only be designed efficiently if a range of scientific and engineering issues are resolved that require advances in fundamental fluid dynamics, materials science and surface science. In our research we investigated a range of significant and timelymore » problems relevant to current and proposed engineering designs for fusion reactors, including high-heat flux configurations that are being considered by leading fusion energy groups world-wide. Using experimental and theoretical tools spanning atomistic to continuum descriptions of liquid metals, and bridging surface chemistry, wetting/dewetting and flow, our research has advanced the science and engineering of fusion energy materials and systems. Specifically, we developed a combined experimental and theoretical program to investigate flows of liquid metals in fusion-relevant geometries, including equilibrium and stability of thin-film flows, e.g. wetting and dewetting, effects of electromagnetic and thermocapillary fields on liquid metal thin-film flows, and how chemical interactions and the properties of the surface are influenced by impurities and in turn affect the surface wetting characteristics, the surface tension, and its gradients. Because high-heat flux configurations produce evaporation and sputtering, which forces rearrangement of the liquid, and any dewetting exposes the substrate to damage from the plasma, our studies addressed such evaporatively driven liquid flows and measured and simulated properties of the different bulk phases and material interfaces. The range of our studies included (i) quantum mechanical calculations that allow inclusion of many thousands of atoms for the characterization of the interface of liquid metals exposed to continuous bombardment by deuterium and tritium as expected in fusion, (ii) molecular dynamics studies of the phase behavior of liquid metals, which (a) utilize thermodynamic properties computed using our quantum mechanical calculations and (b) establish material and wetting properties of the liquid metals, including relevant eutectics, (iii) experimental investigations of the surface science of liquid metals, interacting both with the solid substrate as well as gaseous species, and (iv) fluid dynamical studies that incorporate the material and surface science results of (ii) and (iii) in order to characterize flow in capillary porous materials and the thin-film flow along curved boundaries, both of which are potentially major components of plasma-facing materials. The outcome of these integrated studies was new understanding that enables developing design rules useful for future developments of the plasma-facing components critical to the success of fusion energy systems.« less
Fusion Simulation Project Workshop Report
NASA Astrophysics Data System (ADS)
Kritz, Arnold; Keyes, David
2009-03-01
The mission of the Fusion Simulation Project is to develop a predictive capability for the integrated modeling of magnetically confined plasmas. This FSP report adds to the previous activities that defined an approach to integrated modeling in magnetic fusion. These previous activities included a Fusion Energy Sciences Advisory Committee panel that was charged to study integrated simulation in 2002. The report of that panel [Journal of Fusion Energy 20, 135 (2001)] recommended the prompt initiation of a Fusion Simulation Project. In 2003, the Office of Fusion Energy Sciences formed a steering committee that developed a project vision, roadmap, and governance concepts [Journal of Fusion Energy 23, 1 (2004)]. The current FSP planning effort involved 46 physicists, applied mathematicians and computer scientists, from 21 institutions, formed into four panels and a coordinating committee. These panels were constituted to consider: Status of Physics Components, Required Computational and Applied Mathematics Tools, Integration and Management of Code Components, and Project Structure and Management. The ideas, reported here, are the products of these panels, working together over several months and culminating in a 3-day workshop in May 2007.
NASA Astrophysics Data System (ADS)
Wagner, F.
2003-12-01
The Hannes Alfvén Prize of the European Physical Society for Outstanding Contributions to Plasma Physics (2003) has been awarded to Vladimir Evgenievitch Fortov `for his seminal contributions in the area of non-ideal plasmas and strongly coupled Coulomb systems, and for his pioneering work on the generation and investigation of plasmas under extreme conditions'. Vladimir Evgenievitch Fortov was born on 23 January 1946 in Noginsk, Russia. He studied physics at the Moscow Institute of Physics and Technology (PhD in 1976). In 1978 he was made a Professor and in 1991 he was awarded the Chair of the Moscow Institute of Physics and Technology. In the same year he became a Member of the Russian Academy of Sciences and was its vice-chairman from 1996 to 2001. From 1996 to 1998, Professor Fortov went into politics where he was just as successful, becoming Deputy Prime Minister of the Government of the Russian Federation and Minister of Science and Technology of the Russian Federation. Professor Fortov has made outstanding experimental and theoretical contributions to low temperature plasma physics. His pioneering work investigating non-ideal plasmas produced by intense shock waves initiated a new research field---the physical properties of highly compressed plasmas with strong inter-particle interactions. Under the leadership of Professor Fortov, experimental methods for generating and diagnosing these plasmas under extreme conditions were developed. To generate intense shock waves, a broad spectrum of drivers was used---chemical explosives, hypervelocity impact, lasers, relativistic electrons, heavy-ion and soft x-ray beams. Measurements of the equation of state, transport and optical properties of strongly coupled plasmas were carried out, including the interesting region lying between condensed matter and rarefied plasmas where specific plasma phase transitions and insulator--metal transitions were expected and explored. In another area of strongly coupled plasmas, Professor Fortov led theoretical and experimental studies on `dusty plasmas', carried out over a wide range of plasma parameters, using a broad spectrum of experimental techniques and devices. These studies embraced thermal combustion, glow and rf discharges and plasmas induced by cosmic ultraviolet and nuclear radiation. Under many of these conditions, ordered structures of dust in plasma liquids and plasma crystals were observed for the first time. Investigations of dusty plasmas induced by solar radiation and dust structures in DC glow discharges were first carried out on the Mir space station under micro-gravity conditions. The Russian--German experiment on dusty plasma crystals in space was successfully started on the International Space Station (ISS) in March 2001. This experiment was the first physics experiment on board the ISS. On the basis of his experimental results, Professor Fortov developed a general method of constructing semi-empirical equations of state of highly compressed materials. He put forward theoretical models of thermodynamical, transport and optical properties of strongly non-ideal plasmas. On the basis of these models Professor Fortov developed two-dimensional and three-dimensional computer codes for computer simulations of the processes in advanced energetic, space, nuclear and aviation systems based on high energy density plasmas. Professor Fortov has not only contributed to plasma theory but also to more applied topics. His laboratory participated in international space projects like the VEGA project (plasma dust impact phenomena), as well as the Halley Comet exploration, and studied plasma and shock wave phenomena stimulated by the impact of the Shoemaker-Levy 9 comet with Jupiter. Professor Fortov is an internationally well known scientist. He collaborates actively with many plasma laboratories and institutions. He has received many national and international awards, including several USSR and Russian State Awards, the A P Karpinskii-Toepfer Scientific Award for Physics and Chemistry (1997), the P Bridgman Award for High Pressure Plasma Investigations and Achievements in High Pressure Physics and Chemistry (1999), the A Einstein Medal of UNESCO (2000) and the Max Planck Award for Physics (2002). It is therefore with great pleasure and honour that the Plasma Physics Division of the European Physical Society has awarded the Hannes Alfvén prize this year to Professor Vladimir Evgenievitch Fortov. This article first appeared on the Europhyisics News website.
Development of a PC-based ground support system for a small satellite instrument
NASA Astrophysics Data System (ADS)
Deschambault, Robert L.; Gregory, Philip R.; Spenler, Stephen; Whalen, Brian A.
1993-11-01
The importance of effective ground support for the remote control and data retrieval of a satellite instrument cannot be understated. Problems with ground support may include the need to base personnel at a ground tracking station for extended periods, and the delay between the instrument observation and the processing of the data by the science team. Flexible solutions to such problems in the case of small satellite systems are provided by using low-cost, powerful personal computers and off-the-shelf software for data acquisition and processing, and by using Internet as a communication pathway to enable scientists to view and manipulate satellite data in real time at any ground location. The personal computer based ground support system is illustrated for the case of the cold plasma analyzer flown on the Freja satellite. Commercial software was used as building blocks for writing the ground support equipment software. Several levels of hardware support, including unit tests and development, functional tests, and integration were provided by portable and desktop personal computers. Satellite stations in Saskatchewan and Sweden were linked to the science team via phone lines and Internet, which provided remote control through a central point. These successful strategies will be used on future small satellite space programs.
NASA Astrophysics Data System (ADS)
King, Jacob; Kruger, Scott
2017-10-01
Flow can impact the stability and nonlinear evolution of range of instabilities (e.g. RWMs, NTMs, sawteeth, locked modes, PBMs, and high-k turbulence) and thus robust numerical algorithms for simulations with flow are essential. Recent simulations of DIII-D QH-mode [King et al., Phys. Plasmas and Nucl. Fus. 2017] with flow have been restricted to smaller time-step sizes than corresponding computations without flow. These computations use a mixed semi-implicit, implicit leapfrog time discretization as implemented in the NIMROD code [Sovinec et al., JCP 2004]. While prior analysis has shown that this algorithm is unconditionally stable with respect to the effect of large flows on the MHD waves in slab geometry [Sovinec et al., JCP 2010], our present Von Neumann stability analysis shows that a flow-induced numerical instability may arise when ad-hoc cylindrical curvature is included. Computations with the NIMROD code in cylindrical geometry with rigid rotation and without free-energy drive from current or pressure gradients qualitatively confirm this analysis. We explore potential methods to circumvent this flow-induced numerical instability such as using a semi-Lagrangian formulation instead of time-centered implicit advection and/or modification to the semi-implicit operator. This work is supported by the DOE Office of Science (Office of Fusion Energy Sciences).
NASA Astrophysics Data System (ADS)
Sabchevski, S.; Idehara, T.; Damyanova, M.; Zhelyazkov, I.; Balabanova, E.; Vasileva, E.
2018-03-01
Gyrotrons are the most powerful sources of CW coherent radiation in the sub-THz and THz frequency bands. In recent years, they have demonstrated a remarkable potential for bridging the so-called THz-gap in the electromagnetic spectrum and opened the road to many novel applications of the terahertz waves. Among them are various advanced spectroscopic techniques (e.g., ESR and DNP-NMR), plasma physics and fusion research, materials processing and characterization, imaging and inspection, new medical technologies and biological studies. In this paper, we review briefly the current status of the research in this broad field and present our problem-oriented software packages developed recently for numerical analysis, computer-aided design (CAD) and optimization of gyrotrons.
NASA Technical Reports Server (NTRS)
Klumpar, D. M.; Lapolla, M. V.; Horblit, B.
1995-01-01
A prototype system has been developed to aid the experimental space scientist in the display and analysis of spaceborne data acquired from direct measurement sensors in orbit. We explored the implementation of a rule-based environment for semi-automatic generation of visualizations that assist the domain scientist in exploring one's data. The goal has been to enable rapid generation of visualizations which enhance the scientist's ability to thoroughly mine his data. Transferring the task of visualization generation from the human programmer to the computer produced a rapid prototyping environment for visualizations. The visualization and analysis environment has been tested against a set of data obtained from the Hot Plasma Composition Experiment on the AMPTE/CCE satellite creating new visualizations which provided new insight into the data.
plasmaFoam: An OpenFOAM framework for computational plasma physics and chemistry
NASA Astrophysics Data System (ADS)
Venkattraman, Ayyaswamy; Verma, Abhishek Kumar
2016-09-01
As emphasized in the 2012 Roadmap for low temperature plasmas (LTP), scientific computing has emerged as an essential tool for the investigation and prediction of the fundamental physical and chemical processes associated with these systems. While several in-house and commercial codes exist, with each having its own advantages and disadvantages, a common framework that can be developed by researchers from all over the world will likely accelerate the impact of computational studies on advances in low-temperature plasma physics and chemistry. In this regard, we present a finite volume computational toolbox to perform high-fidelity simulations of LTP systems. This framework, primarily based on the OpenFOAM solver suite, allows us to enhance our understanding of multiscale plasma phenomenon by performing massively parallel, three-dimensional simulations on unstructured meshes using well-established high performance computing tools that are widely used in the computational fluid dynamics community. In this talk, we will present preliminary results obtained using the OpenFOAM-based solver suite with benchmark three-dimensional simulations of microplasma devices including both dielectric and plasma regions. We will also discuss the future outlook for the solver suite.
Evaluation of CFETR as a Fusion Nuclear Science Facility using multiple system codes
NASA Astrophysics Data System (ADS)
Chan, V. S.; Costley, A. E.; Wan, B. N.; Garofalo, A. M.; Leuer, J. A.
2015-02-01
This paper presents the results of a multi-system codes benchmarking study of the recently published China Fusion Engineering Test Reactor (CFETR) pre-conceptual design (Wan et al 2014 IEEE Trans. Plasma Sci. 42 495). Two system codes, General Atomics System Code (GASC) and Tokamak Energy System Code (TESC), using different methodologies to arrive at CFETR performance parameters under the same CFETR constraints show that the correlation between the physics performance and the fusion performance is consistent, and the computed parameters are in good agreement. Optimization of the first wall surface for tritium breeding and the minimization of the machine size are highly compatible. Variations of the plasma currents and profiles lead to changes in the required normalized physics performance, however, they do not significantly affect the optimized size of the machine. GASC and TESC have also been used to explore a lower aspect ratio, larger volume plasma taking advantage of the engineering flexibility in the CFETR design. Assuming the ITER steady-state scenario physics, the larger plasma together with a moderately higher BT and Ip can result in a high gain Qfus ˜ 12, Pfus ˜ 1 GW machine approaching DEMO-like performance. It is concluded that the CFETR baseline mode can meet the minimum goal of the Fusion Nuclear Science Facility (FNSF) mission and advanced physics will enable it to address comprehensively the outstanding critical technology gaps on the path to a demonstration reactor (DEMO). Before proceeding with CFETR construction steady-state operation has to be demonstrated, further development is needed to solve the divertor heat load issue, and blankets have to be designed with tritium breeding ratio (TBR) >1 as a target.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimada, M.; Taylor, C. N.; Pawelko, R. J.
2016-04-01
The Tritium Plasma Experiment (TPE) is a unique high-flux linear plasma device that can handle beryllium, tritium, and neutron-irradiated plasma facing materials, and is the only existing device dedicated to directly study tritium retention and permeation in neutron-irradiated materials with tritium [M. Shimada et.al., Rev. Sci. Instru. 82 (2011) 083503 and and M. Shimada, et.al., Nucl. Fusion 55 (2015) 013008]. The plasma-material-interaction (PMI) determines a boundary condition for diffusing tritium into bulk PFCs, and the tritium PMI is crucial for enhancing fundamental sciences that dictate tritium fuel cycles and safety and are high importance to an FNSF and DEMO. Recentlymore » the TPE has undergone major upgrades in its electrical and control systems. New DC power supplies and a new control center enable remote plasma operations from outside of the contamination area for tritium, minimizing the possible exposure risk with tritium and beryllium. We discuss the electrical upgrade, enhanced operational safety, improved plasma performance, and development of optical spectrometer system. This upgrade not only improves operational safety of the worker, but also enhances plasma performance to better simulate extreme plasma-material conditions expected in ITER, Fusion Nuclear Science Facility (FNSF), and Demonstration reactor (DEMO). This work was prepared for the U.S. Department of Energy, Office of Fusion Energy Sciences, under the DOE Idaho Field Office contract number DE-AC07-05ID14517.« less
Extraordinary Tools for Extraordinary Science: The Impact ofSciDAC on Accelerator Science&Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryne, Robert D.
2006-08-10
Particle accelerators are among the most complex and versatile instruments of scientific exploration. They have enabled remarkable scientific discoveries and important technological advances that span all programs within the DOE Office of Science (DOE/SC). The importance of accelerators to the DOE/SC mission is evident from an examination of the DOE document, ''Facilities for the Future of Science: A Twenty-Year Outlook''. Of the 28 facilities listed, 13 involve accelerators. Thanks to SciDAC, a powerful suite of parallel simulation tools has been developed that represent a paradigm shift in computational accelerator science. Simulations that used to take weeks or more now takemore » hours, and simulations that were once thought impossible are now performed routinely. These codes have been applied to many important projects of DOE/SC including existing facilities (the Tevatron complex, the Relativistic Heavy Ion Collider), facilities under construction (the Large Hadron Collider, the Spallation Neutron Source, the Linac Coherent Light Source), and to future facilities (the International Linear Collider, the Rare Isotope Accelerator). The new codes have also been used to explore innovative approaches to charged particle acceleration. These approaches, based on the extremely intense fields that can be present in lasers and plasmas, may one day provide a path to the outermost reaches of the energy frontier. Furthermore, they could lead to compact, high-gradient accelerators that would have huge consequences for US science and technology, industry, and medicine. In this talk I will describe the new accelerator modeling capabilities developed under SciDAC, the essential role of multi-disciplinary collaboration with applied mathematicians, computer scientists, and other IT experts in developing these capabilities, and provide examples of how the codes have been used to support DOE/SC accelerator projects.« less
NASA Astrophysics Data System (ADS)
Ryne, Robert D.
2006-09-01
Particle accelerators are among the most complex and versatile instruments of scientific exploration. They have enabled remarkable scientific discoveries and important technological advances that span all programs within the DOE Office of Science (DOE/SC). The importance of accelerators to the DOE/SC mission is evident from an examination of the DOE document, ''Facilities for the Future of Science: A Twenty-Year Outlook.'' Of the 28 facilities listed, 13 involve accelerators. Thanks to SciDAC, a powerful suite of parallel simulation tools has been developed that represent a paradigm shift in computational accelerator science. Simulations that used to take weeks or more now take hours, and simulations that were once thought impossible are now performed routinely. These codes have been applied to many important projects of DOE/SC including existing facilities (the Tevatron complex, the Relativistic Heavy Ion Collider), facilities under construction (the Large Hadron Collider, the Spallation Neutron Source, the Linac Coherent Light Source), and to future facilities (the International Linear Collider, the Rare Isotope Accelerator). The new codes have also been used to explore innovative approaches to charged particle acceleration. These approaches, based on the extremely intense fields that can be present in lasers and plasmas, may one day provide a path to the outermost reaches of the energy frontier. Furthermore, they could lead to compact, high-gradient accelerators that would have huge consequences for US science and technology, industry, and medicine. In this talk I will describe the new accelerator modeling capabilities developed under SciDAC, the essential role of multi-disciplinary collaboration with applied mathematicians, computer scientists, and other IT experts in developing these capabilities, and provide examples of how the codes have been used to support DOE/SC accelerator projects.
Sandia technology: Engineering and science applications
NASA Astrophysics Data System (ADS)
Maydew, M. C.; Parrot, H.; Dale, B. C.; Floyd, H. L.; Leonard, J. A.; Parrot, L.
1990-12-01
This report discusses: protecting environment, safety, and health; Sandia's quality initiative; Sandia vigorously pursues technology transfer; scientific and technical education support programs; nuclear weapons development; recognizing battlefield targets with trained artificial neural networks; battlefield robotics: warfare at a distance; a spinning shell sizes up the enemy; thwarting would-be nuclear terrorists; unattended video surveillance system for nuclear facilities; making the skies safer for travelers; onboard instrumentation system to evaluate performance of stockpile bombs; keeping track with lasers; extended-life lithium batteries; a remote digital video link acquires images securely; guiding high-performance missiles with laser gyroscopes; nonvolatile memory chips for space applications; initiating weapon explosives with lasers; next-generation optoelectronics and microelectronics technology developments; chemometrics: new methods for improving chemical analysis; research team focuses ion beam to record-breaking intensities; standardizing the volt to quantum accuracy; new techniques improve robotic software development productivity; a practical laser plasma source for generating soft x-rays; exploring metal grain boundaries; massively parallel computing; modeling the amount of desiccant needed for moisture control; attacking pollution with sunshine; designing fuel-conversion catalysts with computers; extending a nuclear power plant's useful life; plasma-facing components for the International Thermonuclear Experimental Reactor.
Prospects for Off-axis Current Drive via High Field Side Lower Hybrid Current Drive in DIII-D
NASA Astrophysics Data System (ADS)
Wukitch, S. J.; Shiraiwa, S.; Wallace, G. M.; Bonoli, P. T.; Holcomb, C.; Park, J. M.; Pinsker, R. I.
2017-10-01
An outstanding challenge for an economical, steady state tokamak is efficient off-axis current drive scalable to reactors. Previous studies have focused on high field side (HFS) launch of lower hybrid waves for current drive (LHCD) in double null configurations in reactor grade plasmas. The goal of this work is to find a HFS LHCD scenario for DIII-D that balances coupling, power penetration and damping. The higher magnetic field on the HFS improves wave accessibility, which allows for lower n||waves to be launched. These waves penetrate farther into the plasma core before damping at higher Te yielding a higher current drive efficiency. Utilizing advanced ray tracing and Fokker Planck simulation tools (GENRAY+CQL3D), wave penetration, absorption and drive current profiles in high performance DIII-D H-Mode plasmas were investigated. We found LH scenarios with single pass absorption, excellent wave penetration to r/a 0.6-0.8, FWHM r/a=0.2 and driven current up to 0.37 MA/MW coupled. These simulations indicate that HFS LHCD has potential to achieve efficient off-axis current drive in DIII-D and the latest results will be presented. Work supported by U.S. Dept. of Energy, Office of Science, Office of Fusion Energy Sciences, using User Facility DIII-D, under Award No. DE-FC02-04ER54698 and Contract No. DE-FC02-01ER54648 under Scientific Discovery through Advanced Computing Initiative.
Strategic Directions in Heliophysics Research Related to Weakly Ionized Plasmas
NASA Technical Reports Server (NTRS)
Spann, James F.
2010-01-01
In 2009, the Heliophysics Division of NASA published its triennial roadmap entitled "Heliophysics; the solar and space physics of a new era." In this document contains a science priority that is recommended that will serve as input into the recently initiated NRC Heliophysics Decadal Survey. The 2009 roadmap includes several science targets recommendations that are directly related to weakly ionized plasmas, including on entitled "Ion-Neutral Coupling in the Atmosphere." This talk will be a brief overview of the roadmap with particular focus on the science targets relevant to weakly ionized plasmas.
Validation metrics for turbulent plasma transport
Holland, C.
2016-06-22
Developing accurate models of plasma dynamics is essential for confident predictive modeling of current and future fusion devices. In modern computer science and engineering, formal verification and validation processes are used to assess model accuracy and establish confidence in the predictive capabilities of a given model. This paper provides an overview of the key guiding principles and best practices for the development of validation metrics, illustrated using examples from investigations of turbulent transport in magnetically confined plasmas. Particular emphasis is given to the importance of uncertainty quantification and its inclusion within the metrics, and the need for utilizing synthetic diagnosticsmore » to enable quantitatively meaningful comparisons between simulation and experiment. As a starting point, the structure of commonly used global transport model metrics and their limitations is reviewed. An alternate approach is then presented, which focuses upon comparisons of predicted local fluxes, fluctuations, and equilibrium gradients against observation. Furthermore, the utility of metrics based upon these comparisons is demonstrated by applying them to gyrokinetic predictions of turbulent transport in a variety of discharges performed on the DIII-D tokamak, as part of a multi-year transport model validation activity.« less
Validation metrics for turbulent plasma transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holland, C.
Developing accurate models of plasma dynamics is essential for confident predictive modeling of current and future fusion devices. In modern computer science and engineering, formal verification and validation processes are used to assess model accuracy and establish confidence in the predictive capabilities of a given model. This paper provides an overview of the key guiding principles and best practices for the development of validation metrics, illustrated using examples from investigations of turbulent transport in magnetically confined plasmas. Particular emphasis is given to the importance of uncertainty quantification and its inclusion within the metrics, and the need for utilizing synthetic diagnosticsmore » to enable quantitatively meaningful comparisons between simulation and experiment. As a starting point, the structure of commonly used global transport model metrics and their limitations is reviewed. An alternate approach is then presented, which focuses upon comparisons of predicted local fluxes, fluctuations, and equilibrium gradients against observation. Furthermore, the utility of metrics based upon these comparisons is demonstrated by applying them to gyrokinetic predictions of turbulent transport in a variety of discharges performed on the DIII-D tokamak, as part of a multi-year transport model validation activity.« less
Factors influencing exemplary science teachers' levels of computer use
NASA Astrophysics Data System (ADS)
Hakverdi, Meral
This study examines exemplary science teachers' use of technology in science instruction, factors influencing their level of computer use, their level of knowledge/skills in using specific computer applications for science instruction, their use of computer-related applications/tools during their instruction, and their students' use of computer applications/tools in or for their science class. After a relevant review of the literature certain variables were selected for analysis. These variables included personal self-efficacy in teaching with computers, outcome expectancy, pupil-control ideology, level of computer use, age, gender, teaching experience, personal computer use, professional computer use and science teachers' level of knowledge/skills in using specific computer applications for science instruction. The sample for this study includes middle and high school science teachers who received the Presidential Award for Excellence in Science Teaching Award (sponsored by the White House and the National Science Foundation) between the years 1997 and 2003 from all 50 states and U.S. territories. Award-winning science teachers were contacted about the survey via e-mail or letter with an enclosed return envelope. Of the 334 award-winning science teachers, usable responses were received from 92 science teachers, which made a response rate of 27.5%. Analysis of the survey responses indicated that exemplary science teachers have a variety of knowledge/skills in using computer related applications/tools. The most commonly used computer applications/tools are information retrieval via the Internet, presentation tools, online communication, digital cameras, and data collection probes. Results of the study revealed that students' use of technology in their science classroom is highly correlated with the frequency of their science teachers' use of computer applications/tools. The results of the multiple regression analysis revealed that personal self-efficacy related to the exemplary science teachers' level of computer use suggesting that computer use is dependent on perceived abilities at using computers. The teachers' use of computer-related applications/tools during class, and their personal self-efficacy, age, and gender are highly related with their level of knowledge/skills in using specific computer applications for science instruction. The teachers' level of knowledge/skills in using specific computer applications for science instruction and gender related to their use of computer-related applications/tools during class and the students' use of computer-related applications/tools in or for their science class. In conclusion, exemplary science teachers need assistance in learning and using computer-related applications/tool in their science class.
Hollow cathodes as electron emitting plasma contactors Theory and computer modeling
NASA Technical Reports Server (NTRS)
Davis, V. A.; Katz, I.; Mandell, M. J.; Parks, D. E.
1987-01-01
Several researchers have suggested using hollow cathodes as plasma contactors for electrodynamic tethers, particularly to prevent the Shuttle Orbiter from charging to large negative potentials. Previous studies have shown that fluid models with anomalous scattering can describe the electron transport in hollow cathode generated plasmas. An improved theory of the hollow cathode plasmas is developed and computational results using the theory are compared with laboratory experiments. Numerical predictions for a hollow cathode plasma source of the type considered for use on the Shuttle are presented, as are three-dimensional NASCAP/LEO calculations of the emitted ion trajectories and the resulting potentials in the vicinity of the Orbiter. The computer calculations show that the hollow cathode plasma source makes vastly superior contact with the ionospheric plasma compared with either an electron gun or passive ion collection by the Orbiter.
NASA Technical Reports Server (NTRS)
1973-01-01
Major topics covered include radiation monitoring instrumentation, nuclear circuits and systems, biomedical applications of nuclear radiation in diagnosis and therapy, plasma research for fusion power, reactor control and instrumentation, nuclear power standards, and applications of digital computers in nuclear power plants. Systems and devices for space applications are described, including the Apollo alpha spectrometer, a position sensitive detection system for UV and X-ray photons, a 4500-volt electron multiplier bias supply for satellite use, spark chamber systems, proportional counters, and other devices. Individual items are announced in this issue.
NASA Astrophysics Data System (ADS)
Bruder, Daniel
2010-11-01
The DC Glow Discharge Exhibit is intended to demonstrate the effects a magnetic field produces on a plasma in a vacuum chamber. The display, which will be featured as a part of The Liberty Science Center's ``Energy Quest Exhibition,'' consists of a DC glow discharge tube and information panels to educate the general public on plasma and its relation to fusion energy. Wall posters and an information booklet will offer brief descriptions of fusion-based science and technology, and will portray plasma's role in the development of fusion as a viable source of energy. The display features a horse-shoe magnet on a movable track, allowing viewers to witness the effects of a magnetic field upon a plasma. The plasma is created from air within a vacuum averaging between 100-200 mTorr. Signage within the casing describes the hardware components. The display is pending delivery to The Liberty Science Center, and will replace a similar, older exhibit presently at the museum.
An Industry Viewpoint on Electron Energy Distribution Function Control
NASA Astrophysics Data System (ADS)
Ventzek, Peter
2011-10-01
It is trite to note that plasmas play a key role in industrial technology. Lighting, laser, film coating and now medical technology require plasma science for their sustenance. One field stands out by virtue of its economic girth and impact. Semiconductor manufacturing and process science enabling its decades of innovation owe significant debt to progress in low temperature plasma science. Today, technology requires atomic level control from plasmas. Mere layers of atoms delineate good and bad device performance. While plasma sources meet nanoscale specifications over 100s cm scale dimensions, achieving atomic level control from plasmas is hindered by the absence of direct control of species velocity distribution functions. EEDF control translates to precise control of species flux and velocities at surfaces adjacent to the plasma. Electron energy distribution function (eedf) control is a challenge that, if successfully met, will have a huge impact on nanoscale device manufacturing. This lunchtime talk will attempt to provide context to the research advances presented at this Workshop. Touched on will be areas of new opportunity and the risks associated with missing these opportunities.
Pre-Ionization Controlled Laser Plasma Formation for Ignition Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shneider, Mikhail
The presented research explored new physics and ignition schemes based on laser induced plasmas that are fundamentally distinct from past laser ignition research focused on single laser pulses. Specifically, we consider the use of multiple laser pulses where the first pulse provides pre-ionization allowing controlled absorption of the second pulse. In this way, we can form tailored laser plasmas in terms of their ionization fraction, gas temperature (e.g. to achieve elevated temperature of ~2000 K ideally suited for an ignition source), reduced energy loss to shock waves and radiation, and large kernel size (e.g. length ~1-10 cm). The proposed researchmore » included both experimental and modeling efforts, at Colorado State University, Princeton University and University of Tennessee, towards the basic science of the new laser plasma approach with emphasis on tailoring the plasmas to practical propulsion systems. Experimental results (CSU) show that the UV beam produces a pre-ionized volume which assists in breakdown of the NIR beam, leading to reduction in NIR breakdown threshold by factor of >2. Numerical modeling is performed to examine the ionization and breakdown of both beams. The main theoretical and computational parts of the work were done at Princeton University. The modeled breakdown threshold of the NIR, including assist by pre-ionization, is in reasonable agreement with the experimental results.« less
The America COMPETES Act and the FY2009 Budget
2008-10-17
Junior Investigator, Nuclear Physics Outstanding Junior Investigator, Fusion Energy Sciences Plasma Physics Junior Faculty Development; Advanced...Instrumentation Fellowships, and the Fusion Energy Sciences Graduate Fellowships.20 The DOE Summer Institutes authorization in the act is $20 million in FY2009...corresponds to pre-existing High Energy Physics Outstanding Junior Investigator, Nuclear Physics Outstanding Junior Investigator, Fusion Energy Sciences Plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spentzouris, P.; /Fermilab; Cary, J.
The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessarymore » accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization for software development and applications accounts for the natural domain areas (beam dynamics, electromagnetics, and advanced acceleration), and all areas depend on the enabling technologies activities, such as solvers and component technology, to deliver the desired performance and integrated simulation environment. The ComPASS applications focus on computationally challenging problems important for design or performance optimization to all major HEP, NP, and BES accelerator facilities. With the cost and complexity of particle accelerators rising, the use of computation to optimize their designs and find improved operating regimes becomes essential, potentially leading to significant cost savings with modest investment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, K.; Mizuno, Y.; Hibino, S.
2006-01-15
Simulations of dusty plasmas were performed using GRAPE-6, a special-purpose computer designed for gravitational N-body problems. The collective behavior of dust particles, which are injected into the plasma, was studied by means of three-dimensional computer simulations. As an example of a dusty plasma simulation, experiments on Coulomb crystals in plasmas are simulated. Formation of a quasi-two-dimensional Coulomb crystal has been observed under typical laboratory conditions. Another example was to simulate movement of dust particles in plasmas under microgravity conditions. Fully three-dimensional spherical structures of dust clouds have been observed. For the simulation of a dusty plasma in microgravity with 3x10{supmore » 4} particles, GRAPE-6 can perform the whole operation 1000 times faster than by using a Pentium 4 1.6 GHz processor.« less
Simulating Coupling Complexity in Space Plasmas: First Results from a new code
NASA Astrophysics Data System (ADS)
Kryukov, I.; Zank, G. P.; Pogorelov, N. V.; Raeder, J.; Ciardo, G.; Florinski, V. A.; Heerikhuisen, J.; Li, G.; Petrini, F.; Shematovich, V. I.; Winske, D.; Shaikh, D.; Webb, G. M.; Yee, H. M.
2005-12-01
The development of codes that embrace 'coupling complexity' via the self-consistent incorporation of multiple physical scales and multiple physical processes in models has been identified by the NRC Decadal Survey in Solar and Space Physics as a crucial necessary development in simulation/modeling technology for the coming decade. The National Science Foundation, through its Information Technology Research (ITR) Program, is supporting our efforts to develop a new class of computational code for plasmas and neutral gases that integrates multiple scales and multiple physical processes and descriptions. We are developing a highly modular, parallelized, scalable code that incorporates multiple scales by synthesizing 3 simulation technologies: 1) Computational fluid dynamics (hydrodynamics or magneto-hydrodynamics-MHD) for the large-scale plasma; 2) direct Monte Carlo simulation of atoms/neutral gas, and 3) transport code solvers to model highly energetic particle distributions. We are constructing the code so that a fourth simulation technology, hybrid simulations for microscale structures and particle distributions, can be incorporated in future work, but for the present, this aspect will be addressed at a test-particle level. This synthesis we will provide a computational tool that will advance our understanding of the physics of neutral and charged gases enormously. Besides making major advances in basic plasma physics and neutral gas problems, this project will address 3 Grand Challenge space physics problems that reflect our research interests: 1) To develop a temporal global heliospheric model which includes the interaction of solar and interstellar plasma with neutral populations (hydrogen, helium, etc., and dust), test-particle kinetic pickup ion acceleration at the termination shock, anomalous cosmic ray production, interaction with galactic cosmic rays, while incorporating the time variability of the solar wind and the solar cycle. 2) To develop a coronal mass ejection and interplanetary shock propagation model for the inner and outer heliosphere, including, at a test-particle level, wave-particle interactions and particle acceleration at traveling shock waves and compression regions. 3) To develop an advanced Geospace General Circulation Model (GGCM) capable of realistically modeling space weather events, in particular the interaction with CMEs and geomagnetic storms. Furthermore, by implementing scalable run-time supports and sophisticated off- and on-line prediction algorithms, we anticipate important advances in the development of automatic and intelligent system software to optimize a wide variety of 'embedded' computations on parallel computers. Finally, public domain MHD and hydrodynamic codes had a transforming effect on space and astrophysics. We expect that our new generation, open source, public domain multi-scale code will have a similar transformational effect in a variety of disciplines, opening up new classes of problems to physicists and engineers alike.
A perspective on the contributions of Ronald C. Davidson to plasma physics
NASA Astrophysics Data System (ADS)
Wurtele, Jonathan S.
2016-10-01
Starting in the 1960s and continuing for half a century, Ronald C. Davidson made fundamental theoretical contributions to a wide range of areas of pure and applied plasma physics. Davidson was one of the founders of nonneutral plasma physics and a pioneer in developing and applying kinetic theory and nonlinear stability theorems to collective interaction processes and nonlinear dynamics of nonneutral plasmas and intense charged particle beams. His textbooks on nonneutral plasmas are the classic references for the field and educated generations of graduate students. Davidson was a strong advocate for applying the ideas of plasma theory to develop techniques that benefit other branches of science. For example, one of the major derivative fields enabled by nonneutral plasmas is the study of antimatter plasmas and the synthesis of antihydrogen. This talk will review a few highlights of Ronald Davidson's impact on plasma physics and related fields of science.
The diverse applications of plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Mukul, E-mail: mukulsharma@acropolis.edu.in; Darwhekar, Gajanan, E-mail: gdarwhekar@acropolis.edu.in; Dubey, Shivani, E-mail: dubeyshivani08@rediffmail.com
Plasma being the fourth state of matter has always been an attraction for Physicists and Chemists. With the advent of time, plasma energy has been recognized in having widening horizons in the field of Biomedical Sciences. Plasma medicine can be subdivided into three main fields; Non-thermal atmospheric-pressure direct plasma for medical therapy; Plasma-assisted modification of bio-relevant surfaces and Plasma-based bio-decontamination and sterilization. The basis of the research is that as it has free carrier molecules, it has the ability to target specific cells and regulate functions like wound healing. Plasma does not harm healthy human cells but can kill bacteriamore » and possibly even cancer cells to help treat various diseases. Nosocomial infection control, prevention and containment of contagious diseases, disinfection of medical devices, surface treatment (heat and UV sensitive surfaces) are research of interest. Recent success in generating plasma at very low temperature ie. Cold plasma makes the therapy painless. It has the ability to activate cellular responses and important mechanisms in the body. They target specific molecules such as prothrombin for blood coagulation, cytokines for killing bacteria, and angiogenesis for tissue regeneration. Plasma has bactericidal, fungicidal and virucidal properties. Plasma technology has flourishing future in diverse fields like Textiles, Nanofabrication, Automotives, Waste management, Microbiology, Food Hygiene, Medical Science like Skin treatments, sterilisation of wounds, Hand disinfection, Dental treatments etc. Food hygiene using plasma can be achieved in disinfection of food containers, food surface disinfection, hygiene in food handling, preparation and packaging. Therefore Plasma is most promising field for budding Scientist for fluorishing research in Biological Sciences.« less
The diverse applications of plasma
NASA Astrophysics Data System (ADS)
Sharma, Mukul; Dubey, Shivani; Darwhekar, Gajanan; Jain, Sudhir Kumar
2015-07-01
Plasma being the fourth state of matter has always been an attraction for Physicists and Chemists. With the advent of time, plasma energy has been recognized in having widening horizons in the field of Biomedical Sciences. Plasma medicine can be subdivided into three main fields; Non-thermal atmospheric-pressure direct plasma for medical therapy; Plasma-assisted modification of bio-relevant surfaces and Plasma-based bio-decontamination and sterilization. The basis of the research is that as it has free carrier molecules, it has the ability to target specific cells and regulate functions like wound healing. Plasma does not harm healthy human cells but can kill bacteria and possibly even cancer cells to help treat various diseases. Nosocomial infection control, prevention and containment of contagious diseases, disinfection of medical devices, surface treatment (heat and UV sensitive surfaces) are research of interest. Recent success in generating plasma at very low temperature ie. Cold plasma makes the therapy painless. It has the ability to activate cellular responses and important mechanisms in the body. They target specific molecules such as prothrombin for blood coagulation, cytokines for killing bacteria, and angiogenesis for tissue regeneration. Plasma has bactericidal, fungicidal and virucidal properties. Plasma technology has flourishing future in diverse fields like Textiles, Nanofabrication, Automotives, Waste management, Microbiology, Food Hygiene, Medical Science like Skin treatments, sterilisation of wounds, Hand disinfection, Dental treatments etc. Food hygiene using plasma can be achieved in disinfection of food containers, food surface disinfection, hygiene in food handling, preparation and packaging. Therefore Plasma is most promising field for budding Scientist for fluorishing research in Biological Sciences.
Enabling interoperability in planetary sciences and heliophysics: The case for an information model
NASA Astrophysics Data System (ADS)
Hughes, J. Steven; Crichton, Daniel J.; Raugh, Anne C.; Cecconi, Baptiste; Guinness, Edward A.; Isbell, Christopher E.; Mafi, Joseph N.; Gordon, Mitchell K.; Hardman, Sean H.; Joyner, Ronald S.
2018-01-01
The Planetary Data System has developed the PDS4 Information Model to enable interoperability across diverse science disciplines. The Information Model is based on an integration of International Organization for Standardization (ISO) level standards for trusted digital archives, information model development, and metadata registries. Where controlled vocabularies provides a basic level of interoperability by providing a common set of terms for communication between both machines and humans the Information Model improves interoperability by means of an ontology that provides semantic information or additional related context for the terms. The information model was defined by team of computer scientists and science experts from each of the diverse disciplines in the Planetary Science community, including Atmospheres, Geosciences, Cartography and Imaging Sciences, Navigational and Ancillary Information, Planetary Plasma Interactions, Ring-Moon Systems, and Small Bodies. The model was designed to be extensible beyond the Planetary Science community, for example there are overlaps between certain PDS disciplines and the Heliophysics and Astrophysics disciplines. "Interoperability" can apply to many aspects of both the developer and the end-user experience, for example agency-to-agency, semantic level, and application level interoperability. We define these types of interoperability and focus on semantic level interoperability, the type of interoperability most directly enabled by an information model.
Particle-In-Cell simulations of high pressure plasmas using graphics processing units
NASA Astrophysics Data System (ADS)
Gebhardt, Markus; Atteln, Frank; Brinkmann, Ralf Peter; Mussenbrock, Thomas; Mertmann, Philipp; Awakowicz, Peter
2009-10-01
Particle-In-Cell (PIC) simulations are widely used to understand the fundamental phenomena in low-temperature plasmas. Particularly plasmas at very low gas pressures are studied using PIC methods. The inherent drawback of these methods is that they are very time consuming -- certain stability conditions has to be satisfied. This holds even more for the PIC simulation of high pressure plasmas due to the very high collision rates. The simulations take up to very much time to run on standard computers and require the help of computer clusters or super computers. Recent advances in the field of graphics processing units (GPUs) provides every personal computer with a highly parallel multi processor architecture for very little money. This architecture is freely programmable and can be used to implement a wide class of problems. In this paper we present the concepts of a fully parallel PIC simulation of high pressure plasmas using the benefits of GPU programming.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Azevedo, Eduardo; Abbott, Stephen; Koskela, Tuomas
The XGC fusion gyrokinetic code combines state-of-the-art, portable computational and algorithmic technologies to enable complicated multiscale simulations of turbulence and transport dynamics in ITER edge plasma on the largest US open-science computer, the CRAY XK7 Titan, at its maximal heterogeneous capability, which have not been possible before due to a factor of over 10 shortage in the time-to-solution for less than 5 days of wall-clock time for one physics case. Frontier techniques such as nested OpenMP parallelism, adaptive parallel I/O, staging I/O and data reduction using dynamic and asynchronous applications interactions, dynamic repartitioning for balancing computational work in pushing particlesmore » and in grid related work, scalable and accurate discretization algorithms for non-linear Coulomb collisions, and communication-avoiding subcycling technology for pushing particles on both CPUs and GPUs are also utilized to dramatically improve the scalability and time-to-solution, hence enabling the difficult kinetic ITER edge simulation on a present-day leadership class computer.« less
NASA Astrophysics Data System (ADS)
Stoilescu, Dorian; Egodawatte, Gunawardena
2010-12-01
Research shows that female and male students in undergraduate computer science programs view computer culture differently. Female students are interested more in the use of computers than in doing programming, whereas male students see computer science mainly as a programming activity. The overall purpose of our research was not to find new definitions for computer science culture but to see how male and female students see themselves involved in computer science practices, how they see computer science as a successful career, and what they like and dislike about current computer science practices. The study took place in a mid-sized university in Ontario. Sixteen students and two instructors were interviewed to get their views. We found that male and female views are different on computer use, programming, and the pattern of student interactions. Female and male students did not have any major issues in using computers. In computing programming, female students were not so involved in computing activities whereas male students were heavily involved. As for the opinions about successful computer science professionals, both female and male students emphasized hard working, detailed oriented approaches, and enjoying playing with computers. The myth of the geek as a typical profile of successful computer science students was not found to be true.
Validation of MHD Models using MST RFP Plasmas
NASA Astrophysics Data System (ADS)
Jacobson, C. M.; Chapman, B. E.; den Hartog, D. J.; McCollam, K. J.; Sarff, J. S.; Sovinec, C. R.
2017-10-01
Rigorous validation of computational models used in fusion energy sciences over a large parameter space and across multiple magnetic configurations can increase confidence in their ability to predict the performance of future devices. MST is a well diagnosed reversed-field pinch (RFP) capable of operation with plasma current ranging from 60 kA to 500 kA. The resulting Lundquist number S, a key parameter in resistive magnetohydrodynamics (MHD), ranges from 4 ×104 to 8 ×106 for standard RFP plasmas and provides substantial overlap with MHD RFP simulations. MST RFP plasmas are simulated using both DEBS, a nonlinear single-fluid visco-resistive MHD code, and NIMROD, a nonlinear extended MHD code, with S ranging from 104 to 105 for single-fluid runs, and the magnetic Prandtl number Pm = 1 . Validation metric comparisons are presented, focusing on how normalized magnetic fluctuations at the edge b scale with S. Preliminary results for the dominant n = 6 mode are b S - 0 . 20 +/- 0 . 02 for single-fluid NIMROD, b S - 0 . 25 +/- 0 . 05 for DEBS, and b S - 0 . 20 +/- 0 . 02 for experimental measurements, however there is a significant discrepancy in mode amplitudes. Preliminary two-fluid NIMROD results are also presented. Work supported by US DOE.
PREFACE: First International Workshop and Summer School on Plasma Physics
NASA Astrophysics Data System (ADS)
Benova, Evgenia; Zhelyazkov, Ivan; Atanassov, Vladimir
2006-07-01
The First International Workshop and Summer School on Plasma Physics (IWSSPP'05) organized by The Faculty of Physics, University of Sofia and the Foundation `Theoretical and Computational Physics and Astrophysics' was dedicated to the World Year of Physics 2005 and held in Kiten, Bulgaria, on the Black Sea Coast, from 8--12 June 2005. The aim of the workshop was to bring together scientists from various branches of plasma physics in order to ensure an interdisciplinary exchange of views and initiate possible collaborations. Another important task was to stimulate the creation and support of a new generation of young scientists for the further development of plasma physics fundamentals and applications. This volume of Journal of Physics: Conference Series includes 31 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion research, kinetics and transport phenomena in gas discharge plasmas, MHD waves and instabilities in the solar atmosphere, dc and microwave discharge modelling, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of them have been presented by internationally known and recognized specialists in their fields; others are Masters or PhD students' first steps in science. In both cases, we believe they will stimulate readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee. We greatly appreciate the financial support from the sponsors: the Department for Language Teaching and International Students at Sofia University, Dr Ivan Bogorov Publishing house, and Artgraph2 Publishing house. We would like to express our gratitude to the invited lecturers who were willing to pay the participation fee. In this way, in addition to the intellectual support they provided by means of their excellent lectures, they also supported the school financially.
Multilevel Iterative Methods in Nonlinear Computational Plasma Physics
NASA Astrophysics Data System (ADS)
Knoll, D. A.; Finn, J. M.
1997-11-01
Many applications in computational plasma physics involve the implicit numerical solution of coupled systems of nonlinear partial differential equations or integro-differential equations. Such problems arise in MHD, systems of Vlasov-Fokker-Planck equations, edge plasma fluid equations. We have been developing matrix-free Newton-Krylov algorithms for such problems and have applied these algorithms to the edge plasma fluid equations [1,2] and to the Vlasov-Fokker-Planck equation [3]. Recently we have found that with increasing grid refinement, the number of Krylov iterations required per Newton iteration has grown unmanageable [4]. This has led us to the study of multigrid methods as a means of preconditioning matrix-free Newton-Krylov methods. In this poster we will give details of the general multigrid preconditioned Newton-Krylov algorithm, as well as algorithm performance details on problems of interest in the areas of magnetohydrodynamics and edge plasma physics. Work supported by US DoE 1. Knoll and McHugh, J. Comput. Phys., 116, pg. 281 (1995) 2. Knoll and McHugh, Comput. Phys. Comm., 88, pg. 141 (1995) 3. Mousseau and Knoll, J. Comput. Phys. (1997) (to appear) 4. Knoll and McHugh, SIAM J. Sci. Comput. 19, (1998) (to appear)
NASA Astrophysics Data System (ADS)
Chun, Poo-Reum; Lee, Se-Ah; Yook, Yeong-Geun; Choi, Kwang-Sung; Cho, Deog-Geun; Yu, Dong-Hun; Chang, Won-Seok; Kwon, Deuk-Chul; Im, Yeon-Ho
2013-09-01
Although plasma etch profile simulation has been attracted much interest for developing reliable plasma etching, there still exist big gaps between current research status and predictable modeling due to the inherent complexity of plasma process. As an effort to address this issue, we present 3D feature profile simulation coupled with well-defined plasma-surface kinetic model for silicon dioxide etching process under fluorocarbon plasmas. To capture the realistic plasma surface reaction behaviors, a polymer layer based surface kinetic model was proposed to consider the simultaneous polymer deposition and oxide etching. Finally, the realistic plasma surface model was used for calculation of speed function for 3D topology simulation, which consists of multiple level set based moving algorithm, and ballistic transport module. In addition, the time consumable computations in the ballistic transport calculation were improved drastically by GPU based numerical computation, leading to the real time computation. Finally, we demonstrated that the surface kinetic model could be coupled successfully for 3D etch profile simulations in high-aspect ratio contact hole plasma etching.
Golfing with protons: using research grade simulation algorithms for online games
NASA Astrophysics Data System (ADS)
Harold, J.
2004-12-01
Scientists have long known the power of simulations. By modeling a system in a computer, researchers can experiment at will, developing an intuitive sense of how a system behaves. The rapid increase in the power of personal computers, combined with technologies such as Flash, Shockwave and Java, allow us to bring research simulations into the education world by creating exploratory environments for the public. This approach is illustrated by a project funded by a small grant from NSF's Informal Science Education program, through an opportunity that provides education supplements to existing research awards. Using techniques adapted from a magnetospheric research program, several Flash based interactives have been developed that allow web site visitors to explore the motion of particles in the Earth's magnetosphere. These pieces were folded into a larger Space Weather Center web project at the Space Science Institute (www.spaceweathercenter.org). Rather than presenting these interactives as plasma simulations per se, the research algorithms were used to create games such as "Magneto Mini Golf", where the balls are protons moving in combined electric and magnetic fields. The "holes" increase in complexity, beginning with no fields and progressing towards a simple model of Earth's magnetosphere. The emphasis of the activity is gameplay, but because it is at its core a plasma simulation, the user develops an intuitive sense of charged particle motion as they progress. Meanwhile, the pieces contain embedded assessments that are measurable through a database driven tracking system. Mining that database not only provides helpful usability information, but allows us to examine whether users are meeting the learning goals of the activities. We will discuss the development and evaluation results of the project, as well as the potential for these types of activities to shift the expectations of what a web site can and should provide educationally.
Performance Modeling of Experimental Laser Lightcrafts
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Chen, Yen-Sen; Liu, Jiwen; Myrabo, Leik N.; Mead, Franklin B., Jr.; Turner, Jim (Technical Monitor)
2001-01-01
A computational plasma aerodynamics model is developed to study the performance of a laser propelled Lightcraft. The computational methodology is based on a time-accurate, three-dimensional, finite-difference, chemically reacting, unstructured grid, pressure-based formulation. The underlying physics are added and tested systematically using a building-block approach. The physics modeled include non-equilibrium thermodynamics, non-equilibrium air-plasma finite-rate kinetics, specular ray tracing, laser beam energy absorption and refraction by plasma, non-equilibrium plasma radiation, and plasma resonance. A series of transient computations are performed at several laser pulse energy levels and the simulated physics are discussed and compared with those of tests and literatures. The predicted coupling coefficients for the Lightcraft compared reasonably well with those of tests conducted on a pendulum apparatus.
ERIC Educational Resources Information Center
Lin, Che-Li; Liang, Jyh-Chong; Su, Yi-Ching; Tsai, Chin-Chung
2013-01-01
Teacher-centered instruction has been widely adopted in college computer science classrooms and has some benefits in training computer science undergraduates. Meanwhile, student-centered contexts have been advocated to promote computer science education. How computer science learners respond to or prefer the two types of teacher authority,…
Dependence of Edge Profiles and Stability on Neutral Beam Power in NSTX
NASA Astrophysics Data System (ADS)
Travis, P.; Canal, G. P.; Osborne, T. H.; Maingi, R.; Sabbagh, S. A.; NSTX-U Team
2016-10-01
Studying the effect of neutral beam injected (NBI) power on edge plasma profiles and magnetohydrodynamic (MHD) stability is central to the understanding of edge-localized modes (ELMs). Higher heating power should quicken the development of pressure and current-driven peeling-ballooning modes. NSTX ELMy H-mode discharges with NBI power of 4, 5 and 6 MW were analyzed with a python-based set of analysis tools that fit plasma profiles, compute kinetic equilibria, and evaluate the MHD stability with the code ELITE. Electron density and temperature from Thomson scattering measurements, and ion density, temperature, and rotation from Charge Exchange Recombination Spectroscopy were inputs to the kinetic equilibrium fits. The power scan provides an opportunity to compare the stability calculations from the ELITE (ideal) and M3D-C1 (resistive) codes. Preliminary analysis shows that edge pressure profiles for the 5 and 6 MW discharges are comparable, suggesting they both reach a stability boundary. The 4 MW case shows lower edge pressure, which is likely limited by edge transport below the edge stability boundary. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internship (SULI) program.
Electron induced inelastic and ionization cross section for plasma modeling
NASA Astrophysics Data System (ADS)
Verma, Pankaj; Mahato, Dibyendu; Kaur, Jaspreet; Antony, Bobby
2016-09-01
The present paper reports electron impact total inelastic and ionization cross section for silicon, germanium, and tin tetrahalides at energies varying from ionization threshold of the target to 5000 eV. These cross section data over a wide energy domain are very essential to understand the physico-chemical processes involved in various environments such as plasma modeling, semiconductor etching, atmospheric sciences, biological sciences, and radiation physics. However, the cross section data on the above mentioned molecules are scarce. In the present article, we report the computation of total inelastic cross section using spherical complex optical potential formalism and the estimation of ionization cross section through a semi-empirical method. The present ionization cross section result obtained for SiCl4 shows excellent agreement with previous measurements, while other molecules have not yet been investigated experimentally. Present results show more consistent behaviour than previous theoretical estimates. Besides cross sections, we have also studied the correlation of maximum ionization cross section with the square root of the ratio of polarizability to ionization potential for the molecules with known polarizabilities. A linear relation is observed between these quantities. This correlation is used to obtain approximate polarizability volumes for SiBr4, SiI4, GeCl4, GeBr4, and GeI4 molecules.
NASA Astrophysics Data System (ADS)
Khalili, N.; Valliappan, S.; Li, Q.; Russell, A.
2010-07-01
The use for mathematical models of natural phenomena has underpinned science and engineering for centuries, but until the advent of modern computers and computational methods, the full utility of most of these models remained outside the reach of the engineering communities. Since World War II, advances in computational methods have transformed the way engineering and science is undertaken throughout the world. Today, theories of mechanics of solids and fluids, electromagnetism, heat transfer, plasma physics, and other scientific disciplines are implemented through computational methods in engineering analysis, design, manufacturing, and in studying broad classes of physical phenomena. The discipline concerned with the application of computational methods is now a key area of research, education, and application throughout the world. In the early 1980's, the International Association for Computational Mechanics (IACM) was founded to promote activities related to computational mechanics and has made impressive progress. The most important scientific event of IACM is the World Congress on Computational Mechanics. The first was held in Austin (USA) in 1986 and then in Stuttgart (Germany) in 1990, Chiba (Japan) in 1994, Buenos Aires (Argentina) in 1998, Vienna (Austria) in 2002, Beijing (China) in 2004, Los Angeles (USA) in 2006 and Venice, Italy; in 2008. The 9th World Congress on Computational Mechanics is held in conjunction with the 4th Asian Pacific Congress on Computational Mechanics under the auspices of Australian Association for Computational Mechanics (AACM), Asian Pacific Association for Computational Mechanics (APACM) and International Association for Computational Mechanics (IACM). The 1st Asian Pacific Congress was in Sydney (Australia) in 2001, then in Beijing (China) in 2004 and Kyoto (Japan) in 2007. The WCCM/APCOM 2010 publications consist of a printed book of abstracts given to delegates, along with 247 full length peer reviewed papers published with free access online in IOP Conference Series: Materials Science and Engineering. The editors acknowledge the help of the paper reviewers in maintaining a high standard of assessment and the co-operation of the authors in complying with the requirements of the editors and the reviewers. We also would like to take this opportunity to thank the members of the Local Organising Committee and the International Scientific Committee for helping make WCCM/APCOM 2010 a successful event. We also thank The University of New South Wales, The University of Newcastle, the Centre for Infrastructure Engineering and Safety (CIES), IACM, APCAM, AACM for their financial support, along with the United States Association for Computational Mechanics for the Travel Awards made available. N. Khalili S. Valliappan Q. Li A. Russell 19 July 2010 Sydney, Australia
Academic computer science and gender: A naturalistic study investigating the causes of attrition
NASA Astrophysics Data System (ADS)
Declue, Timothy Hall
Far fewer women than men take computer science classes in high school, enroll in computer science programs in college, or complete advanced degrees in computer science. The computer science pipeline begins to shrink for women even before entering college, but it is at the college level that the "brain drain" is the most evident numerically, especially in the first class taken by most computer science majors called "Computer Science 1" or CS-I. The result, for both academia and industry, is a pronounced technological gender disparity in academic and industrial computer science. The study revealed the existence of several factors influencing success in CS-I. First, and most clearly, the effect of attribution processes seemed to be quite strong. These processes tend to work against success for females and in favor of success for males. Likewise, evidence was discovered which strengthens theories related to prior experience and the perception that computer science has a culture which is hostile to females. Two unanticipated themes related to the motivation and persistence of successful computer science majors. The findings did not support the belief that females have greater logistical problems in computer science than males, or that females tend to have a different programming style than males which adversely affects the females' ability to succeed in CS-I.
Recent Science Education Initiatives at the Princeton Plasma Physics Laboratory
NASA Astrophysics Data System (ADS)
Zwicker, Andrew; Dominguez, Arturo; Gershman, Sophia; Guilbert, Nick; Merali, Aliya; Ortiz, Deedee
2013-10-01
An integrated approach to program development and implementation has significantly enhanced a variety of Science Education initiatives for students and teachers. This approach involves combining the efforts of PPPL scientists, educators, research and education fellows, and collaborating non-profit organizations to provide meaningful educational experiences for students and teachers. Our undergraduate internship program continues to have outstanding success, with 72% of our participants going to graduate school and 45% concentrating in plasma physics. New partnerships have allowed us to increase the number of underrepresented students participating in mentored research opportunities. The number of participants in our Young Women's Conference increases significantly each year. Our Plasma Camp workshop, now in its 15th year, recruits outstanding teachers from around the country to create new plasma-centered curricula. Student research in the Science Education Laboratory concentrates on the development of a high-fidelity plasma speaker, a particle dropper for a dusty plasma experiment, microplasmas along liquid surfaces for a variety of applications, an Internet-controlled DC glow discharge source for students, and a Planeterrella for demonstrating the aurora and other space weather phenomenon for the general public.
Survey of Voyager plasma science ions at Jupiter: 1. Analysis method
NASA Astrophysics Data System (ADS)
Bagenal, F.; Dougherty, L. P.; Bodisch, K. M.; Richardson, J. D.; Belcher, J. M.
2017-08-01
The Voyagers 1 and 2 spacecraft flew by Jupiter in March and July of 1979, respectively. The Plasma Science instrument (PLS) acquired detailed measurements of the plasma environment in the equatorial region of the magnetosphere between 4.9 and 4 RJ. While bulk plasma properties such as charge density, ion temperature, and bulk flow were reasonably well determined, the ion composition was only well constrained in occasional regions of cold plasma. The ion data obtained by the PLS instrument have been reanalyzed using physical chemistry models to constrain the composition and reduce the number of free parameters, particularly in regions of hotter plasma. This paper describes the method used for fitting the plasma data and presents the results versus time. Two companion papers describe the composition of heavy ions and present analysis of protons plus other minor ions.
Plasma Display at the Liberty Science Center
NASA Astrophysics Data System (ADS)
Bruder, Dan; Gilligan, Nick; Tarman, Lisa; Ferris, Pamella; Morgan, James; Delooper, John; Zwicker, Andrew
2009-11-01
The Liberty Science Center (LSC) is the largest (300,000 sq. ft.) education resource in the New Jersey -- New York City region. PPPL in collaboration with the LSC has had a display at the center since 2007 More than 1.5 million visitors have come to the museum since the plasma display has been introduced. The plasma display has had significant use during that time frame. During the summer of 2009 a redesigned plasma exhibit was created by a student teacher-team using the lessons learned from the existing exhibit. The display includes a DC glow discharge tube with a permanent external magnet allowing visitors to manipulate the plasma and see how plasma can be used for fusion research. The goal of the display is to allow an individual to see a plasma and understand the potential benefits of fusion energy.
Computer-Game Construction: A Gender-Neutral Attractor to Computing Science
ERIC Educational Resources Information Center
Carbonaro, Mike; Szafron, Duane; Cutumisu, Maria; Schaeffer, Jonathan
2010-01-01
Enrollment in Computing Science university programs is at a dangerously low level. A major reason for this is the general lack of interest in Computing Science by females. In this paper, we discuss our experience with using a computer game construction environment as a vehicle to encourage female participation in Computing Science. Experiments…
Publications of LASL research, 1972--1976
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petersen, L.
1977-04-01
This bibliography is a compilation of unclassified work done at the Los Alamos Scientific Laboratory and published during the years 1972 to 1976. Publications too late for inclusion in earlier compilations are also listed. Declassification of previously classified reports is considered to constitute publication. The bibliography includes LASL reports, journal articles, books, conference papers, papers published in congressional hearings, theses, patents, etc. The following subject areas are included: aerospace studies; analytical technology; astrophysics; atomic and molecular physics, equation of state, opacity; biology and medicine; chemical dynamics and kinetics; chemistry; cryogenics; crystallography; CTR and plasma physics; earth science and engineering; energymore » (nonnuclear); engineering and equipment; EPR, ESR, NMR studies; explosives and detonations; fission physics; health and safety; hydrodynamics and radiation transport; instruments; lasers; mathematics and computers; medium-energy physics; metallurgy and ceramics technology; neutronics and criticality studies; nuclear physics; nuclear safeguards; physics; reactor technology; solid state science; and miscellaneous (including Project Rover). (RWR)« less
Role of theory in space science
NASA Technical Reports Server (NTRS)
1983-01-01
The goal of theory is to understand how the fundamental laws of physics laws of physics and chemistry give rise to the features of the universe. It is recommended that NASA establish independent theoretical research programs in planetary sciences and in astrophysics similar to the solar-system plasma-physics theory program, which is characterized by stable, long-term support for theorists in university departments, NASA centers, and other organizations engaged in research in topics relevant to present and future space-derived data. It is recommended that NASA keep these programs under review to full benefit from the resulting research and to assure opportunities for inflow of new ideas and investigators. Also, provisions should be made by NASA for the computing needs of the theorists in the programs. Finally, it is recommended that NASA involve knowledgeable theorists in mission planning activities at all levels, from the formulation of long-term scientific strategies through the planning and operation of specific missions.
NASA Astrophysics Data System (ADS)
Lazanja, David; Boozer, Allen
2006-10-01
Given the total magnetic field on a toroidal plasma surface, a method for decomposing the field into a part due to internal currents (often the plasma) and a part due to external currents is presented. The method exploits Laplace theory which is valid in the vacuum region between the plasma surface and the chamber walls. The method is developed for the full three dimensional case which is necessary for studying stellarator plasma configurations. A change in the plasma shape is produced by the total normal field perturbation on the plasma surface. This method allows a separation of the total normal field perturbation into a part produced by external currents and a part produced by the plasma response. There are immediate applications to coil design. The computational procedure is based on Merkel's 1986 work on vacuum field computations. Several test cases are presented for toroidal surfaces which verify the method and computational robustness of the code.
Utilizing Social Media and Blogging to Teach Science Communication
NASA Astrophysics Data System (ADS)
Keesee, A. M.
2012-12-01
The National Science Foundation presented the Science: Becoming the Messenger Workshop at my university in Fall 2011. Following the workshop, I started a blog (http://plasma.physics.wvu.edu/), Facebook page (WVU Plasma Physics), and Twitter feed (@WVUPlasma) to promote the West Virginia University Plasma Physics Research Groups. Faculty, postdocs, and graduate students in plasma physics are assigned the task of writing a blog post on a rotating basis as one of three elements for our monthly Journal Club. Our Facebook page and Twitter feed are used to announce new blog posts and accomplishments by group members. We have found this process to be a good way for students to learn to describe their research to people outside of their field of expertise. Details on establishing and maintaining these resources and specific examples will be presented. Follow me @plasmaphysmom.
ERIC Educational Resources Information Center
Zendler, Andreas; Klaudt, Dieter
2012-01-01
The significance of computer science for economics and society is undisputed. In particular, computer science is acknowledged to play a key role in schools (e.g., by opening multiple career paths). The provision of effective computer science education in schools is dependent on teachers who are able to properly represent the discipline and whose…
Performance Modeling of an Experimental Laser Propelled Lightcraft
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Chen, Yen-Sen; Liu, Jiwen; Myrabo, Leik N.; Mead, Franklin B., Jr.
2000-01-01
A computational plasma aerodynamics model is developed to study the performance of an experimental laser propelled lightcraft. The computational methodology is based on a time-accurate, three-dimensional, finite-difference, chemically reacting, unstructured grid, pressure- based formulation. The underlying physics are added and tested systematically using a building-block approach. The physics modeled include non-equilibn'um thermodynamics, non-equilibrium air-plasma finite-rate kinetics, specular ray tracing, laser beam energy absorption and equi refraction by plasma, non-equilibrium plasma radiation, and plasma resonance. A series of transient computations are performed at several laser pulse energy levels and the simulated physics are discussed and compared with those of tests and literature. The predicted coupling coefficients for the lightcraft compared reasonably well with those of tests conducted on a pendulum apparatus.
Transition Region Emission and the Energy Input to Thermal Plasma in Solar Flares
NASA Technical Reports Server (NTRS)
Holman, Gordon D.; Holman, Gordon D.; Dennis, Brian R.; Haga, Leah; Raymond, John C.; Panasyuk, Alexander
2005-01-01
Understanding the energetics of solar flares depends on obtaining reliable determinations of the energy input to flare plasma. X-ray observations of the thermal bremsstrahlung from hot flare plasma provide temperatures and emission measures which, along with estimates of the plasma volume, allow the energy content of this hot plasma to be computed. However, if thermal energy losses are significant or if significant energy goes directly into cooler plasma, this is only a lower limit on the total energy injected into thermal plasma during the flare. We use SOHO UVCS observations of O VI flare emission scattered by coronal O VI ions to deduce the flare emission at transition region temperatures between 100,000 K and 1 MK for the 2002 July 23 and other flares. We find that the radiated energy at these temperatures significantly increases the deduced energy input to the thermal plasma, but by an amount that is less than the uncertainty in the computed energies. Comparisons of computed thermal and nonthermal electron energies deduced from RHESSI, GOES, and UVCS are shown.
Yang, Chaowei; Wu, Huayi; Huang, Qunying; Li, Zhenlong; Li, Jing
2011-01-01
Contemporary physical science studies rely on the effective analyses of geographically dispersed spatial data and simulations of physical phenomena. Single computers and generic high-end computing are not sufficient to process the data for complex physical science analysis and simulations, which can be successfully supported only through distributed computing, best optimized through the application of spatial principles. Spatial computing, the computing aspect of a spatial cyberinfrastructure, refers to a computing paradigm that utilizes spatial principles to optimize distributed computers to catalyze advancements in the physical sciences. Spatial principles govern the interactions between scientific parameters across space and time by providing the spatial connections and constraints to drive the progression of the phenomena. Therefore, spatial computing studies could better position us to leverage spatial principles in simulating physical phenomena and, by extension, advance the physical sciences. Using geospatial science as an example, this paper illustrates through three research examples how spatial computing could (i) enable data intensive science with efficient data/services search, access, and utilization, (ii) facilitate physical science studies with enabling high-performance computing capabilities, and (iii) empower scientists with multidimensional visualization tools to understand observations and simulations. The research examples demonstrate that spatial computing is of critical importance to design computing methods to catalyze physical science studies with better data access, phenomena simulation, and analytical visualization. We envision that spatial computing will become a core technology that drives fundamental physical science advancements in the 21st century. PMID:21444779
Yang, Chaowei; Wu, Huayi; Huang, Qunying; Li, Zhenlong; Li, Jing
2011-04-05
Contemporary physical science studies rely on the effective analyses of geographically dispersed spatial data and simulations of physical phenomena. Single computers and generic high-end computing are not sufficient to process the data for complex physical science analysis and simulations, which can be successfully supported only through distributed computing, best optimized through the application of spatial principles. Spatial computing, the computing aspect of a spatial cyberinfrastructure, refers to a computing paradigm that utilizes spatial principles to optimize distributed computers to catalyze advancements in the physical sciences. Spatial principles govern the interactions between scientific parameters across space and time by providing the spatial connections and constraints to drive the progression of the phenomena. Therefore, spatial computing studies could better position us to leverage spatial principles in simulating physical phenomena and, by extension, advance the physical sciences. Using geospatial science as an example, this paper illustrates through three research examples how spatial computing could (i) enable data intensive science with efficient data/services search, access, and utilization, (ii) facilitate physical science studies with enabling high-performance computing capabilities, and (iii) empower scientists with multidimensional visualization tools to understand observations and simulations. The research examples demonstrate that spatial computing is of critical importance to design computing methods to catalyze physical science studies with better data access, phenomena simulation, and analytical visualization. We envision that spatial computing will become a core technology that drives fundamental physical science advancements in the 21st century.
Fusion Sciences Education Outreach in the Middle Schools, an Unplanned Case Study
NASA Astrophysics Data System (ADS)
Danielson, C. A.
1997-11-01
Before bringing a class to General Atomics (GA) for the DIII--D educational tour, the teacher is provided with pre-tour materials which include a videotape, curriculum notebook and fusion poster. These materials are used in the classroom to familiarize students with fusion concepts before the tour. This presentation will focus on the results of projects of 7th grade students of Chula Vista Junior High School (a magnet school for performing arts with a majority of Hispanic students). The assignment given by Physics Teacher Caryn Hoffman to her students prior to the tour was to focus on one or two of the DIII--D tour guides, ask questions relating to their careers in science and then prepare a presentation based on their interviews and their tour experience. The completed projects were very diverse -- calendars, comic strips, newspapers, plays, and board games were some of the media the students used. Tour guides selected by the students ranged from physicists, designers and computer support personnel. Project results reflected a surprisingly good understanding of fusion science concepts. Subsequent classroom interviews with the students demonstrated an overall increase in science interest and a specific interest in plasma and fusion research.
A Financial Technology Entrepreneurship Program for Computer Science Students
ERIC Educational Resources Information Center
Lawler, James P.; Joseph, Anthony
2011-01-01
Education in entrepreneurship is becoming a critical area of curricula for computer science students. Few schools of computer science have a concentration in entrepreneurship in the computing curricula. The paper presents Technology Entrepreneurship in the curricula at a leading school of computer science and information systems, in which students…
ERIC Educational Resources Information Center
Menekse, Muhsin
2015-01-01
While there has been a remarkable interest to make computer science a core K-12 academic subject in the United States, there is a shortage of K-12 computer science teachers to successfully implement computer sciences courses in schools. In order to enhance computer science teacher capacity, training programs have been offered through teacher…
III International Conference on Laser and Plasma Researches and Technologies
NASA Astrophysics Data System (ADS)
2017-12-01
A.P. Kuznetsov and S.V. Genisaretskaya III Conference on Plasma and Laser Research and Technologies took place on January 24th until January 27th, 2017 at the National Research Nuclear University "MEPhI" (NRNU MEPhI). The Conference was organized by the Institute for Laser and Plasma Technologies and was supported by the Competitiveness Program of NRNU MEPhI. The conference program consisted of nine sections: • Laser physics and its application • Plasma physics and its application • Laser, plasma and radiation technologies in industry • Physics of extreme light fields • Controlled thermonuclear fusion • Modern problems of theoretical physics • Challenges in physics of solid state, functional materials and nanosystems • Particle accelerators and radiation technologies • Modern trends of quantum metrology. The conference is based on scientific fields as follows: • Laser, plasma and radiation technologies in industry, energetic, medicine; • Photonics, quantum metrology, optical information processing; • New functional materials, metamaterials, “smart” alloys and quantum systems; • Ultrahigh optical fields, high-power lasers, Mega Science facilities; • High-temperature plasma physics, environmentally-friendly energetic based on controlled thermonuclear fusion; • Spectroscopic synchrotron, neutron, laser research methods, quantum mechanical calculation and computer modelling of condensed media and nanostructures. More than 250 specialists took part in the Conference. They represented leading Russian scientific research centers and universities (National Research Centre "Kurchatov Institute", A.M. Prokhorov General Physics Institute, P.N. Lebedev Physical Institute, Troitsk Institute for Innovation and Fusion Research, Joint Institute for Nuclear Research, Moscow Institute of Physics and Tecnology and others) and leading scientific centers and universities from Germany, France, USA, Canada, Japan. We would like to thank heartily all of the speakers, participants, organizing and program committee members for their contribution to the conference.
Computer code for charge-exchange plasma propagation
NASA Technical Reports Server (NTRS)
Robinson, R. S.; Kaufman, H. R.
1981-01-01
The propagation of the charge-exchange plasma from an electrostatic ion thruster is crucial in determining the interaction of that plasma with the associated spacecraft. A model that describes this plasma and its propagation is described, together with a computer code based on this model. The structure and calling sequence of the code, named PLASIM, is described. An explanation of the program's input and output is included, together with samples of both. The code is written in ASNI Standard FORTRAN.
Validation metrics for turbulent plasma transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holland, C., E-mail: chholland@ucsd.edu
Developing accurate models of plasma dynamics is essential for confident predictive modeling of current and future fusion devices. In modern computer science and engineering, formal verification and validation processes are used to assess model accuracy and establish confidence in the predictive capabilities of a given model. This paper provides an overview of the key guiding principles and best practices for the development of validation metrics, illustrated using examples from investigations of turbulent transport in magnetically confined plasmas. Particular emphasis is given to the importance of uncertainty quantification and its inclusion within the metrics, and the need for utilizing synthetic diagnosticsmore » to enable quantitatively meaningful comparisons between simulation and experiment. As a starting point, the structure of commonly used global transport model metrics and their limitations is reviewed. An alternate approach is then presented, which focuses upon comparisons of predicted local fluxes, fluctuations, and equilibrium gradients against observation. The utility of metrics based upon these comparisons is demonstrated by applying them to gyrokinetic predictions of turbulent transport in a variety of discharges performed on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)], as part of a multi-year transport model validation activity.« less
Validation of Extended MHD Models using MST RFP Plasmas
NASA Astrophysics Data System (ADS)
Jacobson, C. M.; Chapman, B. E.; Craig, D.; McCollam, K. J.; Sovinec, C. R.
2016-10-01
Significant effort has been devoted to improvement of computational models used in fusion energy sciences. Rigorous validation of these models is necessary in order to increase confidence in their ability to predict the performance of future devices. MST is a well diagnosed reversed-field pinch (RFP) capable of operation over a wide range of parameters. In particular, the Lundquist number S, a key parameter in resistive magnetohydrodynamics (MHD), can be varied over a wide range and provide substantial overlap with MHD RFP simulations. MST RFP plasmas are simulated using both DEBS, a nonlinear single-fluid visco-resistive MHD code, and NIMROD, a nonlinear extended MHD code, with S ranging from 104 to 5 ×104 for single-fluid runs, with the magnetic Prandtl number Pm = 1 . Experiments with plasma current IP ranging from 60 kA to 500 kA result in S from 4 ×104 to 8 ×106 . Validation metric comparisons are presented, focusing on how magnetic fluctuations b scale with S. Single-fluid NIMROD results give S b - 0.21 , and experiments give S b - 0.28 for the dominant m = 1 , n = 6 mode. Preliminary two-fluid NIMROD results are also presented. Work supported by US DOE.
Effect of Magnetic Islands on Divertors in Tokamaks and Stellarators
NASA Astrophysics Data System (ADS)
Punjabi, Alkesh; Boozer, Allen
2017-10-01
Divertors are required for handling the plasma particle and heat exhausts on the walls in fusion plasmas. Relatively simple methods, models, and maps from field line Hamiltonian are developed to better understand the interaction of strong plasma shaping and magnetic islands on the size and behavior of the magnetic flux tubes that go from the plasma edge to the wall in non-axisymmetric system. This approach is applicable not only in tokamaks but also in stellarators. Stellarator diverters in which magnetic islands are dominant are called resonant and when shaping is dominant are called non-resonant. Optimized stellarators generally have sharp edges on their surface, but unlike the case for tokamaks these edges do not encircle the entire plasma, so they do not define an edge value for the rotational transform. The approach is used in the DIII-D tokamak. Computation results are consistent with the predictions of the models. Further simulations are being done to understand why the transition from an effective cubic to a linear increase in loss time and area of footprint occurs and whether this increase is discontinuous or not. This work is supported by the US DOE Grants DE-FG02-01ER54624 and DE-FG02-04ER54793 to Hampton University and DE-FG02-95ER54333 to Columbia University. This research used resources of the NERSC, supported by the Office of Science, US DOE, under Contract No. DE-AC02-05CH11231.
A collision scheme for hybrid fluid-particle simulation of plasmas
NASA Astrophysics Data System (ADS)
Nguyen, Christine; Lim, Chul-Hyun; Verboncoeur, John
2006-10-01
Desorption phenomena at the wall of a tokamak can lead to the introduction of impurities at the edge of a thermonuclear plasma. In particular, the use of carbon as a constituent of the tokamak wall, as planned for ITER, requires the study of carbon and hydrocarbon transport in the plasma, including understanding of collisional interaction with the plasma. These collisions can result in new hydrocarbons, hydrogen, secondary electrons and so on. Computational modeling is a primary tool for studying these phenomena. XOOPIC [1] and OOPD1 are widely used computer modeling tools for the simulation of plasmas. Both are particle type codes. Particle simulation gives more kinetic information than fluid simulation, but more computation time is required. In order to reduce this disadvantage, hybrid simulation has been developed, and applied to the modeling of collisions. Present particle simulation tools such as XOOPIC and OODP1 employ a Monte Carlo model for the collisions between particle species and a neutral background gas defined by its temperature and pressure. In fluid-particle hybrid plasma models, collisions include combinations of particle and fluid interactions categorized by projectile-target pairing: particle-particle, particle-fluid, and fluid-fluid. For verification of this hybrid collision scheme, we compare simulation results to analytic solutions for classical plasma models. [1] Verboncoeur et al. Comput. Phys. Comm. 87, 199 (1995).
Accurate computational design of multipass transmembrane proteins.
Lu, Peilong; Min, Duyoung; DiMaio, Frank; Wei, Kathy Y; Vahey, Michael D; Boyken, Scott E; Chen, Zibo; Fallas, Jorge A; Ueda, George; Sheffler, William; Mulligan, Vikram Khipple; Xu, Wenqing; Bowie, James U; Baker, David
2018-03-02
The computational design of transmembrane proteins with more than one membrane-spanning region remains a major challenge. We report the design of transmembrane monomers, homodimers, trimers, and tetramers with 76 to 215 residue subunits containing two to four membrane-spanning regions and up to 860 total residues that adopt the target oligomerization state in detergent solution. The designed proteins localize to the plasma membrane in bacteria and in mammalian cells, and magnetic tweezer unfolding experiments in the membrane indicate that they are very stable. Crystal structures of the designed dimer and tetramer-a rocket-shaped structure with a wide cytoplasmic base that funnels into eight transmembrane helices-are very close to the design models. Our results pave the way for the design of multispan membrane proteins with new functions. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Computer Science | Classification | College of Engineering & Applied
EMS 1011 profile photo Adrian Dumitrescu, Ph.D.ProfessorComputer Science(414) 229-4265Eng & Math @uwm.eduEng & Math Sciences 919 profile photo Hossein Hosseini, Ph.D.ProfessorComputer Science(414) 229 -5184hosseini@uwm.eduEng & Math Sciences 1091 profile photo Amol Mali, Ph.D.Associate ProfessorComputer
Computers in Science Education: Can They Go Far Enough? Have We Gone Too Far?
ERIC Educational Resources Information Center
Schrock, John Richard
1984-01-01
Indicates that although computers may churn out creative research, science is still dependent on science education, and that science education consists of increasing human experience. Also considers uses and misuses of computers in the science classroom, examining Edgar Dale's "cone of experience" related to laboratory computer and "extended…
High energy density Z-pinch plasmas using flow stabilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shumlak, U., E-mail: shumlak@uw.edu; Golingo, R. P., E-mail: shumlak@uw.edu; Nelson, B. A., E-mail: shumlak@uw.edu
The ZaP Flow Z-Pinch research project[1] at the University of Washington investigates the effect of sheared flows on MHD instabilities. Axially flowing Z-pinch plasmas are produced that are 100 cm long with a 1 cm radius. The plasma remains quiescent for many radial Alfvén times and axial flow times. The quiescent periods are characterized by low magnetic mode activity measured at several locations along the plasma column and by stationary visible plasma emission. Plasma evolution is modeled with high-resolution simulation codes – Mach2, WARPX, NIMROD, and HiFi. Plasma flow profiles are experimentally measured with a multi-chord ion Doppler spectrometer. Amore » sheared flow profile is observed to be coincident with the quiescent period, and is consistent with classical plasma viscosity. Equilibrium is determined by diagnostic measurements: interferometry for density; spectroscopy for ion temperature, plasma flow, and density[2]; Thomson scattering for electron temperature; Zeeman splitting for internal magnetic field measurements[3]; and fast framing photography for global structure. Wall stabilization has been investigated computationally and experimentally by removing 70% of the surrounding conducting wall to demonstrate no change in stability behavior.[4] Experimental evidence suggests that the plasma lifetime is only limited by plasma supply and current waveform. The flow Z-pinch concept provides an approach to achieve high energy density plasmas,[5] which are large, easy to diagnose, and persist for extended durations. A new experiment, ZaP-HD, has been built to investigate this approach by separating the flow Z-pinch formation from the radial compression using a triaxial-electrode configuration. This innovation allows more detailed investigations of the sheared flow stabilizing effect, and it allows compression to much higher densities than previously achieved on ZaP by reducing the linear density and increasing the pinch current. Experimental results and scaling analyses will be presented. In addition to studying fundamental plasma science and high energy density physics, the ZaP and ZaP-HD experiments can be applied to laboratory astrophysics.« less
Beam and Plasma Physics Research
1990-06-01
La di~raDy in high power microwave computations and thi-ory and high energy plasma computations and theory. The HPM computations concentrated on...2.1 REPORT INDEX 7 2.2 TASK AREA 2: HIGH-POWER RF EMISSION AND CHARGED- PARTICLE BEAM PHYSICS COMPUTATION , MODELING AND THEORY 10 2.2.1 Subtask 02-01...Vulnerability of Space Assets 22 2.2.6 Subtask 02-06, Microwave Computer Program Enhancements 22 2.2.7 Subtask 02-07, High-Power Microwave Transvertron Design 23
NASA Technical Reports Server (NTRS)
Beckley, L. E.
1977-01-01
Progress in various space flight research programs is reported. Emphasis is placed on X-ray astronomy and interplanetary plasma physics. Topics covered include: infrared astronomy, long base line interferometry, geological spectroscopy, space life science experiments, atmospheric physics, and space based materials and structures research. Analysis of galactic and extra-galactic X-ray data from the Small Astronomy Satellite (SAS-3) and HEAO-A and interplanetary plasma data for Mariner 10, Explorers 47 and 50, and Solrad is discussed.
78 FR 48863 - Fusion Energy Sciences Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-12
... DEPARTMENT OF ENERGY Fusion Energy Sciences Advisory Committee AGENCY: Office of Science... Services Administration, notice is hereby given that the Fusion Energy Sciences Advisory Committee will be... of Science (DOE), on long-range plans, priorities, and strategies for advancing plasma science...
Transient lattice contraction in the solid to plasma transition of x-ray heated xenon clusters
NASA Astrophysics Data System (ADS)
Bostedt, C.; Ferguson, K.; Gorkhover, T.; Bucksbaum, P. H.; Boutet, S.; Koglin, J. E.; Lutman, A.; Marinelli, A.; Turner, J.; Bucher, M.; Ho, P.; Knight, C.; Young, L.; Fukuzawa, H.; Kumagai, Y.; Ueda, K.; Nagaya, K.; Messerschmidt, M.; Williams, G.
2016-05-01
Any sample in the focus of intense x-ray pulses will be transformed into a nanoplasma within femtoseconds. We have employed the novel two-color two-pulse mode available at the Linac Coherent Light Source free-electron laser to investigate the structural dynamics in nanoparticles upon x-ray exposure. We find that the nanoparticle transiently contracts within the first 80 fs following x-ray irradiation before ultimately disintegrating in a rapid hydrodynamic expansion. The contraction can be attributed to the massive x-ray induced electronic excitation that induces a collective change in the bond character of the nanoparticles. Alternative explanations for the contraction include a compression wave stemming from a rapid surface explosion of the nanoparticle. Computer simulations under way can elucidate the dominant contraction mechanism and yield further insight into the complex x-ray induced dynamics in nanoscale samples. This work is funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, under Contract No. DE-AC02-06CH11357.
NASA Astrophysics Data System (ADS)
Gerakis, A.; Shneider, M. N.; Stratton, B. C.; Santra, B.; Car, R.; Raitses, Y.
2016-09-01
Laser-based diagnostics methods, such as Spontaneous and Coherent Rayleigh and Rayleigh-Brillouin scattering (SRBS and CRBS), can be used for in-situ detection and characterization of nanoparticle shape and size as well as their concentration in an inert gas atmosphere. We recently developed and tested this advanced diagnostic at PPPL. It was shown that the signal intensity of the CRBS signal depends on the gas-nanoparticle mixture composition, density and the polarizabilities of the mixture components. The measured results agree well with theoretical predictions of Refs. In this work, we report the application of this diagnostic to monitor nucleation and growth of nanoparticles in a carbon arc discharge. In support of these measurements, A time-dependent density functional theory was used to compute the frequency-dependent polarizabilities of various nanostructures in order to predict the corresponding Rayleigh scattering intensities as well as light depolarization. Preliminary results of measurements demonstrate that CRBS is capable to detect nanoparticles in volume. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.
NASA Technical Reports Server (NTRS)
1987-01-01
Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period April, 1986 through September 30, 1986 is summarized.
78 FR 10180 - Annual Computational Science Symposium; Conference
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-13
...] Annual Computational Science Symposium; Conference AGENCY: Food and Drug Administration, HHS. ACTION... Computational Science Symposium.'' The purpose of the conference is to help the broader community align and share experiences to advance computational science. At the conference, which will bring together FDA...
PLASIM: A computer code for simulating charge exchange plasma propagation
NASA Technical Reports Server (NTRS)
Robinson, R. S.; Deininger, W. D.; Winder, D. R.; Kaufman, H. R.
1982-01-01
The propagation of the charge exchange plasma for an electrostatic ion thruster is crucial in determining the interaction of that plasma with the associated spacecraft. A model that describes this plasma and its propagation is described, together with a computer code based on this model. The structure and calling sequence of the code, named PLASIM, is described. An explanation of the program's input and output is included, together with samples of both. The code is written in ANSI Standard FORTRAN.
Computer constructed imagery of distant plasma interaction boundaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grenstadt, E.W.; Schurr, H.D.; Tsugawa, R.K.
1982-01-01
Computer constructed sketches of plasma boundaries arising from the interaction between the solar wind and the magnetosphere can serve as both didactic and research tools. In particular, the structure of the earth's bow shock can be represented as a nonuniform surfce according to the instantaneous orientation of the IMF, and temporal changes in structural distribution can be modeled as a sequence of sketches based on observed sequences of spacecraft-based measurements. Viewed rapidly, such a sequence of sketches can be the basis for representation of plasma processes by computer animation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hules, John
This 1998 annual report from the National Scientific Energy Research Computing Center (NERSC) presents the year in review of the following categories: Computational Science; Computer Science and Applied Mathematics; and Systems and Services. Also presented are science highlights in the following categories: Basic Energy Sciences; Biological and Environmental Research; Fusion Energy Sciences; High Energy and Nuclear Physics; and Advanced Scientific Computing Research and Other Projects.
Laser Wakefield Acceleration: Structural and Dynamic Studies. Final Technical Report ER40954
DOE Office of Scientific and Technical Information (OSTI.GOV)
Downer, Michael C.
2014-04-30
Particle accelerators enable scientists to study the fundamental structure of the universe, but have become the largest and most expensive of scientific instruments. In this project, we advanced the science and technology of laser-plasma accelerators, which are thousands of times smaller and less expensive than their conventional counterparts. In a laser-plasma accelerator, a powerful laser pulse exerts light pressure on an ionized gas, or plasma, thereby driving an electron density wave, which resembles the wake behind a boat. Electrostatic fields within this plasma wake reach tens of billions of volts per meter, fields far stronger than ordinary non-plasma matter (suchmore » as the matter that a conventional accelerator is made of) can withstand. Under the right conditions, stray electrons from the surrounding plasma become trapped within these “wake-fields”, surf them, and acquire energy much faster than is possible in a conventional accelerator. Laser-plasma accelerators thus might herald a new generation of compact, low-cost accelerators for future particle physics, x-ray and medical research. In this project, we made two major advances in the science of laser-plasma accelerators. The first of these was to accelerate electrons beyond 1 gigaelectronvolt (1 GeV) for the first time. In experimental results reported in Nature Communications in 2013, about 1 billion electrons were captured from a tenuous plasma (about 1/100 of atmosphere density) and accelerated to 2 GeV within about one inch, while maintaining less than 5% energy spread, and spreading out less than ½ milliradian (i.e. ½ millimeter per meter of travel). Low energy spread and high beam collimation are important for applications of accelerators as coherent x-ray sources or particle colliders. This advance was made possible by exploiting unique properties of the Texas Petawatt Laser, a powerful laser at the University of Texas at Austin that produces pulses of 150 femtoseconds (1 femtosecond is 10-15 seconds) in duration and 150 Joules in energy (equivalent to the muzzle energy of a small pistol bullet). This duration was well matched to the natural electron density oscillation period of plasma of 1/100 atmospheric density, enabling efficient excitation of a plasma wake, while this energy was sufficient to drive a high-amplitude wake of the right shape to produce an energetic, collimated electron beam. Continuing research is aimed at increasing electron energy even further, increasing the number of electrons captured and accelerated, and developing applications of the compact, multi-GeV accelerator as a coherent, hard x-ray source for materials science, biomedical imaging and homeland security applications. The second major advance under this project was to develop new methods of visualizing the laser-driven plasma wake structures that underlie laser-plasma accelerators. Visualizing these structures is essential to understanding, optimizing and scaling laser-plasma accelerators. Yet prior to work under this project, computer simulations based on estimated initial conditions were the sole source of detailed knowledge of the complex, evolving internal structure of laser-driven plasma wakes. In this project we developed and demonstrated a suite of optical visualization methods based on well-known methods such as holography, streak cameras, and coherence tomography, but adapted to the ultrafast, light-speed, microscopic world of laser-driven plasma wakes. Our methods output images of laser-driven plasma structures in a single laser shot. We first reported snapshots of low-amplitude laser wakes in Nature Physics in 2006. We subsequently reported images of high-amplitude laser-driven plasma “bubbles”, which are important for producing electron beams with low energy spread, in Physical Review Letters in 2010. More recently, we have figured out how to image laser-driven structures that change shape while propagating in a single laser shot. The latter techniques, which use the methods of computerized tomography, were demonstrated on test objects – e.g. laser-driven filaments in air and glass – and reported in Optics Letters in 2013 and Nature Communications in 2014. Their output is a multi-frame movie rather than a snapshot. Continuing research is aimed at applying these tomographic methods directly to evolving laser-driven plasma accelerator structures in our laboratory, then, once perfected, to exporting them to plasma-based accelerator laboratories around the world as standard in-line metrology instruments.« less
Enduring Influence of Stereotypical Computer Science Role Models on Women's Academic Aspirations
ERIC Educational Resources Information Center
Cheryan, Sapna; Drury, Benjamin J.; Vichayapai, Marissa
2013-01-01
The current work examines whether a brief exposure to a computer science role model who fits stereotypes of computer scientists has a lasting influence on women's interest in the field. One-hundred undergraduate women who were not computer science majors met a female or male peer role model who embodied computer science stereotypes in appearance…
A Web of Resources for Introductory Computer Science.
ERIC Educational Resources Information Center
Rebelsky, Samuel A.
As the field of Computer Science has grown, the syllabus of the introductory Computer Science course has changed significantly. No longer is it a simple introduction to programming or a tutorial on computer concepts and applications. Rather, it has become a survey of the field of Computer Science, touching on a wide variety of topics from digital…
NASA Astrophysics Data System (ADS)
Siegel, Z.; Siegel, Edward Carl-Ludwig
2011-03-01
RANDOMNESS of Numbers cognitive-semantics DEFINITION VIA Cognition QUERY: WHAT???, NOT HOW?) VS. computer-``science" mindLESS number-crunching (Harrel-Sipser-...) algorithmics Goldreich "PSEUDO-randomness"[Not.AMS(02)] mea-culpa is ONLY via MAXWELL-BOLTZMANN CLASSICAL-STATISTICS(NOT FDQS!!!) "hot-plasma" REPULSION VERSUS Newcomb(1881)-Weyl(1914;1916)-Benford(1938) "NeWBe" logarithmic-law digit-CLUMPING/ CLUSTERING NON-Randomness simple Siegel[AMS Joint.Mtg.(02)-Abs. # 973-60-124] algebraic-inversion to THE QUANTUM and ONLY BEQS preferentially SEQUENTIALLY lower-DIGITS CLUMPING/CLUSTERING with d = 0 BEC, is ONLY VIA Siegel-Baez FUZZYICS=CATEGORYICS (SON OF TRIZ)/"Category-Semantics"(C-S), latter intersection/union of Lawvere(1964)-Siegel(1964)] category-theory (matrix: MORPHISMS V FUNCTORS) "+" cognitive-semantics'' (matrix: ANTONYMS V SYNONYMS) yields Siegel-Baez FUZZYICS=CATEGORYICS/C-S tabular list-format matrix truth-table analytics: MBCS RANDOMNESS TRUTH/EMET!!!
Modeling Laboratory Astrophysics Experiments using the CRASH code
NASA Astrophysics Data System (ADS)
Trantham, Matthew; Drake, R. P.; Grosskopf, Michael; Bauerle, Matthew; Kruanz, Carolyn; Keiter, Paul; Malamud, Guy; Crash Team
2013-10-01
The understanding of high energy density systems can be advanced by laboratory astrophysics experiments. Computer simulations can assist in the design and analysis of these experiments. The Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan developed a code that has been used to design and analyze high-energy-density experiments on OMEGA, NIF, and other large laser facilities. This Eulerian code uses block-adaptive mesh refinement (AMR) with implicit multigroup radiation transport and electron heat conduction. This poster/talk will demonstrate some of the experiments the CRASH code has helped design or analyze including: Radiative shocks experiments, Kelvin-Helmholtz experiments, Rayleigh-Taylor experiments, plasma sheet, and interacting jets experiments. This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via grant DEFC52- 08NA28616, by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-FG52-09NA29548, and by the National Laser User Facility Program, grant number DE-NA0000850.
Hybrid-PIC Computer Simulation of the Plasma and Erosion Processes in Hall Thrusters
NASA Technical Reports Server (NTRS)
Hofer, Richard R.; Katz, Ira; Mikellides, Ioannis G.; Gamero-Castano, Manuel
2010-01-01
HPHall software simulates and tracks the time-dependent evolution of the plasma and erosion processes in the discharge chamber and near-field plume of Hall thrusters. HPHall is an axisymmetric solver that employs a hybrid fluid/particle-in-cell (Hybrid-PIC) numerical approach. HPHall, originally developed by MIT in 1998, was upgraded to HPHall-2 by the Polytechnic University of Madrid in 2006. The Jet Propulsion Laboratory has continued the development of HPHall-2 through upgrades to the physical models employed in the code, and the addition of entirely new ones. Primary among these are the inclusion of a three-region electron mobility model that more accurately depicts the cross-field electron transport, and the development of an erosion sub-model that allows for the tracking of the erosion of the discharge chamber wall. The code is being developed to provide NASA science missions with a predictive tool of Hall thruster performance and lifetime that can be used to validate Hall thrusters for missions.
Energy Conservation and Conversion in NIMROD Computations of Magnetic Reconnection
NASA Astrophysics Data System (ADS)
Maddox, J. A.; Sovinec, C. R.
2017-10-01
Previous work modeling magnetic relaxation during non-inductive start-up at the Pegasus spherical tokamak indicates an order of magnitude gap between measured experimental temperature and simulated temperature in NIMROD. Potential causes of the plasma temperature gap include: insufficient transport modeling, too low modeled injector power input, and numerical loss of energy, as energy is not algorithmically conserved in NIMROD simulations. Simple 2D nonlinear MHD simulations explore numerical energy conservation discrepancies in NIMROD because understanding numerical loss of energy is fundamental to addressing the physical problems of the other potential causes of energy loss. Evolution of these configurations induces magnetic reconnection, which transfers magnetic energy to heat and kinetic energy. The kinetic energy is eventually damped so, magnetic energy loss must correspond to an increase in internal energy. Results in the 2D geometries indicate that numerical energy loss during reconnection depends on the temporal resolution of the dynamics. Work support from U.S. Department of Energy through a subcontract from the Plasma Science and Innovation Center.
Comparing nonlinear MHD simulations of low-aspect-ratio RFPs to RELAX experiments
NASA Astrophysics Data System (ADS)
McCollam, K. J.; den Hartog, D. J.; Jacobson, C. M.; Sovinec, C. R.; Masamune, S.; Sanpei, A.
2016-10-01
Standard reversed-field pinch (RFP) plasmas provide a nonlinear dynamical system as a validation domain for numerical MHD simulation codes, with applications in general toroidal confinement scenarios including tokamaks. Using the NIMROD code, we simulate the nonlinear evolution of RFP plasmas similar to those in the RELAX experiment. The experiment's modest Lundquist numbers S (as low as a few times 104) make closely matching MHD simulations tractable given present computing resources. Its low aspect ratio ( 2) motivates a comparison study using cylindrical and toroidal geometries in NIMROD. We present initial results from nonlinear single-fluid runs at S =104 for both geometries and a range of equilibrium parameters, which preliminarily show that the magnetic fluctuations are roughly similar between the two geometries and between simulation and experiment, though there appear to be some qualitative differences in their temporal evolution. Runs at higher S are planned. This work is supported by the U.S. DOE and by the Japan Society for the Promotion of Science.
NASA Technical Reports Server (NTRS)
1988-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period April l, 1988 through September 30, 1988.
NASA Technical Reports Server (NTRS)
1984-01-01
Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science during the period October 1, 1983 through March 31, 1984 is summarized.
NASA Technical Reports Server (NTRS)
1987-01-01
Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period October 1, 1986 through March 31, 1987 is summarized.
High school computer science education paves the way for higher education: the Israeli case
NASA Astrophysics Data System (ADS)
Armoni, Michal; Gal-Ezer, Judith
2014-07-01
The gap between enrollments in higher education computing programs and the high-tech industry's demands is widely reported, and is especially prominent for women. Increasing the availability of computer science education in high school is one of the strategies suggested in order to address this gap. We look at the connection between exposure to computer science in high school and pursuing computing in higher education. We also examine the gender gap, in the context of high school computer science education. We show that in Israel, students who took the high-level computer science matriculation exam were more likely to pursue computing in higher education. Regarding the issue of gender, we will show that, in general, in Israel the difference between males and females who take computer science in high school is relatively small, and a larger, though still not very large difference exists only for the highest exam level. In addition, exposing females to high-level computer science in high school has more relative impact on pursuing higher education in computing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendt, Amy; Callis, Richard; Efthimion, Philip
Since the 1950s, scientists and engineers in the U.S. and around the world have worked hard to make an elusive goal to be achieved on Earth: harnessing the reaction that fuels the stars, namely fusion. Practical fusion would be a source of energy that is unlimited, safe, environmentally benign, available to all nations and not dependent on climate or the whims of the weather. Significant resources, most notably from the U.S. Department of Energy (DOE) Office of Fusion Energy Sciences (FES), have been devoted to pursuing that dream, and significant progress is being made in turning it into a reality.more » However, that is only part of the story. The process of creating a fusion-based energy supply on Earth has led to technological and scientific achievements of far-reaching impact that touch every aspect of our lives. Those largely unanticipated advances, spanning a wide variety of fields in science and technology, are the focus of this report. There are many synergies between research in plasma physics (the study of charged particles and fluids interacting with self-consistent electric and magnetic fields), high-energy physics, and condensed matter physics dating back many decades. For instance, the formulation of a mathematical theory of solitons, solitary waves which are seen in everything from plasmas to water waves to Bose-Einstein Condensates, has led to an equal span of applications, including the fields of optics, fluid mechanics and biophysics. Another example, the development of a precise criterion for transition to chaos in Hamiltonian systems, has offered insights into a range of phenomena including planetary orbits, two-person games and changes in the weather. Seven distinct areas of fusion energy sciences were identified and reviewed which have had a recent impact on fields of science, technology and engineering not directly associated with fusion energy: Basic plasma science; Low temperature plasmas; Space and astrophysical plasmas; High energy density laboratory plasmas and inertial fusion energy; Particle accelerator technology; Fusion nuclear science; and Magnetically confined plasmas. Individual sections within the report summarize applications associated with each of these areas. These sections were also informed by a survey that went out to the community, and the subcommittee wishes to thank those who responded, as well as to the national labs and universities that contributed photographs.« less
Defining Computational Thinking for Mathematics and Science Classrooms
NASA Astrophysics Data System (ADS)
Weintrop, David; Beheshti, Elham; Horn, Michael; Orton, Kai; Jona, Kemi; Trouille, Laura; Wilensky, Uri
2016-02-01
Science and mathematics are becoming computational endeavors. This fact is reflected in the recently released Next Generation Science Standards and the decision to include "computational thinking" as a core scientific practice. With this addition, and the increased presence of computation in mathematics and scientific contexts, a new urgency has come to the challenge of defining computational thinking and providing a theoretical grounding for what form it should take in school science and mathematics classrooms. This paper presents a response to this challenge by proposing a definition of computational thinking for mathematics and science in the form of a taxonomy consisting of four main categories: data practices, modeling and simulation practices, computational problem solving practices, and systems thinking practices. In formulating this taxonomy, we draw on the existing computational thinking literature, interviews with mathematicians and scientists, and exemplary computational thinking instructional materials. This work was undertaken as part of a larger effort to infuse computational thinking into high school science and mathematics curricular materials. In this paper, we argue for the approach of embedding computational thinking in mathematics and science contexts, present the taxonomy, and discuss how we envision the taxonomy being used to bring current educational efforts in line with the increasingly computational nature of modern science and mathematics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pogorelov, Nikolai; Zhang, Ming; Borovikov, Sergey
Interactions of flows of partially ionized, magnetized plasma are frequently accompanied by the presence of both thermal and non-thermal (pickup) ion components. Such interactions cannot be modeled using traditional MHD equations and require more advanced approaches to treat them. If a nonthermal component of ions is formed due to charge exchange and collisions between the thermal (core) ions and neutrals, it experiences the action of magnetic field, its distribution function is isotropized, and it soon acquires the velocity of the ambient plasma without being thermodynamically equilibrated. This situation, e. g., takes place in the outer heliosphere - the part ofmore » interstellar space beyond the solar system whose properties are determined by the solar wind interaction with the local interstellar medium. This is also possible in laboratory, at million degrees and above, when plasma is conducting electricity far too well, which makes Ohmic heating ineffective. To attain the target temperatures one needs additional heating eventually playing a dominant role. Among such sources is a so-called neutral particle beam heating. This is a wide-spread technique (Joint European Torus and International Thermonuclear Experimental Reactor experiments) based on the injection of powerful beams of neutral atoms into ohmically preheated plasma. In this project we have investigated the energy and density separation between the thermal and nonthermal components in the solar wind and interstellar plasmas. A new model has been developed in which we solve the ideal MHD equations for mixture of all ions and the kinetic Boltzmann equation to describe the transport of neutral atoms. As a separate capability, we can treat the flow of neutral atoms in a multi-component fashion, where neutral atoms born in each thermodynamically distinct regions are governed by the Euler gas dynamic equations. We also describe the behavior of pickup ions either kinetically, using the Fokker–Planck equation, or as a separate fluid. Our numerical simulations have demonstrated that pickup ions play a major role in the interaction of the solar wind and (partially ionized) interstellar medium plasmas. Our teams have investigated the stability of the surface (the heliopause) that separates the solar wind from the local interstellar medium, the transport of galactic cosmic rays, the properties of the heliotail flow, and modifications to the bow wave in front of the heliopause due to charge exchange between the neutral H atoms born in the solar wind and interstellar ions. Modeling results have been validated against observational data, such as obtained by the Interstellar Boundary Explorer (IBEX), and made it possible to shed light on the structure of energetic neutral atom maps created by this spacecraft.. We have also demonstrated that charge-exchange modulated heliosphere is a source of anisotropy of the multi-TeV cosmic ray flux observed in a number of Earth-bound air shower experiments. Newly developed codes are implemented within a Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS), a publicly available code being developed by our team for over 12 years. MS-FLUKSS scales well up to 160,000 computing cores and has been ported on major supercomputers in the country. Efficient parallelization and data choreography in the continuum simulation modules are provided by Chombo, an adaptive mesh refinement framework managed by Phillip Colella’s team at LBNL. We have implemented in-house, hybrid (MPI+OpenMP) parallelization of the kinetic modules that solve the Boltzmann equation with a Monte Carlo method. Currently, the kinetic modules are being rewritten to take advantage of the modern CPU-GPU supercomputer architecture. The scope of the project allowed us to enhance plasma research and education in such broad, multidis- ciplinary field as physics of partially ionized plasma and its application to space physics and fusion science. Besides the impact on the modeling of complex physical systems, our approach to computational resource management for complex codes utilizing multiple algorithm technologies appears to be a major advance on current approaches. The development of sophisticated resource management will be essential for all future modeling efforts that incorporate a diversity of scales and physical processes. Our effort provided leadership in promoting computational science and plasma physics within the UAH and FIT campuses and, through the training of a broad spectrum of scientists and engineers, foster new technologies across the country.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pogorelov, Nikolai; Zhang, Ming
Interactions of flows of partially ionized, magnetized plasma are frequently accompanied by the presence of both thermal and non-thermal (pickup) ion components. Such interactions cannot be modeled using traditional MHD equations and require more advanced approaches to treat them. If a nonthermal component of ions is formed due to charge exchange and collisions between the thermal (core) ions and neutrals, it experiences the action of magnetic field, its distribution function is isotropized, and it soon acquires the velocity of the ambient plasma without being thermodynamically equilibrated. This situation, e. g., takes place in the outer heliosphere –- the part ofmore » interstellar space beyond the solar system whose properties are determined by the solar wind interaction with the local interstellar medium. This is also possible in laboratory, at million degrees and above, when plasma is conducting electricity far too well, which makes Ohmic heating ineffective. To attain the target temperatures one needs additional heating eventually playing a dominant role. Among such sources is a so-called neutral particle beam heating. This is a wide-spread technique (Joint European Torus and International Thermonuclear Experimental Reactor experiments) based on the injection of powerful beams of neutral atoms into ohmically preheated plasma. In this project we have investigated the energy and density separation between the thermal and nonthermal components in the solar wind and interstellar plasmas. A new model has been developed in which we solve the ideal MHD equations for mixture of all ions and the kinetic Boltzmann equation to describe the transport of neutral atoms. As a separate capability, we can treat the flow of neutral atoms in a multi-component fashion, where neutral atoms born in each thermodynamically distinct region are governed by the Euler gas dynamic equations. We also describe the behavior of pickup ions either kinetically, using the Fokker--Planck equation, or as a separate fluid. Our numerical simulations have demonstrated that pickup ions play a major role in the interaction of the solar wind and (partially ionized) interstellar medium plasmas. Our teams have investigated the stability of the surface (the heliopause) that separates the solar wind from the local interstellar medium, the transport of galactic cosmic rays, the properties of the heliotail flow, and modifications to the bow wave in front of the heliopause due to charge exchange between the neutral H atoms born in the solar wind and interstellar ions. Modeling results have been validated against observational data, such as obtained by the Interstellar Boundary Explorer (IBEX), and made it possible to shed light on the structure of energetic neutral atom maps created by this spacecraft.. We have also demonstrated that charge-exchange modulated heliosphere is a source of anisotropy of the multi-TeV cosmic ray flux observed in a number of Earth-bound air shower experiments. Newly developed codes are implemented within a Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS), a publicly available code being developed by our team for over 12 years. MS-FLUKSS scales well up to 160,000 computing cores and has been ported on major supercomputers in the country. Efficient parallelization and data choreography in the continuum simulation modules are provided by Chombo, an adaptive mesh refinement framework managed by Phillip Colella's team at LBNL. We have implemented in-house, hybrid (MPI+OpenMP) parallelization of the kinetic modules that solve the Boltzmann equation with a Monte Carlo method. Currently, the kinetic modules are being rewritten to take advantage of the modern CPU-GPU supercomputer architecture. The scope of the project allowed us to enhance plasma research and education in such broad, multidisciplinary field as physics of partially ionized plasma and its application to space physics and fusion science. Besides the impact on the modeling of complex physical systems, our approach to computational resource management for complex codes utilizing multiple algorithm technologies appears to be a major advance on current approaches. The development of sophisticated resource management will be essential for all future modeling efforts that incorporate a diversity of scales and physical processes. Our effort provided leadership in promoting computational science and plasma physics within the UAH and FIT campuses and, through the training of a broad spectrum of scientists and engineers, fostering new technologies across the country.« less
. Education Ph.D., Computer Science, Colorado School of Mines M.S., Computer Science, University of Queensland B.S., Computer Science, Colorado School of Mines Brunhart-Lupo Nicholas Brunhart-Lupo Computational Science Nicholas.Brunhart-Lupo@nrel.gov
ERIC Educational Resources Information Center
Margolis, Jane; Goode, Joanna; Bernier, David
2011-01-01
Broadening computer science learning to include more students is a crucial item on the United States' education agenda, these authors say. Although policymakers advocate more computer science expertise, computer science offerings in high schools are few--and actually shrinking. In addition, poorly resourced schools with a high percentage of…
NASA Technical Reports Server (NTRS)
1989-01-01
Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period October 1, 1988 through March 31, 1989 is summarized.
Fusion energy science: Clean, safe, and abundant energy through innovative science and technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Fusion energy science combines the study of the behavior of plasmas--the state of matter that forms 99% of the visible universe--with a vision of using fusion--the energy source of the stars--to create an affordable, plentiful, and environmentally benign energy source for humankind. The dual nature of fusion energy science provides an unfolding panorama of exciting intellectual challenge and a promise of an attractive energy source for generations to come. The goal of this report is a comprehensive understanding of plasma behavior leading to an affordable and attractive fusion energy source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, W. E.
2004-08-16
Computational Science plays a big role in research and development in mathematics, science, engineering and biomedical disciplines. The Alliance for Computational Science Collaboration (ACSC) has the goal of training African-American and other minority scientists in the computational science field for eventual employment with the Department of Energy (DOE). The involvements of Historically Black Colleges and Universities (HBCU) in the Alliance provide avenues for producing future DOE African-American scientists. Fisk University has been participating in this program through grants from the DOE. The DOE grant supported computational science activities at Fisk University. The research areas included energy related projects, distributed computing,more » visualization of scientific systems and biomedical computing. Students' involvement in computational science research included undergraduate summer research at Oak Ridge National Lab, on-campus research involving the participation of undergraduates, participation of undergraduate and faculty members in workshops, and mentoring of students. These activities enhanced research and education in computational science, thereby adding to Fisk University's spectrum of research and educational capabilities. Among the successes of the computational science activities are the acceptance of three undergraduate students to graduate schools with full scholarships beginning fall 2002 (one for master degree program and two for Doctoral degree program).« less
NASA Astrophysics Data System (ADS)
Zabusky, Norman J.
2005-03-01
This paper is mostly a history of the early years of nonlinear and computational physics and mathematics. I trace how the counterintuitive result of near-recurrence to an initial condition in the first scientific digital computer simulation led to the discovery of the soliton in a later computer simulation. The 1955 report by Fermi, Pasta, and Ulam (FPU) described their simulation of a one-dimensional nonlinear lattice which did not show energy equipartition. The 1965 paper by Zabusky and Kruskalshowed that the Korteweg-de Vries (KdV) nonlinear partial differential equation, a long wavelength model of the α-lattice (or cubic nonlinearity), derived by Kruskal, gave quantitatively the same results obtained by FPU. In 1967, Zabusky and Deem showed that a localized short wavelength initial excitation (then called an "optical" and now a "zone-boundary mode" excitation ) of the α-lattice revealed "n-curve" coherent states. If the initial amplitude was sufficiently large energy equipartition followed in a short time. The work of Kruskal and Miura (KM), Gardner and Greene (GG), and myself led to the appreciation of the infinity of denumerable invariants (conservation laws) for Hamiltonian systems and to a procedure by GGKM in 1967 for solving KdV exactly. The nonlinear science field exponentiated in diversity of linkages (as described in Appendix A). Included were pure and applied mathematics and all branches of basic and applied physics, including the first nonhydrodynamic application to optical solitons, as described in a brief essay (Appendix B) by Hasegawa. The growth was also manifest in the number of meetings held and institutes founded, as described briefly in Appendix D. Physicists and mathematicians in Japan, USA, and USSR (in the latter two, people associated with plasma physics) contributed to the diversification of the nonlinear paradigm which continues worldwide to the present. The last part of the paper (and Appendix C) discuss visiometrics: the visualization and quantification of simulation data, e.g., projection to lower dimensions, to facilitate understanding of nonlinear phenomena for modeling and prediction (or design). Finally, I present some recent developments that are linked to my early work by: Dritschel (vortex dynamics via contour dynamics/surgery in two and three dimensions); Friedland (pattern formation by synchronization in Hamiltonian nonlinear wave, vortex, plasma, systems, etc.); and the author ("n-curve" states and energy equipartition in a FPU lattice).
Zabusky, Norman J
2005-03-01
This paper is mostly a history of the early years of nonlinear and computational physics and mathematics. I trace how the counterintuitive result of near-recurrence to an initial condition in the first scientific digital computer simulation led to the discovery of the soliton in a later computer simulation. The 1955 report by Fermi, Pasta, and Ulam (FPU) described their simulation of a one-dimensional nonlinear lattice which did not show energy equipartition. The 1965 paper by Zabusky and Kruskalshowed that the Korteweg-de Vries (KdV) nonlinear partial differential equation, a long wavelength model of the alpha-lattice (or cubic nonlinearity), derived by Kruskal, gave quantitatively the same results obtained by FPU. In 1967, Zabusky and Deem showed that a localized short wavelength initial excitation (then called an "optical" and now a "zone-boundary mode" excitation ) of the alpha-lattice revealed "n-curve" coherent states. If the initial amplitude was sufficiently large energy equipartition followed in a short time. The work of Kruskal and Miura (KM), Gardner and Greene (GG), and myself led to the appreciation of the infinity of denumerable invariants (conservation laws) for Hamiltonian systems and to a procedure by GGKM in 1967 for solving KdV exactly. The nonlinear science field exponentiated in diversity of linkages (as described in Appendix A). Included were pure and applied mathematics and all branches of basic and applied physics, including the first nonhydrodynamic application to optical solitons, as described in a brief essay (Appendix B) by Hasegawa. The growth was also manifest in the number of meetings held and institutes founded, as described briefly in Appendix D. Physicists and mathematicians in Japan, USA, and USSR (in the latter two, people associated with plasma physics) contributed to the diversification of the nonlinear paradigm which continues worldwide to the present. The last part of the paper (and Appendix C) discuss visiometrics: the visualization and quantification of simulation data, e.g., projection to lower dimensions, to facilitate understanding of nonlinear phenomena for modeling and prediction (or design). Finally, I present some recent developments that are linked to my early work by: Dritschel (vortex dynamics via contour dynamics/surgery in two and three dimensions); Friedland (pattern formation by synchronization in Hamiltonian nonlinear wave, vortex, plasma, systems, etc.); and the author ("n-curve" states and energy equipartition in a FPU lattice).
NASA Astrophysics Data System (ADS)
Koch, Melissa; Gorges, Torie
2016-10-01
Underrepresented populations such as women, African-Americans, and Latinos/as often come to STEM (science, technology, engineering, and mathematics) careers by less traditional paths than White and Asian males. To better understand how and why women might shift toward STEM, particularly computer science, careers, we investigated the education and career direction of afterschool facilitators, primarily women of color in their twenties and thirties, who taught Build IT, an afterschool computer science curriculum for middle school girls. Many of these women indicated that implementing Build IT had influenced their own interest in technology and computer science and in some cases had resulted in their intent to pursue technology and computer science education. We wanted to explore the role that teaching Build IT may have played in activating or reactivating interest in careers in computer science and to see whether in the years following implementation of Build IT, these women pursued STEM education and/or careers. We reached nine facilitators who implemented the program in 2011-12 or shortly after. Many indicated that while facilitating Build IT, they learned along with the participants, increasing their interest in and confidence with technology and computer science. Seven of the nine participants pursued further STEM or computer science learning or modified their career paths to include more of a STEM or computer science focus. Through interviews, we explored what aspects of Build IT influenced these facilitators' interest and confidence in STEM and when relevant their pursuit of technology and computer science education and careers.
Stellarator Research Opportunities: A Report of the National Stellarator Coordinating Committee
Gates, David A.; Anderson, David; Anderson, S.; ...
2018-02-19
This paper is the product of a stellarator community workshop, organized by the National Stellarator Coordinating Committee and referred to as Stellcon, that was held in Cambridge, Massachusetts in February 2016, hosted by MIT. The workshop was widely advertised, and was attended by 40 scientists from 12 different institutions including national labs, universities and private industry, as well as a representative from the Department of Energy. The final section of this document describes areas of community wide consensus that were developed as a result of the discussions held at that workshop. Areas where further study would be helpful to generatemore » a consensus path forward for the US stellarator program are also discussed. The program outlined in this document is directly responsive to many of the strategic priorities of FES as articulated in “Fusion Energy Sciences: A Ten-Year Perspective (2015–2025)” [1]. The natural disruption immunity of the stellarator directly addresses “Elimination of transient events that can be deleterious to toroidal fusion plasma confinement devices” an area of critical importance for the US fusion energy sciences enterprise over the next decade. Another critical area of research “Strengthening our partnerships with international research facilities,” is being significantly advanced on the W7-X stellarator in Germany and serves as a test-bed for development of successful international collaboration on ITER. Finally, this report also outlines how materials science as it relates to plasma and fusion sciences, another critical research area, can be carried out effectively in a stellarator. Additionally, significant advances along two of the Research Directions outlined in the report; “Burning Plasma Science: Foundations—Next-generation research capabilities”, and “Burning Plasma Science: Long pulse—Sustainment of Long-Pulse Plasma Equilibria” are proposed.« less
Stellarator Research Opportunities: A Report of the National Stellarator Coordinating Committee
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gates, David A.; Anderson, David; Anderson, S.
This paper is the product of a stellarator community workshop, organized by the National Stellarator Coordinating Committee and referred to as Stellcon, that was held in Cambridge, Massachusetts in February 2016, hosted by MIT. The workshop was widely advertised, and was attended by 40 scientists from 12 different institutions including national labs, universities and private industry, as well as a representative from the Department of Energy. The final section of this document describes areas of community wide consensus that were developed as a result of the discussions held at that workshop. Areas where further study would be helpful to generatemore » a consensus path forward for the US stellarator program are also discussed. The program outlined in this document is directly responsive to many of the strategic priorities of FES as articulated in “Fusion Energy Sciences: A Ten-Year Perspective (2015–2025)” [1]. The natural disruption immunity of the stellarator directly addresses “Elimination of transient events that can be deleterious to toroidal fusion plasma confinement devices” an area of critical importance for the US fusion energy sciences enterprise over the next decade. Another critical area of research “Strengthening our partnerships with international research facilities,” is being significantly advanced on the W7-X stellarator in Germany and serves as a test-bed for development of successful international collaboration on ITER. Finally, this report also outlines how materials science as it relates to plasma and fusion sciences, another critical research area, can be carried out effectively in a stellarator. Additionally, significant advances along two of the Research Directions outlined in the report; “Burning Plasma Science: Foundations—Next-generation research capabilities”, and “Burning Plasma Science: Long pulse—Sustainment of Long-Pulse Plasma Equilibria” are proposed.« less
Stellarator Research Opportunities: A Report of the National Stellarator Coordinating Committee
NASA Astrophysics Data System (ADS)
Gates, D. A.; Anderson, D.; Anderson, S.; Zarnstorff, M.; Spong, D. A.; Weitzner, H.; Neilson, G. H.; Ruzic, D.; Andruczyk, D.; Harris, J. H.; Mynick, H.; Hegna, C. C.; Schmitz, O.; Talmadge, J. N.; Curreli, D.; Maurer, D.; Boozer, A. H.; Knowlton, S.; Allain, J. P.; Ennis, D.; Wurden, G.; Reiman, A.; Lore, J. D.; Landreman, M.; Freidberg, J. P.; Hudson, S. R.; Porkolab, M.; Demers, D.; Terry, J.; Edlund, E.; Lazerson, S. A.; Pablant, N.; Fonck, R.; Volpe, F.; Canik, J.; Granetz, R.; Ware, A.; Hanson, J. D.; Kumar, S.; Deng, C.; Likin, K.; Cerfon, A.; Ram, A.; Hassam, A.; Prager, S.; Paz-Soldan, C.; Pueschel, M. J.; Joseph, I.; Glasser, A. H.
2018-02-01
This document is the product of a stellarator community workshop, organized by the National Stellarator Coordinating Committee and referred to as Stellcon, that was held in Cambridge, Massachusetts in February 2016, hosted by MIT. The workshop was widely advertised, and was attended by 40 scientists from 12 different institutions including national labs, universities and private industry, as well as a representative from the Department of Energy. The final section of this document describes areas of community wide consensus that were developed as a result of the discussions held at that workshop. Areas where further study would be helpful to generate a consensus path forward for the US stellarator program are also discussed. The program outlined in this document is directly responsive to many of the strategic priorities of FES as articulated in "Fusion Energy Sciences: A Ten-Year Perspective (2015-2025)" [1]. The natural disruption immunity of the stellarator directly addresses "Elimination of transient events that can be deleterious to toroidal fusion plasma confinement devices" an area of critical importance for the US fusion energy sciences enterprise over the next decade. Another critical area of research "Strengthening our partnerships with international research facilities," is being significantly advanced on the W7-X stellarator in Germany and serves as a test-bed for development of successful international collaboration on ITER. This report also outlines how materials science as it relates to plasma and fusion sciences, another critical research area, can be carried out effectively in a stellarator. Additionally, significant advances along two of the Research Directions outlined in the report; "Burning Plasma Science: Foundations - Next-generation research capabilities", and "Burning Plasma Science: Long pulse - Sustainment of Long-Pulse Plasma Equilibria" are proposed.
Stellarator Research Opportunities: A report of the National Stellarator Coordinating Committee
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gates, David A.; Anderson, David
This document is the product of a stellarator community workshop, organized by the National Stellarator Coordinating Committee and referred to as Stellcon, that was held in Cambridge, Massachusetts in February 2016, hosted by MIT. The workshop was widely advertised, and was attended by 40 scientists from 12 different institutions including national labs, universities and private industry, as well as a representative from the Department of Energy. The final section of this document describes areas of community wide consensus that were developed as a result of the discussions held at that workshop. Areas where further study would be helpful to generatemore » a consensus path forward for the US stellarator program are also discussed. The program outlined in this document is directly responsive to many of the strategic priorities of FES as articulated in “Fusion Energy Sciences: A Ten-Year Perspective (2015-2025)” [2]. The natural disruption immunity of the stellarator directly addresses “Elimination of transient events that can be deleterious to toroidal fusion plasma confinement devices” an area of critical importance for the U.S. fusion energy sciences enterprise over the next decade. Another critical area of research “Strengthening our partnerships with international research facilities,” is being significantly advanced on the W7-X stellarator in Germany and serves as a test-bed for development of successful international collaboration on ITER. This report also outlines how materials science as it relates to plasma and fusion sciences, another critical research area, can be carried out effectively in a stellarator. Additionally, significant advances along two of the Research Directions outlined in the report; “Burning Plasma Science: Foundations - Next-generation research capabilities”, and “Burning Plasma Science: Long pulse - Sustainment of Long-Pulse Plasma Equilibria” are proposed.« less
The NASA computer science research program plan
NASA Technical Reports Server (NTRS)
1983-01-01
A taxonomy of computer science is included, one state of the art of each of the major computer science categories is summarized. A functional breakdown of NASA programs under Aeronautics R and D, space R and T, and institutional support is also included. These areas were assessed against the computer science categories. Concurrent processing, highly reliable computing, and information management are identified.
The HelCat basic plasma science device
NASA Astrophysics Data System (ADS)
Gilmore, M.; Lynn, A. G.; Desjardins, T. R.; Zhang, Y.; Watts, C.; Hsu, S. C.; Betts, S.; Kelly, R.; Schamiloglu, E.
2015-01-01
The Helicon-Cathode(HelCat) device is a medium-size linear experiment suitable for a wide range of basic plasma science experiments in areas such as electrostatic turbulence and transport, magnetic relaxation, and high power microwave (HPM)-plasma interactions. The HelCat device is based on dual plasma sources located at opposite ends of the 4 m long vacuum chamber - an RF helicon source at one end and a thermionic cathode at the other. Thirteen coils provide an axial magnetic field B >= 0.220 T that can be configured individually to give various magnetic configurations (e.g. solenoid, mirror, cusp). Additional plasma sources, such as a compact coaxial plasma gun, are also utilized in some experiments, and can be located either along the chamber for perpendicular (to the background magnetic field) plasma injection, or at one of the ends for parallel injection. Using the multiple plasma sources, a wide range of plasma parameters can be obtained. Here, the HelCat device is described in detail and some examples of results from previous and ongoing experiments are given. Additionally, examples of planned experiments and device modifications are also discussed.
The 2017 Plasma Roadmap: Low temperature plasma science and technology
NASA Astrophysics Data System (ADS)
Adamovich, I.; Baalrud, S. D.; Bogaerts, A.; Bruggeman, P. J.; Cappelli, M.; Colombo, V.; Czarnetzki, U.; Ebert, U.; Eden, J. G.; Favia, P.; Graves, D. B.; Hamaguchi, S.; Hieftje, G.; Hori, M.; Kaganovich, I. D.; Kortshagen, U.; Kushner, M. J.; Mason, N. J.; Mazouffre, S.; Mededovic Thagard, S.; Metelmann, H.-R.; Mizuno, A.; Moreau, E.; Murphy, A. B.; Niemira, B. A.; Oehrlein, G. S.; Petrovic, Z. Lj; Pitchford, L. C.; Pu, Y.-K.; Rauf, S.; Sakai, O.; Samukawa, S.; Starikovskaia, S.; Tennyson, J.; Terashima, K.; Turner, M. M.; van de Sanden, M. C. M.; Vardelle, A.
2017-08-01
Journal of Physics D: Applied Physics published the first Plasma Roadmap in 2012 consisting of the individual perspectives of 16 leading experts in the various sub-fields of low temperature plasma science and technology. The 2017 Plasma Roadmap is the first update of a planned series of periodic updates of the Plasma Roadmap. The continuously growing interdisciplinary nature of the low temperature plasma field and its equally broad range of applications are making it increasingly difficult to identify major challenges that encompass all of the many sub-fields and applications. This intellectual diversity is ultimately a strength of the field. The current state of the art for the 19 sub-fields addressed in this roadmap demonstrates the enviable track record of the low temperature plasma field in the development of plasmas as an enabling technology for a vast range of technologies that underpin our modern society. At the same time, the many important scientific and technological challenges shared in this roadmap show that the path forward is not only scientifically rich but has the potential to make wide and far reaching contributions to many societal challenges.
Micro- to macroscale perspectives on space plasmas
NASA Technical Reports Server (NTRS)
Eastman, Timothy E.
1993-01-01
The Earth's magnetosphere is the most accessible of natural collisionless plasma environments; an astrophysical plasma 'laboratory'. Magnetospheric physics has been in an exploration phase since its origin 35 years ago but new coordinated, multipoint observations, theory, modeling, and simulations are moving this highly interdisciplinary field of plasma science into a new phase of synthesis and understanding. Plasma systems are ones in which binary collisions are relatively negligible and collective behavior beyond the microscale emerges. Most readily accessible natural plasma systems are collisional and nearest-neighbor classical interactions compete with longer-range plasma effects. Except for stars, most space plasmas are collisionless, however, and the effects of electrodynamic coupling dominate. Basic physical processes in such collisionless plasmas occur at micro-, meso-, and macroscales that are not merely reducible to each other in certain crucial ways as illustrated for the global coupling of the Earth's magnetosphere and for the nonlinear dynamics of charged particle motion in the magnetotail. Such global coupling and coherence makes the geospace environment, the domain of solar-terrestrial science, the most highly coupled of all physical geospheres.
On teaching computer ethics within a computer science department.
Quinn, Michael J
2006-04-01
The author has surveyed a quarter of the accredited undergraduate computer science programs in the United States. More than half of these programs offer a 'social and ethical implications of computing' course taught by a computer science faculty member, and there appears to be a trend toward teaching ethics classes within computer science departments. Although the decision to create an 'in house' computer ethics course may sometimes be a pragmatic response to pressure from the accreditation agency, this paper argues that teaching ethics within a computer science department can provide students and faculty members with numerous benefits. The paper lists topics that can be covered in a computer ethics course and offers some practical suggestions for making the course successful.
Computational Science News | Computational Science | NREL
-Cooled High-Performance Computing Technology at the ESIF February 28, 2018 NREL Launches New Website for High-Performance Computing System Users The National Renewable Energy Laboratory (NREL) Computational Science Center has launched a revamped website for users of the lab's high-performance computing (HPC
NASA Astrophysics Data System (ADS)
Yatom, Shurik; Mitrani, James; Yeh, Yao-Wen; Shneider, Mikhail; Stratton, Brentley; Raitses, Yevgeny
2016-09-01
A DC arc discharge with a consumed graphite anode is commonly used for synthesis of carbon nanoparticles, including carbon nanotubes (CNTs) and graphene flakes. The graphite electrode is physically vaporized by high currents (20-60 A) in a buffer gas at 100-600 torr, leading to nanoparticle synthesis in a low temperature (>1 eV), plasma. Utilizing arc plasma synthesis technique has resulted in the synthesis of higher quality nanomaterials. However, the formation of nanoparticles in arc discharge plasmas is poorly understood. A particularly interesting question is where in the arc the nanoparticles nucleate and grow. In our current work we show the results of studying the formation of carbon nanotubes in an arc discharge, in situ, using laser-induced incandescence (LII). The results of LII are discussed in combination with ex situ measurements of the synthesized nanoparticles and modeling, to provide an insight into the physics behind nanoparticle synthesis in plasma. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.
RUSHMAPS: Real-Time Uploadable Spherical Harmonic Moment Analysis for Particle Spectrometers
NASA Technical Reports Server (NTRS)
Figueroa-Vinas, Adolfo
2013-01-01
RUSHMAPS is a new onboard data reduction scheme that gives real-time access to key science parameters (e.g. moments) of a class of heliophysics science and/or solar system exploration investigation that includes plasma particle spectrometers (PPS), but requires moments reporting (density, bulk-velocity, temperature, pressure, etc.) of higher-level quality, and tolerates a lowpass (variable quality) spectral representation of the corresponding particle velocity distributions, such that telemetry use is minimized. The proposed methodology trades access to the full-resolution velocity distribution data, saving on telemetry, for real-time access to both the moments and an adjustable-quality (increasing quality increases volume) spectral representation of distribution functions. Traditional onboard data storage and downlink bandwidth constraints severely limit PPS system functionality and drive cost, which, as a consequence, drives a limited data collection and lower angular energy and time resolution. This prototypical system exploit, using high-performance processing technology at GSFC (Goddard Space Flight Center), uses a SpaceCube and/or Maestro-type platform for processing. These processing platforms are currently being used on the International Space Station as a technology demonstration, and work is currently ongoing in a new onboard computation system for the Earth Science missions, but they have never been implemented in heliospheric science or solar system exploration missions. Preliminary analysis confirms that the targeted processor platforms possess the processing resources required for realtime application of these algorithms to the spectrometer data. SpaceCube platforms demonstrate that the target architecture possesses the sort of compact, low-mass/power, radiation-tolerant characteristics needed for flight. These high-performing hybrid systems embed unprecedented amounts of onboard processing power in the CPU (central processing unit), FPGAs (field programmable gate arrays), and DSP (digital signal processing) elements. The fundamental computational algorithm de constructs 3D velocity distributions in terms of spherical harmonic spectral coefficients (which are analogous to a Fourier sine-cosine decomposition), but uses instead spherical harmonics Legendre polynomial orthogonal functions as a basis for the expansion, portraying each 2D angular distribution at every energy or, geometrically, spherical speed-shell swept by the particle spectrometer. Optionally, these spherical harmonic spectral coefficients may be telemetered to the ground. These will provide a smoothed description of the velocity distribution function whose quality will depend on the number of coefficients determined. Successfully implemented on the GSFC-developed processor, the capability to integrate the proposed methodology with both heritage and anticipated future plasma particle spectrometer designs is demonstrated (with sufficiently detailed design analysis to advance TRL) to show specific science relevancy with future HSD (Heliophysics Science Division) solar-interplanetary, planetary missions, sounding rockets and/or CubeSat missions.
1988-07-08
Marcus and C. Baczynski), Computer Science Press, Rockville, Maryland, 1986. 3. An Introduction to Pascal and Precalculus , Computer Science Press...Science Press, Rockville, Maryland, 1986. 35. An Introduction to Pascal and Precalculus , Computer Science Press, Rockville, Maryland, 1986. 36
Empirical Determination of Competence Areas to Computer Science Education
ERIC Educational Resources Information Center
Zendler, Andreas; Klaudt, Dieter; Seitz, Cornelia
2014-01-01
The authors discuss empirically determined competence areas to K-12 computer science education, emphasizing the cognitive level of competence. The results of a questionnaire with 120 professors of computer science serve as a database. By using multi-dimensional scaling and cluster analysis, four competence areas to computer science education…
Factors Influencing Exemplary Science Teachers' Levels of Computer Use
ERIC Educational Resources Information Center
Hakverdi, Meral; Dana, Thomas M.; Swain, Colleen
2011-01-01
The purpose of this study was to examine exemplary science teachers' use of technology in science instruction, factors influencing their level of computer use, their level of knowledge/skills in using specific computer applications for science instruction, their use of computer-related applications/tools during their instruction, and their…
Preparing Future Secondary Computer Science Educators
ERIC Educational Resources Information Center
Ajwa, Iyad
2007-01-01
Although nearly every college offers a major in computer science, many computer science teachers at the secondary level have received little formal training. This paper presents details of a project that could make a significant contribution to national efforts to improve computer science education by combining teacher education and professional…
NASA Astrophysics Data System (ADS)
Carter, T. A.
2017-10-01
The Basic Plasma Science Facility at UCLA is a national user facility for studies of fundamental processes in magnetized plasmas. The centerpiece is the Large Plasma Device, a 20 m, magnetized linear plasma device. Two hot cathode plasma sources are available. A Barium Oxide coated cathode produces plasmas with n 1012 cm-3, Te 5 eV, Ti < 1 eV with magnetic field from 400G-2kG. This low- β plasma has been used to study fundamental processes, including: dispersion and damping of kinetic and inertial Alfvén waves, flux ropes and magnetic reconnection, three-wave interactions and parametric instabilities of Alfvén waves, turbulence and transport, and interactions of energetic ions and electrons with plasma waves. A new Lanthanum Hexaboride (LaB6) cathode is now available which produces significantly higher densities and temperatures: n < 5 ×1013 cm-3, Te 12 eV, Ti 6 eV. This higher pressure plasma source enabled the observation of laser-driven collisionless magnetized shocks and, with lowered magnetic field, provides magnetized plasmas with β approaching or possibly exceeding unity. This opens up opportunities for investigating processes relevant to the solar wind and astrophysical plasmas. BaPSF is jointly supported by US DOE and NSF.
NASA Astrophysics Data System (ADS)
Brcka, Jozef
2016-07-01
A multi inductively coupled plasma (ICP) system can be used to maintain the plasma uniformity and increase the area processed by a high-density plasma. This article presents a source in two different configurations. The distributed planar multi ICP (DM-ICP) source comprises individual ICP sources that are not overlapped and produce plasma independently. Mutual coupling of the ICPs may affect the distribution of the produced plasma. The integrated multicoil ICP (IMC-ICP) source consists of four low-inductance ICP antennas that are superimposed in an azimuthal manner. The identical geometry of the ICP coils was assumed in this work. Both configurations have highly asymmetric components. A three-dimensional (3D) plasma model of the multicoil ICP configurations with asymmetric features is used to investigate the plasma characteristics in a large chamber and the operation of the sources in inert and reactive gases. The feasibility of the computational calculation, the speed, and the computational resources of the coupled multiphysics solver are investigated in the framework of a large realistic geometry and complex reaction processes. It was determined that additional variables can be used to control large-area plasmas. Both configurations can form a plasma, that azimuthally moves in a controlled manner, the so-called “sweeping mode” (SM) or “polyphase mode” (PPM), and thus they have the potential for large-area and high-density plasma applications. The operation in the azimuthal mode has the potential to adjust the plasma distribution, the reaction chemistry, and increase or modulate the production of the radicals. The intrinsic asymmetry of the individual coils and their combined operation were investigated within a source assembly primarily in argon and CO gases. Limited investigations were also performed on operation in CH4 gas. The plasma parameters and the resulting chemistry are affected by the geometrical relation between individual antennas. The aim of this work is to incorporate the technological, computational, dimensional scaling, and reaction chemistry aspects of the plasma under one computational framework. The 3D simulation is utilized to geometrically scale up the reactive plasma that is produced by multiple ICP sources.
Analysis on laser plasma emission for characterization of colloids by video-based computer program
NASA Astrophysics Data System (ADS)
Putri, Kirana Yuniati; Lumbantoruan, Hendra Damos; Isnaeni
2016-02-01
Laser-induced breakdown detection (LIBD) is a sensitive technique for characterization of colloids with small size and low concentration. There are two types of detection, optical and acoustic. Optical LIBD employs CCD camera to capture the plasma emission and uses the information to quantify the colloids. This technique requires sophisticated technology which is often pricey. In order to build a simple, home-made LIBD system, a dedicated computer program based on MATLAB™ for analyzing laser plasma emission was developed. The analysis was conducted by counting the number of plasma emissions (breakdowns) during a certain period of time. Breakdown probability provided information on colloid size and concentration. Validation experiment showed that the computer program performed well on analyzing the plasma emissions. Optical LIBD has A graphical user interface (GUI) was also developed to make the program more user-friendly.
OPENING REMARKS: SciDAC: Scientific Discovery through Advanced Computing
NASA Astrophysics Data System (ADS)
Strayer, Michael
2005-01-01
Good morning. Welcome to SciDAC 2005 and San Francisco. SciDAC is all about computational science and scientific discovery. In a large sense, computational science characterizes SciDAC and its intent is change. It transforms both our approach and our understanding of science. It opens new doors and crosses traditional boundaries while seeking discovery. In terms of twentieth century methodologies, computational science may be said to be transformational. There are a number of examples to this point. First are the sciences that encompass climate modeling. The application of computational science has in essence created the field of climate modeling. This community is now international in scope and has provided precision results that are challenging our understanding of our environment. A second example is that of lattice quantum chromodynamics. Lattice QCD, while adding precision and insight to our fundamental understanding of strong interaction dynamics, has transformed our approach to particle and nuclear science. The individual investigator approach has evolved to teams of scientists from different disciplines working side-by-side towards a common goal. SciDAC is also undergoing a transformation. This meeting is a prime example. Last year it was a small programmatic meeting tracking progress in SciDAC. This year, we have a major computational science meeting with a variety of disciplines and enabling technologies represented. SciDAC 2005 should position itself as a new corner stone for Computational Science and its impact on science. As we look to the immediate future, FY2006 will bring a new cycle to SciDAC. Most of the program elements of SciDAC will be re-competed in FY2006. The re-competition will involve new instruments for computational science, new approaches for collaboration, as well as new disciplines. There will be new opportunities for virtual experiments in carbon sequestration, fusion, and nuclear power and nuclear waste, as well as collaborations with industry and virtual prototyping. New instruments of collaboration will include institutes and centers while summer schools, workshops and outreach will invite new talent and expertise. Computational science adds new dimensions to science and its practice. Disciplines of fusion, accelerator science, and combustion are poised to blur the boundaries between pure and applied science. As we open the door into FY2006 we shall see a landscape of new scientific challenges: in biology, chemistry, materials, and astrophysics to name a few. The enabling technologies of SciDAC have been transformational as drivers of change. Planning for major new software systems assumes a base line employing Common Component Architectures and this has become a household word for new software projects. While grid algorithms and mesh refinement software have transformed applications software, data management and visualization have transformed our understanding of science from data. The Gordon Bell prize now seems to be dominated by computational science and solvers developed by TOPS ISIC. The priorities of the Office of Science in the Department of Energy are clear. The 20 year facilities plan is driven by new science. High performance computing is placed amongst the two highest priorities. Moore's law says that by the end of the next cycle of SciDAC we shall have peta-flop computers. The challenges of petascale computing are enormous. These and the associated computational science are the highest priorities for computing within the Office of Science. Our effort in Leadership Class computing is just a first step towards this goal. Clearly, computational science at this scale will face enormous challenges and possibilities. Performance evaluation and prediction will be critical to unraveling the needed software technologies. We must not lose sight of our overarching goal—that of scientific discovery. Science does not stand still and the landscape of science discovery and computing holds immense promise. In this environment, I believe it is necessary to institute a system of science based performance metrics to help quantify our progress towards science goals and scientific computing. As a final comment I would like to reaffirm that the shifting landscapes of science will force changes to our computational sciences, and leave you with the quote from Richard Hamming, 'The purpose of computing is insight, not numbers'.
THOR contribution to space weather science
NASA Astrophysics Data System (ADS)
Vaivads, A.; Opgenoorth, H. J.; Retino, A.; Khotyaintsev, Y. V.; Soucek, J.; Valentini, F.; Escoubet, C. P.; Chen, C. H. K.; Vainio, R. O.; Fazakerley, A. N.; Lavraud, B.; Narita, Y.; Marcucci, M. F.; Kucharek, H.; Bale, S. D.; Moore, T. E.; Kistler, L. M.; Samara, M.
2016-12-01
Turbulence Heating ObserveR - THOR is a mission proposal to study energy dissipation and particle acceleration in turbulent space plasma. THOR will focus on turbulent plasma in pristine solar wind, bow shock and magnetosheath. The orbit of THOR is tuned to spend long times in those regions allowing THOR to obtain high resolution data sets that can be used also for space weather science. Here we will discuss the space weather science questions that can be addressed and significantly advanced using THOR. Link to THOR: http://thor.irfu.se.
Dust charging and levitating in a sheath of plasma containing energetic particles
NASA Astrophysics Data System (ADS)
Ou, Jing; Zhao, Xiao-Yun; Lin, Bin-Bin
2018-02-01
Not Available Project supported by the National Natural Science Foundation of China (Grant No. 11475223), the National Magnetic Confinement Fusion Science Program of China (Grant No. 2015GB101003), and the JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics (Grant Nos. 11261140328 and 2012K2A2A6000443).
Plasma cell quantification in bone marrow by computer-assisted image analysis.
Went, P; Mayer, S; Oberholzer, M; Dirnhofer, S
2006-09-01
Minor and major criteria for the diagnosis of multiple meloma according to the definition of the WHO classification include different categories of the bone marrow plasma cell count: a shift from the 10-30% group to the > 30% group equals a shift from a minor to a major criterium, while the < 10% group does not contribute to the diagnosis. Plasma cell fraction in the bone marrow is therefore critical for the classification and optimal clinical management of patients with plasma cell dyscrasias. The aim of this study was (i) to establish a digital image analysis system able to quantify bone marrow plasma cells and (ii) to evaluate two quantification techniques in bone marrow trephines i.e. computer-assisted digital image analysis and conventional light-microscopic evaluation. The results were compared regarding inter-observer variation of the obtained results. Eighty-seven patients, 28 with multiple myeloma, 29 with monoclonal gammopathy of undetermined significance, and 30 with reactive plasmocytosis were included in the study. Plasma cells in H&E- and CD138-stained slides were quantified by two investigators using light-microscopic estimation and computer-assisted digital analysis. The sets of results were correlated with rank correlation coefficients. Patients were categorized according to WHO criteria addressing the plasma cell content of the bone marrow (group 1: 0-10%, group 2: 11-30%, group 3: > 30%), and the results compared by kappa statistics. The degree of agreement in CD138-stained slides was higher for results obtained using the computer-assisted image analysis system compared to light microscopic evaluation (corr.coeff. = 0.782), as was seen in the intra- (corr.coeff. = 0.960) and inter-individual results correlations (corr.coeff. = 0.899). Inter-observer agreement for categorized results (SM/PW: kappa 0.833) was in a high range. Computer-assisted image analysis demonstrated a higher reproducibility of bone marrow plasma cell quantification. This might be of critical importance for diagnosis, clinical management and prognostics when plasma cell numbers are low, which makes exact quantifications difficult.
Enabling Wide-Scale Computer Science Education through Improved Automated Assessment Tools
NASA Astrophysics Data System (ADS)
Boe, Bryce A.
There is a proliferating demand for newly trained computer scientists as the number of computer science related jobs continues to increase. University programs will only be able to train enough new computer scientists to meet this demand when two things happen: when there are more primary and secondary school students interested in computer science, and when university departments have the resources to handle the resulting increase in enrollment. To meet these goals, significant effort is being made to both incorporate computational thinking into existing primary school education, and to support larger university computer science class sizes. We contribute to this effort through the creation and use of improved automated assessment tools. To enable wide-scale computer science education we do two things. First, we create a framework called Hairball to support the static analysis of Scratch programs targeted for fourth, fifth, and sixth grade students. Scratch is a popular building-block language utilized to pique interest in and teach the basics of computer science. We observe that Hairball allows for rapid curriculum alterations and thus contributes to wide-scale deployment of computer science curriculum. Second, we create a real-time feedback and assessment system utilized in university computer science classes to provide better feedback to students while reducing assessment time. Insights from our analysis of student submission data show that modifications to the system configuration support the way students learn and progress through course material, making it possible for instructors to tailor assignments to optimize learning in growing computer science classes.
Plasma Jet Interaction with Thomson Scattering Probe Laser
NASA Astrophysics Data System (ADS)
Byvank, Tom; Banasek, Jacob; Potter, William; Kusse, Bruce
2016-10-01
Thomson scattering systems can diagnose plasma temperatures and velocities. When probing a plasma jet with the Thomson scattering laser, we observe a laser-plasma interaction that inputs energy into the plasma jet. The absorbed energy causes a bubble of low density ( 5*1017 cm-2) in the jet (unperturbed 1018 cm-2). A pulsed power machine (1 MA peak current, 100 ns rise time) with a radial foil (15 μm thick Al) configuration generates the plasma jet. We compare the effects of using 10 J and 1 J laser energies, for which the 10 J laser is a larger perturbation. We discuss how the interaction affects the Thomson scattering temperature and velocity measurements. Work supported by National Nuclear Security Administration (NNSA) Stewardship Sciences Academic Programs under Department of Energy (DOE) Cooperative Agreement DE-NA0001836 and National Science Foundation (NSF) Grant PHY-1102471.
NASA Astrophysics Data System (ADS)
Volonte, S.
2018-04-01
The Space Science Programme of ESA encompasses three broad areas of investigation, namely solar system science (the Sun, the planets and space plasmas), fundamental physics and space astronomy and astrophysics.
Programmers, professors, and parasites: credit and co-authorship in computer science.
Solomon, Justin
2009-12-01
This article presents an in-depth analysis of past and present publishing practices in academic computer science to suggest the establishment of a more consistent publishing standard. Historical precedent for academic publishing in computer science is established through the study of anecdotes as well as statistics collected from databases of published computer science papers. After examining these facts alongside information about analogous publishing situations and standards in other scientific fields, the article concludes with a list of basic principles that should be adopted in any computer science publishing standard. These principles would contribute to the reliability and scientific nature of academic publications in computer science and would allow for more straightforward discourse in future publications.
NASA Astrophysics Data System (ADS)
Green, David L.; Berry, Lee A.; Simpson, Adam B.; Younkin, Timothy R.
2018-04-01
We present the KINETIC-J code, a computational kernel for evaluating the linearized Vlasov equation with application to calculating the kinetic plasma response (current) to an applied time harmonic wave electric field. This code addresses the need for a configuration space evaluation of the plasma current to enable kinetic full-wave solvers for waves in hot plasmas to move beyond the limitations of the traditional Fourier spectral methods. We benchmark the kernel via comparison with the standard k →-space forms of the hot plasma conductivity tensor.
Increasing Diversity in Computer Science: Acknowledging, yet Moving Beyond, Gender
NASA Astrophysics Data System (ADS)
Larsen, Elizabeth A.; Stubbs, Margaret L.
Lack of diversity within the computer science field has, thus far, been examined most fully through the lens of gender. This article is based on a follow-on to Margolis and Fisher's (2002) study and includes interviews with 33 Carnegie Mellon University students from the undergraduate senior class of 2002 in the School of Computer Science. We found evidence of similarities among the perceptions of these women and men on definitions of computer science, explanations for the notoriously low proportion of women in the field, characterizations of a typical computer science student, impressions of recent curricular changes, a sense of the atmosphere/culture in the program, views of the Women@SCS campus organization, and suggestions for attracting and retaining well-rounded students in computer science. We conclude that efforts to increase diversity in the computer science field will benefit from a more broad-based approach that considers, but is not limited to, notions of gender difference.
Detection and Characterisation of Meteors as a Big Data Citizen Science project
NASA Astrophysics Data System (ADS)
Gritsevich, M.
2017-12-01
Out of a total around 50,000 meteorites currently known to science, the atmospheric passage was recorded instrumentally in only 30 cases with the potential to derive their atmospheric trajectories and pre-impact heliocentric orbits. Similarly, while the observations of meteors, add thousands of new entries per month to existing databases, it is extremely rare they lead to meteorite recovery. Meteor studies thus represent an excellent example of the Big Data citizen science project, where progress in the field largely depends on the prompt identification and characterisation of meteor events as well as on extensive and valuable contributions by amateur observers. Over the last couple of decades technological advancements in observational techniques have yielded drastic improvements in the quality, quantity and diversity of meteor data, while even more ambitious instruments are about to become operational. This empowers meteor science to boost its experimental and theoretical horizons and seek more advanced scientific goals. We review some of the developments that push meteor science into the Big Data era that requires more complex methodological approaches through interdisciplinary collaborations with other branches of physics and computer science. We argue that meteor science should become an integral part of large surveys in astronomy, aeronomy and space physics, and tackle the complexity of micro-physics of meteor plasma and its interaction with the atmosphere. The recent increased interest in meteor science triggered by the Chelyabinsk fireball helps in building the case for technologically and logistically more ambitious meteor projects. This requires developing new methodological approaches in meteor research, with Big Data science and close collaboration between citizen science, geoscience and astronomy as critical elements. We discuss possibilities for improvements and promote an opportunity for collaboration in meteor science within the currently established EU COST BigSkyEarth http://bigskyearth.eu/ network.
Democratizing Computer Science
ERIC Educational Resources Information Center
Margolis, Jane; Goode, Joanna; Ryoo, Jean J.
2015-01-01
Computer science programs are too often identified with a narrow stratum of the student population, often white or Asian boys who have access to computers at home. But because computers play such a huge role in our world today, all students can benefit from the study of computer science and the opportunity to build skills related to computing. The…
ERIC Educational Resources Information Center
Abuzaghleh, Omar; Goldschmidt, Kathleen; Elleithy, Yasser; Lee, Jeongkyu
2013-01-01
With the advances in computing power, high-performance computing (HPC) platforms have had an impact on not only scientific research in advanced organizations but also computer science curriculum in the educational community. For example, multicore programming and parallel systems are highly desired courses in the computer science major. However,…
Ion composition and temperature in the topside ionosphere.
NASA Technical Reports Server (NTRS)
Brace, L. H.; Dunham, G. S.; Mayr, H. G.
1967-01-01
Particle and energy continuity equations derived and solved by computer method ion composition and plasma temperature measured by Explorer XXII PARTICLE and energy continuity equations derived and solved by computer method for ion composition and plasma temperature measured by Explorer XXII
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. Neumeyer; M. Ono; S.M. Kaye
1999-11-01
The NSTX (National Spherical Torus Experiment) facility located at Princeton Plasma Physics Laboratory is the newest national fusion science experimental facility for the restructured US Fusion Energy Science Program. The NSTX project was approved in FY 97 as the first proof-of-principle national fusion facility dedicated to the spherical torus research. On Feb. 15, 1999, the first plasma was achieved 10 weeks ahead of schedule. The project was completed on budget and with an outstanding safety record. This paper gives an overview of the NSTX facility construction and the initial plasma operations.
Computer Science and the Liberal Arts
ERIC Educational Resources Information Center
Shannon, Christine
2010-01-01
Computer science and the liberal arts have much to offer each other. Yet liberal arts colleges, in particular, have been slow to recognize the opportunity that the study of computer science provides for achieving the goals of a liberal education. After the precipitous drop in computer science enrollments during the first decade of this century,…
Marrying Content and Process in Computer Science Education
ERIC Educational Resources Information Center
Zendler, A.; Spannagel, C.; Klaudt, D.
2011-01-01
Constructivist approaches to computer science education emphasize that as well as knowledge, thinking skills and processes are involved in active knowledge construction. K-12 computer science curricula must not be based on fashions and trends, but on contents and processes that are observable in various domains of computer science, that can be…
ERIC Educational Resources Information Center
Master, Allison; Cheryan, Sapna; Meltzoff, Andrew N.
2016-01-01
Computer science has one of the largest gender disparities in science, technology, engineering, and mathematics. An important reason for this disparity is that girls are less likely than boys to enroll in necessary "pipeline courses," such as introductory computer science. Two experiments investigated whether high-school girls' lower…
Approaching Gender Parity: Women in Computer Science at Afghanistan's Kabul University
ERIC Educational Resources Information Center
Plane, Jandelyn
2010-01-01
This study explores the representation of women in computer science at the tertiary level through data collected about undergraduate computer science education at Kabul University in Afghanistan. Previous studies have theorized reasons for underrepresentation of women in computer science, and while many of these reasons are indeed present in…
Some Hail 'Computational Science' as Biggest Advance Since Newton, Galileo.
ERIC Educational Resources Information Center
Turner, Judith Axler
1987-01-01
Computational science is defined as science done on a computer. A computer can serve as a laboratory for researchers who cannot experiment with their subjects, and as a calculator for those who otherwise might need centuries to solve some problems mathematically. The National Science Foundation's support of supercomputers is discussed. (MLW)
African-American males in computer science---Examining the pipeline for clogs
NASA Astrophysics Data System (ADS)
Stone, Daryl Bryant
The literature on African-American males (AAM) begins with a statement to the effect that "Today young Black men are more likely to be killed or sent to prison than to graduate from college." Why are the numbers of African-American male college graduates decreasing? Why are those enrolled in college not majoring in the science, technology, engineering, and mathematics (STEM) disciplines? This research explored why African-American males are not filling the well-recognized industry need for Computer Scientist/Technologists by choosing college tracks to these careers. The literature on STEM disciplines focuses largely on women in STEM, as opposed to minorities, and within minorities, there is a noticeable research gap in addressing the needs and opportunities available to African-American males. The primary goal of this study was therefore to examine the computer science "pipeline" from the African-American male perspective. The method included a "Computer Science Degree Self-Efficacy Scale" be distributed to five groups of African-American male students, to include: (1) fourth graders, (2) eighth graders, (3) eleventh graders, (4) underclass undergraduate computer science majors, and (5) upperclass undergraduate computer science majors. In addition to a 30-question self-efficacy test, subjects from each group were asked to participate in a group discussion about "African-American males in computer science." The audio record of each group meeting provides qualitative data for the study. The hypotheses include the following: (1) There is no significant difference in "Computer Science Degree" self-efficacy between fourth and eighth graders. (2) There is no significant difference in "Computer Science Degree" self-efficacy between eighth and eleventh graders. (3) There is no significant difference in "Computer Science Degree" self-efficacy between eleventh graders and lower-level computer science majors. (4) There is no significant difference in "Computer Science Degree" self-efficacy between lower-level computer science majors and upper-level computer science majors. (5) There is no significant difference in "Computer Science Degree" self-efficacy between each of the five groups of students. Finally, the researcher selected African-American male students attending six primary schools, including the predominately African-American elementary, middle and high school that the researcher attended during his own academic career. Additionally, a racially mixed elementary, middle and high school was selected from the same county in Maryland. Bowie State University provided both the underclass and upperclass computer science majors surveyed in this study. Of the five hypotheses, the sample provided enough evidence to support the claim that there are significant differences in the "Computer Science Degree" self-efficacy between each of the five groups of students. ANOVA analysis by question and total self-efficacy scores provided more results of statistical significance. Additionally, factor analysis and review of the qualitative data provide more insightful results. Overall, the data suggest 'a clog' may exist in the middle school level and students attending racially mixed schools were more confident in their computer, math and science skills. African-American males admit to spending lots of time on social networking websites and emailing, but are 'dis-aware' of the skills and knowledge needed to study in the computing disciplines. The majority of the subjects knew little, if any, AAMs in the 'computing discipline pipeline'. The collegian African-American males, in this study, agree that computer programming is a difficult area and serves as a 'major clog in the pipeline'.
Opoku-Okrah, Clement; Sam, Daniel Kwasi; Nkum, Bernard; Dogbe, Elliot Eli; Antwi-Boateng, Lilian; Sackey, Benedict; Gyamfi, Daniel; Danquah, Kwabena Owusu
2016-01-01
Introduction Sports anaemia is a physiological activity that occurs amongst footballers and may be due to poor diet, over-training, as well as an increase in plasma volume in endurance training activities. High plasma volume leads to changes in haematological parameters that may impact on endurance of footballers. The objective of the study was to determine the correlation between haematological and an-thropometric indices and their role in sports anaemia in a tropical setting. Methods Venous blood was taken into EDTA for 12 soccer players of KNUST soccer team before training and after training for the first (W1) and fifth (W5) weeks of training sessions. Complete blood count analysis was done for each blood sample and anthropometric parameters such as height, weight, body mass index, body fat percent and lean body mass were also measured. Cross-tabulations with mean and standard deviation or median and range were computed. Paired t-test & and Mann-Whitney test for parametric and non-parametric data computations were carried out and a p-value ≤ 0.05 was taken to rep-resent significant difference between data groups. Results There was significant reduction in haemoglobin (p = 0.003), haematocrit (p = 0.002), mean cell volume (MCV) (p = 0.034) and red blood cell (RBC) count (p = 0.011) as a result of a significant expansion of plasma volume (p= 0.006). Neutrophil, lymphocyte and eosinophil counts were reduced significantly (p= 0.043, 0.001 and 0.007, respectively) after the training at W5. Lean body mass (LBM) inversely correlated with haemoglobin (r = -0.787, p = 0.002) and haematocrit (r = -0.588, p = 0.044). Body fat percentage (BFP) also negatively correlated with lymphocyte count (r = -0.700, p = 0.011). Furthermore, there was a positive correlation between body mass index (BMI) and plasma volume change after the training programme (r = 0.689, p = 0.013). Conclusion The results suggest that sports anaemia was induced by an increase in plasma volume that resulted in changes in haematological parameters. PMID:27583089
Opoku-Okrah, Clement; Sam, Daniel Kwasi; Nkum, Bernard; Dogbe, Elliot Eli; Antwi-Boateng, Lilian; Sackey, Benedict; Gyamfi, Daniel; Danquah, Kwabena Owusu
2016-01-01
Sports anaemia is a physiological activity that occurs amongst footballers and may be due to poor diet, over-training, as well as an increase in plasma volume in endurance training activities. High plasma volume leads to changes in haematological parameters that may impact on endurance of footballers. The objective of the study was to determine the correlation between haematological and an-thropometric indices and their role in sports anaemia in a tropical setting. Venous blood was taken into EDTA for 12 soccer players of KNUST soccer team before training and after training for the first (W1) and fifth (W5) weeks of training sessions. Complete blood count analysis was done for each blood sample and anthropometric parameters such as height, weight, body mass index, body fat percent and lean body mass were also measured. Cross-tabulations with mean and standard deviation or median and range were computed. Paired t-test & and Mann-Whitney test for parametric and non-parametric data computations were carried out and a p-value ≤ 0.05 was taken to rep-resent significant difference between data groups. There was significant reduction in haemoglobin (p = 0.003), haematocrit (p = 0.002), mean cell volume (MCV) (p = 0.034) and red blood cell (RBC) count (p = 0.011) as a result of a significant expansion of plasma volume (p= 0.006). Neutrophil, lymphocyte and eosinophil counts were reduced significantly (p= 0.043, 0.001 and 0.007, respectively) after the training at W5. Lean body mass (LBM) inversely correlated with haemoglobin (r = -0.787, p = 0.002) and haematocrit (r = -0.588, p = 0.044). Body fat percentage (BFP) also negatively correlated with lymphocyte count (r = -0.700, p = 0.011). Furthermore, there was a positive correlation between body mass index (BMI) and plasma volume change after the training programme (r = 0.689, p = 0.013). The results suggest that sports anaemia was induced by an increase in plasma volume that resulted in changes in haematological parameters.
NASA Astrophysics Data System (ADS)
Yoshimura, Shinji; Kasahara, Hiroshi; Akiyama, Tsuyoshi
2017-10-01
Medical applications of non-equilibrium atmospheric plasmas have recently been attracting a great deal of attention, where many types of plasma sources have been developed to meet the purposes. For example, plasma-activated medium (PAM), which is now being studied for cancer treatment, has been produced by irradiating non-equilibrium atmospheric pressure plasma with ultrahigh electron density to a culture medium. Meanwhile, in order to measure electron density in magnetic confinement plasmas, a CO2 laser dispersion interferometer has been developed and installed on the Large Helical Device (LHD) at the National Institute for Fusion Science, Japan. The dispersion interferometer has advantages that the measurement is insensitive to mechanical vibrations and changes in neutral gas density. Taking advantage of these properties, we applied the dispersion interferometer to electron density diagnostics of atmospheric pressure plasmas produced by the NU-Global HUMAP-WSAP-50 device, which is used for producing PAM. This study was supported by the Grant of Joint Research by the National Institutes of Natural Sciences (NINS).
Girls in computer science: A female only introduction class in high school
NASA Astrophysics Data System (ADS)
Drobnis, Ann W.
This study examined the impact of an all girls' classroom environment in a high school introductory computer science class on the student's attitudes towards computer science and their thoughts on future involvement with computer science. It was determined that an all girls' introductory class could impact the declining female enrollment and female students' efficacy towards computer science. This research was conducted in a summer school program through a regional magnet school for science and technology which these students attend during the school year. Three different groupings of students were examined for the research: female students in an all girls' class, female students in mixed-gender classes and male students in mixed-gender classes. A survey, Attitudes about Computers and Computer Science (ACCS), was designed to obtain an understanding of the students' thoughts, preconceptions, attitude, knowledge of computer science, and future intentions around computer science, both in education and career. Students in all three groups were administered the ACCS prior to taking the class and upon completion of the class. In addition, students in the all girls' class wrote in a journal throughout the course, and some of those students were also interviewed upon completion of the course. The data was analyzed using quantitative and qualitative techniques. While there were no major differences found in the quantitative data, it was determined that girls in the all girls' class were truly excited by what they had learned and were more open to the idea of computer science being a part of their future.
NASA Technical Reports Server (NTRS)
Neugebauer, M.
1971-01-01
The method used to calculate the velocity, temperature, and density of the solar wind plasma is presented from spectra obtained by attitude-stabilized plasma detectors on the earth satellite OGO 5. The method, which used expansions in terms of Hermite polynomials, is very inexpensive to implement on an electronic computer compared to the least-squares and other iterative methods often used for similar problems.
Comparison of measured and computed radial trajectories of plasma focus devices UMDPF1 and UMDPF0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, L. H.; Yap, S. L., E-mail: yapsl@um.edu.my; Lim, L. K.
In published literature, there has been scant data on radial trajectory of the plasma focus and no comparison of computed with measured radial trajectory. This paper provides the first such comparative study. We compute the trajectories of the inward-moving radial shock and magnetic piston of UMDPF1 plasma focus and compare these with measured data taken from a streak photograph. The comparison shows agreement with the measured radial trajectory in terms of average speeds and general shape of trajectory. This paper also presents the measured trajectory of the radially compressing piston in another machine, the UMDPF0 plasma focus, confirming that themore » computed radial trajectory also shows similar general agreement. Features of divergence between the computed and measured trajectories, towards the end of the radial compression, are discussed. From the measured radial trajectories, an inference is made that the neutron yield mechanism could not be thermonuclear. A second inference is made regarding the speeds of axial post-pinch shocks, which are recently considered as a useful tool for damage testing of fusion-related wall materials.« less
Fully kinetic simulations of magnetic reconnection in partially ionised gases
NASA Astrophysics Data System (ADS)
Innocenti, M. E.; Jiang, W.; Lapenta, G.; Markidis, S.
2016-12-01
Magnetic reconnection has been explored for decades as a way to convert magnetic energy into kinetic energy and heat and to accelerate particles in environments as different as the solar surface, planetary magnetospheres, the solar wind, accretion disks, laboratory plasmas. When studying reconnection via simulations, it is usually assumed that the plasma is fully ionised, as it is indeed the case in many of the above-mentioned cases. There are, however, exceptions, the most notable being the lower solar atmosphere. Small ionisation fractions are registered also in the warm neutral interstellar medium, in dense interstellar clouds, in protostellar and protoplanetary accreditation disks, in tokamak edge plasmas and in ad-hoc laboratory experiments [1]. We study here how magnetic reconnection is modified by the presence of a neutral background, i.e. when the majority of the gas is not ionised. The ionised plasma is simulated with the fully kinetic Particle-In-Cell (PIC) code iPic3D [2]. Collisions with the neutral background are introduced via a Monte Carlo plug-in. The standard Monte Carlo procedure [3] is employed to account for elastic, excitation and ionization electron-neutral collisions, as well as for elastic scattering and charge exchange ion-neutral collisions. Collisions with the background introduce resistivity in an otherwise collisionless plasma and modifications of the particle distribution functions: particles (and ions at a faster rate) tend to thermalise to the background. To pinpoint the consequences of this, we compare reconnection simulations with and without background. References [1] E E Lawrence et al. Physical review letters, 110(1):015001, 2013. [2] S Markidis et al. Mathematics and Computers in Simulation, 80(7):1509-1519, 2010. [3] K Nanbu. IEEE Transactions on plasma science, 28(3):971-990, 2000.
Bringing computational science to the public.
McDonagh, James L; Barker, Daniel; Alderson, Rosanna G
2016-01-01
The increasing use of computers in science allows for the scientific analyses of large datasets at an increasing pace. We provided examples and interactive demonstrations at Dundee Science Centre as part of the 2015 Women in Science festival, to present aspects of computational science to the general public. We used low-cost Raspberry Pi computers to provide hands on experience in computer programming and demonstrated the application of computers to biology. Computer games were used as a means to introduce computers to younger visitors. The success of the event was evaluated by voluntary feedback forms completed by visitors, in conjunction with our own self-evaluation. This work builds on the original work of the 4273π bioinformatics education program of Barker et al. (2013, BMC Bioinform. 14:243). 4273π provides open source education materials in bioinformatics. This work looks at the potential to adapt similar materials for public engagement events. It appears, at least in our small sample of visitors (n = 13), that basic computational science can be conveyed to people of all ages by means of interactive demonstrations. Children as young as five were able to successfully edit simple computer programs with supervision. This was, in many cases, their first experience of computer programming. The feedback is predominantly positive, showing strong support for improving computational science education, but also included suggestions for improvement. Our conclusions are necessarily preliminary. However, feedback forms suggest methods were generally well received among the participants; "Easy to follow. Clear explanation" and "Very easy. Demonstrators were very informative." Our event, held at a local Science Centre in Dundee, demonstrates that computer games and programming activities suitable for young children can be performed alongside a more specialised and applied introduction to computational science for older visitors.
Computer Science and Telecommunications Board summary of activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blumenthal, M.S.
1992-03-27
The Computer Science and Telecommunications Board (CSTB) considers technical and policy issues pertaining to computer science, telecommunications, and associated technologies. CSTB actively disseminates the results of its completed projects to those in a position to help implement their recommendations or otherwise use their insights. It provides a forum for the exchange of information on computer science, computing technology, and telecommunications. This report discusses the major accomplishments of CSTB.
Hispanic women overcoming deterrents to computer science: A phenomenological study
NASA Astrophysics Data System (ADS)
Herling, Lourdes
The products of computer science are important to all aspects of society and are tools in the solution of the world's problems. It is, therefore, troubling that the United States faces a shortage in qualified graduates in computer science. The number of women and minorities in computer science is significantly lower than the percentage of the U.S. population which they represent. The overall enrollment in computer science programs has continued to decline with the enrollment of women declining at a higher rate than that of men. This study addressed three aspects of underrepresentation about which there has been little previous research: addressing computing disciplines specifically rather than embedding them within the STEM disciplines, what attracts women and minorities to computer science, and addressing the issues of race/ethnicity and gender in conjunction rather than in isolation. Since women of underrepresented ethnicities are more severely underrepresented than women in general, it is important to consider whether race and ethnicity play a role in addition to gender as has been suggested by previous research. Therefore, this study examined what attracted Hispanic women to computer science specifically. The study determines whether being subjected to multiple marginalizations---female and Hispanic---played a role in the experiences of Hispanic women currently in computer science. The study found five emergent themes within the experiences of Hispanic women in computer science. Encouragement and role models strongly influenced not only the participants' choice to major in the field, but to persist as well. Most of the participants experienced a negative atmosphere and feelings of not fitting in while in college and industry. The interdisciplinary nature of computer science was the most common aspect that attracted the participants to computer science. The aptitudes participants commonly believed are needed for success in computer science are the Twenty-First Century skills problem solving, creativity, and critical thinking. While not all the participants had experience with computers or programming prior to attending college, experience played a role in the self-confidence of those who did.
Research in applied mathematics, numerical analysis, and computer science
NASA Technical Reports Server (NTRS)
1984-01-01
Research conducted at the Institute for Computer Applications in Science and Engineering (ICASE) in applied mathematics, numerical analysis, and computer science is summarized and abstracts of published reports are presented. The major categories of the ICASE research program are: (1) numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; (2) control and parameter identification; (3) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and (4) computer systems and software, especially vector and parallel computers.
The kappa Distribution as Tool in Investigating Hot Plasmas in the Magnetospheres of Outer Planets
NASA Astrophysics Data System (ADS)
Krimigis, S. M.; Carbary, J. F.
2014-12-01
The first use of a Maxwellian distribution with a high-energy tail (a κ-function) was made by Olbert (1968) and applied by Vasyliunas (1968) in analyzing electron data. The k-function combines aspects of both Maxwellian and power law forms to provide a reasonably complete description of particle density, temperature, pressure and convection velocity, all of which are key parameters of magnetospheric physics. Krimigis et al (1979) used it to describe flowing plasma ions in Jupiter's magnetosphere measured by Voyager 1, and obtained temperatures in the range of 20 to 35 keV. Sarris et al (1981) used the κ-function to describe plasmas in Earth's distant plasma sheet. The κ-function, in various formulations and names (e. g., γ-thermal distribution, Krimigis and Roelof, 1983) has been used routinely to parametrize hot, flowing plasmas in the magnetospheres of the outer planets, with typical kT ~ 10 to 50 keV. Using angular measurements, it has been possible to obtain pitch angle distributions and convective flow directions in sufficient detail for computations of temperatures and densities of hot particle pressures. These 'hot' pressures typically dominate the cold plasma pressures in the high beta (β > 1) magnetospheres of Jupiter and Saturn, but are of less importance in the relatively empty (β < 1) magnetospheres of Uranus and Neptune. Thus, the κ-function represents an effective tool in analyzing plasma behavior in planetary magnetospheres, but it is not applicable in all plasma environments. References Olbert, S., in Physics of the Magnetosphere, (Carovillano, McClay, Radoski, Eds), Springer-Verlag, New York, p. 641-659, 1968 Vasyliunas, V., J. Geophys. Res., 73(9), 2839-2884, 1968 Krimigis, S. M., et al, Science 204, 998-1003, 1979 Sarris, E., et al, Geophys. Res. Lett. 8, 349-352, 1981 Krimigis, S. M., and E. C. Roelof, Physics of the Jovian Magnetosphere, edited by A. J. Dessler, 106-156, Cambridge University Press, New York, 1983
Science-Driven Computing: NERSC's Plan for 2006-2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, Horst D.; Kramer, William T.C.; Bailey, David H.
NERSC has developed a five-year strategic plan focusing on three components: Science-Driven Systems, Science-Driven Services, and Science-Driven Analytics. (1) Science-Driven Systems: Balanced introduction of the best new technologies for complete computational systems--computing, storage, networking, visualization and analysis--coupled with the activities necessary to engage vendors in addressing the DOE computational science requirements in their future roadmaps. (2) Science-Driven Services: The entire range of support activities, from high-quality operations and user services to direct scientific support, that enable a broad range of scientists to effectively use NERSC systems in their research. NERSC will concentrate on resources needed to realize the promise ofmore » the new highly scalable architectures for scientific discovery in multidisciplinary computational science projects. (3) Science-Driven Analytics: The architectural and systems enhancements and services required to integrate NERSC's powerful computational and storage resources to provide scientists with new tools to effectively manipulate, visualize, and analyze the huge data sets derived from simulations and experiments.« less
ERIC Educational Resources Information Center
Stoilescu, Dorian; Egodawatte, Gunawardena
2010-01-01
Research shows that female and male students in undergraduate computer science programs view computer culture differently. Female students are interested more in the use of computers than in doing programming, whereas male students see computer science mainly as a programming activity. The overall purpose of our research was not to find new…
Preliminary Study for a Tetrahedron Formation: Quality Factors and Visualization
NASA Technical Reports Server (NTRS)
Guzman, Jose J.; Schiff, Conrad; Bauer, Frank (Technical Monitor)
2002-01-01
Spacecraft flying in tetrahedron formations are excellent for electromagnetic and plasma studies. The quality of the science recorded is strongly affected by the tetrahedron evolution. This paper is a preliminary study on the computation of quality factors and visualization for a formation of four or five satellites. Four of the satellites are arranged geometrically in a tetrahedron shape. If a fifth satellite is present, it is arbitrarily initialized at the geometric center of the tetrahedron. The fifth satellite could act as a collector or as a spare spacecraft. Tetrahedron natural coordinates are employed for the initialization. The natural orbit evolution is visualized in geocentric equatorial inertial and in geocentric solar magnetospheric coordinates.
Machine-learning approach for local classification of crystalline structures in multiphase systems
NASA Astrophysics Data System (ADS)
Dietz, C.; Kretz, T.; Thoma, M. H.
2017-07-01
Machine learning is one of the most popular fields in computer science and has a vast number of applications. In this work we will propose a method that will use a neural network to locally identify crystal structures in a mixed phase Yukawa system consisting of fcc, hcp, and bcc clusters and disordered particles similar to plasma crystals. We compare our approach to already used methods and show that the quality of identification increases significantly. The technique works very well for highly disturbed lattices and shows a flexible and robust way to classify crystalline structures that can be used by only providing particle positions. This leads to insights into highly disturbed crystalline structures.
Identifying Jets Using Artifical Neural Networks
NASA Astrophysics Data System (ADS)
Rosand, Benjamin; Caines, Helen; Checa, Sofia
2017-09-01
We investigate particle jet interactions with the Quark Gluon Plasma (QGP) using artificial neural networks modeled on those used in computer image recognition. We create jet images by binning jet particles into pixels and preprocessing every image. We analyzed the jets with a Multi-layered maxout network and a convolutional network. We demonstrate each network's effectiveness in differentiating simulated quenched jets from unquenched jets, and we investigate the method that the network uses to discriminate among different quenched jet simulations. Finally, we develop a greater understanding of the physics behind quenched jets by investigating what the network learnt as well as its effectiveness in differentiating samples. Yale College Freshman Summer Research Fellowship in the Sciences and Engineering.
A DOE/Fusion Energy Sciences Research/Education Program at PVAMU Study of Rotamak Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Tian-Sen; Saganti, Premkumar
During recent years (2004-2015), with DOE support, the PVAMU plasma research group accomplished new instrumentation development, conducted several new plasma experiments, and is currently poised to advance with standing-wave microwave plasma propulsion research. On the instrumentation development, the research group completed: (i) building a new plasma chamber with metal CF flanges, (ii) setting up of a 6kW/2450MHz microwave input system as an additional plasma heating source at our rotamak plasma facility, (iii) installation of one programmatic Kepco ATE 6-100DMG fast DC current supply system used in rotamak plasma shape control experiment, built a new microwave, standing-wave experiment chamber and (iv)more » established a new plasma lab with field reversal configuration capability utilizing 1MHz/200kW RF (radio frequency) wave generator. Some of the new experiments conducted in this period also include: (i) assessment of improved magnetic reconnection at field-reversed configuration (FRC) plasma, (ii) introduction of microwave heating experiments, and (iii) suppression of n = 1 tilt instability by one coil with a smaller current added inside the rotamak’s central pipe. These experiments led to publications in Physical Review Letters, Reviews of Scientific Instruments, Division of Plasma Physics (DPP) of American Physical Society (APS) Reports, Physics of Plasmas Controlled Fusion, and Physics of Plasmas (between 2004 and 2015). With these new improvements and advancements, we also initiated and accomplished design and fabrication of a plasma propulsion system. Currently, we are assembling a plasma propulsion experimental system that includes a 5kW helicon plasma source, a 25 cm diameter plasma heating chamber with 1MHz/200kW RF power rotating magnetic field, and a 60 cm diameter plasma exhaust chamber, and expect to achieve a plasma mass flow of 0.1g/s with 60km/s ejection. We anticipate several propulsion applications in near future as we advance our capabilities. Apart from scientific staff members, several students (more than ten undergraduate students and two graduate students from several engineering and science disciplines) were supported and worked on the equipment and experiments during the award period. We also anticipate that these opportunities with current expansions may result in a graduate program in plasma science and propulsion engineering disciplines. *Corresponding Author – Dr. Saganti, Regents Professor and Professor of Physics – pbsaganti@pvamu.edu« less
Opportunities for Computational Discovery in Basic Energy Sciences
NASA Astrophysics Data System (ADS)
Pederson, Mark
2011-03-01
An overview of the broad-ranging support of computational physics and computational science within the Department of Energy Office of Science will be provided. Computation as the third branch of physics is supported by all six offices (Advanced Scientific Computing, Basic Energy, Biological and Environmental, Fusion Energy, High-Energy Physics, and Nuclear Physics). Support focuses on hardware, software and applications. Most opportunities within the fields of~condensed-matter physics, chemical-physics and materials sciences are supported by the Officeof Basic Energy Science (BES) or through partnerships between BES and the Office for Advanced Scientific Computing. Activities include radiation sciences, catalysis, combustion, materials in extreme environments, energy-storage materials, light-harvesting and photovoltaics, solid-state lighting and superconductivity.~ A summary of two recent reports by the computational materials and chemical communities on the role of computation during the next decade will be provided. ~In addition to materials and chemistry challenges specific to energy sciences, issues identified~include a focus on the role of the domain scientist in integrating, expanding and sustaining applications-oriented capabilities on evolving high-performance computing platforms and on the role of computation in accelerating the development of innovative technologies. ~~
Research | Computational Science | NREL
Research Research NREL's computational science experts use advanced high-performance computing (HPC technologies, thereby accelerating the transformation of our nation's energy system. Enabling High-Impact Research NREL's computational science capabilities enable high-impact research. Some recent examples
Computational modeling of fully-ionized, magnetized plasmas using the fluid approximation
NASA Astrophysics Data System (ADS)
Schnack, Dalton
2005-10-01
Strongly magnetized plasmas are rich in spatial and temporal scales, making a computational approach useful for studying these systems. The most accurate model of a magnetized plasma is based on a kinetic equation that describes the evolution of the distribution function for each species in six-dimensional phase space. However, the high dimensionality renders this approach impractical for computations for long time scales in relevant geometry. Fluid models, derived by taking velocity moments of the kinetic equation [1] and truncating (closing) the hierarchy at some level, are an approximation to the kinetic model. The reduced dimensionality allows a wider range of spatial and/or temporal scales to be explored. Several approximations have been used [2-5]. Successful computational modeling requires understanding the ordering and closure approximations, the fundamental waves supported by the equations, and the numerical properties of the discretization scheme. We review and discuss several ordering schemes, their normal modes, and several algorithms that can be applied to obtain a numerical solution. The implementation of kinetic parallel closures is also discussed [6].[1] S. Chapman and T.G. Cowling, ``The Mathematical Theory of Non-Uniform Gases'', Cambridge University Press, Cambridge, UK (1939).[2] R.D. Hazeltine and J.D. Meiss, ``Plasma Confinement'', Addison-Wesley Publishing Company, Redwood City, CA (1992).[3] L.E. Sugiyama and W. Park, Physics of Plasmas 7, 4644 (2000).[4] J.J. Ramos, Physics of Plasmas, 10, 3601 (2003).[5] P.J. Catto and A.N. Simakov, Physics of Plasmas, 11, 90 (2004).[6] E.D. Held et al., Phys. Plasmas 11, 2419 (2004)
NASA Astrophysics Data System (ADS)
Gasior, P.
2014-11-01
Since the process of energy production in the stars has been identified as the thermonuclear fusion, this mechanism has been proclaimed as a future, extremely modern, reliable and safe for sustaining energetic needs of the humankind. However, the idea itself was rather straightforward and the first attempts to harness thermonuclear reactions have been taken yet in 40s of the twentieth century, it quickly appeared that physical and technical problems of domesticating exotic high temperature medium known as plasma are far from being trivial. Though technical developments as lasers, superconductors or advanced semiconductor electronics and computers gave significant contribution for the development of the thermonuclear fusion reactors, for a very long time their efficient performance was out of reach of technology. Years of the scientific progress brought the conclusions that for the development of the thermonuclear power plants an enormous interdisciplinary effort is needed in many fields of science covering not only plasma physics but also material research, superconductors, lasers, advanced diagnostic systems (e.g. spectroscopy, interferometry, scattering techniques, etc.) with huge amounts of data to be processed, cryogenics, measurement-control systems, automatics, robotics, nanotechnology, etc. Due to the sophistication of the problems with plasma control and plasma material interactions only such a combination of the research effort can give a positive output which can assure the energy needs of our civilization. In this paper the problems of thermonuclear technology are briefly outlined and it is shown why this domain can be a broad field for the experts dealing with electronics, optoelectronics, programming and numerical simulations, who at first glance can have nothing common with the plasma or nuclear physics.
Europa's Interaction with Jupiter's Magnetosphere: Galileo Plasma Observations Revisited.
NASA Astrophysics Data System (ADS)
Heuer, S. V.; Rymer, A. M.; Westlake, J. H.; Paterson, W. R.; Collinson, G.
2017-12-01
The Galileo spacecraft was active at Jupiter from December 1995 to September 2003, carrying the Galileo Plasma Science Instrument (PLS), an electrostatic analyzer with three spherical-segment plates which directed energy selected particles into one of seven electron sensors or seven ion channels with field-of-views which combined to cover 80% of the 4pi-sr unit sphere (Frank et al., 1992). While Galileo accomplished most of its primary scientific objectives, the mission did not reach its full potential due to a failed high-gain antenna deployment which severely limited the available bandwidth for data transmission. Consequently, the PLS was limited by bandwidth availability, and only collected data with high temporal and energy resolution for short periods of time (e.g. review by Bagenal et al., 2016). The electron sensors were also negatively affected by the gaseous environment around Jupiter, which is suspected to have deposited a layer of contaminants on the detectors, raising the threshold energy required to pass through the aperture and effectively preventing the measurement of electrons below 1keV (Frank et al., 2002). As a result, data from the PLS is challenging to process and interpret. Ion plasma moments have been computed (and published on the PDS) in the magnetosphere, but moon flybys were excluded (Bagenal et al., 2016). In anticipation of future in-situ exploration of the Europa plasma environment, we present analysis of full-resolution plasma data acquired by the PLS during the nine Europa flybys and compare our results with existing data in order to further inform designs currently being worked for the Europa Clipper and JUICE missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. DeLooper; A. DeMeo; P. Lucas
The U. S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) has an energetic science education program and outreach effort. This overview describes the components of the programs and evaluates the changes that have occurred in this effort during the last several years. Efforts have been expanded to reach more students, as well as the public in general. The primary goal is to inform the public regarding the fusion and plasma research at PPPL and to excite students so that they can appreciate science and technology. A student's interest in science can be raised by tours, summer research experiences, in-classroommore » presentations, plasma expos, teacher workshops and web-based materials. The ultimate result of this effort is a better-informed public, as well as an increase in the number of women and minorities who choose science as a vocation. Measuring the results is difficult, but current metrics are reviewed. The science education and outreach programs are supported by a de dicated core group of individuals and supplemented by other members of the PPPL staff and consultants who perform various outreach and educational activities.« less
The effects of magnetic nozzle configurations on plasma thrusters
NASA Technical Reports Server (NTRS)
York, Thomas M.
1989-01-01
Plasma thrusters have been operated at power levels from 10kW to 0.1MW. When these devices have had magnetic fields applied to them which form a nozzle configuration for the expanding plasma, they have shown marked increases in exhaust velocity which is in direct proportion to the magnitude of the applied field. Further, recent results have shown that electrode erosion may be influenced by applied magnetic fields. This research is directed to the experimental and computational study of the effects of applied magnetic field nozzles in the acceleration of plasma flows. Plasma source devices which eliminate the plasma interaction in normal thrusters are studied as most basic. Normal thruster configurations will be studied without applied fields and with applied magnetic nozzle fields. Unique computational studies will utilize existing codes which accurately include transport processes. Unique diagnostic studies will support the experimental studies to generate new data. Both computation and diagnostics will be combined to indicate the physical mechanisms and transport properties that are operative in order to allow scaling and accurate prediction of thruster performance.
Low-Temperature Plasma Coating for Aluminum
2001-03-01
AFRL-ML-WP-TR-2001-4104 LOW-TEMPERATURE PLASMA COATING FOR ALUMINUM DR. HIROTSUGU YASUDA CENTER FOR SURFACE SCIENCE & PLASMA TECHNOLOGY...Date 00032001 Report Type N/A Dates Covered (from... to) - Title and Subtitle Low-Temperature Plasma Coating for Aluminum Contract Number...REPORT TYPE AND DATES COVERED Final, 6/29/1996 - 3/31/2001 4. TITLE AND SUBTITLE LOW-TEMPERATURE PLASMA COATING FOR ALUMINUM 5. FUNDING NUMBERS C
NASA's computer science research program
NASA Technical Reports Server (NTRS)
Larsen, R. L.
1983-01-01
Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.
Girls Save the World through Computer Science
ERIC Educational Resources Information Center
Murakami, Christine
2011-01-01
It's no secret that fewer and fewer women are entering computer science fields. Attracting high school girls to computer science is only part of the solution. Retaining them while they are in higher education or the workforce is also a challenge. To solve this, there is a need to show girls that computer science is a wide-open field that offers…
ERIC Educational Resources Information Center
Liang, Jyh-Chong; Su, Yi-Ching; Tsai, Chin-Chung
2015-01-01
The aim of this study was to explore Taiwanese college students' conceptions of and approaches to learning computer science and then explore the relationships between the two. Two surveys, Conceptions of Learning Computer Science (COLCS) and Approaches to Learning Computer Science (ALCS), were administered to 421 college students majoring in…
Hispanic Women Overcoming Deterrents to Computer Science: A Phenomenological Study
ERIC Educational Resources Information Center
Herling, Lourdes
2011-01-01
The products of computer science are important to all aspects of society and are tools in the solution of the world's problems. It is, therefore, troubling that the United States faces a shortage in qualified graduates in computer science. The number of women and minorities in computer science is significantly lower than the percentage of the…
ERIC Educational Resources Information Center
Payton, Jamie; Barnes, Tiffany; Buch, Kim; Rorrer, Audrey; Zuo, Huifang
2015-01-01
This study is a follow-up to one published in computer science education in 2010 that reported preliminary results showing a positive impact of service learning on student attitudes associated with success and retention in computer science. That paper described how service learning was incorporated into a computer science course in the context of…
Numerical Simulations of Plasma Based Flow Control Applications
NASA Technical Reports Server (NTRS)
Suzen, Y. B.; Huang, P. G.; Jacob, J. D.; Ashpis, D. E.
2005-01-01
A mathematical model was developed to simulate flow control applications using plasma actuators. The effects of the plasma actuators on the external flow are incorporated into Navier Stokes computations as a body force vector. In order to compute this body force vector, the model solves two additional equations: one for the electric field due to the applied AC voltage at the electrodes and the other for the charge density representing the ionized air. The model is calibrated against an experiment having plasma-driven flow in a quiescent environment and is then applied to simulate a low pressure turbine flow with large flow separation. The effects of the plasma actuator on control of flow separation are demonstrated numerically.
Non-Determinism: An Abstract Concept in Computer Science Studies
ERIC Educational Resources Information Center
Armoni, Michal; Gal-Ezer, Judith
2007-01-01
Non-determinism is one of the most important, yet abstract, recurring concepts of Computer Science. It plays an important role in Computer Science areas such as formal language theory, computability theory, distributed computing, and operating systems. We conducted a series of studies on the perception of non-determinism. In the current research,…
An Investigation of Primary School Science Teachers' Use of Computer Applications
ERIC Educational Resources Information Center
Ocak, Mehmet Akif; Akdemir, Omur
2008-01-01
This study investigated the level and frequency of science teachers' use of computer applications as an instructional tool in the classroom. The manner and frequency of science teachers' use of computer, their perceptions about integration of computer applications, and other factors contributed to changes in their computer literacy are…
Methodical Approaches to Teaching of Computer Modeling in Computer Science Course
ERIC Educational Resources Information Center
Rakhimzhanova, B. Lyazzat; Issabayeva, N. Darazha; Khakimova, Tiyshtik; Bolyskhanova, J. Madina
2015-01-01
The purpose of this study was to justify of the formation technique of representation of modeling methodology at computer science lessons. The necessity of studying computer modeling is that the current trends of strengthening of general education and worldview functions of computer science define the necessity of additional research of the…
The 2017 Plasma Roadmap: Low temperature plasma science and technology
Adamovich, I.; Baalrud, S. D.; Bogaerts, A.; ...
2017-07-14
Journal of Physics D: Applied Physics published the first Plasma Roadmap in 2012 consisting of the individual perspectives of 16 leading experts in the various sub-fields of low temperature plasma science and technology. The 2017 Plasma Roadmap is the first update of a planned series of periodic updates of the Plasma Roadmap. The continuously growing interdisciplinary nature of the low temperature plasma field and its equally broad range of applications are making it increasingly difficult to identify major challenges that encompass all of the many sub-fields and applications. This intellectual diversity is ultimately a strength of the field. The currentmore » state of the art for the 19 sub-fields addressed in this roadmap demonstrates the enviable track record of the low temperature plasma field in the development of plasmas as an enabling technology for a vast range of technologies that underpin our modern society. At the same time, the many important scientific and technological challenges shared in this roadmap show that the path forward is not only scientifically rich but has the potential to make wide and far reaching contributions to many societal challenges.« less
The 2017 Plasma Roadmap: Low temperature plasma science and technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamovich, I.; Baalrud, S. D.; Bogaerts, A.
Journal of Physics D: Applied Physics published the first Plasma Roadmap in 2012 consisting of the individual perspectives of 16 leading experts in the various sub-fields of low temperature plasma science and technology. The 2017 Plasma Roadmap is the first update of a planned series of periodic updates of the Plasma Roadmap. The continuously growing interdisciplinary nature of the low temperature plasma field and its equally broad range of applications are making it increasingly difficult to identify major challenges that encompass all of the many sub-fields and applications. This intellectual diversity is ultimately a strength of the field. The currentmore » state of the art for the 19 sub-fields addressed in this roadmap demonstrates the enviable track record of the low temperature plasma field in the development of plasmas as an enabling technology for a vast range of technologies that underpin our modern society. At the same time, the many important scientific and technological challenges shared in this roadmap show that the path forward is not only scientifically rich but has the potential to make wide and far reaching contributions to many societal challenges.« less
Climate Modeling Computing Needs Assessment
NASA Astrophysics Data System (ADS)
Petraska, K. E.; McCabe, J. D.
2011-12-01
This paper discusses early findings of an assessment of computing needs for NASA science, engineering and flight communities. The purpose of this assessment is to document a comprehensive set of computing needs that will allow us to better evaluate whether our computing assets are adequately structured to meet evolving demand. The early results are interesting, already pointing out improvements we can make today to get more out of the computing capacity we have, as well as potential game changing innovations for the future in how we apply information technology to science computing. Our objective is to learn how to leverage our resources in the best way possible to do more science for less money. Our approach in this assessment is threefold: Development of use case studies for science workflows; Creating a taxonomy and structure for describing science computing requirements; and characterizing agency computing, analysis, and visualization resources. As projects evolve, science data sets increase in a number of ways: in size, scope, timelines, complexity, and fidelity. Generating, processing, moving, and analyzing these data sets places distinct and discernable requirements on underlying computing, analysis, storage, and visualization systems. The initial focus group for this assessment is the Earth Science modeling community within NASA's Science Mission Directorate (SMD). As the assessment evolves, this focus will expand to other science communities across the agency. We will discuss our use cases, our framework for requirements and our characterizations, as well as our interview process, what we learned and how we plan to improve our materials after using them in the first round of interviews in the Earth Science Modeling community. We will describe our plans for how to expand this assessment, first into the Earth Science data analysis and remote sensing communities, and then throughout the full community of science, engineering and flight at NASA.
feature extraction, human-computer interaction, and physics-based modeling. Professional Experience 2009 ., computer science, University of Colorado at Boulder M.S., computer science, University of Colorado at Boulder B.S., computer science, New Mexico Institute of Mining and Technology
NASA Technical Reports Server (NTRS)
Gabriel, S. B.; Kaufman, H. R.
1982-01-01
Ion thrusters can be used in a variety of primary and auxiliary space-propulsion applications. A thruster produces a charge-exchange plasma which can interact with various systems on the spacecraft. The propagation of the charge-exchange plasma is crucial in determining the interaction of that plasma with the spacecraft. This paper compares experimental measurements with computer model predictions of the propagation of the charge-exchange plasma from a 30 cm mercury ion thruster. The plasma potentials, and ion densities, and directed energies are discussed. Good agreement is found in a region upstream of, and close to, the ion thruster optics. Outside of this region the agreement is reasonable in view of the modeling difficulties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.
This annual report on fusion energy discusses the progress on work in the following main topics: toroidal confinement experiments; atomic physics and plasma diagnostics development; plasma theory and computing; plasma-materials interactions; plasma technology; superconducting magnet development; fusion engineering design center; materials research and development; and neutron transport. (LSP)
Computer-aided design and computer science technology
NASA Technical Reports Server (NTRS)
Fulton, R. E.; Voigt, S. J.
1976-01-01
A description is presented of computer-aided design requirements and the resulting computer science advances needed to support aerospace design. The aerospace design environment is examined, taking into account problems of data handling and aspects of computer hardware and software. The interactive terminal is normally the primary interface between the computer system and the engineering designer. Attention is given to user aids, interactive design, interactive computations, the characteristics of design information, data management requirements, hardware advancements, and computer science developments.
The CPS Plasma Award at the Intel Science and Engineering Fair
NASA Astrophysics Data System (ADS)
Berry, Lee
2012-10-01
For the past eight years, the Coalition for Plasma Science (CPS) has presented an award for a plasma project at the Intel International Science and Engineering Fair (ISEF). We reported on the first five years of this award at the 2009 DPP Symposium. Pulsed neutron-producing experiments are a recurring topic, with the efforts now turning to applications. The most recent award at the Pittsburgh ISEF this past May was given for analysis of data from Brookhaven's Relativistic Heavy Ion Collider. The effort had the goal of understanding the fluid properties of the quark-gluon plasma. All of the CPS award-winning projects so far have been based on experiments, with four awards going to women students and four to men. In 2009 we noted that the number and quality of projects was improving. Since then, as we we predicted (hoped for), that trend has continued. The CPS looks forward to continuing its work with students who are excited about the possibilities of plasma. You too can share this excitement by judging at the 2013 fair in Phoenix on May 12-17. Information may be obtained by emailing cps@plasmacoalition.org.
Plasma electron analysis: Voyager plasma science experiment
NASA Technical Reports Server (NTRS)
Sittler, E. C., Jr.
1983-01-01
The Plasma Science Experiment (PLS) on the Voyager spacecraft provide data on the plasma ions and electrons in the interplanetary medium and the magnetospheres of the giant planets Jupiter and Saturn. A description of the analysis used to obtain electron parameters (density, temperature, etc.) from the plasma science experiment PLS electron measurements which cover the energy range from 10 eV to 5950 eV is presented. The electron sensor (D cup) and its transmission characteristics are described. A derivation of the fundamental analytical expression of the reduced distribution function F(e) is given. The electron distribution function F(e), used in the moment integrations, can be derived from F(e). Positive ions produce a correction current (ion feedthrough) to the measured electron current, which can be important to the measurements of the suprathermal electron component. In the case of Saturn, this correction current, which can either add to or subtract from the measured electron current, is less than 20% of the measured signal at all times. Comments about the corrections introduced by spacecraft charging to the Saturn encounter data, which can be important in regions of high density and shadow when the spacecraft can become negatively charged are introduced.
Plasma Turbulence in Earth's Magnetotail Observed by the Magnetospheric Multiscale Mission
NASA Astrophysics Data System (ADS)
Mackler, D. A.; Avanov, L. A.; Boardsen, S. A.; Pollock, C. J.
2017-12-01
Magnetic reconnection, a process in which the magnetic topology undergoes multi-scale changes, is a significant mechanism for particle energization as well as energy dissipation. Reconnection is observed to occur in thin current sheets generated between two regions of magnetized plasma merging with a non-zero shear angle. Within a thinning current sheet, the dominant scale size approaches first the ion and then electron kinetic scale. The plasma becomes demagnetized, field lines transform, then once again the plasma becomes frozen-in. The reconnection process accelerates particles, leading to heated jets of plasma. Turbulence is another fundamental process in collision less plasmas. Despite decades of turbulence studies, an essential science question remains as to how turbulent energy dissipates at small scales by heating and accelerating particles. Turbulence in both plasmas and fluids has a fundamental property in that it follows an energy cascade into smaller scales. Energy introduced into a fluid or plasma can cause large scale motion, introducing vorticity, which merge and interact to make increasingly smaller eddies. It has been hypothesized that turbulent energy in magnetized plasmas may be dissipated by magnetic reconnection, just as viscosity dissipates energy in neutral fluid turbulence. The focus of this study is to use the new high temporal resolution suite of instruments on board the Magnetospheric MultiScale (MMS) mission to explore this hypothesis. An observable feature of the energy cascade in a turbulent magnetized plasma is its similarity to classical hydrodynamics in that the Power Spectral Density (PSD) of turbulent fluctuations follows a Kolmogorov-like power law (Image-5/3). We use highly accurate (0.1 nT) Flux Gate Magnetometer (FGM) data to derive the PSD as a function of frequency in the magnetic fluctuations. Given that we are able to confirm the turbulent nature of the flow field; we apply the method of Partial Variance of Increments (PVI) to search for localized gradient steepening where turbulent dissipation may be occurring. Additionally, we take advantage of multi-spacecraft observations to compute the current density in the turbulent region. This analysis is done over 15 contiguous burst periods on the afternoon of 6 July 2017, allowing a wide spectral range from 0.01-64 Hz.
NASA Astrophysics Data System (ADS)
Mackler, D. A.; Avanov, L. A.; Boardsen, S. A.; Giles, B. L.; Pollock, C.; Smith, S. E.; Uritsky, V. M.
2016-12-01
Magnetic reconnection, a process in which the magnetic topology undergoes multi-scale changes, is a significant mechanism for particle energization as well as energy dissipation. Reconnection is observed to occur in thin current sheets generated between two regions of magnetized plasma merging with a non-zero shear angle. Within a thinning current sheet, the dominant scale size approaches first the ion and then electron kinetic scale. The plasma becomes demagnetized, field lines transform, then once again the plasma becomes frozen-in. The reconnection process accelerates particles, leading to heated jets of plasma. Turbulence is another fundamental process in collisionless plasmas. Despite decades of turbulence studies, an essential science question remains as to how turbulent energy dissipates at small scales by heating and accelerating particles. Turbulence in both plasmas and fluids has a fundamental property in that it follows an energy cascade into smaller scales. Energy introduced into a fluid or plasma can cause large scale motion, introducing vorticity, which merge and interact to make increasingly smaller eddies. It has been hypothesized that turbulent energy in magnetized plasmas may be dissipated by magnetic reconnection, just as viscosity dissipates energy in neutral fluid turbulence. The focus of this study is to use the new high temporal resolution suite of instruments on board the Magnetospheric MultiScale (MMS) mission to explore this hypothesis. An observable feature of the energy cascade in a turbulent magnetized plasma is its similarity to classical hydrodynamics in that the Power Spectral Density (PSD) of turbulent fluctuations follows a Kolmogorov-like power law (f -5/3). We use highly accurate (0.1 nT) Flux Gate Magnetometer (FGM) data to derive the PSD as a function of frequency in the magnetic fluctuations. Given that we are able to confirm the turbulent nature of the flow field; we apply the method of Partial Variance of Increments (PVI) to search for localized gradient steepening where turbulent dissipation may be occurring. Additionally, we take advantage of multi-spacecraft observations to compute the current density in the turbulent region. This analysis is done over multiple burst periods during MMS' first sub-solar apogee pass from November 2015 to January 2016.
NASA Astrophysics Data System (ADS)
Payton, Jamie; Barnes, Tiffany; Buch, Kim; Rorrer, Audrey; Zuo, Huifang
2015-07-01
This study is a follow-up to one published in computer science education in 2010 that reported preliminary results showing a positive impact of service learning on student attitudes associated with success and retention in computer science. That paper described how service learning was incorporated into a computer science course in the context of the Students & Technology in Academia, Research, and Service (STARS) Alliance, an NSF-supported broadening participation in computing initiative that aims to diversify the computer science pipeline through innovative pedagogy and inter-institutional partnerships. The current paper describes how the STARS Alliance has expanded to diverse institutions, all using service learning as a vehicle for broadening participation in computing and enhancing attitudes and behaviors associated with student success. Results supported the STARS model of service learning for enhancing computing efficacy and computing commitment and for providing diverse students with many personal and professional development benefits.
Laser-driven electron beam and radiation sources for basic, medical and industrial sciences.
Nakajima, Kazuhisa
2015-01-01
To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker's review article on "Laser Acceleration and its future" [Toshiki Tajima, (2010)],(1)) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated.
ICASE Computer Science Program
NASA Technical Reports Server (NTRS)
1985-01-01
The Institute for Computer Applications in Science and Engineering computer science program is discussed in outline form. Information is given on such topics as problem decomposition, algorithm development, programming languages, and parallel architectures.
Ion densities in Titan's ionosphere, multi-instrument case study
NASA Astrophysics Data System (ADS)
Shebanits, O.; Wahlund, J.-E.; Edberg, N. J. T.; Crary, F. J.; Wellbrock, A.; Coates, A. J.; Andrews, D. J.; Vigren, E.; Mandt, K. E.; Waite, J. H., Jr.
2015-10-01
The Cassini s/c in-situ plasma measurements of Titan's ionosphere by Radio and Plasma Wave Science (RPWS) Langmuir Probe (LP), Cassini Plasma Spectrometer (CAPS) Electron (ELS) and Ion Beam (IBS) are combined for selected flybys (T16, T29, T40& T56) to further constrain plasma parameters of ionosphere at altitudes 880-1400 km.
Russell Hulse, the First Binary Pulsar, and Science Education
physics research. In 1977, Hulse changed fields from astrophysics to plasma physics and joined the Plasma discoverer of the first binary pulsar and co-recipient of the 1993 Nobel Prize in physics, will affiliate with The University of Texas at Dallas (UTD) as a visiting professor of physics and of science and math
NASA Astrophysics Data System (ADS)
Ortiz-Arias, Deedee; Zwicker, Andrew; Dominguez, Arturo; Greco, Shannon
2017-10-01
The Princeton Plasma Physics Laboratory (PPPL) uses a host of outreach initiatives to inform the general population: the Young Women's Conference, Science Bowl, Science Undergraduate Laboratory Internship, My Brother's Keeper, a variety of workshops for university faculty and undergraduate students, public and scheduled lab tours, school and community interactive plasma science demonstrations. In addition to informing and educating the public about the laboratory's important work in the areas of Plasma and Fusion, these outreach initiatives, are also used as an opportunity to identify/educate/recruit the next generation of the STEM workforce. These programs provide the laboratory with the ability to: engage the next generation at different paths along their development (K-12, undergraduate, graduate, professional), at different levels of scientific content (science demonstrations, remote experiments, lectures, tours), in some instances, targeting underrepresented groups in STEM (women and minorities), and train additional STEM educators to take learned content into their own classrooms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheehey, P.T.; Faehl, R.J.; Kirkpatrick, R.C.
1997-12-31
Magnetized Target Fusion (MTF) experiments, in which a preheated and magnetized target plasma is hydrodynamically compressed to fusion conditions, present some challenging computational modeling problems. Recently, joint experiments relevant to MTF (Russian acronym MAGO, for Magnitnoye Obzhatiye, or magnetic compression) have been performed by Los Alamos National Laboratory and the All-Russian Scientific Research Institute of Experimental Physics (VNIIEF). Modeling of target plasmas must accurately predict plasma densities, temperatures, fields, and lifetime; dense plasma interactions with wall materials must be characterized. Modeling of magnetically driven imploding solid liners, for compression of target plasmas, must address issues such as Rayleigh-Taylor instability growthmore » in the presence of material strength, and glide plane-liner interactions. Proposed experiments involving liner-on-plasma compressions to fusion conditions will require integrated target plasma and liner calculations. Detailed comparison of the modeling results with experiment will be presented.« less
Applications of Out-of-Domain Knowledge in Students' Reasoning about Computer Program State
ERIC Educational Resources Information Center
Lewis, Colleen Marie
2012-01-01
To meet a growing demand and a projected deficit in the supply of computer professionals (NCWIT, 2009), it is of vital importance to expand students' access to computer science. However, many researchers in the computer science education community unproductively assume that some students lack an innate ability for computer science and…
Gridless particle technique for the Vlasov-Poisson system in problems with high degree of symmetry
NASA Astrophysics Data System (ADS)
Boella, E.; Coppa, G.; D'Angola, A.; Peiretti Paradisi, B.
2018-03-01
In the paper, gridless particle techniques are presented in order to solve problems involving electrostatic, collisionless plasmas. The method makes use of computational particles having the shape of spherical shells or of rings, and can be used to study cases in which the plasma has spherical or axial symmetry, respectively. As a computational grid is absent, the technique is particularly suitable when the plasma occupies a rapidly changing space region.
Scientific Computing Strategic Plan for the Idaho National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whiting, Eric Todd
Scientific computing is a critical foundation of modern science. Without innovations in the field of computational science, the essential missions of the Department of Energy (DOE) would go unrealized. Taking a leadership role in such innovations is Idaho National Laboratory’s (INL’s) challenge and charge, and is central to INL’s ongoing success. Computing is an essential part of INL’s future. DOE science and technology missions rely firmly on computing capabilities in various forms. Modeling and simulation, fueled by innovations in computational science and validated through experiment, are a critical foundation of science and engineering. Big data analytics from an increasing numbermore » of widely varied sources is opening new windows of insight and discovery. Computing is a critical tool in education, science, engineering, and experiments. Advanced computing capabilities in the form of people, tools, computers, and facilities, will position INL competitively to deliver results and solutions on important national science and engineering challenges. A computing strategy must include much more than simply computers. The foundational enabling component of computing at many DOE national laboratories is the combination of a showcase like data center facility coupled with a very capable supercomputer. In addition, network connectivity, disk storage systems, and visualization hardware are critical and generally tightly coupled to the computer system and co located in the same facility. The existence of these resources in a single data center facility opens the doors to many opportunities that would not otherwise be possible.« less
A Cognitive Model for Problem Solving in Computer Science
ERIC Educational Resources Information Center
Parham, Jennifer R.
2009-01-01
According to industry representatives, computer science education needs to emphasize the processes involved in solving computing problems rather than their solutions. Most of the current assessment tools used by universities and computer science departments analyze student answers to problems rather than investigating the processes involved in…
Approaches to Classroom-Based Computational Science.
ERIC Educational Resources Information Center
Guzdial, Mark
Computational science includes the use of computer-based modeling and simulation to define and test theories about scientific phenomena. The challenge for educators is to develop techniques for implementing computational science in the classroom. This paper reviews some previous work on the use of simulation alone (without modeling), modeling…
Defining Computational Thinking for Mathematics and Science Classrooms
ERIC Educational Resources Information Center
Weintrop, David; Beheshti, Elham; Horn, Michael; Orton, Kai; Jona, Kemi; Trouille, Laura; Wilensky, Uri
2016-01-01
Science and mathematics are becoming computational endeavors. This fact is reflected in the recently released Next Generation Science Standards and the decision to include "computational thinking" as a core scientific practice. With this addition, and the increased presence of computation in mathematics and scientific contexts, a new…
Computational study of sheath structure in oxygen containing plasmas at medium pressures
NASA Astrophysics Data System (ADS)
Hrach, Rudolf; Novak, Stanislav; Ibehej, Tomas; Hrachova, Vera
2016-09-01
Plasma mixtures containing active species are used in many plasma-assisted material treatment technologies. The analysis of such systems is rather difficult, as both physical and chemical processes affect plasma properties. A combination of experimental and computational approaches is the best suited, especially at higher pressures and/or in chemically active plasmas. The first part of our study of argon-oxygen mixtures was based on experimental results obtained in the positive column of DC glow discharge. The plasma was analysed by the macroscopic kinetic approach which is based on the set of chemical reactions in the discharge. The result of this model is a time evolution of the number densities of each species. In the second part of contribution the detailed analysis of processes taking place during the interaction of oxygen containing plasma with immersed substrates was performed, the results of the first model being the input parameters. The used method was the particle simulation technique applied to multicomponent plasma. The sheath structure and fluxes of charged particles to substrates were analysed in the dependence on plasma pressure, plasma composition and surface geometry.
ERIC Educational Resources Information Center
Stifle, Jack
A graphics terminal designed for use as a remote computer input/output terminal is described. Although the terminal is intended for use in teaching applications, it has several features which make it useful in many other computer terminal applications. These features include: a 10-inch square plasma display panel, permanent storage of information…
NASA Center for Computational Sciences: History and Resources
NASA Technical Reports Server (NTRS)
2000-01-01
The Nasa Center for Computational Sciences (NCCS) has been a leading capacity computing facility, providing a production environment and support resources to address the challenges facing the Earth and space sciences research community.
Institute for Computer Applications in Science and Engineering (ICASE)
NASA Technical Reports Server (NTRS)
1984-01-01
Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science during the period April 1, 1983 through September 30, 1983 is summarized.
Nonlinear Waves, Instabilities and Singularities in Plasma and Hydrodynamics
NASA Astrophysics Data System (ADS)
Silantyev, Denis Albertovich
Nonlinear effects are present in almost every area of science as soon as one tries to go beyond the first order approximation. In particular, nonlinear waves emerge in such areas as hydrodynamics, nonlinear optics, plasma physics, quantum physics, etc. The results of this work are related to nonlinear waves in two areas, plasma physics and hydrodynamics, united by concepts of instability, singularity and advanced numerical methods used for their investigation. The first part of this work concentrates on Langmuir wave filamentation instability in the kinetic regime of plasma. In Internal Confinement Fusion Experiments (ICF) at National Ignition Facility (NIF), where attempts are made to achieve fusion by compressing a small target by many powerful lasers to extremely high temperatures and pressures, plasma is created in the first moments of the laser reaching the target and undergoes complicated dynamics. Some of the most challenging difficulties arise from various plasma instabilities that occur due to interaction of the laser beam and a plasma surrounding the target. In this work we consider one of such instabilities that describes a decay of nonlinear plasma wave, initially excited due to interaction of the laser beam with the plasma, into many filaments in direction perpendicular to the laser beam, therefore named Langmuir filamentation instability. This instability occurs in the kinetic regime of plasma, klambda D > 0.2, where k is the wavenumber and lambda D is the Debye length. The filamentation of Langmuir waves in turn leads to the saturation of the stimulated Raman scattering (SRS) in laser-plasma interaction experiments which plays an essential role in ICF experiments. The challenging part of this work was that unlike in hydrodynamics we needed to use fully kinetic description of plasma to capture the physics in question properly, meaning that we needed to consider the distribution function of charged particles and its evolution in time not only with respect to spatial coordinates but with respect to velocities as well. To study Langmuir filamentation instability in its simplest form we performed 2D+2V numerical simulations. Taking into account that the distribution function in question was 4-dimensional function, making these simulation quite challenging, we developed an efficient numerical method making these simulations possible on modern desktop computers. Using the developed numerical method we studied how Langmuir wave filamentation instability depends on the parameters of the Langmuir wave such as wave length and amplitude that are relevant to ICF experiments. We considered several types of Langmuir waves, including nonlinear Langmuir waves exited by external electric field as well as an idealized approximation of such Langmuir waves by a particular family of Bernstein-Greene-Kruskal (BGK) modes that bifurcates from the linear Langmuir wave. The results of these simulations were compared to the theoretical predictions in our recent papers. An alternative approach to overcome computational difficulty of this problem was considered by our research group in Ref. It involves reducing the number of transverse direction in the model therefore lowering computational difficulty at a cost of lesser accuracy of the model. The second part of this work concentrates on 2D free surface hydrodynamics and in particular on computing Stokes waves with high-precision using conformal maps and spectral methods. Stokes waves are fully nonlinear periodic gravity waves propagating with the constant velocity on a free surface of two-dimensional potential flow of the ideal incompressible fluid of infinite depth. The increase of the scaled wave height H/lambda, where H is the wave height and lambda is the wavelength, from H/lambda = 0 to the critical value Hmax/lambda marks the transition from almost linear wave to a strongly nonlinear limiting Stokes wave. The Stokes wave of the greatest height H = Hmax has an angle of 120° at the crest. To obtain Stokes wave fully nonlinear Euler equations describing the flow can be reformulated in terms of conformal map of the fluid domain into the complex lower half-plane, with fluid free surface mapped into the real line. This description is convenient for analysis and numerical simulations since the whole problem is then reduced to a single nonlinear equation on the real line. Having computed solutions on the real line we extend them to the rest of the complex plane to analyze the singularities above real line. The distance vc from the closest singularity in the upper half-plane to the real line goes to zero as we approach the limiting Stokes wave with maximum hight Hmax/lambda, which is the reason for the widening of the solution's Fourier spectrum. (Abstract shortened by ProQuest.).
Computers in Science: Thinking Outside the Discipline.
ERIC Educational Resources Information Center
Hamilton, Todd M.
2003-01-01
Describes the Computers in Science course which integrates computer-related techniques into the science disciplines of chemistry, physics, biology, and Earth science. Uses a team teaching approach and teaches students how to solve chemistry problems with spreadsheets, identify minerals with X-rays, and chemical and force analysis. (Contains 14…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-28
... NATIONAL SCIENCE FOUNDATION Advisory Committee for Computer and Information Science and Engineering; Cancellation of Meeting SUMMARY: As a result of the impact of the recent government shutdown, the... Committee for Computer and Information Science and Engineering meeting. The public notice for this committee...
Exemplary Science Teachers' Use of Technology
ERIC Educational Resources Information Center
Hakverdi-Can, Meral; Dana, Thomas M.
2012-01-01
The purpose of this study is to examine exemplary science teachers' level of computer use, their knowledge/skills in using specific computer applications for science instruction, their use of computer-related applications/tools during their instruction, how often they required their students to use those applications in or for their science class…
Cold Atmospheric Plasma for Medicine: State of Research and Clinical Application
NASA Astrophysics Data System (ADS)
von Woedtke, Thomas
2015-09-01
Basic research in plasma medicine has made excellent progress and resulted in the fundamental insights that biological effects of cold atmospheric plasmas (CAP) are significantly caused by changes of the liquid environment of cells, and are dominated by redox-active species. First CAP sources are CE-certified as medical devices. Main focus of plasma application is on wound healing and treatment of infective skin diseases. Clinical applications in this field confirm the supportive effect of cold plasma treatment in acceleration of healing of chronic wounds above all in cases where conventional treatment fails. Cancer treatment is another actual and emerging field of CAP application. The ability of CAP to kill cancer cells by induction of apoptosis has been proved in vitro. First clinical applications of CAP in palliative care of cancer are realized. In collaboration with Hans-Robert Metelmann, University Medicine Greifswald; Helmut Uhlemann, Klinikum Altenburger Land GmbH Altenburg; Anke Schmidt and Kai Masur, Leibniz Institute for Plasma Science and Technology (INP Greifswald); Renate Schönebeck, Neoplas Tools GmbH Greifswald; and Klaus-Dieter Weltmann, Leibniz Institute for Plasma Science and Technology (INP Greifswald).
ERIC Educational Resources Information Center
Science and Children, 1990
1990-01-01
Reviewed are seven computer software packages for IBM and/or Apple Computers. Included are "Windows on Science: Volume 1--Physical Science"; "Science Probe--Physical Science"; "Wildlife Adventures--Grizzly Bears"; "Science Skills--Development Programs"; "The Clean Machine"; "Rock Doctor";…
An Overview of NASA's Intelligent Systems Program
NASA Technical Reports Server (NTRS)
Cooke, Daniel E.; Norvig, Peter (Technical Monitor)
2001-01-01
NASA and the Computer Science Research community are poised to enter a critical era. An era in which - it seems - that each needs the other. Market forces, driven by the immediate economic viability of computer science research results, place Computer Science in a relatively novel position. These forces impact how research is done, and could, in worst case, drive the field away from significant innovation opting instead for incremental advances that result in greater stability in the market place. NASA, however, requires significant advances in computer science research in order to accomplish the exploration and science agenda it has set out for itself. NASA may indeed be poised to advance computer science research in this century much the way it advanced aero-based research in the last.
A Review of Models for Teacher Preparation Programs for Precollege Computer Science Education.
ERIC Educational Resources Information Center
Deek, Fadi P.; Kimmel, Howard
2002-01-01
Discusses the need for adequate precollege computer science education and focuses on the issues of teacher preparation programs and requirements needed to teach high school computer science. Presents models of teacher preparation programs and compares state requirements with Association for Computing Machinery (ACM) recommendations. (Author/LRW)
A DDC Bibliography on Computers in Information Sciences. Volume II. Information Sciences Series.
ERIC Educational Resources Information Center
Defense Documentation Center, Alexandria, VA.
The unclassified and unlimited bibliography compiles references dealing specifically with the role of computers in information sciences. The volume contains 239 annotated references grouped under three major headings: Artificial and Programming Languages, Computer Processing of Analog Data, and Computer Processing of Digital Data. The references…
Making Advanced Computer Science Topics More Accessible through Interactive Technologies
ERIC Educational Resources Information Center
Shao, Kun; Maher, Peter
2012-01-01
Purpose: Teaching advanced technical concepts in a computer science program to students of different technical backgrounds presents many challenges. The purpose of this paper is to present a detailed experimental pedagogy in teaching advanced computer science topics, such as computer networking, telecommunications and data structures using…
ASCR Workshop on Quantum Computing for Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aspuru-Guzik, Alan; Van Dam, Wim; Farhi, Edward
This report details the findings of the DOE ASCR Workshop on Quantum Computing for Science that was organized to assess the viability of quantum computing technologies to meet the computational requirements of the DOE’s science and energy mission, and to identify the potential impact of quantum technologies. The workshop was held on February 17-18, 2015, in Bethesda, MD, to solicit input from members of the quantum computing community. The workshop considered models of quantum computation and programming environments, physical science applications relevant to DOE's science mission as well as quantum simulation, and applied mathematics topics including potential quantum algorithms formore » linear algebra, graph theory, and machine learning. This report summarizes these perspectives into an outlook on the opportunities for quantum computing to impact problems relevant to the DOE’s mission as well as the additional research required to bring quantum computing to the point where it can have such impact.« less
BIOCOMPUTATION: some history and prospects.
Cull, Paul
2013-06-01
At first glance, biology and computer science are diametrically opposed sciences. Biology deals with carbon based life forms shaped by evolution and natural selection. Computer Science deals with electronic machines designed by engineers and guided by mathematical algorithms. In this brief paper, we review biologically inspired computing. We discuss several models of computation which have arisen from various biological studies. We show what these have in common, and conjecture how biology can still suggest answers and models for the next generation of computing problems. We discuss computation and argue that these biologically inspired models do not extend the theoretical limits on computation. We suggest that, in practice, biological models may give more succinct representations of various problems, and we mention a few cases in which biological models have proved useful. We also discuss the reciprocal impact of computer science on biology and cite a few significant contributions to biological science. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
A Case Study of the Introduction of Computer Science in NZ Schools
ERIC Educational Resources Information Center
Bell, Tim; Andreae, Peter; Robins, Anthony
2014-01-01
For many years computing in New Zealand schools was focused on teaching students how to use computers, and there was little opportunity for students to learn about programming and computer science as formal subjects. In this article we review a series of initiatives that occurred from 2007 to 2009 that led to programming and computer science being…
The interaction between fishbone modes and shear Alfvén waves in tokamak plasmas
NASA Astrophysics Data System (ADS)
He, Hongda; Liu, Yueqiang; Dong, J. Q.; Hao, G. Z.; Wu, Tingting; He, Zhixiong; Zhao, K.
2016-05-01
The resonant interaction between the energetic particle triggered fishbone mode and the shear Alfvén waves is computationally investigated and firmly demonstrated based on a tokamak plasma equilibrium, using the self-consistent MHD-kinetic hybrid code MARS-K (Liu et al 2008 Phys. Plasmas 15 112503). This type of continuum resonance, occurring critically due to the mode’s toroidal rotation in the plasma frame, significantly modifies the eigenmode structure of the fishbone instability, by introducing two large peaks of the perturbed parallel current density near but offside the q = 1 rational surface (q is the safety factor). The self-consistently computed radial plasma displacement substantially differs from that being assumed in the conventional fishbone theory.
Ion and aerosol precursor densities in Titan's ionosphere: A multi-instrument case study
NASA Astrophysics Data System (ADS)
Shebanits, O.; Wahlund, J.-E.; Edberg, N. J. T.; Crary, F. J.; Wellbrock, A.; Andrews, D. J.; Vigren, E.; Desai, R. T.; Coates, A. J.; Mandt, K. E.; Waite, J. H.
2016-10-01
The importance of the heavy ions and dust grains for the chemistry and aerosol formation in Titan's ionosphere has been well established in the recent years of the Cassini mission. In this study we combine independent in situ plasma (Radio Plasma and Wave Science Langmuir Probe (RPWS/LP)) and particle (Cassini Plasma Science Electron Spectrometer, Cassini Plasma Science Ion Beam Spectrometer, and Ion and Neutral Mass Spectrometer) measurements of Titan's ionosphere for selected flybys (T16, T29, T40, and T56) to produce altitude profiles of mean ion masses including heavy ions and develop a Titan-specific method for detailed analysis of the RPWS/LP measurements (applicable to all flybys) to further constrain ion charge densities and produce the first empirical estimate of the average charge of negative ions and/or dust grains. Our results reveal the presence of an ion-ion (dusty) plasma below 1100 km altitude, with charge densities exceeding the primary ionization peak densities by a factor ≥2 in the terminator and nightside ionosphere (ne/ni ≤ 0.1). We suggest that ion-ion (dusty) plasma may also be present in the dayside ionosphere below 900 km (ne/ni < 0.5 at 1000 km altitude). The average charge of the dust grains (≥1000 amu) is estimated to be between -2.5 and -1.5 elementary charges, increasing toward lower altitudes.
DNA damage in oral cancer and normal cells induced by nitrogen atmospheric pressure plasma jets
NASA Astrophysics Data System (ADS)
Han, Xu; Kapaldo, James; Liu, Yueying; Stack, M. Sharon; Ptasinska, Sylwia
2015-09-01
Nitrogen atmospheric pressure plasma jets (APPJs) have been shown to effectively induce DNA double strand breaks in SCC25 oral cancer cells. The APPJ source constructed in our laboratory operates based on dielectric barrier discharge. It consists of two copper electrodes alternatively wrapping around a fused silica tube with nitrogen as a feed gas. It is generally more challenging to ignite plasma in N2 atmosphere than in noble gases. However, N2 provides additional advantages such as lower costs compared to noble gases, thus this design can be beneficial for the future long-term clinical use. To compare the effects of plasma on cancer cells (SCC25) and normal cells (OKF), the cells from both types were treated at the same experimental condition for various treatment times. The effective area with different damage levels after the treatment was visualized as 3D maps. The delayed damage effects were also explored by varying the incubation times after the treatment. All of these studies are critical for a better understanding of the damage responses of cellular systems exposed to the plasma radiation, thus are useful for the development of the advanced plasma cancer therapy. The research described herein was supported by the Division of Chemical Sciences, Geosciences and Biosciences, Basic Energy Sciences, Office of Science, United States Department of Energy through Grant No. DE-FC02-04ER15533.
Research in Applied Mathematics, Fluid Mechanics and Computer Science
NASA Technical Reports Server (NTRS)
1999-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1998 through March 31, 1999.
[Research activities in applied mathematics, fluid mechanics, and computer science
NASA Technical Reports Server (NTRS)
1995-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period April 1, 1995 through September 30, 1995.
Activities of the Institute for Computer Applications in Science and Engineering
NASA Technical Reports Server (NTRS)
1985-01-01
Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period April 1, 1985 through October 2, 1985 is summarized.
Pair plasma relaxation time scales.
Aksenov, A G; Ruffini, R; Vereshchagin, G V
2010-04-01
By numerically solving the relativistic Boltzmann equations, we compute the time scale for relaxation to thermal equilibrium for an optically thick electron-positron plasma with baryon loading. We focus on the time scales of electromagnetic interactions. The collisional integrals are obtained directly from the corresponding QED matrix elements. Thermalization time scales are computed for a wide range of values of both the total-energy density (over 10 orders of magnitude) and of the baryonic loading parameter (over 6 orders of magnitude). This also allows us to study such interesting limiting cases as the almost purely electron-positron plasma or electron-proton plasma as well as intermediate cases. These results appear to be important both for laboratory experiments aimed at generating optically thick pair plasmas as well as for astrophysical models in which electron-positron pair plasmas play a relevant role.
Negative ion and dust grain charge in Titan's ionosphere: multi-instrument case study
NASA Astrophysics Data System (ADS)
Shebanits, O.; Wahlund, J.-E.; Edberg, N. J. T.; Wellbrock, A.; Coates, A. J.; Crary, F.; Andrews, D.
2014-04-01
The Cassini s/c in-situ plasma measurements of Titan's ionosphere by Radio and Plasma Wave Science (RPWS) Langmuir Probe (LP), Cassini Plasma Spectrometer (CAPS) Electron (ELS) and Ion Beam (IBS) spectrometers are combined for selected flybys (T16, T20, T29, T40 and T56) to further constrain plasma parameters of ionosphere below 1400 km.
Views of Prospective Science Teachers on Including the Concept of Plasma in Science Curricula
ERIC Educational Resources Information Center
Balbag, Mustafa Zafer
2018-01-01
States of matter are structures that we may easily encounter in the universe as well as our close environment. The plasma state is the fourth state of matter, and it has much different properties in comparison to the solid, liquid and gas states of matter. In order to understand the universe and the environment we live in better, one needs to have…
A Quantitative Model for Assessing Visual Simulation Software Architecture
2011-09-01
Software Engineering Arnold Buss Research Associate Professor of MOVES LtCol Jeff Boleng, PhD Associate Professor of Computer Science U.S. Air Force Academy... science (operating and programming systems series). New York, NY, USA: Elsevier Science Ltd. Henry, S., & Kafura, D. (1984). The evaluation of software...Rudy Darken Professor of Computer Science Dissertation Supervisor Ted Lewis Professor of Computer Science Richard Riehle Professor of Practice
ERIC Educational Resources Information Center
Wofford, Jennifer
2009-01-01
Computing is anticipated to have an increasingly expansive impact on the sciences overall, becoming the third, crucial component of a "golden triangle" that includes mathematics and experimental and theoretical science. However, even more true with computing than with math and science, we are not preparing our students for this new reality. It is…
Interactive Synthesis of Code Level Security Rules
2017-04-01
Interactive Synthesis of Code-Level Security Rules A Thesis Presented by Leo St. Amour to The Department of Computer Science in partial fulfillment...of the requirements for the degree of Master of Science in Computer Science Northeastern University Boston, Massachusetts April 2017 DISTRIBUTION...Abstract of the Thesis Interactive Synthesis of Code-Level Security Rules by Leo St. Amour Master of Science in Computer Science Northeastern University
Approaching gender parity: Women in computer science at Afghanistan's Kabul University
NASA Astrophysics Data System (ADS)
Plane, Jandelyn
This study explores the representation of women in computer science at the tertiary level through data collected about undergraduate computer science education at Kabul University in Afghanistan. Previous studies have theorized reasons for underrepresentation of women in computer science, and while many of these reasons are indeed present in Afghanistan, they appear to hinder advancement to degree to a lesser extent. Women comprise at least 36% of each graduating class from KU's Computer Science Department; however, in 2007 women were 25% of the university population. In the US, women comprise over 50% of university populations while only graduating on average 25% women in undergraduate computer science programs. Representation of women in computer science in the US is 50% below the university rate, but at KU, it is 50% above the university rate. This mixed methods study of KU was conducted in the following three stages: setting up focus groups with women computer science students, distributing surveys to all students in the CS department, and conducting a series of 22 individual interviews with fourth year CS students. The analysis of the data collected and its comparison to literature on university/department retention in Science, Technology, Engineering and Mathematics gender representation and on women's education in underdeveloped Islamic countries illuminates KU's uncharacteristic representation of women in its Computer Science Department. The retention of women in STEM through the education pipeline has several characteristics in Afghanistan that differ from countries often studied in available literature. Few Afghan students have computers in their home and few have training beyond secretarial applications before considering studying CS at university. University students in Afghanistan are selected based on placement exams and are then assigned to an area of study, and financially supported throughout their academic career, resulting in a low attrition rate from the program. Gender and STEM literature identifies parental encouragement, stereotypes and employment perceptions as influential characteristics. Afghan women in computer science received significant parental encouragement even from parents with no computer background. They do not seem to be influenced by any negative "geek" stereotypes, but they do perceive limitations when considering employment after graduation.
Modeling weakly-ionized plasmas in magnetic field: A new computationally-efficient approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parent, Bernard, E-mail: parent@pusan.ac.kr; Macheret, Sergey O.; Shneider, Mikhail N.
2015-11-01
Despite its success at simulating accurately both non-neutral and quasi-neutral weakly-ionized plasmas, the drift-diffusion model has been observed to be a particularly stiff set of equations. Recently, it was demonstrated that the stiffness of the system could be relieved by rewriting the equations such that the potential is obtained from Ohm's law rather than Gauss's law while adding some source terms to the ion transport equation to ensure that Gauss's law is satisfied in non-neutral regions. Although the latter was applicable to multicomponent and multidimensional plasmas, it could not be used for plasmas in which the magnetic field was significant.more » This paper hence proposes a new computationally-efficient set of electron and ion transport equations that can be used not only for a plasma with multiple types of positive and negative ions, but also for a plasma in magnetic field. Because the proposed set of equations is obtained from the same physical model as the conventional drift-diffusion equations without introducing new assumptions or simplifications, it results in the same exact solution when the grid is refined sufficiently while being more computationally efficient: not only is the proposed approach considerably less stiff and hence requires fewer iterations to reach convergence but it yields a converged solution that exhibits a significantly higher resolution. The combined faster convergence and higher resolution is shown to result in a hundredfold increase in computational efficiency for some typical steady and unsteady plasma problems including non-neutral cathode and anode sheaths as well as quasi-neutral regions.« less
Science-Technology Coupling: The Case of Mathematical Logic and Computer Science.
ERIC Educational Resources Information Center
Wagner-Dobler, Roland
1997-01-01
In the history of science, there have often been periods of sudden rapprochements between pure science and technology-oriented branches of science. Mathematical logic as pure science and computer science as technology-oriented science have experienced such a rapprochement, which is studied in this article in a bibliometric manner. (Author)
Marshall, Thomas; Champagne-Langabeer, Tiffiany; Castelli, Darla; Hoelscher, Deanna
2017-12-01
To present research models based on artificial intelligence and discuss the concept of cognitive computing and eScience as disruptive factors in health and life science research methodologies. The paper identifies big data as a catalyst to innovation and the development of artificial intelligence, presents a framework for computer-supported human problem solving and describes a transformation of research support models. This framework includes traditional computer support; federated cognition using machine learning and cognitive agents to augment human intelligence; and a semi-autonomous/autonomous cognitive model, based on deep machine learning, which supports eScience. The paper provides a forward view of the impact of artificial intelligence on our human-computer support and research methods in health and life science research. By augmenting or amplifying human task performance with artificial intelligence, cognitive computing and eScience research models are discussed as novel and innovative systems for developing more effective adaptive obesity intervention programs.
14th High-Tech Plasma Processes Conference (HTPP 14)
NASA Astrophysics Data System (ADS)
2017-04-01
Preface The High-Tech Plasma Processes Conference (HTPP) is a bi-annual international conference based in Europe with topics encompassing the whole area of plasma processing science. This conference is open to all the international community in the world involved in plasma science and plasma technology. The aim of the conference is to bring different scientific communities together, facilitate the contacts between science, technology and industry and provide a platform for the exploration of both fundamental topics and new applications of plasmas. For this edition of HTPP, as was the case for the last, we have achieved a well balanced participation from the communities of both thermal and non-thermal plasma researchers. 75 people from 17 countries attended the conference with the total number of contributions being 74, consisting of 19 invited talks and 55 poster contributions. As a HTPP tradition a poster competition has been carried out during the conference. The winner of the poster competition was Fabrice Mavier from Université de Limoges, France with his paper “Pulsed arc plasma jet synchronized with drop-on-demand dispenser” All the participants also ejoyed the social program including an “unconventional” tour of the city, the visit to the famous Hofbräuhaus and the dinner at the Blutenburg, a beautiful inner-city castle. We have received papers corresponding to the contributions of HTPP-2014 that have been submitted for publication in this volume of Journal of Physics: Conference Series. Each submitted contribution has been peer reviewed and the Editors are very grateful to the referees for their careful support in improving the original manuscripts. In total, 18 manuscripts have been accepted for publication covering a range of topics of plasma processing science from plasma fundamentals to process applications through to experiments, diagnostics and modelling. We deeply thank the authors for their enthusiastic and high-grade contributions and we are convinced that this volume of Journal of Physics: Conference Series will be interesting for our community. Finally, we would like to thank the conference chairmen, the members of the steering committee, the international scientific committee, the local organizing committee, the organizing secretariat and the financial support from the conference sponsors that allowed the success of HTPP-2016. The Editors of the HTPP-2016 Proceedings Dr. Dirk Uhrlandt, head of the ISC Prof. Philippe Teulet Prof. Jochen Schein Neubiberg, 6th of March 2017
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-04
... NATIONAL SCIENCE FOUNDATION Advisory Committee for Computer and Information Science and Engineering; Notice of Meeting In accordance with Federal Advisory Committee Act (Pub. L. 92-463, as amended... Committee for Computer and Information Science and Engineering (1115). Date/Time: Oct 31, 2013: 12:30 p.m...
FOREWORD: 7th Symposium on Vacuum-based Science and Technology (SVBST2013)
NASA Astrophysics Data System (ADS)
Gulbiński, W.
2014-11-01
These are the proceedings of the 7th Symposium on Vacuum based Science and Technology organized in Kołobrzeg (PL) on November 19-21, 2013 by the Institute of Technology and Education, Koszalin University of Technology and the Clausius Tower Society under auspices of the Polish Vacuum Society (PTP) and the German Vacuum Society (DVG) and in collaboration with the BalticNet PlasmaTec and the Society of Vacuum Coaters (SVC). It was accompanied by the 12-th Annual Meeting of the German Vacuum Society. The mission of the Symposium is to provide a forum for presentation and exchange of expertise and research results in the field of vacuum and plasma science. After already six successful meetings organized alternately in Poland and Germany our goal is to continue and foster cooperation within the vacuum and plasma science community. This year, the Rudolf-Jaeckel Prize, awarded by the DVG for outstanding achievements in the field of vacuum based sciences, was presented to Dr Ute Bergner, president of the VACOM Vakuum Komponenten & Messtechnik GmbH and a member of our community. The full-day course organized in the framework of the Educational Program by the Society of Vacuum Coaters (SVC) and entitled: An Introduction to Physical Vapor Deposition (PVD) Processes was held on November 18, 2013 as a satellite event of the Symposium. The instructor was Prof. Ismat Shah from Delaware University (US). The Clausius Session, already traditionally organized during the Symposium was addressed this year to young generation. We invited our young colleagues to attend a series of educational lectures reporting on achievements in graphene science, scanning probe microscopy and plasma science. Lectures were given by: Prof. Jacek Baranowski from the Institute of Electronic Materials Technology in Warsaw, Prof. Teodor Gotszalk from the Wroclaw University of Technology and Prof. Holger Kersten from the Christian Albrechts University in Kiel. The Symposium was accompanied by an industry exhibition attended by the representatives of leading companies offering vacuum equipment, complete solutions for plasma based technology as well as advanced research equipment. Witold Gulbiński Michael Kopnarski Frank Richter Jan Walkowicz
Activities of the Institute for Computer Applications in Science and Engineering (ICASE)
NASA Technical Reports Server (NTRS)
1985-01-01
Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period October 1, 1984 through March 31, 1985 is summarized.
[Research Conducted at the Institute for Computer Applications in Science and Engineering
NASA Technical Reports Server (NTRS)
1997-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period 1 Oct. 1996 - 31 Mar. 1997.
Activities of the Institute for Computer Applications in Science and Engineering (ICASE)
NASA Technical Reports Server (NTRS)
1988-01-01
This report summarizes research conducted at the Institute for Computer Applications Science and Engineering in applied mathematics, numerical analysis, and computer science during the period October 2, 1987 through March 31, 1988.
[Activities of Institute for Computer Applications in Science and Engineering (ICASE)
NASA Technical Reports Server (NTRS)
1999-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics. fluid mechanics, and computer science during the period April 1, 1999 through September 30. 1999.
Computer-Controlled System for Plasma Ion Energy Auto-Analyzer
NASA Astrophysics Data System (ADS)
Wu, Xian-qiu; Chen, Jun-fang; Jiang, Zhen-mei; Zhong, Qing-hua; Xiong, Yu-ying; Wu, Kai-hua
2003-02-01
A computer-controlled system for plasma ion energy auto-analyzer was technically studied for rapid and online measurement of plasma ion energy distribution. The system intelligently controls all the equipments via a RS-232 port, a printer port and a home-built circuit. The software designed by Lab VIEW G language automatically fulfils all of the tasks such as system initializing, adjustment of scanning-voltage, measurement of weak-current, data processing, graphic export, etc. By using the system, a few minutes are taken to acquire the whole ion energy distribution, which rapidly provides important parameters of plasma process techniques based on semiconductor devices and microelectronics.
Practical Measurement of Complexity In Dynamic Systems
2012-01-01
policies that produce highly complex behaviors , yet yield no benefit. 21Jason B. Clark and David R. Jacques / Procedia Computer Science 8 (2012) 14... Procedia Computer Science 8 (2012) 14 – 21 1877-0509 © 2012 Published by Elsevier B.V. doi:10.1016/j.procs.2012.01.008 Available online at...www.sciencedirect.com Procedia Computer Science Procedia Computer Science 00 (2012) 000–000 www.elsevier.com/locate/ procedia Available online at
The role of physicality in rich programming environments
NASA Astrophysics Data System (ADS)
Liu, Allison S.; Schunn, Christian D.; Flot, Jesse; Shoop, Robin
2013-12-01
Computer science proficiency continues to grow in importance, while the number of students entering computer science-related fields declines. Many rich programming environments have been created to motivate student interest and expertise in computer science. In the current study, we investigated whether a recently created environment, Robot Virtual Worlds (RVWs), can be used to teach computer science principles within a robotics context by examining its use in high-school classrooms. We also investigated whether the lack of physicality in these environments impacts student learning by comparing classrooms that used either virtual or physical robots for the RVW curriculum. Results suggest that the RVW environment leads to significant gains in computer science knowledge, that virtual robots lead to faster learning, and that physical robots may have some influence on algorithmic thinking. We discuss the implications of physicality in these programming environments for learning computer science.
Laser-driven electron beam and radiation sources for basic, medical and industrial sciences
NAKAJIMA, Kazuhisa
2015-01-01
To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker’s review article on “Laser Acceleration and its future” [Toshiki Tajima, (2010)],1) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated. PMID:26062737
DOE Office of Scientific and Technical Information (OSTI.GOV)
Temkin, Richard
2014-12-24
Electron Cyclotron Heating (ECH) is needed for plasma heating, current drive, plasma stability control, and other applications in fusion energy sciences research. The program of fusion energy sciences supported by U. S. DOE, Office of Science, Fusion Energy Sciences relies on the development of ECH technology to meet the needs of several plasma devices working at the frontier of fusion energy sciences research. The largest operating ECH system in the world is at DIII-D, consisting of six 1 MW, 110 GHz gyrotrons capable of ten second pulsed operation, plus two newer gyrotrons. The ECH Technology Development research program investigated themore » options for upgrading the DIII-D 110 GHz ECH system. Options included extending present-day 1 MW technology to 1.3 – 1.5 MW power levels or developing an entirely new approach to achieve up to 2 MW of power per gyrotron. The research consisted of theoretical research and designs conducted by Communication and Power Industries of Palo Alto, CA working with MIT. Results of the study would be validated in a later phase by research on short pulse length gyrotrons at MIT and long pulse / cw gyrotrons in industry. This research follows a highly successful program of development that has led to the highly reliable, six megawatt ECH system at the DIII-D tokamak. Eventually, gyrotrons at the 1.5 megawatt to multi-megawatt power level will be needed for heating and current drive in large scale plasmas including ITER and DEMO.« less
Path Not Found: Disparities in Access to Computer Science Courses in California High Schools
ERIC Educational Resources Information Center
Martin, Alexis; McAlear, Frieda; Scott, Allison
2015-01-01
"Path Not Found: Disparities in Access to Computer Science Courses in California High Schools" exposes one of the foundational causes of underrepresentation in computing: disparities in access to computer science courses in California's public high schools. This report provides new, detailed data on these disparities by student body…
ERIC Educational Resources Information Center
Kortsarts, Yana; Fischbach, Adam; Rufinus, Jeff; Utell, Janine M.; Yoon, Suk-Chung
2010-01-01
Developing and applying oral and written communication skills in the undergraduate computer science and computer information systems curriculum--one of the ABET accreditation requirements - is a very challenging and, at the same time, a rewarding task that provides various opportunities to enrich the undergraduate computer science and computer…
EOS MLS Science Data Processing System: A Description of Architecture and Capabilities
NASA Technical Reports Server (NTRS)
Cuddy, David T.; Echeverri, Mark D.; Wagner, Paul A.; Hanzel, Audrey T.; Fuller, Ryan A.
2006-01-01
This paper describes the architecture and capabilities of the Science Data Processing System (SDPS) for the EOS MLS. The SDPS consists of two major components--the Science Computing Facility and the Science Investigator-led Processing System. The Science Computing Facility provides the facilities for the EOS MLS Science Team to perform the functions of scientific algorithm development, processing software development, quality control of data products, and scientific analyses. The Science Investigator-led Processing System processes and reprocesses the science data for the entire mission and delivers the data products to the Science Computing Facility and to the Goddard Space Flight Center Earth Science Distributed Active Archive Center, which archives and distributes the standard science products.
Validation of double Langmuir probe in-orbit performance onboard a nano-satellite
NASA Astrophysics Data System (ADS)
Tejumola, Taiwo Raphael; Zarate Segura, Guillermo Wenceslao; Kim, Sangkyun; Khan, Arifur; Cho, Mengu
2018-03-01
Many plasma measurement systems have been proposed and used onboard different satellites to characterize space plasma. Most of these systems employed the technique of Langmuir probes either using the single or double probes methods. Recent growth of lean satellites has positioned it on advantage to be used for space science missions using Langmuir probes because of its simplicity and convenience. However, single Langmuir probes are not appropriate to be used on lean satellites because of their limited conducting area which leads to spacecraft charging and drift of the instrument's electrical ground during measurement. Double Langmuir probes technique can overcome this limitation, as a measurement reference in relation to the spacecraft is not required. A double Langmuir probe measurement system was designed and developed at Kyushu Institute of Technology for HORYU-IV satellite, which is a 10 kg, 30 cm cubic class lean satellite launched into Low Earth Orbit on 17th February 2016. This paper presents the on-orbit performance and validation of the double Langmuir probe measurement using actual on-orbit measured data and computer simulations.
Extended MHD modeling of nonlinear instabilities in fusion and space plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Germaschewski, Kai
A number of different sub-projects where pursued within this DOE early career project. The primary focus was on using fully nonlinear, curvilinear, extended MHD simulations of instabilities with applications to fusion and space plasmas. In particular, we performed comprehensive studies of the dynamics of the double tearing mode in different regimes and confi gurations, using Cartesian and cyclindrical geometry and investigating both linear and non-linear dynamics. In addition to traditional extended MHD involving Hall term and electron pressure gradient, we also employed a new multi-fluid moment model, which shows great promise to incorporate kinetic effects, in particular off-diagonal elements ofmore » the pressure tensor, in a fluid model, which is naturally computationally much cheaper than fully kinetic particle or Vlasov simulations. We used our Vlasov code for detailed studies of how weak collisions effect plasma echos. In addition, we have played an important supporting role working with the PPPL theory group around Will Fox and Amitava Bhattacharjee on providing simulation support for HED plasma experiments performed at high-powered laser facilities like OMEGA-EP in Rochester, NY. This project has support a great number of computational advances in our fluid and kinetic plasma models, and has been crucial to winning multiple INCITE computer time awards that supported our computational modeling.« less
NASA Astrophysics Data System (ADS)
Thackeray, Lynn Roy
The purpose of this study is to understand the meaning that women make of the social and cultural factors that influence their reasons for entering and remaining in study of computer science. The twenty-first century presents many new challenges in career development and workforce choices for both men and women. Information technology has become the driving force behind many areas of the economy. As this trend continues, it has become essential that U.S. citizens need to pursue a career in technologies, including the computing sciences. Although computer science is a very lucrative profession, many Americans, especially women, are not choosing it as a profession. Recent studies have shown no significant differences in math, technical and science competency between men and women. Therefore, other factors, such as social, cultural, and environmental influences seem to affect women's decisions in choosing an area of study and career choices. A phenomenological method of qualitative research was used in this study, based on interviews of seven female students who are currently enrolled in a post-secondary computer science program. Their narratives provided meaning into the social and cultural environments that contribute to their persistence in their technical studies, as well as identifying barriers and challenges that are faced by female students who choose to study computer science. It is hoped that the data collected from this study may provide recommendations for the recruiting, retention and support for women in computer science departments of U.S. colleges and universities, and thereby increase the numbers of women computer scientists in industry. Keywords: gender access, self-efficacy, culture, stereotypes, computer education, diversity.
A Technique to Eliminate External Transport Barriers and Stabilize Fiscal Instabilities
NASA Astrophysics Data System (ADS)
Heeter, Robert F.
1997-11-01
The case is made for a coordinated national effort to diffuse plasma science knowledge to the public. Like earlier "fiscal instabilities" in plasma research, the 1995-7 magnetic fusion budget disruption can be attributed to a lack of public awareness about the value of science research, as reflected in the attitude of Congress. Magnetic fusion researchers now create "internal transport barriers" to reduce plasma heat loss, but observations also reveal a problematic "external transport barrier" in all of plasma science - the inadequate diffusion of knowledge beyond the scientists. Public funding creates scientific knowledge for the public good, and now the public cares - and deserves to know - what it pays for. Eliminating the external transport barrier should suppress the fiscal instability: theory predicts that funding should stabilize - or even increase - if the value of plasma science is understood by the bulk of Congress' members before they're elected, rather than just a small population of patrons energetically lobbied in office. If the public understands the value of plasma research, Congress will too. But plasmas are poorly represented in both contemporary classrooms and public perception. To reach the "Lawson Criterion" for ignition of public understanding, we should reach out to the public and to educators nationwide. Education and outreach activities are, and ought to be, part of the professional life of a plasma scientist. Our current activities consist largely of teaching our own classes, writing papers, lobbying Congress, giving lab tours, making Web pages, and promoting education locally; these have been useful, but insufficient. Now we must do better. To stabilize fiscal instabilities for good, we should restructure not only our research programs, but our sense of what it means to be a scientist. We should coordinate our education and outreach activities on a national scale, maximizing impact while minimizing cost in time, labor, and money. To this end our existing education and outreach activities are evaluated, and new activities are suggested. A coordinated education and outreach effort is sketched, involving the DPP, the DOE, labs and universities, and everyone from our senior management to our enthusiastic students. A modification of the professional physics pipeline is proposed to encourage recruitment, retention, and development of scientists who are not only sources of new knowledge, but who also conduct, convect, and radiate their knowledge to others. The implantation of plasma topics and examples into the educational system is advocated, not to make learning harder, but so plasmas are actually treated as the fourth state of matter. If younger scientists adopt this "Coordinated Civic Science" professional spirit, and older scientists and program leaders support it, we should succeed.
National Spherical Torus Experiment (NSTX) and Planned Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Yueng Kay Martin; Ono, M.; Kaye, S.
1998-01-01
The U.S. fusion energy sciences program began in 1996 to increase emphasis on confinement concept innovation. The NSTX is being built at PPPL as a national fusion science research facility in response to this emphasis. NSTX is to test fusion science principles of the Spherical Torus (ST) plasmas, which include: (1) High plasma pressure in low magnetic field for high fusion power density, (2) Good energy confinement is a small-size plasma, (3) Nearly fully self-driven (bootstrap) plasma current, (4) Dispersed heat and particle fluxes, and (5) Plasma startup without complicated in board solenoid magnet. These properties of the ST plasma,more » if verified, would lead to possible future fusion devices of high fusion performance, small size, feasible power handling, and improved economy. The design of NSTX is depicted in a figure. The vessel will be covered fully with graphite tiles and can be baked to 350 C. Other wall condition techniques are also planned. The NSTX facilty extensively utilizes the equipment at PPPL and other reasearch institutions in collaboration. These include 6-MW High Harmonic Fast Wave (HHFW) power at {approx}30 MHz for 5 s, which will be the primary heating and current drive system following the first plasma planned for April 1999, and small ECH systems to assist breakdown for initiation. A plethora of diagnostics from TFTR and collaborators are planned. A NBI system from TFTR capable of delivering 5 MW at 80 keV for 5 s, and more powerful ECH systems are also planned for installation in 2000. The baseline plan for diagnostics systems are laid out in a figure and include: (1) Rogowski coils to measure total plasma and halo curents.« less
77 FR 38630 - Open Internet Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-28
... Computer Science and Co-Founder of the Berkman Center for Internet and Society, Harvard University, is... of Technology Computer Science and Artificial Intelligence Laboratory, is appointed vice-chairperson... Jennifer Rexford, Professor of Computer Science, Princeton University Dennis Roberson, Vice Provost...
Research in progress at the Institute for Computer Applications in Science and Engineering
NASA Technical Reports Server (NTRS)
1987-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period April 1, 1987 through October 1, 1987.
Crane, Michael; Steinwand, Dan; Beckmann, Tim; Krpan, Greg; Liu, Shu-Guang; Nichols, Erin; Haga, Jim; Maddox, Brian; Bilderback, Chris; Feller, Mark; Homer, George
2001-01-01
The overarching goal of this project is to build a spatially distributed infrastructure for information science research by forming a team of information science researchers and providing them with similar hardware and software tools to perform collaborative research. Four geographically distributed Centers of the U.S. Geological Survey (USGS) are developing their own clusters of low-cost, personal computers into parallel computing environments that provide a costeffective way for the USGS to increase participation in the high-performance computing community. Referred to as Beowulf clusters, these hybrid systems provide the robust computing power required for conducting information science research into parallel computing systems and applications.
Integrated, Reactor Relevant Solutions for Lower Hybrid Range of Frequencies Actuators
NASA Astrophysics Data System (ADS)
Shiraiwa, S.; Bonoli, P. T.; Lin, Y.; Wallace, G. M.; Wukitch, S. J.
2017-10-01
RF (radiofrequency) actuators with high system efficiency (wall-plug to plasma) and ability for continuous operation have long be recognized as essential tools for realizing a steady state tokamak. A number of physics and technological challenges to utilization remain including current drive efficiency and location, efficient coupling, and impurity contamination. In a reactor environment, plasma material interaction (PMI) issues associated with coupling structures are similar to the first wall and have been identified as a potential show-stopper. High field side (HFS) launch of LHRF power represents an integrated solution that both improves core wave physics and mitigates PMI/coupling issues. For HFS LHRF, wave penetration is vastly improves because wave accessibility scales as 1/B allowing for launching the wave at lower n|| (parallel refractive index). The lower n|| penetrate to higher electron temperature resulting in higher current drive efficiency (1/n||2). HFS RF launch also provides for a means to dramatically improve launcher robustness in a reactor environment. On the HFS, the SOL is quiescent; local density profile is steep and controlled through magnetic shape; fast particle, neutron, turbulent heat and particle fluxes are eliminated or minim Work supported by the U.S. DoE, Office of Science, Office of Fusion Energy Sciences, User Facility Alcator C-Mod under DE-FC02-99ER54512 and US DoE Contract No. DE-FC02-01ER54648 under a Scientific Discovery through Advanced Computing Initiative.
Enabling Earth Science Through Cloud Computing
NASA Technical Reports Server (NTRS)
Hardman, Sean; Riofrio, Andres; Shams, Khawaja; Freeborn, Dana; Springer, Paul; Chafin, Brian
2012-01-01
Cloud Computing holds tremendous potential for missions across the National Aeronautics and Space Administration. Several flight missions are already benefiting from an investment in cloud computing for mission critical pipelines and services through faster processing time, higher availability, and drastically lower costs available on cloud systems. However, these processes do not currently extend to general scientific algorithms relevant to earth science missions. The members of the Airborne Cloud Computing Environment task at the Jet Propulsion Laboratory have worked closely with the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to integrate cloud computing into their science data processing pipeline. This paper details the efforts involved in deploying a science data system for the CARVE mission, evaluating and integrating cloud computing solutions with the system and porting their science algorithms for execution in a cloud environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buneman, R.; Barker, R.J.; Peratt, A.L.
Highlights are presented from among the many contributions made by Oscar Buneman to the science, engineering, and mathematics communities. Emphasis is placed not only on ''what'' this pioneer of computational plasma physics contributed but, of equal importance, on ''how'' he made his contributions. Therein lies the difference between technical competence and scientific greatness. The picture which emerges illustrates the open-mindedness, enthusiasm, intellectual/physical stamina, imagination, intellectual integrity, interdisciplinary curiosity, and deep humanity that made this individual unique. As a gentleman and a scholar, he had mastered the art of making cold technical facts ''come to life.'' Oscar Buneman died peacefully atmore » his home near Stanford University on Sunday, January 24th, 1993. The profound influence he has had on many of his colleagues guarantees his immortality.« less
Teaching and Learning Methodologies Supported by ICT Applied in Computer Science
ERIC Educational Resources Information Center
Capacho, Jose
2016-01-01
The main objective of this paper is to show a set of new methodologies applied in the teaching of Computer Science using ICT. The methodologies are framed in the conceptual basis of the following sciences: Psychology, Education and Computer Science. The theoretical framework of the research is supported by Behavioral Theory, Gestalt Theory.…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-03
... Engineering; Notice of Meeting In accordance with the Federal Advisory Committee Act (Pub. L. 92- 463, as... Computer and Information Science and Engineering (1115). Date and Time: November 1, 2011 from 12 p.m.-5:30... Computer and Information Science and Engineering, National Science Foundation, 4201 Wilson Blvd., Suite...
Computer Science in High School Graduation Requirements. ECS Education Trends (Updated)
ERIC Educational Resources Information Center
Zinth, Jennifer
2016-01-01
Allowing high school students to fulfill a math or science high school graduation requirement via a computer science credit may encourage more student to pursue computer science coursework. This Education Trends report is an update to the original report released in April 2015 and explores state policies that allow or require districts to apply…
Characteristics of the Navy Laboratory Warfare Center Technical Workforce
2013-09-29
Mathematics and Information Science (M&IS) Actuarial Science 1510 Computer Science 1550 Gen. Math & Statistics 1501 Mathematics 1520 Operations...Admin. Network Systems & Data Communication Analysts Actuaries Mathematicians Operations Research Analyst Statisticians Social Science (SS...workforce was sub-divided into six broad occupational groups: Life Science , Physical Science , Engineering, Mathematics, Computer Science and Information
Transport and Dynamics in Toroidal Fusion Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sovinec, Carl
The study entitled, "Transport and Dynamics in Toroidal Fusion Systems," (TDTFS) applied analytical theory and numerical computation to investigate topics of importance to confining plasma, the fourth state of matter, with magnetic fields. A central focus of the work is how non-thermal components of the ion particle distribution affect the "sawtooth" collective oscillation in the core of the tokamak magnetic configuration. Previous experimental and analytical research had shown and described how the oscillation frequency decreases and amplitude increases, leading to "monster" or "giant" sawteeth, when the non-thermal component is increased by injecting particle beams or by exciting ions with imposedmore » electromagnetic waves. The TDTFS study applied numerical computation to self-consistently simulate the interaction between macroscopic collective plasma dynamics and the non-thermal particles. The modeling used the NIMROD code [Sovinec, Glasser, Gianakon, et al., J. Comput. Phys. 195, 355 (2004)] with the energetic component represented by simulation particles [Kim, Parker, Sovinec, and the NIMROD Team, Comput. Phys. Commun. 164, 448 (2004)]. The computations found decreasing growth rates for the instability that drives the oscillations, but they were ultimately limited from achieving experimentally relevant parameters due to computational practicalities. Nonetheless, this effort provided valuable lessons for integrated simulation of macroscopic plasma dynamics. It also motivated an investigation of the applicability of fluid-based modeling to the ion temperature gradient instability, leading to the journal publication [Schnack, Cheng, Barnes, and Parker, Phys. Plasmas 20, 062106 (2013)]. Apart from the tokamak-specific topics, the TDTFS study also addressed topics in the basic physics of magnetized plasma and in the dynamics of the reversed-field pinch (RFP) configuration. The basic physics work contributed to a study of two-fluid effects on interchange dynamics, where "two-fluid" refers to modeling independent dynamics of electron and ion species without full kinetic effects. In collaboration with scientist Ping Zhu, who received separate support, it was found that the rule-of-thumb criteria on stabilizing interchange has caveats that depend on the plasma density and temperature profiles. This work was published in [Zhu, Schnack, Ebrahimi, et al., Phys. Rev. Lett. 101, 085005 (2008)]. An investigation of general nonlinear relaxation with fluid models was partially supported by the TDTFS study and led to the publication [Khalzov, Ebrahimi, Schnack, and Mirnov, Phys. Plasmas 19, 012111 (2012)]. Work specific to the RFP included an investigation of interchange at large plasma pressure and support for applications [for example, Scheffel, Schnack, and Mirza, Nucl. Fusion 53, 113007 (2013)] of the DEBS code [Schnack, Barnes, Mikic, Harned, and Caramana, J. Comput. Phys. 70, 330 (1987)]. Finally, the principal investigator over most of the award period, Dalton Schnack, supervised a numerical study of modeling magnetic island suppression [Jenkins, Kruger, Hegna, Schnack, and Sovinec, Phys. Plasmas 17, 12502 (2010)].« less
PREFACE: 12th High-Tech Plasma Processes Conference (HTPP-12)
NASA Astrophysics Data System (ADS)
Gleizes, Alain; Ghedini, Emanuele; Gherardi, Matteo; Sanibondi, Paolo; Dilecce, Giorgio
2012-12-01
The High-Tech Plasma Processes - 12th European Plasma Conference (HTPP-12) was held in Bologna (Italy) on 24-29 June 2012. The conference series started in 1990 as a thermal plasma conference and gradually expanded to include other topic fields as well. Now the High-Tech Plasma Processes - European Plasma Conference (HTPP) is a bi-annual international conference based in Europe with topics encompassing the whole area of plasma processing science. The aim of the conference is to bring different scientific communities together, facilitate the contacts between science, technology and industry and provide a platform for the exploration of both fundamental topics and new applications of plasmas. Thanks to the efforts of the conference chairman, Professor Vittorio Colombo and of the co-chair, Professor Piero Favia, a well balanced participation from both the communities of thermal and nonthermal plasma researchers was achieved; this resulted in just about 196 attendees from 39 countries, with 8 plenary and 15 invited talks, plus 50 oral and 140 poster contributions. This volume of Journal of Physics: Conference Series gathers papers from regular contributions of HTPP-12; each contribution submitted for publication has been peer reviewed and the Editors are very grateful to the referees for their careful support in improving the original manuscripts. In the end, 39 manuscripts were accepted for publication, covering different topics of plasma processing science: from plasma fundamentals and modelling to source design and process diagnostics, from nanomaterial synthesis to surface modification, from waste treatment to plasma applications in a liquid environment. It is an honour to present this volume of Journal of Physics: Conference Series and we deeply thank the authors for their enthusiastic and high-grade contribution. Finally, we would like to thank the conference chairmen, the members of the steering committee, the international scientific committee, the local organizing committee, the organizing secretariat and the financial support from the conference sponsors that allowed the success of HTPP-12. The Editors of the HTPP 12 Proceedings Professor Alain Gleizes (head of the ISC) Dr Emanuele Ghedini Dr Matteo Gherardi Dr Paolo Sanibondi Dr Giorgio Dilecce Bologna, 30 October 2012
Transformative Pulsed Power Science and Technology
2014-12-16
Lin, D. Singleton, J. Sanders, A. Kuthi and M.A. Gundersen, “Experimental study of pulsed corona discharge in air at high pressures”, 65th Annual...Kastner, E. Gutmark, and M. A. Gundersen. “Surface Streamer Discharge for Plasma Flow Control Using Nanosecond Pulsed Power.” Plasma Sciences, IEEE... discharge in atmospheric pressure fuel/air mixtures”, J. Phys. D: Appl. Phys. 45 495401 (2012). 28. S. J. Pendleton, S. Bowman, C. Carter, M. A. Gundersen
NASA Astrophysics Data System (ADS)
Ryan, D. A.; Liu, Y. Q.; Li, L.; Kirk, A.; Dunne, M.; Dudson, B.; Piovesan, P.; Suttrop, W.; Willensdorfer, M.; the ASDEX Upgrade Team; the EUROfusion MST1 Team
2017-02-01
Edge localised modes (ELMs) are a repetitive MHD instability, which may be mitigated or suppressed by the application of resonant magnetic perturbations (RMPs). In tokamaks which have an upper and lower set of RMP coils, the applied spectrum of the RMPs can be tuned for optimal ELM control, by introducing a toroidal phase difference {{Δ }}{{Φ }} between the upper and lower rows. The magnitude of the outermost resonant component of the RMP field | {b}{{res}}1| (other proposed criteria are discussed herein) has been shown experimentally to correlate with mitigated ELM frequency, and to be controllable by {{Δ }}{{Φ }} (Kirk et al 2013 Plasma Phys. Control. Fusion 53 043007). This suggests that ELM mitigation may be optimised by choosing {{Δ }}{{Φ }}={{Δ }}{{{Φ }}}{{opt}}, such that | {b}{{res}}1| is maximised. However it is currently impractical to compute {{Δ }}{{{Φ }}}{{opt}} in advance of experiments. This motivates this computational study of the dependence of the optimal coil phase difference {{Δ }}{{{Φ }}}{{opt}}, on global plasma parameters {β }N and q 95, in order to produce a simple parametrisation of {{Δ }}{{{Φ }}}{{opt}}. In this work, a set of tokamak equilibria spanning a wide range of ({β }N, q 95) is produced, based on a reference equilibrium from an ASDEX Upgrade experiment. The MARS-F code (Liu et al 2000 Phys. Plasmas 7 3681) is then used to compute {{Δ }}{{{Φ }}}{{opt}} across this equilibrium set for toroidal mode numbers n = 1-4, both for the vacuum field and including the plasma response. The computational scan finds that for fixed plasma boundary shape, rotation profiles and toroidal mode number n, {{Δ }}{{{Φ }}}{{opt}} is a smoothly varying function of ({β }N, q 95). A 2D quadratic function in ({β }N, q 95) is used to parametrise {{Δ }}{{{Φ }}}{{opt}}, such that for given ({β }N, q 95) and n, an estimate of {{Δ }}{{{Φ }}}{{opt}} may be made without requiring a plasma response computation. To quantify the uncertainty of the parametrisation relative to a plasma response computation, {{Δ }}{{{Φ }}}{{opt}} is also computed using MARS-F for a set of benchmarking points. Each benchmarking point consists of a distinct free boundary equilibrium reconstructed from an ASDEX Upgrade RMP experiment, and set of experimental kinetic profiles and coil currents. Comparing the MARS-F predictions of {{Δ }}{{{Φ }}}{{opt}} for these benchmarking points to predictions of the 2D quadratic, shows that relative to a plasma response computation with MARS-F the 2D quadratic is accurate to 26.5° for n = 1, and 20.6° for n = 2. Potential sources for uncertainty are assessed.
Overview of the HIT-SI3 spheromak experiment
NASA Astrophysics Data System (ADS)
Hossack, A. C.; Jarboe, T. R.; Chandra, R. N.; Morgan, K. D.; Sutherland, D. A.; Everson, C. J.; Penna, J. M.; Nelson, B. A.
2017-10-01
The HIT-SI and HIT-SI3 spheromak experiments (a = 23 cm) study efficient, steady-state current drive for magnetic confinement plasmas using a novel method which is ideal for low aspect ratio, toroidal geometries. Sustained spheromaks show coherent, imposed plasma motion and low plasma-generated mode activity, indicating stability. Analysis of surface magnetic fields in HIT-SI indicates large n = 0 and 1 mode amplitudes and little energy in higher modes. Within measurement uncertainties all the n = 1 energy is imposed by the injectors, rather than being plasma-generated. The fluctuating field imposed by the injectors is sufficient to sustain the toroidal current through dynamo action whereas the plasma-generated field is not (Hossack et al., Phys. Plasmas, 2017). Ion Doppler spectroscopy shows coherent, imposed plasma motion inside r 10 cm in HIT-SI and a smaller volume of coherent motion in HIT-SI3. Coherent motion indicates the spheromak is stable and a lack of plasma-generated n = 1 energy indicates the maximum q is maintained below 1 for stability during sustainment. In HIT-SI3, the imposed mode structure is varied to test the plasma response (Hossack et al., Nucl. Fusion, 2017). Imposing n = 2, n = 3, or large, rotating n = 1 perturbations is correlated with transient plasma-generated activity. Work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-96ER54361.
ERIC Educational Resources Information Center
Falkner, Katrina; Vivian, Rebecca
2015-01-01
To support teachers to implement Computer Science curricula into classrooms from the very first year of school, teachers, schools and organisations seek quality curriculum resources to support implementation and teacher professional development. Until now, many Computer Science resources and outreach initiatives have targeted K-12 school-age…
ERIC Educational Resources Information Center
Schwarz, Christina V.; Meyer, Jason; Sharma, Ajay
2007-01-01
This study infused computer modeling and simulation tools in a 1-semester undergraduate elementary science methods course to advance preservice teachers' understandings of computer software use in science teaching and to help them learn important aspects of pedagogy and epistemology. Preservice teachers used computer modeling and simulation tools…
Prospective Students' Reactions to the Presentation of the Computer Science Major
ERIC Educational Resources Information Center
Weaver, Daniel Scott
2010-01-01
The number of students enrolling in Computer Science in colleges and Universities has declined since its peak in the early 2000s. Some claim contributing factors that intimate that prospective students fear the lack of employment opportunities if they study computing in college. However, the lack of understanding of what Computer Science is and…
Thermophysics Characterization of Multiply Ionized Air Plasma Absorption of Laser Radiation
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Rhodes, Robert; Turner, Jim (Technical Monitor)
2002-01-01
The impact of multiple ionization of air plasma on the inverse Bremsstrahlung absorption of laser radiation is investigated for air breathing laser propulsion. Thermochemical properties of multiply ionized air plasma species are computed for temperatures up to 200,000 deg K, using hydrogenic approximation of the electronic partition function; And those for neutral air molecules are also updated for temperatures up to 50,000 deg K, using available literature data. Three formulas for absorption are calculated and a general formula is recommended for multiple ionization absorption calculation. The plasma composition required for absorption calculation is obtained by increasing the degree of ionization sequentially, up to quadruple ionization, with a series of thermal equilibrium computations. The calculated second ionization absorption coefficient agrees reasonably well with that of available data. The importance of multiple ionization modeling is demonstrated with the finding that area under the quadruple ionization curve of absorption is found to be twice that of single ionization. The effort of this work is beneficial to the computational plasma aerodynamics modeling of laser lightcraft performance.
Plasma Sources for Medical Applications - A Comparison of Spot Like Plasmas and Large Area Plasmas
NASA Astrophysics Data System (ADS)
Weltmann, Klaus-Dieter
2015-09-01
Plasma applications in life science are currently emerging worldwide. Whereas today's commercially available plasma surgical technologies such as argon plasma coagulation (APC) or ablation are mainly based on lethal plasma effects on living systems, the newly emerging therapeutic applications will be based on selective, at least partially non-lethal, possibly stimulating plasma effects on living cells and tissue. Promising results could be obtained by different research groups worldwide revealing a huge potential for the application of low temperature atmospheric pressure plasma in fields such as tissue engineering, healing of chronic wounds, treatment of skin diseases, tumor treatment based on specific induction of apoptotic processes, inhibition of biofilm formation and direct action on biofilms or treatment of dental diseases. The development of suitable and reliable plasma sources for the different therapies requires an in-depth knowledge of their physics, chemistry and parameters. Therefore much basic research still needs to be conducted to minimize risk and to provide a scientific fundament for new plasma-based medical therapies. It is essential to perform a comprehensive assessment of physical and biological experiments to clarify minimum standards for plasma sources for applications in life science and for comparison of different sources. One result is the DIN-SPEC 91315, which is now open for further improvements. This contribution intends to give an overview on the status of commercial cold plasma sources as well as cold plasma sources still under development for medical use. It will discuss needs, prospects and approaches for the characterization of plasmas from different points of view. Regarding the manageability in everyday medical life, atmospheric pressure plasma jets (APPJ) and dielectric barrier discharges (DBD) are of special interest. A comprehensive risk-benefit assessment including the state of the art of commercial sources for medical use will be discussed.
PREPARING FOR EXASCALE: ORNL Leadership Computing Application Requirements and Strategy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joubert, Wayne; Kothe, Douglas B; Nam, Hai Ah
2009-12-01
In 2009 the Oak Ridge Leadership Computing Facility (OLCF), a U.S. Department of Energy (DOE) facility at the Oak Ridge National Laboratory (ORNL) National Center for Computational Sciences (NCCS), elicited petascale computational science requirements from leading computational scientists in the international science community. This effort targeted science teams whose projects received large computer allocation awards on OLCF systems. A clear finding of this process was that in order to reach their science goals over the next several years, multiple projects will require computational resources in excess of an order of magnitude more powerful than those currently available. Additionally, for themore » longer term, next-generation science will require computing platforms of exascale capability in order to reach DOE science objectives over the next decade. It is generally recognized that achieving exascale in the proposed time frame will require disruptive changes in computer hardware and software. Processor hardware will become necessarily heterogeneous and will include accelerator technologies. Software must undergo the concomitant changes needed to extract the available performance from this heterogeneous hardware. This disruption portends to be substantial, not unlike the change to the message passing paradigm in the computational science community over 20 years ago. Since technological disruptions take time to assimilate, we must aggressively embark on this course of change now, to insure that science applications and their underlying programming models are mature and ready when exascale computing arrives. This includes initiation of application readiness efforts to adapt existing codes to heterogeneous architectures, support of relevant software tools, and procurement of next-generation hardware testbeds for porting and testing codes. The 2009 OLCF requirements process identified numerous actions necessary to meet this challenge: (1) Hardware capabilities must be advanced on multiple fronts, including peak flops, node memory capacity, interconnect latency, interconnect bandwidth, and memory bandwidth. (2) Effective parallel programming interfaces must be developed to exploit the power of emerging hardware. (3) Science application teams must now begin to adapt and reformulate application codes to the new hardware and software, typified by hierarchical and disparate layers of compute, memory and concurrency. (4) Algorithm research must be realigned to exploit this hierarchy. (5) When possible, mathematical libraries must be used to encapsulate the required operations in an efficient and useful way. (6) Software tools must be developed to make the new hardware more usable. (7) Science application software must be improved to cope with the increasing complexity of computing systems. (8) Data management efforts must be readied for the larger quantities of data generated by larger, more accurate science models. Requirements elicitation, analysis, validation, and management comprise a difficult and inexact process, particularly in periods of technological change. Nonetheless, the OLCF requirements modeling process is becoming increasingly quantitative and actionable, as the process becomes more developed and mature, and the process this year has identified clear and concrete steps to be taken. This report discloses (1) the fundamental science case driving the need for the next generation of computer hardware, (2) application usage trends that illustrate the science need, (3) application performance characteristics that drive the need for increased hardware capabilities, (4) resource and process requirements that make the development and deployment of science applications on next-generation hardware successful, and (5) summary recommendations for the required next steps within the computer and computational science communities.« less
Using the Tower of Hanoi puzzle to infuse your mathematics classroom with computer science concepts
NASA Astrophysics Data System (ADS)
Marzocchi, Alison S.
2016-07-01
This article suggests that logic puzzles, such as the well-known Tower of Hanoi puzzle, can be used to introduce computer science concepts to mathematics students of all ages. Mathematics teachers introduce their students to computer science concepts that are enacted spontaneously and subconsciously throughout the solution to the Tower of Hanoi puzzle. These concepts include, but are not limited to, conditionals, iteration, and recursion. Lessons, such as the one proposed in this article, are easily implementable in mathematics classrooms and extracurricular programmes as they are good candidates for 'drop in' lessons that do not need to fit into any particular place in the typical curriculum sequence. As an example for readers, the author describes how she used the puzzle in her own Number Sense and Logic course during the federally funded Upward Bound Math/Science summer programme for college-intending low-income high school students. The article explains each computer science term with real-life and mathematical examples, applies each term to the Tower of Hanoi puzzle solution, and describes how students connected the terms to their own solutions of the puzzle. It is timely and important to expose mathematics students to computer science concepts. Given the rate at which technology is currently advancing, and our increased dependence on technology in our daily lives, it has become more important than ever for children to be exposed to computer science. Yet, despite the importance of exposing today's children to computer science, many children are not given adequate opportunity to learn computer science in schools. In the United States, for example, most students finish high school without ever taking a computing course. Mathematics lessons, such as the one described in this article, can help to make computer science more accessible to students who may have otherwise had little opportunity to be introduced to these increasingly important concepts.
NASA Astrophysics Data System (ADS)
Priest, Richard Harding
A significant percentage of high school science teachers are not using computers to teach their students or prepare them for standardized testing. A survey of high school science teachers was conducted to determine how they are having students use computers in the classroom, why science teachers are not using computers in the classroom, which variables were relevant to their not using computers, and what are the effects of standardized testing on the use of technology in the high school science classroom. A self-administered questionnaire was developed to measure these aspects of computer integration and demographic information. A follow-up telephone interview survey of a portion of the original sample was conducted in order to clarify questions, correct misunderstandings, and to draw out more holistic descriptions from the subjects. The primary method used to analyze the quantitative data was frequency distributions. Multiple regression analysis was used to investigate the relationships between the barriers and facilitators and the dimensions of instructional use, frequency, and importance of the use of computers. All high school science teachers in a large urban/suburban school district were sent surveys. A response rate of 58% resulted from two mailings of the survey. It was found that contributing factors to why science teachers do not use computers were not enough up-to-date computers in their classrooms and other educational commitments and duties do not leave them enough time to prepare lessons that include technology. While a high percentage of science teachers thought their school and district administrations were supportive of technology, they also believed more inservice technology training and follow-up activities to support that training are needed and more software needs to be created. The majority of the science teachers do not use the computer to help students prepare for standardized tests because they believe they can prepare students more efficiently without a computer. Nearly half of the teachers, however, gave lack of time to prepare instructional materials and lack of a means to project a computer image to the whole class as reasons they do not use computers. A significant percentage thought science standardized testing was having a negative effect on computer use.
Educational NASA Computational and Scientific Studies (enCOMPASS)
NASA Technical Reports Server (NTRS)
Memarsadeghi, Nargess
2013-01-01
Educational NASA Computational and Scientific Studies (enCOMPASS) is an educational project of NASA Goddard Space Flight Center aimed at bridging the gap between computational objectives and needs of NASA's scientific research, missions, and projects, and academia's latest advances in applied mathematics and computer science. enCOMPASS achieves this goal via bidirectional collaboration and communication between NASA and academia. Using developed NASA Computational Case Studies in university computer science/engineering and applied mathematics classes is a way of addressing NASA's goals of contributing to the Science, Technology, Education, and Math (STEM) National Objective. The enCOMPASS Web site at http://encompass.gsfc.nasa.gov provides additional information. There are currently nine enCOMPASS case studies developed in areas of earth sciences, planetary sciences, and astrophysics. Some of these case studies have been published in AIP and IEEE's Computing in Science and Engineering magazines. A few university professors have used enCOMPASS case studies in their computational classes and contributed their findings to NASA scientists. In these case studies, after introducing the science area, the specific problem, and related NASA missions, students are first asked to solve a known problem using NASA data and past approaches used and often published in a scientific/research paper. Then, after learning about the NASA application and related computational tools and approaches for solving the proposed problem, students are given a harder problem as a challenge for them to research and develop solutions for. This project provides a model for NASA scientists and engineers on one side, and university students, faculty, and researchers in computer science and applied mathematics on the other side, to learn from each other's areas of work, computational needs and solutions, and the latest advances in research and development. This innovation takes NASA science and engineering applications to computer science and applied mathematics university classes, and makes NASA objectives part of the university curricula. There is great potential for growth and return on investment of this program to the point where every major university in the U.S. would use at least one of these case studies in one of their computational courses, and where every NASA scientist and engineer facing a computational challenge (without having resources or expertise to solve it) would use enCOMPASS to formulate the problem as a case study, provide it to a university, and get back their solutions and ideas.
NASA Technical Reports Server (NTRS)
1993-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics and computer science during the period April 1, 1993 through September 30, 1993. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustic and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science.
NASA Technical Reports Server (NTRS)
1994-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1993 through March 31, 1994. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustics and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science.
Creating Science Simulations through Computational Thinking Patterns
ERIC Educational Resources Information Center
Basawapatna, Ashok Ram
2012-01-01
Computational thinking aims to outline fundamental skills from computer science that everyone should learn. As currently defined, with help from the National Science Foundation (NSF), these skills include problem formulation, logically organizing data, automating solutions through algorithmic thinking, and representing data through abstraction.…
77 FR 65417 - Proposal Review Panel for Computing Communication Foundations; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-26
...: To assess the progress of the EIC Award, ``Collaborative Research: Computational Behavioral Science... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Computing Communication Foundations; Notice... National Science Foundation announces the following meeting: Name: Site Visit, Proposal Panel Review for...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerber, Richard; Hack, James; Riley, Katherine
The mission of the U.S. Department of Energy Office of Science (DOE SC) is the delivery of scientific discoveries and major scientific tools to transform our understanding of nature and to advance the energy, economic, and national security missions of the United States. To achieve these goals in today’s world requires investments in not only the traditional scientific endeavors of theory and experiment, but also in computational science and the facilities that support large-scale simulation and data analysis. The Advanced Scientific Computing Research (ASCR) program addresses these challenges in the Office of Science. ASCR’s mission is to discover, develop, andmore » deploy computational and networking capabilities to analyze, model, simulate, and predict complex phenomena important to DOE. ASCR supports research in computational science, three high-performance computing (HPC) facilities — the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory and Leadership Computing Facilities at Argonne (ALCF) and Oak Ridge (OLCF) National Laboratories — and the Energy Sciences Network (ESnet) at Berkeley Lab. ASCR is guided by science needs as it develops research programs, computers, and networks at the leading edge of technologies. As we approach the era of exascale computing, technology changes are creating challenges for science programs in SC for those who need to use high performance computing and data systems effectively. Numerous significant modifications to today’s tools and techniques will be needed to realize the full potential of emerging computing systems and other novel computing architectures. To assess these needs and challenges, ASCR held a series of Exascale Requirements Reviews in 2015–2017, one with each of the six SC program offices,1 and a subsequent Crosscut Review that sought to integrate the findings from each. Participants at the reviews were drawn from the communities of leading domain scientists, experts in computer science and applied mathematics, ASCR facility staff, and DOE program managers in ASCR and the respective program offices. The purpose of these reviews was to identify mission-critical scientific problems within the DOE Office of Science (including experimental facilities) and determine the requirements for the exascale ecosystem that would be needed to address those challenges. The exascale ecosystem includes exascale computing systems, high-end data capabilities, efficient software at scale, libraries, tools, and other capabilities. This effort will contribute to the development of a strategic roadmap for ASCR compute and data facility investments and will help the ASCR Facility Division establish partnerships with Office of Science stakeholders. It will also inform the Office of Science research needs and agenda. The results of the six reviews have been published in reports available on the web at http://exascaleage.org/. This report presents a summary of the individual reports and of common and crosscutting findings, and it identifies opportunities for productive collaborations among the DOE SC program offices.« less
ERIC Educational Resources Information Center
Grandell, Linda
2005-01-01
Computer science is becoming increasingly important in our society. Meta skills, such as problem solving and logical and algorithmic thinking, are emphasized in every field, not only in the natural sciences. Still, largely due to gaps in tuition, common misunderstandings exist about the true nature of computer science. These are especially…
Non-parallel processing: Gendered attrition in academic computer science
NASA Astrophysics Data System (ADS)
Cohoon, Joanne Louise Mcgrath
2000-10-01
This dissertation addresses the issue of disproportionate female attrition from computer science as an instance of gender segregation in higher education. By adopting a theoretical framework from organizational sociology, it demonstrates that the characteristics and processes of computer science departments strongly influence female retention. The empirical data identifies conditions under which women are retained in the computer science major at comparable rates to men. The research for this dissertation began with interviews of students, faculty, and chairpersons from five computer science departments. These exploratory interviews led to a survey of faculty and chairpersons at computer science and biology departments in Virginia. The data from these surveys are used in comparisons of the computer science and biology disciplines, and for statistical analyses that identify which departmental characteristics promote equal attrition for male and female undergraduates in computer science. This three-pronged methodological approach of interviews, discipline comparisons, and statistical analyses shows that departmental variation in gendered attrition rates can be explained largely by access to opportunity, relative numbers, and other characteristics of the learning environment. Using these concepts, this research identifies nine factors that affect the differential attrition of women from CS departments. These factors are: (1) The gender composition of enrolled students and faculty; (2) Faculty turnover; (3) Institutional support for the department; (4) Preferential attitudes toward female students; (5) Mentoring and supervising by faculty; (6) The local job market, starting salaries, and competitiveness of graduates; (7) Emphasis on teaching; and (8) Joint efforts for student success. This work contributes to our understanding of the gender segregation process in higher education. In addition, it contributes information that can lead to effective solutions for an economically significant issue in modern American society---gender equality in computer science.
Recent advances in plasma modeling for space applications
NASA Astrophysics Data System (ADS)
Srinivasan, Bhuvana; Scales, Wayne; Cagas, Petr; Glesner, Colin
2017-02-01
This paper presents a brief overview of the application of advanced plasma modeling techniques to several space science and engineering problems currently of significant interest. Recent advances in both kinetic and fluid modeling provide the ability to study a wide variety of problems that may be important to space plasmas including spacecraft-environment interactions, plasma-material interactions for propulsion systems such as Hall thrusters, ionospheric plasma instabilities, plasma separation from magnetic nozzles, active space experiments, and a host of additional problems. Some of the key findings are summarized here.
High-current plasma contactor neutralizer system
NASA Technical Reports Server (NTRS)
Beattie, J. R.; Williamson, W. S.; Matossian, J. N.; Vourgourakis, E. J.; Burch, J. L.
1989-01-01
A plasma-contactor neutralizer system is described, for the stabilizing the Orbiter's potential during flights of the Atmospheric Laboratory for Applications and Science missions. The plasma contactor neutralizer will include a Xe plasma source that can provide steady-state ion-emission currents of up to 1.5 A. The Orbiter's potential will be maintained near that of the surrounding space plasma during electron-beam accelerator firings through a combination of ion emission from the Xe plasma source and electron collection from the ambient space plasma. Configuration diagrams and block diagrams are presented along with the performance characteristics of the system.
Conceptual design of Dipole Research Experiment (DREX)
NASA Astrophysics Data System (ADS)
Xiao, Qingmei; Wang, Zhibin; Wang, Xiaogang; Xiao, Chijie; Yang, Xiaoyi; Zheng, Jinxing
2017-03-01
A new terrella-like device for laboratory simulation of inner magnetosphere plasmas, Dipole Research Experiment, is scheduled to be built at the Harbin Institute of Technology (HIT), China, as a major state scientific research facility for space physics studies. It is designed to provide a ground experimental platform to reproduce the inner magnetosphere to simulate the processes of trapping, acceleration, and transport of energetic charged particles restrained in a dipole magnetic field configuration. The scaling relation of hydromagnetism between the laboratory plasma of the device and the geomagnetosphere plasma is applied to resemble geospace processes in the Dipole Research Experiment plasma. Multiple plasma sources, different kinds of coils with specific functions, and advanced diagnostics are designed to be equipped in the facility for multi-functions. The motivation, design criteria for the Dipole Research Experiment experiments and the means applied to generate the plasma of desired parameters in the laboratory are also described. Supported by National Natural Science Foundation of China (Nos. 11505040, 11261140326 and 11405038), China Postdoctoral Science Foundation (Nos. 2016M591518, 2015M570283) and Project Supported by Natural Scientific Research Innovation Foundation in Harbin Institute of Technology (No. 2017008).
Report on Computing and Networking in the Space Science Laboratory by the SSL Computer Committee
NASA Technical Reports Server (NTRS)
Gallagher, D. L. (Editor)
1993-01-01
The Space Science Laboratory (SSL) at Marshall Space Flight Center is a multiprogram facility. Scientific research is conducted in four discipline areas: earth science and applications, solar-terrestrial physics, astrophysics, and microgravity science and applications. Representatives from each of these discipline areas participate in a Laboratory computer requirements committee, which developed this document. The purpose is to establish and discuss Laboratory objectives for computing and networking in support of science. The purpose is also to lay the foundation for a collective, multiprogram approach to providing these services. Special recognition is given to the importance of the national and international efforts of our research communities toward the development of interoperable, network-based computer applications.
New Outreach Initiatives at the Princeton Plasma Physics Laboratory
NASA Astrophysics Data System (ADS)
Zwicker, Andrew; Dominguez, Arturo; Greco, Shannon; Ortiz, Deedee; Delooper, John
2015-11-01
In FY15, PPPL concentrated its efforts on a portfolio of outreach activities centered around plasma science and fusion energy that have the potential to reach a large audience and have a significant and measurable impact. The overall goal of these outreach activities is to expose the public (within New Jersey, the US and the world) to the Department of Energy's scientific endeavors and specifically to PPPL's research regarding fusion and plasma science. The projects include several new activities along with upgrades to existing ones. The new activities include the development of outreach demos for the plasma physics community and the upgrade of the Internet Plasma Physics Experience (IPPEX). Our first plasma demo is a low cost DC glow discharge, suitable for tours as well as for student laboratories (plasma breakdown, spectroscopy, probes). This has been field tested in a variety of classes and events. The upgrade to the IPPEX web site includes a new template and a new interactive virtual tokamak. Future work on IPPEX will provide users limited access to data from NSTX-U. Finally, our Young Women's Conference was expanded and improved. These and other new outreach activities will be presented.
Spectroscopic Study of a Pulsed High-Energy Plasma Deflagration Accelerator
NASA Astrophysics Data System (ADS)
Loebner, Keith; Underwood, Thomas; Mouratidis, Theodore; Cappelli, Mark
2015-11-01
Observations of broadened Balmer lines emitted by a highly-ionized transient plasma jet are presented. A gated CCD camera coupled to a high-resolution spectrometer is used to obtain chord-averaged broadening data for a complete cross section of the plasma jet, and the data is Abel inverted to derive the radial plasma density distribution. This measurement is performed over narrow gate widths and at multiple axial positions to provide high spatial and temporal resolution. A streak camera coupled to a spectrometer is used to obtain continuous-time broadening data over the entire duration of the discharge event (10-50 microseconds). Analyses of discharge characteristics and comparisons with previous work are discussed. This work is supported by the U.S. Department of Energy Stewardship Science Academic Program, as well as the National Defense Science Engineering Graduate Fellowship.
NASA Astrophysics Data System (ADS)
Falkner, Katrina; Vivian, Rebecca
2015-10-01
To support teachers to implement Computer Science curricula into classrooms from the very first year of school, teachers, schools and organisations seek quality curriculum resources to support implementation and teacher professional development. Until now, many Computer Science resources and outreach initiatives have targeted K-12 school-age children, with the intention to engage children and increase interest, rather than to formally teach concepts and skills. What is the educational quality of existing Computer Science resources and to what extent are they suitable for classroom learning and teaching? In this paper, an assessment framework is presented to evaluate the quality of online Computer Science resources. Further, a semi-systematic review of available online Computer Science resources was conducted to evaluate resources available for classroom learning and teaching and to identify gaps in resource availability, using the Australian curriculum as a case study analysis. The findings reveal a predominance of quality resources, however, a number of critical gaps were identified. This paper provides recommendations and guidance for the development of new and supplementary resources and future research.
Ambient belonging: how stereotypical cues impact gender participation in computer science.
Cheryan, Sapna; Plaut, Victoria C; Davies, Paul G; Steele, Claude M
2009-12-01
People can make decisions to join a group based solely on exposure to that group's physical environment. Four studies demonstrate that the gender difference in interest in computer science is influenced by exposure to environments associated with computer scientists. In Study 1, simply changing the objects in a computer science classroom from those considered stereotypical of computer science (e.g., Star Trek poster, video games) to objects not considered stereotypical of computer science (e.g., nature poster, phone books) was sufficient to boost female undergraduates' interest in computer science to the level of their male peers. Further investigation revealed that the stereotypical broadcast a masculine stereotype that discouraged women's sense of ambient belonging and subsequent interest in the environment (Studies 2, 3, and 4) but had no similar effect on men (Studies 3, 4). This masculine stereotype prevented women's interest from developing even in environments entirely populated by other women (Study 2). Objects can thus come to broadcast stereotypes of a group, which in turn can deter people who do not identify with these stereotypes from joining that group.
Atomic Oxygen Energy in Low Frequency Hyperthermal Plasma Ashers
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Miller, Sharon K R.; Kneubel, Christian A.
2014-01-01
Experimental and analytical analysis of the atomic oxygen erosion of pyrolytic graphite as well as Monte Carlo computational modeling of the erosion of Kapton H (DuPont, Wilmington, DE) polyimide was performed to determine the hyperthermal energy of low frequency (30 to 35 kHz) plasma ashers operating on air. It was concluded that hyperthermal energies in the range of 0.3 to 0.9 eV are produced in the low frequency air plasmas which results in texturing similar to that in low Earth orbit (LEO). Monte Carlo computational modeling also indicated that such low energy directed ions are fully capable of producing the experimentally observed textured surfaces in low frequency plasmas.
Computer simulation of schlieren images of rotationally symmetric plasma systems: a simple method.
Noll, R; Haas, C R; Weikl, B; Herziger, G
1986-03-01
Schlieren techniques are commonly used methods for quantitative analysis of cylindrical or spherical index of refraction profiles. Many schlieren objects, however, are characterized by more complex geometries, so we have investigated the more general case of noncylindrical, rotationally symmetric distributions of index of refraction n(r,z). Assuming straight ray paths in the schlieren object we have calculated 2-D beam deviation profiles. It is shown that experimental schlieren images of the noncylindrical plasma generated by a plasma focus device can be simulated with these deviation profiles. The computer simulation allows a quantitative analysis of these schlieren images, which yields, for example, the plasma parameters, electron density, and electron density gradients.
Simulation of charge exchange plasma propagation near an ion thruster propelled spacecraft
NASA Technical Reports Server (NTRS)
Robinson, R. S.; Kaufman, H. R.; Winder, D. R.
1981-01-01
A model describing the charge exchange plasma and its propagation is discussed, along with a computer code based on the model. The geometry of an idealized spacecraft having an ion thruster is outlined, with attention given to the assumptions used in modeling the ion beam. Also presented is the distribution function describing charge exchange production. The barometric equation is used in relating the variation in plasma potential to the variation in plasma density. The numerical methods and approximations employed in the calculations are discussed, and comparisons are made between the computer simulation and experimental data. An analytical solution of a simple configuration is also used in verifying the model.
PerSEUS: Ultra-Low-Power High Performance Computing for Plasma Simulations
NASA Astrophysics Data System (ADS)
Doxas, I.; Andreou, A.; Lyon, J.; Angelopoulos, V.; Lu, S.; Pritchett, P. L.
2017-12-01
Peta-op SupErcomputing Unconventional System (PerSEUS) aims to explore the use for High Performance Scientific Computing (HPC) of ultra-low-power mixed signal unconventional computational elements developed by Johns Hopkins University (JHU), and demonstrate that capability on both fluid and particle Plasma codes. We will describe the JHU Mixed-signal Unconventional Supercomputing Elements (MUSE), and report initial results for the Lyon-Fedder-Mobarry (LFM) global magnetospheric MHD code, and a UCLA general purpose relativistic Particle-In-Cell (PIC) code.
Vacuum ultraviolet line radiation measurements of a shock-heated nitrogen plasma
NASA Technical Reports Server (NTRS)
Mcclenahan, J. O.
1972-01-01
Line radiation, in the wavelength region from 1040 to 2500 A from nitrogen plasmas, was measured at conditions typical of those produced in the shock layer in front of vehicles entering the earth's atmosphere at superorbital velocities. The radiation was also predicted with a typical radiation transport computer program to determine whether such calculations adequately model plasmas for the conditions tested. The results of the comparison show that the radiant intensities of the lines between 1040 and 1700 A are actually lower than are predicted by such computer models.
ERIC Educational Resources Information Center
Buczynski, James Andrew
2005-01-01
Developing a library collection to support the curriculum of Canada's largest computer studies school has debunked many myths about collecting computer science and technology information resources. Computer science students are among the heaviest print book and e-book users in the library. Circulation statistics indicate that the demand for print…
Snatching Defeat from the Jaws of Victory: When Good Projects Go Bad. Girls and Computer Science.
ERIC Educational Resources Information Center
Sanders, Jo
In week-long semesters in the summers of 1997, 1998, and 1999, the 6APT (Summer Institute in Computer Science for Advanced Placement Teachers) project taught 240 high school teachers of Advanced Placement Computer Science (APCS) about gender equity in computers. Teachers were then followed through 2000. Results indicated that while teachers, did…
Specification of the Surface Charging Environment with SHIELDS
NASA Astrophysics Data System (ADS)
Jordanova, V.; Delzanno, G. L.; Henderson, M. G.; Godinez, H. C.; Jeffery, C. A.; Lawrence, E. C.; Meierbachtol, C.; Moulton, J. D.; Vernon, L.; Woodroffe, J. R.; Brito, T.; Toth, G.; Welling, D. T.; Yu, Y.; Albert, J.; Birn, J.; Borovsky, J.; Denton, M.; Horne, R. B.; Lemon, C.; Markidis, S.; Thomsen, M. F.; Young, S. L.
2016-12-01
Predicting variations in the near-Earth space environment that can lead to spacecraft damage and failure, i.e. "space weather", remains a big space physics challenge. A recently funded project through the Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) program aims at developing a new capability to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. The project goals are to understand the dynamics of the surface charging environment (SCE), the hot (keV) electrons representing the source and seed populations for the radiation belts, on both macro- and microscale. Important physics questions related to rapid particle injection and acceleration associated with magnetospheric storms and substorms as well as plasma waves are investigated. These challenging problems are addressed using a team of world-class experts in the fields of space science and computational plasma physics, and state-of-the-art models and computational facilities. In addition to physics-based models (like RAM-SCB, BATS-R-US, and iPIC3D), new data assimilation techniques employing data from LANL instruments on the Van Allen Probes and geosynchronous satellites are developed. Simulations with the SHIELDS framework of the near-Earth space environment where operational satellites reside are presented. Further model development and the organization of a "Spacecraft Charging Environment Challenge" by the SHIELDS project at LANL in collaboration with the NSF Geospace Environment Modeling (GEM) Workshop and the multi-agency Community Coordinated Modeling Center (CCMC) to assess the accuracy of SCE predictions are discussed.
NASA Astrophysics Data System (ADS)
Neyts, Erik C.; Yusupov, Maksudbek; Verlackt, Christof C.; Bogaerts, Annemie
2014-07-01
Plasma medicine is a rapidly evolving multidisciplinary field at the intersection of chemistry, biochemistry, physics, biology, medicine and bioengineering. It holds great potential in medical, health care, dentistry, surgical, food treatment and other applications. This multidisciplinary nature and variety of possible applications come along with an inherent and intrinsic complexity. Advancing plasma medicine to the stage that it becomes an everyday tool in its respective fields requires a fundamental understanding of the basic processes, which is lacking so far. However, some major advances have already been made through detailed experiments over the last 15 years. Complementary, computer simulations may provide insight that is difficult—if not impossible—to obtain through experiments. In this review, we aim to provide an overview of the various simulations that have been carried out in the context of plasma medicine so far, or that are relevant for plasma medicine. We focus our attention mostly on atomistic simulations dealing with plasma-biomolecule interactions. We also provide a perspective and tentative list of opportunities for future modelling studies that are likely to further advance the field.
77 FR 12823 - Advanced Scientific Computing Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-02
... Exascale ARRA projects--Magellan final report, Advanced Networking update Status from Computer Science COV Early Career technical talks Summary of Applied Math and Computer Science Workshops ASCR's new SBIR..., Office of Science. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the...
75 FR 18407 - Investing in Innovation Fund
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-12
... include computer science rather than science. To correct this error, the Department makes the following..., in footnote number eight, in line six, ``including science'' is replaced with ``including computer... obtain this document in an accessible format (e.g., Braille, large print, audiotape, or computer diskette...
Innovative Science Experiments Using Phoenix
ERIC Educational Resources Information Center
Kumar, B. P. Ajith; Satyanarayana, V. V. V.; Singh, Kundan; Singh, Parmanand
2009-01-01
A simple, flexible and very low cost hardware plus software framework for developing computer-interfaced science experiments is presented. It can be used for developing computer-interfaced science experiments without getting into the details of electronics or computer programming. For developing experiments this is a middle path between…
The Metamorphosis of an Introduction to Computer Science.
ERIC Educational Resources Information Center
Ben-Jacob, Marion G.
1997-01-01
Introductory courses in computer science at colleges and universities have undergone significant changes in 20 years. This article provides an overview of the history of introductory computer science (FORTRAN, ANSI flowchart symbols, BASIC, data processing concepts, and PASCAL) and its future (robotics and C++). (PEN)
ERIC Educational Resources Information Center
Brady, Corey; Orton, Kai; Weintrop, David; Anton, Gabriella; Rodriguez, Sebastian; Wilensky, Uri
2017-01-01
Computer science (CS) is becoming an increasingly diverse domain. This paper reports on an initiative designed to introduce underrepresented populations to computing using an eclectic, multifaceted approach. As part of a yearlong computing course, students engage in Maker activities, participatory simulations, and computing projects that…
After-Hours Science: Microchips and Onion Dip.
ERIC Educational Resources Information Center
Brugger, Steve
1984-01-01
Computer programs were developed for a science center nutrition exhibit. The exhibit was recognized by the National Science Teachers Association Search for Excellence in Science Education as an outstanding science program. The computer programs (Apple II) and their use in the exhibit are described. (BC)
Complex Plasma Physics and Rising Above the Gathering Storm
NASA Astrophysics Data System (ADS)
Hyde, Truell
2008-11-01
Research in complex plasma is prevalent across a variety of regimes ranging from the majority of plasma processing environments to many astrophysical settings. Dust particles suspended within such plasmas acquire a charge from collisions with electrons and ions in the plasma. Depending upon the ratio of their interparticle potential energy to their average kinetic energy, once charged these particles can form a gaseous, liquid or crystalline structure with short to longer range ordering. The field of complex plasmas thus offers research opportunities across a wide range of academic disciplines including physics, chemistry, biology, mathematics, electrical engineering and nanoscience. The field of complex plasmas also offers unique educational research opportunities for combating many of the issues raised in Rising Above the Gathering Storm, recently published by the National Academies Press. CASPER's Educational Outreach programs, supported by the National Science Foundation, the Department of Education and the Department of Labor takes advantage of these opportunities through a variety of avenues including a REU / RET program, a High School Scholars Program, integrated curriculum development and the CASPER Physics Circus. Together, these programs impact thousands of students and parents while providing K-12 teachers with curriculum, supporting hands-on material and support for introducing plasma and basic physical science concepts into the classroom. Both research results and educational outreach concepts from the above will be discussed.
Fusion/Astrophysics Teacher Research Academy
NASA Astrophysics Data System (ADS)
Correll, Donald
2005-10-01
In order to engage California high school science teachers in the area of plasma physics and fusion research, LLNL's Fusion Energy Program has partnered with the UC Davis Edward Teller Education Center, ETEC (http://etec.ucdavis.edu), the Stanford University Solar Center (http://solar-center.stanford.edu) and LLNL's Science / Technology Education Program, STEP (http://education.llnl.gov). A four-level ``Fusion & Astrophysics Research Academy'' has been designed to give teachers experience in conducting research using spectroscopy with their students. Spectroscopy, and its relationship to atomic physics and electromagnetism, provides for an ideal plasma `bridge' to the CA Science Education Standards (http://www.cde.ca.gov/be/st/ss/scphysics.asp). Teachers attend multiple-day professional development workshops to explore new research activities for use in the high school science classroom. A Level I, 3-day program consists of two days where teachers learn how plasma researchers use spectrometers followed by instructions on how to use a research grade spectrometer for their own investigations. A 3rd day includes touring LLNL's SSPX (http://www.mfescience.org/sspx/) facility to see spectrometry being used to measure plasma properties. Spectrometry classroom kits are made available for loaning to participating teachers. Level I workshop results (http://education.llnl.gov/fusion&_slash;astro/) will be presented along with plans being developed for Level II (one week advanced SKA's), Level III (pre-internship), and Level IV (summer internship) research academies.
Flute Instability of Expanding Plasma Cloud
NASA Astrophysics Data System (ADS)
Dudnikova, Galina; Vshivkov, Vitali
2000-10-01
The expansion of plasma against a magnetized background where collisions play no role is a situation common to many plasma phenomena. The character of interaction between expanding plasma and background plasma is depending of the ratio of the expansion velocity to the ambient Alfven velocity. If the expansion speed is greater than the background Alfven speed (super-Alfvenic flows) a collisionless shock waves are formed in background plasma. It is originally think that if the expansion speed is less than Alfvenic speed (sub-Alfvenic flows) the interaction of plasma flows will be laminar in nature. However, the results of laboratory experiments and chemical releases in magnetosphere have shown the development of flute instability on the boundary of expanding plasma (Rayleigh-Taylor instability). A lot of theoretical and experimental papers have been devoted to study the Large Larmor Flute Instability (LLFI) of plasma expanding into a vacuum magnetic field. In the present paper on the base of computer simulation of plasma cloud expansion in magnetizied background plasma the regimes of development and stabilization LLFI for super- and sub-Alfvenic plasma flows are investigated. 2D hybrid numerical model is based on kinetic Vlasov equation for ions and hydrodynamic approximation for electrons. The similarity parameters characterizing the regimes of laminar flows are founded. The stabilization of LLFI takes place with the transition from sub- to super-Alfvenic plasma cloud expansion. The results of the comparision between computer simulation and laboratory simulation are described.
Computing Education in Korea--Current Issues and Endeavors
ERIC Educational Resources Information Center
Choi, Jeongwon; An, Sangjin; Lee, Youngjun
2015-01-01
Computer education has been provided for a long period of time in Korea. Starting as a vocational program, the content of computer education for students evolved to include content on computer literacy, Information Communication Technology (ICT) literacy, and brand-new computer science. While a new curriculum related to computer science was…
NASA Astrophysics Data System (ADS)
Song, Wanjun; Zhang, Hou
2017-11-01
Through introducing the alternating direction implicit (ADI) technique and the memory-optimized algorithm to the shift operator (SO) finite difference time domain (FDTD) method, the memory-optimized SO-ADI FDTD for nonmagnetized collisional plasma is proposed and the corresponding formulae of the proposed method for programming are deduced. In order to further the computational efficiency, the iteration method rather than Gauss elimination method is employed to solve the equation set in the derivation of the formulae. Complicated transformations and convolutions are avoided in the proposed method compared with the Z transforms (ZT) ADI FDTD method and the piecewise linear JE recursive convolution (PLJERC) ADI FDTD method. The numerical dispersion of the SO-ADI FDTD method with different plasma frequencies and electron collision frequencies is analyzed and the appropriate ratio of grid size to the minimum wavelength is given. The accuracy of the proposed method is validated by the reflection coefficient test on a nonmagnetized collisional plasma sheet. The testing results show that the proposed method is advantageous for improving computational efficiency and saving computer memory. The reflection coefficient of a perfect electric conductor (PEC) sheet covered by multilayer plasma and the RCS of the objects coated by plasma are calculated by the proposed method and the simulation results are analyzed.
75 FR 18492 - Investing in Innovation Fund; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-12
... those disciplines, we intended to include computer science rather than science. To correct this error... ``including computer science.'' Program Authority: Section 14007 of division A of the American Recovery and....g., braille, large print, audiotape, or computer diskette) on request to the contact listed in this...
Process-Based Development of Competence Models to Computer Science Education
ERIC Educational Resources Information Center
Zendler, Andreas; Seitz, Cornelia; Klaudt, Dieter
2016-01-01
A process model ("cpm.4.CSE") is introduced that allows the development of competence models in computer science education related to curricular requirements. It includes eight subprocesses: (a) determine competence concept, (b) determine competence areas, (c) identify computer science concepts, (d) assign competence dimensions to…
The Role of Physicality in Rich Programming Environments
ERIC Educational Resources Information Center
Liu, Allison S.; Schunn, Christian D.; Flot, Jesse; Shoop, Robin
2013-01-01
Computer science proficiency continues to grow in importance, while the number of students entering computer science-related fields declines. Many rich programming environments have been created to motivate student interest and expertise in computer science. In the current study, we investigated whether a recently created environment, Robot…
Studies in Mathematics, Volume 22. Studies in Computer Science.
ERIC Educational Resources Information Center
Pollack, Seymour V., Ed.
The nine articles in this collection were selected because they represent concerns central to computer science, emphasize topics of particular interest to mathematicians, and underscore the wide range of areas deeply and continually affected by computer science. The contents consist of: "Introduction" (S. V. Pollack), "The…
Effectiveness of Kanban Approaches in Systems Engineering within Rapid Response Environments
2012-01-01
Procedia Computer Science Procedia Computer Science 00 (2012) 000–000 www.elsevier.com/locate/ procedia New Challenges in Systems...Author name / Procedia Computer Science 00 (2011) 000–000 inefficient use of resources. The move from ―one step to glory‖ system initiatives to...University of Science and Technology Effectiveness of kanban approaches in systems engineering within rapid response environments Richard Turner
ERIC Educational Resources Information Center
Çetin, Nagihan Imer
2016-01-01
The purpose of this study was to examine science teachers' level of using computers in teaching and the impact of a teacher professional development program (TPDP) on their views regarding utilizing computers in science education. Forty-three in-service science teachers from different regions of Turkey attended a 5 day TPDP. The TPDP was…
NASA Astrophysics Data System (ADS)
Zagorodny, A.; Kocherga, O.
2007-05-01
The 13th International Congress on Plasma Physics (ICPP 2006) was organized, on behalf of the International Advisory Committee of the ICPP series, by the National Academy of Sciences of Ukraine and the Bogolyubov Institute for Theoretical Physics (BITP) and held in Kiev, Ukraine, 22 26 May 2006. The Congress Program included the topics: fundamental problems of plasma physics; fusion plasmas; plasmas in astrophysics and space physics; plasmas in applications and technologies; complex plasmas. A total of 305 delegates from 30 countries took part in the Congress. The program included 9 invited review lectures, 32 invited topical and 313 contributed papers (60 of which were selected for oral presentation). The Congress Program was the responsibility of the International Program Committee: Anatoly Zagorodny (Chairman) Bogolyubov Institute for Theoretical Physics, Ukraine Olha Kocherga (Scientific Secretary) Bogolyubov Institute for Theoretical Physics, Ukraine Boris Breizman The University of Texas at Austin, USA Iver Cairns School of Physics, University of Sydney, Australia Tatiana Davydova Institute for Nuclear Research, Ukraine Tony Donne FOM-Institute for Plasma Physics, Rijnhuizen, The Netherlands Nikolai S Erokhin Space Research Institute of RAS, Russia Xavier Garbet CEA, France Valery Godyak OSRAM SYLVANIA, USA Katsumi Ida National Institute for Fusion Science, Japan Alexander Kingsep Russian Research Centre `Kurchatov Institute', Russia E P Kruglyakov Budker Institute of Nuclear Physics, Russia Gregor Morfill Max-Planck-Institut für extraterrestrische Physik, Germany Osamu Motojima National Institute for Fusion Science, Japan Jef Ongena ERM-KMS, Brussels and EFDA-JET, UK Konstantyn Shamrai Institute for Nuclear Research, Ukraine Raghvendra Singh Institute for Plasma Research, India Konstantyn Stepanov Kharkiv Institute of Physics and Technology, Ukraine Masayoshi Tanaka National Institute for Fusion Science, Japan Nodar Tsintsadze Physics Institute, Georgia The four-page texts of the contributed papers are presented as a CD, `ICPP 2006. Contributed Papers' which was distributed among the delegates. They are also available at the Congress website http://icpp2006.kiev.ua. A major part of the review and topical lectures is published in this special issue which has been sent to the Congress delegates. The papers were refereed to the usual high standard of the journal Plasma Physics and Controlled Fusion. The Guest Editors of the special issue are grateful to the Publishers for their cooperation. Recognizing the role of Professor Alexej Sitenko (12 February 1927 11 February 2002) in the initiation and organization of the International (Kiev) Conferences on Plasma Theory which, after having been combined with the International Congresses on Waves and Instabilities in Plasma in 1980, created the series of International Congresses on Plasma Physics, and taking into account the contribution of Professor Sitenko to the progress of plasma theory, the Program Committee decided to open ICPP 2006 with the Sitenko memorial lecture. This memorial lecture is available as supplementary data (PDF) at stacks.iop.org/PPCF/49/i=5A.
Computational perspectives in the history of science: to the memory of Peter Damerow.
Laubichler, Manfred D; Maienschein, Jane; Renn, Jürgen
2013-03-01
Computational methods and perspectives can transform the history of science by enabling the pursuit of novel types of questions, dramatically expanding the scale of analysis (geographically and temporally), and offering novel forms of publication that greatly enhance access and transparency. This essay presents a brief summary of a computational research system for the history of science, discussing its implications for research, education, and publication practices and its connections to the open-access movement and similar transformations in the natural and social sciences that emphasize big data. It also argues that computational approaches help to reconnect the history of science to individual scientific disciplines.
Computer Instrumentation and the New Tools of Science.
ERIC Educational Resources Information Center
Snyder, H. David
1990-01-01
The impact and uses of new technologies in science teaching are discussed. Included are computers, software, sensors, integrated circuits, computer signal access, and computer interfaces. Uses and advantages of these new technologies are suggested. (CW)
NASA Astrophysics Data System (ADS)
Rothman, Alan H.
This study reports the results of research designed to examine the impact of computer-based science instruction on elementary school level students' science content achievement, their attitude about science learning, their level of critical thinking-inquiry skills, and their level of cognitive and English language development. The study compared these learning outcomes resulting from a computer-based approach compared to the learning outcomes from a traditional, textbook-based approach to science instruction. The computer-based approach was inherent in a curriculum titled The Voyage of the Mimi , published by The Bank Street College Project in Science and Mathematics (1984). The study sample included 209 fifth-grade students enrolled in three schools in a suburban school district. This sample was divided into three groups, each receiving one of the following instructional treatments: (a) Mixed-instruction primarily based on the use of a hardcopy textbook in conjunction with computer-based instructional materials as one component of the science course; (b) Non-Traditional, Technology-Based -instruction fully utilizing computer-based material; and (c) Traditional, Textbook-Based-instruction utilizing only the textbook as the basis for instruction. Pre-test, or pre-treatment, data related to each of the student learning outcomes was collected at the beginning of the school year and post-test data was collected at the end of the school year. Statistical analyses of pre-test data were used as a covariate to account for possible pre-existing differences with regard to the variables examined among the three student groups. This study concluded that non-traditional, computer-based instruction in science significantly improved students' attitudes toward science learning and their level of English language development. Non-significant, positive trends were found for the following student learning outcomes: overall science achievement and development of critical thinking-inquiry skills. These conclusions support the value of a non-traditional, computer-based approach to instruction, such as exemplified by The Voyage of the Mimi curriculum, and a recommendation for reform in science teaching that has recommended the use of computer technology to enhance learning outcomes from science instruction to assist in reversing the trend toward what has been perceived to be relatively poor science performance by American students, as documented by the 1996 Third International Mathematics and Science Study (TIMSS).
Numerical modeling of deflagration mode in coaxial plasma guns
NASA Astrophysics Data System (ADS)
Sitaraman, Hariswaran; Raja, Laxminarayan
2012-10-01
Pulsed coaxial plasma guns have been used in several applications in the field of space propulsion, nuclear fusion and materials processing. These devices operate in two modes based on the delay between gas injection and breakdown initiation. Larger delay led to the plasma detonation mode where a compression wave in the form of a luminous front propagates from the breech to the muzzle. Shorter delay led to the more efficient deflagration mode characterized by a relatively diffuse plasma with higher resistivity. The overall physics of the discharge in the two modes of operation and in particular the latter remain relatively unexplored. Here we perform a computational modeling study by solving the non-ideal Magneto-hydrodynamics equations for the quasi-neutral plasma in the coaxial plasma gun. A finite volume formulation on an unstructured mesh framework with an implicit scheme is used to do stable computations. The final work will present details of important species in the plasma, particle energies and Mach number at the muzzle. A comparison of the plasma parameters will be made with the experiments reported in ref. [1]. [4pt] [1] F. R. Poehlmann et al., Phys. Plasmas 17, 123508 (2010)
Development of FullWave : Hot Plasma RF Simulation Tool
NASA Astrophysics Data System (ADS)
Svidzinski, Vladimir; Kim, Jin-Soo; Spencer, J. Andrew; Zhao, Liangji; Galkin, Sergei
2017-10-01
Full wave simulation tool, modeling RF fields in hot inhomogeneous magnetized plasma, is being developed. The wave equations with linearized hot plasma dielectric response are solved in configuration space on adaptive cloud of computational points. The nonlocal hot plasma dielectric response is formulated in configuration space without limiting approximations by calculating the plasma conductivity kernel based on the solution of the linearized Vlasov equation in inhomogeneous magnetic field. This approach allows for better resolution of plasma resonances, antenna structures and complex boundaries. The formulation of FullWave and preliminary results will be presented: construction of the finite differences for approximation of derivatives on adaptive cloud of computational points; model and results of nonlocal conductivity kernel calculation in tokamak geometry; results of 2-D full wave simulations in the cold plasma model in tokamak geometry using the formulated approach; results of self-consistent calculations of hot plasma dielectric response and RF fields in 1-D mirror magnetic field; preliminary results of self-consistent simulations of 2-D RF fields in tokamak using the calculated hot plasma conductivity kernel; development of iterative solver for wave equations. Work is supported by the U.S. DOE SBIR program.
Initial Simulations of RF Waves in Hot Plasmas Using the FullWave Code
NASA Astrophysics Data System (ADS)
Zhao, Liangji; Svidzinski, Vladimir; Spencer, Andrew; Kim, Jin-Soo
2017-10-01
FullWave is a simulation tool that models RF fields in hot inhomogeneous magnetized plasmas. The wave equations with linearized hot plasma dielectric response are solved in configuration space on adaptive cloud of computational points. The nonlocal hot plasma dielectric response is formulated by calculating the plasma conductivity kernel based on the solution of the linearized Vlasov equation in inhomogeneous magnetic field. In an rf field, the hot plasma dielectric response is limited to the distance of a few particles' Larmor radii, near the magnetic field line passing through the test point. The localization of the hot plasma dielectric response results in a sparse matrix of the problem thus significantly reduces the size of the problem and makes the simulations faster. We will present the initial results of modeling of rf waves using the Fullwave code, including calculation of nonlocal conductivity kernel in 2D Tokamak geometry; the interpolation of conductivity kernel from test points to adaptive cloud of computational points; and the results of self-consistent simulations of 2D rf fields using calculated hot plasma conductivity kernel in a tokamak plasma with reduced parameters. Work supported by the US DOE ``SBIR program.
Lackmann, J-W; Wende, K; Verlackt, C; Golda, J; Volzke, J; Kogelheide, F; Held, J; Bekeschus, S; Bogaerts, A; Schulz-von der Gathen, V; Stapelmann, K
2018-05-16
Reactive oxygen and nitrogen species released by cold physical plasma are being proposed as effectors in various clinical conditions connected to inflammatory processes. As these plasmas can be tailored in a wide range, models to compare and control their biochemical footprint are desired to infer on the molecular mechanisms underlying the observed effects and to enable the discrimination between different plasma sources. Here, an improved model to trace short-lived reactive species is presented. Using FTIR, high-resolution mass spectrometry, and molecular dynamics computational simulation, covalent modifications of cysteine treated with different plasmas were deciphered and the respective product pattern used to generate a fingerprint of each plasma source. Such, our experimental model allows a fast and reliable grading of the chemical potential of plasmas used for medical purposes. Major reaction products were identified to be cysteine sulfonic acid, cystine, and cysteine fragments. Less-abundant products, such as oxidized cystine derivatives or S-nitrosylated cysteines, were unique to different plasma sources or operating conditions. The data collected point at hydroxyl radicals, atomic O, and singlet oxygen as major contributing species that enable an impact on cellular thiol groups when applying cold plasma in vitro or in vivo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, James C. Jr.; Mason, Thomas; Guerrieri, Bruno
1997-10-01
Programs have been established at Florida A & M University to attract minority students to research careers in mathematics and computational science. The primary goal of the program was to increase the number of such students studying computational science via an interactive multimedia learning environment One mechanism used for meeting this goal was the development of educational modules. This academic year program established within the mathematics department at Florida A&M University, introduced students to computational science projects using high-performance computers. Additional activities were conducted during the summer, these included workshops, meetings, and lectures. Through the exposure provided by this programmore » to scientific ideas and research in computational science, it is likely that their successful applications of tools from this interdisciplinary field will be high.« less
Multilinear Computing and Multilinear Algebraic Geometry
2016-08-10
landmark paper titled “Most tensor problems are NP-hard” (see [14] in Section 3) in the Journal of the ACM, the premier journal in Computer Science ...Higher-order cone programming,” Machine Learning Thematic Trimester, International Centre for Mathematics and Computer Science , Toulouse, France...geometry-and-data-analysis • 2014 SIMONS INSTITUTE WORKSHOP: Workshop on Tensors in Computer Science and Geometry, University of California, Berkeley, CA
ERIC Educational Resources Information Center
Tsagala, Evrikleia; Kordaki, Maria
2008-01-01
This study focuses on how Computer Science and Engineering Students (CSESs) of both genders address certain critical issues for gender differences in the field of Computer Science and Engineering (CSE). This case study is based on research conducted on a sample of 99 Greek CSESs, 43 of which were women. More specifically, these students were asked…
The grand challenge of managing the petascale facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aiken, R. J.; Mathematics and Computer Science
2007-02-28
This report is the result of a study of networks and how they may need to evolve to support petascale leadership computing and science. As Dr. Ray Orbach, director of the Department of Energy's Office of Science, says in the spring 2006 issue of SciDAC Review, 'One remarkable example of growth in unexpected directions has been in high-end computation'. In the same article Dr. Michael Strayer states, 'Moore's law suggests that before the end of the next cycle of SciDAC, we shall see petaflop computers'. Given the Office of Science's strong leadership and support for petascale computing and facilities, wemore » should expect to see petaflop computers in operation in support of science before the end of the decade, and DOE/SC Advanced Scientific Computing Research programs are focused on making this a reality. This study took its lead from this strong focus on petascale computing and the networks required to support such facilities, but it grew to include almost all aspects of the DOE/SC petascale computational and experimental science facilities, all of which will face daunting challenges in managing and analyzing the voluminous amounts of data expected. In addition, trends indicate the increased coupling of unique experimental facilities with computational facilities, along with the integration of multidisciplinary datasets and high-end computing with data-intensive computing; and we can expect these trends to continue at the petascale level and beyond. Coupled with recent technology trends, they clearly indicate the need for including capability petascale storage, networks, and experiments, as well as collaboration tools and programming environments, as integral components of the Office of Science's petascale capability metafacility. The objective of this report is to recommend a new cross-cutting program to support the management of petascale science and infrastructure. The appendices of the report document current and projected DOE computation facilities, science trends, and technology trends, whose combined impact can affect the manageability and stewardship of DOE's petascale facilities. This report is not meant to be all-inclusive. Rather, the facilities, science projects, and research topics presented are to be considered examples to clarify a point.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins, Thomas G.; Kruger, Scott E.
Work carried out by Tech-X Corporation for the DoE SciDAC Center for Simulation of RF Wave Interactions with Magnetohydrodynamics (SWIM; U.S. DoE Office of Science Award Number DE-FC02-06ER54899) is summarized and is shown to fulfil the project objectives. The Tech-X portion of the SWIM work focused on the development of analytic and computational approaches to study neoclassical tearing modes and their interaction with injected electron cyclotron current drive. Using formalism developed by Hegna, Callen, and Ramos [Phys. Plasmas 16, 112501 (2009); Phys. Plasmas 17, 082502 (2010); Phys. Plasmas 18, 102506 (2011)], analytic approximations for the RF interaction were derived andmore » the numerical methods needed to implement these interactions in the NIMROD extended MHD code were developed. Using the SWIM IPS framework, NIMROD has successfully coupled to GENRAY, an RF ray tracing code; additionally, a numerical control system to trigger the RF injection, adjustment, and shutdown in response to tearing mode activity has been developed. We discuss these accomplishments, as well as prospects for ongoing future research that this work has enabled (which continue in a limited fashion under the SciDAC Center for Extended Magnetohydrodynamic Modeling (CEMM) project and under a baseline theory grant). Associated conference presentations, published articles, and publications in progress are also listed.« less
PREFACE: 13th High-Tech Plasma Processes Conference (HTPP-2014)
NASA Astrophysics Data System (ADS)
2014-11-01
The High-Tech Plasma Processes - 13th European Plasma Conference (HTPP-2014) was held in Toulouse (France) on 22-27 June 2014. The conference series started in 1990 as a thermal plasma conference and has gradually expanded to include other related topics. Now the High-Tech Plasma Processes - European Plasma Conference (HTPP) is an international conference organised in Europe every two years with topics encompassing the whole field of plasma processing science. The aim of the conference is to bring different scientific communities together, to facilitate contacts between science, technology and industry and to provide a platform for the exploration of both the fundamental topics and new applications of plasmas. For this edition of HTPP, as was the case for the last, we have acheived a well balanced participation from the communities of both thermal and non-thermal plasma researchers. 142 people from 17 countries attended the conference with the total number of contributions being 155, consisting of 8 plenary and 8 invited talks plus 51 oral and 88 poster contributions. We have received numerous papers corresponding to the contributions of HTPP-2014 that have been submitted for publication in this volume of Journal of Physics: Conference Series. Each submitted contribution has been peer reviewed (60 referees with at least two reviewing each paper) and the Editors are very grateful to the referees for their careful support in improving the original manuscripts. In total, 52 manuscripts have been accepted for publication covering a range of topics of plasma processing science from plasma fundamentals to process applications through to experiments, diagnostics and modelling. We have grouped the papers into the following 5 topics: - Arc-Materials Interaction and Metallurgy - Plasma Torches and Spraying - Synthesis of Powders and Nanomaterials - Deposition and Surface Treatment - Non-Equilibrium Plasmas We deeply thank the authors for their enthusiastic and high-grade contributions and we are convinced that this volume of Journal of Physics: Conference Series will be interesting for our community. Finally, we would like to thank the conference chairmen, the members of the steering committee, the international scientific committee, the local organizing committee, the organizing secretariat and the financial support from the conference sponsors that allowed the success of HTPP-2014. The Editors of the HTPP-2014 Proceedings Dr Alain Gleizes, chairman of HTPP-2014 Prof. Jochen Schein, head of the ISC Prof. Philippe Teulet Toulouse, 14th October 2014
Atmospheric and Space Sciences: Ionospheres and Plasma Environments
NASA Astrophysics Data System (ADS)
Yiǧit, Erdal
2018-01-01
The SpringerBriefs on Atmospheric and Space Sciences in two volumes presents a concise and interdisciplinary introduction to the basic theory, observation & modeling of atmospheric and ionospheric coupling processes on Earth. The goal is to contribute toward bridging the gap between meteorology, aeronomy, and planetary science. In addition recent progress in several related research topics, such atmospheric wave coupling and variability, is discussed. Volume 1 will focus on the atmosphere, while Volume 2 will present the ionospheres and the plasma environments. Volume 2 is aimed primarily at (research) students and young researchers that would like to gain quick insight into the basics of space sciences and current research. In combination with the first volume, it also is a useful tool for professors who would like to develop a course in atmospheric and space physics.
Theory-Guided Technology in Computer Science.
ERIC Educational Resources Information Center
Ben-Ari, Mordechai
2001-01-01
Examines the history of major achievements in computer science as portrayed by winners of the prestigious Turing award and identifies a possibly unique activity called Theory-Guided Technology (TGT). Researchers develop TGT by using theoretical results to create practical technology. Discusses reasons why TGT is practical in computer science and…
Teaching Computer Science: A Problem Solving Approach that Works.
ERIC Educational Resources Information Center
Allan, V. H.; Kolesar, M. V.
The typical introductory programming course is not an appropriate first computer science course for many students. Initial experiences with programming are often frustrating, resulting in a low rate of successful completion, and focus on syntax rather than providing a representative picture of computer science as a discipline. The paper discusses…
Science Photo of person viewing 3D visualization of a wind turbine The NREL Computational Science challenges in fields ranging from condensed matter physics and nonlinear dynamics to computational fluid dynamics. NREL is also home to the most energy-efficient data center in the world, featuring Peregrine-the
New Pedagogies on Teaching Science with Computer Simulations
ERIC Educational Resources Information Center
Khan, Samia
2011-01-01
Teaching science with computer simulations is a complex undertaking. This case study examines how an experienced science teacher taught chemistry using computer simulations and the impact of his teaching on his students. Classroom observations over 3 semesters, teacher interviews, and student surveys were collected. The data was analyzed for (1)…
Tutor Training in Computer Science: Tutor Opinions and Student Results.
ERIC Educational Resources Information Center
Carbone, Angela; Mitchell, Ian
Edproj, a project team of faculty from the departments of computer science, software development and education at Monash University (Australia) investigated the quality of teaching and student learning and understanding in the computer science and software development departments. Edproj's research led to the development of a training program to…
Case Studies of Liberal Arts Computer Science Programs
ERIC Educational Resources Information Center
Baldwin, D.; Brady, A.; Danyluk, A.; Adams, J.; Lawrence, A.
2010-01-01
Many undergraduate liberal arts institutions offer computer science majors. This article illustrates how quality computer science programs can be realized in a wide variety of liberal arts settings by describing and contrasting the actual programs at five liberal arts colleges: Williams College, Kalamazoo College, the State University of New York…
Collaboration, Collusion and Plagiarism in Computer Science Coursework
ERIC Educational Resources Information Center
Fraser, Robert
2014-01-01
We present an overview of the nature of academic dishonesty with respect to computer science coursework. We discuss the efficacy of various policies for collaboration with regard to student education, and we consider a number of strategies for mitigating dishonest behaviour on computer science coursework by addressing some common causes. Computer…
Entrepreneurial Health Informatics for Computer Science and Information Systems Students
ERIC Educational Resources Information Center
Lawler, James; Joseph, Anthony; Narula, Stuti
2014-01-01
Corporate entrepreneurship is a critical area of curricula for computer science and information systems students. Few institutions of computer science and information systems have entrepreneurship in the curricula however. This paper presents entrepreneurial health informatics as a course in a concentration of Technology Entrepreneurship at a…
Assessment of Examinations in Computer Science Doctoral Education
ERIC Educational Resources Information Center
Straub, Jeremy
2014-01-01
This article surveys the examination requirements for attaining degree candidate (candidacy) status in computer science doctoral programs at all of the computer science doctoral granting institutions in the United States. It presents a framework for program examination requirement categorization, and categorizes these programs by the type or types…
NASA Technical Reports Server (NTRS)
Bushnell, Dennis M. (Technical Monitor)
2000-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, computer science, fluid mechanics, and structures and materials during the period October 1, 1999 through March 31, 2000.
Representing, Running, and Revising Mental Models: A Computational Model
ERIC Educational Resources Information Center
Friedman, Scott; Forbus, Kenneth; Sherin, Bruce
2018-01-01
People use commonsense science knowledge to flexibly explain, predict, and manipulate the world around them, yet we lack computational models of how this commonsense science knowledge is represented, acquired, utilized, and revised. This is an important challenge for cognitive science: Building higher order computational models in this area will…
Gender Digital Divide and Challenges in Undergraduate Computer Science Programs
ERIC Educational Resources Information Center
Stoilescu, Dorian; McDougall, Douglas
2011-01-01
Previous research revealed a reduced number of female students registered in computer science studies. In addition, the female students feel isolated, have reduced confidence, and underperform. This article explores differences between female and male students in undergraduate computer science programs in a mid-size university in Ontario. Based on…
ERIC Educational Resources Information Center
Cheryan, Sapna; Meltzoff, Andrew N.; Kim, Saenam
2011-01-01
Three experiments examined whether the design of virtual learning environments influences undergraduates' enrollment intentions and anticipated success in introductory computer science courses. Changing the design of a virtual classroom--from one that conveys current computer science stereotypes to one that does not--significantly increased…
NASA Astrophysics Data System (ADS)
Baiotti, Luca; Takabe, Hideaki
2013-08-01
The PDF contains the speech of journalist Atsuko Tsuji (Asahi Shimbun) with the title 'Requests and expectations for computational science' and the record of the following discussion on: 'Will computational science be able to provide answers to important problems of human society?'
"Computer Science Can Feed a Lot of Dreams"
ERIC Educational Resources Information Center
Educational Horizons, 2014
2014-01-01
Pat Yongpradit is the director of education at Code.org. He leads all education efforts, including professional development and curriculum creation, and he builds relationships with school districts. Pat joined "Educational Horizons" to talk about why it is important to teach computer science--even for non-computer science teachers. This…
Berkeley Lab - Materials Sciences Division
Computational Study of Excited-State Phenomena in Energy Materials Center for X-ray Optics MSD Facilities Ion and Materials Physics Scattering and Instrumentation Science Centers Center for Computational Study of Sciences Centers Center for Computational Study of Excited-State Phenomena in Energy Materials Center for X
NASA Technical Reports Server (NTRS)
1992-01-01
Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, fluid mechanics including fluid dynamics, acoustics, and combustion, aerodynamics, and computer science during the period 1 Apr. 1992 - 30 Sep. 1992 is summarized.
Computers as learning resources in the health sciences: impact and issues.
Ellis, L B; Hannigan, G G
1986-01-01
Starting with two computer terminals in 1972, the Health Sciences Learning Resources Center of the University of Minnesota Bio-Medical Library expanded its instructional facilities to ten terminals and thirty-five microcomputers by 1985. Computer use accounted for 28% of total center circulation. The impact of these resources on health sciences curricula is described and issues related to use, support, and planning are raised and discussed. Judged by their acceptance and educational value, computers are successful health sciences learning resources at the University of Minnesota. PMID:3518843
Computational Science and Innovation
NASA Astrophysics Data System (ADS)
Dean, D. J.
2011-09-01
Simulations - utilizing computers to solve complicated science and engineering problems - are a key ingredient of modern science. The U.S. Department of Energy (DOE) is a world leader in the development of high-performance computing (HPC), the development of applied math and algorithms that utilize the full potential of HPC platforms, and the application of computing to science and engineering problems. An interesting general question is whether the DOE can strategically utilize its capability in simulations to advance innovation more broadly. In this article, I will argue that this is certainly possible.