Sample records for computational requirements needed

  1. A Review of Models for Teacher Preparation Programs for Precollege Computer Science Education.

    ERIC Educational Resources Information Center

    Deek, Fadi P.; Kimmel, Howard

    2002-01-01

    Discusses the need for adequate precollege computer science education and focuses on the issues of teacher preparation programs and requirements needed to teach high school computer science. Presents models of teacher preparation programs and compares state requirements with Association for Computing Machinery (ACM) recommendations. (Author/LRW)

  2. Large Scale Computing and Storage Requirements for High Energy Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, Richard A.; Wasserman, Harvey

    2010-11-24

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility for the Department of Energy's Office of Science, providing high-performance computing (HPC) resources to more than 3,000 researchers working on about 400 projects. NERSC provides large-scale computing resources and, crucially, the support and expertise needed for scientists to make effective use of them. In November 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of High Energy Physics (HEP) held a workshop to characterize the HPC resources needed at NERSC to support HEP research through the next three to five years. Themore » effort is part of NERSC's legacy of anticipating users needs and deploying resources to meet those demands. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. The chief findings: (1) Science teams need access to a significant increase in computational resources to meet their research goals; (2) Research teams need to be able to read, write, transfer, store online, archive, analyze, and share huge volumes of data; (3) Science teams need guidance and support to implement their codes on future architectures; and (4) Projects need predictable, rapid turnaround of their computational jobs to meet mission-critical time constraints. This report expands upon these key points and includes others. It also presents a number of case studies as representative of the research conducted within HEP. Workshop participants were asked to codify their requirements in this case study format, summarizing their science goals, methods of solution, current and three-to-five year computing requirements, and software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years. The report includes a section that describes efforts already underway or planned at NERSC that address requirements collected at the workshop. NERSC has many initiatives in progress that address key workshop findings and are aligned with NERSC's strategic plans.« less

  3. Functional requirements document for the Earth Observing System Data and Information System (EOSDIS) Scientific Computing Facilities (SCF) of the NASA/MSFC Earth Science and Applications Division, 1992

    NASA Technical Reports Server (NTRS)

    Botts, Michael E.; Phillips, Ron J.; Parker, John V.; Wright, Patrick D.

    1992-01-01

    Five scientists at MSFC/ESAD have EOS SCF investigator status. Each SCF has unique tasks which require the establishment of a computing facility dedicated to accomplishing those tasks. A SCF Working Group was established at ESAD with the charter of defining the computing requirements of the individual SCFs and recommending options for meeting these requirements. The primary goal of the working group was to determine which computing needs can be satisfied using either shared resources or separate but compatible resources, and which needs require unique individual resources. The requirements investigated included CPU-intensive vector and scalar processing, visualization, data storage, connectivity, and I/O peripherals. A review of computer industry directions and a market survey of computing hardware provided information regarding important industry standards and candidate computing platforms. It was determined that the total SCF computing requirements might be most effectively met using a hierarchy consisting of shared and individual resources. This hierarchy is composed of five major system types: (1) a supercomputer class vector processor; (2) a high-end scalar multiprocessor workstation; (3) a file server; (4) a few medium- to high-end visualization workstations; and (5) several low- to medium-range personal graphics workstations. Specific recommendations for meeting the needs of each of these types are presented.

  4. An assessment of future computer system needs for large-scale computation

    NASA Technical Reports Server (NTRS)

    Lykos, P.; White, J.

    1980-01-01

    Data ranging from specific computer capability requirements to opinions about the desirability of a national computer facility are summarized. It is concluded that considerable attention should be given to improving the user-machine interface. Otherwise, increased computer power may not improve the overall effectiveness of the machine user. Significant improvement in throughput requires highly concurrent systems plus the willingness of the user community to develop problem solutions for that kind of architecture. An unanticipated result was the expression of need for an on-going cross-disciplinary users group/forum in order to share experiences and to more effectively communicate needs to the manufacturers.

  5. Purple Computational Environment With Mappings to ACE Requirements for the General Availability User Environment Capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barney, B; Shuler, J

    2006-08-21

    Purple is an Advanced Simulation and Computing (ASC) funded massively parallel supercomputer located at Lawrence Livermore National Laboratory (LLNL). The Purple Computational Environment documents the capabilities and the environment provided for the FY06 LLNL Level 1 General Availability Milestone. This document describes specific capabilities, tools, and procedures to support both local and remote users. The model is focused on the needs of the ASC user working in the secure computing environments at Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and Sandia National Laboratories, but also documents needs of the LLNL and Alliance users working in the unclassified environment. Additionally,more » the Purple Computational Environment maps the provided capabilities to the Trilab ASC Computing Environment (ACE) Version 8.0 requirements. The ACE requirements reflect the high performance computing requirements for the General Availability user environment capabilities of the ASC community. Appendix A lists these requirements and includes a description of ACE requirements met and those requirements that are not met for each section of this document. The Purple Computing Environment, along with the ACE mappings, has been issued and reviewed throughout the Tri-lab community.« less

  6. 9 CFR 205.101 - Certification-request and processing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... required by subsection (c)(2)(F) (details of computer hardware and software need not be furnished but the... of computer hardware and software need not be furnished but the results it will produce must be..., and requirements issued under such legislation or other legal authority and governing operation of the...

  7. Computational needs survey of NASA automation and robotics missions. Volume 1: Survey and results

    NASA Technical Reports Server (NTRS)

    Davis, Gloria J.

    1991-01-01

    NASA's operational use of advanced processor technology in space systems lags behind its commercial development by more than eight years. One of the factors contributing to this is that mission computing requirements are frequently unknown, unstated, misrepresented, or simply not available in a timely manner. NASA must provide clear common requirements to make better use of available technology, to cut development lead time on deployable architectures, and to increase the utilization of new technology. A preliminary set of advanced mission computational processing requirements of automation and robotics (A&R) systems are provided for use by NASA, industry, and academic communities. These results were obtained in an assessment of the computational needs of current projects throughout NASA. The high percent of responses indicated a general need for enhanced computational capabilities beyond the currently available 80386 and 68020 processor technology. Because of the need for faster processors and more memory, 90 percent of the polled automation projects have reduced or will reduce the scope of their implementation capabilities. The requirements are presented with respect to their targeted environment, identifying the applications required, system performance levels necessary to support them, and the degree to which they are met with typical programmatic constraints. Volume one includes the survey and results. Volume two contains the appendixes.

  8. Computational needs survey of NASA automation and robotics missions. Volume 2: Appendixes

    NASA Technical Reports Server (NTRS)

    Davis, Gloria J.

    1991-01-01

    NASA's operational use of advanced processor technology in space systems lags behind its commercial development by more than eight years. One of the factors contributing to this is the fact that mission computing requirements are frequency unknown, unstated, misrepresented, or simply not available in a timely manner. NASA must provide clear common requirements to make better use of available technology, to cut development lead time on deployable architectures, and to increase the utilization of new technology. Here, NASA, industry and academic communities are provided with a preliminary set of advanced mission computational processing requirements of automation and robotics (A and R) systems. The results were obtained in an assessment of the computational needs of current projects throughout NASA. The high percent of responses indicated a general need for enhanced computational capabilities beyond the currently available 80386 and 68020 processor technology. Because of the need for faster processors and more memory, 90 percent of the polled automation projects have reduced or will reduce the scope of their implemented capabilities. The requirements are presented with respect to their targeted environment, identifying the applications required, system performance levels necessary to support them, and the degree to which they are met with typical programmatic constraints. Here, appendixes are provided.

  9. DREAMS and IMAGE: A Model and Computer Implementation for Concurrent, Life-Cycle Design of Complex Systems

    NASA Technical Reports Server (NTRS)

    Hale, Mark A.; Craig, James I.; Mistree, Farrokh; Schrage, Daniel P.

    1995-01-01

    Computing architectures are being assembled that extend concurrent engineering practices by providing more efficient execution and collaboration on distributed, heterogeneous computing networks. Built on the successes of initial architectures, requirements for a next-generation design computing infrastructure can be developed. These requirements concentrate on those needed by a designer in decision-making processes from product conception to recycling and can be categorized in two areas: design process and design information management. A designer both designs and executes design processes throughout design time to achieve better product and process capabilities while expanding fewer resources. In order to accomplish this, information, or more appropriately design knowledge, needs to be adequately managed during product and process decomposition as well as recomposition. A foundation has been laid that captures these requirements in a design architecture called DREAMS (Developing Robust Engineering Analysis Models and Specifications). In addition, a computing infrastructure, called IMAGE (Intelligent Multidisciplinary Aircraft Generation Environment), is being developed that satisfies design requirements defined in DREAMS and incorporates enabling computational technologies.

  10. Computer-aided design and computer science technology

    NASA Technical Reports Server (NTRS)

    Fulton, R. E.; Voigt, S. J.

    1976-01-01

    A description is presented of computer-aided design requirements and the resulting computer science advances needed to support aerospace design. The aerospace design environment is examined, taking into account problems of data handling and aspects of computer hardware and software. The interactive terminal is normally the primary interface between the computer system and the engineering designer. Attention is given to user aids, interactive design, interactive computations, the characteristics of design information, data management requirements, hardware advancements, and computer science developments.

  11. Cielo Computational Environment Usage Model With Mappings to ACE Requirements for the General Availability User Environment Capabilities Release Version 1.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil,Benny Manuel; Ballance, Robert; Haskell, Karen

    Cielo is a massively parallel supercomputer funded by the DOE/NNSA Advanced Simulation and Computing (ASC) program, and operated by the Alliance for Computing at Extreme Scale (ACES), a partnership between Los Alamos National Laboratory (LANL) and Sandia National Laboratories (SNL). The primary Cielo compute platform is physically located at Los Alamos National Laboratory. This Cielo Computational Environment Usage Model documents the capabilities and the environment to be provided for the Q1 FY12 Level 2 Cielo Capability Computing (CCC) Platform Production Readiness Milestone. This document describes specific capabilities, tools, and procedures to support both local and remote users. The model ismore » focused on the needs of the ASC user working in the secure computing environments at Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory, or Sandia National Laboratories, but also addresses the needs of users working in the unclassified environment. The Cielo Computational Environment Usage Model maps the provided capabilities to the tri-Lab ASC Computing Environment (ACE) Version 8.0 requirements. The ACE requirements reflect the high performance computing requirements for the Production Readiness Milestone user environment capabilities of the ASC community. A description of ACE requirements met, and those requirements that are not met, are included in each section of this document. The Cielo Computing Environment, along with the ACE mappings, has been issued and reviewed throughout the tri-Lab community.« less

  12. Computer Output Microfilm and Library Catalogs.

    ERIC Educational Resources Information Center

    Meyer, Richard W.

    Early computers dealt with mathematical and scientific problems requiring very little input and not much output, therefore high speed printing devices were not required. Today with increased variety of use, high speed printing is necessary and Computer Output Microfilm (COM) devices have been created to meet this need. This indirect process can…

  13. Educational Computer Utilization and Computer Communications.

    ERIC Educational Resources Information Center

    Singh, Jai P.; Morgan, Robert P.

    As part of an analysis of educational needs and telecommunications requirements for future educational satellite systems, three studies were carried out. 1) The role of the computer in education was examined and both current status and future requirements were analyzed. Trade-offs between remote time sharing and remote batch process were explored…

  14. Applications of Parallel Process HiMAP for Large Scale Multidisciplinary Problems

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.; Potsdam, Mark; Rodriguez, David; Kwak, Dochay (Technical Monitor)

    2000-01-01

    HiMAP is a three level parallel middleware that can be interfaced to a large scale global design environment for code independent, multidisciplinary analysis using high fidelity equations. Aerospace technology needs are rapidly changing. Computational tools compatible with the requirements of national programs such as space transportation are needed. Conventional computation tools are inadequate for modern aerospace design needs. Advanced, modular computational tools are needed, such as those that incorporate the technology of massively parallel processors (MPP).

  15. A three-dimensional ground-water-flow model modified to reduce computer-memory requirements and better simulate confining-bed and aquifer pinchouts

    USGS Publications Warehouse

    Leahy, P.P.

    1982-01-01

    The Trescott computer program for modeling groundwater flow in three dimensions has been modified to (1) treat aquifer and confining bed pinchouts more realistically and (2) reduce the computer memory requirements needed for the input data. Using the original program, simulation of aquifer systems with nonrectangular external boundaries may result in a large number of nodes that are not involved in the numerical solution of the problem, but require computer storage. (USGS)

  16. APL: An Alternative to the Multi-Language Environment for Education. Systems Research Memo Number Four.

    ERIC Educational Resources Information Center

    Lippert, Henry T.; Harris, Edward V.

    The diverse requirements for computing facilities in education place heavy demands upon available resources. Although multiple or very large computers can supply such diverse needs, their cost makes them impractical for many institutions. Small computers which serve a few specific needs may be an economical answer. However, to serve operationally…

  17. PREPARING FOR EXASCALE: ORNL Leadership Computing Application Requirements and Strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joubert, Wayne; Kothe, Douglas B; Nam, Hai Ah

    2009-12-01

    In 2009 the Oak Ridge Leadership Computing Facility (OLCF), a U.S. Department of Energy (DOE) facility at the Oak Ridge National Laboratory (ORNL) National Center for Computational Sciences (NCCS), elicited petascale computational science requirements from leading computational scientists in the international science community. This effort targeted science teams whose projects received large computer allocation awards on OLCF systems. A clear finding of this process was that in order to reach their science goals over the next several years, multiple projects will require computational resources in excess of an order of magnitude more powerful than those currently available. Additionally, for themore » longer term, next-generation science will require computing platforms of exascale capability in order to reach DOE science objectives over the next decade. It is generally recognized that achieving exascale in the proposed time frame will require disruptive changes in computer hardware and software. Processor hardware will become necessarily heterogeneous and will include accelerator technologies. Software must undergo the concomitant changes needed to extract the available performance from this heterogeneous hardware. This disruption portends to be substantial, not unlike the change to the message passing paradigm in the computational science community over 20 years ago. Since technological disruptions take time to assimilate, we must aggressively embark on this course of change now, to insure that science applications and their underlying programming models are mature and ready when exascale computing arrives. This includes initiation of application readiness efforts to adapt existing codes to heterogeneous architectures, support of relevant software tools, and procurement of next-generation hardware testbeds for porting and testing codes. The 2009 OLCF requirements process identified numerous actions necessary to meet this challenge: (1) Hardware capabilities must be advanced on multiple fronts, including peak flops, node memory capacity, interconnect latency, interconnect bandwidth, and memory bandwidth. (2) Effective parallel programming interfaces must be developed to exploit the power of emerging hardware. (3) Science application teams must now begin to adapt and reformulate application codes to the new hardware and software, typified by hierarchical and disparate layers of compute, memory and concurrency. (4) Algorithm research must be realigned to exploit this hierarchy. (5) When possible, mathematical libraries must be used to encapsulate the required operations in an efficient and useful way. (6) Software tools must be developed to make the new hardware more usable. (7) Science application software must be improved to cope with the increasing complexity of computing systems. (8) Data management efforts must be readied for the larger quantities of data generated by larger, more accurate science models. Requirements elicitation, analysis, validation, and management comprise a difficult and inexact process, particularly in periods of technological change. Nonetheless, the OLCF requirements modeling process is becoming increasingly quantitative and actionable, as the process becomes more developed and mature, and the process this year has identified clear and concrete steps to be taken. This report discloses (1) the fundamental science case driving the need for the next generation of computer hardware, (2) application usage trends that illustrate the science need, (3) application performance characteristics that drive the need for increased hardware capabilities, (4) resource and process requirements that make the development and deployment of science applications on next-generation hardware successful, and (5) summary recommendations for the required next steps within the computer and computational science communities.« less

  18. Framework for Computer Assisted Instruction Courseware: A Case Study.

    ERIC Educational Resources Information Center

    Betlach, Judith A.

    1987-01-01

    Systematically investigates, defines, and organizes variables related to production of internally designed and implemented computer assisted instruction (CAI) courseware: special needs of users; costs; identification and definition of realistic training needs; CAI definition and design methodology; hardware and software requirements; and general…

  19. Using Microcomputers in Vocational Education to Teach Needed Skills in Machine Shop and Related Occupations. Final Report.

    ERIC Educational Resources Information Center

    Mercer County Schools, Princeton, WV.

    A project was undertaken to identify machine shop occupations requiring workers to use computers, identify the computer skills needed to perform machine shop tasks, and determine which software products are currently being used in machine shop programs. A search of the Dictionary of Occupational Titles revealed that computer skills will become…

  20. No Special Equipment Required: The Accessibility Features Built into the Windows and Macintosh Operating Systems make Computers Accessible for Students with Special Needs

    ERIC Educational Resources Information Center

    Kimball,Walter H.; Cohen,Libby G.; Dimmick,Deb; Mills,Rick

    2003-01-01

    The proliferation of computers and other electronic learning devices has made knowledge and communication accessible to people with a wide range of abilities. Both Windows and Macintosh computers have accessibility options to help with many different special needs. This documents discusses solutions for: (1) visual impairments; (2) hearing…

  1. The Use of High Performance Computing (HPC) to Strengthen the Development of Army Systems

    DTIC Science & Technology

    2011-11-01

    accurately predicting the supersonic magus effect about spinning cones, ogive- cylinders , and boat-tailed afterbodies. This work led to the successful...successful computer model of the proposed product or system, one can then build prototypes on the computer and study the effects on the performance of...needed. The NRC report discusses the requirements for effective use of such computing power. One needs “models, algorithms, software, hardware

  2. Efficient universal blind quantum computation.

    PubMed

    Giovannetti, Vittorio; Maccone, Lorenzo; Morimae, Tomoyuki; Rudolph, Terry G

    2013-12-06

    We give a cheat sensitive protocol for blind universal quantum computation that is efficient in terms of computational and communication resources: it allows one party to perform an arbitrary computation on a second party's quantum computer without revealing either which computation is performed, or its input and output. The first party's computational capabilities can be extremely limited: she must only be able to create and measure single-qubit superposition states. The second party is not required to use measurement-based quantum computation. The protocol requires the (optimal) exchange of O(Jlog2(N)) single-qubit states, where J is the computational depth and N is the number of qubits needed for the computation.

  3. How Elected Officials Can Control Computer Costs.

    ERIC Educational Resources Information Center

    Grady, Daniel B.

    Elected officials have a special obligation to monitor and make informed decisions about computer expenditures. In doing so, officials should insist that a needs assessment be carried out; review all cost and configuration data; draw up a master plan specifying user needs as well as hardware, software, and personnel requirements; and subject…

  4. 20 CFR Appendixes to Subpart C of... - Note

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... The following appendices contain data that are needed in computing primary insurance amounts. Appendix... begin to use the new data in computing primary insurance amounts as soon as required by law, even before we periodically update these appendices. If the data you need to find your primary insurance amount...

  5. Design of a fault tolerant airborne digital computer. Volume 2: Computational requirements and technology

    NASA Technical Reports Server (NTRS)

    Ratner, R. S.; Shapiro, E. B.; Zeidler, H. M.; Wahlstrom, S. E.; Clark, C. B.; Goldberg, J.

    1973-01-01

    This final report summarizes the work on the design of a fault tolerant digital computer for aircraft. Volume 2 is composed of two parts. Part 1 is concerned with the computational requirements associated with an advanced commercial aircraft. Part 2 reviews the technology that will be available for the implementation of the computer in the 1975-1985 period. With regard to the computation task 26 computations have been categorized according to computational load, memory requirements, criticality, permitted down-time, and the need to save data in order to effect a roll-back. The technology part stresses the impact of large scale integration (LSI) on the realization of logic and memory. Also considered was module interconnection possibilities so as to minimize fault propagation.

  6. Factors Influencing the Adoption of Cloud Computing by Decision Making Managers

    ERIC Educational Resources Information Center

    Ross, Virginia Watson

    2010-01-01

    Cloud computing is a growing field, addressing the market need for access to computing resources to meet organizational computing requirements. The purpose of this research is to evaluate the factors that influence an organization in their decision whether to adopt cloud computing as a part of their strategic information technology planning.…

  7. Methods for Improving the User-Computer Interface. Technical Report.

    ERIC Educational Resources Information Center

    McCann, Patrick H.

    This summary of methods for improving the user-computer interface is based on a review of the pertinent literature. Requirements of the personal computer user are identified and contrasted with computer designer perspectives towards the user. The user's psychological needs are described, so that the design of the user-computer interface may be…

  8. A Simple and Resource-efficient Setup for the Computer-aided Drug Design Laboratory.

    PubMed

    Moretti, Loris; Sartori, Luca

    2016-10-01

    Undertaking modelling investigations for Computer-Aided Drug Design (CADD) requires a proper environment. In principle, this could be done on a single computer, but the reality of a drug discovery program requires robustness and high-throughput computing (HTC) to efficiently support the research. Therefore, a more capable alternative is needed but its implementation has no widespread solution. Here, the realization of such a computing facility is discussed, from general layout to technical details all aspects are covered. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Relating Cirrus Cloud Properties to Observed Fluxes: A Critical Assessment.

    NASA Astrophysics Data System (ADS)

    Vogelmann, A. M.; Ackerman, T. P.

    1995-12-01

    The accuracy needed in cirrus cloud scattering and microphysical properties is quantified such that the radiative effect on climate can he determined. Our ability to compute and observe these properties to within needed accuracies is assessed, with the greatest attention given to those properties that most affect the fluxes.Model calculations indicate that computing net longwave fluxes at the surface to within ±5% requires that cloud temperature be known to within as little as ±3 K in cold climates for extinction optical depths greater than two. Such accuracy could be more difficult to obtain than that needed in the values of scattering parameters. For a baseline case (defined in text), computing net shortwave fluxes at the surface to within ±5% requires accuracies in cloud ice water content that, when the optical depth is greater than 1.25, are beyond the accuracies of current measurements. Similarly, surface shortwave flux computations require accuracies in the asymmetry parameter that are beyond our current abilities when the optical depth is greater than four. Unless simplifications are discovered, the scattering properties needed to compute cirrus cloud fluxes cannot be obtained explicitly with existing scattering algorithms because the range of crystal sizes is too great and crystal shapes are too varied to be treated computationally. Thus, bulk cirrus scattering properties might be better obtained by inverting cirrus cloud fluxes and radiances. Finally, typical aircraft broadband flux measurements are not sufficiently accurate to provide a convincing validation of calculations. In light of these findings we recommend a reexamination of the methodology used in field programs such as FIRE and suggest a complementary approach.

  10. Media-Rich Learning through Universal Computing and Wireless Thin Client.

    ERIC Educational Resources Information Center

    Cain, Mark

    There is a whole infrastructure that must support a successful universal student computing requirement. Conventional approaches would have the students plugging into a wired network. That would necessitate network wires and hubs or many ports in each classroom. Students would need access to course-related software. Because the needs would change…

  11. Computer Needs and Computer Problems in Developing Countries.

    ERIC Educational Resources Information Center

    Huskey, Harry D.

    A survey of the computer environment in a developing country is provided. Levels of development are considered and the educational requirements of countries at various levels are discussed. Computer activities in India, Burma, Pakistan, Brazil and a United Nations sponsored educational center in Hungary are all described. (SK/Author)

  12. 75 FR 6185 - Information Collection Requirement; Defense Federal Acquisition Regulation Supplement; Rights in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-08

    ...; Defense Federal Acquisition Regulation Supplement; Rights in Technical Data and Computer Software (OMB... 227.72, Rights in Computer Software and Computer Software Documentation, and related provisions and... rights in technical data and computer software. DoD needs this information to implement 10 U.S.C. 2320...

  13. 78 FR 30898 - Information Collection Requirement; Defense Federal Acquisition Regulation Supplement; Rights in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-23

    ... Data and Computer Software AGENCY: Defense Acquisition Regulations System; Department of Defense (DoD... in Technical Data, and Subpart 227.72, Rights in Computer Software and Computer Software... are associated with rights in technical data and computer software. DoD needs this information to...

  14. An Approach to Providing a User Interface for Military Computer-Aided-Instruction in 1980.

    ERIC Educational Resources Information Center

    Gallenson, Louis

    A recent needs study determined that most of the terminal requirements for military computer assisted instruction (CAI) applications can be satisfied with mainstream commercial terminals. Additional development, however, is likely to be required to satisfy two of the capabilities (limited graphics and prerecorded visuals). The expected…

  15. Cloud Computing and Validated Learning for Accelerating Innovation in IoT

    ERIC Educational Resources Information Center

    Suciu, George; Todoran, Gyorgy; Vulpe, Alexandru; Suciu, Victor; Bulca, Cristina; Cheveresan, Romulus

    2015-01-01

    Innovation in Internet of Things (IoT) requires more than just creation of technology and use of cloud computing or big data platforms. It requires accelerated commercialization or aptly called go-to-market processes. To successfully accelerate, companies need a new type of product development, the so-called validated learning process.…

  16. Crosscut report: Exascale Requirements Reviews, March 9–10, 2017 – Tysons Corner, Virginia. An Office of Science review sponsored by: Advanced Scientific Computing Research, Basic Energy Sciences, Biological and Environmental Research, Fusion Energy Sciences, High Energy Physics, Nuclear Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, Richard; Hack, James; Riley, Katherine

    The mission of the U.S. Department of Energy Office of Science (DOE SC) is the delivery of scientific discoveries and major scientific tools to transform our understanding of nature and to advance the energy, economic, and national security missions of the United States. To achieve these goals in today’s world requires investments in not only the traditional scientific endeavors of theory and experiment, but also in computational science and the facilities that support large-scale simulation and data analysis. The Advanced Scientific Computing Research (ASCR) program addresses these challenges in the Office of Science. ASCR’s mission is to discover, develop, andmore » deploy computational and networking capabilities to analyze, model, simulate, and predict complex phenomena important to DOE. ASCR supports research in computational science, three high-performance computing (HPC) facilities — the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory and Leadership Computing Facilities at Argonne (ALCF) and Oak Ridge (OLCF) National Laboratories — and the Energy Sciences Network (ESnet) at Berkeley Lab. ASCR is guided by science needs as it develops research programs, computers, and networks at the leading edge of technologies. As we approach the era of exascale computing, technology changes are creating challenges for science programs in SC for those who need to use high performance computing and data systems effectively. Numerous significant modifications to today’s tools and techniques will be needed to realize the full potential of emerging computing systems and other novel computing architectures. To assess these needs and challenges, ASCR held a series of Exascale Requirements Reviews in 2015–2017, one with each of the six SC program offices,1 and a subsequent Crosscut Review that sought to integrate the findings from each. Participants at the reviews were drawn from the communities of leading domain scientists, experts in computer science and applied mathematics, ASCR facility staff, and DOE program managers in ASCR and the respective program offices. The purpose of these reviews was to identify mission-critical scientific problems within the DOE Office of Science (including experimental facilities) and determine the requirements for the exascale ecosystem that would be needed to address those challenges. The exascale ecosystem includes exascale computing systems, high-end data capabilities, efficient software at scale, libraries, tools, and other capabilities. This effort will contribute to the development of a strategic roadmap for ASCR compute and data facility investments and will help the ASCR Facility Division establish partnerships with Office of Science stakeholders. It will also inform the Office of Science research needs and agenda. The results of the six reviews have been published in reports available on the web at http://exascaleage.org/. This report presents a summary of the individual reports and of common and crosscutting findings, and it identifies opportunities for productive collaborations among the DOE SC program offices.« less

  17. Goals and Objectives for Computing in the Associated Colleges of the St. Lawrence Valley.

    ERIC Educational Resources Information Center

    Grupe, Fritz H.

    A forecast of the computing requirements of the Associated Colleges of the St. Lawrence Valley, an analysis of their needs, and specifications for a joint computer system are presented. Problems encountered included the lack of resources and computer sophistication at the member schools and a dearth of experience with long-term computer consortium…

  18. Notebook Computers Increase Communication.

    ERIC Educational Resources Information Center

    Carey, Doris M.; Sale, Paul

    1994-01-01

    Project FIT (Full Inclusion through Technology) provides notebook computers for children with severe disabilities. The computers offer many input and output options. Assessing the students' equipment needs is a complex process, requiring determination of communication goals and baseline abilities, and consideration of equipment features such as…

  19. Climate Modeling Computing Needs Assessment

    NASA Astrophysics Data System (ADS)

    Petraska, K. E.; McCabe, J. D.

    2011-12-01

    This paper discusses early findings of an assessment of computing needs for NASA science, engineering and flight communities. The purpose of this assessment is to document a comprehensive set of computing needs that will allow us to better evaluate whether our computing assets are adequately structured to meet evolving demand. The early results are interesting, already pointing out improvements we can make today to get more out of the computing capacity we have, as well as potential game changing innovations for the future in how we apply information technology to science computing. Our objective is to learn how to leverage our resources in the best way possible to do more science for less money. Our approach in this assessment is threefold: Development of use case studies for science workflows; Creating a taxonomy and structure for describing science computing requirements; and characterizing agency computing, analysis, and visualization resources. As projects evolve, science data sets increase in a number of ways: in size, scope, timelines, complexity, and fidelity. Generating, processing, moving, and analyzing these data sets places distinct and discernable requirements on underlying computing, analysis, storage, and visualization systems. The initial focus group for this assessment is the Earth Science modeling community within NASA's Science Mission Directorate (SMD). As the assessment evolves, this focus will expand to other science communities across the agency. We will discuss our use cases, our framework for requirements and our characterizations, as well as our interview process, what we learned and how we plan to improve our materials after using them in the first round of interviews in the Earth Science Modeling community. We will describe our plans for how to expand this assessment, first into the Earth Science data analysis and remote sensing communities, and then throughout the full community of science, engineering and flight at NASA.

  20. Interfacing HTCondor-CE with OpenStack

    NASA Astrophysics Data System (ADS)

    Bockelman, B.; Caballero Bejar, J.; Hover, J.

    2017-10-01

    Over the past few years, Grid Computing technologies have reached a high level of maturity. One key aspect of this success has been the development and adoption of newer Compute Elements to interface the external Grid users with local batch systems. These new Compute Elements allow for better handling of jobs requirements and a more precise management of diverse local resources. However, despite this level of maturity, the Grid Computing world is lacking diversity in local execution platforms. As Grid Computing technologies have historically been driven by the needs of the High Energy Physics community, most resource providers run the platform (operating system version and architecture) that best suits the needs of their particular users. In parallel, the development of virtualization and cloud technologies has accelerated recently, making available a variety of solutions, both commercial and academic, proprietary and open source. Virtualization facilitates performing computational tasks on platforms not available at most computing sites. This work attempts to join the technologies, allowing users to interact with computing sites through one of the standard Computing Elements, HTCondor-CE, but running their jobs within VMs on a local cloud platform, OpenStack, when needed. The system will re-route, in a transparent way, end user jobs into dynamically-launched VM worker nodes when they have requirements that cannot be satisfied by the static local batch system nodes. Also, once the automated mechanisms are in place, it becomes straightforward to allow an end user to invoke a custom Virtual Machine at the site. This will allow cloud resources to be used without requiring the user to establish a separate account. Both scenarios are described in this work.

  1. Using Amazon's Elastic Compute Cloud to dynamically scale CMS computational resources

    NASA Astrophysics Data System (ADS)

    Evans, D.; Fisk, I.; Holzman, B.; Melo, A.; Metson, S.; Pordes, R.; Sheldon, P.; Tiradani, A.

    2011-12-01

    Large international scientific collaborations such as the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider have traditionally addressed their data reduction and analysis needs by building and maintaining dedicated computational infrastructure. Emerging cloud computing services such as Amazon's Elastic Compute Cloud (EC2) offer short-term CPU and storage resources with costs based on usage. These services allow experiments to purchase computing resources as needed, without significant prior planning and without long term investments in facilities and their management. We have demonstrated that services such as EC2 can successfully be integrated into the production-computing model of CMS, and find that they work very well as worker nodes. The cost-structure and transient nature of EC2 services makes them inappropriate for some CMS production services and functions. We also found that the resources are not truely "on-demand" as limits and caps on usage are imposed. Our trial workflows allow us to make a cost comparison between EC2 resources and dedicated CMS resources at a University, and conclude that it is most cost effective to purchase dedicated resources for the "base-line" needs of experiments such as CMS. However, if the ability to use cloud computing resources is built into an experiment's software framework before demand requires their use, cloud computing resources make sense for bursting during times when spikes in usage are required.

  2. A Complete Interactive Graphical Computer-Aided Instruction System.

    ERIC Educational Resources Information Center

    Abrams, Steven Selby

    The use of interactive graphics in computer-aided instruction systems is discussed with emphasis placed on two requirements of such a system. The first is the need to provide the teacher with a useful tool with which to design and modify teaching sessions tailored to the individual needs and capabilities of the students. The second is the…

  3. Costs, needs must be balanced when buying computer systems.

    PubMed

    Krantz, G M; Doyle, J J; Stone, S G

    1989-06-01

    A healthcare institution must carefully examine its internal needs and external requirements before selecting an information system. The system's costs must be carefully weighed because significant computer cost overruns can cripple overall hospital finances. A New Jersey hospital carefully studied these issues and determined that a contract with a regional data center was its best option.

  4. Basic Energy Sciences Exascale Requirements Review. An Office of Science review sponsored jointly by Advanced Scientific Computing Research and Basic Energy Sciences, November 3-5, 2015, Rockville, Maryland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Windus, Theresa; Banda, Michael; Devereaux, Thomas

    Computers have revolutionized every aspect of our lives. Yet in science, the most tantalizing applications of computing lie just beyond our reach. The current quest to build an exascale computer with one thousand times the capability of today’s fastest machines (and more than a million times that of a laptop) will take researchers over the next horizon. The field of materials, chemical reactions, and compounds is inherently complex. Imagine millions of new materials with new functionalities waiting to be discovered — while researchers also seek to extend those materials that are known to a dizzying number of new forms. Wemore » could translate massive amounts of data from high precision experiments into new understanding through data mining and analysis. We could have at our disposal the ability to predict the properties of these materials, to follow their transformations during reactions on an atom-by-atom basis, and to discover completely new chemical pathways or physical states of matter. Extending these predictions from the nanoscale to the mesoscale, from the ultrafast world of reactions to long-time simulations to predict the lifetime performance of materials, and to the discovery of new materials and processes will have a profound impact on energy technology. In addition, discovery of new materials is vital to move computing beyond Moore’s law. To realize this vision, more than hardware is needed. New algorithms to take advantage of the increase in computing power, new programming paradigms, and new ways of mining massive data sets are needed as well. This report summarizes the opportunities and the requisite computing ecosystem needed to realize the potential before us. In addition to pursuing new and more complete physical models and theoretical frameworks, this review found that the following broadly grouped areas relevant to the U.S. Department of Energy (DOE) Office of Advanced Scientific Computing Research (ASCR) would directly affect the Basic Energy Sciences (BES) mission need. Simulation, visualization, and data analysis are crucial for advances in energy science and technology. Revolutionary mathematical, software, and algorithm developments are required in all areas of BES science to take advantage of exascale computing architectures and to meet data analysis, management, and workflow needs. In partnership with ASCR, BES has an emerging and pressing need to develop new and disruptive capabilities in data science. More capable and larger high-performance computing (HPC) and data ecosystems are required to support priority research in BES. Continued success in BES research requires developing the next-generation workforce through education and training and by providing sustained career opportunities.« less

  5. Red Storm usage model :Version 1.12.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jefferson, Karen L.; Sturtevant, Judith E.

    Red Storm is an Advanced Simulation and Computing (ASC) funded massively parallel supercomputer located at Sandia National Laboratories (SNL). The Red Storm Usage Model (RSUM) documents the capabilities and the environment provided for the FY05 Tri-Lab Level II Limited Availability Red Storm User Environment Milestone and the FY05 SNL Level II Limited Availability Red Storm Platform Milestone. This document describes specific capabilities, tools, and procedures to support both local and remote users. The model is focused on the needs of the ASC user working in the secure computing environments at Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL),more » and SNL. Additionally, the Red Storm Usage Model maps the provided capabilities to the Tri-Lab ASC Computing Environment (ACE) requirements. The ACE requirements reflect the high performance computing requirements for the ASC community and have been updated in FY05 to reflect the community's needs. For each section of the RSUM, Appendix I maps the ACE requirements to the Limited Availability User Environment capabilities and includes a description of ACE requirements met and those requirements that are not met in that particular section. The Red Storm Usage Model, along with the ACE mappings, has been issued and vetted throughout the Tri-Lab community.« less

  6. Functional requirements of computer systems for the U.S. Geological Survey, Water Resources Division, 1988-97

    USGS Publications Warehouse

    Hathaway, R.M.; McNellis, J.M.

    1989-01-01

    Investigating the occurrence, quantity, quality, distribution, and movement of the Nation 's water resources is the principal mission of the U.S. Geological Survey 's Water Resources Division. Reports of these investigations are published and available to the public. To accomplish this mission, the Division requires substantial computer technology to process, store, and analyze data from more than 57,000 hydrologic sites. The Division 's computer resources are organized through the Distributed Information System Program Office that manages the nationwide network of computers. The contract that provides the major computer components for the Water Resources Division 's Distributed information System expires in 1991. Five work groups were organized to collect the information needed to procure a new generation of computer systems for the U. S. Geological Survey, Water Resources Division. Each group was assigned a major Division activity and asked to describe its functional requirements of computer systems for the next decade. The work groups and major activities are: (1) hydrologic information; (2) hydrologic applications; (3) geographic information systems; (4) reports and electronic publishing; and (5) administrative. The work groups identified 42 functions and described their functional requirements for 1988, 1992, and 1997. A few new functions such as Decision Support Systems and Executive Information Systems, were identified, but most are the same as performed today. Although the number of functions will remain about the same, steady growth in the size, complexity, and frequency of many functions is predicted for the next decade. No compensating increase in the Division 's staff is anticipated during this period. To handle the increased workload and perform these functions, new approaches will be developed that use advanced computer technology. The advanced technology is required in a unified, tightly coupled system that will support all functions simultaneously. The new approaches and expanded use of computers will require substantial increases in the quantity and sophistication of the Division 's computer resources. The requirements presented in this report will be used to develop technical specifications that describe the computer resources needed during the 1990's. (USGS)

  7. A COMPARISON OF TRANSIENT INFINITE ELEMENTS AND TRANSIENT KIRCHHOFF INTEGRAL METHODS FOR FAR FIELD ACOUSTIC ANALYSIS

    DOE PAGES

    WALSH, TIMOTHY F.; JONES, ANDREA; BHARDWAJ, MANOJ; ...

    2013-04-01

    Finite element analysis of transient acoustic phenomena on unbounded exterior domains is very common in engineering analysis. In these problems there is a common need to compute the acoustic pressure at points outside of the acoustic mesh, since meshing to points of interest is impractical in many scenarios. In aeroacoustic calculations, for example, the acoustic pressure may be required at tens or hundreds of meters from the structure. In these cases, a method is needed for post-processing the acoustic results to compute the response at far-field points. In this paper, we compare two methods for computing far-field acoustic pressures, onemore » derived directly from the infinite element solution, and the other from the transient version of the Kirchhoff integral. Here, we show that the infinite element approach alleviates the large storage requirements that are typical of Kirchhoff integral and related procedures, and also does not suffer from loss of accuracy that is an inherent part of computing numerical derivatives in the Kirchhoff integral. In order to further speed up and streamline the process of computing the acoustic response at points outside of the mesh, we also address the nonlinear iterative procedure needed for locating parametric coordinates within the host infinite element of far-field points, the parallelization of the overall process, linear solver requirements, and system stability considerations.« less

  8. Information system needs in health promotion: a case study of the Safe Community programme using requirements engineering methods.

    PubMed

    Timpka, Toomas; Olvander, Christina; Hallberg, Niklas

    2008-09-01

    The international Safe Community programme was used as the setting for a case study to explore the need for information system support in health promotion programmes. The 14 Safe Communities active in Sweden during 2002 were invited to participate and 13 accepted. A questionnaire on computer usage and a critical incident technique instrument were distributed. Sharing of management information, creating social capital for safety promotion, and injury data recording were found to be key areas that need to be further supported by computer-based information systems. Most respondents reported having access to a personal computer workstation with standard office software. Interest in using more advanced computer applications was low, and there was considerable need for technical user support. Areas where information systems can be used to make health promotion practice more efficient were identified, and patterns of computers usage were described.

  9. Administrators' Perceptions of Community College Students' Computer Literacy Skills in Beginner Courses

    ERIC Educational Resources Information Center

    Ragin, Tracey B.

    2013-01-01

    Fundamental computer skills are vital in the current technology-driven society. The purpose of this study was to investigate the development needs of students at a rural community college in the Southeast who lacked the computer literacy skills required in a basic computer course. Guided by Greenwood's pragmatic approach as a reformative force in…

  10. Adventures in Computational Grids

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    Sometimes one supercomputer is not enough. Or your local supercomputers are busy, or not configured for your job. Or you don't have any supercomputers. You might be trying to simulate worldwide weather changes in real time, requiring more compute power than you could get from any one machine. Or you might be collecting microbiological samples on an island, and need to examine them with a special microscope located on the other side of the continent. These are the times when you need a computational grid.

  11. The Role of Academic Computer Departments in the Uses of Computers in the Undergraduate Curricula at the Two-Year College Level.

    ERIC Educational Resources Information Center

    Little, Joyce Currie

    Academic computer departments, whether called by this name or by others such as the department of computer science or data programing, can be of great assistance to other departments in the two-year college. Faculty in other departments need to know about computer applications in their fields, require assistance in the development of curriculum…

  12. Development INTERDATA 8/32 computer system

    NASA Technical Reports Server (NTRS)

    Sonett, C. P.

    1983-01-01

    The capabilities of the Interdata 8/32 minicomputer were examined regarding data and word processing, editing, retrieval, and budgeting as well as data management demands of the user groups in the network. Based on four projected needs: (1) a hands on (open shop) computer for data analysis with large core and disc capability; (2) the expected requirements of the NASA data networks; (3) the need for intermittent large core capacity for theoretical modeling; (4) the ability to access data rapidly either directly from tape or from core onto hard copy, the system proved useful and adequate for the planned requirements.

  13. A method of extracting ontology module using concept relations for sharing knowledge in mobile cloud computing environment.

    PubMed

    Lee, Keonsoo; Rho, Seungmin; Lee, Seok-Won

    2014-01-01

    In mobile cloud computing environment, the cooperation of distributed computing objects is one of the most important requirements for providing successful cloud services. To satisfy this requirement, all the members, who are employed in the cooperation group, need to share the knowledge for mutual understanding. Even if ontology can be the right tool for this goal, there are several issues to make a right ontology. As the cost and complexity of managing knowledge increase according to the scale of the knowledge, reducing the size of ontology is one of the critical issues. In this paper, we propose a method of extracting ontology module to increase the utility of knowledge. For the given signature, this method extracts the ontology module, which is semantically self-contained to fulfill the needs of the service, by considering the syntactic structure and semantic relation of concepts. By employing this module, instead of the original ontology, the cooperation of computing objects can be performed with less computing load and complexity. In particular, when multiple external ontologies need to be combined for more complex services, this method can be used to optimize the size of shared knowledge.

  14. Computing and information services at the Jet Propulsion Laboratory - A management approach to a diversity of needs

    NASA Technical Reports Server (NTRS)

    Felberg, F. H.

    1984-01-01

    The Jet Propulsion Laboratory, a research and development organization with about 5,000 employees, presents a complicated set of requirements for an institutional system of computing and informational services. The approach taken by JPL in meeting this challenge is one of controlled flexibility. A central communications network is provided, together with selected computing facilities for common use. At the same time, staff members are given considerable discretion in choosing the mini- and microcomputers that they believe will best serve their needs. Consultation services, computer education, and other support functions are also provided.

  15. Assessment of computational prediction of tail buffeting

    NASA Technical Reports Server (NTRS)

    Edwards, John W.

    1990-01-01

    Assessments of the viability of computational methods and the computer resource requirements for the prediction of tail buffeting are made. Issues involved in the use of Euler and Navier-Stokes equations in modeling vortex-dominated and buffet flows are discussed and the requirement for sufficient grid density to allow accurate, converged calculations is stressed. Areas in need of basic fluid dynamics research are highlighted: vorticity convection, vortex breakdown, dynamic turbulence modeling for free shear layers, unsteady flow separation for moderately swept, rounded leading-edge wings, vortex flows about wings at high subsonic speeds. An estimate of the computer run time for a buffeting response calculation for a full span F-15 aircraft indicates that an improvement in computer and/or algorithm efficiency of three orders of magnitude is needed to enable routine use of such methods. Attention is also drawn to significant uncertainties in the estimates, in particular with regard to nonlinearities contained within the modeling and the question of the repeatability or randomness of buffeting response.

  16. CMS Distributed Computing Integration in the LHC sustained operations era

    NASA Astrophysics Data System (ADS)

    Grandi, C.; Bockelman, B.; Bonacorsi, D.; Fisk, I.; González Caballero, I.; Farina, F.; Hernández, J. M.; Padhi, S.; Sarkar, S.; Sciabà, A.; Sfiligoi, I.; Spiga, F.; Úbeda García, M.; Van Der Ster, D. C.; Zvada, M.

    2011-12-01

    After many years of preparation the CMS computing system has reached a situation where stability in operations limits the possibility to introduce innovative features. Nevertheless it is the same need of stability and smooth operations that requires the introduction of features that were considered not strategic in the previous phases. Examples are: adequate authorization to control and prioritize the access to storage and computing resources; improved monitoring to investigate problems and identify bottlenecks on the infrastructure; increased automation to reduce the manpower needed for operations; effective process to deploy in production new releases of the software tools. We present the work of the CMS Distributed Computing Integration Activity that is responsible for providing a liaison between the CMS distributed computing infrastructure and the software providers, both internal and external to CMS. In particular we describe the introduction of new middleware features during the last 18 months as well as the requirements to Grid and Cloud software developers for the future.

  17. Computational Modeling and Treatment Identification in the Myelodysplastic Syndromes.

    PubMed

    Drusbosky, Leylah M; Cogle, Christopher R

    2017-10-01

    This review discusses the need for computational modeling in myelodysplastic syndromes (MDS) and early test results. As our evolving understanding of MDS reveals a molecularly complicated disease, the need for sophisticated computer analytics is required to keep track of the number and complex interplay among the molecular abnormalities. Computational modeling and digital drug simulations using whole exome sequencing data input have produced early results showing high accuracy in predicting treatment response to standard of care drugs. Furthermore, the computational MDS models serve as clinically relevant MDS cell lines for pre-clinical assays of investigational agents. MDS is an ideal disease for computational modeling and digital drug simulations. Current research is focused on establishing the prediction value of computational modeling. Future research will test the clinical advantage of computer-informed therapy in MDS.

  18. Guidelines in preparing computer-generated plots for NASA technical reports with the LaRC graphics output system

    NASA Technical Reports Server (NTRS)

    Taylor, N. L.

    1983-01-01

    To response to a need for improved computer-generated plots that are acceptable to the Langley publication process, the LaRC Graphics Output System has been modified to encompass the publication requirements, and a guideline has been established. This guideline deals only with the publication requirements of computer-generated plots. This report explains the capability that authors of NASA technical reports can use to obtain publication--quality computer-generated plots or the Langley publication process. The rules applied in developing this guideline and examples illustrating the rules are included.

  19. Computational complexities and storage requirements of some Riccati equation solvers

    NASA Technical Reports Server (NTRS)

    Utku, Senol; Garba, John A.; Ramesh, A. V.

    1989-01-01

    The linear optimal control problem of an nth-order time-invariant dynamic system with a quadratic performance functional is usually solved by the Hamilton-Jacobi approach. This leads to the solution of the differential matrix Riccati equation with a terminal condition. The bulk of the computation for the optimal control problem is related to the solution of this equation. There are various algorithms in the literature for solving the matrix Riccati equation. However, computational complexities and storage requirements as a function of numbers of state variables, control variables, and sensors are not available for all these algorithms. In this work, the computational complexities and storage requirements for some of these algorithms are given. These expressions show the immensity of the computational requirements of the algorithms in solving the Riccati equation for large-order systems such as the control of highly flexible space structures. The expressions are also needed to compute the speedup and efficiency of any implementation of these algorithms on concurrent machines.

  20. Space Station Simulation Computer System (SCS) study for NASA/MSFC. Volume 2: Baseline architecture report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.

  1. Space Station Simulation Computer System (SCS) study for NASA/MSFC. Phased development plan

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is made up of computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.

  2. Space Station Simulation Computer System (SCS) study for NASA/MSFC. Volume 1: Baseline architecture report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is made up of the computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.

  3. Space Station Simulation Computer System (SCS) study for NASA/MSFC. Operations concept report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is made up of computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.

  4. Assignment Of Finite Elements To Parallel Processors

    NASA Technical Reports Server (NTRS)

    Salama, Moktar A.; Flower, Jon W.; Otto, Steve W.

    1990-01-01

    Elements assigned approximately optimally to subdomains. Mapping algorithm based on simulated-annealing concept used to minimize approximate time required to perform finite-element computation on hypercube computer or other network of parallel data processors. Mapping algorithm needed when shape of domain complicated or otherwise not obvious what allocation of elements to subdomains minimizes cost of computation.

  5. Parental Perceptions and Recommendations of Computing Majors: A Technology Acceptance Model Approach

    ERIC Educational Resources Information Center

    Powell, Loreen; Wimmer, Hayden

    2017-01-01

    Currently, there are more technology related jobs then there are graduates in supply. The need to understand user acceptance of computing degrees is the first step in increasing enrollment in computing fields. Additionally, valid measurement scales for predicting user acceptance of Information Technology degree programs are required. The majority…

  6. Digital optical processing of optical communications: towards an Optical Turing Machine

    NASA Astrophysics Data System (ADS)

    Touch, Joe; Cao, Yinwen; Ziyadi, Morteza; Almaiman, Ahmed; Mohajerin-Ariaei, Amirhossein; Willner, Alan E.

    2017-01-01

    Optical computing is needed to support Tb/s in-network processing in a way that unifies communication and computation using a single data representation that supports in-transit network packet processing, security, and big data filtering. Support for optical computation of this sort requires leveraging the native properties of optical wave mixing to enable computation and switching for programmability. As a consequence, data must be encoded digitally as phase (M-PSK), semantics-preserving regeneration is the key to high-order computation, and data processing at Tb/s rates requires mixing. Experiments have demonstrated viable approaches to phase squeezing and power restoration. This work led our team to develop the first serial, optical Internet hop-count decrement, and to design and simulate optical circuits for calculating the Internet checksum and multiplexing Internet packets. The current exploration focuses on limited-lookback computational models to reduce the need for permanent storage and hybrid nanophotonic circuits that combine phase-aligned comb sources, non-linear mixing, and switching on the same substrate to avoid the macroscopic effects that hamper benchtop prototypes.

  7. Efficient Computation Of Manipulator Inertia Matrix

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Bejczy, Antal K.

    1991-01-01

    Improved method for computation of manipulator inertia matrix developed, based on concept of spatial inertia of composite rigid body. Required for implementation of advanced dynamic-control schemes as well as dynamic simulation of manipulator motion. Motivated by increasing demand for fast algorithms to provide real-time control and simulation capability and, particularly, need for faster-than-real-time simulation capability, required in many anticipated space teleoperation applications.

  8. Future experimental needs to support applied aerodynamics - A transonic perspective

    NASA Technical Reports Server (NTRS)

    Gloss, Blair B.

    1992-01-01

    Advancements in facilities, test techniques, and instrumentation are needed to provide data required for the development of advanced aircraft and to verify computational methods. An industry survey of major users of wind tunnel facilities at Langley Research Center (LaRC) was recently carried out to determine future facility requirements, test techniques, and instrumentation requirements; results from this survey are reflected in this paper. In addition, areas related to transonic testing at LaRC which are either currently being developed or are recognized as needing improvements are discussed.

  9. Proposal for grid computing for nuclear applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idris, Faridah Mohamad; Ismail, Saaidi; Haris, Mohd Fauzi B.

    2014-02-12

    The use of computer clusters for computational sciences including computational physics is vital as it provides computing power to crunch big numbers at a faster rate. In compute intensive applications that requires high resolution such as Monte Carlo simulation, the use of computer clusters in a grid form that supplies computational power to any nodes within the grid that needs computing power, has now become a necessity. In this paper, we described how the clusters running on a specific application could use resources within the grid, to run the applications to speed up the computing process.

  10. Synesthetic art through 3-D projection: The requirements of a computer-based supermedium

    NASA Technical Reports Server (NTRS)

    Mallary, Robert

    1989-01-01

    A computer-based form of multimedia art is proposed that uses the computer to fuse aspects of painting, sculpture, dance, music, film, and other media into a one-to-one synthesia of image and sound for spatially synchronous 3-D projection. Called synesthetic art, this conversion of many varied media into an aesthetically unitary experience determines the character and requirements of the system and its software. During the start-up phase, computer stereographic systems are unsuitable for software development. Eventually, a new type of illusory-projective supermedium will be required to achieve the needed combination of large-format projection and convincing real life presence, and to handle the vast amount of 3-D visual and acoustic information required. The influence of the concept on the author's research and creative work is illustrated through two examples.

  11. Blanks: a computer program for analyzing furniture rough-part needs in standard-size blanks

    Treesearch

    Philip A. Araman

    1983-01-01

    A computer program is described that allows a company to determine the number of edge-glued, standard-size blanks required to satisfy its rough-part needs for a given production period. Yield and cost information also is determined by the program. A list of the program inputs, outputs, and uses of outputs is described, and an example analysis with sample output is...

  12. A Computer Analysis of Library Postcards. (CALP)

    ERIC Educational Resources Information Center

    Stevens, Norman D.

    1974-01-01

    A description of a sophisticated application of computer techniques to the analysis of a collection of picture postcards of library buildings in an attempt to establish the minimum architectural requirements needed to distinguish one style of library building from another. (Author)

  13. ExpoCast: Exposure Science for Prioritization and Toxicity Testing (T)

    EPA Science Inventory

    The US EPA National Center for Computational Toxicology (NCCT) has a mission to integrate modern computing and information technology with molecular biology to improve Agency prioritization of data requirements and risk assessment of chemicals. Recognizing the critical need for ...

  14. A fast technique for computing syndromes of BCH and RS codes. [deep space network

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Truong, T. K.; Miller, R. L.

    1979-01-01

    A combination of the Chinese Remainder Theorem and Winograd's algorithm is used to compute transforms of odd length over GF(2 to the m power). Such transforms are used to compute the syndromes needed for decoding CBH and RS codes. The present scheme requires substantially fewer multiplications and additions than the conventional method of computing the syndromes directly.

  15. Computer graphics and the graphic artist

    NASA Technical Reports Server (NTRS)

    Taylor, N. L.; Fedors, E. G.; Pinelli, T. E.

    1985-01-01

    A centralized computer graphics system is being developed at the NASA Langley Research Center. This system was required to satisfy multiuser needs, ranging from presentation quality graphics prepared by a graphic artist to 16-mm movie simulations generated by engineers and scientists. While the major thrust of the central graphics system was directed toward engineering and scientific applications, hardware and software capabilities to support the graphic artists were integrated into the design. This paper briefly discusses the importance of computer graphics in research; the central graphics system in terms of systems, software, and hardware requirements; the application of computer graphics to graphic arts, discussed in terms of the requirements for a graphic arts workstation; and the problems encountered in applying computer graphics to the graphic arts. The paper concludes by presenting the status of the central graphics system.

  16. Computed discharges at five sites in lower Laguna Madre near Port Isabel, Texas, June 1997

    USGS Publications Warehouse

    East, Jeffrey W.; Solis, R.S.; Ockerman, D.J.

    1998-01-01

    The Texas Water Development Board (TWDB), Texas Parks and Wildlife Department (TPWD), and Texas Natural Resource Conservation Commission (TNRCC) are charged by the Texas Legislature with determining freshwater inflows required to maintain the ecological health of streams, bays, and estuaries in Texas. To determine required inflows, the three agencies collect data and conduct studies on the needs for freshwater inflows to estuaries. The TWDB uses estuarine hydrodynamic and conservativetransport computer models to predict the effects of altering freshwater inflows on estuarine circulation and salinity. To calibrate these models, a variety of water-quality and discharge data are needed.

  17. Efficient storage, computation, and exposure of computer-generated holograms by electron-beam lithography.

    PubMed

    Newman, D M; Hawley, R W; Goeckel, D L; Crawford, R D; Abraham, S; Gallagher, N C

    1993-05-10

    An efficient storage format was developed for computer-generated holograms for use in electron-beam lithography. This method employs run-length encoding and Lempel-Ziv-Welch compression and succeeds in exposing holograms that were previously infeasible owing to the hologram's tremendous pattern-data file size. These holograms also require significant computation; thus the algorithm was implemented on a parallel computer, which improved performance by 2 orders of magnitude. The decompression algorithm was integrated into the Cambridge electron-beam machine's front-end processor.Although this provides much-needed ability, some hardware enhancements will be required in the future to overcome inadequacies in the current front-end processor that result in a lengthy exposure time.

  18. On the Large-Scaling Issues of Cloud-based Applications for Earth Science Dat

    NASA Astrophysics Data System (ADS)

    Hua, H.

    2016-12-01

    Next generation science data systems are needed to address the incoming flood of data from new missions such as NASA's SWOT and NISAR where its SAR data volumes and data throughput rates are order of magnitude larger than present day missions. Existing missions, such as OCO-2, may also require high turn-around time for processing different science scenarios where on-premise and even traditional HPC computing environments may not meet the high processing needs. Additionally, traditional means of procuring hardware on-premise are already limited due to facilities capacity constraints for these new missions. Experiences have shown that to embrace efficient cloud computing approaches for large-scale science data systems requires more than just moving existing code to cloud environments. At large cloud scales, we need to deal with scaling and cost issues. We present our experiences on deploying multiple instances of our hybrid-cloud computing science data system (HySDS) to support large-scale processing of Earth Science data products. We will explore optimization approaches to getting best performance out of hybrid-cloud computing as well as common issues that will arise when dealing with large-scale computing. Novel approaches were utilized to do processing on Amazon's spot market, which can potentially offer 75%-90% costs savings but with an unpredictable computing environment based on market forces.

  19. The Nuclear Energy Advanced Modeling and Simulation Enabling Computational Technologies FY09 Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diachin, L F; Garaizar, F X; Henson, V E

    2009-10-12

    In this document we report on the status of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Enabling Computational Technologies (ECT) effort. In particular, we provide the context for ECT In the broader NEAMS program and describe the three pillars of the ECT effort, namely, (1) tools and libraries, (2) software quality assurance, and (3) computational facility (computers, storage, etc) needs. We report on our FY09 deliverables to determine the needs of the integrated performance and safety codes (IPSCs) in these three areas and lay out the general plan for software quality assurance to meet the requirements of DOE andmore » the DOE Advanced Fuel Cycle Initiative (AFCI). We conclude with a brief description of our interactions with the Idaho National Laboratory computer center to determine what is needed to expand their role as a NEAMS user facility.« less

  20. Computational time reduction for sequential batch solutions in GNSS precise point positioning technique

    NASA Astrophysics Data System (ADS)

    Martín Furones, Angel; Anquela Julián, Ana Belén; Dimas-Pages, Alejandro; Cos-Gayón, Fernando

    2017-08-01

    Precise point positioning (PPP) is a well established Global Navigation Satellite System (GNSS) technique that only requires information from the receiver (or rover) to obtain high-precision position coordinates. This is a very interesting and promising technique because eliminates the need for a reference station near the rover receiver or a network of reference stations, thus reducing the cost of a GNSS survey. From a computational perspective, there are two ways to solve the system of observation equations produced by static PPP either in a single step (so-called batch adjustment) or with a sequential adjustment/filter. The results of each should be the same if they are both well implemented. However, if a sequential solution (that is, not only the final coordinates, but also those observed in previous GNSS epochs), is needed, as for convergence studies, finding a batch solution becomes a very time consuming task owing to the need for matrix inversion that accumulates with each consecutive epoch. This is not a problem for the filter solution, which uses information computed in the previous epoch for the solution of the current epoch. Thus filter implementations need extra considerations of user dynamics and parameter state variations between observation epochs with appropriate stochastic update parameter variances from epoch to epoch. These filtering considerations are not needed in batch adjustment, which makes it attractive. The main objective of this research is to significantly reduce the computation time required to obtain sequential results using batch adjustment. The new method we implemented in the adjustment process led to a mean reduction in computational time by 45%.

  1. Fermilab computing at the Intensity Frontier

    DOE PAGES

    Group, Craig; Fuess, S.; Gutsche, O.; ...

    2015-12-23

    The Intensity Frontier refers to a diverse set of particle physics experiments using high- intensity beams. In this paper I will focus the discussion on the computing requirements and solutions of a set of neutrino and muon experiments in progress or planned to take place at the Fermi National Accelerator Laboratory located near Chicago, Illinois. In addition, the experiments face unique challenges, but also have overlapping computational needs. In principle, by exploiting the commonality and utilizing centralized computing tools and resources, requirements can be satisfied efficiently and scientists of individual experiments can focus more on the science and less onmore » the development of tools and infrastructure.« less

  2. Program Aids Visualization Of Data

    NASA Technical Reports Server (NTRS)

    Truong, L. V.

    1995-01-01

    Living Color Frame System (LCFS) computer program developed to solve some problems that arise in connection with generation of real-time graphical displays of numerical data and of statuses of systems. Need for program like LCFS arises because computer graphics often applied for better understanding and interpretation of data under observation and these graphics become more complicated when animation required during run time. Eliminates need for custom graphical-display software for application programs. Written in Turbo C++.

  3. Application of Blind Quantum Computation to Two-Party Quantum Computation

    NASA Astrophysics Data System (ADS)

    Sun, Zhiyuan; Li, Qin; Yu, Fang; Chan, Wai Hong

    2018-06-01

    Blind quantum computation (BQC) allows a client who has only limited quantum power to achieve quantum computation with the help of a remote quantum server and still keep the client's input, output, and algorithm private. Recently, Kashefi and Wallden extended BQC to achieve two-party quantum computation which allows two parties Alice and Bob to perform a joint unitary transform upon their inputs. However, in their protocol Alice has to prepare rotated single qubits and perform Pauli operations, and Bob needs to have a powerful quantum computer. In this work, we also utilize the idea of BQC to put forward an improved two-party quantum computation protocol in which the operations of both Alice and Bob are simplified since Alice only needs to apply Pauli operations and Bob is just required to prepare and encrypt his input qubits.

  4. Application of Blind Quantum Computation to Two-Party Quantum Computation

    NASA Astrophysics Data System (ADS)

    Sun, Zhiyuan; Li, Qin; Yu, Fang; Chan, Wai Hong

    2018-03-01

    Blind quantum computation (BQC) allows a client who has only limited quantum power to achieve quantum computation with the help of a remote quantum server and still keep the client's input, output, and algorithm private. Recently, Kashefi and Wallden extended BQC to achieve two-party quantum computation which allows two parties Alice and Bob to perform a joint unitary transform upon their inputs. However, in their protocol Alice has to prepare rotated single qubits and perform Pauli operations, and Bob needs to have a powerful quantum computer. In this work, we also utilize the idea of BQC to put forward an improved two-party quantum computation protocol in which the operations of both Alice and Bob are simplified since Alice only needs to apply Pauli operations and Bob is just required to prepare and encrypt his input qubits.

  5. Activity: Computer Talk.

    ERIC Educational Resources Information Center

    Clearing: Nature and Learning in the Pacific Northwest, 1985

    1985-01-01

    Presents an activity in which students create a computer program capable of recording and projecting paper use at school. Includes instructional strategies and background information such as requirements for pounds of paper/tree, energy needs, water consumption, and paper value at the recycling center. A sample program is included. (DH)

  6. Computer Training for Entrepreneurial Meteorologists.

    NASA Astrophysics Data System (ADS)

    Koval, Joseph P.; Young, George S.

    2001-05-01

    Computer applications of increasing diversity form a growing part of the undergraduate education of meteorologists in the early twenty-first century. The advent of the Internet economy, as well as a waning demand for traditional forecasters brought about by better numerical models and statistical forecasting techniques has greatly increased the need for operational and commercial meteorologists to acquire computer skills beyond the traditional techniques of numerical analysis and applied statistics. Specifically, students with the skills to develop data distribution products are in high demand in the private sector job market. Meeting these demands requires greater breadth, depth, and efficiency in computer instruction. The authors suggest that computer instruction for undergraduate meteorologists should include three key elements: a data distribution focus, emphasis on the techniques required to learn computer programming on an as-needed basis, and a project orientation to promote management skills and support student morale. In an exploration of this approach, the authors have reinvented the Applications of Computers to Meteorology course in the Department of Meteorology at The Pennsylvania State University to teach computer programming within the framework of an Internet product development cycle. Because the computer skills required for data distribution programming change rapidly, specific languages are valuable for only a limited time. A key goal of this course was therefore to help students learn how to retrain efficiently as technologies evolve. The crux of the course was a semester-long project during which students developed an Internet data distribution product. As project management skills are also important in the job market, the course teamed students in groups of four for this product development project. The success, failures, and lessons learned from this experiment are discussed and conclusions drawn concerning undergraduate instructional methods for computer applications in meteorology.

  7. Workflow computing. Improving management and efficiency of pathology diagnostic services.

    PubMed

    Buffone, G J; Moreau, D; Beck, J R

    1996-04-01

    Traditionally, information technology in health care has helped practitioners to collect, store, and present information and also to add a degree of automation to simple tasks (instrument interfaces supporting result entry, for example). Thus commercially available information systems do little to support the need to model, execute, monitor, coordinate, and revise the various complex clinical processes required to support health-care delivery. Workflow computing, which is already implemented and improving the efficiency of operations in several nonmedical industries, can address the need to manage complex clinical processes. Workflow computing not only provides a means to define and manage the events, roles, and information integral to health-care delivery but also supports the explicit implementation of policy or rules appropriate to the process. This article explains how workflow computing may be applied to health-care and the inherent advantages of the technology, and it defines workflow system requirements for use in health-care delivery with special reference to diagnostic pathology.

  8. Scalable Game Design: A Strategy to Bring Systemic Computer Science Education to Schools through Game Design and Simulation Creation

    ERIC Educational Resources Information Center

    Repenning, Alexander; Webb, David C.; Koh, Kyu Han; Nickerson, Hilarie; Miller, Susan B.; Brand, Catharine; Her Many Horses, Ian; Basawapatna, Ashok; Gluck, Fred; Grover, Ryan; Gutierrez, Kris; Repenning, Nadia

    2015-01-01

    An educated citizenry that participates in and contributes to science technology engineering and mathematics innovation in the 21st century will require broad literacy and skills in computer science (CS). School systems will need to give increased attention to opportunities for students to engage in computational thinking and ways to promote a…

  9. Integration of symbolic and algorithmic hardware and software for the automation of space station subsystems

    NASA Technical Reports Server (NTRS)

    Gregg, Hugh; Healey, Kathleen; Hack, Edmund; Wong, Carla

    1987-01-01

    Expert systems that require access to data bases, complex simulations and real time instrumentation have both symbolic as well as algorithmic computing needs. These needs could both be met using a general computing workstation running both symbolic and algorithmic code, or separate, specialized computers networked together. The later approach was chosen to implement TEXSYS, the thermal expert system, developed to demonstrate the ability of an expert system to autonomously control the thermal control system of the space station. TEXSYS has been implemented on a Symbolics workstation, and will be linked to a microVAX computer that will control a thermal test bed. Integration options are explored and several possible solutions are presented.

  10. A Multidisciplinary Model for Development of Intelligent Computer-Assisted Instruction.

    ERIC Educational Resources Information Center

    Park, Ok-choon; Seidel, Robert J.

    1989-01-01

    Proposes a schematic multidisciplinary model to help developers of intelligent computer-assisted instruction (ICAI) identify the types of required expertise and integrate them into a system. Highlights include domain types and expertise; knowledge acquisition; task analysis; knowledge representation; student modeling; diagnosis of learning needs;…

  11. Design of an air traffic computer simulation system to support investigation of civil tiltrotor aircraft operations

    NASA Technical Reports Server (NTRS)

    Rogers, Ralph V.

    1992-01-01

    This research project addresses the need to provide an efficient and safe mechanism to investigate the effects and requirements of the tiltrotor aircraft's commercial operations on air transportation infrastructures, particularly air traffic control. The mechanism of choice is computer simulation. Unfortunately, the fundamental paradigms of the current air traffic control simulation models do not directly support the broad range of operational options and environments necessary to study tiltrotor operations. Modification of current air traffic simulation models to meet these requirements does not appear viable given the range and complexity of issues needing resolution. As a result, the investigation of systemic, infrastructure issues surrounding the effects of tiltrotor commercial operations requires new approaches to simulation modeling. These models should be based on perspectives and ideas closer to those associated with tiltrotor air traffic operations.

  12. Unmet needs for analyzing biological big data: A survey of 704 NSF principal investigators

    PubMed Central

    2017-01-01

    In a 2016 survey of 704 National Science Foundation (NSF) Biological Sciences Directorate principal investigators (BIO PIs), nearly 90% indicated they are currently or will soon be analyzing large data sets. BIO PIs considered a range of computational needs important to their work, including high performance computing (HPC), bioinformatics support, multistep workflows, updated analysis software, and the ability to store, share, and publish data. Previous studies in the United States and Canada emphasized infrastructure needs. However, BIO PIs said the most pressing unmet needs are training in data integration, data management, and scaling analyses for HPC—acknowledging that data science skills will be required to build a deeper understanding of life. This portends a growing data knowledge gap in biology and challenges institutions and funding agencies to redouble their support for computational training in biology. PMID:29049281

  13. Unmet needs for analyzing biological big data: A survey of 704 NSF principal investigators.

    PubMed

    Barone, Lindsay; Williams, Jason; Micklos, David

    2017-10-01

    In a 2016 survey of 704 National Science Foundation (NSF) Biological Sciences Directorate principal investigators (BIO PIs), nearly 90% indicated they are currently or will soon be analyzing large data sets. BIO PIs considered a range of computational needs important to their work, including high performance computing (HPC), bioinformatics support, multistep workflows, updated analysis software, and the ability to store, share, and publish data. Previous studies in the United States and Canada emphasized infrastructure needs. However, BIO PIs said the most pressing unmet needs are training in data integration, data management, and scaling analyses for HPC-acknowledging that data science skills will be required to build a deeper understanding of life. This portends a growing data knowledge gap in biology and challenges institutions and funding agencies to redouble their support for computational training in biology.

  14. A five-layer users' need hierarchy of computer input device selection: a contextual observation survey of computer users with cervical spinal injuries (CSI).

    PubMed

    Tsai, Tsai-Hsuan; Nash, Robert J; Tseng, Kevin C

    2009-05-01

    This article presents how the researcher goes about answering the research question, 'how assistive technology impacts computer use among individuals with cervical spinal cord injury?' through an in-depth investigation into the real-life situations among computer operators with cervical spinal cord injuries (CSI). An in-depth survey was carried out to provide an insight into the function abilities and limitation, habitual practice and preference, choices and utilisation of input devices, personal and/or technical assistance, environmental set-up and arrangements and special requirements among 20 experienced computer users with cervical spinal cord injuries. Following the survey findings, a five-layer CSI users' needs hierarchy of input device selection and use was proposed. These needs were ranked in order: beginning with the most basic criterion at the bottom of the pyramid; lower-level criteria must be met before one moves onto the higher level. The users' needs hierarchy for CSI computer users, which had not been applied by previous research work and which has established a rationale for the development of alternative input devices. If an input device achieves the criteria set up in the needs hierarchy, then a good match of person and technology will be achieved.

  15. Highway infrastructure : FHWA's model for estimating highway needs is generally reasonable, despite limitations

    DOT National Transportation Integrated Search

    2000-06-01

    The Highway Economic Requirements System (HERS) computer model estimates investment requirements for the nation's highways by adding together the costs of highway improvements that the model's benefit-cost analyses indicate are warranted. In making i...

  16. Compute as Fast as the Engineers Can Think! ULTRAFAST COMPUTING TEAM FINAL REPORT

    NASA Technical Reports Server (NTRS)

    Biedron, R. T.; Mehrotra, P.; Nelson, M. L.; Preston, M. L.; Rehder, J. J.; Rogersm J. L.; Rudy, D. H.; Sobieski, J.; Storaasli, O. O.

    1999-01-01

    This report documents findings and recommendations by the Ultrafast Computing Team (UCT). In the period 10-12/98, UCT reviewed design case scenarios for a supersonic transport and a reusable launch vehicle to derive computing requirements necessary for support of a design process with efficiency so radically improved that human thought rather than the computer paces the process. Assessment of the present computing capability against the above requirements indicated a need for further improvement in computing speed by several orders of magnitude to reduce time to solution from tens of hours to seconds in major applications. Evaluation of the trends in computer technology revealed a potential to attain the postulated improvement by further increases of single processor performance combined with massively parallel processing in a heterogeneous environment. However, utilization of massively parallel processing to its full capability will require redevelopment of the engineering analysis and optimization methods, including invention of new paradigms. To that end UCT recommends initiation of a new activity at LaRC called Computational Engineering for development of new methods and tools geared to the new computer architectures in disciplines, their coordination, and validation and benefit demonstration through applications.

  17. Computational aerodynamics requirements: The future role of the computer and the needs of the aerospace industry

    NASA Technical Reports Server (NTRS)

    Rubbert, P. E.

    1978-01-01

    The commercial airplane builder's viewpoint on the important issues involved in the development of improved computational aerodynamics tools such as powerful computers optimized for fluid flow problems is presented. The primary user of computational aerodynamics in a commercial aircraft company is the design engineer who is concerned with solving practical engineering problems. From his viewpoint, the development of program interfaces and pre-and post-processing capability for new computational methods is just as important as the algorithms and machine architecture. As more and more details of the entire flow field are computed, the visibility of the output data becomes a major problem which is then doubled when a design capability is added. The user must be able to see, understand, and interpret the results calculated. Enormous costs are expanded because of the need to work with programs having only primitive user interfaces.

  18. Selecting the Right Software.

    ERIC Educational Resources Information Center

    Shearn, Joseph

    1987-01-01

    Selection of administrative software requires analyzing present needs and, to meet future needs, choosing software that will function with a more powerful computer system. Other important factors to include are a professional system demonstration, maintenance and training, and financial considerations that allow leasing or renting alternatives.…

  19. Real-Time Computer-Mediated Communication: Email and Instant Messaging Simulation

    ERIC Educational Resources Information Center

    Newman, Amy

    2007-01-01

    As computer-mediated communication becomes increasingly prevalent in the workplace, students need to apply effective writing principles to today's technologies. Email, in particular, requires interns and new hires to manage incoming messages, use an appropriate tone, and craft clear, concise messages. In addition, with instant messaging (IM)…

  20. Role of optical computers in aeronautical control applications

    NASA Technical Reports Server (NTRS)

    Baumbick, R. J.

    1981-01-01

    The role that optical computers play in aircraft control is determined. The optical computer has the potential high speed capability required, especially for matrix/matrix operations. The optical computer also has the potential for handling nonlinear simulations in real time. They are also more compatible with fiber optic signal transmission. Optics also permit the use of passive sensors to measure process variables. No electrical energy need be supplied to the sensor. Complex interfacing between optical sensors and the optical computer is avoided if the optical sensor outputs can be directly processed by the optical computer.

  1. Nurses and computers. An international perspective on nurses' requirements.

    PubMed

    Bond, Carol S

    2007-01-01

    This paper reports the findings from a Florence Nightingale Foundation Travel Scholarship undertaken by the author in the spring of 2006. The aim of the visit was to explore nurses' attitudes towards, and experiences of, using computers in their practice, and the requirements that they have to encourage, promote and support them in using ICT. Nurses were found to be using computers mainly for carrying out administrative tasks, such as updating records, rather than as information tools to support evidence based practice, or patient information needs. Nurses discussed the systems they used, the equipment provided, and their skills, or more often their lack of skills. The need for support was a frequent comment, most nurses feeling that it was essential that help was available at the point of need, and that it was provided by someone, preferably a nurse, who understood the work context. Three groups of nurses were identified. Engagers; Worried Willing and Resisters. The report concludes that pre-registration education has a responsibility to seek to ensure that newly qualified nurses enter practice as engagers.

  2. From computer-assisted intervention research to clinical impact: The need for a holistic approach.

    PubMed

    Ourselin, Sébastien; Emberton, Mark; Vercauteren, Tom

    2016-10-01

    The early days of the field of medical image computing (MIC) and computer-assisted intervention (CAI), when publishing a strong self-contained methodological algorithm was enough to produce impact, are over. As a community, we now have substantial responsibility to translate our scientific progresses into improved patient care. In the field of computer-assisted interventions, the emphasis is also shifting from the mere use of well-known established imaging modalities and position trackers to the design and combination of innovative sensing, elaborate computational models and fine-grained clinical workflow analysis to create devices with unprecedented capabilities. The barriers to translating such devices in the complex and understandably heavily regulated surgical and interventional environment can seem daunting. Whether we leave the translation task mostly to our industrial partners or welcome, as researchers, an important share of it is up to us. We argue that embracing the complexity of surgical and interventional sciences is mandatory to the evolution of the field. Being able to do so requires large-scale infrastructure and a critical mass of expertise that very few research centres have. In this paper, we emphasise the need for a holistic approach to computer-assisted interventions where clinical, scientific, engineering and regulatory expertise are combined as a means of moving towards clinical impact. To ensure that the breadth of infrastructure and expertise required for translational computer-assisted intervention research does not lead to a situation where the field advances only thanks to a handful of exceptionally large research centres, we also advocate that solutions need to be designed to lower the barriers to entry. Inspired by fields such as particle physics and astronomy, we claim that centralised very large innovation centres with state of the art technology and health technology assessment capabilities backed by core support staff and open interoperability standards need to be accessible to the wider computer-assisted intervention research community. Copyright © 2016. Published by Elsevier B.V.

  3. Fundamental organometallic reactions: Applications on the CYBER 205

    NASA Technical Reports Server (NTRS)

    Rappe, A. K.

    1984-01-01

    Two of the most challenging problems of Organometallic chemistry (loosely defined) are pollution control with the large space velocities needed and nitrogen fixation, a process so capably done by nature and so relatively poorly done by man (industry). For a computational chemist these problems are on the fringe of what is possible with conventional computers (large models needed and accurate energetics required). A summary of the algorithmic modification needed to address these problems on a vector processor such as the CYBER 205 and a sketch of findings to date on deNOx catalysis and nitrogen fixation are presented.

  4. Mobility for GCSS-MC through virtual PCs

    DTIC Science & Technology

    2017-06-01

    their productivity. Mobile device access to GCSS-MC would allow Marines to access a required program for their mission using a form of computing ...network throughput applications with a device running on various operating systems with limited computational ability. The use of VPCs leads to a...reduced need for network throughput and faster overall execution. 14. SUBJECT TERMS GCSS-MC, enterprise resource planning, virtual personal computer

  5. Advanced information processing system: The Army fault tolerant architecture conceptual study. Volume 1: Army fault tolerant architecture overview

    NASA Technical Reports Server (NTRS)

    Harper, R. E.; Alger, L. S.; Babikyan, C. A.; Butler, B. P.; Friend, S. A.; Ganska, R. J.; Lala, J. H.; Masotto, T. K.; Meyer, A. J.; Morton, D. P.

    1992-01-01

    Digital computing systems needed for Army programs such as the Computer-Aided Low Altitude Helicopter Flight Program and the Armored Systems Modernization (ASM) vehicles may be characterized by high computational throughput and input/output bandwidth, hard real-time response, high reliability and availability, and maintainability, testability, and producibility requirements. In addition, such a system should be affordable to produce, procure, maintain, and upgrade. To address these needs, the Army Fault Tolerant Architecture (AFTA) is being designed and constructed under a three-year program comprised of a conceptual study, detailed design and fabrication, and demonstration and validation phases. Described here are the results of the conceptual study phase of the AFTA development. Given here is an introduction to the AFTA program, its objectives, and key elements of its technical approach. A format is designed for representing mission requirements in a manner suitable for first order AFTA sizing and analysis, followed by a discussion of the current state of mission requirements acquisition for the targeted Army missions. An overview is given of AFTA's architectural theory of operation.

  6. Use of cloud computing in biomedicine.

    PubMed

    Sobeslav, Vladimir; Maresova, Petra; Krejcar, Ondrej; Franca, Tanos C C; Kuca, Kamil

    2016-12-01

    Nowadays, biomedicine is characterised by a growing need for processing of large amounts of data in real time. This leads to new requirements for information and communication technologies (ICT). Cloud computing offers a solution to these requirements and provides many advantages, such as cost savings, elasticity and scalability of using ICT. The aim of this paper is to explore the concept of cloud computing and the related use of this concept in the area of biomedicine. Authors offer a comprehensive analysis of the implementation of the cloud computing approach in biomedical research, decomposed into infrastructure, platform and service layer, and a recommendation for processing large amounts of data in biomedicine. Firstly, the paper describes the appropriate forms and technological solutions of cloud computing. Secondly, the high-end computing paradigm of cloud computing aspects is analysed. Finally, the potential and current use of applications in scientific research of this technology in biomedicine is discussed.

  7. The UCLA MEDLARS Computer System *

    PubMed Central

    Garvis, Francis J.

    1966-01-01

    Under a subcontract with UCLA the Planning Research Corporation has changed the MEDLARS system to make it possible to use the IBM 7094/7040 direct-couple computer instead of the Honeywell 800 for demand searches. The major tasks were the rewriting of the programs in COBOL and copying of the stored information on the narrower tapes that IBM computers require. (In the future NLM will copy the tapes for IBM computer users.) The differences in the software required by the two computers are noted. Major and costly revisions would be needed to adapt the large MEDLARS system to the smaller IBM 1401 and 1410 computers. In general, MEDLARS is transferrable to other computers of the IBM 7000 class, the new IBM 360, and those of like size, such as the CDC 1604 or UNIVAC 1108, although additional changes are necessary. Potential future improvements are suggested. PMID:5901355

  8. Advanced Simulation & Computing FY15 Implementation Plan Volume 2, Rev. 0.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCoy, Michel; Archer, Bill; Matzen, M. Keith

    2014-09-16

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities andmore » computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resource, including technical staff, hardware, simulation software, and computer science solutions. As the program approaches the end of its second decade, ASC is intently focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), quantify critical margins and uncertainties, and resolve increasingly difficult analyses needed for the SSP. Where possible, the program also enables the use of high-performance simulation and computing tools to address broader national security needs, such as foreign nuclear weapon assessments and counternuclear terrorism.« less

  9. An Innovative Approach to Bridge a Skill Gap and Grow a Workforce Pipeline: The Computer System, Cluster, and Networking Summer Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connor, Carolyn Marie; Jacobson, Andree Lars; Bonnie, Amanda Marie

    Sustainable and effective computing infrastructure depends critically on the skills and expertise of domain scientists and of committed and well-trained advanced computing professionals. But, in its ongoing High Performance Computing (HPC) work, Los Alamos National Laboratory noted a persistent shortage of well-prepared applicants, particularly for entry-level cluster administration, file systems administration, and high speed networking positions. Further, based upon recruiting efforts and interactions with universities graduating students in related majors of interest (e.g., computer science (CS)), there has been a long standing skillset gap, as focused training in HPC topics is typically lacking or absent in undergraduate and in evenmore » many graduate programs. Given that the effective operation and use of HPC systems requires specialized and often advanced training, that there is a recognized HPC skillset gap, and that there is intense global competition for computing and computational science talent, there is a long-standing and critical need for innovative approaches to help bridge the gap and create a well-prepared, next generation HPC workforce. Our paper places this need in the context of the HPC work and workforce requirements at Los Alamos National Laboratory (LANL) and presents one such innovative program conceived to address the need, bridge the gap, and grow an HPC workforce pipeline at LANL. The Computer System, Cluster, and Networking Summer Institute (CSCNSI) completed its 10th year in 2016. The story of the CSCNSI and its evolution is detailed below with a description of the design of its Boot Camp, and a summary of its success and some key factors that have enabled that success.« less

  10. An Innovative Approach to Bridge a Skill Gap and Grow a Workforce Pipeline: The Computer System, Cluster, and Networking Summer Institute

    DOE PAGES

    Connor, Carolyn Marie; Jacobson, Andree Lars; Bonnie, Amanda Marie; ...

    2016-11-01

    Sustainable and effective computing infrastructure depends critically on the skills and expertise of domain scientists and of committed and well-trained advanced computing professionals. But, in its ongoing High Performance Computing (HPC) work, Los Alamos National Laboratory noted a persistent shortage of well-prepared applicants, particularly for entry-level cluster administration, file systems administration, and high speed networking positions. Further, based upon recruiting efforts and interactions with universities graduating students in related majors of interest (e.g., computer science (CS)), there has been a long standing skillset gap, as focused training in HPC topics is typically lacking or absent in undergraduate and in evenmore » many graduate programs. Given that the effective operation and use of HPC systems requires specialized and often advanced training, that there is a recognized HPC skillset gap, and that there is intense global competition for computing and computational science talent, there is a long-standing and critical need for innovative approaches to help bridge the gap and create a well-prepared, next generation HPC workforce. Our paper places this need in the context of the HPC work and workforce requirements at Los Alamos National Laboratory (LANL) and presents one such innovative program conceived to address the need, bridge the gap, and grow an HPC workforce pipeline at LANL. The Computer System, Cluster, and Networking Summer Institute (CSCNSI) completed its 10th year in 2016. The story of the CSCNSI and its evolution is detailed below with a description of the design of its Boot Camp, and a summary of its success and some key factors that have enabled that success.« less

  11. Concept of a Cloud Service for Data Preparation and Computational Control on Custom HPC Systems in Application to Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Puzyrkov, Dmitry; Polyakov, Sergey; Podryga, Viktoriia; Markizov, Sergey

    2018-02-01

    At the present stage of computer technology development it is possible to study the properties and processes in complex systems at molecular and even atomic levels, for example, by means of molecular dynamics methods. The most interesting are problems related with the study of complex processes under real physical conditions. Solving such problems requires the use of high performance computing systems of various types, for example, GRID systems and HPC clusters. Considering the time consuming computational tasks, the need arises of software for automatic and unified monitoring of such computations. A complex computational task can be performed over different HPC systems. It requires output data synchronization between the storage chosen by a scientist and the HPC system used for computations. The design of the computational domain is also quite a problem. It requires complex software tools and algorithms for proper atomistic data generation on HPC systems. The paper describes the prototype of a cloud service, intended for design of atomistic systems of large volume for further detailed molecular dynamic calculations and computational management for this calculations, and presents the part of its concept aimed at initial data generation on the HPC systems.

  12. Developing an online programme in computational biology.

    PubMed

    Vincent, Heather M; Page, Christopher

    2013-11-01

    Much has been written about the need for continuing education and training to enable life scientists and computer scientists to manage and exploit the different types of biological data now becoming available. Here we describe the development of an online programme that combines short training courses, so that those who require an educational programme can progress to complete a formal qualification. Although this flexible approach fits the needs of course participants, it does not fit easily within the organizational structures of a campus-based university.

  13. Computation of type curves for flow to partially penetrating wells in water-table aquifers

    USGS Publications Warehouse

    Moench, Allen F.

    1993-01-01

    Evaluation of Neuman's analytical solution for flow to a well in a homogeneous, anisotropic, water-table aquifer commonly requires large amounts of computation time and can produce inaccurate results for selected combinations of parameters. Large computation times occur because the integrand of a semi-infinite integral involves the summation of an infinite series. Each term of the series requires evaluation of the roots of equations, and the series itself is sometimes slowly convergent. Inaccuracies can result from lack of computer precision or from the use of improper methods of numerical integration. In this paper it is proposed to use a method of numerical inversion of the Laplace transform solution, provided by Neuman, to overcome these difficulties. The solution in Laplace space is simpler in form than the real-time solution; that is, the integrand of the semi-infinite integral does not involve an infinite series or the need to evaluate roots of equations. Because the integrand is evaluated rapidly, advanced methods of numerical integration can be used to improve accuracy with an overall reduction in computation time. The proposed method of computing type curves, for which a partially documented computer program (WTAQ1) was written, was found to reduce computation time by factors of 2 to 20 over the time needed to evaluate the closed-form, real-time solution.

  14. CSNS computing environment Based on OpenStack

    NASA Astrophysics Data System (ADS)

    Li, Yakang; Qi, Fazhi; Chen, Gang; Wang, Yanming; Hong, Jianshu

    2017-10-01

    Cloud computing can allow for more flexible configuration of IT resources and optimized hardware utilization, it also can provide computing service according to the real need. We are applying this computing mode to the China Spallation Neutron Source(CSNS) computing environment. So, firstly, CSNS experiment and its computing scenarios and requirements are introduced in this paper. Secondly, the design and practice of cloud computing platform based on OpenStack are mainly demonstrated from the aspects of cloud computing system framework, network, storage and so on. Thirdly, some improvments to openstack we made are discussed further. Finally, current status of CSNS cloud computing environment are summarized in the ending of this paper.

  15. Guidance on the Stand Down, Mothball, and Reactivation of Ground Test Facilities

    NASA Technical Reports Server (NTRS)

    Volkman, Gregrey T.; Dunn, Steven C.

    2013-01-01

    The development of aerospace and aeronautics products typically requires three distinct types of testing resources across research, development, test, and evaluation: experimental ground testing, computational "testing" and development, and flight testing. Over the last twenty plus years, computational methods have replaced some physical experiments and this trend is continuing. The result is decreased utilization of ground test capabilities and, along with market forces, industry consolidation, and other factors, has resulted in the stand down and oftentimes closure of many ground test facilities. Ground test capabilities are (and very likely will continue to be for many years) required to verify computational results and to provide information for regimes where computational methods remain immature. Ground test capabilities are very costly to build and to maintain, so once constructed and operational it may be desirable to retain access to those capabilities even if not currently needed. One means of doing this while reducing ongoing sustainment costs is to stand down the facility into a "mothball" status - keeping it alive to bring it back when needed. Both NASA and the US Department of Defense have policies to accomplish the mothball of a facility, but with little detail. This paper offers a generic process to follow that can be tailored based on the needs of the owner and the applicable facility.

  16. On Using Home Networks and Cloud Computing for a Future Internet of Things

    NASA Astrophysics Data System (ADS)

    Niedermayer, Heiko; Holz, Ralph; Pahl, Marc-Oliver; Carle, Georg

    In this position paper we state four requirements for a Future Internet and sketch our initial concept. The requirements: (1) more comfort, (2) integration of home networks, (3) resources like service clouds in the network, and (4) access anywhere on any machine. Future Internet needs future quality and future comfort. There need to be new possiblities for everyone. Our focus is on higher layers and related to the many overlay proposals. We consider them to run on top of a basic Future Internet core. A new user experience means to include all user devices. Home networks and services should be a fundamental part of the Future Internet. Home networks extend access and allow interaction with the environment. Cloud Computing can provide reliable resources beyond local boundaries. For access anywhere, we also need secure storage for data and profiles in the network, in particular for access with non-personal devices (Internet terminal, ticket machine, ...).

  17. Computer programing for geosciences: Teach your students how to make tools

    NASA Astrophysics Data System (ADS)

    Grapenthin, Ronni

    2011-12-01

    When I announced my intention to pursue a Ph.D. in geophysics, some people gave me confused looks, because I was working on a master's degree in computer science at the time. My friends, like many incoming geoscience graduate students, have trouble linking these two fields. From my perspective, it is pretty straightforward: Much of geoscience evolves around novel analyses of large data sets that require custom tools—computer programs—to minimize the drudgery of manual data handling; other disciplines share this characteristic. While most faculty adapted to the need for tool development quite naturally, as they grew up around computer terminal interfaces, incoming graduate students lack intuitive understanding of programing concepts such as generalization and automation. I believe the major cause is the intuitive graphical user interfaces of modern operating systems and applications, which isolate the user from all technical details. Generally, current curricula do not recognize this gap between user and machine. For students to operate effectively, they require specialized courses teaching them the skills they need to make tools that operate on particular data sets and solve their specific problems. Courses in computer science departments are aimed at a different audience and are of limited help.

  18. Covering Resilience: A Recent Development for Binomial Checkpointing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walther, Andrea; Narayanan, Sri Hari Krishna

    In terms of computing time, adjoint methods offer a very attractive alternative to compute gradient information, required, e.g., for optimization purposes. However, together with this very favorable temporal complexity result comes a memory requirement that is in essence proportional with the operation count of the underlying function, e.g., if algorithmic differentiation is used to provide the adjoints. For this reason, checkpointing approaches in many variants have become popular. This paper analyzes an extension of the so-called binomial approach to cover also possible failures of the computing systems. Such a measure of precaution is of special interest for massive parallel simulationsmore » and adjoint calculations where the mean time between failure of the large scale computing system is smaller than the time needed to complete the calculation of the adjoint information. We describe the extensions of standard checkpointing approaches required for such resilience, provide a corresponding implementation and discuss first numerical results.« less

  19. Eigen Spreading

    DTIC Science & Technology

    2008-02-27

    between the PHY layer and for example a host PC computer . The PC wants to generate and receive a sequence of data packets. The PC may also want to send...the testbed is quite similar. Given the intense computational requirements of SVD and other matrix mode operations needed to support eigen spreading a...platform for real time operation. This task is probably the major challenge in the development of the testbed. All compute intensive tasks will be

  20. A Study of the Efficacy of Project-Based Learning Integrated with Computer-Based Simulation--STELLA

    ERIC Educational Resources Information Center

    Eskrootchi, Rogheyeh; Oskrochi, G. Reza

    2010-01-01

    Incorporating computer-simulation modelling into project-based learning may be effective but requires careful planning and implementation. Teachers, especially, need pedagogical content knowledge which refers to knowledge about how students learn from materials infused with technology. This study suggests that students learn best by actively…

  1. Computers-for-edu: An Advanced Business Application Programming (ABAP) Teaching Case

    ERIC Educational Resources Information Center

    Boyle, Todd A.

    2007-01-01

    The "Computers-for-edu" case is designed to provide students with hands-on exposure to creating Advanced Business Application Programming (ABAP) reports and dialogue programs, as well as navigating various mySAP Enterprise Resource Planning (ERP) transactions needed by ABAP developers. The case requires students to apply a wide variety…

  2. Paranoia.Ada: A diagnostic program to evaluate Ada floating-point arithmetic

    NASA Technical Reports Server (NTRS)

    Hjermstad, Chris

    1986-01-01

    Many essential software functions in the mission critical computer resource application domain depend on floating point arithmetic. Numerically intensive functions associated with the Space Station project, such as emphemeris generation or the implementation of Kalman filters, are likely to employ the floating point facilities of Ada. Paranoia.Ada appears to be a valuabe program to insure that Ada environments and their underlying hardware exhibit the precision and correctness required to satisfy mission computational requirements. As a diagnostic tool, Paranoia.Ada reveals many essential characteristics of an Ada floating point implementation. Equipped with such knowledge, programmers need not tremble before the complex task of floating point computation.

  3. Using a cloud to replenish parched groundwater modeling efforts.

    PubMed

    Hunt, Randall J; Luchette, Joseph; Schreuder, Willem A; Rumbaugh, James O; Doherty, John; Tonkin, Matthew J; Rumbaugh, Douglas B

    2010-01-01

    Groundwater models can be improved by introduction of additional parameter flexibility and simultaneous use of soft-knowledge. However, these sophisticated approaches have high computational requirements. Cloud computing provides unprecedented access to computing power via the Internet to facilitate the use of these techniques. A modeler can create, launch, and terminate "virtual" computers as needed, paying by the hour, and save machine images for future use. Such cost-effective and flexible computing power empowers groundwater modelers to routinely perform model calibration and uncertainty analysis in ways not previously possible.

  4. Using a cloud to replenish parched groundwater modeling efforts

    USGS Publications Warehouse

    Hunt, Randall J.; Luchette, Joseph; Schreuder, Willem A.; Rumbaugh, James O.; Doherty, John; Tonkin, Matthew J.; Rumbaugh, Douglas B.

    2010-01-01

    Groundwater models can be improved by introduction of additional parameter flexibility and simultaneous use of soft-knowledge. However, these sophisticated approaches have high computational requirements. Cloud computing provides unprecedented access to computing power via the Internet to facilitate the use of these techniques. A modeler can create, launch, and terminate “virtual” computers as needed, paying by the hour, and save machine images for future use. Such cost-effective and flexible computing power empowers groundwater modelers to routinely perform model calibration and uncertainty analysis in ways not previously possible.

  5. NASA's computer science research program

    NASA Technical Reports Server (NTRS)

    Larsen, R. L.

    1983-01-01

    Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.

  6. Parallel Architectures for Planetary Exploration Requirements (PAPER)

    NASA Technical Reports Server (NTRS)

    Cezzar, Ruknet; Sen, Ranjan K.

    1989-01-01

    The Parallel Architectures for Planetary Exploration Requirements (PAPER) project is essentially research oriented towards technology insertion issues for NASA's unmanned planetary probes. It was initiated to complement and augment the long-term efforts for space exploration with particular reference to NASA/LaRC's (NASA Langley Research Center) research needs for planetary exploration missions of the mid and late 1990s. The requirements for space missions as given in the somewhat dated Advanced Information Processing Systems (AIPS) requirements document are contrasted with the new requirements from JPL/Caltech involving sensor data capture and scene analysis. It is shown that more stringent requirements have arisen as a result of technological advancements. Two possible architectures, the AIPS Proof of Concept (POC) configuration and the MAX Fault-tolerant dataflow multiprocessor, were evaluated. The main observation was that the AIPS design is biased towards fault tolerance and may not be an ideal architecture for planetary and deep space probes due to high cost and complexity. The MAX concepts appears to be a promising candidate, except that more detailed information is required. The feasibility for adding neural computation capability to this architecture needs to be studied. Key impact issues for architectural design of computing systems meant for planetary missions were also identified.

  7. Methods for Prediction of High-Speed Reacting Flows in Aerospace Propulsion

    NASA Technical Reports Server (NTRS)

    Drummond, J. Philip

    2014-01-01

    Research to develop high-speed airbreathing aerospace propulsion systems was underway in the late 1950s. A major part of the effort involved the supersonic combustion ramjet, or scramjet, engine. Work had also begun to develop computational techniques for solving the equations governing the flow through a scramjet engine. However, scramjet technology and the computational methods to assist in its evolution would remain apart for another decade. The principal barrier was that the computational methods needed for engine evolution lacked the computer technology required for solving the discrete equations resulting from the numerical methods. Even today, computer resources remain a major pacing item in overcoming this barrier. Significant advances have been made over the past 35 years, however, in modeling the supersonic chemically reacting flow in a scramjet combustor. To see how scramjet development and the required computational tools finally merged, we briefly trace the evolution of the technology in both areas.

  8. Exploiting opportunistic resources for ATLAS with ARC CE and the Event Service

    NASA Astrophysics Data System (ADS)

    Cameron, D.; Filipčič, A.; Guan, W.; Tsulaia, V.; Walker, R.; Wenaus, T.; ATLAS Collaboration

    2017-10-01

    With ever-greater computing needs and fixed budgets, big scientific experiments are turning to opportunistic resources as a means to add much-needed extra computing power. These resources can be very different in design from those that comprise the Grid computing of most experiments, therefore exploiting them requires a change in strategy for the experiment. They may be highly restrictive in what can be run or in connections to the outside world, or tolerate opportunistic usage only on condition that tasks may be terminated without warning. The Advanced Resource Connector Computing Element (ARC CE) with its nonintrusive architecture is designed to integrate resources such as High Performance Computing (HPC) systems into a computing Grid. The ATLAS experiment developed the ATLAS Event Service (AES) primarily to address the issue of jobs that can be terminated at any point when opportunistic computing capacity is needed by someone else. This paper describes the integration of these two systems in order to exploit opportunistic resources for ATLAS in a restrictive environment. In addition to the technical details, results from deployment of this solution in the SuperMUC HPC centre in Munich are shown.

  9. Systems Analysis and Design for Decision Support Systems on Economic Feasibility of Projects

    NASA Astrophysics Data System (ADS)

    Balaji, S. Arun

    2010-11-01

    This paper discuss about need for development of the Decision Support System (DSS) software for economic feasibility of projects in Rwanda, Africa. The various economic theories needed and the corresponding formulae to compute payback period, internal rate of return and benefit cost ratio of projects are clearly given in this paper. This paper is also deals with the systems flow chart to fabricate the system in any higher level computing language. The various input requirements from the projects and the output needed for the decision makers are also included in this paper. The data dictionary used for input and output data structure is also explained.

  10. The status of training and education in information and computer technology of Australian nurses: a national survey.

    PubMed

    Eley, Robert; Fallon, Tony; Soar, Jeffrey; Buikstra, Elizabeth; Hegney, Desley

    2008-10-01

    A study was undertaken of the current knowledge and future training requirements of nurses in information and computer technology to inform policy to meet national goals for health. The role of the modern clinical nurse is intertwined with information and computer technology and adoption of such technology forms an important component of national strategies in health. The majority of nurses are expected to use information and computer technology during their work; however, the full extent of their knowledge and experience is unclear. Self-administered postal survey. A 78-item questionnaire was distributed to 10,000 Australian Nursing Federation members to identify the nurses' use of information and computer technology. Eighteen items related to nurses' training and education in information and computer technology. Response rate was 44%. Computers were used by 86.3% of respondents as part of their work-related activities. Between 4-17% of nurses had received training in each of 11 generic computer skills and software applications during their preregistration/pre-enrolment and between 12-30% as continuing professional education. Nurses who had received training believed that it was adequate to meet the needs of their job and was given at an appropriate time. Almost half of the respondents indicated that they required more training to better meet the information and computer technology requirements of their jobs and a quarter believed that their level of computer literacy was restricting their career development. Nurses considered that the vast majority of employers did not encourage information and computer technology training and, for those for whom training was available, workload was the major barrier to uptake. Nurses favoured introduction of a national competency standard in information and computer technology. For the considerable benefits of information and computer technology to be incorporated fully into the health system, employers must pay more attention to the training and education of nurses who are the largest users of that technology. Knowledge of the training and education needs of clinical nurses with respect to information and computer technology will provide a platform for the development of appropriate policies by government and by employers.

  11. Study objectives: Will commercial avionics do the job? Improvements needed?

    NASA Technical Reports Server (NTRS)

    Nasr, Hatem

    1992-01-01

    Improvements in commercial avionics are covered in a viewgraph format. Topics include the following: computer architecture, user requirements, Boeing 777 aircraft, cost effectiveness, and implemention.

  12. Advanced Scientific Computing Research Exascale Requirements Review. An Office of Science review sponsored by Advanced Scientific Computing Research, September 27-29, 2016, Rockville, Maryland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almgren, Ann; DeMar, Phil; Vetter, Jeffrey

    The widespread use of computing in the American economy would not be possible without a thoughtful, exploratory research and development (R&D) community pushing the performance edge of operating systems, computer languages, and software libraries. These are the tools and building blocks — the hammers, chisels, bricks, and mortar — of the smartphone, the cloud, and the computing services on which we rely. Engineers and scientists need ever-more specialized computing tools to discover new material properties for manufacturing, make energy generation safer and more efficient, and provide insight into the fundamentals of the universe, for example. The research division of themore » U.S. Department of Energy’s (DOE’s) Office of Advanced Scientific Computing and Research (ASCR Research) ensures that these tools and building blocks are being developed and honed to meet the extreme needs of modern science. See also http://exascaleage.org/ascr/ for additional information.« less

  13. Computer-Generated Movies for Mission Planning

    NASA Technical Reports Server (NTRS)

    Roberts, P. H., Jr.; vanDillen, S. L.

    1973-01-01

    Computer-generated movies help the viewer to understand mission dynamics and get quantitative details. Sample movie frames demonstrate the uses and effectiveness of movies in mission planning. Tools needed for movie-making include computer programs to generate images on film and film processing to give the desired result. Planning scenes to make an effective product requires some thought and experience. Viewpoints and timing are particularly important. Lessons learned so far and problems still encountered are discussed.

  14. Contact Us | High-Performance Computing | NREL

    Science.gov Websites

    Select Peregrine Merlin WinHPC Allocation project handle (if requesting HPC account) Description of "SEND REQUEST" and nothing happens, it most likely means you forgot to provide information in a required field. You may need to scroll up to see what required information is missing

  15. Ten years of CLIVE (Computer-Aided Learning in Veterinary Education) in the United Kingdom.

    PubMed

    Dale, Vicki H M; McConnell, Gill; Short, Andrew; Sullivan, Martin

    2005-01-01

    This paper outlines the work of the CLIVE (Computer-Aided Learning in Veterinary Education) project over a 10-year period, set against the backdrop of changes in education policy and learning technology developments. The consortium of six UK veterinary schools and 14 international Associate Member Schools has been very successful. Sustaining these partnerships requires that the project redefine itself and adapt to cater to the diverse learning needs of today's students and to changing professional and societal needs on an international scale.

  16. From Requirements to Code: Issues and Learning in IS Students' Systems Development Projects

    ERIC Educational Resources Information Center

    Scott, Elsje

    2008-01-01

    The Computing Curricula (2005) place Information Systems (IS) at the intersection of exact sciences (e.g. General Systems Theory), technology (e.g. Computer Science), and behavioral sciences (e.g. Sociology). This presents particular challenges for teaching and learning, as future IS professionals need to be equipped with a wide range of…

  17. Facilitating Integration of Electron Beam Lithography Devices with Interactive Videodisc, Computer-Based Simulation and Job Aids.

    ERIC Educational Resources Information Center

    Von Der Linn, Robert Christopher

    A needs assessment of the Grumman E-Beam Systems Group identified the requirement for additional skill mastery for the engineers who assemble, integrate, and maintain devices used to manufacture integrated circuits. Further analysis of the tasks involved led to the decision to develop interactive videodisc, computer-based job aids to enable…

  18. Supercomputers Of The Future

    NASA Technical Reports Server (NTRS)

    Peterson, Victor L.; Kim, John; Holst, Terry L.; Deiwert, George S.; Cooper, David M.; Watson, Andrew B.; Bailey, F. Ron

    1992-01-01

    Report evaluates supercomputer needs of five key disciplines: turbulence physics, aerodynamics, aerothermodynamics, chemistry, and mathematical modeling of human vision. Predicts these fields will require computer speed greater than 10(Sup 18) floating-point operations per second (FLOP's) and memory capacity greater than 10(Sup 15) words. Also, new parallel computer architectures and new structured numerical methods will make necessary speed and capacity available.

  19. A Middleware Platform for Providing Mobile and Embedded Computing Instruction to Software Engineering Students

    ERIC Educational Resources Information Center

    Mattmann, C. A.; Medvidovic, N.; Malek, S.; Edwards, G.; Banerjee, S.

    2012-01-01

    As embedded software systems have grown in number, complexity, and importance in the modern world, a corresponding need to teach computer science students how to effectively engineer such systems has arisen. Embedded software systems, such as those that control cell phones, aircraft, and medical equipment, are subject to requirements and…

  20. Expanding Computer Science Education in Schools: Understanding Teacher Experiences and Challenges

    ERIC Educational Resources Information Center

    Yadav, Aman; Gretter, Sarah; Hambrusch, Susanne; Sands, Phil

    2017-01-01

    The increased push for teaching computer science (CS) in schools in the United States requires training a large number of new K-12 teachers. The current efforts to increase the number of CS teachers have predominantly focused on training teachers from other content areas. In order to support these beginning CS teachers, we need to better…

  1. Understanding health care communication preferences of veteran primary care users.

    PubMed

    LaVela, Sherri L; Schectman, Gordon; Gering, Jeffrey; Locatelli, Sara M; Gawron, Andrew; Weaver, Frances M

    2012-09-01

    To assess veterans' health communication preferences (in-person, telephone, or electronic) for primary care needs and the impact of computer use on preferences. Structured patient interviews (n=448). Bivariate analyses examined preferences for primary care by 'infrequent' vs. 'regular' computer users. Only 54% were regular computer users, nearly all of whom had ever used the internet. 'Telephone' was preferred for 6 of 10 reasons (general medical questions, medication questions and refills, preventive care reminders, scheduling, and test results); although telephone was preferred by markedly fewer regular computer users. 'In-person' was preferred for new/ongoing conditions/symptoms, treatment instructions, and next care steps; these preferences were unaffected by computer use frequency. Among regular computer users, 1/3 preferred 'electronic' for preventive reminders (37%), test results (34%), and refills (32%). For most primary care needs, telephone communication was preferred, although by a greater proportion of infrequent vs. regular computer users. In-person communication was preferred for reasons that may require an exam or visual instructions. About 1/3 of regular computer users prefer electronic communication for routine needs, e.g., preventive reminders, test results, and refills. These findings can be used to plan patient-centered care that is aligned with veterans' preferred health communication methods. Published by Elsevier Ireland Ltd.

  2. Model implementation for dynamic computation of system cost

    NASA Astrophysics Data System (ADS)

    Levri, J.; Vaccari, D.

    The Advanced Life Support (ALS) Program metric is the ratio of the equivalent system mass (ESM) of a mission based on International Space Station (ISS) technology to the ESM of that same mission based on ALS technology. ESM is a mission cost analog that converts the volume, power, cooling and crewtime requirements of a mission into mass units to compute an estimate of the life support system emplacement cost. Traditionally, ESM has been computed statically, using nominal values for system sizing. However, computation of ESM with static, nominal sizing estimates cannot capture the peak sizing requirements driven by system dynamics. In this paper, a dynamic model for a near-term Mars mission is described. The model is implemented in Matlab/Simulink' for the purpose of dynamically computing ESM. This paper provides a general overview of the crew, food, biomass, waste, water and air blocks in the Simulink' model. Dynamic simulations of the life support system track mass flow, volume and crewtime needs, as well as power and cooling requirement profiles. The mission's ESM is computed, based upon simulation responses. Ultimately, computed ESM values for various system architectures will feed into an optimization search (non-derivative) algorithm to predict parameter combinations that result in reduced objective function values.

  3. Pocket computers: a new aid to nutritional support.

    PubMed Central

    Colley, C M; Fleck, A; Howard, J P

    1985-01-01

    A program has been written to run on a pocket computer (Sharp PC-1500) that can be used at the bedside to predict the nutritional requirements of patients with a wide range of clinical conditions. The predictions of the program showed good correlation with measured values for energy and nitrogen requirements. The program was used, with good results, in the management of over 100 patients needing nutritional support. The calculation of nutritional requirements for each patient individually facilitates more appropriate treatment and may also produce financial savings when compared with administration of a standard feeding regimen to all patients. Images FIG 1 PMID:3922512

  4. Exploring Cloud Computing for Large-scale Scientific Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Guang; Han, Binh; Yin, Jian

    This paper explores cloud computing for large-scale data-intensive scientific applications. Cloud computing is attractive because it provides hardware and software resources on-demand, which relieves the burden of acquiring and maintaining a huge amount of resources that may be used only once by a scientific application. However, unlike typical commercial applications that often just requires a moderate amount of ordinary resources, large-scale scientific applications often need to process enormous amount of data in the terabyte or even petabyte range and require special high performance hardware with low latency connections to complete computation in a reasonable amount of time. To address thesemore » challenges, we build an infrastructure that can dynamically select high performance computing hardware across institutions and dynamically adapt the computation to the selected resources to achieve high performance. We have also demonstrated the effectiveness of our infrastructure by building a system biology application and an uncertainty quantification application for carbon sequestration, which can efficiently utilize data and computation resources across several institutions.« less

  5. Computers and clinical arrhythmias.

    PubMed

    Knoebel, S B; Lovelace, D E

    1983-02-01

    Cardiac arrhythmias are ubiquitous in normal and abnormal hearts. These disorders may be life-threatening or benign, symptomatic or unrecognized. Arrhythmias may be the precursor of sudden death, a cause or effect of cardiac failure, a clinical reflection of acute or chronic disorders, or a manifestation of extracardiac conditions. Progress is being made toward unraveling the diagnostic and therapeutic problems involved in arrhythmogenesis. Many of the advances would not be possible, however, without the availability of computer technology. To preserve the proper balance and purposeful progression of computer usage, engineers and physicians have been exhorted not to work independently in this field. Both should learn some of the other's trade. The two disciplines need to come together to solve important problems with computers in cardiology. The intent of this article was to acquaint the practicing cardiologist with some of the extant and envisioned computer applications and some of the problems with both. We conclude that computer-based database management systems are necessary for sorting out the clinical factors of relevance for arrhythmogenesis, but computer database management systems are beset with problems that will require sophisticated solutions. The technology for detecting arrhythmias on routine electrocardiograms is quite good but human over-reading is still required, and the rationale for computer application in this setting is questionable. Systems for qualitative, continuous monitoring and review of extended time ECG recordings are adequate with proper noise rejection algorithms and editing capabilities. The systems are limited presently for clinical application to the recognition of ectopic rhythms and significant pauses. Attention should now be turned to the clinical goals for detection and quantification of arrhythmias. We should be asking the following questions: How quantitative do systems need to be? Are computers required for the detection of all arrhythmias? In all settings? Should we be focusing alternatively on those arrhythmias that are frequent and with clinical significance? The ultimate test of any technology is, after all, its use in advancing knowledge and patient care.

  6. Enhanced job control language procedures for the SIMSYS2D two-dimensional water-quality simulation system

    USGS Publications Warehouse

    Karavitis, G.A.

    1984-01-01

    The SIMSYS2D two-dimensional water-quality simulation system is a large-scale digital modeling software system used to simulate flow and transport of solutes in freshwater and estuarine environments. Due to the size, processing requirements, and complexity of the system, there is a need to easily move the system and its associated files between computer sites when required. A series of job control language (JCL) procedures was written to allow transferability between IBM and IBM-compatible computers. (USGS)

  7. Heavy Lift Vehicle (HLV) Avionics Flight Computing Architecture Study

    NASA Technical Reports Server (NTRS)

    Hodson, Robert F.; Chen, Yuan; Morgan, Dwayne R.; Butler, A. Marc; Sdhuh, Joseph M.; Petelle, Jennifer K.; Gwaltney, David A.; Coe, Lisa D.; Koelbl, Terry G.; Nguyen, Hai D.

    2011-01-01

    A NASA multi-Center study team was assembled from LaRC, MSFC, KSC, JSC and WFF to examine potential flight computing architectures for a Heavy Lift Vehicle (HLV) to better understand avionics drivers. The study examined Design Reference Missions (DRMs) and vehicle requirements that could impact the vehicles avionics. The study considered multiple self-checking and voting architectural variants and examined reliability, fault-tolerance, mass, power, and redundancy management impacts. Furthermore, a goal of the study was to develop the skills and tools needed to rapidly assess additional architectures should requirements or assumptions change.

  8. Defense Science Board Report on Advanced Computing

    DTIC Science & Technology

    2009-03-01

    computers  will  require extensive  research and development  to have a chance of  reaching  the  exascale   level.  Even  if  exascale   level machines  can...generations of petascale and then  exascale   level  computing  capability.  This  includes  both  the  hardware  and  the  complex  software  that  may  be...required  for  the  architectures  needed  for  exacscale  capability.  The  challenges  are  extremely  daunting,  especially  at  the  exascale

  9. Framework Resources Multiply Computing Power

    NASA Technical Reports Server (NTRS)

    2010-01-01

    As an early proponent of grid computing, Ames Research Center awarded Small Business Innovation Research (SBIR) funding to 3DGeo Development Inc., of Santa Clara, California, (now FusionGeo Inc., of The Woodlands, Texas) to demonstrate a virtual computer environment that linked geographically dispersed computer systems over the Internet to help solve large computational problems. By adding to an existing product, FusionGeo enabled access to resources for calculation- or data-intensive applications whenever and wherever they were needed. Commercially available as Accelerated Imaging and Modeling, the product is used by oil companies and seismic service companies, which require large processing and data storage capacities.

  10. Cybersecurity Education: Bridging the Gap between Hardware and Software Domains

    ERIC Educational Resources Information Center

    Lukowiak, Marcin; Radziszowski, Stanislaw; Vallino, James; Wood, Christopher

    2014-01-01

    With the continuous growth of cyberinfrastructure throughout modern society, the need for secure computing and communication is more important than ever before. As a result, there is also an increasing need for entry-level developers who are capable of designing and building practical solutions for systems with stringent security requirements.…

  11. Participatory Culture as Professional Development: Preparing Teachers to Use "Minecraft" in the Classroom

    ERIC Educational Resources Information Center

    Kuhn, Jeff; Stevens, Vance

    2017-01-01

    As computer-based game use grows in classrooms, teachers need more opportunities for professional development aimed at helping them to appropriately incorporate games into their classrooms. Teachers need opportunities not only to learn about video games as software but also about video games as culture. This requires professional development that…

  12. A Software Safety Risk Taxonomy for Use in Retrospective Safety Cases

    NASA Technical Reports Server (NTRS)

    Hill, Janice L.

    2007-01-01

    Safety standards contain technical and process-oriented safely requirements. The best time to include these requirements is early in the development lifecycle of the system. When software safety requirements are levied on a legacy system after the fact, a retrospective safety case will need to be constructed for the software in the system. This can be a difficult task because there may be few to no art facts available to show compliance to the software safely requirements. The risks associated with not meeting safely requirements in a legacy safely-critical computer system must be addressed to give confidence for reuse. This paper introduces a proposal for a software safely risk taxonomy for legacy safely-critical computer systems, by specializing the Software Engineering Institute's 'Software Development Risk Taxonomy' with safely elements and attributes.

  13. Limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method for the parameter estimation on geographically weighted ordinal logistic regression model (GWOLR)

    NASA Astrophysics Data System (ADS)

    Saputro, Dewi Retno Sari; Widyaningsih, Purnami

    2017-08-01

    In general, the parameter estimation of GWOLR model uses maximum likelihood method, but it constructs a system of nonlinear equations, making it difficult to find the solution. Therefore, an approximate solution is needed. There are two popular numerical methods: the methods of Newton and Quasi-Newton (QN). Newton's method requires large-scale time in executing the computation program since it contains Jacobian matrix (derivative). QN method overcomes the drawback of Newton's method by substituting derivative computation into a function of direct computation. The QN method uses Hessian matrix approach which contains Davidon-Fletcher-Powell (DFP) formula. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is categorized as the QN method which has the DFP formula attribute of having positive definite Hessian matrix. The BFGS method requires large memory in executing the program so another algorithm to decrease memory usage is needed, namely Low Memory BFGS (LBFGS). The purpose of this research is to compute the efficiency of the LBFGS method in the iterative and recursive computation of Hessian matrix and its inverse for the GWOLR parameter estimation. In reference to the research findings, we found out that the BFGS and LBFGS methods have arithmetic operation schemes, including O(n2) and O(nm).

  14. A computer-based specification methodology

    NASA Technical Reports Server (NTRS)

    Munck, Robert G.

    1986-01-01

    Standard practices for creating and using system specifications are inadequate for large, advanced-technology systems. A need exists to break away from paper documents in favor of documents that are stored in computers and which are read and otherwise used with the help of computers. An SADT-based system, running on the proposed Space Station data management network, could be a powerful tool for doing much of the required technical work of the Station, including creating and operating the network itself.

  15. Interconnection requirements in avionic systems

    NASA Astrophysics Data System (ADS)

    Vergnolle, Claude; Houssay, Bruno

    1991-04-01

    The future aircraft generation will have thousand smart electromagnetic sensors distributed allover. Each sensor is connected with fibers links to the main-frame computer in charge of the real time signal''s correlation. Such a computer must be compactly built and massively parallel: it needs the use of 3 D optical free-space interconnect between neighbouring boards and reconfigurable interconnects via holographic backplane. The optical interconnect facilities will be also used to build fault-tolerant computer through large redundancy.

  16. Dynamic VM Provisioning for TORQUE in a Cloud Environment

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Boland, L.; Coddington, P.; Sevior, M.

    2014-06-01

    Cloud computing, also known as an Infrastructure-as-a-Service (IaaS), is attracting more interest from the commercial and educational sectors as a way to provide cost-effective computational infrastructure. It is an ideal platform for researchers who must share common resources but need to be able to scale up to massive computational requirements for specific periods of time. This paper presents the tools and techniques developed to allow the open source TORQUE distributed resource manager and Maui cluster scheduler to dynamically integrate OpenStack cloud resources into existing high throughput computing clusters.

  17. Experience with Aero- and Fluid-Dynamic Testing for Engineering and CFD Validation

    NASA Technical Reports Server (NTRS)

    Ross, James C.

    2016-01-01

    Ever since computations have been used to simulate aerodynamics the need to ensure that the computations adequately represent real life has followed. Many experiments have been performed specifically for validation and as computational methods have improved, so have the validation experiments. Validation is also a moving target because computational methods improve requiring validation for the new aspect of flow physics that the computations aim to capture. Concurrently, new measurement techniques are being developed that can help capture more detailed flow features pressure sensitive paint (PSP) and particle image velocimetry (PIV) come to mind. This paper will present various wind-tunnel tests the author has been involved with and how they were used for validation of various kinds of CFD. A particular focus is the application of advanced measurement techniques to flow fields (and geometries) that had proven to be difficult to predict computationally. Many of these difficult flow problems arose from engineering and development problems that needed to be solved for a particular vehicle or research program. In some cases the experiments required to solve the engineering problems were refined to provide valuable CFD validation data in addition to the primary engineering data. All of these experiments have provided physical insight and validation data for a wide range of aerodynamic and acoustic phenomena for vehicles ranging from tractor-trailers to crewed spacecraft.

  18. Virtualization and cloud computing in dentistry.

    PubMed

    Chow, Frank; Muftu, Ali; Shorter, Richard

    2014-01-01

    The use of virtualization and cloud computing has changed the way we use computers. Virtualization is a method of placing software called a hypervisor on the hardware of a computer or a host operating system. It allows a guest operating system to run on top of the physical computer with a virtual machine (i.e., virtual computer). Virtualization allows multiple virtual computers to run on top of one physical computer and to share its hardware resources, such as printers, scanners, and modems. This increases the efficient use of the computer by decreasing costs (e.g., hardware, electricity administration, and management) since only one physical computer is needed and running. This virtualization platform is the basis for cloud computing. It has expanded into areas of server and storage virtualization. One of the commonly used dental storage systems is cloud storage. Patient information is encrypted as required by the Health Insurance Portability and Accountability Act (HIPAA) and stored on off-site private cloud services for a monthly service fee. As computer costs continue to increase, so too will the need for more storage and processing power. Virtual and cloud computing will be a method for dentists to minimize costs and maximize computer efficiency in the near future. This article will provide some useful information on current uses of cloud computing.

  19. Pharmacist Computer Skills and Needs Assessment Survey

    PubMed Central

    Jewesson, Peter J

    2004-01-01

    Background To use technology effectively for the advancement of patient care, pharmacists must possess a variety of computer skills. We recently introduced a novel applied informatics program in this Canadian hospital clinical service unit to enhance the informatics skills of our members. Objective This study was conducted to gain a better understanding of the baseline computer skills and needs of our hospital pharmacists immediately prior to the implementation of an applied informatics program. Methods In May 2001, an 84-question written survey was distributed by mail to 106 practicing hospital pharmacists in our multi-site, 1500-bed, acute-adult-tertiary care Canadian teaching hospital in Vancouver, British Columbia. Results Fifty-eight surveys (55% of total) were returned within the two-week study period. The survey responses reflected the opinions of licensed BSc and PharmD hospital pharmacists with a broad range of pharmacy practice experience. Most respondents had home access to personal computers, and regularly used computers in the work environment for drug distribution, information management, and communication purposes. Few respondents reported experience with handheld computers. Software use experience varied according to application. Although patient-care information software and e-mail were commonly used, experience with spreadsheet, statistical, and presentation software was negligible. The respondents were familiar with Internet search engines, and these were reported to be the most common method of seeking clinical information online. Although many respondents rated themselves as being generally computer literate and not particularly anxious about using computers, the majority believed they required more training to reach their desired level of computer literacy. Lack of familiarity with computer-related terms was prevalent. Self-reported basic computer skill was typically at a moderate level, and varied depending on the task. Specifically, respondents rated their ability to manipulate files, use software help features, and install software as low, but rated their ability to access and navigate the Internet as high. Respondents were generally aware of what online resources were available to them and Clinical Pharmacology was the most commonly employed reference. In terms of anticipated needs, most pharmacists believed they needed to upgrade their computer skills. Medical database and Internet searching skills were identified as those in greatest need of improvement. Conclusions Most pharmacists believed they needed to upgrade their computer skills. Medical database and Internet searching skills were identified as those in greatest need of improvement for the purposes of improving practice effectiveness. PMID:15111277

  20. High Energy Physics Exascale Requirements Review. An Office of Science review sponsored jointly by Advanced Scientific Computing Research and High Energy Physics, June 10-12, 2015, Bethesda, Maryland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habib, Salman; Roser, Robert; Gerber, Richard

    The U.S. Department of Energy (DOE) Office of Science (SC) Offices of High Energy Physics (HEP) and Advanced Scientific Computing Research (ASCR) convened a programmatic Exascale Requirements Review on June 10–12, 2015, in Bethesda, Maryland. This report summarizes the findings, results, and recommendations derived from that meeting. The high-level findings and observations are as follows. Larger, more capable computing and data facilities are needed to support HEP science goals in all three frontiers: Energy, Intensity, and Cosmic. The expected scale of the demand at the 2025 timescale is at least two orders of magnitude — and in some cases greatermore » — than that available currently. The growth rate of data produced by simulations is overwhelming the current ability of both facilities and researchers to store and analyze it. Additional resources and new techniques for data analysis are urgently needed. Data rates and volumes from experimental facilities are also straining the current HEP infrastructure in its ability to store and analyze large and complex data volumes. Appropriately configured leadership-class facilities can play a transformational role in enabling scientific discovery from these datasets. A close integration of high-performance computing (HPC) simulation and data analysis will greatly aid in interpreting the results of HEP experiments. Such an integration will minimize data movement and facilitate interdependent workflows. Long-range planning between HEP and ASCR will be required to meet HEP’s research needs. To best use ASCR HPC resources, the experimental HEP program needs (1) an established, long-term plan for access to ASCR computational and data resources, (2) the ability to map workflows to HPC resources, (3) the ability for ASCR facilities to accommodate workflows run by collaborations potentially comprising thousands of individual members, (4) to transition codes to the next-generation HPC platforms that will be available at ASCR facilities, (5) to build up and train a workforce capable of developing and using simulations and analysis to support HEP scientific research on next-generation systems.« less

  1. Exploring the use of I/O nodes for computation in a MIMD multiprocessor

    NASA Technical Reports Server (NTRS)

    Kotz, David; Cai, Ting

    1995-01-01

    As parallel systems move into the production scientific-computing world, the emphasis will be on cost-effective solutions that provide high throughput for a mix of applications. Cost effective solutions demand that a system make effective use of all of its resources. Many MIMD multiprocessors today, however, distinguish between 'compute' and 'I/O' nodes, the latter having attached disks and being dedicated to running the file-system server. This static division of responsibilities simplifies system management but does not necessarily lead to the best performance in workloads that need a different balance of computation and I/O. Of course, computational processes sharing a node with a file-system service may receive less CPU time, network bandwidth, and memory bandwidth than they would on a computation-only node. In this paper we begin to examine this issue experimentally. We found that high performance I/O does not necessarily require substantial CPU time, leaving plenty of time for application computation. There were some complex file-system requests, however, which left little CPU time available to the application. (The impact on network and memory bandwidth still needs to be determined.) For applications (or users) that cannot tolerate an occasional interruption, we recommend that they continue to use only compute nodes. For tolerant applications needing more cycles than those provided by the compute nodes, we recommend that they take full advantage of both compute and I/O nodes for computation, and that operating systems should make this possible.

  2. Computational Approach for Developing Blood Pump

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan

    2002-01-01

    This viewgraph presentation provides an overview of the computational approach to developing a ventricular assist device (VAD) which utilizes NASA aerospace technology. The VAD is used as a temporary support to sick ventricles for those who suffer from late stage congestive heart failure (CHF). The need for donor hearts is much greater than their availability, and the VAD is seen as a bridge-to-transplant. The computational issues confronting the design of a more advanced, reliable VAD include the modelling of viscous incompressible flow. A computational approach provides the possibility of quantifying the flow characteristics, which is especially valuable for analyzing compact design with highly sensitive operating conditions. Computational fluid dynamics (CFD) and rocket engine technology has been applied to modify the design of a VAD which enabled human transplantation. The computing requirement for this project is still large, however, and the unsteady analysis of the entire system from natural heart to aorta involves several hundred revolutions of the impeller. Further study is needed to assess the impact of mechanical VADs on the human body

  3. The Diffusion of Computer Skills in Communication Curricula: Is There a Gap between the Educational Experience and Employers' Needs?

    ERIC Educational Resources Information Center

    Chen, Joyce; Bankston, Ronnie

    Computers are now perceived as a required resource by business, education, and government, as well as in personal life. The rates of adoption of information technologies among these groups (business, education, government, family/individual) have varied, which may have created knowledge gaps. Based on the data collected from a telephone survey in…

  4. Run-time scheduling and execution of loops on message passing machines

    NASA Technical Reports Server (NTRS)

    Crowley, Kay; Saltz, Joel; Mirchandaney, Ravi; Berryman, Harry

    1989-01-01

    Sparse system solvers and general purpose codes for solving partial differential equations are examples of the many types of problems whose irregularity can result in poor performance on distributed memory machines. Often, the data structures used in these problems are very flexible. Crucial details concerning loop dependences are encoded in these structures rather than being explicitly represented in the program. Good methods for parallelizing and partitioning these types of problems require assignment of computations in rather arbitrary ways. Naive implementations of programs on distributed memory machines requiring general loop partitions can be extremely inefficient. Instead, the scheduling mechanism needs to capture the data reference patterns of the loops in order to partition the problem. First, the indices assigned to each processor must be locally numbered. Next, it is necessary to precompute what information is needed by each processor at various points in the computation. The precomputed information is then used to generate an execution template designed to carry out the computation, communication, and partitioning of data, in an optimized manner. The design is presented for a general preprocessor and schedule executer, the structures of which do not vary, even though the details of the computation and of the type of information are problem dependent.

  5. Run-time scheduling and execution of loops on message passing machines

    NASA Technical Reports Server (NTRS)

    Saltz, Joel; Crowley, Kathleen; Mirchandaney, Ravi; Berryman, Harry

    1990-01-01

    Sparse system solvers and general purpose codes for solving partial differential equations are examples of the many types of problems whose irregularity can result in poor performance on distributed memory machines. Often, the data structures used in these problems are very flexible. Crucial details concerning loop dependences are encoded in these structures rather than being explicitly represented in the program. Good methods for parallelizing and partitioning these types of problems require assignment of computations in rather arbitrary ways. Naive implementations of programs on distributed memory machines requiring general loop partitions can be extremely inefficient. Instead, the scheduling mechanism needs to capture the data reference patterns of the loops in order to partition the problem. First, the indices assigned to each processor must be locally numbered. Next, it is necessary to precompute what information is needed by each processor at various points in the computation. The precomputed information is then used to generate an execution template designed to carry out the computation, communication, and partitioning of data, in an optimized manner. The design is presented for a general preprocessor and schedule executer, the structures of which do not vary, even though the details of the computation and of the type of information are problem dependent.

  6. Using technology to support investigations in the electronic age: tracking hackers to large scale international computer fraud

    NASA Astrophysics Data System (ADS)

    McFall, Steve

    1994-03-01

    With the increase in business automation and the widespread availability and low cost of computer systems, law enforcement agencies have seen a corresponding increase in criminal acts involving computers. The examination of computer evidence is a new field of forensic science with numerous opportunities for research and development. Research is needed to develop new software utilities to examine computer storage media, expert systems capable of finding criminal activity in large amounts of data, and to find methods of recovering data from chemically and physically damaged computer storage media. In addition, defeating encryption and password protection of computer files is also a topic requiring more research and development.

  7. Emergency Management Computer-Aided Trainer (EMCAT)

    NASA Technical Reports Server (NTRS)

    Rodriguez, R. C.; Johnson, R. P.

    1986-01-01

    The Emergency Management Computer-Aided Trainer (EMCAT) developed by Essex Corporation or NASA and the Federal Emergency Management Administration's (FEMA) National Fire Academy (NFA) is described. It is a computer based training system for fire fighting personnel. A prototype EMCAT system was developed by NASA first using video tape images and then video disk images when the technology became available. The EMCAT system is meant to fill the training needs of the fire fighting community with affordable state-of-the-art technologies. An automated real time simulation of the fire situation was needed to replace the outdated manual training methods currently being used. In order to be successful, this simulator had to provide realism, be user friendly, be affordable, and support multiple scenarios. The EMCAT system meets these requirements and therefore represents an innovative training tool, not only for the fire fighting community, but also for the needs of other disciplines.

  8. MacDoctor: The Macintosh diagnoser

    NASA Technical Reports Server (NTRS)

    Lavery, David B.; Brooks, William D.

    1990-01-01

    When the Macintosh computer was first released, the primary user was a computer hobbyist who typically had a significant technical background and was highly motivated to understand the internal structure and operational intricacies of the computer. In recent years the Macintosh computer has become a widely-accepted general purpose computer which is being used by an ever-increasing non-technical audience. This has lead to a large base of users which has neither the interest nor the background to understand what is happening 'behind the scenes' when the Macintosh is put to use - or what should be happening when something goes wrong. Additionally, the Macintosh itself has evolved from a simple closed design to a complete family of processor platforms and peripherals with a tremendous number of possible configurations. With the increasing popularity of the Macintosh series, software and hardware developers are producing a product for every user's need. As the complexity of configuration possibilities grows, the need for experienced or even expert knowledge is required to diagnose problems. This presents a problem to uneducated or casual users. This problem indicates a new Macintosh consumer need; that is, a diagnostic tool able to determine the problem for the user. As the volume of Macintosh products has increased, this need has also increased.

  9. An efficient dynamic load balancing algorithm

    NASA Astrophysics Data System (ADS)

    Lagaros, Nikos D.

    2014-01-01

    In engineering problems, randomness and uncertainties are inherent. Robust design procedures, formulated in the framework of multi-objective optimization, have been proposed in order to take into account sources of randomness and uncertainty. These design procedures require orders of magnitude more computational effort than conventional analysis or optimum design processes since a very large number of finite element analyses is required to be dealt. It is therefore an imperative need to exploit the capabilities of computing resources in order to deal with this kind of problems. In particular, parallel computing can be implemented at the level of metaheuristic optimization, by exploiting the physical parallelization feature of the nondominated sorting evolution strategies method, as well as at the level of repeated structural analyses required for assessing the behavioural constraints and for calculating the objective functions. In this study an efficient dynamic load balancing algorithm for optimum exploitation of available computing resources is proposed and, without loss of generality, is applied for computing the desired Pareto front. In such problems the computation of the complete Pareto front with feasible designs only, constitutes a very challenging task. The proposed algorithm achieves linear speedup factors and almost 100% speedup factor values with reference to the sequential procedure.

  10. High Performance Parallel Computational Nanotechnology

    NASA Technical Reports Server (NTRS)

    Saini, Subhash; Craw, James M. (Technical Monitor)

    1995-01-01

    At a recent press conference, NASA Administrator Dan Goldin encouraged NASA Ames Research Center to take a lead role in promoting research and development of advanced, high-performance computer technology, including nanotechnology. Manufacturers of leading-edge microprocessors currently perform large-scale simulations in the design and verification of semiconductor devices and microprocessors. Recently, the need for this intensive simulation and modeling analysis has greatly increased, due in part to the ever-increasing complexity of these devices, as well as the lessons of experiences such as the Pentium fiasco. Simulation, modeling, testing, and validation will be even more important for designing molecular computers because of the complex specification of millions of atoms, thousands of assembly steps, as well as the simulation and modeling needed to ensure reliable, robust and efficient fabrication of the molecular devices. The software for this capacity does not exist today, but it can be extrapolated from the software currently used in molecular modeling for other applications: semi-empirical methods, ab initio methods, self-consistent field methods, Hartree-Fock methods, molecular mechanics; and simulation methods for diamondoid structures. In as much as it seems clear that the application of such methods in nanotechnology will require powerful, highly powerful systems, this talk will discuss techniques and issues for performing these types of computations on parallel systems. We will describe system design issues (memory, I/O, mass storage, operating system requirements, special user interface issues, interconnects, bandwidths, and programming languages) involved in parallel methods for scalable classical, semiclassical, quantum, molecular mechanics, and continuum models; molecular nanotechnology computer-aided designs (NanoCAD) techniques; visualization using virtual reality techniques of structural models and assembly sequences; software required to control mini robotic manipulators for positional control; scalable numerical algorithms for reliability, verifications and testability. There appears no fundamental obstacle to simulating molecular compilers and molecular computers on high performance parallel computers, just as the Boeing 777 was simulated on a computer before manufacturing it.

  11. From data to analysis: linking NWChem and Avogadro with the syntax and semantics of Chemical Markup Language

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Jong, Wibe A.; Walker, Andrew M.; Hanwell, Marcus D.

    Background Multidisciplinary integrated research requires the ability to couple the diverse sets of data obtained from a range of complex experiments and computer simulations. Integrating data requires semantically rich information. In this paper the generation of semantically rich data from the NWChem computational chemistry software is discussed within the Chemical Markup Language (CML) framework. Results The NWChem computational chemistry software has been modified and coupled to the FoX library to write CML compliant XML data files. The FoX library was expanded to represent the lexical input files used by the computational chemistry software. Conclusions The production of CML compliant XMLmore » files for the computational chemistry software NWChem can be relatively easily accomplished using the FoX library. A unified computational chemistry or CompChem convention and dictionary needs to be developed through a community-based effort. The long-term goal is to enable a researcher to do Google-style chemistry and physics searches.« less

  12. Science-Driven Computing: NERSC's Plan for 2006-2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, Horst D.; Kramer, William T.C.; Bailey, David H.

    NERSC has developed a five-year strategic plan focusing on three components: Science-Driven Systems, Science-Driven Services, and Science-Driven Analytics. (1) Science-Driven Systems: Balanced introduction of the best new technologies for complete computational systems--computing, storage, networking, visualization and analysis--coupled with the activities necessary to engage vendors in addressing the DOE computational science requirements in their future roadmaps. (2) Science-Driven Services: The entire range of support activities, from high-quality operations and user services to direct scientific support, that enable a broad range of scientists to effectively use NERSC systems in their research. NERSC will concentrate on resources needed to realize the promise ofmore » the new highly scalable architectures for scientific discovery in multidisciplinary computational science projects. (3) Science-Driven Analytics: The architectural and systems enhancements and services required to integrate NERSC's powerful computational and storage resources to provide scientists with new tools to effectively manipulate, visualize, and analyze the huge data sets derived from simulations and experiments.« less

  13. The future of scientific workflows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deelman, Ewa; Peterka, Tom; Altintas, Ilkay

    Today’s computational, experimental, and observational sciences rely on computations that involve many related tasks. The success of a scientific mission often hinges on the computer automation of these workflows. In April 2015, the US Department of Energy (DOE) invited a diverse group of domain and computer scientists from national laboratories supported by the Office of Science, the National Nuclear Security Administration, from industry, and from academia to review the workflow requirements of DOE’s science and national security missions, to assess the current state of the art in science workflows, to understand the impact of emerging extreme-scale computing systems on thosemore » workflows, and to develop requirements for automated workflow management in future and existing environments. This article is a summary of the opinions of over 50 leading researchers attending this workshop. We highlight use cases, computing systems, workflow needs and conclude by summarizing the remaining challenges this community sees that inhibit large-scale scientific workflows from becoming a mainstream tool for extreme-scale science.« less

  14. The future of PanDA in ATLAS distributed computing

    NASA Astrophysics Data System (ADS)

    De, K.; Klimentov, A.; Maeno, T.; Nilsson, P.; Oleynik, D.; Panitkin, S.; Petrosyan, A.; Schovancova, J.; Vaniachine, A.; Wenaus, T.

    2015-12-01

    Experiments at the Large Hadron Collider (LHC) face unprecedented computing challenges. Heterogeneous resources are distributed worldwide at hundreds of sites, thousands of physicists analyse the data remotely, the volume of processed data is beyond the exabyte scale, while data processing requires more than a few billion hours of computing usage per year. The PanDA (Production and Distributed Analysis) system was developed to meet the scale and complexity of LHC distributed computing for the ATLAS experiment. In the process, the old batch job paradigm of locally managed computing in HEP was discarded in favour of a far more automated, flexible and scalable model. The success of PanDA in ATLAS is leading to widespread adoption and testing by other experiments. PanDA is the first exascale workload management system in HEP, already operating at more than a million computing jobs per day, and processing over an exabyte of data in 2013. There are many new challenges that PanDA will face in the near future, in addition to new challenges of scale, heterogeneity and increasing user base. PanDA will need to handle rapidly changing computing infrastructure, will require factorization of code for easier deployment, will need to incorporate additional information sources including network metrics in decision making, be able to control network circuits, handle dynamically sized workload processing, provide improved visualization, and face many other challenges. In this talk we will focus on the new features, planned or recently implemented, that are relevant to the next decade of distributed computing workload management using PanDA.

  15. High-End Computing Challenges in Aerospace Design and Engineering

    NASA Technical Reports Server (NTRS)

    Bailey, F. Ronald

    2004-01-01

    High-End Computing (HEC) has had significant impact on aerospace design and engineering and is poised to make even more in the future. In this paper we describe four aerospace design and engineering challenges: Digital Flight, Launch Simulation, Rocket Fuel System and Digital Astronaut. The paper discusses modeling capabilities needed for each challenge and presents projections of future near and far-term HEC computing requirements. NASA's HEC Project Columbia is described and programming strategies presented that are necessary to achieve high real performance.

  16. Enabling Analytics on Sensitive Medical Data with Secure Multi-Party Computation.

    PubMed

    Veeningen, Meilof; Chatterjea, Supriyo; Horváth, Anna Zsófia; Spindler, Gerald; Boersma, Eric; van der Spek, Peter; van der Galiën, Onno; Gutteling, Job; Kraaij, Wessel; Veugen, Thijs

    2018-01-01

    While there is a clear need to apply data analytics in the healthcare sector, this is often difficult because it requires combining sensitive data from multiple data sources. In this paper, we show how the cryptographic technique of secure multi-party computation can enable such data analytics by performing analytics without the need to share the underlying data. We discuss the issue of compliance to European privacy legislation; report on three pilots bringing these techniques closer to practice; and discuss the main challenges ahead to make fully privacy-preserving data analytics in the medical sector commonplace.

  17. Innovating in the Cloud: Exploring Cloud Computing to Solve IT Challenges

    ERIC Educational Resources Information Center

    Sheard, Reed

    2010-01-01

    When the author was brought on as CIO of Westmont College in October 2008, the president, Board of Trustees, and campus environment made it clear that technology needed a major overhaul to meet the college's growing requirements. Also, these changes needed to happen without significantly increasing the IT budget or staff. Marketing Charts…

  18. What Do Teachers Need To Know about Instructional Media in the Computer Age?

    ERIC Educational Resources Information Center

    Savenye, Wilhelmina C.

    A study was conducted to explore teacher training needs related to effective use of technology in the classroom, with the specific objective of helping to improve a state-required, one-credit media competency course taken by approximately 250 teacher credential candidates each semester at a major California university. One of three surveys was…

  19. Fast and Scalable Computation of the Forward and Inverse Discrete Periodic Radon Transform.

    PubMed

    Carranza, Cesar; Llamocca, Daniel; Pattichis, Marios

    2016-01-01

    The discrete periodic radon transform (DPRT) has extensively been used in applications that involve image reconstructions from projections. Beyond classic applications, the DPRT can also be used to compute fast convolutions that avoids the use of floating-point arithmetic associated with the use of the fast Fourier transform. Unfortunately, the use of the DPRT has been limited by the need to compute a large number of additions and the need for a large number of memory accesses. This paper introduces a fast and scalable approach for computing the forward and inverse DPRT that is based on the use of: a parallel array of fixed-point adder trees; circular shift registers to remove the need for accessing external memory components when selecting the input data for the adder trees; an image block-based approach to DPRT computation that can fit the proposed architecture to available resources; and fast transpositions that are computed in one or a few clock cycles that do not depend on the size of the input image. As a result, for an N × N image (N prime), the proposed approach can compute up to N(2) additions per clock cycle. Compared with the previous approaches, the scalable approach provides the fastest known implementations for different amounts of computational resources. For example, for a 251×251 image, for approximately 25% fewer flip-flops than required for a systolic implementation, we have that the scalable DPRT is computed 36 times faster. For the fastest case, we introduce optimized just 2N + ⌈log(2) N⌉ + 1 and 2N + 3 ⌈log(2) N⌉ + B + 2 cycles, architectures that can compute the DPRT and its inverse in respectively, where B is the number of bits used to represent each input pixel. On the other hand, the scalable DPRT approach requires more 1-b additions than for the systolic implementation and provides a tradeoff between speed and additional 1-b additions. All of the proposed DPRT architectures were implemented in VHSIC Hardware Description Language (VHDL) and validated using an Field-Programmable Gate Array (FPGA) implementation.

  20. Quantum Iterative Deepening with an Application to the Halting Problem

    PubMed Central

    Tarrataca, Luís; Wichert, Andreas

    2013-01-01

    Classical models of computation traditionally resort to halting schemes in order to enquire about the state of a computation. In such schemes, a computational process is responsible for signaling an end of a calculation by setting a halt bit, which needs to be systematically checked by an observer. The capacity of quantum computational models to operate on a superposition of states requires an alternative approach. From a quantum perspective, any measurement of an equivalent halt qubit would have the potential to inherently interfere with the computation by provoking a random collapse amongst the states. This issue is exacerbated by undecidable problems such as the Entscheidungsproblem which require universal computational models, e.g. the classical Turing machine, to be able to proceed indefinitely. In this work we present an alternative view of quantum computation based on production system theory in conjunction with Grover's amplitude amplification scheme that allows for (1) a detection of halt states without interfering with the final result of a computation; (2) the possibility of non-terminating computation and (3) an inherent speedup to occur during computations susceptible of parallelization. We discuss how such a strategy can be employed in order to simulate classical Turing machines. PMID:23520465

  1. Design for pressure regulating components

    NASA Technical Reports Server (NTRS)

    Wichmann, H.

    1973-01-01

    The design development for Pressure Regulating Components included a regulator component trade-off study with analog computer performance verification to arrive at a final optimized regulator configuration for the Space Storable Propulsion Module, under development for a Jupiter Orbiter mission. This application requires the pressure regulator to be capable of long-term fluorine exposure. In addition, individual but basically identical (for purposes of commonality) units are required for separate oxidizer and fuel pressurization. The need for dual units requires improvement in the regulation accuracy over present designs. An advanced regulator concept was prepared featuring redundant bellows, all metallic/ceramic construction, friction-free guidance of moving parts, gas damping, and the elimination of coil springs normally used for reference forces. The activities included testing of actual size seat/poppet components to determine actual discharge coefficients and flow forces. The resulting data was inserted into the computer model of the regulator. Computer simulation of the propulsion module performance over two mission profiles indicated satisfactory minimization of propellant residual requirements imposed by regulator performance uncertainties.

  2. Analyses of requirements for computer control and data processing experiment subsystems: Image data processing system (IDAPS) software description (7094 version), volume 2

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A description of each of the software modules of the Image Data Processing System (IDAPS) is presented. The changes in the software modules are the result of additions to the application software of the system and an upgrade of the IBM 7094 Mod(1) computer to a 1301 disk storage configuration. Necessary information about IDAPS sofware is supplied to the computer programmer who desires to make changes in the software system or who desires to use portions of the software outside of the IDAPS system. Each software module is documented with: module name, purpose, usage, common block(s) description, method (algorithm of subroutine) flow diagram (if needed), subroutines called, and storage requirements.

  3. Desktop supercomputer: what can it do?

    NASA Astrophysics Data System (ADS)

    Bogdanov, A.; Degtyarev, A.; Korkhov, V.

    2017-12-01

    The paper addresses the issues of solving complex problems that require using supercomputers or multiprocessor clusters available for most researchers nowadays. Efficient distribution of high performance computing resources according to actual application needs has been a major research topic since high-performance computing (HPC) technologies became widely introduced. At the same time, comfortable and transparent access to these resources was a key user requirement. In this paper we discuss approaches to build a virtual private supercomputer available at user's desktop: a virtual computing environment tailored specifically for a target user with a particular target application. We describe and evaluate possibilities to create the virtual supercomputer based on light-weight virtualization technologies, and analyze the efficiency of our approach compared to traditional methods of HPC resource management.

  4. Supercomputer requirements for selected disciplines important to aerospace

    NASA Technical Reports Server (NTRS)

    Peterson, Victor L.; Kim, John; Holst, Terry L.; Deiwert, George S.; Cooper, David M.; Watson, Andrew B.; Bailey, F. Ron

    1989-01-01

    Speed and memory requirements placed on supercomputers by five different disciplines important to aerospace are discussed and compared with the capabilities of various existing computers and those projected to be available before the end of this century. The disciplines chosen for consideration are turbulence physics, aerodynamics, aerothermodynamics, chemistry, and human vision modeling. Example results for problems illustrative of those currently being solved in each of the disciplines are presented and discussed. Limitations imposed on physical modeling and geometrical complexity by the need to obtain solutions in practical amounts of time are identified. Computational challenges for the future, for which either some or all of the current limitations are removed, are described. Meeting some of the challenges will require computer speeds in excess of exaflop/s (10 to the 18th flop/s) and memories in excess of petawords (10 to the 15th words).

  5. Quantum Algorithms and Protocols

    NASA Astrophysics Data System (ADS)

    Divincenzo, David

    2001-06-01

    Quantum Computing is better than classical computing, but not just because it speeds up some computations. Some of the best known quantum algorithms, like Grover's, may well have their most interesting applications in settings that involve the combination of computation and communication. Thus, Grover speeds up the appointment scheduling problem by reducing the amount of communication needed between two parties who want to find a common free slot on their calendars. I will review various other applications of this sort that are being explored. Other distributed computing protocols are required to have other attributes like obliviousness and privacy; I will discuss our recent applications involving quantum data hiding.

  6. Computer Assets Recovery Project

    NASA Technical Reports Server (NTRS)

    CortesPena, Aida Yoguely

    2010-01-01

    This document reports on the project that was performed during the internship of the author. The project involved locating and recovering machines in various locations that Boeing has no need for, and therefore requires that they be transferred to another user or transferred to a non-profit organization. Other projects that the author performed was an inventory of toner and printers, loading new computers and connecting them to the network.

  7. The Impact of Automation on Job Requirements and Qualifications for Catalogers and Reference Librarians in Academic Libraries.

    ERIC Educational Resources Information Center

    Xu, Hong

    1996-01-01

    Compares and analyzes job advertisements for catalogers and reference librarians in academic libraries from 1971 to 1990 to trace the impact of automation on job requirements and qualifications. Findings indicate that computer skills are needed, and there are more entry-level jobs being posted for both groups. (Author/JMV)

  8. Personnel and Training Requirements for the ASR-21 Rescue Control Center.

    ERIC Educational Resources Information Center

    DeLuca, Joseph F.; Noble, John F.

    This report covers personnel and training requirements for Rescue Control Center (RCC) twin hull submarine rescue ships (ASRs). Skills and knowledge similar to those of a sonar technician (ST-0408) and a data system technician (DS-1666) are needed to operate the special sonar set and computer based system, but no suitable Navy training facility…

  9. [Earth Science Technology Office's Computational Technologies Project

    NASA Technical Reports Server (NTRS)

    Fischer, James (Technical Monitor); Merkey, Phillip

    2005-01-01

    This grant supported the effort to characterize the problem domain of the Earth Science Technology Office's Computational Technologies Project, to engage the Beowulf Cluster Computing Community as well as the High Performance Computing Research Community so that we can predict the applicability of said technologies to the scientific community represented by the CT project and formulate long term strategies to provide the computational resources necessary to attain the anticipated scientific objectives of the CT project. Specifically, the goal of the evaluation effort is to use the information gathered over the course of the Round-3 investigations to quantify the trends in scientific expectations, the algorithmic requirements and capabilities of high-performance computers to satisfy this anticipated need.

  10. The IBM PC at NASA Ames

    NASA Technical Reports Server (NTRS)

    Peredo, James P.

    1988-01-01

    Like many large companies, Ames relies very much on its computing power to get work done. And, like many other large companies, finding the IBM PC a reliable tool, Ames uses it for many of the same types of functions as other companies. Presentation and clarification needs demand much of graphics packages. Programming and text editing needs require simpler, more-powerful packages. The storage space needed by NASA's scientists and users for the monumental amounts of data that Ames needs to keep demand the best database packages that are large and easy to use. Availability to the Micom Switching Network combines the powers of the IBM PC with the capabilities of other computers and mainframes and allows users to communicate electronically. These four primary capabilities of the PC are vital to the needs of NASA's users and help to continue and support the vast amounts of work done by the NASA employees.

  11. Automated Design of Restraint Layer of an Inflatable Vessel

    NASA Technical Reports Server (NTRS)

    Spexarth, Gary

    2007-01-01

    A Mathcad computer program largely automates the design and analysis of the restraint layer (the primary load-bearing layer) of an inflatable vessel that consists of one or more sections having cylindrical, toroidal, and/or spherical shape(s). A restraint layer typically comprises webbing in the form of multiple straps. The design task includes choosing indexing locations along the straps, computing the load at every location in each strap, computing the resulting stretch at each location, and computing the amount of undersizing required of each strap so that, once the vessel is inflated and the straps thus stretched, the vessel can be expected to assume the desired shape. Prior to the development of this program, the design task was performed by use of a difficult-to-use spreadsheet program that required manual addition of rows and columns depending on the numbers of strap rows and columns of a given design. In contrast, this program is completely parametric and includes logic that automatically adds or deletes rows and columns as needed. With minimal input from the user, this program automatically computes indexing locations, strap lengths, undersizing requirements, and all design data required to produce detailed drawings and assembly procedures. It also generates textual comments that help the user understand the calculations.

  12. Higher-order accurate space-time schemes for computational astrophysics—Part I: finite volume methods

    NASA Astrophysics Data System (ADS)

    Balsara, Dinshaw S.

    2017-12-01

    As computational astrophysics comes under pressure to become a precision science, there is an increasing need to move to high accuracy schemes for computational astrophysics. The algorithmic needs of computational astrophysics are indeed very special. The methods need to be robust and preserve the positivity of density and pressure. Relativistic flows should remain sub-luminal. These requirements place additional pressures on a computational astrophysics code, which are usually not felt by a traditional fluid dynamics code. Hence the need for a specialized review. The focus here is on weighted essentially non-oscillatory (WENO) schemes, discontinuous Galerkin (DG) schemes and PNPM schemes. WENO schemes are higher order extensions of traditional second order finite volume schemes. At third order, they are most similar to piecewise parabolic method schemes, which are also included. DG schemes evolve all the moments of the solution, with the result that they are more accurate than WENO schemes. PNPM schemes occupy a compromise position between WENO and DG schemes. They evolve an Nth order spatial polynomial, while reconstructing higher order terms up to Mth order. As a result, the timestep can be larger. Time-dependent astrophysical codes need to be accurate in space and time with the result that the spatial and temporal accuracies must be matched. This is realized with the help of strong stability preserving Runge-Kutta schemes and ADER (Arbitrary DERivative in space and time) schemes, both of which are also described. The emphasis of this review is on computer-implementable ideas, not necessarily on the underlying theory.

  13. Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 1: Overview and summary

    NASA Technical Reports Server (NTRS)

    1989-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned Marshall Space Flight Center (MSFC) Payload Training Complex (PTC) required to meet this need will train the space station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs. This study was performed August 1988 to October 1989. Thus, the results are based on the SSFP August 1989 baseline, i.e., pre-Langley configuration/budget review (C/BR) baseline. Some terms, e.g., combined trainer, are being redefined. An overview of the study activities and a summary of study results are given here.

  14. Developing Data System Engineers

    NASA Astrophysics Data System (ADS)

    Behnke, J.; Byrnes, J. B.; Kobler, B.

    2011-12-01

    In the early days of general computer systems for science data processing, staff members working on NASA's data systems would most often be hired as mathematicians. Computer engineering was very often filled by those with electrical engineering degrees. Today, the Goddard Space Flight Center has special position descriptions for data scientists or as they are more commonly called: data systems engineers. These staff members are required to have very diverse skills, hence the need for a generalized position description. There is always a need for data systems engineers to develop, maintain and operate the complex data systems for Earth and space science missions. Today's data systems engineers however are not just mathematicians, they are computer programmers, GIS experts, software engineers, visualization experts, etc... They represent many different degree fields. To put together distributed systems like the NASA Earth Observing Data and Information System (EOSDIS), staff are required from many different fields. Sometimes, the skilled professional is not available and must be developed in-house. This paper will address the various skills and jobs for data systems engineers at NASA. Further it explores how to develop staff to become data scientists.

  15. Efficient classical simulation of the Deutsch-Jozsa and Simon's algorithms

    NASA Astrophysics Data System (ADS)

    Johansson, Niklas; Larsson, Jan-Åke

    2017-09-01

    A long-standing aim of quantum information research is to understand what gives quantum computers their advantage. This requires separating problems that need genuinely quantum resources from those for which classical resources are enough. Two examples of quantum speed-up are the Deutsch-Jozsa and Simon's problem, both efficiently solvable on a quantum Turing machine, and both believed to lack efficient classical solutions. Here we present a framework that can simulate both quantum algorithms efficiently, solving the Deutsch-Jozsa problem with probability 1 using only one oracle query, and Simon's problem using linearly many oracle queries, just as expected of an ideal quantum computer. The presented simulation framework is in turn efficiently simulatable in a classical probabilistic Turing machine. This shows that the Deutsch-Jozsa and Simon's problem do not require any genuinely quantum resources, and that the quantum algorithms show no speed-up when compared with their corresponding classical simulation. Finally, this gives insight into what properties are needed in the two algorithms and calls for further study of oracle separation between quantum and classical computation.

  16. Selection of a computer code for Hanford low-level waste engineered-system performance assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGrail, B.P.; Mahoney, L.A.

    Planned performance assessments for the proposed disposal of low-level waste (LLW) glass produced from remediation of wastes stored in underground tanks at Hanford, Washington will require calculations of radionuclide release rates from the subsurface disposal facility. These calculations will be done with the aid of computer codes. Currently available computer codes were ranked in terms of the feature sets implemented in the code that match a set of physical, chemical, numerical, and functional capabilities needed to assess release rates from the engineered system. The needed capabilities were identified from an analysis of the important physical and chemical process expected tomore » affect LLW glass corrosion and the mobility of radionuclides. The highest ranked computer code was found to be the ARES-CT code developed at PNL for the US Department of Energy for evaluation of and land disposal sites.« less

  17. Galaxy CloudMan: delivering cloud compute clusters.

    PubMed

    Afgan, Enis; Baker, Dannon; Coraor, Nate; Chapman, Brad; Nekrutenko, Anton; Taylor, James

    2010-12-21

    Widespread adoption of high-throughput sequencing has greatly increased the scale and sophistication of computational infrastructure needed to perform genomic research. An alternative to building and maintaining local infrastructure is "cloud computing", which, in principle, offers on demand access to flexible computational infrastructure. However, cloud computing resources are not yet suitable for immediate "as is" use by experimental biologists. We present a cloud resource management system that makes it possible for individual researchers to compose and control an arbitrarily sized compute cluster on Amazon's EC2 cloud infrastructure without any informatics requirements. Within this system, an entire suite of biological tools packaged by the NERC Bio-Linux team (http://nebc.nerc.ac.uk/tools/bio-linux) is available for immediate consumption. The provided solution makes it possible, using only a web browser, to create a completely configured compute cluster ready to perform analysis in less than five minutes. Moreover, we provide an automated method for building custom deployments of cloud resources. This approach promotes reproducibility of results and, if desired, allows individuals and labs to add or customize an otherwise available cloud system to better meet their needs. The expected knowledge and associated effort with deploying a compute cluster in the Amazon EC2 cloud is not trivial. The solution presented in this paper eliminates these barriers, making it possible for researchers to deploy exactly the amount of computing power they need, combined with a wealth of existing analysis software, to handle the ongoing data deluge.

  18. Triple-server blind quantum computation using entanglement swapping

    NASA Astrophysics Data System (ADS)

    Li, Qin; Chan, Wai Hong; Wu, Chunhui; Wen, Zhonghua

    2014-04-01

    Blind quantum computation allows a client who does not have enough quantum resources or technologies to achieve quantum computation on a remote quantum server such that the client's input, output, and algorithm remain unknown to the server. Up to now, single- and double-server blind quantum computation have been considered. In this work, we propose a triple-server blind computation protocol where the client can delegate quantum computation to three quantum servers by the use of entanglement swapping. Furthermore, the three quantum servers can communicate with each other and the client is almost classical since one does not require any quantum computational power, quantum memory, and the ability to prepare any quantum states and only needs to be capable of getting access to quantum channels.

  19. Universal Blind Quantum Computation

    NASA Astrophysics Data System (ADS)

    Fitzsimons, Joseph; Kashefi, Elham

    2012-02-01

    Blind Quantum Computing (BQC) allows a client to have a server carry out a quantum computation for them such that the client's inputs, outputs and computation remain private. Recently we proposed a universal unconditionally secure BQC scheme, based on the conceptual framework of the measurement-based quantum computing model, where the client only needs to be able to prepare single qubits in separable states randomly chosen from a finite set and send them to the server, who has the balance of the required quantum computational resources. Here we present a refinement of the scheme which vastly expands the class of quantum circuits which can be directly implemented as a blind computation, by introducing a new class of resource states which we term dotted-complete graph states and expanding the set of single qubit states the client is required to prepare. These two modifications significantly simplify the overall protocol and remove the previously present restriction that only nearest-neighbor circuits could be implemented as blind computations directly. As an added benefit, the refined protocol admits a substantially more intuitive and simplified verification mechanism, allowing the correctness of a blind computation to be verified with arbitrarily small probability of error.

  20. Extreme Scale Computing to Secure the Nation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, D L; McGraw, J R; Johnson, J R

    2009-11-10

    Since the dawn of modern electronic computing in the mid 1940's, U.S. national security programs have been dominant users of every new generation of high-performance computer. Indeed, the first general-purpose electronic computer, ENIAC (the Electronic Numerical Integrator and Computer), was used to calculate the expected explosive yield of early thermonuclear weapons designs. Even the U. S. numerical weather prediction program, another early application for high-performance computing, was initially funded jointly by sponsors that included the U.S. Air Force and Navy, agencies interested in accurate weather predictions to support U.S. military operations. For the decades of the cold war, national securitymore » requirements continued to drive the development of high performance computing (HPC), including advancement of the computing hardware and development of sophisticated simulation codes to support weapons and military aircraft design, numerical weather prediction as well as data-intensive applications such as cryptography and cybersecurity U.S. national security concerns continue to drive the development of high-performance computers and software in the U.S. and in fact, events following the end of the cold war have driven an increase in the growth rate of computer performance at the high-end of the market. This mainly derives from our nation's observance of a moratorium on underground nuclear testing beginning in 1992, followed by our voluntary adherence to the Comprehensive Test Ban Treaty (CTBT) beginning in 1995. The CTBT prohibits further underground nuclear tests, which in the past had been a key component of the nation's science-based program for assuring the reliability, performance and safety of U.S. nuclear weapons. In response to this change, the U.S. Department of Energy (DOE) initiated the Science-Based Stockpile Stewardship (SBSS) program in response to the Fiscal Year 1994 National Defense Authorization Act, which requires, 'in the absence of nuclear testing, a progam to: (1) Support a focused, multifaceted program to increase the understanding of the enduring stockpile; (2) Predict, detect, and evaluate potential problems of the aging of the stockpile; (3) Refurbish and re-manufacture weapons and components, as required; and (4) Maintain the science and engineering institutions needed to support the nation's nuclear deterrent, now and in the future'. This program continues to fulfill its national security mission by adding significant new capabilities for producing scientific results through large-scale computational simulation coupled with careful experimentation, including sub-critical nuclear experiments permitted under the CTBT. To develop the computational science and the computational horsepower needed to support its mission, SBSS initiated the Accelerated Strategic Computing Initiative, later renamed the Advanced Simulation & Computing (ASC) program (sidebar: 'History of ASC Computing Program Computing Capability'). The modern 3D computational simulation capability of the ASC program supports the assessment and certification of the current nuclear stockpile through calibration with past underground test (UGT) data. While an impressive accomplishment, continued evolution of national security mission requirements will demand computing resources at a significantly greater scale than we have today. In particular, continued observance and potential Senate confirmation of the Comprehensive Test Ban Treaty (CTBT) together with the U.S administration's promise for a significant reduction in the size of the stockpile and the inexorable aging and consequent refurbishment of the stockpile all demand increasing refinement of our computational simulation capabilities. Assessment of the present and future stockpile with increased confidence of the safety and reliability without reliance upon calibration with past or future test data is a long-term goal of the ASC program. This will be accomplished through significant increases in the scientific bases that underlie the computational tools. Computer codes must be developed that replace phenomenology with increased levels of scientific understanding together with an accompanying quantification of uncertainty. These advanced codes will place significantly higher demands on the computing infrastructure than do the current 3D ASC codes. This article discusses not only the need for a future computing capability at the exascale for the SBSS program, but also considers high performance computing requirements for broader national security questions. For example, the increasing concern over potential nuclear terrorist threats demands a capability to assess threats and potential disablement technologies as well as a rapid forensic capability for determining a nuclear weapons design from post-detonation evidence (nuclear counterterrorism).« less

  1. Practical Algorithms for the Longest Common Extension Problem

    NASA Astrophysics Data System (ADS)

    Ilie, Lucian; Tinta, Liviu

    The Longest Common Extension problem considers a string s and computes, for each of a number of pairs (i,j), the longest substring of s that starts at both i and j. It appears as a subproblem in many fundamental string problems and can be solved by linear-time preprocessing of the string that allows (worst-case) constant-time computation for each pair. The two known approaches use powerful algorithms: either constant-time computation of the Lowest Common Ancestor in trees or constant-time computation of Range Minimum Queries (RMQ) in arrays. We show here that, from practical point of view, such complicated approaches are not needed. We give two very simple algorithms for this problem that require no preprocessing. The first needs only the string and is significantly faster than all previous algorithms on the average. The second combines the first with a direct RMQ computation on the Longest Common Prefix array. It takes advantage of the superior speed of the cache memory and is the fastest on virtually all inputs.

  2. Automation of the CFD Process on Distributed Computing Systems

    NASA Technical Reports Server (NTRS)

    Tejnil, Ed; Gee, Ken; Rizk, Yehia M.

    2000-01-01

    A script system was developed to automate and streamline portions of the CFD process. The system was designed to facilitate the use of CFD flow solvers on supercomputer and workstation platforms within a parametric design event. Integrating solver pre- and postprocessing phases, the fully automated ADTT script system marshalled the required input data, submitted the jobs to available computational resources, and processed the resulting output data. A number of codes were incorporated into the script system, which itself was part of a larger integrated design environment software package. The IDE and scripts were used in a design event involving a wind tunnel test. This experience highlighted the need for efficient data and resource management in all parts of the CFD process. To facilitate the use of CFD methods to perform parametric design studies, the script system was developed using UNIX shell and Perl languages. The goal of the work was to minimize the user interaction required to generate the data necessary to fill a parametric design space. The scripts wrote out the required input files for the user-specified flow solver, transferred all necessary input files to the computational resource, submitted and tracked the jobs using the resource queuing structure, and retrieved and post-processed the resulting dataset. For computational resources that did not run queueing software, the script system established its own simple first-in-first-out queueing structure to manage the workload. A variety of flow solvers were incorporated in the script system, including INS2D, PMARC, TIGER and GASP. Adapting the script system to a new flow solver was made easier through the use of object-oriented programming methods. The script system was incorporated into an ADTT integrated design environment and evaluated as part of a wind tunnel experiment. The system successfully generated the data required to fill the desired parametric design space. This stressed the computational resources required to compute and store the information. The scripts were continually modified to improve the utilization of the computational resources and reduce the likelihood of data loss due to failures. An ad-hoc file server was created to manage the large amount of data being generated as part of the design event. Files were stored and retrieved as needed to create new jobs and analyze the results. Additional information is contained in the original.

  3. Turbulence modeling needs of commercial CFD codes: Complex flows in the aerospace and automotive industries

    NASA Technical Reports Server (NTRS)

    Befrui, Bizhan A.

    1995-01-01

    This viewgraph presentation discusses the following: STAR-CD computational features; STAR-CD turbulence models; common features of industrial complex flows; industry-specific CFD development requirements; applications and experiences of industrial complex flows, including flow in rotating disc cavities, diffusion hole film cooling, internal blade cooling, and external car aerodynamics; and conclusions on turbulence modeling needs.

  4. The distributed production system of the SuperB project: description and results

    NASA Astrophysics Data System (ADS)

    Brown, D.; Corvo, M.; Di Simone, A.; Fella, A.; Luppi, E.; Paoloni, E.; Stroili, R.; Tomassetti, L.

    2011-12-01

    The SuperB experiment needs large samples of MonteCarlo simulated events in order to finalize the detector design and to estimate the data analysis performances. The requirements are beyond the capabilities of a single computing farm, so a distributed production model capable of exploiting the existing HEP worldwide distributed computing infrastructure is needed. In this paper we describe the set of tools that have been developed to manage the production of the required simulated events. The production of events follows three main phases: distribution of input data files to the remote site Storage Elements (SE); job submission, via SuperB GANGA interface, to all available remote sites; output files transfer to CNAF repository. The job workflow includes procedures for consistency checking, monitoring, data handling and bookkeeping. A replication mechanism allows storing the job output on the local site SE. Results from 2010 official productions are reported.

  5. An Object Oriented Extensible Architecture for Affordable Aerospace Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Follen, Gregory J.

    2003-01-01

    Driven by a need to explore and develop propulsion systems that exceeded current computing capabilities, NASA Glenn embarked on a novel strategy leading to the development of an architecture that enables propulsion simulations never thought possible before. Full engine 3 Dimensional Computational Fluid Dynamic propulsion system simulations were deemed impossible due to the impracticality of the hardware and software computing systems required. However, with a software paradigm shift and an embracing of parallel and distributed processing, an architecture was designed to meet the needs of future propulsion system modeling. The author suggests that the architecture designed at the NASA Glenn Research Center for propulsion system modeling has potential for impacting the direction of development of affordable weapons systems currently under consideration by the Applied Vehicle Technology Panel (AVT).

  6. Computational Electrocardiography: Revisiting Holter ECG Monitoring.

    PubMed

    Deserno, Thomas M; Marx, Nikolaus

    2016-08-05

    Since 1942, when Goldberger introduced the 12-lead electrocardiography (ECG), this diagnostic method has not been changed. After 70 years of technologic developments, we revisit Holter ECG from recording to understanding. A fundamental change is fore-seen towards "computational ECG" (CECG), where continuous monitoring is producing big data volumes that are impossible to be inspected conventionally but require efficient computational methods. We draw parallels between CECG and computational biology, in particular with respect to computed tomography, computed radiology, and computed photography. From that, we identify technology and methodology needed for CECG. Real-time transfer of raw data into meaningful parameters that are tracked over time will allow prediction of serious events, such as sudden cardiac death. Evolved from Holter's technology, portable smartphones with Bluetooth-connected textile-embedded sensors will capture noisy raw data (recording), process meaningful parameters over time (analysis), and transfer them to cloud services for sharing (handling), predicting serious events, and alarming (understanding). To make this happen, the following fields need more research: i) signal processing, ii) cycle decomposition; iii) cycle normalization, iv) cycle modeling, v) clinical parameter computation, vi) physiological modeling, and vii) event prediction. We shall start immediately developing methodology for CECG analysis and understanding.

  7. Man/computer communication in a space environment

    NASA Technical Reports Server (NTRS)

    Hodges, B. C.; Montoya, G.

    1973-01-01

    The present work reports on a study of the technology required to advance the state of the art in man/machine communications. The study involved the development and demonstration of both hardware and software to effectively implement man/computer interactive channels of communication. While tactile and visual man/computer communications equipment are standard methods of interaction with machines, man's speech is a natural media for inquiry and control. As part of this study, a word recognition unit was developed capable of recognizing a minimum of one hundred different words or sentences in any one of the currently used conversational languages. The study has proven that efficiency in communication between man and computer can be achieved when the vocabulary to be used is structured in a manner compatible with the rigid communication requirements of the machine while at the same time responsive to the informational needs of the man.

  8. Requirements for fault-tolerant factoring on an atom-optics quantum computer.

    PubMed

    Devitt, Simon J; Stephens, Ashley M; Munro, William J; Nemoto, Kae

    2013-01-01

    Quantum information processing and its associated technologies have reached a pivotal stage in their development, with many experiments having established the basic building blocks. Moving forward, the challenge is to scale up to larger machines capable of performing computational tasks not possible today. This raises questions that need to be urgently addressed, such as what resources these machines will consume and how large will they be. Here we estimate the resources required to execute Shor's factoring algorithm on an atom-optics quantum computer architecture. We determine the runtime and size of the computer as a function of the problem size and physical error rate. Our results suggest that once the physical error rate is low enough to allow quantum error correction, optimization to reduce resources and increase performance will come mostly from integrating algorithms and circuits within the error correction environment, rather than from improving the physical hardware.

  9. Network, system, and status software enhancements for the autonomously managed electrical power system breadboard. Volume 2: Protocol specification

    NASA Technical Reports Server (NTRS)

    Mckee, James W.

    1990-01-01

    This volume (2 of 4) contains the specification, structured flow charts, and code listing for the protocol. The purpose of an autonomous power system on a spacecraft is to relieve humans from having to continuously monitor and control the generation, storage, and distribution of power in the craft. This implies that algorithms will have been developed to monitor and control the power system. The power system will contain computers on which the algorithms run. There should be one control computer system that makes the high level decisions and sends commands to and receive data from the other distributed computers. This will require a communications network and an efficient protocol by which the computers will communicate. One of the major requirements on the protocol is that it be real time because of the need to control the power elements.

  10. Provenance based data integrity checking and verification in cloud environments

    PubMed Central

    Haq, Inam Ul; Jan, Bilal; Khan, Fakhri Alam; Ahmad, Awais

    2017-01-01

    Cloud computing is a recent tendency in IT that moves computing and data away from desktop and hand-held devices into large scale processing hubs and data centers respectively. It has been proposed as an effective solution for data outsourcing and on demand computing to control the rising cost of IT setups and management in enterprises. However, with Cloud platforms user’s data is moved into remotely located storages such that users lose control over their data. This unique feature of the Cloud is facing many security and privacy challenges which need to be clearly understood and resolved. One of the important concerns that needs to be addressed is to provide the proof of data integrity, i.e., correctness of the user’s data stored in the Cloud storage. The data in Clouds is physically not accessible to the users. Therefore, a mechanism is required where users can check if the integrity of their valuable data is maintained or compromised. For this purpose some methods are proposed like mirroring, checksumming and using third party auditors amongst others. However, these methods use extra storage space by maintaining multiple copies of data or the presence of a third party verifier is required. In this paper, we address the problem of proving data integrity in Cloud computing by proposing a scheme through which users are able to check the integrity of their data stored in Clouds. In addition, users can track the violation of data integrity if occurred. For this purpose, we utilize a relatively new concept in the Cloud computing called “Data Provenance”. Our scheme is capable to reduce the need of any third party services, additional hardware support and the replication of data items on client side for integrity checking. PMID:28545151

  11. Provenance based data integrity checking and verification in cloud environments.

    PubMed

    Imran, Muhammad; Hlavacs, Helmut; Haq, Inam Ul; Jan, Bilal; Khan, Fakhri Alam; Ahmad, Awais

    2017-01-01

    Cloud computing is a recent tendency in IT that moves computing and data away from desktop and hand-held devices into large scale processing hubs and data centers respectively. It has been proposed as an effective solution for data outsourcing and on demand computing to control the rising cost of IT setups and management in enterprises. However, with Cloud platforms user's data is moved into remotely located storages such that users lose control over their data. This unique feature of the Cloud is facing many security and privacy challenges which need to be clearly understood and resolved. One of the important concerns that needs to be addressed is to provide the proof of data integrity, i.e., correctness of the user's data stored in the Cloud storage. The data in Clouds is physically not accessible to the users. Therefore, a mechanism is required where users can check if the integrity of their valuable data is maintained or compromised. For this purpose some methods are proposed like mirroring, checksumming and using third party auditors amongst others. However, these methods use extra storage space by maintaining multiple copies of data or the presence of a third party verifier is required. In this paper, we address the problem of proving data integrity in Cloud computing by proposing a scheme through which users are able to check the integrity of their data stored in Clouds. In addition, users can track the violation of data integrity if occurred. For this purpose, we utilize a relatively new concept in the Cloud computing called "Data Provenance". Our scheme is capable to reduce the need of any third party services, additional hardware support and the replication of data items on client side for integrity checking.

  12. Memory-Efficient Analysis of Dense Functional Connectomes.

    PubMed

    Loewe, Kristian; Donohue, Sarah E; Schoenfeld, Mircea A; Kruse, Rudolf; Borgelt, Christian

    2016-01-01

    The functioning of the human brain relies on the interplay and integration of numerous individual units within a complex network. To identify network configurations characteristic of specific cognitive tasks or mental illnesses, functional connectomes can be constructed based on the assessment of synchronous fMRI activity at separate brain sites, and then analyzed using graph-theoretical concepts. In most previous studies, relatively coarse parcellations of the brain were used to define regions as graphical nodes. Such parcellated connectomes are highly dependent on parcellation quality because regional and functional boundaries need to be relatively consistent for the results to be interpretable. In contrast, dense connectomes are not subject to this limitation, since the parcellation inherent to the data is used to define graphical nodes, also allowing for a more detailed spatial mapping of connectivity patterns. However, dense connectomes are associated with considerable computational demands in terms of both time and memory requirements. The memory required to explicitly store dense connectomes in main memory can render their analysis infeasible, especially when considering high-resolution data or analyses across multiple subjects or conditions. Here, we present an object-based matrix representation that achieves a very low memory footprint by computing matrix elements on demand instead of explicitly storing them. In doing so, memory required for a dense connectome is reduced to the amount needed to store the underlying time series data. Based on theoretical considerations and benchmarks, different matrix object implementations and additional programs (based on available Matlab functions and Matlab-based third-party software) are compared with regard to their computational efficiency. The matrix implementation based on on-demand computations has very low memory requirements, thus enabling analyses that would be otherwise infeasible to conduct due to insufficient memory. An open source software package containing the created programs is available for download.

  13. Memory-Efficient Analysis of Dense Functional Connectomes

    PubMed Central

    Loewe, Kristian; Donohue, Sarah E.; Schoenfeld, Mircea A.; Kruse, Rudolf; Borgelt, Christian

    2016-01-01

    The functioning of the human brain relies on the interplay and integration of numerous individual units within a complex network. To identify network configurations characteristic of specific cognitive tasks or mental illnesses, functional connectomes can be constructed based on the assessment of synchronous fMRI activity at separate brain sites, and then analyzed using graph-theoretical concepts. In most previous studies, relatively coarse parcellations of the brain were used to define regions as graphical nodes. Such parcellated connectomes are highly dependent on parcellation quality because regional and functional boundaries need to be relatively consistent for the results to be interpretable. In contrast, dense connectomes are not subject to this limitation, since the parcellation inherent to the data is used to define graphical nodes, also allowing for a more detailed spatial mapping of connectivity patterns. However, dense connectomes are associated with considerable computational demands in terms of both time and memory requirements. The memory required to explicitly store dense connectomes in main memory can render their analysis infeasible, especially when considering high-resolution data or analyses across multiple subjects or conditions. Here, we present an object-based matrix representation that achieves a very low memory footprint by computing matrix elements on demand instead of explicitly storing them. In doing so, memory required for a dense connectome is reduced to the amount needed to store the underlying time series data. Based on theoretical considerations and benchmarks, different matrix object implementations and additional programs (based on available Matlab functions and Matlab-based third-party software) are compared with regard to their computational efficiency. The matrix implementation based on on-demand computations has very low memory requirements, thus enabling analyses that would be otherwise infeasible to conduct due to insufficient memory. An open source software package containing the created programs is available for download. PMID:27965565

  14. Validation Test Report for the Automated Optical Processing System (AOPS) Version 4.8

    DTIC Science & Technology

    2013-06-28

    be familiar with UNIX; BASH shell programming; and remote sensing, particularly regarding computer processing of satellite data. The system memory ...and storage requirements are difficult to gauge. The amount of memory needed is dependent upon the amount and type of satellite data you wish to...process; the larger the area, the larger the memory requirement. For example, the entire Atlantic Ocean will require more processing power than the

  15. American Productivity Center Computer Conference on Training and Productivity for the White House Conference on Productivity (Washington, D.C., September 22-23, 1983). Final Report.

    ERIC Educational Resources Information Center

    1983

    Delegates to this training computer conference agreed that the scope of economic change is both accelerating and profound and, therefore, will require a wide variety of approaches to human resource development. Training is only a small part of this development. To meet future needs, the conferees discussed and made recommendations in four areas:…

  16. The Impact of M-Learning Activities on the IT Success and M-Learning Capabilities of the Special Education Teacher Candidates

    ERIC Educational Resources Information Center

    Soykan, Emrah; Ozdamli, Fezile

    2016-01-01

    The advantages of using mobile devices and cloud computing services in education are accepted by many researchers. Also, in educating students who are in need of special education, the use of cloud computing services is inevitable. So, this case requires teacher candidates who are planning to teach in those special education centers to be able to…

  17. Utilizing Android and the Cloud Computing Environment to Increase Situational Awareness for a Mobile Distributed Response

    DTIC Science & Technology

    2012-03-01

    by using a common communication technology there is no need to develop a complicated communications plan and generate an ad - hoc communications...DISTRIBUTION CODE A 13. ABSTRACT (maximum 200 words) Maintaining an accurate Common Operational Picture (COP) is a strategic requirement for...TERMS Android Programming, Cloud Computing, Common Operating Picture, Web Programing 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT

  18. Nondynamic Tracking Using The Global Positioning System

    NASA Technical Reports Server (NTRS)

    Yunck, T. P.; Wu, Sien-Chong

    1988-01-01

    Report describes technique for using Global Positioning System (GPS) to determine position of low Earth orbiter without need for dynamic models. Differential observing strategy requires GPS receiver on user vehicle and network of six ground receivers. Computationally efficient technique delivers decimeter accuracy on orbits down to lowest altitudes. New technique nondynamic long-arc strategy having potential for accuracy of best dynamic techniques while retaining much of computational simplicity of geometric techniques.

  19. Survey on Security Issues in Cloud Computing and Associated Mitigation Techniques

    NASA Astrophysics Data System (ADS)

    Bhadauria, Rohit; Sanyal, Sugata

    2012-06-01

    Cloud Computing holds the potential to eliminate the requirements for setting up of high-cost computing infrastructure for IT-based solutions and services that the industry uses. It promises to provide a flexible IT architecture, accessible through internet for lightweight portable devices. This would allow multi-fold increase in the capacity or capabilities of the existing and new software. In a cloud computing environment, the entire data reside over a set of networked resources, enabling the data to be accessed through virtual machines. Since these data-centers may lie in any corner of the world beyond the reach and control of users, there are multifarious security and privacy challenges that need to be understood and taken care of. Also, one can never deny the possibility of a server breakdown that has been witnessed, rather quite often in the recent times. There are various issues that need to be dealt with respect to security and privacy in a cloud computing scenario. This extensive survey paper aims to elaborate and analyze the numerous unresolved issues threatening the cloud computing adoption and diffusion affecting the various stake-holders linked to it.

  20. Chimera grids in the simulation of three-dimensional flowfields in turbine-blade-coolant passages

    NASA Technical Reports Server (NTRS)

    Stephens, M. A.; Rimlinger, M. J.; Shih, T. I.-P.; Civinskas, K. C.

    1993-01-01

    When computing flows inside geometrically complex turbine-blade coolant passages, the structure of the grid system used can affect significantly the overall time and cost required to obtain solutions. This paper addresses this issue while evaluating and developing computational tools for the design and analysis of coolant-passages, and is divided into two parts. In the first part, the various types of structured and unstructured grids are compared in relation to their ability to provide solutions in a timely and cost-effective manner. This comparison shows that the overlapping structured grids, known as Chimera grids, can rival and in some instances exceed the cost-effectiveness of unstructured grids in terms of both the man hours needed to generate grids and the amount of computer memory and CPU time needed to obtain solutions. In the second part, a computational tool utilizing Chimera grids was used to compute the flow and heat transfer in two different turbine-blade coolant passages that contain baffles and numerous pin fins. These computations showed the versatility and flexibility offered by Chimera grids.

  1. When Simple Harmonic Motion Is Not that Simple: Managing Epistemological Complexity by Using Computer-Based Representations

    ERIC Educational Resources Information Center

    Parnafes, Orit

    2010-01-01

    Many real-world phenomena, even "simple" physical phenomena such as natural harmonic motion, are complex in the sense that they require coordinating multiple subtle foci of attention to get the required information when experiencing them. Moreover, for students to develop sound understanding of a concept or a phenomenon, they need to learn to get…

  2. High Available COTS Based Computer for Space

    NASA Astrophysics Data System (ADS)

    Hartmann, J.; Magistrati, Giorgio

    2015-09-01

    The availability and reliability factors of a system are central requirements of a target application. From a simple fuel injection system used in cars up to a flight control system of an autonomous navigating spacecraft, each application defines its specific availability factor under the target application boundary conditions. Increasing quality requirements on data processing systems used in space flight applications calling for new architectures to fulfill the availability, reliability as well as the increase of the required data processing power. Contrary to the increased quality request simplification and use of COTS components to decrease costs while keeping the interface compatibility to currently used system standards are clear customer needs. Data processing system design is mostly dominated by strict fulfillment of the customer requirements and reuse of available computer systems were not always possible caused by obsolescence of EEE-Parts, insufficient IO capabilities or the fact that available data processing systems did not provide the required scalability and performance.

  3. Acceleration of fluoro-CT reconstruction for a mobile C-Arm on GPU and FPGA hardware: a simulation study

    NASA Astrophysics Data System (ADS)

    Xue, Xinwei; Cheryauka, Arvi; Tubbs, David

    2006-03-01

    CT imaging in interventional and minimally-invasive surgery requires high-performance computing solutions that meet operational room demands, healthcare business requirements, and the constraints of a mobile C-arm system. The computational requirements of clinical procedures using CT-like data are increasing rapidly, mainly due to the need for rapid access to medical imagery during critical surgical procedures. The highly parallel nature of Radon transform and CT algorithms enables embedded computing solutions utilizing a parallel processing architecture to realize a significant gain of computational intensity with comparable hardware and program coding/testing expenses. In this paper, using a sample 2D and 3D CT problem, we explore the programming challenges and the potential benefits of embedded computing using commodity hardware components. The accuracy and performance results obtained on three computational platforms: a single CPU, a single GPU, and a solution based on FPGA technology have been analyzed. We have shown that hardware-accelerated CT image reconstruction can be achieved with similar levels of noise and clarity of feature when compared to program execution on a CPU, but gaining a performance increase at one or more orders of magnitude faster. 3D cone-beam or helical CT reconstruction and a variety of volumetric image processing applications will benefit from similar accelerations.

  4. Shipping Science Worldwide with Open Source Containers

    NASA Astrophysics Data System (ADS)

    Molineaux, J. P.; McLaughlin, B. D.; Pilone, D.; Plofchan, P. G.; Murphy, K. J.

    2014-12-01

    Scientific applications often present difficult web-hosting needs. Their compute- and data-intensive nature, as well as an increasing need for high-availability and distribution, combine to create a challenging set of hosting requirements. In the past year, advancements in container-based virtualization and related tooling have offered new lightweight and flexible ways to accommodate diverse applications with all the isolation and portability benefits of traditional virtualization. This session will introduce and demonstrate an open-source, single-interface, Platform-as-a-Serivce (PaaS) that empowers application developers to seamlessly leverage geographically distributed, public and private compute resources to achieve highly-available, performant hosting for scientific applications.

  5. Galaxy CloudMan: delivering cloud compute clusters

    PubMed Central

    2010-01-01

    Background Widespread adoption of high-throughput sequencing has greatly increased the scale and sophistication of computational infrastructure needed to perform genomic research. An alternative to building and maintaining local infrastructure is “cloud computing”, which, in principle, offers on demand access to flexible computational infrastructure. However, cloud computing resources are not yet suitable for immediate “as is” use by experimental biologists. Results We present a cloud resource management system that makes it possible for individual researchers to compose and control an arbitrarily sized compute cluster on Amazon’s EC2 cloud infrastructure without any informatics requirements. Within this system, an entire suite of biological tools packaged by the NERC Bio-Linux team (http://nebc.nerc.ac.uk/tools/bio-linux) is available for immediate consumption. The provided solution makes it possible, using only a web browser, to create a completely configured compute cluster ready to perform analysis in less than five minutes. Moreover, we provide an automated method for building custom deployments of cloud resources. This approach promotes reproducibility of results and, if desired, allows individuals and labs to add or customize an otherwise available cloud system to better meet their needs. Conclusions The expected knowledge and associated effort with deploying a compute cluster in the Amazon EC2 cloud is not trivial. The solution presented in this paper eliminates these barriers, making it possible for researchers to deploy exactly the amount of computing power they need, combined with a wealth of existing analysis software, to handle the ongoing data deluge. PMID:21210983

  6. Strategy and gaps for modeling, simulation, and control of hybrid systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabiti, Cristian; Garcia, Humberto E.; Hovsapian, Rob

    2015-04-01

    The purpose of this report is to establish a strategy for modeling and simulation of candidate hybrid energy systems. Modeling and simulation is necessary to design, evaluate, and optimize the system technical and economic performance. Accordingly, this report first establishes the simulation requirements to analysis candidate hybrid systems. Simulation fidelity levels are established based on the temporal scale, real and synthetic data availability or needs, solution accuracy, and output parameters needed to evaluate case-specific figures of merit. Accordingly, the associated computational and co-simulation resources needed are established; including physical models when needed, code assembly and integrated solutions platforms, mathematical solvers,more » and data processing. This report first attempts to describe the figures of merit, systems requirements, and constraints that are necessary and sufficient to characterize the grid and hybrid systems behavior and market interactions. Loss of Load Probability (LOLP) and effective cost of Effective Cost of Energy (ECE), as opposed to the standard Levelized Cost of Electricty (LCOE), are introduced as technical and economical indices for integrated energy system evaluations. Financial assessment methods are subsequently introduced for evaluation of non-traditional, hybrid energy systems. Algorithms for coupled and iterative evaluation of the technical and economic performance are subsequently discussed. This report further defines modeling objectives, computational tools, solution approaches, and real-time data collection and processing (in some cases using real test units) that will be required to model, co-simulate, and optimize; (a) an energy system components (e.g., power generation unit, chemical process, electricity management unit), (b) system domains (e.g., thermal, electrical or chemical energy generation, conversion, and transport), and (c) systems control modules. Co-simulation of complex, tightly coupled, dynamic energy systems requires multiple simulation tools, potentially developed in several programming languages and resolved on separate time scales. Whereas further investigation and development of hybrid concepts will provide a more complete understanding of the joint computational and physical modeling needs, this report highlights areas in which co-simulation capabilities are warranted. The current development status, quality assurance, availability and maintainability of simulation tools that are currently available for hybrid systems modeling is presented. Existing gaps in the modeling and simulation toolsets and development needs are subsequently discussed. This effort will feed into a broader Roadmap activity for designing, developing, and demonstrating hybrid energy systems.« less

  7. New Trends in E-Science: Machine Learning and Knowledge Discovery in Databases

    NASA Astrophysics Data System (ADS)

    Brescia, Massimo

    2012-11-01

    Data mining, or Knowledge Discovery in Databases (KDD), while being the main methodology to extract the scientific information contained in Massive Data Sets (MDS), needs to tackle crucial problems since it has to orchestrate complex challenges posed by transparent access to different computing environments, scalability of algorithms, reusability of resources. To achieve a leap forward for the progress of e-science in the data avalanche era, the community needs to implement an infrastructure capable of performing data access, processing and mining in a distributed but integrated context. The increasing complexity of modern technologies carried out a huge production of data, whose related warehouse management and the need to optimize analysis and mining procedures lead to a change in concept on modern science. Classical data exploration, based on local user own data storage and limited computing infrastructures, is no more efficient in the case of MDS, worldwide spread over inhomogeneous data centres and requiring teraflop processing power. In this context modern experimental and observational science requires a good understanding of computer science, network infrastructures, Data Mining, etc. i.e. of all those techniques which fall into the domain of the so called e-science (recently assessed also by the Fourth Paradigm of Science). Such understanding is almost completely absent in the older generations of scientists and this reflects in the inadequacy of most academic and research programs. A paradigm shift is needed: statistical pattern recognition, object oriented programming, distributed computing, parallel programming need to become an essential part of scientific background. A possible practical solution is to provide the research community with easy-to understand, easy-to-use tools, based on the Web 2.0 technologies and Machine Learning methodology. Tools where almost all the complexity is hidden to the final user, but which are still flexible and able to produce efficient and reliable scientific results. All these considerations will be described in the detail in the chapter. Moreover, examples of modern applications offering to a wide variety of e-science communities a large spectrum of computational facilities to exploit the wealth of available massive data sets and powerful machine learning and statistical algorithms will be also introduced.

  8. Overset grid applications on distributed memory MIMD computers

    NASA Technical Reports Server (NTRS)

    Chawla, Kalpana; Weeratunga, Sisira

    1994-01-01

    Analysis of modern aerospace vehicles requires the computation of flowfields about complex three dimensional geometries composed of regions with varying spatial resolution requirements. Overset grid methods allow the use of proven structured grid flow solvers to address the twin issues of geometrical complexity and the resolution variation by decomposing the complex physical domain into a collection of overlapping subdomains. This flexibility is accompanied by the need for irregular intergrid boundary communication among the overlapping component grids. This study investigates a strategy for implementing such a static overset grid implicit flow solver on distributed memory, MIMD computers; i.e., the 128 node Intel iPSC/860 and the 208 node Intel Paragon. Performance data for two composite grid configurations characteristic of those encountered in present day aerodynamic analysis are also presented.

  9. Stochastic hydrogeology: what professionals really need?

    PubMed

    Renard, Philippe

    2007-01-01

    Quantitative hydrogeology celebrated its 150th anniversary in 2006. Geostatistics is younger but has had a very large impact in hydrogeology. Today, geostatistics is used routinely to interpolate deterministically most of the parameters that are required to analyze a problem or make a quantitative analysis. In a small number of cases, geostatistics is combined with deterministic approaches to forecast uncertainty. At a more academic level, geostatistics is used extensively to study physical processes in heterogeneous aquifers. Yet, there is an important gap between the academic use and the routine applications of geostatistics. The reasons for this gap are diverse. These include aspects related to the hydrogeology consulting market, technical reasons such as the lack of widely available software, but also a number of misconceptions. A change in this situation requires acting at different levels. First, regulators must be convinced of the benefit of using geostatistics. Second, the economic potential of the approach must be emphasized to customers. Third, the relevance of the theories needs to be increased. Last, but not least, software, data sets, and computing infrastructure such as grid computing need to be widely available.

  10. An S N Algorithm for Modern Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Randal Scott

    2016-08-29

    LANL discrete ordinates transport packages are required to perform large, computationally intensive time-dependent calculations on massively parallel architectures, where even a single such calculation may need many months to complete. While KBA methods scale out well to very large numbers of compute nodes, we are limited by practical constraints on the number of such nodes we can actually apply to any given calculation. Instead, we describe a modified KBA algorithm that allows realization of the reductions in solution time offered by both the current, and future, architectural changes within a compute node.

  11. AGIS: The ATLAS Grid Information System

    NASA Astrophysics Data System (ADS)

    Anisenkov, Alexey; Belov, Sergey; Di Girolamo, Alessandro; Gayazov, Stavro; Klimentov, Alexei; Oleynik, Danila; Senchenko, Alexander

    2012-12-01

    ATLAS is a particle physics experiment at the Large Hadron Collider at CERN. The experiment produces petabytes of data annually through simulation production and tens petabytes of data per year from the detector itself. The ATLAS Computing model embraces the Grid paradigm and a high degree of decentralization and computing resources able to meet ATLAS requirements of petabytes scale data operations. In this paper we present ATLAS Grid Information System (AGIS) designed to integrate configuration and status information about resources, services and topology of whole ATLAS Grid needed by ATLAS Distributed Computing applications and services.

  12. Finite-frequency structural sensitivities of short-period compressional body waves

    NASA Astrophysics Data System (ADS)

    Fuji, Nobuaki; Chevrot, Sébastien; Zhao, Li; Geller, Robert J.; Kawai, Kenji

    2012-07-01

    We present an extension of the method recently introduced by Zhao & Chevrot for calculating Fréchet kernels from a precomputed database of strain Green's tensors by normal mode summation. The extension involves two aspects: (1) we compute the strain Green's tensors using the Direct Solution Method, which allows us to go up to frequencies as high as 1 Hz; and (2) we develop a spatial interpolation scheme so that the Green's tensors can be computed with a relatively coarse grid, thus improving the efficiency in the computation of the sensitivity kernels. The only requirement is that the Green's tensors be computed with a fine enough spatial sampling rate to avoid spatial aliasing. The Green's tensors can then be interpolated to any location inside the Earth, avoiding the need to store and retrieve strain Green's tensors for a fine sampling grid. The interpolation scheme not only significantly reduces the CPU time required to calculate the Green's tensor database and the disk space to store it, but also enhances the efficiency in computing the kernels by reducing the number of I/O operations needed to retrieve the Green's tensors. Our new implementation allows us to calculate sensitivity kernels for high-frequency teleseismic body waves with very modest computational resources such as a laptop. We illustrate the potential of our approach for seismic tomography by computing traveltime and amplitude sensitivity kernels for high frequency P, PKP and Pdiff phases. A comparison of our PKP kernels with those computed by asymptotic ray theory clearly shows the limits of the latter. With ray theory, it is not possible to model waves diffracted by internal discontinuities such as the core-mantle boundary, and it is also difficult to compute amplitudes for paths close to the B-caustic of the PKP phase. We also compute waveform partial derivatives for different parts of the seismic wavefield, a key ingredient for high resolution imaging by waveform inversion. Our computations of partial derivatives in the time window where PcP precursors are commonly observed show that the distribution of sensitivity is complex and counter-intuitive, with a large contribution from the mid-mantle region. This clearly emphasizes the need to use accurate and complete partial derivatives in waveform inversion.

  13. [Earth and Space Sciences Project Services for NASA HPCC

    NASA Technical Reports Server (NTRS)

    Merkey, Phillip

    2002-01-01

    This grant supported the effort to characterize the problem domain of the Earth Science Technology Office's Computational Technologies Project, to engage the Beowulf Cluster Computing Community as well as the High Performance Computing Research Community so that we can predict the applicability of said technologies to the scientific community represented by the CT project and formulate long term strategies to provide the computational resources necessary to attain the anticipated scientific objectives of the CT project. Specifically, the goal of the evaluation effort is to use the information gathered over the course of the Round-3 investigations to quantify the trends in scientific expectations, the algorithmic requirements and capabilities of high-performance computers to satisfy this anticipated need.

  14. GPU Accelerated Prognostics

    NASA Technical Reports Server (NTRS)

    Gorospe, George E., Jr.; Daigle, Matthew J.; Sankararaman, Shankar; Kulkarni, Chetan S.; Ng, Eley

    2017-01-01

    Prognostic methods enable operators and maintainers to predict the future performance for critical systems. However, these methods can be computationally expensive and may need to be performed each time new information about the system becomes available. In light of these computational requirements, we have investigated the application of graphics processing units (GPUs) as a computational platform for real-time prognostics. Recent advances in GPU technology have reduced cost and increased the computational capability of these highly parallel processing units, making them more attractive for the deployment of prognostic software. We present a survey of model-based prognostic algorithms with considerations for leveraging the parallel architecture of the GPU and a case study of GPU-accelerated battery prognostics with computational performance results.

  15. Food for thought ... A toxicology ontology roadmap.

    PubMed

    Hardy, Barry; Apic, Gordana; Carthew, Philip; Clark, Dominic; Cook, David; Dix, Ian; Escher, Sylvia; Hastings, Janna; Heard, David J; Jeliazkova, Nina; Judson, Philip; Matis-Mitchell, Sherri; Mitic, Dragana; Myatt, Glenn; Shah, Imran; Spjuth, Ola; Tcheremenskaia, Olga; Toldo, Luca; Watson, David; White, Andrew; Yang, Chihae

    2012-01-01

    Foreign substances can have a dramatic and unpredictable adverse effect on human health. In the development of new therapeutic agents, it is essential that the potential adverse effects of all candidates be identified as early as possible. The field of predictive toxicology strives to profile the potential for adverse effects of novel chemical substances before they occur, both with traditional in vivo experimental approaches and increasingly through the development of in vitro and computational methods which can supplement and reduce the need for animal testing. To be maximally effective, the field needs access to the largest possible knowledge base of previous toxicology findings, and such results need to be made available in such a fashion so as to be interoperable, comparable, and compatible with standard toolkits. This necessitates the development of open, public, computable, and standardized toxicology vocabularies and ontologies so as to support the applications required by in silico, in vitro, and in vivo toxicology methods and related analysis and reporting activities. Such ontology development will support data management, model building, integrated analysis, validation and reporting, including regulatory reporting and alternative testing submission requirements as required by guidelines such as the REACH legislation, leading to new scientific advances in a mechanistically-based predictive toxicology. Numerous existing ontology and standards initiatives can contribute to the creation of a toxicology ontology supporting the needs of predictive toxicology and risk assessment. Additionally, new ontologies are needed to satisfy practical use cases and scenarios where gaps currently exist. Developing and integrating these resources will require a well-coordinated and sustained effort across numerous stakeholders engaged in a public-private partnership. In this communication, we set out a roadmap for the development of an integrated toxicology ontology, harnessing existing resources where applicable. We describe the stakeholders' requirements analysis from the academic and industry perspectives, timelines, and expected benefits of this initiative, with a view to engagement with the wider community.

  16. AGIS: Integration of new technologies used in ATLAS Distributed Computing

    NASA Astrophysics Data System (ADS)

    Anisenkov, Alexey; Di Girolamo, Alessandro; Alandes Pradillo, Maria

    2017-10-01

    The variety of the ATLAS Distributed Computing infrastructure requires a central information system to define the topology of computing resources and to store different parameters and configuration data which are needed by various ATLAS software components. The ATLAS Grid Information System (AGIS) is the system designed to integrate configuration and status information about resources, services and topology of the computing infrastructure used by ATLAS Distributed Computing applications and services. Being an intermediate middleware system between clients and external information sources (like central BDII, GOCDB, MyOSG), AGIS defines the relations between experiment specific used resources and physical distributed computing capabilities. Being in production during LHC Runl AGIS became the central information system for Distributed Computing in ATLAS and it is continuously evolving to fulfil new user requests, enable enhanced operations and follow the extension of the ATLAS Computing model. The ATLAS Computing model and data structures used by Distributed Computing applications and services are continuously evolving and trend to fit newer requirements from ADC community. In this note, we describe the evolution and the recent developments of AGIS functionalities, related to integration of new technologies recently become widely used in ATLAS Computing, like flexible computing utilization of opportunistic Cloud and HPC resources, ObjectStore services integration for Distributed Data Management (Rucio) and ATLAS workload management (PanDA) systems, unified storage protocols declaration required for PandDA Pilot site movers and others. The improvements of information model and general updates are also shown, in particular we explain how other collaborations outside ATLAS could benefit the system as a computing resources information catalogue. AGIS is evolving towards a common information system, not coupled to a specific experiment.

  17. Synergies and Distinctions between Computational Disciplines in Biomedical Research: Perspective from the Clinical and Translational Science Award Programs

    PubMed Central

    Bernstam, Elmer V.; Hersh, William R.; Johnson, Stephen B.; Chute, Christopher G.; Nguyen, Hien; Sim, Ida; Nahm, Meredith; Weiner, Mark; Miller, Perry; DiLaura, Robert P.; Overcash, Marc; Lehmann, Harold P.; Eichmann, David; Athey, Brian D.; Scheuermann, Richard H.; Anderson, Nick; Starren, Justin B.; Harris, Paul A.; Smith, Jack W.; Barbour, Ed; Silverstein, Jonathan C.; Krusch, David A.; Nagarajan, Rakesh; Becich, Michael J.

    2010-01-01

    Clinical and translational research increasingly requires computation. Projects may involve multiple computationally-oriented groups including information technology (IT) professionals, computer scientists and biomedical informaticians. However, many biomedical researchers are not aware of the distinctions among these complementary groups, leading to confusion, delays and sub-optimal results. Although written from the perspective of clinical and translational science award (CTSA) programs within academic medical centers, the paper addresses issues that extend beyond clinical and translational research. The authors describe the complementary but distinct roles of operational IT, research IT, computer science and biomedical informatics using a clinical data warehouse as a running example. In general, IT professionals focus on technology. The authors distinguish between two types of IT groups within academic medical centers: central or administrative IT (supporting the administrative computing needs of large organizations) and research IT (supporting the computing needs of researchers). Computer scientists focus on general issues of computation such as designing faster computers or more efficient algorithms, rather than specific applications. In contrast, informaticians are concerned with data, information and knowledge. Biomedical informaticians draw on a variety of tools, including but not limited to computers, to solve information problems in health care and biomedicine. The paper concludes with recommendations regarding administrative structures that can help to maximize the benefit of computation to biomedical research within academic health centers. PMID:19550198

  18. Outside-In Systems Pharmacology Combines Innovative Computational Methods With High-Throughput Whole Vertebrate Studies.

    PubMed

    Schulthess, Pascal; van Wijk, Rob C; Krekels, Elke H J; Yates, James W T; Spaink, Herman P; van der Graaf, Piet H

    2018-04-25

    To advance the systems approach in pharmacology, experimental models and computational methods need to be integrated from early drug discovery onward. Here, we propose outside-in model development, a model identification technique to understand and predict the dynamics of a system without requiring prior biological and/or pharmacological knowledge. The advanced data required could be obtained by whole vertebrate, high-throughput, low-resource dose-exposure-effect experimentation with the zebrafish larva. Combinations of these innovative techniques could improve early drug discovery. © 2018 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  19. Shuttle cryogenics supply system. Optimization study. Volume 5 B-4: Programmers manual for space shuttle orbit injection analysis (SOPSA)

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A computer program for space shuttle orbit injection propulsion system analysis (SOPSA) is described to show the operational characteristics and the computer system requirements. The program was developed as an analytical tool to aid in the preliminary design of propellant feed systems for the space shuttle orbiter main engines. The primary purpose of the program is to evaluate the propellant tank ullage pressure requirements imposed by the need to accelerate propellants rapidly during the engine start sequence. The SOPSA program will generate parametric feed system pressure histories and weight data for a range of nominal feedline sizes.

  20. Travel and Tourism Students' Needs in Valencia (Spain): Meeting their Professional Requirements in the ESP Classroom

    ERIC Educational Resources Information Center

    Garcia Laborda, Jesus

    2003-01-01

    The main purpose of this paper is to describe the basic findings obtained as a result of the implementation of two projects of Computer and Information Technologies held in Valencia (Spain) between 2002 and 2003 with 92 second year university students enrolled in English as a foreign language to find out their ICT and foreign language needs both…

  1. Using Open Source Software in Visual Simulation Development

    DTIC Science & Technology

    2005-09-01

    increased the use of the technology in training activities. Using open source/free software tools in the process can expand these possibilities...resulting in even greater cost reduction and allowing the flexibility needed in a training environment. This thesis presents a configuration and architecture...to be used when developing training visual simulations using both personal computers and open source tools. Aspects of the requirements needed in a

  2. Computational Pathology: A Path Ahead.

    PubMed

    Louis, David N; Feldman, Michael; Carter, Alexis B; Dighe, Anand S; Pfeifer, John D; Bry, Lynn; Almeida, Jonas S; Saltz, Joel; Braun, Jonathan; Tomaszewski, John E; Gilbertson, John R; Sinard, John H; Gerber, Georg K; Galli, Stephen J; Golden, Jeffrey A; Becich, Michael J

    2016-01-01

    We define the scope and needs within the new discipline of computational pathology, a discipline critical to the future of both the practice of pathology and, more broadly, medical practice in general. To define the scope and needs of computational pathology. A meeting was convened in Boston, Massachusetts, in July 2014 prior to the annual Association of Pathology Chairs meeting, and it was attended by a variety of pathologists, including individuals highly invested in pathology informatics as well as chairs of pathology departments. The meeting made recommendations to promote computational pathology, including clearly defining the field and articulating its value propositions; asserting that the value propositions for health care systems must include means to incorporate robust computational approaches to implement data-driven methods that aid in guiding individual and population health care; leveraging computational pathology as a center for data interpretation in modern health care systems; stating that realizing the value proposition will require working with institutional administrations, other departments, and pathology colleagues; declaring that a robust pipeline should be fostered that trains and develops future computational pathologists, for those with both pathology and nonpathology backgrounds; and deciding that computational pathology should serve as a hub for data-related research in health care systems. The dissemination of these recommendations to pathology and bioinformatics departments should help facilitate the development of computational pathology.

  3. High-Resiliency and Auto-Scaling of Large-Scale Cloud Computing for OCO-2 L2 Full Physics Processing

    NASA Astrophysics Data System (ADS)

    Hua, H.; Manipon, G.; Starch, M.; Dang, L. B.; Southam, P.; Wilson, B. D.; Avis, C.; Chang, A.; Cheng, C.; Smyth, M.; McDuffie, J. L.; Ramirez, P.

    2015-12-01

    Next generation science data systems are needed to address the incoming flood of data from new missions such as SWOT and NISAR where data volumes and data throughput rates are order of magnitude larger than present day missions. Additionally, traditional means of procuring hardware on-premise are already limited due to facilities capacity constraints for these new missions. Existing missions, such as OCO-2, may also require high turn-around time for processing different science scenarios where on-premise and even traditional HPC computing environments may not meet the high processing needs. We present our experiences on deploying a hybrid-cloud computing science data system (HySDS) for the OCO-2 Science Computing Facility to support large-scale processing of their Level-2 full physics data products. We will explore optimization approaches to getting best performance out of hybrid-cloud computing as well as common issues that will arise when dealing with large-scale computing. Novel approaches were utilized to do processing on Amazon's spot market, which can potentially offer ~10X costs savings but with an unpredictable computing environment based on market forces. We will present how we enabled high-tolerance computing in order to achieve large-scale computing as well as operational cost savings.

  4. Computing Platforms for Big Biological Data Analytics: Perspectives and Challenges.

    PubMed

    Yin, Zekun; Lan, Haidong; Tan, Guangming; Lu, Mian; Vasilakos, Athanasios V; Liu, Weiguo

    2017-01-01

    The last decade has witnessed an explosion in the amount of available biological sequence data, due to the rapid progress of high-throughput sequencing projects. However, the biological data amount is becoming so great that traditional data analysis platforms and methods can no longer meet the need to rapidly perform data analysis tasks in life sciences. As a result, both biologists and computer scientists are facing the challenge of gaining a profound insight into the deepest biological functions from big biological data. This in turn requires massive computational resources. Therefore, high performance computing (HPC) platforms are highly needed as well as efficient and scalable algorithms that can take advantage of these platforms. In this paper, we survey the state-of-the-art HPC platforms for big biological data analytics. We first list the characteristics of big biological data and popular computing platforms. Then we provide a taxonomy of different biological data analysis applications and a survey of the way they have been mapped onto various computing platforms. After that, we present a case study to compare the efficiency of different computing platforms for handling the classical biological sequence alignment problem. At last we discuss the open issues in big biological data analytics.

  5. Interactive computer graphics and its role in control system design of large space structures

    NASA Technical Reports Server (NTRS)

    Reddy, A. S. S. R.

    1985-01-01

    This paper attempts to show the relevance of interactive computer graphics in the design of control systems to maintain attitude and shape of large space structures to accomplish the required mission objectives. The typical phases of control system design, starting from the physical model such as modeling the dynamics, modal analysis, and control system design methodology are reviewed and the need of the interactive computer graphics is demonstrated. Typical constituent parts of large space structures such as free-free beams and free-free plates are used to demonstrate the complexity of the control system design and the effectiveness of the interactive computer graphics.

  6. Network Security Validation Using Game Theory

    NASA Astrophysics Data System (ADS)

    Papadopoulou, Vicky; Gregoriades, Andreas

    Non-functional requirements (NFR) such as network security recently gained widespread attention in distributed information systems. Despite their importance however, there is no systematic approach to validate these requirements given the complexity and uncertainty characterizing modern networks. Traditionally, network security requirements specification has been the results of a reactive process. This however, limited the immunity property of the distributed systems that depended on these networks. Security requirements specification need a proactive approach. Networks' infrastructure is constantly under attack by hackers and malicious software that aim to break into computers. To combat these threats, network designers need sophisticated security validation techniques that will guarantee the minimum level of security for their future networks. This paper presents a game-theoretic approach to security requirements validation. An introduction to game theory is presented along with an example that demonstrates the application of the approach.

  7. Creating Communications, Computing, and Networking Technology Development Road Maps for Future NASA Human and Robotic Missions

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul; Hayden, Jeffrey L.

    2005-01-01

    For human and robotic exploration missions in the Vision for Exploration, roadmaps are needed for capability development and investments based on advanced technology developments. A roadmap development process was undertaken for the needed communications, and networking capabilities and technologies for the future human and robotics missions. The underlying processes are derived from work carried out during development of the future space communications architecture, an d NASA's Space Architect Office (SAO) defined formats and structures for accumulating data. Interrelationships were established among emerging requirements, the capability analysis and technology status, and performance data. After developing an architectural communications and networking framework structured around the assumed needs for human and robotic exploration, in the vicinity of Earth, Moon, along the path to Mars, and in the vicinity of Mars, information was gathered from expert participants. This information was used to identify the capabilities expected from the new infrastructure and the technological gaps in the way of obtaining them. We define realistic, long-term space communication architectures based on emerging needs and translate the needs into interfaces, functions, and computer processing that will be required. In developing our roadmapping process, we defined requirements for achieving end-to-end activities that will be carried out by future NASA human and robotic missions. This paper describes: 10 the architectural framework developed for analysis; 2) our approach to gathering and analyzing data from NASA, industry, and academia; 3) an outline of the technology research to be done, including milestones for technology research and demonstrations with timelines; and 4) the technology roadmaps themselves.

  8. Hospital influenza pandemic stockpiling needs: A computer simulation.

    PubMed

    Abramovich, Mark N; Hershey, John C; Callies, Byron; Adalja, Amesh A; Tosh, Pritish K; Toner, Eric S

    2017-03-01

    A severe influenza pandemic could overwhelm hospitals but planning guidance that accounts for the dynamic interrelationships between planning elements is lacking. We developed a methodology to calculate pandemic supply needs based on operational considerations in hospitals and then tested the methodology at Mayo Clinic in Rochester, MN. We upgraded a previously designed computer modeling tool and input carefully researched resource data from the hospital to run 10,000 Monte Carlo simulations using various combinations of variables to determine resource needs across a spectrum of scenarios. Of 10,000 iterations, 1,315 fell within the parameters defined by our simulation design and logical constraints. From these valid iterations, we projected supply requirements by percentile for key supplies, pharmaceuticals, and personal protective equipment requirements needed in a severe pandemic. We projected supplies needs for a range of scenarios that use up to 100% of Mayo Clinic-Rochester's surge capacity of beds and ventilators. The results indicate that there are diminishing patient care benefits for stockpiling on the high side of the range, but that having some stockpile of critical resources, even if it is relatively modest, is most important. We were able to display the probabilities of needing various supply levels across a spectrum of scenarios. The tool could be used to model many other hospital preparedness issues, but validation in other settings is needed. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  9. SU-E-T-419: Workflow and FMEA in a New Proton Therapy (PT) Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, C; Wessels, B; Hamilton, H

    2014-06-01

    Purpose: Workflow is an important component in the operational planning of a new proton facility. By integrating the concept of failure mode and effect analysis (FMEA) and traditional QA requirements, a workflow for a proton therapy treatment course is set up. This workflow serves as the blue print for the planning of computer hardware/software requirements and network flow. A slight modification of the workflow generates a process map(PM) for FMEA and the planning of QA program in PT. Methods: A flowchart is first developed outlining the sequence of processes involved in a PT treatment course. Each process consists of amore » number of sub-processes to encompass a broad scope of treatment and QA procedures. For each subprocess, the personnel involved, the equipment needed and the computer hardware/software as well as network requirements are defined by a team of clinical staff, administrators and IT personnel. Results: Eleven intermediate processes with a total of 70 sub-processes involved in a PT treatment course are identified. The number of sub-processes varies, ranging from 2-12. The sub-processes within each process are used for the operational planning. For example, in the CT-Sim process, there are 12 sub-processes: three involve data entry/retrieval from a record-and-verify system, two controlled by the CT computer, two require department/hospital network, and the other five are setup procedures. IT then decides the number of computers needed and the software and network requirement. By removing the traditional QA procedures from the workflow, a PM is generated for FMEA analysis to design a QA program for PT. Conclusion: Significant efforts are involved in the development of the workflow in a PT treatment course. Our hybrid model of combining FMEA and traditional QA program serves a duo purpose of efficient operational planning and designing of a QA program in PT.« less

  10. Responding to Information Needs in the 1980s.

    ERIC Educational Resources Information Center

    McGraw, Harold W., Jr.

    1979-01-01

    Argues that technological developments in cable television, computers, and telecommunications could decentralize power and put the resources of the new technology more broadly at the command of individuals and small groups, but that this potential requires action to be realized. (Author)

  11. Elucidating reaction mechanisms on quantum computers.

    PubMed

    Reiher, Markus; Wiebe, Nathan; Svore, Krysta M; Wecker, Dave; Troyer, Matthias

    2017-07-18

    With rapid recent advances in quantum technology, we are close to the threshold of quantum devices whose computational powers can exceed those of classical supercomputers. Here, we show that a quantum computer can be used to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical computer simulations used to probe these reaction mechanisms, to significantly increase their accuracy and enable hitherto intractable simulations. Our resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. Our results demonstrate that quantum computers will be able to tackle important problems in chemistry without requiring exorbitant resources.

  12. Elucidating reaction mechanisms on quantum computers

    PubMed Central

    Reiher, Markus; Wiebe, Nathan; Svore, Krysta M.; Wecker, Dave; Troyer, Matthias

    2017-01-01

    With rapid recent advances in quantum technology, we are close to the threshold of quantum devices whose computational powers can exceed those of classical supercomputers. Here, we show that a quantum computer can be used to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical computer simulations used to probe these reaction mechanisms, to significantly increase their accuracy and enable hitherto intractable simulations. Our resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. Our results demonstrate that quantum computers will be able to tackle important problems in chemistry without requiring exorbitant resources. PMID:28674011

  13. Elucidating reaction mechanisms on quantum computers

    NASA Astrophysics Data System (ADS)

    Reiher, Markus; Wiebe, Nathan; Svore, Krysta M.; Wecker, Dave; Troyer, Matthias

    2017-07-01

    With rapid recent advances in quantum technology, we are close to the threshold of quantum devices whose computational powers can exceed those of classical supercomputers. Here, we show that a quantum computer can be used to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical computer simulations used to probe these reaction mechanisms, to significantly increase their accuracy and enable hitherto intractable simulations. Our resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. Our results demonstrate that quantum computers will be able to tackle important problems in chemistry without requiring exorbitant resources.

  14. Computer-assisted instruction in programming: AID

    NASA Technical Reports Server (NTRS)

    Friend, J.; Atkinson, R. C.

    1971-01-01

    Lessons for training students on how to program and operate computers to and AID language are given. The course consists of a set of 50 lessons, plus summaries, reviews, tests, and extra credit problems. No prior knowledge is needed for the course, the only requirement being a strong background in algebra. A student manual, which includes instruction for operating the instructional program and a glossary of terms used in the course, is included in the appendices.

  15. Resolution Study of a Hyperspectral Sensor using Computed Tomography in the Presence of Noise

    DTIC Science & Technology

    2012-06-14

    diffraction efficiency is dependent on wavelength. Compared to techniques developed by later work, simple algebraic reconstruction techniques were used...spectral di- mension, using computed tomography (CT) techniques with only a finite number of diverse images. CTHIS require a reconstruction algorithm in...many frames are needed to reconstruct the spectral cube of a simple object using a theoretical lower bound. In this research a new algorithm is derived

  16. The power of pezonomics

    NASA Technical Reports Server (NTRS)

    Orr, Joel N.

    1995-01-01

    This reflection of human-computer interface and its requirements as virtual technology is advanced, proposes a new term: 'Pezonomics'. The term replaces the term ergonomics ('the law of work') with a definition pointing to 'the law of play.' The necessity of this term, the author reasons, comes from the need to 'capture the essence of play and calibrate our computer systems to its cadences.' Pezonomics will ensure that artificial environments, in particular virtual reality, are user friendly.

  17. Network survivability performance (computer diskette)

    NASA Astrophysics Data System (ADS)

    1993-11-01

    File characteristics: Data file; 1 file. Physical description: 1 computer diskette; 3 1/2 in.; high density; 2.0MB. System requirements: Mac; Word. This technical report has been developed to address the survivability of telecommunications networks including services. It responds to the need for a common understanding of, and assessment techniques for network survivability, availability, integrity, and reliability. It provides a basis for designing and operating telecommunication networks to user expectations for network survivability.

  18. Study of Computational Structures for Multiobject Tracking Algorithms

    DTIC Science & Technology

    1986-12-01

    MULTIOBJECT TRACKING ALGORITHMS 12. PERSONAL AUTHOR(S) i Allen, Thomas G .; Kurien, Thomas; Washburn, Robert B. Jr. 13a. TYPE OF REPORT 13b. TIME COVERED 14...mentioned possible restructurings of the tracking algorithm that increase the amount of available parallelism ’ g ~. are investigated. This step is extremely...sufficient for our needs here. In the following section we will examine the structure and computational requirements of the track- g , oriented approach

  19. Short-term Temperature Prediction Using Adaptive Computing on Dynamic Scales

    NASA Astrophysics Data System (ADS)

    Hu, W.; Cervone, G.; Jha, S.; Balasubramanian, V.; Turilli, M.

    2017-12-01

    When predicting temperature, there are specific places and times when high accuracy predictions are harder. For example, not all the sub-regions in the domain require the same amount of computing resources to generate an accurate prediction. Plateau areas might require less computing resources than mountainous areas because of the steeper gradient of temperature change in the latter. However, it is difficult to estimate beforehand the optimal allocation of computational resources because several parameters play a role in determining the accuracy of the forecasts, in addition to orography. The allocation of resources to perform simulations can become a bottleneck because it requires human intervention to stop jobs or start new ones. The goal of this project is to design and develop a dynamic approach to generate short-term temperature predictions that can automatically determines the required computing resources and the geographic scales of the predictions based on the spatial and temporal uncertainties. The predictions and the prediction quality metrics are computed using a numeric weather prediction model, Analog Ensemble (AnEn), and the parallelization on high performance computing systems is accomplished using Ensemble Toolkit, one component of the RADICAL-Cybertools family of tools. RADICAL-Cybertools decouple the science needs from the computational capabilities by building an intermediate layer to run general ensemble patterns, regardless of the science. In this research, we show how the ensemble toolkit allows generating high resolution temperature forecasts at different spatial and temporal resolution. The AnEn algorithm is run using NAM analysis and forecasts data for the continental United States for a period of 2 years. AnEn results show that temperature forecasts perform well according to different probabilistic and deterministic statistical tests.

  20. Implications of the Turing machine model of computation for processor and programming language design

    NASA Astrophysics Data System (ADS)

    Hunter, Geoffrey

    2004-01-01

    A computational process is classified according to the theoretical model that is capable of executing it; computational processes that require a non-predeterminable amount of intermediate storage for their execution are Turing-machine (TM) processes, while those whose storage are predeterminable are Finite Automation (FA) processes. Simple processes (such as traffic light controller) are executable by Finite Automation, whereas the most general kind of computation requires a Turing Machine for its execution. This implies that a TM process must have a non-predeterminable amount of memory allocated to it at intermediate instants of its execution; i.e. dynamic memory allocation. Many processes encountered in practice are TM processes. The implication for computational practice is that the hardware (CPU) architecture and its operating system must facilitate dynamic memory allocation, and that the programming language used to specify TM processes must have statements with the semantic attribute of dynamic memory allocation, for in Alan Turing"s thesis on computation (1936) the "standard description" of a process is invariant over the most general data that the process is designed to process; i.e. the program describing the process should never have to be modified to allow for differences in the data that is to be processed in different instantiations; i.e. data-invariant programming. Any non-trivial program is partitioned into sub-programs (procedures, subroutines, functions, modules, etc). Examination of the calls/returns between the subprograms reveals that they are nodes in a tree-structure; this tree-structure is independent of the programming language used to encode (define) the process. Each sub-program typically needs some memory for its own use (to store values intermediate between its received data and its computed results); this locally required memory is not needed before the subprogram commences execution, and it is not needed after its execution terminates; it may be allocated as its execution commences, and deallocated as its execution terminates, and if the amount of this local memory is not known until just before execution commencement, then it is essential that it be allocated dynamically as the first action of its execution. This dynamically allocated/deallocated storage of each subprogram"s intermediate values, conforms with the stack discipline; i.e. last allocated = first to be deallocated, an incidental benefit of which is automatic overlaying of variables. This stack-based dynamic memory allocation was a semantic implication of the nested block structure that originated in the ALGOL-60 programming language. AGLOL-60 was a TM language, because the amount of memory allocated on subprogram (block/procedure) entry (for arrays, etc) was computable at execution time. A more general requirement of a Turing machine process is for code generation at run-time; this mandates access to the source language processor (compiler/interpretor) during execution of the process. This fundamental aspect of computer science is important to the future of system design, because it has been overlooked throughout the 55 years since modern computing began in 1048. The popular computer systems of this first half-century of computing were constrained by compile-time (or even operating system boot-time) memory allocation, and were thus limited to executing FA processes. The practical effect was that the distinction between the data-invariant program and its variable data was blurred; programmers had to make trial and error executions, modifying the program"s compile-time constants (array dimensions) to iterate towards the values required at run-time by the data being processed. This era of trial and error computing still persists; it pervades the culture of current (2003) computing practice.

  1. The roles of 'subjective computer training' and management support in the use of computers in community health centres.

    PubMed

    Yaghmaie, Farideh; Jayasuriya, Rohan

    2004-01-01

    There have been many changes made to information systems in the last decade. Changes in information systems require users constantly to update their computer knowledge and skills. Computer training is a critical issue for any user because it offers them considerable new skills. The purpose of this study was to measure the effects of 'subjective computer training' and management support on attitudes to computers, computer anxiety and subjective norms to use computers. The data were collected from community health centre staff. The results of the study showed that health staff trained in computer use had more favourable attitudes to computers, less computer anxiety and more awareness of others' expectations about computer use than untrained users. However, there was no relationship between management support and computer attitude, computer anxiety or subjective norms. Lack of computer training for the majority of healthcare staff confirmed the need for more attention to this issue, particularly in health centres.

  2. Large-scale detection of repetitions

    PubMed Central

    Smyth, W. F.

    2014-01-01

    Combinatorics on words began more than a century ago with a demonstration that an infinitely long string with no repetitions could be constructed on an alphabet of only three letters. Computing all the repetitions (such as ⋯TTT⋯ or ⋯CGACGA⋯ ) in a given string x of length n is one of the oldest and most important problems of computational stringology, requiring time in the worst case. About a dozen years ago, it was discovered that repetitions can be computed as a by-product of the Θ(n)-time computation of all the maximal periodicities or runs in x. However, even though the computation is linear, it is also brute force: global data structures, such as the suffix array, the longest common prefix array and the Lempel–Ziv factorization, need to be computed in a preprocessing phase. Furthermore, all of this effort is required despite the fact that the expected number of runs in a string is generally a small fraction of the string length. In this paper, I explore the possibility that repetitions (perhaps also other regularities in strings) can be computed in a manner commensurate with the size of the output. PMID:24751872

  3. Biophysics and systems biology.

    PubMed

    Noble, Denis

    2010-03-13

    Biophysics at the systems level, as distinct from molecular biophysics, acquired its most famous paradigm in the work of Hodgkin and Huxley, who integrated their equations for the nerve impulse in 1952. Their approach has since been extended to other organs of the body, notably including the heart. The modern field of computational biology has expanded rapidly during the first decade of the twenty-first century and, through its contribution to what is now called systems biology, it is set to revise many of the fundamental principles of biology, including the relations between genotypes and phenotypes. Evolutionary theory, in particular, will require re-assessment. To succeed in this, computational and systems biology will need to develop the theoretical framework required to deal with multilevel interactions. While computational power is necessary, and is forthcoming, it is not sufficient. We will also require mathematical insight, perhaps of a nature we have not yet identified. This article is therefore also a challenge to mathematicians to develop such insights.

  4. Biophysics and systems biology

    PubMed Central

    Noble, Denis

    2010-01-01

    Biophysics at the systems level, as distinct from molecular biophysics, acquired its most famous paradigm in the work of Hodgkin and Huxley, who integrated their equations for the nerve impulse in 1952. Their approach has since been extended to other organs of the body, notably including the heart. The modern field of computational biology has expanded rapidly during the first decade of the twenty-first century and, through its contribution to what is now called systems biology, it is set to revise many of the fundamental principles of biology, including the relations between genotypes and phenotypes. Evolutionary theory, in particular, will require re-assessment. To succeed in this, computational and systems biology will need to develop the theoretical framework required to deal with multilevel interactions. While computational power is necessary, and is forthcoming, it is not sufficient. We will also require mathematical insight, perhaps of a nature we have not yet identified. This article is therefore also a challenge to mathematicians to develop such insights. PMID:20123750

  5. Bringing Federated Identity to Grid Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teheran, Jeny

    The Fermi National Accelerator Laboratory (FNAL) is facing the challenge of providing scientific data access and grid submission to scientific collaborations that span the globe but are hosted at FNAL. Users in these collaborations are currently required to register as an FNAL user and obtain FNAL credentials to access grid resources to perform their scientific computations. These requirements burden researchers with managing additional authentication credentials, and put additional load on FNAL for managing user identities. Our design integrates the existing InCommon federated identity infrastructure, CILogon Basic CA, and MyProxy with the FNAL grid submission system to provide secure access formore » users from diverse experiments and collab orations without requiring each user to have authentication credentials from FNAL. The design automates the handling of certificates so users do not need to manage them manually. Although the initial implementation is for FNAL's grid submission system, the design and the core of the implementation are general and could be applied to other distributed computing systems.« less

  6. Bridging the Gap Between the iLEAPS and GEWEX Land-Surface Modeling Communities

    NASA Technical Reports Server (NTRS)

    Bonan, Gordon; Santanello, Joseph A., Jr.

    2013-01-01

    Models of Earth's weather and climate require fluxes of momentum, energy, and moisture across the land-atmosphere interface to solve the equations of atmospheric physics and dynamics. Just as atmospheric models can, and do, differ between weather and climate applications, mostly related to issues of scale, resolved or parameterised physics,and computational requirements, so too can the land models that provide the required surface fluxes differ between weather and climate models. Here, however, the issue is less one of scale-dependent parameterisations.Computational demands can influence other minor land model differences, especially with respect to initialisation, data assimilation, and forecast skill. However, the distinction among land models (and their development and application) is largely driven by the different science and research needs of the weather and climate communities.

  7. Computer Security Incident Response Team Effectiveness: A Needs Assessment

    PubMed Central

    Van der Kleij, Rick; Kleinhuis, Geert; Young, Heather

    2017-01-01

    Computer security incident response teams (CSIRTs) respond to a computer security incident when the need arises. Failure of these teams can have far-reaching effects for the economy and national security. CSIRTs often have to work on an ad hoc basis, in close cooperation with other teams, and in time constrained environments. It could be argued that under these working conditions CSIRTs would be likely to encounter problems. A needs assessment was done to see to which extent this argument holds true. We constructed an incident response needs model to assist in identifying areas that require improvement. We envisioned a model consisting of four assessment categories: Organization, Team, Individual and Instrumental. Central to this is the idea that both problems and needs can have an organizational, team, individual, or technical origin or a combination of these levels. To gather data we conducted a literature review. This resulted in a comprehensive list of challenges and needs that could hinder or improve, respectively, the performance of CSIRTs. Then, semi-structured in depth interviews were held with team coordinators and team members of five public and private sector Dutch CSIRTs to ground these findings in practice and to identify gaps between current and desired incident handling practices. This paper presents the findings of our needs assessment and ends with a discussion of potential solutions to problems with performance in incident response. PMID:29312051

  8. Computer Security Incident Response Team Effectiveness: A Needs Assessment.

    PubMed

    Van der Kleij, Rick; Kleinhuis, Geert; Young, Heather

    2017-01-01

    Computer security incident response teams (CSIRTs) respond to a computer security incident when the need arises. Failure of these teams can have far-reaching effects for the economy and national security. CSIRTs often have to work on an ad hoc basis, in close cooperation with other teams, and in time constrained environments. It could be argued that under these working conditions CSIRTs would be likely to encounter problems. A needs assessment was done to see to which extent this argument holds true. We constructed an incident response needs model to assist in identifying areas that require improvement. We envisioned a model consisting of four assessment categories: Organization, Team, Individual and Instrumental. Central to this is the idea that both problems and needs can have an organizational, team, individual, or technical origin or a combination of these levels. To gather data we conducted a literature review. This resulted in a comprehensive list of challenges and needs that could hinder or improve, respectively, the performance of CSIRTs. Then, semi-structured in depth interviews were held with team coordinators and team members of five public and private sector Dutch CSIRTs to ground these findings in practice and to identify gaps between current and desired incident handling practices. This paper presents the findings of our needs assessment and ends with a discussion of potential solutions to problems with performance in incident response.

  9. Wildlife software: procedures for publication of computer software

    USGS Publications Warehouse

    Samuel, M.D.

    1990-01-01

    Computers and computer software have become an integral part of the practice of wildlife science. Computers now play an important role in teaching, research, and management applications. Because of the specialized nature of wildlife problems, specific computer software is usually required to address a given problem (e.g., home range analysis). This type of software is not usually available from commercial vendors and therefore must be developed by those wildlife professionals with particular skill in computer programming. Current journal publication practices generally prevent a detailed description of computer software associated with new techniques. In addition, peer review of journal articles does not usually include a review of associated computer software. Thus, many wildlife professionals are usually unaware of computer software that would meet their needs or of major improvements in software they commonly use. Indeed most users of wildlife software learn of new programs or important changes only by word of mouth.

  10. Symplectic molecular dynamics simulations on specially designed parallel computers.

    PubMed

    Borstnik, Urban; Janezic, Dusanka

    2005-01-01

    We have developed a computer program for molecular dynamics (MD) simulation that implements the Split Integration Symplectic Method (SISM) and is designed to run on specialized parallel computers. The MD integration is performed by the SISM, which analytically treats high-frequency vibrational motion and thus enables the use of longer simulation time steps. The low-frequency motion is treated numerically on specially designed parallel computers, which decreases the computational time of each simulation time step. The combination of these approaches means that less time is required and fewer steps are needed and so enables fast MD simulations. We study the computational performance of MD simulation of molecular systems on specialized computers and provide a comparison to standard personal computers. The combination of the SISM with two specialized parallel computers is an effective way to increase the speed of MD simulations up to 16-fold over a single PC processor.

  11. Higher Order Time Integration Schemes for the Unsteady Navier-Stokes Equations on Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Jothiprasad, Giridhar; Mavriplis, Dimitri J.; Caughey, David A.

    2002-01-01

    The rapid increase in available computational power over the last decade has enabled higher resolution flow simulations and more widespread use of unstructured grid methods for complex geometries. While much of this effort has been focused on steady-state calculations in the aerodynamics community, the need to accurately predict off-design conditions, which may involve substantial amounts of flow separation, points to the need to efficiently simulate unsteady flow fields. Accurate unsteady flow simulations can easily require several orders of magnitude more computational effort than a corresponding steady-state simulation. For this reason, techniques for improving the efficiency of unsteady flow simulations are required in order to make such calculations feasible in the foreseeable future. The purpose of this work is to investigate possible reductions in computer time due to the choice of an efficient time-integration scheme from a series of schemes differing in the order of time-accuracy, and by the use of more efficient techniques to solve the nonlinear equations which arise while using implicit time-integration schemes. This investigation is carried out in the context of a two-dimensional unstructured mesh laminar Navier-Stokes solver.

  12. StrAuto: automation and parallelization of STRUCTURE analysis.

    PubMed

    Chhatre, Vikram E; Emerson, Kevin J

    2017-03-24

    Population structure inference using the software STRUCTURE has become an integral part of population genetic studies covering a broad spectrum of taxa including humans. The ever-expanding size of genetic data sets poses computational challenges for this analysis. Although at least one tool currently implements parallel computing to reduce computational overload of this analysis, it does not fully automate the use of replicate STRUCTURE analysis runs required for downstream inference of optimal K. There is pressing need for a tool that can deploy population structure analysis on high performance computing clusters. We present an updated version of the popular Python program StrAuto, to streamline population structure analysis using parallel computing. StrAuto implements a pipeline that combines STRUCTURE analysis with the Evanno Δ K analysis and visualization of results using STRUCTURE HARVESTER. Using benchmarking tests, we demonstrate that StrAuto significantly reduces the computational time needed to perform iterative STRUCTURE analysis by distributing runs over two or more processors. StrAuto is the first tool to integrate STRUCTURE analysis with post-processing using a pipeline approach in addition to implementing parallel computation - a set up ideal for deployment on computing clusters. StrAuto is distributed under the GNU GPL (General Public License) and available to download from http://strauto.popgen.org .

  13. High Throughput Screening of Toxicity Pathways Perturbed by Environmental Chemicals

    EPA Science Inventory

    Toxicology, a field largely unchanged over the past several decades, is undergoing a significant transformation driven by a number of forces – the increasing number of chemicals needing assessment, changing legal requirements, advances in biology and computer science, and concern...

  14. Determination of Tasks Required by Graduates of Manufacturing Engineering Technology Programs.

    ERIC Educational Resources Information Center

    Zirbel, Jay H.

    1993-01-01

    A Delphi panel of 14 experts identified 37 tasks performed by/qualities needed by manufacturing engineering technologists. Most important were work ethic, performance quality, communication skills, teamwork, computer applications, manufacturing basics, materials knowledge, troubleshooting, supervision, and global issues. (SK)

  15. AN AUDITING FRAMEWORK TO SUBSTANTIATE ELECTRONIC RECORDKEEPING PRACTICES

    EPA Science Inventory

    Quality assurance audits of computer systems help to ensure that the end data meet the needs of the user. Increasingly complex systems require the stepwise procedures outlined below.

    The areas reviewed in this paper include both technical and evidentiary criteria. I...

  16. 42 CFR 480.115 - Requirements for maintaining confidentiality.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... HUMAN SERVICES (CONTINUED) QUALITY IMPROVEMENT ORGANIZATIONS ACQUISITION, PROTECTION, AND DISCLOSURE OF...) Responsibilities of QIO officers and employees. The QIO must provide reasonable physical security measures to... those measures needed to secure computer files. Each QIO must instruct its officers and employees and...

  17. 42 CFR 480.115 - Requirements for maintaining confidentiality.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... HUMAN SERVICES (CONTINUED) QUALITY IMPROVEMENT ORGANIZATIONS ACQUISITION, PROTECTION, AND DISCLOSURE OF...) Responsibilities of QIO officers and employees. The QIO must provide reasonable physical security measures to... those measures needed to secure computer files. Each QIO must instruct its officers and employees and...

  18. 42 CFR 480.115 - Requirements for maintaining confidentiality.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... HUMAN SERVICES (CONTINUED) QUALITY IMPROVEMENT ORGANIZATIONS ACQUISITION, PROTECTION, AND DISCLOSURE OF...) Responsibilities of QIO officers and employees. The QIO must provide reasonable physical security measures to... those measures needed to secure computer files. Each QIO must instruct its officers and employees and...

  19. 42 CFR 480.115 - Requirements for maintaining confidentiality.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... HUMAN SERVICES (CONTINUED) QUALITY IMPROVEMENT ORGANIZATIONS ACQUISITION, PROTECTION, AND DISCLOSURE OF...) Responsibilities of QIO officers and employees. The QIO must provide reasonable physical security measures to... those measures needed to secure computer files. Each QIO must instruct its officers and employees and...

  20. 42 CFR 480.115 - Requirements for maintaining confidentiality.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... HUMAN SERVICES (CONTINUED) QUALITY IMPROVEMENT ORGANIZATIONS ACQUISITION, PROTECTION, AND DISCLOSURE OF...) Responsibilities of QIO officers and employees. The QIO must provide reasonable physical security measures to... those measures needed to secure computer files. Each QIO must instruct its officers and employees and...

  1. A comparison of three methods for estimating the requirements for medical specialists: the case of otolaryngologists.

    PubMed Central

    Anderson, G F; Han, K C; Miller, R H; Johns, M E

    1997-01-01

    OBJECTIVE: To compare three methods of computing the national requirements for otolaryngologists in 1994 and 2010. DATA SOURCES: Three large HMOs, a Delphi panel, the Bureau of Health Professions (BHPr), and published sources. STUDY DESIGN: Three established methods of computing requirements for otolaryngologists were compared: managed care, demand-utilization, and adjusted needs assessment. Under the managed care model, a published method based on reviewing staffing patterns in HMOs was modified to estimate the number of otolaryngologists. We obtained from BHPr estimates of work force projections from their demand model. To estimate the adjusted needs model, we convened a Delphi panel of otolaryngologists using the methodology developed by the Graduate Medical Education National Advisory Committee (GMENAC). DATA COLLECTION/EXTRACTION METHODS: Not applicable. PRINCIPAL FINDINGS: Wide variation in the estimated number of otolaryngologists required occurred across the three methods. Within each model it was possible to alter the requirements for otolaryngologists significantly by changing one or more of the key assumptions. The managed care model has a potential to obtain the most reliable estimates because it reflects actual staffing patterns in institutions that are attempting to use physicians efficiently. CONCLUSIONS: Estimates of work force requirements can vary considerably if one or more assumptions are changed. In order for the managed care approach to be useful for actual decision making concerning the appropriate number of otolaryngologists required, additional research on the methodology used to extrapolate the results to the general population is necessary. PMID:9180613

  2. Meshfree and efficient modeling of swimming cells

    NASA Astrophysics Data System (ADS)

    Gallagher, Meurig T.; Smith, David J.

    2018-05-01

    Locomotion in Stokes flow is an intensively studied problem because it describes important biological phenomena such as the motility of many species' sperm, bacteria, algae, and protozoa. Numerical computations can be challenging, particularly in three dimensions, due to the presence of moving boundaries and complex geometries; methods which combine ease of implementation and computational efficiency are therefore needed. A recently proposed method to discretize the regularized Stokeslet boundary integral equation without the need for a connected mesh is applied to the inertialess locomotion problem in Stokes flow. The mathematical formulation and key aspects of the computational implementation in matlab® or GNU Octave are described, followed by numerical experiments with biflagellate algae and multiple uniflagellate sperm swimming between no-slip surfaces, for which both swimming trajectories and flow fields are calculated. These computational experiments required minutes of time on modest hardware; an extensible implementation is provided in a GitHub repository. The nearest-neighbor discretization dramatically improves convergence and robustness, a key challenge in extending the regularized Stokeslet method to complicated three-dimensional biological fluid problems.

  3. Molecular computational elements encode large populations of small objects

    NASA Astrophysics Data System (ADS)

    Prasanna de Silva, A.; James, Mark R.; McKinney, Bernadine O. F.; Pears, David A.; Weir, Sheenagh M.

    2006-10-01

    Since the introduction of molecular computation, experimental molecular computational elements have grown to encompass small-scale integration, arithmetic and games, among others. However, the need for a practical application has been pressing. Here we present molecular computational identification (MCID), a demonstration that molecular logic and computation can be applied to a widely relevant issue. Examples of populations that need encoding in the microscopic world are cells in diagnostics or beads in combinatorial chemistry (tags). Taking advantage of the small size (about 1nm) and large `on/off' output ratios of molecular logic gates and using the great variety of logic types, input chemical combinations, switching thresholds and even gate arrays in addition to colours, we produce unique identifiers for members of populations of small polymer beads (about 100μm) used for synthesis of combinatorial libraries. Many millions of distinguishable tags become available. This method should be extensible to far smaller objects, with the only requirement being a `wash and watch' protocol. Our focus on converting molecular science into technology concerning analog sensors, turns to digital logic devices in the present work.

  4. Molecular computational elements encode large populations of small objects.

    PubMed

    de Silva, A Prasanna; James, Mark R; McKinney, Bernadine O F; Pears, David A; Weir, Sheenagh M

    2006-10-01

    Since the introduction of molecular computation, experimental molecular computational elements have grown to encompass small-scale integration, arithmetic and games, among others. However, the need for a practical application has been pressing. Here we present molecular computational identification (MCID), a demonstration that molecular logic and computation can be applied to a widely relevant issue. Examples of populations that need encoding in the microscopic world are cells in diagnostics or beads in combinatorial chemistry (tags). Taking advantage of the small size (about 1 nm) and large 'on/off' output ratios of molecular logic gates and using the great variety of logic types, input chemical combinations, switching thresholds and even gate arrays in addition to colours, we produce unique identifiers for members of populations of small polymer beads (about 100 microm) used for synthesis of combinatorial libraries. Many millions of distinguishable tags become available. This method should be extensible to far smaller objects, with the only requirement being a 'wash and watch' protocol. Our focus on converting molecular science into technology concerning analog sensors, turns to digital logic devices in the present work.

  5. A large high vacuum, high pumping speed space simulation chamber for electric propulsion

    NASA Technical Reports Server (NTRS)

    Grisnik, Stanley P.; Parkes, James E.

    1994-01-01

    Testing high power electric propulsion devices poses unique requirements on space simulation facilities. Very high pumping speeds are required to maintain high vacuum levels while handling large volumes of exhaust products. These pumping speeds are significantly higher than those available in most existing vacuum facilities. There is also a requirement for relatively large vacuum chamber dimensions to minimize facility wall/thruster plume interactions and to accommodate far field plume diagnostic measurements. A 4.57 m (15 ft) diameter by 19.2 m (63 ft) long vacuum chamber at NASA Lewis Research Center is described. The chamber utilizes oil diffusion pumps in combination with cryopanels to achieve high vacuum pumping speeds at high vacuum levels. The facility is computer controlled for all phases of operation from start-up, through testing, to shutdown. The computer control system increases the utilization of the facility and reduces the manpower requirements needed for facility operations.

  6. Major uncertainties influencing entry probe heat shield design

    NASA Technical Reports Server (NTRS)

    Congdon, W.

    1974-01-01

    Factors influencing the design of an outer planet probe heat shield are discussed. Major factors included are: uncertainties in composition and scale height of the planet atmospheres; the augmentation/attenuation of entry heating by ablation products requires more computer study and testing; carbon heat shields, especially carbon phenolic, possessing improved resistance to spallation need developing; and white silica reflecting heat shields with improved resistance to bulk vitrification need further developing.

  7. Development of Measures to Assess Product Modularity and Reconfigurability

    DTIC Science & Technology

    2010-03-01

    mission needs. For example, a thermal blanket is the only “module” currently being used to control spacecraft temperature (i.e. no active cooling). If...infrastructure, and thermal control. The spacecraft components include the autonomous flight software; the quantity of high- performance computing; power... thermal requirements are satisfied using this thermal blanket , then there may not be a need for active cooling to improve the thermal range of the

  8. Culvert analysis program for indirect measurement of discharge

    USGS Publications Warehouse

    Fulford, Janice M.; ,

    1993-01-01

    A program based on the U.S. Geological Survey (USGS) methods for indirectly computing peak discharges through culverts allows users to employ input data formats used by the water surface profile program (WSPRO). The program can be used to compute discharge rating surfaces or curves that describe the behavior of flow through a particular culvert or to compute discharges from measurements of upstream of the gradually varied flow equations and has been adapted slightly to provide solutions that minimize the need for the user to determine between different flow regimes. The program source is written in Fortran 77 and has been run on mini-computers and personal computers. The program does not use or require graphics capability, a color monitor, or a mouse.

  9. An Overview of NASA's Intelligent Systems Program

    NASA Technical Reports Server (NTRS)

    Cooke, Daniel E.; Norvig, Peter (Technical Monitor)

    2001-01-01

    NASA and the Computer Science Research community are poised to enter a critical era. An era in which - it seems - that each needs the other. Market forces, driven by the immediate economic viability of computer science research results, place Computer Science in a relatively novel position. These forces impact how research is done, and could, in worst case, drive the field away from significant innovation opting instead for incremental advances that result in greater stability in the market place. NASA, however, requires significant advances in computer science research in order to accomplish the exploration and science agenda it has set out for itself. NASA may indeed be poised to advance computer science research in this century much the way it advanced aero-based research in the last.

  10. Radiotherapy Monte Carlo simulation using cloud computing technology.

    PubMed

    Poole, C M; Cornelius, I; Trapp, J V; Langton, C M

    2012-12-01

    Cloud computing allows for vast computational resources to be leveraged quickly and easily in bursts as and when required. Here we describe a technique that allows for Monte Carlo radiotherapy dose calculations to be performed using GEANT4 and executed in the cloud, with relative simulation cost and completion time evaluated as a function of machine count. As expected, simulation completion time decreases as 1/n for n parallel machines, and relative simulation cost is found to be optimal where n is a factor of the total simulation time in hours. Using the technique, we demonstrate the potential usefulness of cloud computing as a solution for rapid Monte Carlo simulation for radiotherapy dose calculation without the need for dedicated local computer hardware as a proof of principal.

  11. The software analysis project for the Office of Human Resources

    NASA Technical Reports Server (NTRS)

    Tureman, Robert L., Jr.

    1994-01-01

    There were two major sections of the project for the Office of Human Resources (OHR). The first section was to conduct a planning study to analyze software use with the goal of recommending software purchases and determining whether the need exists for a file server. The second section was analysis and distribution planning for retirement planning computer program entitled VISION provided by NASA Headquarters. The software planning study was developed to help OHR analyze the current administrative desktop computing environment and make decisions regarding software acquisition and implementation. There were three major areas addressed by the study: current environment new software requirements, and strategies regarding the implementation of a server in the Office. To gather data on current environment, employees were surveyed and an inventory of computers were produced. The surveys were compiled and analyzed by the ASEE fellow with interpretation help by OHR staff. New software requirements represented a compilation and analysis of the surveyed requests of OHR personnel. Finally, the information on the use of a server represents research done by the ASEE fellow and analysis of survey data to determine software requirements for a server. This included selection of a methodology to estimate the number of copies of each software program required given current use and estimated growth. The report presents the results of the computing survey, a description of the current computing environment, recommenations for changes in the computing environment, current software needs, management advantages of using a server, and management considerations in the implementation of a server. In addition, detailed specifications were presented for the hardware and software recommendations to offer a complete picture to OHR management. The retirement planning computer program available to NASA employees will aid in long-range retirement planning. The intended audience is the NASA civil service employee with several years until retirement. The employee enters current salary and savings information as well as goals concerning salary at retirement, assumptions on inflation, and the return on investments. The program produces a picture of the employee's retirement income from all sources based on the assumptions entered. A session showing features of the program was conducted for key personnel at the Center. After analysis, it was decided to offer the program through the Learning Center starting in August 1994.

  12. Developing Materials Processing to Performance Modeling Capabilities and the Need for Exascale Computing Architectures (and Beyond)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schraad, Mark William; Luscher, Darby Jon

    Additive Manufacturing techniques are presenting the Department of Energy and the NNSA Laboratories with new opportunities to consider novel component production and repair processes, and to manufacture materials with tailored response and optimized performance characteristics. Additive Manufacturing technologies already are being applied to primary NNSA mission areas, including Nuclear Weapons. These mission areas are adapting to these new manufacturing methods, because of potential advantages, such as smaller manufacturing footprints, reduced needs for specialized tooling, an ability to embed sensing, novel part repair options, an ability to accommodate complex geometries, and lighter weight materials. To realize the full potential of Additivemore » Manufacturing as a game-changing technology for the NNSA’s national security missions; however, significant progress must be made in several key technical areas. In addition to advances in engineering design, process optimization and automation, and accelerated feedstock design and manufacture, significant progress must be made in modeling and simulation. First and foremost, a more mature understanding of the process-structure-property-performance relationships must be developed. Because Additive Manufacturing processes change the nature of a material’s structure below the engineering scale, new models are required to predict materials response across the spectrum of relevant length scales, from the atomistic to the continuum. New diagnostics will be required to characterize materials response across these scales. And not just models, but advanced algorithms, next-generation codes, and advanced computer architectures will be required to complement the associated modeling activities. Based on preliminary work in each of these areas, a strong argument for the need for Exascale computing architectures can be made, if a legitimate predictive capability is to be developed.« less

  13. Microdot - A Four-Bit Microcontroller Designed for Distributed Low-End Computing in Satellites

    NASA Astrophysics Data System (ADS)

    2002-03-01

    Many satellites are an integrated collection of sensors and actuators that require dedicated real-time control. For single processor systems, additional sensors require an increase in computing power and speed to provide the multi-tasking capability needed to service each sensor. Faster processors cost more and consume more power, which taxes a satellite's power resources and may lead to shorter satellite lifetimes. An alternative design approach is a distributed network of small and low power microcontrollers designed for space that handle the computing requirements of each individual sensor and actuator. The design of microdot, a four-bit microcontroller for distributed low-end computing, is presented. The design is based on previous research completed at the Space Electronics Branch, Air Force Research Laboratory (AFRL/VSSE) at Kirtland AFB, NM, and the Air Force Institute of Technology at Wright-Patterson AFB, OH. The Microdot has 29 instructions and a 1K x 4 instruction memory. The distributed computing architecture is based on the Philips Semiconductor I2C Serial Bus Protocol. A prototype was implemented and tested using an Altera Field Programmable Gate Array (FPGA). The prototype was operable to 9.1 MHz. The design was targeted for fabrication in a radiation-hardened-by-design gate-array cell library for the TSMC 0.35 micrometer CMOS process.

  14. Cometary ephemerides - needs and concerns

    NASA Technical Reports Server (NTRS)

    Yeomans, D. K.

    1981-01-01

    With the use of narrow field-of-view instrumentation on faint comets, the accuracy requirements upon computed ephemerides are increasing. It is not uncommon for instruments with a one arc minute field-of-view to be tracking a faint comet that is not visible without a substantial integration time. As with all ephemerides of solar syste objects, the computed motion and reduction of these observations, the computed motion of a comet is further depenent upon effects related to the comet's activity. Thus, the ephemeris of an active comet is corrupted by both observational errors and errors due to the comet's activity.

  15. Reconfigurable Computing Concepts for Space Missions: Universal Modular Spares

    NASA Technical Reports Server (NTRS)

    Patrick, M. Clinton

    2007-01-01

    Computing hardware for control, data collection, and other purposes will prove many times over crucial resources in NASA's upcoming space missions. Ability to provide these resources within mission payload requirements, with the hardiness to operate for extended periods under potentially harsh conditions in off-World environments, is daunting enough without considering the possibility of doing so with conventional electronics. This paper examines some ideas and options, and proposes some initial approaches, for logical design of reconfigurable computing resources offering true modularity, universal compatibility, and unprecedented flexibility to service all forms and needs of mission infrastructure.

  16. SIG -- The Role of Human-Computer Interaction in Next-Generation Control Rooms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronald L. Boring; Jacques Hugo; Christian Richard

    2005-04-01

    The purpose of this CHI Special Interest Group (SIG) is to facilitate the convergence between human-computer interaction (HCI) and control room design. HCI researchers and practitioners actively need to infuse state-of-the-art interface technology into control rooms to meet usability, safety, and regulatory requirements. This SIG outlines potential HCI contributions to instrumentation and control (I&C) and automation in control rooms as well as to general control room design.

  17. Data analysis of gravitational-wave signals from spinning neutron stars. III. Detection statistics and computational requirements

    NASA Astrophysics Data System (ADS)

    Jaranowski, Piotr; Królak, Andrzej

    2000-03-01

    We develop the analytic and numerical tools for data analysis of the continuous gravitational-wave signals from spinning neutron stars for ground-based laser interferometric detectors. The statistical data analysis method that we investigate is maximum likelihood detection which for the case of Gaussian noise reduces to matched filtering. We study in detail the statistical properties of the optimum functional that needs to be calculated in order to detect the gravitational-wave signal and estimate its parameters. We find it particularly useful to divide the parameter space into elementary cells such that the values of the optimal functional are statistically independent in different cells. We derive formulas for false alarm and detection probabilities both for the optimal and the suboptimal filters. We assess the computational requirements needed to do the signal search. We compare a number of criteria to build sufficiently accurate templates for our data analysis scheme. We verify the validity of our concepts and formulas by means of the Monte Carlo simulations. We present algorithms by which one can estimate the parameters of the continuous signals accurately. We find, confirming earlier work of other authors, that given a 100 Gflops computational power an all-sky search for observation time of 7 days and directed search for observation time of 120 days are possible whereas an all-sky search for 120 days of observation time is computationally prohibitive.

  18. Key Points to Facilitate the Adoption of Computer-Based Assessments.

    PubMed

    Burr, S A; Chatterjee, A; Gibson, S; Coombes, L; Wilkinson, S

    2016-01-01

    There are strong pedagogical arguments in favor of adopting computer-based assessment. The risks of technical failure can be managed and are offset by improvements in cost-effectiveness and quality assurance capability. Academic, administrative, and technical leads at an appropriately senior level within an institution need to be identified, so that they can act as effective advocates. All stakeholder groups need to be represented in undertaking a detailed appraisal of requirements and shortlisting software based on core functionality, summative assessment life cycle needs, external compatibility, security, and usability. Any software that is a candidate for adoption should be trialed under simulated summative conditions, with all stakeholders having a voice in agreeing the optimum solution. Transfer to a new system should be carefully planned and communicated, with a programme of training established to maximize the success of adoption.

  19. Key Points to Facilitate the Adoption of Computer-Based Assessments

    PubMed Central

    Burr, S.A.; Chatterjee, A.; Gibson, S.; Coombes, L.; Wilkinson, S.

    2016-01-01

    There are strong pedagogical arguments in favor of adopting computer-based assessment. The risks of technical failure can be managed and are offset by improvements in cost-effectiveness and quality assurance capability. Academic, administrative, and technical leads at an appropriately senior level within an institution need to be identified, so that they can act as effective advocates. All stakeholder groups need to be represented in undertaking a detailed appraisal of requirements and shortlisting software based on core functionality, summative assessment life cycle needs, external compatibility, security, and usability. Any software that is a candidate for adoption should be trialed under simulated summative conditions, with all stakeholders having a voice in agreeing the optimum solution. Transfer to a new system should be carefully planned and communicated, with a programme of training established to maximize the success of adoption. PMID:29349322

  20. Use of computed tomography findings and contrast extravasation in predicting the need for embolization with pelvic fractures.

    PubMed

    Bozeman, Matthew C; Cannon, Robert M; Trombold, John M; Smith, Jason W; Franklin, Glen A; Miller, Frank B; Richardson, J David; Harbrecht, Brian G

    2012-08-01

    Transarterial embolization (AE) can be a lifesaving procedure for severe hemorrhage associated with pelvic fractures. The purpose of this study was to identify demographic and radiographic findings that predict the need for embolization. We performed a retrospective review of all patients with at least one pelvic fracture and admission to the intensive care unit over a 35-month period. Computed tomography (CT) and pelvic radiographs were reviewed. Patient demographics, outcomes, time to angiography, and whether or not embolization was performed were determined. Statistical analysis was used to determine factors associated with the need for AE. Of the 327 total patients with pelvic fractures, 317 underwent CT scanning. Forty-four patients (13.5%) underwent angiography and 25 (7.6%) required therapeutic embolization. There were 39 total deaths (11.6%) with five deaths related to pelvic hemorrhage (1.5%). Multivariate analysis revealed that age older than 55 years (odds ratio [OR], 1.06; P < 0.001), systolic blood pressure less than 90 mmHg in the emergency department (OR, 11.64; P = 0.0008), and CT extravasation (OR, 147.152; P < 0.0001) were significantly associated with the need for embolization. Contrast extravasation was not present in 25 per cent of patients requiring therapeutic AE. The presence of contrast extravasation is highly associated with the need for pelvic embolization in patients with pelvic fractures, but its absence does not exclude the need for pelvic angiography.

  1. An efficient two-stage approach for image-based FSI analysis of atherosclerotic arteries

    PubMed Central

    Rayz, Vitaliy L.; Mofrad, Mohammad R. K.; Saloner, David

    2010-01-01

    Patient-specific biomechanical modeling of atherosclerotic arteries has the potential to aid clinicians in characterizing lesions and determining optimal treatment plans. To attain high levels of accuracy, recent models use medical imaging data to determine plaque component boundaries in three dimensions, and fluid–structure interaction is used to capture mechanical loading of the diseased vessel. As the plaque components and vessel wall are often highly complex in shape, constructing a suitable structured computational mesh is very challenging and can require a great deal of time. Models based on unstructured computational meshes require relatively less time to construct and are capable of accurately representing plaque components in three dimensions. These models unfortunately require additional computational resources and computing time for accurate and meaningful results. A two-stage modeling strategy based on unstructured computational meshes is proposed to achieve a reasonable balance between meshing difficulty and computational resource and time demand. In this method, a coarsegrained simulation of the full arterial domain is used to guide and constrain a fine-scale simulation of a smaller region of interest within the full domain. Results for a patient-specific carotid bifurcation model demonstrate that the two-stage approach can afford a large savings in both time for mesh generation and time and resources needed for computation. The effects of solid and fluid domain truncation were explored, and were shown to minimally affect accuracy of the stress fields predicted with the two-stage approach. PMID:19756798

  2. Exascale computing and what it means for shock physics

    NASA Astrophysics Data System (ADS)

    Germann, Timothy

    2015-06-01

    The U.S. Department of Energy is preparing to launch an Exascale Computing Initiative, to address the myriad challenges required to deploy and effectively utilize an exascale-class supercomputer (i.e., one capable of performing 1018 operations per second) in the 2023 timeframe. Since physical (power dissipation) requirements limit clock rates to at most a few GHz, this will necessitate the coordination of on the order of a billion concurrent operations, requiring sophisticated system and application software, and underlying mathematical algorithms, that may differ radically from traditional approaches. Even at the smaller workstation or cluster level of computation, the massive concurrency and heterogeneity within each processor will impact computational scientists. Through the multi-institutional, multi-disciplinary Exascale Co-design Center for Materials in Extreme Environments (ExMatEx), we have initiated an early and deep collaboration between domain (computational materials) scientists, applied mathematicians, computer scientists, and hardware architects, in order to establish the relationships between algorithms, software stacks, and architectures needed to enable exascale-ready materials science application codes within the next decade. In my talk, I will discuss these challenges, and what it will mean for exascale-era electronic structure, molecular dynamics, and engineering-scale simulations of shock-compressed condensed matter. In particular, we anticipate that the emerging hierarchical, heterogeneous architectures can be exploited to achieve higher physical fidelity simulations using adaptive physics refinement. This work is supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research.

  3. Extending the Binomial Checkpointing Technique for Resilience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walther, Andrea; Narayanan, Sri Hari Krishna

    In terms of computing time, adjoint methods offer a very attractive alternative to compute gradient information, re- quired, e.g., for optimization purposes. However, together with this very favorable temporal complexity result comes a memory requirement that is in essence proportional with the operation count of the underlying function, e.g., if algo- rithmic differentiation is used to provide the adjoints. For this reason, checkpointing approaches in many variants have become popular. This paper analyzes an extension of the so-called binomial approach to cover also possible failures of the computing systems. Such a measure of precaution is of special interest for massivemore » parallel simulations and adjoint calculations where the mean time between failure of the large scale computing system is smaller than the time needed to complete the calculation of the adjoint information. We de- scribe the extensions of standard checkpointing approaches required for such resilience, provide a corresponding imple- mentation and discuss numerical results.« less

  4. DualTrust: A Trust Management Model for Swarm-Based Autonomic Computing Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maiden, Wendy M.

    Trust management techniques must be adapted to the unique needs of the application architectures and problem domains to which they are applied. For autonomic computing systems that utilize mobile agents and ant colony algorithms for their sensor layer, certain characteristics of the mobile agent ant swarm -- their lightweight, ephemeral nature and indirect communication -- make this adaptation especially challenging. This thesis looks at the trust issues and opportunities in swarm-based autonomic computing systems and finds that by monitoring the trustworthiness of the autonomic managers rather than the swarming sensors, the trust management problem becomes much more scalable and stillmore » serves to protect the swarm. After analyzing the applicability of trust management research as it has been applied to architectures with similar characteristics, this thesis specifies the required characteristics for trust management mechanisms used to monitor the trustworthiness of entities in a swarm-based autonomic computing system and describes a trust model that meets these requirements.« less

  5. A Systematic Determination of Skill and Simulator Requirements for Airline Transport Pilot Certification.

    DTIC Science & Technology

    1985-03-01

    scene contents should provide the needed information simultaneously in each perspec- tive as prioritized. For the others, the requirement is that...turn the airplane using nosewheel steering until lineup is accomplished. Minimize side loads. (3) Apply forward elevator pressure to ensure positive... simultaneously advancing the power toward the computed takeoff setting. Set final takeoff thrust by approxi- mately 60 knots. (6) As the airplane accelerates, keep

  6. Onboard processor technology review

    NASA Technical Reports Server (NTRS)

    Benz, Harry F.

    1990-01-01

    The general need and requirements for the onboard embedded processors necessary to control and manipulate data in spacecraft systems are discussed. The current known requirements are reviewed from a user perspective, based on current practices in the spacecraft development process. The current capabilities of available processor technologies are then discussed, and these are projected to the generation of spacecraft computers currently under identified, funded development. An appraisal is provided for the current national developmental effort.

  7. [Medical expert systems and clinical needs].

    PubMed

    Buscher, H P

    1991-10-18

    The rapid expansion of computer-based systems for problem solving or decision making in medicine, the so-called medical expert systems, emphasize the need for reappraisal of their indication and value. Where specialist knowledge is required, in particular where medical decisions are susceptible to error these systems will probably serve as a valuable support. In the near future computer-based systems should be able to aid the interpretation of findings of technical investigations and the control of treatment, especially where rapid reactions are necessary despite the need of complex analysis of investigated parameters. In the distant future complete support of diagnostic procedures from the history to final diagnosis is possible. It promises to be particularly attractive for the diagnosis of seldom diseases, for difficult differential diagnoses, and in the decision making in the case of expensive, risky or new diagnostic or therapeutic methods. The physician needs to be aware of certain dangers, ranging from misleading information up to abuse. Patient information depends often on subjective reports and error-prone observations. Although basing on problematic knowledge computer-born decisions may have an imperative effect on medical decision making. Also it must be born in mind that medical decisions should always combine the rational with a consideration of human motives.

  8. Addressing capability computing challenges of high-resolution global climate modelling at the Oak Ridge Leadership Computing Facility

    NASA Astrophysics Data System (ADS)

    Anantharaj, Valentine; Norman, Matthew; Evans, Katherine; Taylor, Mark; Worley, Patrick; Hack, James; Mayer, Benjamin

    2014-05-01

    During 2013, high-resolution climate model simulations accounted for over 100 million "core hours" using Titan at the Oak Ridge Leadership Computing Facility (OLCF). The suite of climate modeling experiments, primarily using the Community Earth System Model (CESM) at nearly 0.25 degree horizontal resolution, generated over a petabyte of data and nearly 100,000 files, ranging in sizes from 20 MB to over 100 GB. Effective utilization of leadership class resources requires careful planning and preparation. The application software, such as CESM, need to be ported, optimized and benchmarked for the target platform in order to meet the computational readiness requirements. The model configuration needs to be "tuned and balanced" for the experiments. This can be a complicated and resource intensive process, especially for high-resolution configurations using complex physics. The volume of I/O also increases with resolution; and new strategies may be required to manage I/O especially for large checkpoint and restart files that may require more frequent output for resiliency. It is also essential to monitor the application performance during the course of the simulation exercises. Finally, the large volume of data needs to be analyzed to derive the scientific results; and appropriate data and information delivered to the stakeholders. Titan is currently the largest supercomputer available for open science. The computational resources, in terms of "titan core hours" are allocated primarily via the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) and ASCR Leadership Computing Challenge (ALCC) programs, both sponsored by the U.S. Department of Energy (DOE) Office of Science. Titan is a Cray XK7 system, capable of a theoretical peak performance of over 27 PFlop/s, consists of 18,688 compute nodes, with a NVIDIA Kepler K20 GPU and a 16-core AMD Opteron CPU in every node, for a total of 299,008 Opteron cores and 18,688 GPUs offering a cumulative 560,640 equivalent cores. Scientific applications, such as CESM, are also required to demonstrate a "computational readiness capability" to efficiently scale across and utilize 20% of the entire system. The 0,25 deg configuration of the spectral element dynamical core of the Community Atmosphere Model (CAM-SE), the atmospheric component of CESM, has been demonstrated to scale efficiently across more than 5,000 nodes (80,000 CPU cores) on Titan. The tracer transport routines of CAM-SE have also been ported to take advantage of the hybrid many-core architecture of Titan using GPUs [see EGU2014-4233], yielding over 2X speedup when transporting over 100 tracers. The high throughput I/O in CESM, based on the Parallel IO Library (PIO), is being further augmented to support even higher resolutions and enhance resiliency. The application performance of the individual runs are archived in a database and routinely analyzed to identify and rectify performance degradation during the course of the experiments. The various resources available at the OLCF now support a scientific workflow to facilitate high-resolution climate modelling. A high-speed center-wide parallel file system, called ATLAS, capable of 1 TB/s, is available on Titan as well as on the clusters used for analysis (Rhea) and visualization (Lens/EVEREST). Long-term archive is facilitated by the HPSS storage system. The Earth System Grid (ESG), featuring search & discovery, is also used to deliver data. The end-to-end workflow allows OLCF users to efficiently share data and publish results in a timely manner.

  9. Artificial Intelligence Applications to High-Technology Training.

    ERIC Educational Resources Information Center

    Dede, Christopher

    1987-01-01

    Discusses the use of artificial intelligence to improve occupational instruction in complex subjects with high performance goals, such as those required for high-technology jobs. Highlights include intelligent computer assisted instruction, examples in space technology training, intelligent simulation environments, and the need for adult training…

  10. Developmental Systems Toxicology: computer simulation in a ‘Virtual Embryo’ prototype (SEURAT-1 Progress Meeting)

    EPA Science Inventory

    Evaluating and assessing impacts to development is an Agency priority (EPA’s Children’s Environmental Health Research Roadmap); however, the quantity of chemicals needing assessment and challenges of species extrapolation require alternative approaches to traditional animal studi...

  11. OASIS General Introduction.

    ERIC Educational Resources Information Center

    Stanford Univ., CA.

    Recognizing the need to balance generality and economy in system costs, the Project INFO team at Stanford University developing OASIS has sought to provide generalized and powerful computer support within the normal range of operating and analytical requirements associated with university administration. The specific design objectives of the OASIS…

  12. FPGA cluster for high-performance AO real-time control system

    NASA Astrophysics Data System (ADS)

    Geng, Deli; Goodsell, Stephen J.; Basden, Alastair G.; Dipper, Nigel A.; Myers, Richard M.; Saunter, Chris D.

    2006-06-01

    Whilst the high throughput and low latency requirements for the next generation AO real-time control systems have posed a significant challenge to von Neumann architecture processor systems, the Field Programmable Gate Array (FPGA) has emerged as a long term solution with high performance on throughput and excellent predictability on latency. Moreover, FPGA devices have highly capable programmable interfacing, which lead to more highly integrated system. Nevertheless, a single FPGA is still not enough: multiple FPGA devices need to be clustered to perform the required subaperture processing and the reconstruction computation. In an AO real-time control system, the memory bandwidth is often the bottleneck of the system, simply because a vast amount of supporting data, e.g. pixel calibration maps and the reconstruction matrix, need to be accessed within a short period. The cluster, as a general computing architecture, has excellent scalability in processing throughput, memory bandwidth, memory capacity, and communication bandwidth. Problems, such as task distribution, node communication, system verification, are discussed.

  13. Integrated analysis of engine structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1981-01-01

    The need for light, durable, fuel efficient, cost effective aircraft requires the development of engine structures which are flexible, made from advaced materials (including composites), resist higher temperatures, maintain tighter clearances and have lower maintenance costs. The formal quantification of any or several of these requires integrated computer programs (multilevel and/or interdisciplinary analysis programs interconnected) for engine structural analysis/design. Several integrated analysis computer prorams are under development at Lewis Reseach Center. These programs include: (1) COBSTRAN-Composite Blade Structural Analysis, (2) CODSTRAN-Composite Durability Structural Analysis, (3) CISTRAN-Composite Impact Structural Analysis, (4) STAEBL-StruTailoring of Engine Blades, and (5) ESMOSS-Engine Structures Modeling Software System. Three other related programs, developed under Lewis sponsorship, are described.

  14. An Analysis of Cloud Computing with Amazon Web Services for the Atmospheric Science Data Center

    NASA Astrophysics Data System (ADS)

    Gleason, J. L.; Little, M. M.

    2013-12-01

    NASA science and engineering efforts rely heavily on compute and data handling systems. The nature of NASA science data is such that it is not restricted to NASA users, instead it is widely shared across a globally distributed user community including scientists, educators, policy decision makers, and the public. Therefore NASA science computing is a candidate use case for cloud computing where compute resources are outsourced to an external vendor. Amazon Web Services (AWS) is a commercial cloud computing service developed to use excess computing capacity at Amazon, and potentially provides an alternative to costly and potentially underutilized dedicated acquisitions whenever NASA scientists or engineers require additional data processing. AWS desires to provide a simplified avenue for NASA scientists and researchers to share large, complex data sets with external partners and the public. AWS has been extensively used by JPL for a wide range of computing needs and was previously tested on a NASA Agency basis during the Nebula testing program. Its ability to support the Langley Science Directorate needs to be evaluated by integrating it with real world operational needs across NASA and the associated maturity that would come with that. The strengths and weaknesses of this architecture and its ability to support general science and engineering applications has been demonstrated during the previous testing. The Langley Office of the Chief Information Officer in partnership with the Atmospheric Sciences Data Center (ASDC) has established a pilot business interface to utilize AWS cloud computing resources on a organization and project level pay per use model. This poster discusses an effort to evaluate the feasibility of the pilot business interface from a project level perspective by specifically using a processing scenario involving the Clouds and Earth's Radiant Energy System (CERES) project.

  15. Big Data: An Opportunity for Collaboration with Computer Scientists on Data-Driven Science

    NASA Astrophysics Data System (ADS)

    Baru, C.

    2014-12-01

    Big data technologies are evolving rapidly, driven by the need to manage ever increasing amounts of historical data; process relentless streams of human and machine-generated data; and integrate data of heterogeneous structure from extremely heterogeneous sources of information. Big data is inherently an application-driven problem. Developing the right technologies requires an understanding of the applications domain. Though, an intriguing aspect of this phenomenon is that the availability of the data itself enables new applications not previously conceived of! In this talk, we will discuss how the big data phenomenon creates an imperative for collaboration among domain scientists (in this case, geoscientists) and computer scientists. Domain scientists provide the application requirements as well as insights about the data involved, while computer scientists help assess whether problems can be solved with currently available technologies or require adaptaion of existing technologies and/or development of new technologies. The synergy can create vibrant collaborations potentially leading to new science insights as well as development of new data technologies and systems. The area of interface between geosciences and computer science, also referred to as geoinformatics is, we believe, a fertile area for interdisciplinary research.

  16. Fluid/Structure Interaction Studies of Aircraft Using High Fidelity Equations on Parallel Computers

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru; VanDalsem, William (Technical Monitor)

    1994-01-01

    Abstract Aeroelasticity which involves strong coupling of fluids, structures and controls is an important element in designing an aircraft. Computational aeroelasticity using low fidelity methods such as the linear aerodynamic flow equations coupled with the modal structural equations are well advanced. Though these low fidelity approaches are computationally less intensive, they are not adequate for the analysis of modern aircraft such as High Speed Civil Transport (HSCT) and Advanced Subsonic Transport (AST) which can experience complex flow/structure interactions. HSCT can experience vortex induced aeroelastic oscillations whereas AST can experience transonic buffet associated structural oscillations. Both aircraft may experience a dip in the flutter speed at the transonic regime. For accurate aeroelastic computations at these complex fluid/structure interaction situations, high fidelity equations such as the Navier-Stokes for fluids and the finite-elements for structures are needed. Computations using these high fidelity equations require large computational resources both in memory and speed. Current conventional super computers have reached their limitations both in memory and speed. As a result, parallel computers have evolved to overcome the limitations of conventional computers. This paper will address the transition that is taking place in computational aeroelasticity from conventional computers to parallel computers. The paper will address special techniques needed to take advantage of the architecture of new parallel computers. Results will be illustrated from computations made on iPSC/860 and IBM SP2 computer by using ENSAERO code that directly couples the Euler/Navier-Stokes flow equations with high resolution finite-element structural equations.

  17. A New Approach to Understanding Information Assurance

    NASA Astrophysics Data System (ADS)

    Blyth, Andrew; Williams, Colin; Bryant, Ian; Mattinson, Harvey

    The growth of technologies such as ubiquitous and the mobile computing has resulted in the need for a rethinking of the security paradigm. Over the past forty years technology has made fast steps forward, yet most organisations still view security in terms of Confidentiality, Integrity and Availability (CIA). This model of security has expanded to include Non-Repudiation and Authentication. However this thinking fails to address the social, ethical and business requirements that the modern use of computing has generated. Today computing devices are integrated into every facet of business with the result that security technologies have struggled to keep pace with the rate of change. In this paper we will argue that the currently view that most organisations/stakeholders have of security is out-of-date, or in some cases wrong, and that the new view of security needs to be rooted in business impact and business function.

  18. Adoption and implementation of a computer-delivered HIV/STD risk-reduction intervention for African American adolescent females seeking services at county health departments: implementation optimization is urgently needed.

    PubMed

    DiClemente, Ralph J; Bradley, Erin; Davis, Teaniese L; Brown, Jennifer L; Ukuku, Mary; Sales, Jessica M; Rose, Eve S; Wingood, Gina M

    2013-06-01

    Although group-delivered HIV/sexually transmitted disease (STD) risk-reduction interventions for African American adolescent females have proven efficacious, they require significant financial and staffing resources to implement and may not be feasible in personnel- and resource-constrained public health clinics. We conducted a study assessing adoption and implementation of an evidence-based HIV/STD risk-reduction intervention that was translated from a group-delivered modality to a computer-delivered modality to facilitate use in county public health departments. Usage of the computer-delivered intervention was low across 8 participating public health clinics. Further investigation is needed to optimize implementation by identifying, understanding, and surmounting barriers that hamper timely and efficient implementation of technology-delivered HIV/STD risk-reduction interventions in county public health clinics.

  19. Integration of symbolic and algorithmic hardware and software for the automation of space station subsystems

    NASA Technical Reports Server (NTRS)

    Gregg, Hugh; Healey, Kathleen; Hack, Edmund; Wong, Carla

    1987-01-01

    Traditional expert systems, such as diagnostic and training systems, interact with users only through a keyboard and screen, and are usually symbolic in nature. Expert systems that require access to data bases, complex simulations and real-time instrumentation have both symbolic as well as algorithmic computing needs. These needs could both be met using a general purpose workstation running both symbolic and algorithmic code, or separate, specialized computers networked together. The latter approach was chosen to implement TEXSYS, the thermal expert system, developed by NASA Ames Research Center in conjunction with Johnson Space Center to demonstrate the ability of an expert system to autonomously monitor the thermal control system of the space station. TEXSYS has been implemented on a Symbolics workstation, and will be linked to a microVAX computer that will control a thermal test bed. This paper will explore the integration options, and present several possible solutions.

  20. Adoption and Implementation of a Computer-delivered HIV/STD Risk-Reduction Intervention for African American Adolescent Females Seeking Services at County Health Departments: Implementation Optimization is Urgently Needed

    PubMed Central

    DiClemente, Ralph J.; Bradley, Erin; Davis, Teaniese L.; Brown, Jennifer L.; Ukuku, Mary; Sales, Jessica M.; Rose, Eve S.; Wingood, Gina M.

    2013-01-01

    Although group-delivered HIV/STD risk-reduction interventions for African American adolescent females have proven efficacious, they require significant financial and staffing resources to implement and may not be feasible in personnel- and resource-constrained public health clinics. We conducted a study assessing adoption and implementation of an evidence-based HIV/STD risk-reduction intervention that was translated from a group-delivered modality to a computer-delivered modality to facilitate use in county public health departments. Usage of the computer-delivered intervention was low across eight participating public health clinics. Further investigation is needed to optimize implementation by identifying, understanding and surmounting barriers that hamper timely and efficient implementation of technology-delivered HIV/STD risk-reduction interventions in county public health clinics. PMID:23673891

  1. Personal Computer-less (PC-less) Microcontroller Training Kit

    NASA Astrophysics Data System (ADS)

    Somantri, Y.; Wahyudin, D.; Fushilat, I.

    2018-02-01

    The need of microcontroller training kit is necessary for practical work of students of electrical engineering education. However, to use available training kit not only costly but also does not meet the need of laboratory requirements. An affordable and portable microcontroller kit could answer such problem. This paper explains the design and development of Personal Computer Less (PC-Less) Microcontroller Training Kit. It was developed based on Lattepanda processor and Arduino microcontroller as target. The training kit equipped with advanced input-output interfaces that adopted the concept of low cost and low power system. The preliminary usability testing proved this device can be used as a tool for microcontroller programming and industrial automation training. By adopting the concept of portability, the device could be operated in the rural area which electricity and computer infrastructure are limited. Furthermore, the training kit is suitable for student of electrical engineering student from university and vocational high school.

  2. Vectorization with SIMD extensions speeds up reconstruction in electron tomography.

    PubMed

    Agulleiro, J I; Garzón, E M; García, I; Fernández, J J

    2010-06-01

    Electron tomography allows structural studies of cellular structures at molecular detail. Large 3D reconstructions are needed to meet the resolution requirements. The processing time to compute these large volumes may be considerable and so, high performance computing techniques have been used traditionally. This work presents a vector approach to tomographic reconstruction that relies on the exploitation of the SIMD extensions available in modern processors in combination to other single processor optimization techniques. This approach succeeds in producing full resolution tomograms with an important reduction in processing time, as evaluated with the most common reconstruction algorithms, namely WBP and SIRT. The main advantage stems from the fact that this approach is to be run on standard computers without the need of specialized hardware, which facilitates the development, use and management of programs. Future trends in processor design open excellent opportunities for vector processing with processor's SIMD extensions in the field of 3D electron microscopy.

  3. Computational models of an inductive power transfer system for electric vehicle battery charge

    NASA Astrophysics Data System (ADS)

    Anele, A. O.; Hamam, Y.; Chassagne, L.; Linares, J.; Alayli, Y.; Djouani, K.

    2015-09-01

    One of the issues to be solved for electric vehicles (EVs) to become a success is the technical solution of its charging system. In this paper, computational models of an inductive power transfer (IPT) system for EV battery charge are presented. Based on the fundamental principles behind IPT systems, 3 kW single phase and 22 kW three phase IPT systems for Renault ZOE are designed in MATLAB/Simulink. The results obtained based on the technical specifications of the lithium-ion battery and charger type of Renault ZOE show that the models are able to provide the total voltage required by the battery. Also, considering the charging time for each IPT model, they are capable of delivering the electricity needed to power the ZOE. In conclusion, this study shows that the designed computational IPT models may be employed as a support structure needed to effectively power any viable EV.

  4. eXascale PRogramming Environment and System Software (XPRESS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, Barbara; Gabriel, Edgar

    Exascale systems, with a thousand times the compute capacity of today’s leading edge petascale computers, are expected to emerge during the next decade. Their software systems will need to facilitate the exploitation of exceptional amounts of concurrency in applications, and ensure that jobs continue to run despite the occurrence of system failures and other kinds of hard and soft errors. Adapting computations at runtime to cope with changes in the execution environment, as well as to improve power and performance characteristics, is likely to become the norm. As a result, considerable innovation is required to develop system support to meetmore » the needs of future computing platforms. The XPRESS project aims to develop and prototype a revolutionary software system for extreme-­scale computing for both exascale and strong­scaled problems. The XPRESS collaborative research project will advance the state-­of-­the-­art in high performance computing and enable exascale computing for current and future DOE mission-­critical applications and supporting systems. The goals of the XPRESS research project are to: A. enable exascale performance capability for DOE applications, both current and future, B. develop and deliver a practical computing system software X-­stack, OpenX, for future practical DOE exascale computing systems, and C. provide programming methods and environments for effective means of expressing application and system software for portable exascale system execution.« less

  5. Computational Pathology

    PubMed Central

    Louis, David N.; Feldman, Michael; Carter, Alexis B.; Dighe, Anand S.; Pfeifer, John D.; Bry, Lynn; Almeida, Jonas S.; Saltz, Joel; Braun, Jonathan; Tomaszewski, John E.; Gilbertson, John R.; Sinard, John H.; Gerber, Georg K.; Galli, Stephen J.; Golden, Jeffrey A.; Becich, Michael J.

    2016-01-01

    Context We define the scope and needs within the new discipline of computational pathology, a discipline critical to the future of both the practice of pathology and, more broadly, medical practice in general. Objective To define the scope and needs of computational pathology. Data Sources A meeting was convened in Boston, Massachusetts, in July 2014 prior to the annual Association of Pathology Chairs meeting, and it was attended by a variety of pathologists, including individuals highly invested in pathology informatics as well as chairs of pathology departments. Conclusions The meeting made recommendations to promote computational pathology, including clearly defining the field and articulating its value propositions; asserting that the value propositions for health care systems must include means to incorporate robust computational approaches to implement data-driven methods that aid in guiding individual and population health care; leveraging computational pathology as a center for data interpretation in modern health care systems; stating that realizing the value proposition will require working with institutional administrations, other departments, and pathology colleagues; declaring that a robust pipeline should be fostered that trains and develops future computational pathologists, for those with both pathology and non-pathology backgrounds; and deciding that computational pathology should serve as a hub for data-related research in health care systems. The dissemination of these recommendations to pathology and bioinformatics departments should help facilitate the development of computational pathology. PMID:26098131

  6. A Contextual Information Acquisition Approach Based on Semantics and Mashup Technology

    NASA Astrophysics Data System (ADS)

    He, Yangfan; Li, Lu; He, Keqing; Chen, Xiuhong

    Pay per use is an essential feature of cloud computing. Users can make use of some parts of a large scale service to satisfy their requirements, merely at the cost of a little payment. A good understanding of the users' requirement is a prerequisite for choosing the service in need precisely. Context implies users' potential requirements, which can be a complement to the requirements delivered explicitly. However, traditional context-aware computing research always demands some specific kinds of sensors to acquire contextual information, which renders a threshold too high for an application to become context-aware. This paper comes up with an approach which combines contextual information obtained directly and indirectly from the cloud services. Semantic relationship between different kinds of contexts lays foundation for the searching of the cloud services. And mashup technology is adopted to compose the heterogonous services. Abundant contextual information may lend strong support to a comprehensive understanding of users' context and a bettered abstraction of contextual requirements.

  7. Aerothermodynamic testing requirements for future space transportation systems

    NASA Technical Reports Server (NTRS)

    Paulson, John W., Jr.; Miller, Charles G., III

    1995-01-01

    Aerothermodynamics, encompassing aerodynamics, aeroheating, and fluid dynamic and physical processes, is the genesis for the design and development of advanced space transportation vehicles. It provides crucial information to other disciplines involved in the development process such as structures, materials, propulsion, and avionics. Sources of aerothermodynamic information include ground-based facilities, computational fluid dynamic (CFD) and engineering computer codes, and flight experiments. Utilization of this triad is required to provide the optimum requirements while reducing undue design conservatism, risk, and cost. This paper discusses the role of ground-based facilities in the design of future space transportation system concepts. Testing methodology is addressed, including the iterative approach often required for the assessment and optimization of configurations from an aerothermodynamic perspective. The influence of vehicle shape and the transition from parametric studies for optimization to benchmark studies for final design and establishment of the flight data book is discussed. Future aerothermodynamic testing requirements including the need for new facilities are also presented.

  8. Space Station Simulation Computer System (SCS) study for NASA/MSFC. Concept document

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station Payload of experiments that will be onboard the Space Station Freedom. The simulation will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.

  9. Life sciences research in space: The requirement for animal models

    NASA Technical Reports Server (NTRS)

    Fuller, C. A.; Philips, R. W.; Ballard, R. W.

    1987-01-01

    Use of animals in NASA space programs is reviewed. Animals are needed because life science experimentation frequently requires long-term controlled exposure to environments, statistical validation, invasive instrumentation or biological tissue sampling, tissue destruction, exposure to dangerous or unknown agents, or sacrifice of the subject. The availability and use of human subjects inflight is complicated by the multiple needs and demands upon crew time. Because only living organisms can sense, integrate and respond to the environment around them, the sole use of tissue culture and computer models is insufficient for understanding the influence of the space environment on intact organisms. Equipment for spaceborne experiments with animals is described.

  10. The Role of the National Defense Stockpile in the Supply of Strategic and Critical Materials

    DTIC Science & Technology

    2008-05-09

    Insurance Trust Fund and the Federal Supplementary Medical Trust Fund.53 12 Analysis of NDS Operations and Alternatives The current method of determining...requirements are based upon analysis of military, industrial, and essential civilian materials needs in light of conflict scenarios found in the National...Defense Strategy. The bulk of this analysis is done utilizing computer modeling. First, the model projects the needs for finished products and services

  11. A Boundary Delineation System for the Bureau of Ocean Energy Management

    NASA Astrophysics Data System (ADS)

    Vandegraft, Douglas L.

    2018-05-01

    Federal government mapping of the offshore areas of the United States in support of the development of oil and gas resources began in 1954. The first mapping system utilized a network of rectangular blocks defined by State Plane coordinates which was later revised to utilize the Universal Transverse Mercator grid. Creation of offshore boundaries directed by the Submerged Lands Act and Outer Continental Shelf Lands Act were mathematically determined using early computer programs that performed the required computations, but required many steps. The Bureau of Ocean Energy Management has revised these antiquated methods using GIS technology which provide the required accuracy and produce the mapping products needed for leasing of energy resources, including renewable energy projects, on the outer continental shelf. (Note: this is an updated version of a paper of the same title written and published in 2015).

  12. Focused Belief Measures for Uncertainty Quantification in High Performance Semantic Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joslyn, Cliff A.; Weaver, Jesse R.

    In web-scale semantic data analytics there is a great need for methods which aggregate uncertainty claims, on the one hand respecting the information provided as accurately as possible, while on the other still being tractable. Traditional statistical methods are more robust, but only represent distributional, additive uncertainty. Generalized information theory methods, including fuzzy systems and Dempster-Shafer (DS) evidence theory, represent multiple forms of uncertainty, but are computationally and methodologically difficult. We require methods which provide an effective balance between the complete representation of the full complexity of uncertainty claims in their interaction, while satisfying the needs of both computational complexitymore » and human cognition. Here we build on J{\\o}sang's subjective logic to posit methods in focused belief measures (FBMs), where a full DS structure is focused to a single event. The resulting ternary logical structure is posited to be able to capture the minimal amount of generalized complexity needed at a maximum of computational efficiency. We demonstrate the efficacy of this approach in a web ingest experiment over the 2012 Billion Triple dataset from the Semantic Web Challenge.« less

  13. Investigation into Cloud Computing for More Robust Automated Bulk Image Geoprocessing

    NASA Technical Reports Server (NTRS)

    Brown, Richard B.; Smoot, James C.; Underwood, Lauren; Armstrong, C. Duane

    2012-01-01

    Geospatial resource assessments frequently require timely geospatial data processing that involves large multivariate remote sensing data sets. In particular, for disasters, response requires rapid access to large data volumes, substantial storage space and high performance processing capability. The processing and distribution of this data into usable information products requires a processing pipeline that can efficiently manage the required storage, computing utilities, and data handling requirements. In recent years, with the availability of cloud computing technology, cloud processing platforms have made available a powerful new computing infrastructure resource that can meet this need. To assess the utility of this resource, this project investigates cloud computing platforms for bulk, automated geoprocessing capabilities with respect to data handling and application development requirements. This presentation is of work being conducted by Applied Sciences Program Office at NASA-Stennis Space Center. A prototypical set of image manipulation and transformation processes that incorporate sample Unmanned Airborne System data were developed to create value-added products and tested for implementation on the "cloud". This project outlines the steps involved in creating and testing of open source software developed process code on a local prototype platform, and then transitioning this code with associated environment requirements into an analogous, but memory and processor enhanced cloud platform. A data processing cloud was used to store both standard digital camera panchromatic and multi-band image data, which were subsequently subjected to standard image processing functions such as NDVI (Normalized Difference Vegetation Index), NDMI (Normalized Difference Moisture Index), band stacking, reprojection, and other similar type data processes. Cloud infrastructure service providers were evaluated by taking these locally tested processing functions, and then applying them to a given cloud-enabled infrastructure to assesses and compare environment setup options and enabled technologies. This project reviews findings that were observed when cloud platforms were evaluated for bulk geoprocessing capabilities based on data handling and application development requirements.

  14. Taking Care of the Small Computer: A Guide for Librarians.

    ERIC Educational Resources Information Center

    Williams, Gene

    1986-01-01

    Describes how to identify microcomputer problems and determine whether the services of a technician are required by troubleshooting, or using a process of elimination, without needing a technical background or special tools. Prevention methods and the use of diagnostic programs are also explained. (EM)

  15. Identifying Key Events in AOPs for Embryonic Disruption using Computational Toxicology (European Teratology Society - AOP symp.)

    EPA Science Inventory

    Addressing safety aspects of drugs and environmental chemicals relies extensively on animal testing; however, the quantity of chemicals needing assessment and challenges of species extrapolation require alternative approaches to traditional animal studies. Newer in vitro and in s...

  16. A case study for cloud based high throughput analysis of NGS data using the globus genomics system

    DOE PAGES

    Bhuvaneshwar, Krithika; Sulakhe, Dinanath; Gauba, Robinder; ...

    2015-01-01

    Next generation sequencing (NGS) technologies produce massive amounts of data requiring a powerful computational infrastructure, high quality bioinformatics software, and skilled personnel to operate the tools. We present a case study of a practical solution to this data management and analysis challenge that simplifies terabyte scale data handling and provides advanced tools for NGS data analysis. These capabilities are implemented using the “Globus Genomics” system, which is an enhanced Galaxy workflow system made available as a service that offers users the capability to process and transfer data easily, reliably and quickly to address end-to-end NGS analysis requirements. The Globus Genomicsmore » system is built on Amazon's cloud computing infrastructure. The system takes advantage of elastic scaling of compute resources to run multiple workflows in parallel and it also helps meet the scale-out analysis needs of modern translational genomics research.« less

  17. Design of a high-speed digital processing element for parallel simulation

    NASA Technical Reports Server (NTRS)

    Milner, E. J.; Cwynar, D. S.

    1983-01-01

    A prototype of a custom designed computer to be used as a processing element in a multiprocessor based jet engine simulator is described. The purpose of the custom design was to give the computer the speed and versatility required to simulate a jet engine in real time. Real time simulations are needed for closed loop testing of digital electronic engine controls. The prototype computer has a microcycle time of 133 nanoseconds. This speed was achieved by: prefetching the next instruction while the current one is executing, transporting data using high speed data busses, and using state of the art components such as a very large scale integration (VLSI) multiplier. Included are discussions of processing element requirements, design philosophy, the architecture of the custom designed processing element, the comprehensive instruction set, the diagnostic support software, and the development status of the custom design.

  18. A case study for cloud based high throughput analysis of NGS data using the globus genomics system

    PubMed Central

    Bhuvaneshwar, Krithika; Sulakhe, Dinanath; Gauba, Robinder; Rodriguez, Alex; Madduri, Ravi; Dave, Utpal; Lacinski, Lukasz; Foster, Ian; Gusev, Yuriy; Madhavan, Subha

    2014-01-01

    Next generation sequencing (NGS) technologies produce massive amounts of data requiring a powerful computational infrastructure, high quality bioinformatics software, and skilled personnel to operate the tools. We present a case study of a practical solution to this data management and analysis challenge that simplifies terabyte scale data handling and provides advanced tools for NGS data analysis. These capabilities are implemented using the “Globus Genomics” system, which is an enhanced Galaxy workflow system made available as a service that offers users the capability to process and transfer data easily, reliably and quickly to address end-to-endNGS analysis requirements. The Globus Genomics system is built on Amazon 's cloud computing infrastructure. The system takes advantage of elastic scaling of compute resources to run multiple workflows in parallel and it also helps meet the scale-out analysis needs of modern translational genomics research. PMID:26925205

  19. The development of the ICME supply-chain: Route to ICME implementation and sustainment

    NASA Astrophysics Data System (ADS)

    Furrer, David; Schirra, John

    2011-04-01

    Over the past twenty years, integrated computational materials engineering (ICME) has emerged as a key engineering field with great promise. Models simulating materials-related phenomena have been developed and are being validated for industrial application. The integration of computational methods into material, process and component design has been a challenge, however, in part due to the complexities in the development of an ICME "supply-chain" that supports, sustains and delivers this emerging technology. ICME touches many disciplines, which results in a requirement for many types of computational-based technology organizations to be involved to provide tools that can be rapidly developed, validated, deployed and maintained for industrial applications. The need for, and the current state of an ICME supply-chain along with development and future requirements for the continued pace of introduction of ICME into industrial design practices will be reviewed within this article.

  20. The new landscape of parallel computer architecture

    NASA Astrophysics Data System (ADS)

    Shalf, John

    2007-07-01

    The past few years has seen a sea change in computer architecture that will impact every facet of our society as every electronic device from cell phone to supercomputer will need to confront parallelism of unprecedented scale. Whereas the conventional multicore approach (2, 4, and even 8 cores) adopted by the computing industry will eventually hit a performance plateau, the highest performance per watt and per chip area is achieved using manycore technology (hundreds or even thousands of cores). However, fully unleashing the potential of the manycore approach to ensure future advances in sustained computational performance will require fundamental advances in computer architecture and programming models that are nothing short of reinventing computing. In this paper we examine the reasons behind the movement to exponentially increasing parallelism, and its ramifications for system design, applications and programming models.

  1. Symmetrically private information retrieval based on blind quantum computing

    NASA Astrophysics Data System (ADS)

    Sun, Zhiwei; Yu, Jianping; Wang, Ping; Xu, Lingling

    2015-05-01

    Universal blind quantum computation (UBQC) is a new secure quantum computing protocol which allows a user Alice who does not have any sophisticated quantum technology to delegate her computing to a server Bob without leaking any privacy. Using the features of UBQC, we propose a protocol to achieve symmetrically private information retrieval, which allows a quantum limited Alice to query an item from Bob with a fully fledged quantum computer; meanwhile, the privacy of both parties is preserved. The security of our protocol is based on the assumption that malicious Alice has no quantum computer, which avoids the impossibility proof of Lo. For the honest Alice, she is almost classical and only requires minimal quantum resources to carry out the proposed protocol. Therefore, she does not need any expensive laboratory which can maintain the coherence of complicated quantum experimental setups.

  2. Causal learning with local computations.

    PubMed

    Fernbach, Philip M; Sloman, Steven A

    2009-05-01

    The authors proposed and tested a psychological theory of causal structure learning based on local computations. Local computations simplify complex learning problems via cues available on individual trials to update a single causal structure hypothesis. Structural inferences from local computations make minimal demands on memory, require relatively small amounts of data, and need not respect normative prescriptions as inferences that are principled locally may violate those principles when combined. Over a series of 3 experiments, the authors found (a) systematic inferences from small amounts of data; (b) systematic inference of extraneous causal links; (c) influence of data presentation order on inferences; and (d) error reduction through pretraining. Without pretraining, a model based on local computations fitted data better than a Bayesian structural inference model. The data suggest that local computations serve as a heuristic for learning causal structure. Copyright 2009 APA, all rights reserved.

  3. Reprocessing Multiyear GPS Data from Continuously Operating Reference Stations on Cloud Computing Platform

    NASA Astrophysics Data System (ADS)

    Yoon, S.

    2016-12-01

    To define geodetic reference frame using GPS data collected by Continuously Operating Reference Stations (CORS) network, historical GPS data needs to be reprocessed regularly. Reprocessing GPS data collected by upto 2000 CORS sites for the last two decades requires a lot of computational resource. At National Geodetic Survey (NGS), there has been one completed reprocessing in 2011, and currently, the second reprocessing is undergoing. For the first reprocessing effort, in-house computing resource was utilized. In the current second reprocessing effort, outsourced cloud computing platform is being utilized. In this presentation, the outline of data processing strategy at NGS is described as well as the effort to parallelize the data processing procedure in order to maximize the benefit of the cloud computing. The time and cost savings realized by utilizing cloud computing approach will also be discussed.

  4. A prototype expert/information system for examining environmental risks of KSC activities

    NASA Technical Reports Server (NTRS)

    Engel, Bernard A.

    1993-01-01

    Protection of the environment and natural resources at the Kennedy Space Center (KSC) is of great concern. An expert/information system to replace the paper-based KSC Environmental Checklist was developed. The computer-based system requests information only as a required and supplies assistance as needed. The most comprehensive portion of the system provides information about endangered species habitat at KSC. This module uses geographic information system (GIS) data and tools, expert rules, color graphics, computer-based video, and hypertext to provide information.

  5. Information War and the Air Force: Wave of the Future? Current Fad?

    DTIC Science & Technology

    1996-03-01

    computers and appears to be confident that they will be adequate.16 It also seems relatively sanguine about the security of classi- fied computers, at...the illusion that new weapons can take the horror out of war is a disservice to rational policymaking. Instead, all of the new weapons need to be...of large-scale precision attack requires maturation of a number of differ- ent technologies, and that has taken a considerable num - ber of years

  6. GEODYN programmer's guide, volume 2, part 2. [computer program for estimation of orbit and geodetic parameters

    NASA Technical Reports Server (NTRS)

    Mullins, N. E.; Dao, N. C.; Martin, T. V.; Goad, C. C.; Boulware, N. L.; Chin, M. M.

    1972-01-01

    A computer program for executive control routine for orbit integration of artificial satellites is presented. At the beginning of each arc, the program initiates required constants as well as the variational partials at epoch. If epoch needs to be reset to a previous time, the program negates the stepsize, and calls for integration backward to the desired time. After backward integration is completed, the program resets the stepsize to the proper positive quantity.

  7. A parallel-processing approach to computing for the geographic sciences

    USGS Publications Warehouse

    Crane, Michael; Steinwand, Dan; Beckmann, Tim; Krpan, Greg; Haga, Jim; Maddox, Brian; Feller, Mark

    2001-01-01

    The overarching goal of this project is to build a spatially distributed infrastructure for information science research by forming a team of information science researchers and providing them with similar hardware and software tools to perform collaborative research. Four geographically distributed Centers of the U.S. Geological Survey (USGS) are developing their own clusters of low-cost personal computers into parallel computing environments that provide a costeffective way for the USGS to increase participation in the high-performance computing community. Referred to as Beowulf clusters, these hybrid systems provide the robust computing power required for conducting research into various areas, such as advanced computer architecture, algorithms to meet the processing needs for real-time image and data processing, the creation of custom datasets from seamless source data, rapid turn-around of products for emergency response, and support for computationally intense spatial and temporal modeling.

  8. Future fundamental combustion research for aeropropulsion systems

    NASA Technical Reports Server (NTRS)

    Mularz, E. J.

    1985-01-01

    Physical fluid mechanics, heat transfer, and chemical kinetic processes which occur in the combustion chamber of aeropropulsion systems were investigated. With the component requirements becoming more severe for future engines, the current design methodology needs the new tools to obtain the optimum configuration in a reasonable design and development cycle. Research efforts in the last few years were encouraging but to achieve these benefits research is required into the fundamental aerothermodynamic processes of combustion. It is recommended that research continues in the areas of flame stabilization, combustor aerodynamics, heat transfer, multiphase flow and atomization, turbulent reacting flows, and chemical kinetics. Associated with each of these engineering sciences is the need for research into computational methods to accurately describe and predict these complex physical processes. Research needs in each of these areas are highlighted.

  9. Solving satisfiability problems using a novel microarray-based DNA computer.

    PubMed

    Lin, Che-Hsin; Cheng, Hsiao-Ping; Yang, Chang-Biau; Yang, Chia-Ning

    2007-01-01

    An algorithm based on a modified sticker model accompanied with an advanced MEMS-based microarray technology is demonstrated to solve SAT problem, which has long served as a benchmark in DNA computing. Unlike conventional DNA computing algorithms needing an initial data pool to cover correct and incorrect answers and further executing a series of separation procedures to destroy the unwanted ones, we built solutions in parts to satisfy one clause in one step, and eventually solve the entire Boolean formula through steps. No time-consuming sample preparation procedures and delicate sample applying equipment were required for the computing process. Moreover, experimental results show the bound DNA sequences can sustain the chemical solutions during computing processes such that the proposed method shall be useful in dealing with large-scale problems.

  10. Using Mosix for Wide-Area Compuational Resources

    USGS Publications Warehouse

    Maddox, Brian G.

    2004-01-01

    One of the problems with using traditional Beowulf-type distributed processing clusters is that they require an investment in dedicated computer resources. These resources are usually needed in addition to pre-existing ones such as desktop computers and file servers. Mosix is a series of modifications to the Linux kernel that creates a virtual computer, featuring automatic load balancing by migrating processes from heavily loaded nodes to less used ones. An extension of the Beowulf concept is to run a Mosixenabled Linux kernel on a large number of computer resources in an organization. This configuration would provide a very large amount of computational resources based on pre-existing equipment. The advantage of this method is that it provides much more processing power than a traditional Beowulf cluster without the added costs of dedicating resources.

  11. Architectural Aspects of Grid Computing and its Global Prospects for E-Science Community

    NASA Astrophysics Data System (ADS)

    Ahmad, Mushtaq

    2008-05-01

    The paper reviews the imminent Architectural Aspects of Grid Computing for e-Science community for scientific research and business/commercial collaboration beyond physical boundaries. Grid Computing provides all the needed facilities; hardware, software, communication interfaces, high speed internet, safe authentication and secure environment for collaboration of research projects around the globe. It provides highly fast compute engine for those scientific and engineering research projects and business/commercial applications which are heavily compute intensive and/or require humongous amounts of data. It also makes possible the use of very advanced methodologies, simulation models, expert systems and treasure of knowledge available around the globe under the umbrella of knowledge sharing. Thus it makes possible one of the dreams of global village for the benefit of e-Science community across the globe.

  12. Computational Complexity and Human Decision-Making.

    PubMed

    Bossaerts, Peter; Murawski, Carsten

    2017-12-01

    The rationality principle postulates that decision-makers always choose the best action available to them. It underlies most modern theories of decision-making. The principle does not take into account the difficulty of finding the best option. Here, we propose that computational complexity theory (CCT) provides a framework for defining and quantifying the difficulty of decisions. We review evidence showing that human decision-making is affected by computational complexity. Building on this evidence, we argue that most models of decision-making, and metacognition, are intractable from a computational perspective. To be plausible, future theories of decision-making will need to take into account both the resources required for implementing the computations implied by the theory, and the resource constraints imposed on the decision-maker by biology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Light-weight Parallel Python Tools for Earth System Modeling Workflows

    NASA Astrophysics Data System (ADS)

    Mickelson, S. A.; Paul, K.; Xu, H.; Dennis, J.; Brown, D. I.

    2015-12-01

    With the growth in computing power over the last 30 years, earth system modeling codes have become increasingly data-intensive. As an example, it is expected that the data required for the next Intergovernmental Panel on Climate Change (IPCC) Assessment Report (AR6) will increase by more than 10x to an expected 25PB per climate model. Faced with this daunting challenge, developers of the Community Earth System Model (CESM) have chosen to change the format of their data for long-term storage from time-slice to time-series, in order to reduce the required download bandwidth needed for later analysis and post-processing by climate scientists. Hence, efficient tools are required to (1) perform the transformation of the data from time-slice to time-series format and to (2) compute climatology statistics, needed for many diagnostic computations, on the resulting time-series data. To address the first of these two challenges, we have developed a parallel Python tool for converting time-slice model output to time-series format. To address the second of these challenges, we have developed a parallel Python tool to perform fast time-averaging of time-series data. These tools are designed to be light-weight, be easy to install, have very few dependencies, and can be easily inserted into the Earth system modeling workflow with negligible disruption. In this work, we present the motivation, approach, and testing results of these two light-weight parallel Python tools, as well as our plans for future research and development.

  14. Control for small-speed lateral flight in a model insect.

    PubMed

    Zhang, Yan Lai; Sun, Mao

    2011-09-01

    Controls required for small-speed lateral flight of a model insect were studied using techniques based on the linear theories of stability and control (the stability and control derivatives were computed by the method of computational fluid dynamics). The main results are as follows. (1) Two steady-state lateral motions can exist: one is a horizontal side translation with the body rolling to the same side of the translation by a small angle, and the other is a constant-rate yaw rotation (rotation about the vertical axis). (2) The side translation requires an anti-symmetrical change in the stroke amplitudes of the contralateral wings, and/or an anti-symmetrical change in the angles of attack of the contralateral wings, with the down- and upstroke angles of attack of a wing having equal change. The constant-rate yaw rotation requires an anti-symmetrical change in the angles of attack of the contralateral wings, with the down- and upstroke angles of attack of a wing having differential change. (3) For the control of the horizontal side translation, control input required for the steady-state motion has an opposite sign to that needed for initiating the motion. For example, to have a steady-state left side-translation, the insect needs to increase the stroke amplitude of the left wing and decrease that of the right wing to maintain the steady-state flight, but it needs an opposite change in stroke amplitude (decreasing the stroke amplitude of the left wing and increasing that of the right wing) to enter the flight.

  15. Requirements for a geometry programming language for CFD applications

    NASA Technical Reports Server (NTRS)

    Gentry, Arvel E.

    1992-01-01

    A number of typical problems faced by the aerodynamicist in using computational fluid dynamics are presented to illustrate the need for a geometry programming language. The overall requirements for such a language are illustrated by examples from the Boeing Aero Grid and Paneling System (AGPS). Some of the problems in building such a system are also reviewed along with suggestions as to what to look for when evaluating new software problems.

  16. Remote Earth Sciences data collection using ACTS

    NASA Technical Reports Server (NTRS)

    Evans, Robert H.

    1992-01-01

    Given the focus on global change and the attendant scope of such research, we anticipate significant growth of requirements for investigator interaction, processing system capabilities, and availability of data sets. The increased complexity of global processes requires interdisciplinary teams to address them; the investigators will need to interact on a regular basis; however, it is unlikely that a single institution will house sufficient investigators with the required breadth of skills. The complexity of the computations may also require resources beyond those located within a single institution; this lack of sufficient computational resources leads to a distributed system located at geographically dispersed institutions. Finally the combination of long term data sets like the Pathfinder datasets and the data to be gathered by new generations of satellites such as SeaWiFS and MODIS-N yield extra-ordinarily large amounts of data. All of these factors combine to increase demands on the communications facilities available; the demands are generating requirements for highly flexible, high capacity networks. We have been examining the applicability of the Advanced Communications Technology Satellite (ACTS) to address the scientific, computational, and, primarily, communications questions resulting from global change research. As part of this effort three scenarios for oceanographic use of ACTS have been developed; a full discussion of this is contained in Appendix B.

  17. Computer Modeling to Evaluate the Impact of Technology Changes on Resident Procedural Volume.

    PubMed

    Grenda, Tyler R; Ballard, Tiffany N S; Obi, Andrea T; Pozehl, William; Seagull, F Jacob; Chen, Ryan; Cohn, Amy M; Daskin, Mark S; Reddy, Rishindra M

    2016-12-01

    As resident "index" procedures change in volume due to advances in technology or reliance on simulation, it may be difficult to ensure trainees meet case requirements. Training programs are in need of metrics to determine how many residents their institutional volume can support. As a case study of how such metrics can be applied, we evaluated a case distribution simulation model to examine program-level mediastinoscopy and endobronchial ultrasound (EBUS) volumes needed to train thoracic surgery residents. A computer model was created to simulate case distribution based on annual case volume, number of trainees, and rotation length. Single institutional case volume data (2011-2013) were applied, and 10 000 simulation years were run to predict the likelihood (95% confidence interval) of all residents (4 trainees) achieving board requirements for operative volume during a 2-year program. The mean annual mediastinoscopy volume was 43. In a simulation of pre-2012 board requirements (thoracic pathway, 25; cardiac pathway, 10), there was a 6% probability of all 4 residents meeting requirements. Under post-2012 requirements (thoracic, 15; cardiac, 10), however, the likelihood increased to 88%. When EBUS volume (mean 19 cases per year) was concurrently evaluated in the post-2012 era (thoracic, 10; cardiac, 0), the likelihood of all 4 residents meeting case requirements was only 23%. This model provides a metric to predict the probability of residents meeting case requirements in an era of changing volume by accounting for unpredictable and inequitable case distribution. It could be applied across operations, procedures, or disease diagnoses and may be particularly useful in developing resident curricula and schedules.

  18. ExM:System Support for Extreme-Scale, Many-Task Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katz, Daniel S

    The ever-increasing power of supercomputer systems is both driving and enabling the emergence of new problem-solving methods that require the effi cient execution of many concurrent and interacting tasks. Methodologies such as rational design (e.g., in materials science), uncertainty quanti fication (e.g., in engineering), parameter estimation (e.g., for chemical and nuclear potential functions, and in economic energy systems modeling), massive dynamic graph pruning (e.g., in phylogenetic searches), Monte-Carlo- based iterative fi xing (e.g., in protein structure prediction), and inverse modeling (e.g., in reservoir simulation) all have these requirements. These many-task applications frequently have aggregate computing needs that demand the fastestmore » computers. For example, proposed next-generation climate model ensemble studies will involve 1,000 or more runs, each requiring 10,000 cores for a week, to characterize model sensitivity to initial condition and parameter uncertainty. The goal of the ExM project is to achieve the technical advances required to execute such many-task applications efficiently, reliably, and easily on petascale and exascale computers. In this way, we will open up extreme-scale computing to new problem solving methods and application classes. In this document, we report on combined technical progress of the collaborative ExM project, and the institutional financial status of the portion of the project at University of Chicago, over the rst 8 months (through April 30, 2011)« less

  19. Acceleration of color computer-generated hologram from three-dimensional scenes with texture and depth information

    NASA Astrophysics Data System (ADS)

    Shimobaba, Tomoyoshi; Kakue, Takashi; Ito, Tomoyoshi

    2014-06-01

    We propose acceleration of color computer-generated holograms (CGHs) from three-dimensional (3D) scenes that are expressed as texture (RGB) and depth (D) images. These images are obtained by 3D graphics libraries and RGB-D cameras: for example, OpenGL and Kinect, respectively. We can regard them as two-dimensional (2D) cross-sectional images along the depth direction. The generation of CGHs from the 2D cross-sectional images requires multiple diffraction calculations. If we use convolution-based diffraction such as the angular spectrum method, the diffraction calculation takes a long time and requires large memory usage because the convolution diffraction calculation requires the expansion of the 2D cross-sectional images to avoid the wraparound noise. In this paper, we first describe the acceleration of the diffraction calculation using "Band-limited double-step Fresnel diffraction," which does not require the expansion. Next, we describe color CGH acceleration using color space conversion. In general, color CGHs are generated on RGB color space; however, we need to repeat the same calculation for each color component, so that the computational burden of the color CGH generation increases three-fold, compared with monochrome CGH generation. We can reduce the computational burden by using YCbCr color space because the 2D cross-sectional images on YCbCr color space can be down-sampled without the impairing of the image quality.

  20. Towards Real Information on Demand.

    ERIC Educational Resources Information Center

    Barker, Philip

    The phrase "information on demand" is often used to describe situations in which digital electronic information can be delivered to particular points of need at times and in ways that are determined by the specific requirements of individual consumers or client groups. The advent of "mobile" computing equipment now makes the…

  1. Learning to Teach Mathematics with Technology: A Survey of Professional Development Needs, Experiences and Impacts

    ERIC Educational Resources Information Center

    Bennison, Anne; Goos, Merrilyn

    2010-01-01

    The potential for digital technologies to enhance students' mathematics learning is widely recognised, and use of computers and graphics calculators is now encouraged or required by secondary school mathematics curriculum documents throughout Australia. However, previous research indicates that effective integration of technology into classroom…

  2. Hybrid Fiber/Copper LAN Meets School's 25-Year Networking Requirements.

    ERIC Educational Resources Information Center

    Petruso, Sam; Humes, Vince

    1994-01-01

    Describes an innovative new curriculum being implemented at Walnut Creek Middle School (Pennsylvania) and an advanced networked computer environment that supports it now and will also meet future needs. Topics addressed include physical facilities; networking goals, both short-term and long-term; fiber-optic cable versus copper; and future…

  3. Coding Skills as a Success Factor for a Society

    ERIC Educational Resources Information Center

    Tuomi, Pauliina; Multisilta, Jari Antero; Saarikoski, Petri; Suominen, Jaakko

    2018-01-01

    Digitalization is one of the most promising ways to increase productivity in the public sector and is needed to reform the economy by creating new innovation related jobs. The implementation of digital services requires problem solving, design skills, logical thinking, an understanding of how computers and networks operate, and programming…

  4. Common Sense Wordworking III: Desktop Publishing and Desktop Typesetting.

    ERIC Educational Resources Information Center

    Crawford, Walt

    1987-01-01

    Describes current desktop publishing packages available for microcomputers and discusses the disadvantages, especially in cost, for most personal computer users. Also described is a less expensive alternative technology--desktop typesetting--which meets the requirements of users who do not need elaborate techniques for combining text and graphics.…

  5. A tiered approach to incorporate exposure and pharmacokinetics considerations in in vitro based safety assessment

    EPA Science Inventory

    Application of in vitro based safety assessment requires reconciling chemical concentrations sufficient to produce bioactivity in vitro with those that trigger a molecular initiating event at the relevant in vivo target site. To address such need, computational tools such as phy...

  6. Assessing Teaching Skills with a Mobile Simulation

    ERIC Educational Resources Information Center

    Gibson, David

    2013-01-01

    Because mobile technologies are overtaking personal computers as the primary tools of Internet access, and cloud-based resources are fundamentally transforming the world's knowledge, new forms of teaching and assessment are required to foster 21st century literacies, including those needed by K-12 teachers. A key feature of mobile technology…

  7. Automated Bilingual Circulation System Using PC Local Area Networks.

    ERIC Educational Resources Information Center

    Iskanderani, A. I.; Anwar, M. A.

    1992-01-01

    Describes a personal computer and LAN-based automated circulation system capable of handling both Arabic and Latin characters that was developed for use at King Abdullaziz University (Jeddah, Saudi Arabia). Outlines system requirements, system structure, hardware needs, and individual functional modules of the system. Numerous examples and flow…

  8. Applied Mathematics at the U.S. Department of Energy: Past, Present and a View to the Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, D L; Bell, J; Estep, D

    2008-02-15

    Over the past half-century, the Applied Mathematics program in the U.S. Department of Energy's Office of Advanced Scientific Computing Research has made significant, enduring advances in applied mathematics that have been essential enablers of modern computational science. Motivated by the scientific needs of the Department of Energy and its predecessors, advances have been made in mathematical modeling, numerical analysis of differential equations, optimization theory, mesh generation for complex geometries, adaptive algorithms and other important mathematical areas. High-performance mathematical software libraries developed through this program have contributed as much or more to the performance of modern scientific computer codes as themore » high-performance computers on which these codes run. The combination of these mathematical advances and the resulting software has enabled high-performance computers to be used for scientific discovery in ways that could only be imagined at the program's inception. Our nation, and indeed our world, face great challenges that must be addressed in coming years, and many of these will be addressed through the development of scientific understanding and engineering advances yet to be discovered. The U.S. Department of Energy (DOE) will play an essential role in providing science-based solutions to many of these problems, particularly those that involve the energy, environmental and national security needs of the country. As the capability of high-performance computers continues to increase, the types of questions that can be answered by applying this huge computational power become more varied and more complex. It will be essential that we find new ways to develop and apply the mathematics necessary to enable the new scientific and engineering discoveries that are needed. In August 2007, a panel of experts in applied, computational and statistical mathematics met for a day and a half in Berkeley, California to understand the mathematical developments required to meet the future science and engineering needs of the DOE. It is important to emphasize that the panelists were not asked to speculate only on advances that might be made in their own research specialties. Instead, the guidance this panel was given was to consider the broad science and engineering challenges that the DOE faces and identify the corresponding advances that must occur across the field of mathematics for these challenges to be successfully addressed. As preparation for the meeting, each panelist was asked to review strategic planning and other informational documents available for one or more of the DOE Program Offices, including the Offices of Science, Nuclear Energy, Fossil Energy, Environmental Management, Legacy Management, Energy Efficiency & Renewable Energy, Electricity Delivery & Energy Reliability and Civilian Radioactive Waste Management as well as the National Nuclear Security Administration. The panelists reported on science and engineering needs for each of these offices, and then discussed and identified mathematical advances that will be required if these challenges are to be met. A review of DOE challenges in energy, the environment and national security brings to light a broad and varied array of questions that the DOE must answer in the coming years. A representative subset of such questions includes: (1) Can we predict the operating characteristics of a clean coal power plant? (2) How stable is the plasma containment in a tokamak? (3) How quickly is climate change occurring and what are the uncertainties in the predicted time scales? (4) How quickly can an introduced bio-weapon contaminate the agricultural environment in the US? (5) How do we modify models of the atmosphere and clouds to incorporate newly collected data of possibly of new types? (6) How quickly can the United States recover if part of the power grid became inoperable? (7) What are optimal locations and communication protocols for sensing devices in a remote-sensing network? (8) How can new materials be designed with a specified desirable set of properties? In comparing and contrasting these and other questions of importance to DOE, the panel found that while the scientific breadth of the requirements is enormous, a central theme emerges: Scientists are being asked to identify or provide technology, or to give expert analysis to inform policy-makers that requires the scientific understanding of increasingly complex physical and engineered systems. In addition, as the complexity of the systems of interest increases, neither experimental observation nor mathematical and computational modeling alone can access all components of the system over the entire range of scales or conditions needed to provide the required scientific understanding.« less

  9. Roads towards fault-tolerant universal quantum computation

    NASA Astrophysics Data System (ADS)

    Campbell, Earl T.; Terhal, Barbara M.; Vuillot, Christophe

    2017-09-01

    A practical quantum computer must not merely store information, but also process it. To prevent errors introduced by noise from multiplying and spreading, a fault-tolerant computational architecture is required. Current experiments are taking the first steps toward noise-resilient logical qubits. But to convert these quantum devices from memories to processors, it is necessary to specify how a universal set of gates is performed on them. The leading proposals for doing so, such as magic-state distillation and colour-code techniques, have high resource demands. Alternative schemes, such as those that use high-dimensional quantum codes in a modular architecture, have potential benefits, but need to be explored further.

  10. Roads towards fault-tolerant universal quantum computation.

    PubMed

    Campbell, Earl T; Terhal, Barbara M; Vuillot, Christophe

    2017-09-13

    A practical quantum computer must not merely store information, but also process it. To prevent errors introduced by noise from multiplying and spreading, a fault-tolerant computational architecture is required. Current experiments are taking the first steps toward noise-resilient logical qubits. But to convert these quantum devices from memories to processors, it is necessary to specify how a universal set of gates is performed on them. The leading proposals for doing so, such as magic-state distillation and colour-code techniques, have high resource demands. Alternative schemes, such as those that use high-dimensional quantum codes in a modular architecture, have potential benefits, but need to be explored further.

  11. Right Size Determining the Staff Necessary to Sustain Simulation and Computing Capabilities for Nuclear Security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikkel, Daniel J.; Meisner, Robert

    The Advanced Simulation and Computing Campaign, herein referred to as the ASC Program, is a core element of the science-based Stockpile Stewardship Program (SSP), which enables assessment, certification, and maintenance of the safety, security, and reliability of the U.S. nuclear stockpile without the need to resume nuclear testing. The use of advanced parallel computing has transitioned from proof-of-principle to become a critical element for assessing and certifying the stockpile. As the initiative phase of the ASC Program came to an end in the mid-2000s, the National Nuclear Security Administration redirected resources to other urgent priorities, and resulting staff reductions inmore » ASC occurred without the benefit of analysis of the impact on modern stockpile stewardship that is dependent on these new simulation capabilities. Consequently, in mid-2008 the ASC Program management commissioned a study to estimate the essential size and balance needed to sustain advanced simulation as a core component of stockpile stewardship. The ASC Program requires a minimum base staff size of 930 (which includes the number of staff necessary to maintain critical technical disciplines as well as to execute required programmatic tasks) to sustain its essential ongoing role in stockpile stewardship.« less

  12. Parallelization of the Physical-Space Statistical Analysis System (PSAS)

    NASA Technical Reports Server (NTRS)

    Larson, J. W.; Guo, J.; Lyster, P. M.

    1999-01-01

    Atmospheric data assimilation is a method of combining observations with model forecasts to produce a more accurate description of the atmosphere than the observations or forecast alone can provide. Data assimilation plays an increasingly important role in the study of climate and atmospheric chemistry. The NASA Data Assimilation Office (DAO) has developed the Goddard Earth Observing System Data Assimilation System (GEOS DAS) to create assimilated datasets. The core computational components of the GEOS DAS include the GEOS General Circulation Model (GCM) and the Physical-space Statistical Analysis System (PSAS). The need for timely validation of scientific enhancements to the data assimilation system poses computational demands that are best met by distributed parallel software. PSAS is implemented in Fortran 90 using object-based design principles. The analysis portions of the code solve two equations. The first of these is the "innovation" equation, which is solved on the unstructured observation grid using a preconditioned conjugate gradient (CG) method. The "analysis" equation is a transformation from the observation grid back to a structured grid, and is solved by a direct matrix-vector multiplication. Use of a factored-operator formulation reduces the computational complexity of both the CG solver and the matrix-vector multiplication, rendering the matrix-vector multiplications as a successive product of operators on a vector. Sparsity is introduced to these operators by partitioning the observations using an icosahedral decomposition scheme. PSAS builds a large (approx. 128MB) run-time database of parameters used in the calculation of these operators. Implementing a message passing parallel computing paradigm into an existing yet developing computational system as complex as PSAS is nontrivial. One of the technical challenges is balancing the requirements for computational reproducibility with the need for high performance. The problem of computational reproducibility is well known in the parallel computing community. It is a requirement that the parallel code perform calculations in a fashion that will yield identical results on different configurations of processing elements on the same platform. In some cases this problem can be solved by sacrificing performance. Meeting this requirement and still achieving high performance is very difficult. Topics to be discussed include: current PSAS design and parallelization strategy; reproducibility issues; load balance vs. database memory demands, possible solutions to these problems.

  13. Efficient operating system level virtualization techniques for cloud resources

    NASA Astrophysics Data System (ADS)

    Ansu, R.; Samiksha; Anju, S.; Singh, K. John

    2017-11-01

    Cloud computing is an advancing technology which provides the servcies of Infrastructure, Platform and Software. Virtualization and Computer utility are the keys of Cloud computing. The numbers of cloud users are increasing day by day. So it is the need of the hour to make resources available on demand to satisfy user requirements. The technique in which resources namely storage, processing power, memory and network or I/O are abstracted is known as Virtualization. For executing the operating systems various virtualization techniques are available. They are: Full System Virtualization and Para Virtualization. In Full Virtualization, the whole architecture of hardware is duplicated virtually. No modifications are required in Guest OS as the OS deals with the VM hypervisor directly. In Para Virtualization, modifications of OS is required to run in parallel with other OS. For the Guest OS to access the hardware, the host OS must provide a Virtual Machine Interface. OS virtualization has many advantages such as migrating applications transparently, consolidation of server, online maintenance of OS and providing security. This paper briefs both the virtualization techniques and discusses the issues in OS level virtualization.

  14. Inhomogeneous Radiation Boundary Conditions Simulating Incoming Acoustic Waves for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Fang, Jun; Kurbatskii, Konstantin A.

    1996-01-01

    A set of nonhomogeneous radiation and outflow conditions which automatically generate prescribed incoming acoustic or vorticity waves and, at the same time, are transparent to outgoing sound waves produced internally in a finite computation domain is proposed. This type of boundary condition is needed for the numerical solution of many exterior aeroacoustics problems. In computational aeroacoustics, the computation scheme must be as nondispersive ans nondissipative as possible. It must also support waves with wave speeds which are nearly the same as those of the original linearized Euler equations. To meet these requirements, a high-order/large-stencil scheme is necessary The proposed nonhomogeneous radiation and outflow boundary conditions are designed primarily for use in conjunction with such high-order/large-stencil finite difference schemes.

  15. Functional structure and dynamics of the human nervous system

    NASA Technical Reports Server (NTRS)

    Lawrence, J. A.

    1981-01-01

    The status of an effort to define the directions needed to take in extending pilot models is reported. These models are needed to perform closed-loop (man-in-the-loop) feedback flight control system designs and to develop cockpit display requirements. The approach taken is to develop a hypothetical working model of the human nervous system by reviewing the current literature in neurology and psychology and to develop a computer model of this hypothetical working model.

  16. Reducing obesity will require involvement of all sectors of society.

    PubMed

    Hill, James O; Peters, John C; Blair, Steven N

    2015-02-01

    We need all sectors of society involved in reducing obesity. The food industry's effort to reduce energy intake as part of the Healthy Weight Commitment Foundation is a significant step in the right direction and should be recognized as such by the public health community. We also need to get organizations that promote physical inactivity, such as computer, automobile, and entertainment industries, to become engaged in efforts to reduce obesity. © 2014 The Obesity Society.

  17. Basic concepts and development of an all-purpose computer interface for ROC/FROC observer study.

    PubMed

    Shiraishi, Junji; Fukuoka, Daisuke; Hara, Takeshi; Abe, Hiroyuki

    2013-01-01

    In this study, we initially investigated various aspects of requirements for a computer interface employed in receiver operating characteristic (ROC) and free-response ROC (FROC) observer studies which involve digital images and ratings obtained by observers (radiologists). Secondly, by taking into account these aspects, an all-purpose computer interface utilized for these observer performance studies was developed. Basically, the observer studies can be classified into three paradigms, such as one rating for one case without an identification of a signal location, one rating for one case with an identification of a signal location, and multiple ratings for one case with identification of signal locations. For these paradigms, display modes on the computer interface can be used for single/multiple views of a static image, continuous viewing with cascade images (i.e., CT, MRI), and dynamic viewing of movies (i.e., DSA, ultrasound). Various functions on these display modes, which include windowing (contrast/level), magnifications, and annotations, are needed to be selected by an experimenter corresponding to the purpose of the research. In addition, the rules of judgment for distinguishing between true positives and false positives are an important factor for estimating diagnostic accuracy in an observer study. We developed a computer interface which runs on a Windows operating system by taking into account all aspects required for various observer studies. This computer interface requires experimenters to have sufficient knowledge about ROC/FROC observer studies, but allows its use for any purpose of the observer studies. This computer interface will be distributed publicly in the near future.

  18. Synthetic analog computation in living cells.

    PubMed

    Daniel, Ramiz; Rubens, Jacob R; Sarpeshkar, Rahul; Lu, Timothy K

    2013-05-30

    A central goal of synthetic biology is to achieve multi-signal integration and processing in living cells for diagnostic, therapeutic and biotechnology applications. Digital logic has been used to build small-scale circuits, but other frameworks may be needed for efficient computation in the resource-limited environments of cells. Here we demonstrate that synthetic analog gene circuits can be engineered to execute sophisticated computational functions in living cells using just three transcription factors. Such synthetic analog gene circuits exploit feedback to implement logarithmically linear sensing, addition, ratiometric and power-law computations. The circuits exhibit Weber's law behaviour as in natural biological systems, operate over a wide dynamic range of up to four orders of magnitude and can be designed to have tunable transfer functions. Our circuits can be composed to implement higher-order functions that are well described by both intricate biochemical models and simple mathematical functions. By exploiting analog building-block functions that are already naturally present in cells, this approach efficiently implements arithmetic operations and complex functions in the logarithmic domain. Such circuits may lead to new applications for synthetic biology and biotechnology that require complex computations with limited parts, need wide-dynamic-range biosensing or would benefit from the fine control of gene expression.

  19. Repeat-until-success cubic phase gate for universal continuous-variable quantum computation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Kevin; Pooser, Raphael; Siopsis, George

    2015-03-24

    We report that to achieve universal quantum computation using continuous variables, one needs to jump out of the set of Gaussian operations and have a non-Gaussian element, such as the cubic phase gate. However, such a gate is currently very difficult to implement in practice. Here we introduce an experimentally viable “repeat-until-success” approach to generating the cubic phase gate, which is achieved using sequential photon subtractions and Gaussian operations. Ultimately, we find that our scheme offers benefits in terms of the expected time until success, as well as the fact that we do not require any complex off-line resource state,more » although we require a primitive quantum memory.« less

  20. A Field Programmable Gate Array-Based Reconfigurable Smart-Sensor Network for Wireless Monitoring of New Generation Computer Numerically Controlled Machines

    PubMed Central

    Moreno-Tapia, Sandra Veronica; Vera-Salas, Luis Alberto; Osornio-Rios, Roque Alfredo; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; de Jesus Romero-Troncoso, Rene

    2010-01-01

    Computer numerically controlled (CNC) machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA)-based sensor node. PMID:22163602

  1. A field programmable gate array-based reconfigurable smart-sensor network for wireless monitoring of new generation computer numerically controlled machines.

    PubMed

    Moreno-Tapia, Sandra Veronica; Vera-Salas, Luis Alberto; Osornio-Rios, Roque Alfredo; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; Romero-Troncoso, Rene de Jesus

    2010-01-01

    Computer numerically controlled (CNC) machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA)-based sensor node.

  2. Advanced Simulation and Computing Fiscal Year 14 Implementation Plan, Rev. 0.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meisner, Robert; McCoy, Michel; Archer, Bill

    2013-09-11

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities andmore » computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is now focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), quantify critical margins and uncertainties, and resolve increasingly difficult analyses needed for the SSP. Moreover, ASC’s business model is integrated and focused on requirements-driven products that address long-standing technical questions related to enhanced predictive capability in the simulation tools.« less

  3. From user needs to system specifications: multi-disciplinary thematic seminars as a collaborative design method for development of health information systems.

    PubMed

    Scandurra, I; Hägglund, M; Koch, S

    2008-08-01

    This paper presents a new multi-disciplinary method for user needs analysis and requirements specification in the context of health information systems based on established theories from the fields of participatory design and computer supported cooperative work (CSCW). Whereas conventional methods imply a separate, sequential needs analysis for each profession, the "multi-disciplinary thematic seminar" (MdTS) method uses a collaborative design process. Application of the method in elderly homecare resulted in prototypes that were well adapted to the intended user groups. Vital information in the points of intersection between different care professions was elicited and a holistic view of the entire care process was obtained. Health informatics-usability specialists and clinical domain experts are necessary to apply the method. Although user needs acquisition can be time-consuming, MdTS was perceived to efficiently identify in-context user needs, and transformed these directly into requirements specifications. Consequently the method was perceived to expedite the entire ICT implementation process.

  4. The application of dynamic programming in production planning

    NASA Astrophysics Data System (ADS)

    Wu, Run

    2017-05-01

    Nowadays, with the popularity of the computers, various industries and fields are widely applying computer information technology, which brings about huge demand for a variety of application software. In order to develop software meeting various needs with most economical cost and best quality, programmers must design efficient algorithms. A superior algorithm can not only soul up one thing, but also maximize the benefits and generate the smallest overhead. As one of the common algorithms, dynamic programming algorithms are used to solving problems with some sort of optimal properties. When solving problems with a large amount of sub-problems that needs repetitive calculations, the ordinary sub-recursive method requires to consume exponential time, and dynamic programming algorithm can reduce the time complexity of the algorithm to the polynomial level, according to which we can conclude that dynamic programming algorithm is a very efficient compared to other algorithms reducing the computational complexity and enriching the computational results. In this paper, we expound the concept, basic elements, properties, core, solving steps and difficulties of the dynamic programming algorithm besides, establish the dynamic programming model of the production planning problem.

  5. Neural Networks for Computer Vision: A Framework for Specifications of a General Purpose Vision System

    NASA Astrophysics Data System (ADS)

    Skrzypek, Josef; Mesrobian, Edmond; Gungner, David J.

    1989-03-01

    The development of autonomous land vehicles (ALV) capable of operating in an unconstrained environment has proven to be a formidable research effort. The unpredictability of events in such an environment calls for the design of a robust perceptual system, an impossible task requiring the programming of a system bases on the expectation of future, unconstrained events. Hence, the need for a "general purpose" machine vision system that is capable of perceiving and understanding images in an unconstrained environment in real-time. The research undertaken at the UCLA Machine Perception Laboratory addresses this need by focusing on two specific issues: 1) the long term goals for machine vision research as a joint effort between the neurosciences and computer science; and 2) a framework for evaluating progress in machine vision. In the past, vision research has been carried out independently within different fields including neurosciences, psychology, computer science, and electrical engineering. Our interdisciplinary approach to vision research is based on the rigorous combination of computational neuroscience, as derived from neurophysiology and neuropsychology, with computer science and electrical engineering. The primary motivation behind our approach is that the human visual system is the only existing example of a "general purpose" vision system and using a neurally based computing substrate, it can complete all necessary visual tasks in real-time.

  6. Distributed project scheduling at NASA: Requirements for manual protocols and computer-based support

    NASA Technical Reports Server (NTRS)

    Richards, Stephen F.

    1992-01-01

    The increasing complexity of space operations and the inclusion of interorganizational and international groups in the planning and control of space missions lead to requirements for greater communication, coordination, and cooperation among mission schedulers. These schedulers must jointly allocate scarce shared resources among the various operational and mission oriented activities while adhering to all constraints. This scheduling environment is complicated by such factors as the presence of varying perspectives and conflicting objectives among the schedulers, the need for different schedulers to work in parallel, and limited communication among schedulers. Smooth interaction among schedulers requires the use of protocols that govern such issues as resource sharing, authority to update the schedule, and communication of updates. This paper addresses the development and characteristics of such protocols and their use in a distributed scheduling environment that incorporates computer-aided scheduling tools. An example problem is drawn from the domain of Space Shuttle mission planning.

  7. Determination of irrigation pumpage in parts of Kearny and Finney Counties, southwestern Kansas

    USGS Publications Warehouse

    Lindgren, R.J.

    1982-01-01

    Irrigation pumpage was determined for parts of Kearny and Finney Counties in Southwestern Kansas using crop-acreage data and consumptive, irrigation-water requirements. Irrigated acreages for 1974-80 were compiled for wheat, grain sorghum, corn, and alfalfa using records from the U.S. Agricultural Stabilization and Conservation Service. Consumptive-irrigation requirements were computed using a soil-moisture model. The model tabulated monthly soil-moisture and crop-water demand for various crops and computed the volume of irrigation water needed to maintain the available moisture at 50% for loamy soils or at 60% for sandy soils. Irrigated acres in the study area increased from 265,000 acres during 1974 to 321,000 acres during 1980. Irrigation pumpage increased from 584,000 acre-feet during 1974 to 738,000 acre-feet during 1980. Decreased consumptive-irrigation requirements during 1979 resulted in a comparatively small irrigation-pumpage estimate of 458,000 acre-feet. (USGS)

  8. Extracting Social Information from Chemosensory Cues: Consideration of Several Scenarios and Their Functional Implications

    PubMed Central

    Ben-Shaul, Yoram

    2015-01-01

    Across all sensory modalities, stimuli can vary along multiple dimensions. Efficient extraction of information requires sensitivity to those stimulus dimensions that provide behaviorally relevant information. To derive social information from chemosensory cues, sensory systems must embed information about the relationships between behaviorally relevant traits of individuals and the distributions of the chemical cues that are informative about these traits. In simple cases, the mere presence of one particular compound is sufficient to guide appropriate behavior. However, more generally, chemosensory information is conveyed via relative levels of multiple chemical cues, in non-trivial ways. The computations and networks needed to derive information from multi-molecule stimuli are distinct from those required by single molecule cues. Our current knowledge about how socially relevant information is encoded by chemical blends, and how it is extracted by chemosensory systems is very limited. This manuscript explores several scenarios and the neuronal computations required to identify them. PMID:26635515

  9. Toward information management in corporations (12)

    NASA Astrophysics Data System (ADS)

    Fujii, Kunihiko

    Within the information areas in which the technology has been highly advanced, the ability required for corporate personnel in charge of information has changed gradually. They need to promote activities in which computer science is incorporated, although they had been involved in only activities featured by information science. While information personnel is required to have interdisciplinary and inter-business abilities, they need to make use of inhouse and external information for the business activities effectively. Corresponding to the social trend the author describes guidelines for such action, the concept and the importance in rendering information high value addes toward more versatile utilization of information, and proposes how significant human resources act in information use.

  10. Collaborative Working Architecture for IoT-Based Applications.

    PubMed

    Mora, Higinio; Signes-Pont, María Teresa; Gil, David; Johnsson, Magnus

    2018-05-23

    The new sensing applications need enhanced computing capabilities to handle the requirements of complex and huge data processing. The Internet of Things (IoT) concept brings processing and communication features to devices. In addition, the Cloud Computing paradigm provides resources and infrastructures for performing the computations and outsourcing the work from the IoT devices. This scenario opens new opportunities for designing advanced IoT-based applications, however, there is still much research to be done to properly gear all the systems for working together. This work proposes a collaborative model and an architecture to take advantage of the available computing resources. The resulting architecture involves a novel network design with different levels which combines sensing and processing capabilities based on the Mobile Cloud Computing (MCC) paradigm. An experiment is included to demonstrate that this approach can be used in diverse real applications. The results show the flexibility of the architecture to perform complex computational tasks of advanced applications.

  11. 'Cloud computing' and clinical trials: report from an ECRIN workshop.

    PubMed

    Ohmann, Christian; Canham, Steve; Danielyan, Edgar; Robertshaw, Steve; Legré, Yannick; Clivio, Luca; Demotes, Jacques

    2015-07-29

    Growing use of cloud computing in clinical trials prompted the European Clinical Research Infrastructures Network, a European non-profit organisation established to support multinational clinical research, to organise a one-day workshop on the topic to clarify potential benefits and risks. The issues that arose in that workshop are summarised and include the following: the nature of cloud computing and the cloud computing industry; the risks in using cloud computing services now; the lack of explicit guidance on this subject, both generally and with reference to clinical trials; and some possible ways of reducing risks. There was particular interest in developing and using a European 'community cloud' specifically for academic clinical trial data. It was recognised that the day-long workshop was only the start of an ongoing process. Future discussion needs to include clarification of trial-specific regulatory requirements for cloud computing and involve representatives from the relevant regulatory bodies.

  12. Computational materials science and engineering education: A survey of trends and needs

    NASA Astrophysics Data System (ADS)

    Thornton, K.; Nola, Samanthule; Edwin Garcia, R.; Asta, Mark; Olson, G. B.

    2009-10-01

    Results from a recent reassessment of the state of computational materials science and engineering (CMSE) education are reported. Surveys were distributed to the chairs and heads of materials programs, faculty members engaged in computational research, and employers of materials scientists and engineers, mainly in the United States. The data was compiled to assess current course offerings related to CMSE, the general climate for introducing computational methods in MSE curricula, and the requirements from the employers’ viewpoint. Furthermore, the available educational resources and their utilization by the community are examined. The surveys show a general support for integrating computational content into MSE education. However, they also reflect remaining issues with implementation, as well as a gap between the tools being taught in courses and those that are used by employers. Overall, the results suggest the necessity for a comprehensively developed vision and plans to further the integration of computational methods into MSE curricula.

  13. Design and implementation of a UNIX based distributed computing system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Love, J.S.; Michael, M.W.

    1994-12-31

    We have designed, implemented, and are running a corporate-wide distributed processing batch queue on a large number of networked workstations using the UNIX{reg_sign} operating system. Atlas Wireline researchers and scientists have used the system for over a year. The large increase in available computer power has greatly reduced the time required for nuclear and electromagnetic tool modeling. Use of remote distributed computing has simultaneously reduced computation costs and increased usable computer time. The system integrates equipment from different manufacturers, using various CPU architectures, distinct operating system revisions, and even multiple processors per machine. Various differences between the machines have tomore » be accounted for in the master scheduler. These differences include shells, command sets, swap spaces, memory sizes, CPU sizes, and OS revision levels. Remote processing across a network must be performed in a manner that is seamless from the users` perspective. The system currently uses IBM RISC System/6000{reg_sign}, SPARCstation{sup TM}, HP9000s700, HP9000s800, and DEC Alpha AXP{sup TM} machines. Each CPU in the network has its own speed rating, allowed working hours, and workload parameters. The system if designed so that all of the computers in the network can be optimally scheduled without adversely impacting the primary users of the machines. The increase in the total usable computational capacity by means of distributed batch computing can change corporate computing strategy. The integration of disparate computer platforms eliminates the need to buy one type of computer for computations, another for graphics, and yet another for day-to-day operations. It might be possible, for example, to meet all research and engineering computing needs with existing networked computers.« less

  14. User interface issues in supporting human-computer integrated scheduling

    NASA Technical Reports Server (NTRS)

    Cooper, Lynne P.; Biefeld, Eric W.

    1991-01-01

    Explored here is the user interface problems encountered with the Operations Missions Planner (OMP) project at the Jet Propulsion Laboratory (JPL). OMP uses a unique iterative approach to planning that places additional requirements on the user interface, particularly to support system development and maintenance. These requirements are necessary to support the concepts of heuristically controlled search, in-progress assessment, and iterative refinement of the schedule. The techniques used to address the OMP interface needs are given.

  15. TethysCluster: A comprehensive approach for harnessing cloud resources for hydrologic modeling

    NASA Astrophysics Data System (ADS)

    Nelson, J.; Jones, N.; Ames, D. P.

    2015-12-01

    Advances in water resources modeling are improving the information that can be supplied to support decisions affecting the safety and sustainability of society. However, as water resources models become more sophisticated and data-intensive they require more computational power to run. Purchasing and maintaining the computing facilities needed to support certain modeling tasks has been cost-prohibitive for many organizations. With the advent of the cloud, the computing resources needed to address this challenge are now available and cost-effective, yet there still remains a significant technical barrier to leverage these resources. This barrier inhibits many decision makers and even trained engineers from taking advantage of the best science and tools available. Here we present the Python tools TethysCluster and CondorPy, that have been developed to lower the barrier to model computation in the cloud by providing (1) programmatic access to dynamically scalable computing resources, (2) a batch scheduling system to queue and dispatch the jobs to the computing resources, (3) data management for job inputs and outputs, and (4) the ability to dynamically create, submit, and monitor computing jobs. These Python tools leverage the open source, computing-resource management, and job management software, HTCondor, to offer a flexible and scalable distributed-computing environment. While TethysCluster and CondorPy can be used independently to provision computing resources and perform large modeling tasks, they have also been integrated into Tethys Platform, a development platform for water resources web apps, to enable computing support for modeling workflows and decision-support systems deployed as web apps.

  16. Stream-based Hebbian eigenfilter for real-time neuronal spike discrimination

    PubMed Central

    2012-01-01

    Background Principal component analysis (PCA) has been widely employed for automatic neuronal spike sorting. Calculating principal components (PCs) is computationally expensive, and requires complex numerical operations and large memory resources. Substantial hardware resources are therefore needed for hardware implementations of PCA. General Hebbian algorithm (GHA) has been proposed for calculating PCs of neuronal spikes in our previous work, which eliminates the needs of computationally expensive covariance analysis and eigenvalue decomposition in conventional PCA algorithms. However, large memory resources are still inherently required for storing a large volume of aligned spikes for training PCs. The large size memory will consume large hardware resources and contribute significant power dissipation, which make GHA difficult to be implemented in portable or implantable multi-channel recording micro-systems. Method In this paper, we present a new algorithm for PCA-based spike sorting based on GHA, namely stream-based Hebbian eigenfilter, which eliminates the inherent memory requirements of GHA while keeping the accuracy of spike sorting by utilizing the pseudo-stationarity of neuronal spikes. Because of the reduction of large hardware storage requirements, the proposed algorithm can lead to ultra-low hardware resources and power consumption of hardware implementations, which is critical for the future multi-channel micro-systems. Both clinical and synthetic neural recording data sets were employed for evaluating the accuracy of the stream-based Hebbian eigenfilter. The performance of spike sorting using stream-based eigenfilter and the computational complexity of the eigenfilter were rigorously evaluated and compared with conventional PCA algorithms. Field programmable logic arrays (FPGAs) were employed to implement the proposed algorithm, evaluate the hardware implementations and demonstrate the reduction in both power consumption and hardware memories achieved by the streaming computing Results and discussion Results demonstrate that the stream-based eigenfilter can achieve the same accuracy and is 10 times more computationally efficient when compared with conventional PCA algorithms. Hardware evaluations show that 90.3% logic resources, 95.1% power consumption and 86.8% computing latency can be reduced by the stream-based eigenfilter when compared with PCA hardware. By utilizing the streaming method, 92% memory resources and 67% power consumption can be saved when compared with the direct implementation of GHA. Conclusion Stream-based Hebbian eigenfilter presents a novel approach to enable real-time spike sorting with reduced computational complexity and hardware costs. This new design can be further utilized for multi-channel neuro-physiological experiments or chronic implants. PMID:22490725

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCoy, Michel; Archer, Bill; Hendrickson, Bruce

    The Stockpile Stewardship Program (SSP) is an integrated technical program for maintaining the safety, surety, and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational capabilities to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computationalmore » resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resource, including technical staff, hardware, simulation software, and computer science solutions. ASC is now focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), and quantifying critical margins and uncertainties. Resolving each issue requires increasingly difficult analyses because the aging process has progressively moved the stockpile further away from the original test base. Where possible, the program also enables the use of high performance computing (HPC) and simulation tools to address broader national security needs, such as foreign nuclear weapon assessments and counter nuclear terrorism.« less

  18. Capabilities needed for the next generation of thermo-hydraulic codes for use in real time applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arndt, S.A.

    1997-07-01

    The real-time reactor simulation field is currently at a crossroads in terms of the capability to perform real-time analysis using the most sophisticated computer codes. Current generation safety analysis codes are being modified to replace simplified codes that were specifically designed to meet the competing requirement for real-time applications. The next generation of thermo-hydraulic codes will need to have included in their specifications the specific requirement for use in a real-time environment. Use of the codes in real-time applications imposes much stricter requirements on robustness, reliability and repeatability than do design and analysis applications. In addition, the need for codemore » use by a variety of users is a critical issue for real-time users, trainers and emergency planners who currently use real-time simulation, and PRA practitioners who will increasingly use real-time simulation for evaluating PRA success criteria in near real-time to validate PRA results for specific configurations and plant system unavailabilities.« less

  19. The Design of a High Performance Earth Imagery and Raster Data Management and Processing Platform

    NASA Astrophysics Data System (ADS)

    Xie, Qingyun

    2016-06-01

    This paper summarizes the general requirements and specific characteristics of both geospatial raster database management system and raster data processing platform from a domain-specific perspective as well as from a computing point of view. It also discusses the need of tight integration between the database system and the processing system. These requirements resulted in Oracle Spatial GeoRaster, a global scale and high performance earth imagery and raster data management and processing platform. The rationale, design, implementation, and benefits of Oracle Spatial GeoRaster are described. Basically, as a database management system, GeoRaster defines an integrated raster data model, supports image compression, data manipulation, general and spatial indices, content and context based queries and updates, versioning, concurrency, security, replication, standby, backup and recovery, multitenancy, and ETL. It provides high scalability using computer and storage clustering. As a raster data processing platform, GeoRaster provides basic operations, image processing, raster analytics, and data distribution featuring high performance computing (HPC). Specifically, HPC features include locality computing, concurrent processing, parallel processing, and in-memory computing. In addition, the APIs and the plug-in architecture are discussed.

  20. Computer literacy: Where are nurse educators on the continuum?

    PubMed

    Hanley, Elizabeth

    2006-01-01

    Computers are becoming ubiquitous in health and education, and it is expected that nurses from undergraduate nursing programmes are computer literate when they enter the workforce. Similarly nurse educators are expected to be computer literate to model the use of information technology in their workplace. They are expected to use email for communication and a range of computer applications for presentation of course materials and reports. Additionally, as more courses are delivered in flexible mode, educators require more comprehensive computing skills, including confidence and competence in a range of applications. A cohort of nurse educators from one tertiary institution was surveyed to assess their perceived computer literacy and how they attained this. A questionnaire that covered seven domains of computer literacy was used to assess this. The results were illuminating and identified specific training needs for this group. Their perceived lack of skill with Groupwise email and the student database program are of concern as these are essential tools for nurse educators at this polytechnic.

  1. A virtual surgical training system that simulates cutting of soft tissue using a modified pre-computed elastic model.

    PubMed

    Toe, Kyaw Kyar; Huang, Weimin; Yang, Tao; Duan, Yuping; Zhou, Jiayin; Su, Yi; Teo, Soo-Kng; Kumar, Selvaraj Senthil; Lim, Calvin Chi-Wan; Chui, Chee Kong; Chang, Stephen

    2015-08-01

    This work presents a surgical training system that incorporates cutting operation of soft tissue simulated based on a modified pre-computed linear elastic model in the Simulation Open Framework Architecture (SOFA) environment. A precomputed linear elastic model used for the simulation of soft tissue deformation involves computing the compliance matrix a priori based on the topological information of the mesh. While this process may require a few minutes to several hours, based on the number of vertices in the mesh, it needs only to be computed once and allows real-time computation of the subsequent soft tissue deformation. However, as the compliance matrix is based on the initial topology of the mesh, it does not allow any topological changes during simulation, such as cutting or tearing of the mesh. This work proposes a way to modify the pre-computed data by correcting the topological connectivity in the compliance matrix, without re-computing the compliance matrix which is computationally expensive.

  2. An Object Oriented Extensible Architecture for Affordable Aerospace Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Follen, Gregory J.; Lytle, John K. (Technical Monitor)

    2002-01-01

    Driven by a need to explore and develop propulsion systems that exceeded current computing capabilities, NASA Glenn embarked on a novel strategy leading to the development of an architecture that enables propulsion simulations never thought possible before. Full engine 3 Dimensional Computational Fluid Dynamic propulsion system simulations were deemed impossible due to the impracticality of the hardware and software computing systems required. However, with a software paradigm shift and an embracing of parallel and distributed processing, an architecture was designed to meet the needs of future propulsion system modeling. The author suggests that the architecture designed at the NASA Glenn Research Center for propulsion system modeling has potential for impacting the direction of development of affordable weapons systems currently under consideration by the Applied Vehicle Technology Panel (AVT). This paper discusses the salient features of the NPSS Architecture including its interface layer, object layer, implementation for accessing legacy codes, numerical zooming infrastructure and its computing layer. The computing layer focuses on the use and deployment of these propulsion simulations on parallel and distributed computing platforms which has been the focus of NASA Ames. Additional features of the object oriented architecture that support MultiDisciplinary (MD) Coupling, computer aided design (CAD) access and MD coupling objects will be discussed. Included will be a discussion of the successes, challenges and benefits of implementing this architecture.

  3. Computer-Aided Experiment Planning toward Causal Discovery in Neuroscience.

    PubMed

    Matiasz, Nicholas J; Wood, Justin; Wang, Wei; Silva, Alcino J; Hsu, William

    2017-01-01

    Computers help neuroscientists to analyze experimental results by automating the application of statistics; however, computer-aided experiment planning is far less common, due to a lack of similar quantitative formalisms for systematically assessing evidence and uncertainty. While ontologies and other Semantic Web resources help neuroscientists to assimilate required domain knowledge, experiment planning requires not only ontological but also epistemological (e.g., methodological) information regarding how knowledge was obtained. Here, we outline how epistemological principles and graphical representations of causality can be used to formalize experiment planning toward causal discovery. We outline two complementary approaches to experiment planning: one that quantifies evidence per the principles of convergence and consistency, and another that quantifies uncertainty using logical representations of constraints on causal structure. These approaches operationalize experiment planning as the search for an experiment that either maximizes evidence or minimizes uncertainty. Despite work in laboratory automation, humans must still plan experiments and will likely continue to do so for some time. There is thus a great need for experiment-planning frameworks that are not only amenable to machine computation but also useful as aids in human reasoning.

  4. Simple adaptive sparse representation based classification schemes for EEG based brain-computer interface applications.

    PubMed

    Shin, Younghak; Lee, Seungchan; Ahn, Minkyu; Cho, Hohyun; Jun, Sung Chan; Lee, Heung-No

    2015-11-01

    One of the main problems related to electroencephalogram (EEG) based brain-computer interface (BCI) systems is the non-stationarity of the underlying EEG signals. This results in the deterioration of the classification performance during experimental sessions. Therefore, adaptive classification techniques are required for EEG based BCI applications. In this paper, we propose simple adaptive sparse representation based classification (SRC) schemes. Supervised and unsupervised dictionary update techniques for new test data and a dictionary modification method by using the incoherence measure of the training data are investigated. The proposed methods are very simple and additional computation for the re-training of the classifier is not needed. The proposed adaptive SRC schemes are evaluated using two BCI experimental datasets. The proposed methods are assessed by comparing classification results with the conventional SRC and other adaptive classification methods. On the basis of the results, we find that the proposed adaptive schemes show relatively improved classification accuracy as compared to conventional methods without requiring additional computation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. VisRseq: R-based visual framework for analysis of sequencing data

    PubMed Central

    2015-01-01

    Background Several tools have been developed to enable biologists to perform initial browsing and exploration of sequencing data. However the computational tool set for further analyses often requires significant computational expertise to use and many of the biologists with the knowledge needed to interpret these data must rely on programming experts. Results We present VisRseq, a framework for analysis of sequencing datasets that provides a computationally rich and accessible framework for integrative and interactive analyses without requiring programming expertise. We achieve this aim by providing R apps, which offer a semi-auto generated and unified graphical user interface for computational packages in R and repositories such as Bioconductor. To address the interactivity limitation inherent in R libraries, our framework includes several native apps that provide exploration and brushing operations as well as an integrated genome browser. The apps can be chained together to create more powerful analysis workflows. Conclusions To validate the usability of VisRseq for analysis of sequencing data, we present two case studies performed by our collaborators and report their workflow and insights. PMID:26328469

  6. VisRseq: R-based visual framework for analysis of sequencing data.

    PubMed

    Younesy, Hamid; Möller, Torsten; Lorincz, Matthew C; Karimi, Mohammad M; Jones, Steven J M

    2015-01-01

    Several tools have been developed to enable biologists to perform initial browsing and exploration of sequencing data. However the computational tool set for further analyses often requires significant computational expertise to use and many of the biologists with the knowledge needed to interpret these data must rely on programming experts. We present VisRseq, a framework for analysis of sequencing datasets that provides a computationally rich and accessible framework for integrative and interactive analyses without requiring programming expertise. We achieve this aim by providing R apps, which offer a semi-auto generated and unified graphical user interface for computational packages in R and repositories such as Bioconductor. To address the interactivity limitation inherent in R libraries, our framework includes several native apps that provide exploration and brushing operations as well as an integrated genome browser. The apps can be chained together to create more powerful analysis workflows. To validate the usability of VisRseq for analysis of sequencing data, we present two case studies performed by our collaborators and report their workflow and insights.

  7. Status of emerging standards for removable computer storage media and related contributions of NIST

    NASA Technical Reports Server (NTRS)

    Podio, Fernando L.

    1992-01-01

    Standards for removable computer storage media are needed so that users may reliably interchange data both within and among various computer installations. Furthermore, media interchange standards support competition in industry and prevent sole-source lock-in. NIST participates in magnetic tape and optical disk standards development through Technical Committees X3B5, Digital Magnetic Tapes, X3B11, Optical Digital Data Disk, and the Joint Technical Commission on Data Permanence. NIST also participates in other relevant national and international standards committees for removable computer storage media. Industry standards for digital magnetic tapes require the use of Standard Reference Materials (SRM's) developed and maintained by NIST. In addition, NIST has been studying care and handling procedures required for digital magnetic tapes. NIST has developed a methodology for determining the life expectancy of optical disks. NIST is developing care and handling procedures for optical digital data disks and is involved in a program to investigate error reporting capabilities of optical disk drives. This presentation reflects the status of emerging magnetic tape and optical disk standards, as well as NIST's contributions in support of these standards.

  8. Data Crosscutting Requirements Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleese van Dam, Kerstin; Shoshani, Arie; Plata, Charity

    2013-04-01

    In April 2013, a diverse group of researchers from the U.S. Department of Energy (DOE) scientific community assembled to assess data requirements associated with DOE-sponsored scientific facilities and large-scale experiments. Participants in the review included facilities staff, program managers, and scientific experts from the offices of Basic Energy Sciences, Biological and Environmental Research, High Energy Physics, and Advanced Scientific Computing Research. As part of the meeting, review participants discussed key issues associated with three distinct aspects of the data challenge: 1) processing, 2) management, and 3) analysis. These discussions identified commonalities and differences among the needs of varied scientific communities.more » They also helped to articulate gaps between current approaches and future needs, as well as the research advances that will be required to close these gaps. Moreover, the review provided a rare opportunity for experts from across the Office of Science to learn about their collective expertise, challenges, and opportunities. The "Data Crosscutting Requirements Review" generated specific findings and recommendations for addressing large-scale data crosscutting requirements.« less

  9. Can computational goals inform theories of vision?

    PubMed

    Anderson, Barton L

    2015-04-01

    One of the most lasting contributions of Marr's posthumous book is his articulation of the different "levels of analysis" that are needed to understand vision. Although a variety of work has examined how these different levels are related, there is comparatively little examination of the assumptions on which his proposed levels rest, or the plausibility of the approach Marr articulated given those assumptions. Marr placed particular significance on computational level theory, which specifies the "goal" of a computation, its appropriateness for solving a particular problem, and the logic by which it can be carried out. The structure of computational level theory is inherently teleological: What the brain does is described in terms of its purpose. I argue that computational level theory, and the reverse-engineering approach it inspires, requires understanding the historical trajectory that gave rise to functional capacities that can be meaningfully attributed with some sense of purpose or goal, that is, a reconstruction of the fitness function on which natural selection acted in shaping our visual abilities. I argue that this reconstruction is required to distinguish abilities shaped by natural selection-"natural tasks" -from evolutionary "by-products" (spandrels, co-optations, and exaptations), rather than merely demonstrating that computational goals can be embedded in a Bayesian model that renders a particular behavior or process rational. Copyright © 2015 Cognitive Science Society, Inc.

  10. Topology optimization aided structural design: Interpretation, computational aspects and 3D printing.

    PubMed

    Kazakis, Georgios; Kanellopoulos, Ioannis; Sotiropoulos, Stefanos; Lagaros, Nikos D

    2017-10-01

    Construction industry has a major impact on the environment that we spend most of our life. Therefore, it is important that the outcome of architectural intuition performs well and complies with the design requirements. Architects usually describe as "optimal design" their choice among a rather limited set of design alternatives, dictated by their experience and intuition. However, modern design of structures requires accounting for a great number of criteria derived from multiple disciplines, often of conflicting nature. Such criteria derived from structural engineering, eco-design, bioclimatic and acoustic performance. The resulting vast number of alternatives enhances the need for computer-aided architecture in order to increase the possibility of arriving at a more preferable solution. Therefore, the incorporation of smart, automatic tools in the design process, able to further guide designer's intuition becomes even more indispensable. The principal aim of this study is to present possibilities to integrate automatic computational techniques related to topology optimization in the phase of intuition of civil structures as part of computer aided architectural design. In this direction, different aspects of a new computer aided architectural era related to the interpretation of the optimized designs, difficulties resulted from the increased computational effort and 3D printing capabilities are covered here in.

  11. ASCR/HEP Exascale Requirements Review Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habib, Salman; Roser, Robert; Gerber, Richard

    This draft report summarizes and details the findings, results, and recommendations derived from the ASCR/HEP Exascale Requirements Review meeting held in June, 2015. The main conclusions are as follows. 1) Larger, more capable computing and data facilities are needed to support HEP science goals in all three frontiers: Energy, Intensity, and Cosmic. The expected scale of the demand at the 2025 timescale is at least two orders of magnitude -- and in some cases greater -- than that available currently. 2) The growth rate of data produced by simulations is overwhelming the current ability, of both facilities and researchers, tomore » store and analyze it. Additional resources and new techniques for data analysis are urgently needed. 3) Data rates and volumes from HEP experimental facilities are also straining the ability to store and analyze large and complex data volumes. Appropriately configured leadership-class facilities can play a transformational role in enabling scientific discovery from these datasets. 4) A close integration of HPC simulation and data analysis will aid greatly in interpreting results from HEP experiments. Such an integration will minimize data movement and facilitate interdependent workflows. 5) Long-range planning between HEP and ASCR will be required to meet HEP's research needs. To best use ASCR HPC resources the experimental HEP program needs a) an established long-term plan for access to ASCR computational and data resources, b) an ability to map workflows onto HPC resources, c) the ability for ASCR facilities to accommodate workflows run by collaborations that can have thousands of individual members, d) to transition codes to the next-generation HPC platforms that will be available at ASCR facilities, e) to build up and train a workforce capable of developing and using simulations and analysis to support HEP scientific research on next-generation systems.« less

  12. ASCR/HEP Exascale Requirements Review Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habib, Salman; et al.

    2016-03-30

    This draft report summarizes and details the findings, results, and recommendations derived from the ASCR/HEP Exascale Requirements Review meeting held in June, 2015. The main conclusions are as follows. 1) Larger, more capable computing and data facilities are needed to support HEP science goals in all three frontiers: Energy, Intensity, and Cosmic. The expected scale of the demand at the 2025 timescale is at least two orders of magnitude -- and in some cases greater -- than that available currently. 2) The growth rate of data produced by simulations is overwhelming the current ability, of both facilities and researchers, tomore » store and analyze it. Additional resources and new techniques for data analysis are urgently needed. 3) Data rates and volumes from HEP experimental facilities are also straining the ability to store and analyze large and complex data volumes. Appropriately configured leadership-class facilities can play a transformational role in enabling scientific discovery from these datasets. 4) A close integration of HPC simulation and data analysis will aid greatly in interpreting results from HEP experiments. Such an integration will minimize data movement and facilitate interdependent workflows. 5) Long-range planning between HEP and ASCR will be required to meet HEP's research needs. To best use ASCR HPC resources the experimental HEP program needs a) an established long-term plan for access to ASCR computational and data resources, b) an ability to map workflows onto HPC resources, c) the ability for ASCR facilities to accommodate workflows run by collaborations that can have thousands of individual members, d) to transition codes to the next-generation HPC platforms that will be available at ASCR facilities, e) to build up and train a workforce capable of developing and using simulations and analysis to support HEP scientific research on next-generation systems.« less

  13. Web-based reactive transport modeling using PFLOTRAN

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Karra, S.; Lichtner, P. C.; Versteeg, R.; Zhang, Y.

    2017-12-01

    Actionable understanding of system behavior in the subsurface is required for a wide spectrum of societal and engineering needs by both commercial firms and government entities and academia. These needs include, for example, water resource management, precision agriculture, contaminant remediation, unconventional energy production, CO2 sequestration monitoring, and climate studies. Such understanding requires the ability to numerically model various coupled processes that occur across different temporal and spatial scales as well as multiple physical domains (reservoirs - overburden, surface-subsurface, groundwater-surface water, saturated-unsaturated zone). Currently, this ability is typically met through an in-house approach where computational resources, model expertise, and data for model parameterization are brought together to meet modeling needs. However, such an approach has multiple drawbacks which limit the application of high-end reactive transport codes such as the Department of Energy funded[?] PFLOTRAN code. In addition, while many end users have a need for the capabilities provided by high-end reactive transport codes, they do not have the expertise - nor the time required to obtain the expertise - to effectively use these codes. We have developed and are actively enhancing a cloud-based software platform through which diverse users are able to easily configure, execute, visualize, share, and interpret PFLOTRAN models. This platform consists of a web application and available on-demand HPC computational infrastructure. The web application consists of (1) a browser-based graphical user interface which allows users to configure models and visualize results interactively, and (2) a central server with back-end relational databases which hold configuration, data, modeling results, and Python scripts for model configuration, and (3) a HPC environment for on-demand model execution. We will discuss lessons learned in the development of this platform, the rationale for different interfaces, implementation choices, as well as the planned path forward.

  14. The Need for a Cooperative Paradigm to Meet Business' Key Microcomputer Training Requirements.

    ERIC Educational Resources Information Center

    Hubbard, Gary R.

    1985-01-01

    The growing awareness and availability of business application software at small business prices and the creation of a unique national computer training consortium has motivated one community college district to promote more non-credit, short-term training opportunities in accounting software. Rationale for and development of these opportunities…

  15. School on Cloud: Towards a Paradigm Shift

    ERIC Educational Resources Information Center

    Koutsopoulos, Kostis C.; Kotsanis, Yannis C.

    2014-01-01

    This paper presents the basic concept of the EU Network School on Cloud: Namely, that present conditions require a new teaching and learning paradigm based on the integrated dimension of education, when considering the use of cloud computing. In other words, it is suggested that there is a need for an integrated approach which is simultaneously…

  16. 78 FR 14329 - Allocations, Common Application, Waivers, and Alternative Requirements for Grantees Receiving...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-05

    ... impacted and distressed areas, HUD computes allocations based on the best available data that cover all the eligible affected areas. This Notice allocates funds based on unmet housing and economic revitalization... date of this Notice. Based on a review of the impacts from Hurricane Sandy, and estimates of unmet need...

  17. 14 CFR 135.63 - Recordkeeping requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of gravity limits; (5) The center of gravity of the loaded aircraft, except that the actual center of gravity need not be computed if the aircraft is loaded according to a loading schedule or other approved method that ensures that the center of gravity of the loaded aircraft is within approved limits. In those...

  18. 14 CFR 135.63 - Recordkeeping requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of gravity limits; (5) The center of gravity of the loaded aircraft, except that the actual center of gravity need not be computed if the aircraft is loaded according to a loading schedule or other approved method that ensures that the center of gravity of the loaded aircraft is within approved limits. In those...

  19. 14 CFR 135.63 - Recordkeeping requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of gravity limits; (5) The center of gravity of the loaded aircraft, except that the actual center of gravity need not be computed if the aircraft is loaded according to a loading schedule or other approved method that ensures that the center of gravity of the loaded aircraft is within approved limits. In those...

  20. 14 CFR 135.63 - Recordkeeping requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of gravity limits; (5) The center of gravity of the loaded aircraft, except that the actual center of gravity need not be computed if the aircraft is loaded according to a loading schedule or other approved method that ensures that the center of gravity of the loaded aircraft is within approved limits. In those...

  1. 14 CFR 135.63 - Recordkeeping requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of gravity limits; (5) The center of gravity of the loaded aircraft, except that the actual center of gravity need not be computed if the aircraft is loaded according to a loading schedule or other approved method that ensures that the center of gravity of the loaded aircraft is within approved limits. In those...

  2. Exposure to Phthalate Emitted from Vinyl Flooring and Sorbed to Interior Surfaces, Dust, Airborne Particles and Human Skin

    EPA Science Inventory

    There is an urgent need to characterize potential risk to human health and the environment that arises from the manufacture and use of tens of thousands of chemicals. Computational tools and approaches for characterizing and prioritizing exposure are required: to provide input f...

  3. Tessera: Open source software for accelerated data science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sego, Landon H.; Hafen, Ryan P.; Director, Hannah M.

    2014-06-30

    Extracting useful, actionable information from data can be a formidable challenge for the safeguards, nonproliferation, and arms control verification communities. Data scientists are often on the “front-lines” of making sense of complex and large datasets. They require flexible tools that make it easy to rapidly reformat large datasets, interactively explore and visualize data, develop statistical algorithms, and validate their approaches—and they need to perform these activities with minimal lines of code. Existing commercial software solutions often lack extensibility and the flexibility required to address the nuances of the demanding and dynamic environments where data scientists work. To address this need,more » Pacific Northwest National Laboratory developed Tessera, an open source software suite designed to enable data scientists to interactively perform their craft at the terabyte scale. Tessera automatically manages the complicated tasks of distributed storage and computation, empowering data scientists to do what they do best: tackling critical research and mission objectives by deriving insight from data. We illustrate the use of Tessera with an example analysis of computer network data.« less

  4. VieSLAF Framework: Enabling Adaptive and Versatile SLA-Management

    NASA Astrophysics Data System (ADS)

    Brandic, Ivona; Music, Dejan; Leitner, Philipp; Dustdar, Schahram

    Novel computing paradigms like Grid and Cloud computing demand guarantees on non-functional requirements such as application execution time or price. Such requirements are usually negotiated following a specific Quality of Service (QoS) model and are expressed using Service Level Agreements (SLAs). Currently available QoS models assume either that service provider and consumer have matching SLA templates and common understanding of the negotiated terms or provide public templates, which can be downloaded and utilized by the end users. On the one hand, matching SLA templates represent an unrealistic assumption in systems where service consumer and provider meet dynamically and on demand. On the other hand, handling of public templates seems to be a rather challenging issue, especially if the templates do not reflect users’ needs. In this paper we present VieSLAF, a novel framework for the specification and management of SLA mappings. Using VieSLAF users may specify, manage, and apply SLA mapping bridging the gap between non-matching SLA templates. Moreover, based on the predefined learning functions and considering accumulated SLA mappings, domain specific public SLA templates can be derived reflecting users’ needs.

  5. Thermal Analysis of ISS Service Module Active TCS

    NASA Technical Reports Server (NTRS)

    Altov, Vladimir V.; Zaletaev, Sergey V.; Belyavskiy, Evgeniy P.

    2000-01-01

    ISS Service Module mission must begin in July 2000. The verification of design thermal requirements is mostly due to thermal analysis. The thermal analysis is enough difficult problem because of large number of ISS configurations that had to be investigated and various orbital environments. Besides the ISS structure has articulating parts such as solar arrays and radiators. The presence of articulating parts greatly increases computation times and requires accurate approach to organization of calculations. The varying geometry needs us to calculate the view factors several times during the orbit, while in static geometry case we need do it only once. In this paper we consider the thermal mathematical model of SM that includes the TCS and construction thermal models and discuss the results of calculations for ISS configurations 1R and 9Al. The analysis is based on solving the nodal heat balance equations for ISS structure by Kutta-Merson method and analytical solutions of heat transfer equations for TCS units. The computations were performed using thermal software TERM [1,2] that will be briefly described.

  6. Integration of symbolic and algorithmic hardware and software for the automation of space station subsystems

    NASA Technical Reports Server (NTRS)

    Gregg, Hugh; Healey, Kathleen; Hack, Edmund; Wong, Carla

    1988-01-01

    Expert systems that require access to data bases, complex simulations and real time instrumentation have both symbolic and algorithmic needs. Both of these needs could be met using a general purpose workstation running both symbolic and algorithmic codes, or separate, specialized computers networked together. The later approach was chosen to implement TEXSYS, the thermal expert system, developed by the NASA Ames Research Center in conjunction with the Johnson Space Center to demonstrate the ability of an expert system to autonomously monitor the thermal control system of the space station. TEXSYS has been implemented on a Symbolics workstation, and will be linked to a microVAX computer that will control a thermal test bed. The integration options and several possible solutions are presented.

  7. Breeding and Genetics Symposium: really big data: processing and analysis of very large data sets.

    PubMed

    Cole, J B; Newman, S; Foertter, F; Aguilar, I; Coffey, M

    2012-03-01

    Modern animal breeding data sets are large and getting larger, due in part to recent availability of high-density SNP arrays and cheap sequencing technology. High-performance computing methods for efficient data warehousing and analysis are under development. Financial and security considerations are important when using shared clusters. Sound software engineering practices are needed, and it is better to use existing solutions when possible. Storage requirements for genotypes are modest, although full-sequence data will require greater storage capacity. Storage requirements for intermediate and results files for genetic evaluations are much greater, particularly when multiple runs must be stored for research and validation studies. The greatest gains in accuracy from genomic selection have been realized for traits of low heritability, and there is increasing interest in new health and management traits. The collection of sufficient phenotypes to produce accurate evaluations may take many years, and high-reliability proofs for older bulls are needed to estimate marker effects. Data mining algorithms applied to large data sets may help identify unexpected relationships in the data, and improved visualization tools will provide insights. Genomic selection using large data requires a lot of computing power, particularly when large fractions of the population are genotyped. Theoretical improvements have made possible the inversion of large numerator relationship matrices, permitted the solving of large systems of equations, and produced fast algorithms for variance component estimation. Recent work shows that single-step approaches combining BLUP with a genomic relationship (G) matrix have similar computational requirements to traditional BLUP, and the limiting factor is the construction and inversion of G for many genotypes. A naïve algorithm for creating G for 14,000 individuals required almost 24 h to run, but custom libraries and parallel computing reduced that to 15 m. Large data sets also create challenges for the delivery of genetic evaluations that must be overcome in a way that does not disrupt the transition from conventional to genomic evaluations. Processing time is important, especially as real-time systems for on-farm decisions are developed. The ultimate value of these systems is to decrease time-to-results in research, increase accuracy in genomic evaluations, and accelerate rates of genetic improvement.

  8. Oral health care needs among the middle-aged and the elderly in Hong Kong.

    PubMed

    Lo, E C; Corbet, E F; Holmgren, C J

    1994-10-01

    A sample of 372 35-44-yr-olds and 537 noninstitutionalized 65-74-yr-olds were clinically examined in an oral health survey of Hong Kong Chinese conducted in 1991. The examination procedures and diagnostic criteria for assessing restorative and extraction treatment need followed those recommended by the World Health Organization. The Community Periodontal Index-based periodontal treatment needs involving index teeth or their replacements were computed from separate clinic scores for maximum probing depth, presence of calculus, and bleeding after probing. A set of criteria for assessing prosthodontic treatment need was specially laid down for this survey. Examiners were calibrated before the survey, and the interexaminer reliability was found to be generally good. Besides reporting the various individual normative treatment need items in the traditional way, the present analysis used some holistic treatment-need categories which may have manpower-requirement implications for the classification of subjects. All dentate subjects surveyed required some treatment. Only 6% of the elderly, all edentulous, required denture work only. Of the 35-44-yr-olds, 42% needed scaling and oral hygiene instruction only, which could be provided by dental hygienists. The treatment needs of the vast majority of the middle-aged and the elderly (mainly scaling; simple fillings; and extractions, dentures, or both) could be easily handled by general dentists. Only about one-fifth of the subjects in both age groups required some complex care such as endodontics, crowns, and advanced periodontal treatment, which could be delivered by senior dentists or dentists with specialist training.

  9. Universal data compression

    NASA Astrophysics Data System (ADS)

    Lindsay, R. A.; Cox, B. V.

    Universal and adaptive data compression techniques have the capability to globally compress all types of data without loss of information but have the disadvantage of complexity and computation speed. Advances in hardware speed and the reduction of computational costs have made universal data compression feasible. Implementations of the Adaptive Huffman and Lempel-Ziv compression algorithms are evaluated for performance. Compression ratios versus run times for different size data files are graphically presented and discussed in the paper. Required adjustments needed for optimum performance of the algorithms relative to theoretical achievable limits will be outlined.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, Brian W.; Hemmert, K. Scott; Underwood, Keith Douglas

    Achieving the next three orders of magnitude performance increase to move from petascale to exascale computing will require a significant advancements in several fundamental areas. Recent studies have outlined many of the challenges in hardware and software that will be needed. In this paper, we examine these challenges with respect to high-performance networking. We describe the repercussions of anticipated changes to computing and networking hardware and discuss the impact that alternative parallel programming models will have on the network software stack. We also present some ideas on possible approaches that address some of these challenges.

  11. Green's function calculations for semi-infinite carbon nanotubes

    NASA Astrophysics Data System (ADS)

    John, D. L.; Pulfrey, D. L.

    2006-02-01

    In the modeling of nanoscale electronic devices, the non-equilibrium Green's function technique is gaining increasing popularity. One complication in this method is the need for computation of the self-energy functions that account for the interactions between the active portion of a device and its leads. In the one-dimensional case, these functions may be computed analytically. In higher dimensions, a numerical approach is required. In this work, we generalize earlier methods that were developed for tight-binding Hamiltonians, and present results for the case of a carbon nanotube.

  12. Efficient quantum algorithm for computing n-time correlation functions.

    PubMed

    Pedernales, J S; Di Candia, R; Egusquiza, I L; Casanova, J; Solano, E

    2014-07-11

    We propose a method for computing n-time correlation functions of arbitrary spinorial, fermionic, and bosonic operators, consisting of an efficient quantum algorithm that encodes these correlations in an initially added ancillary qubit for probe and control tasks. For spinorial and fermionic systems, the reconstruction of arbitrary n-time correlation functions requires the measurement of two ancilla observables, while for bosonic variables time derivatives of the same observables are needed. Finally, we provide examples applicable to different quantum platforms in the frame of the linear response theory.

  13. A heterogeneous hierarchical architecture for real-time computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skroch, D.A.; Fornaro, R.J.

    The need for high-speed data acquisition and control algorithms has prompted continued research in the area of multiprocessor systems and related programming techniques. The result presented here is a unique hardware and software architecture for high-speed real-time computer systems. The implementation of a prototype of this architecture has required the integration of architecture, operating systems and programming languages into a cohesive unit. This report describes a Heterogeneous Hierarchial Architecture for Real-Time (H{sup 2} ART) and system software for program loading and interprocessor communication.

  14. Evolving Storage and Cyber Infrastructure at the NASA Center for Climate Simulation

    NASA Technical Reports Server (NTRS)

    Salmon, Ellen; Duffy, Daniel; Spear, Carrie; Sinno, Scott; Vaughan, Garrison; Bowen, Michael

    2018-01-01

    This talk will describe recent developments at the NASA Center for Climate Simulation, which is funded by NASAs Science Mission Directorate, and supports the specialized data storage and computational needs of weather, ocean, and climate researchers, as well as astrophysicists, heliophysicists, and planetary scientists. To meet requirements for higher-resolution, higher-fidelity simulations, the NCCS augments its High Performance Computing (HPC) and storage retrieval environment. As the petabytes of model and observational data grow, the NCCS is broadening data services offerings and deploying and expanding virtualization resources for high performance analytics.

  15. FORTRAN program for predicting off-design performance of radial-inflow turbines

    NASA Technical Reports Server (NTRS)

    Wasserbauer, C. A.; Glassman, A. J.

    1975-01-01

    The FORTRAN IV program uses a one-dimensional solution of flow conditions through the turbine along the mean streamline. The program inputs needed are the design-point requirements and turbine geometry. The output includes performance and velocity-diagram parameters over a range of speed and pressure ratio. Computed performance is compared with the experimental data from two radial-inflow turbines and with the performance calculated by a previous computer program. The flow equations, program listing, and input and output for a sample problem are given.

  16. Metabolic Network Modeling for Computer-Aided Design of Microbial Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Hyun-Seob; Nelson, William C.; Lee, Joon-Yong

    Interest in applying microbial communities to biotechnology continues to increase. Successful engineering of microbial communities requires a fundamental shift in focus from enhancing metabolic capabilities in individual organisms to promoting synergistic interspecies interactions. This goal necessitates in silico tools that provide a predictive understanding of how microorganisms interact with each other and their environments. In this regard, we highlight a need for a new concept that we have termed biological computer-aided design of interactions (BioCADi). We ground this discussion within the context of metabolic network modeling.

  17. STREAM2016: Streaming Requirements, Experience, Applications and Middleware Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, Geoffrey; Jha, Shantenu; Ramakrishnan, Lavanya

    The Department of Energy (DOE) Office of Science (SC) facilities including accelerators, light sources and neutron sources and sensors that study, the environment, and the atmosphere, are producing streaming data that needs to be analyzed for next-generation scientific discoveries. There has been an explosion of new research and technologies for stream analytics arising from the academic and private sectors. However, there has been no corresponding effort in either documenting the critical research opportunities or building a community that can create and foster productive collaborations. The two-part workshop series, STREAM: Streaming Requirements, Experience, Applications and Middleware Workshop (STREAM2015 and STREAM2016), weremore » conducted to bring the community together and identify gaps and future efforts needed by both NSF and DOE. This report describes the discussions, outcomes and conclusions from STREAM2016: Streaming Requirements, Experience, Applications and Middleware Workshop, the second of these workshops held on March 22-23, 2016 in Tysons, VA. STREAM2016 focused on the Department of Energy (DOE) applications, computational and experimental facilities, as well software systems. Thus, the role of “streaming and steering” as a critical mode of connecting the experimental and computing facilities was pervasive through the workshop. Given the overlap in interests and challenges with industry, the workshop had significant presence from several innovative companies and major contributors. The requirements that drive the proposed research directions, identified in this report, show an important opportunity for building competitive research and development program around streaming data. These findings and recommendations are consistent with vision outlined in NRC Frontiers of Data and National Strategic Computing Initiative (NCSI) [1, 2]. The discussions from the workshop are captured as topic areas covered in this report's sections. The report discusses four research directions driven by current and future application requirements reflecting the areas identified as important by STREAM2016. These include (i) Algorithms, (ii) Programming Models, Languages and Runtime Systems (iii) Human-in-the-loop and Steering in Scientific Workflow and (iv) Facilities.« less

  18. Controlling Light Transmission Through Highly Scattering Media Using Semi-Definite Programming as a Phase Retrieval Computation Method.

    PubMed

    N'Gom, Moussa; Lien, Miao-Bin; Estakhri, Nooshin M; Norris, Theodore B; Michielssen, Eric; Nadakuditi, Raj Rao

    2017-05-31

    Complex Semi-Definite Programming (SDP) is introduced as a novel approach to phase retrieval enabled control of monochromatic light transmission through highly scattering media. In a simple optical setup, a spatial light modulator is used to generate a random sequence of phase-modulated wavefronts, and the resulting intensity speckle patterns in the transmitted light are acquired on a camera. The SDP algorithm allows computation of the complex transmission matrix of the system from this sequence of intensity-only measurements, without need for a reference beam. Once the transmission matrix is determined, optimal wavefronts are computed that focus the incident beam to any position or sequence of positions on the far side of the scattering medium, without the need for any subsequent measurements or wavefront shaping iterations. The number of measurements required and the degree of enhancement of the intensity at focus is determined by the number of pixels controlled by the spatial light modulator.

  19. Additional support for the TDK/MABL computer program

    NASA Technical Reports Server (NTRS)

    Nickerson, G. R.; Dunn, Stuart S.

    1993-01-01

    An advanced version of the Two-Dimensional Kinetics (TDK) computer program was developed under contract and released to the propulsion community in early 1989. Exposure of the code to this community indicated a need for improvements in certain areas. In particular, the TDK code needed to be adapted to the special requirements imposed by the Space Transportation Main Engine (STME) development program. This engine utilizes injection of the gas generator exhaust into the primary nozzle by means of a set of slots. The subsequent mixing of this secondary stream with the primary stream with finite rate chemical reaction can have a major impact on the engine performance and the thermal protection of the nozzle wall. In attempting to calculate this reacting boundary layer problem, the Mass Addition Boundary Layer (MABL) module of TDK was found to be deficient in several respects. For example, when finite rate chemistry was used to determine gas properties, (MABL-K option) the program run times became excessive because extremely small step sizes were required to maintain numerical stability. A robust solution algorithm was required so that the MABL-K option could be viable as a rocket propulsion industry design tool. Solving this problem was a primary goal of the phase 1 work effort.

  20. Current trends in hardware and software for brain-computer interfaces (BCIs)

    NASA Astrophysics Data System (ADS)

    Brunner, P.; Bianchi, L.; Guger, C.; Cincotti, F.; Schalk, G.

    2011-04-01

    A brain-computer interface (BCI) provides a non-muscular communication channel to people with and without disabilities. BCI devices consist of hardware and software. BCI hardware records signals from the brain, either invasively or non-invasively, using a series of device components. BCI software then translates these signals into device output commands and provides feedback. One may categorize different types of BCI applications into the following four categories: basic research, clinical/translational research, consumer products, and emerging applications. These four categories use BCI hardware and software, but have different sets of requirements. For example, while basic research needs to explore a wide range of system configurations, and thus requires a wide range of hardware and software capabilities, applications in the other three categories may be designed for relatively narrow purposes and thus may only need a very limited subset of capabilities. This paper summarizes technical aspects for each of these four categories of BCI applications. The results indicate that BCI technology is in transition from isolated demonstrations to systematic research and commercial development. This process requires several multidisciplinary efforts, including the development of better integrated and more robust BCI hardware and software, the definition of standardized interfaces, and the development of certification, dissemination and reimbursement procedures.

  1. Opportunistic Computing with Lobster: Lessons Learned from Scaling up to 25k Non-Dedicated Cores

    NASA Astrophysics Data System (ADS)

    Wolf, Matthias; Woodard, Anna; Li, Wenzhao; Hurtado Anampa, Kenyi; Yannakopoulos, Anna; Tovar, Benjamin; Donnelly, Patrick; Brenner, Paul; Lannon, Kevin; Hildreth, Mike; Thain, Douglas

    2017-10-01

    We previously described Lobster, a workflow management tool for exploiting volatile opportunistic computing resources for computation in HEP. We will discuss the various challenges that have been encountered while scaling up the simultaneous CPU core utilization and the software improvements required to overcome these challenges. Categories: Workflows can now be divided into categories based on their required system resources. This allows the batch queueing system to optimize assignment of tasks to nodes with the appropriate capabilities. Within each category, limits can be specified for the number of running jobs to regulate the utilization of communication bandwidth. System resource specifications for a task category can now be modified while a project is running, avoiding the need to restart the project if resource requirements differ from the initial estimates. Lobster now implements time limits on each task category to voluntarily terminate tasks. This allows partially completed work to be recovered. Workflow dependency specification: One workflow often requires data from other workflows as input. Rather than waiting for earlier workflows to be completed before beginning later ones, Lobster now allows dependent tasks to begin as soon as sufficient input data has accumulated. Resource monitoring: Lobster utilizes a new capability in Work Queue to monitor the system resources each task requires in order to identify bottlenecks and optimally assign tasks. The capability of the Lobster opportunistic workflow management system for HEP computation has been significantly increased. We have demonstrated efficient utilization of 25 000 non-dedicated cores and achieved a data input rate of 30 Gb/s and an output rate of 500GB/h. This has required new capabilities in task categorization, workflow dependency specification, and resource monitoring.

  2. Properties of Neurons in External Globus Pallidus Can Support Optimal Action Selection

    PubMed Central

    Bogacz, Rafal; Martin Moraud, Eduardo; Abdi, Azzedine; Magill, Peter J.; Baufreton, Jérôme

    2016-01-01

    The external globus pallidus (GPe) is a key nucleus within basal ganglia circuits that are thought to be involved in action selection. A class of computational models assumes that, during action selection, the basal ganglia compute for all actions available in a given context the probabilities that they should be selected. These models suggest that a network of GPe and subthalamic nucleus (STN) neurons computes the normalization term in Bayes’ equation. In order to perform such computation, the GPe needs to send feedback to the STN equal to a particular function of the activity of STN neurons. However, the complex form of this function makes it unlikely that individual GPe neurons, or even a single GPe cell type, could compute it. Here, we demonstrate how this function could be computed within a network containing two types of GABAergic GPe projection neuron, so-called ‘prototypic’ and ‘arkypallidal’ neurons, that have different response properties in vivo and distinct connections. We compare our model predictions with the experimentally-reported connectivity and input-output functions (f-I curves) of the two populations of GPe neurons. We show that, together, these dichotomous cell types fulfil the requirements necessary to compute the function needed for optimal action selection. We conclude that, by virtue of their distinct response properties and connectivities, a network of arkypallidal and prototypic GPe neurons comprises a neural substrate capable of supporting the computation of the posterior probabilities of actions. PMID:27389780

  3. Parameters that affect parallel processing for computational electromagnetic simulation codes on high performance computing clusters

    NASA Astrophysics Data System (ADS)

    Moon, Hongsik

    What is the impact of multicore and associated advanced technologies on computational software for science? Most researchers and students have multicore laptops or desktops for their research and they need computing power to run computational software packages. Computing power was initially derived from Central Processing Unit (CPU) clock speed. That changed when increases in clock speed became constrained by power requirements. Chip manufacturers turned to multicore CPU architectures and associated technological advancements to create the CPUs for the future. Most software applications benefited by the increased computing power the same way that increases in clock speed helped applications run faster. However, for Computational ElectroMagnetics (CEM) software developers, this change was not an obvious benefit - it appeared to be a detriment. Developers were challenged to find a way to correctly utilize the advancements in hardware so that their codes could benefit. The solution was parallelization and this dissertation details the investigation to address these challenges. Prior to multicore CPUs, advanced computer technologies were compared with the performance using benchmark software and the metric was FLoting-point Operations Per Seconds (FLOPS) which indicates system performance for scientific applications that make heavy use of floating-point calculations. Is FLOPS an effective metric for parallelized CEM simulation tools on new multicore system? Parallel CEM software needs to be benchmarked not only by FLOPS but also by the performance of other parameters related to type and utilization of the hardware, such as CPU, Random Access Memory (RAM), hard disk, network, etc. The codes need to be optimized for more than just FLOPs and new parameters must be included in benchmarking. In this dissertation, the parallel CEM software named High Order Basis Based Integral Equation Solver (HOBBIES) is introduced. This code was developed to address the needs of the changing computer hardware platforms in order to provide fast, accurate and efficient solutions to large, complex electromagnetic problems. The research in this dissertation proves that the performance of parallel code is intimately related to the configuration of the computer hardware and can be maximized for different hardware platforms. To benchmark and optimize the performance of parallel CEM software, a variety of large, complex projects are created and executed on a variety of computer platforms. The computer platforms used in this research are detailed in this dissertation. The projects run as benchmarks are also described in detail and results are presented. The parameters that affect parallel CEM software on High Performance Computing Clusters (HPCC) are investigated. This research demonstrates methods to maximize the performance of parallel CEM software code.

  4. A comparative study of the Unified System for Orbit Computation and the Flight Design System. [computer programs for mission planning tasks associated with space shuttle

    NASA Technical Reports Server (NTRS)

    Maag, W.

    1977-01-01

    The Flight Design System (FDS) and the Unified System for Orbit Computation (USOC) are compared and described in relation to mission planning for the shuttle transportation system (STS). The FDS is designed to meet the requirements of a standardized production tool and the USOC is designed for rapid generation of particular application programs. The main emphasis in USOC is put on adaptability to new types of missions. It is concluded that a software system having a USOC-like structure, adapted to the specific needs of MPAD, would be appropriate to support planning tasks in the area unique to STS missions.

  5. Databases, data integration, and expert systems: new directions in mineral resource assessment and mineral exploration

    USGS Publications Warehouse

    McCammon, Richard B.; Ramani, Raja V.; Mozumdar, Bijoy K.; Samaddar, Arun B.

    1994-01-01

    Overcoming future difficulties in searching for ore deposits deeper in the earth's crust will require closer attention to the collection and analysis of more diverse types of data and to more efficient use of current computer technologies. Computer technologies of greatest interest include methods of storage and retrieval of resource information, methods for integrating geologic, geochemical, and geophysical data, and the introduction of advanced computer technologies such as expert systems, multivariate techniques, and neural networks. Much experience has been gained in the past few years in applying these technologies. More experience is needed if they are to be implemented for everyday use in future assessments and exploration.

  6. New insights into faster computation of uncertainties

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Atreyee

    2012-11-01

    Heavy computation power, lengthy simulations, and an exhaustive number of model runs—often these seem like the only statistical tools that scientists have at their disposal when computing uncertainties associated with predictions, particularly in cases of environmental processes such as groundwater movement. However, calculation of uncertainties need not be as lengthy, a new study shows. Comparing two approaches—the classical Bayesian “credible interval” and a less commonly used regression-based “confidence interval” method—Lu et al. show that for many practical purposes both methods provide similar estimates of uncertainties. The advantage of the regression method is that it demands 10-1000 model runs, whereas the classical Bayesian approach requires 10,000 to millions of model runs.

  7. Turbomachinery CFD on parallel computers

    NASA Technical Reports Server (NTRS)

    Blech, Richard A.; Milner, Edward J.; Quealy, Angela; Townsend, Scott E.

    1992-01-01

    The role of multistage turbomachinery simulation in the development of propulsion system models is discussed. Particularly, the need for simulations with higher fidelity and faster turnaround time is highlighted. It is shown how such fast simulations can be used in engineering-oriented environments. The use of parallel processing to achieve the required turnaround times is discussed. Current work by several researchers in this area is summarized. Parallel turbomachinery CFD research at the NASA Lewis Research Center is then highlighted. These efforts are focused on implementing the average-passage turbomachinery model on MIMD, distributed memory parallel computers. Performance results are given for inviscid, single blade row and viscous, multistage applications on several parallel computers, including networked workstations.

  8. Validation Methods Research for Fault-Tolerant Avionics and Control Systems Sub-Working Group Meeting. CARE 3 peer review

    NASA Technical Reports Server (NTRS)

    Trivedi, K. S. (Editor); Clary, J. B. (Editor)

    1980-01-01

    A computer aided reliability estimation procedure (CARE 3), developed to model the behavior of ultrareliable systems required by flight-critical avionics and control systems, is evaluated. The mathematical models, numerical method, and fault-tolerant architecture modeling requirements are examined, and the testing and characterization procedures are discussed. Recommendations aimed at enhancing CARE 3 are presented; in particular, the need for a better exposition of the method and the user interface is emphasized.

  9. Computationally inexpensive identification of noninformative model parameters by sequential screening

    NASA Astrophysics Data System (ADS)

    Cuntz, Matthias; Mai, Juliane; Zink, Matthias; Thober, Stephan; Kumar, Rohini; Schäfer, David; Schrön, Martin; Craven, John; Rakovec, Oldrich; Spieler, Diana; Prykhodko, Vladyslav; Dalmasso, Giovanni; Musuuza, Jude; Langenberg, Ben; Attinger, Sabine; Samaniego, Luis

    2015-08-01

    Environmental models tend to require increasing computational time and resources as physical process descriptions are improved or new descriptions are incorporated. Many-query applications such as sensitivity analysis or model calibration usually require a large number of model evaluations leading to high computational demand. This often limits the feasibility of rigorous analyses. Here we present a fully automated sequential screening method that selects only informative parameters for a given model output. The method requires a number of model evaluations that is approximately 10 times the number of model parameters. It was tested using the mesoscale hydrologic model mHM in three hydrologically unique European river catchments. It identified around 20 informative parameters out of 52, with different informative parameters in each catchment. The screening method was evaluated with subsequent analyses using all 52 as well as only the informative parameters. Subsequent Sobol's global sensitivity analysis led to almost identical results yet required 40% fewer model evaluations after screening. mHM was calibrated with all and with only informative parameters in the three catchments. Model performances for daily discharge were equally high in both cases with Nash-Sutcliffe efficiencies above 0.82. Calibration using only the informative parameters needed just one third of the number of model evaluations. The universality of the sequential screening method was demonstrated using several general test functions from the literature. We therefore recommend the use of the computationally inexpensive sequential screening method prior to rigorous analyses on complex environmental models.

  10. Computationally inexpensive identification of noninformative model parameters by sequential screening

    NASA Astrophysics Data System (ADS)

    Mai, Juliane; Cuntz, Matthias; Zink, Matthias; Thober, Stephan; Kumar, Rohini; Schäfer, David; Schrön, Martin; Craven, John; Rakovec, Oldrich; Spieler, Diana; Prykhodko, Vladyslav; Dalmasso, Giovanni; Musuuza, Jude; Langenberg, Ben; Attinger, Sabine; Samaniego, Luis

    2016-04-01

    Environmental models tend to require increasing computational time and resources as physical process descriptions are improved or new descriptions are incorporated. Many-query applications such as sensitivity analysis or model calibration usually require a large number of model evaluations leading to high computational demand. This often limits the feasibility of rigorous analyses. Here we present a fully automated sequential screening method that selects only informative parameters for a given model output. The method requires a number of model evaluations that is approximately 10 times the number of model parameters. It was tested using the mesoscale hydrologic model mHM in three hydrologically unique European river catchments. It identified around 20 informative parameters out of 52, with different informative parameters in each catchment. The screening method was evaluated with subsequent analyses using all 52 as well as only the informative parameters. Subsequent Sobol's global sensitivity analysis led to almost identical results yet required 40% fewer model evaluations after screening. mHM was calibrated with all and with only informative parameters in the three catchments. Model performances for daily discharge were equally high in both cases with Nash-Sutcliffe efficiencies above 0.82. Calibration using only the informative parameters needed just one third of the number of model evaluations. The universality of the sequential screening method was demonstrated using several general test functions from the literature. We therefore recommend the use of the computationally inexpensive sequential screening method prior to rigorous analyses on complex environmental models.

  11. Why advanced computing? The key to space-based operations

    NASA Astrophysics Data System (ADS)

    Phister, Paul W., Jr.; Plonisch, Igor; Mineo, Jack

    2000-11-01

    The 'what is the requirement?' aspect of advanced computing and how it relates to and supports Air Force space-based operations is a key issue. In support of the Air Force Space Command's five major mission areas (space control, force enhancement, force applications, space support and mission support), two-fifths of the requirements have associated stringent computing/size implications. The Air Force Research Laboratory's 'migration to space' concept will eventually shift Science and Technology (S&T) dollars from predominantly airborne systems to airborne-and-space related S&T areas. One challenging 'space' area is in the development of sophisticated on-board computing processes for the next generation smaller, cheaper satellite systems. These new space systems (called microsats or nanosats) could be as small as a softball, yet perform functions that are currently being done by large, vulnerable ground-based assets. The Joint Battlespace Infosphere (JBI) concept will be used to manage the overall process of space applications coupled with advancements in computing. The JBI can be defined as a globally interoperable information 'space' which aggregates, integrates, fuses, and intelligently disseminates all relevant battlespace knowledge to support effective decision-making at all echelons of a Joint Task Force (JTF). This paper explores a single theme -- on-board processing is the best avenue to take advantage of advancements in high-performance computing, high-density memories, communications, and re-programmable architecture technologies. The goal is to break away from 'no changes after launch' design to a more flexible design environment that can take advantage of changing space requirements and needs while the space vehicle is 'on orbit.'

  12. Extending Landauer's bound from bit erasure to arbitrary computation

    NASA Astrophysics Data System (ADS)

    Wolpert, David

    The minimal thermodynamic work required to erase a bit, known as Landauer's bound, has been extensively investigated both theoretically and experimentally. However, when viewed as a computation that maps inputs to outputs, bit erasure has a very special property: the output does not depend on the input. Existing analyses of thermodynamics of bit erasure implicitly exploit this property, and thus cannot be directly extended to analyze the computation of arbitrary input-output maps. Here we show how to extend these earlier analyses of bit erasure to analyze the thermodynamics of arbitrary computations. Doing this establishes a formal connection between the thermodynamics of computers and much of theoretical computer science. We use this extension to analyze the thermodynamics of the canonical ``general purpose computer'' considered in computer science theory: a universal Turing machine (UTM). We consider a UTM which maps input programs to output strings, where inputs are drawn from an ensemble of random binary sequences, and prove: i) The minimal work needed by a UTM to run some particular input program X and produce output Y is the Kolmogorov complexity of Y minus the log of the ``algorithmic probability'' of Y. This minimal amount of thermodynamic work has a finite upper bound, which is independent of the output Y, depending only on the details of the UTM. ii) The expected work needed by a UTM to compute some given output Y is infinite. As a corollary, the overall expected work to run a UTM is infinite. iii) The expected work needed by an arbitrary Turing machine T (not necessarily universal) to compute some given output Y can either be infinite or finite, depending on Y and the details of T. To derive these results we must combine ideas from nonequilibrium statistical physics with fundamental results from computer science, such as Levin's coding theorem and other theorems about universal computation. I would like to ackowledge the Santa Fe Institute, Grant No. TWCF0079/AB47 from the Templeton World Charity Foundation, Grant No. FQXi-RHl3-1349 from the FQXi foundation, and Grant No. CHE-1648973 from the U.S. National Science Foundation.

  13. The computation in diagnostics for tokamaks: systems, designs, approaches

    NASA Astrophysics Data System (ADS)

    Krawczyk, Rafał; Linczuk, Paweł; Czarski, Tomasz; Wojeński, Andrzej; Chernyshova, Maryna; Poźniak, Krzysztof; Kolasiński, Piotr; Kasprowicz, Grzegorz; Zabołotny, Wojciech; Kowalska-Strzeciwilk, Ewa; Malinowski, Karol; Gaska, Michał

    2017-08-01

    The requirements given for GEM (Gaseous Electron Multiplier) detector based acquisition system for plasma impurities diagnostics triggered a need for the development of a specialized software and hardware architecture. The amount of computations with latency and throughput restrictions cause that an advanced solution is sought for. In order to provide a mechanism fitting the designated tokamaks, an insight into existing solutions was necessary. In the article there is discussed architecture of systems used for plasma diagnostics and in related scientific fields. The developed solution is compared and contrasted with other diagnostic and control systems. Particular attention is payed to specific requirements for plasma impurities diagnostics in tokamak thermal fusion reactor. Subsequently, the details are presented that justified the choice of the system architecture and the discussion on various approaches is given.

  14. Real-time structured light intraoral 3D measurement pipeline

    NASA Astrophysics Data System (ADS)

    Gheorghe, Radu; Tchouprakov, Andrei; Sokolov, Roman

    2013-02-01

    Computer aided design and manufacturing (CAD/CAM) is increasingly becoming a standard feature and service provided to patients in dentist offices and denture manufacturing laboratories. Although the quality of the tools and data has slowly improved in the last years, due to various surface measurement challenges, practical, accurate, invivo, real-time 3D high quality data acquisition and processing still needs improving. Advances in GPU computational power have allowed for achieving near real-time 3D intraoral in-vivo scanning of patient's teeth. We explore in this paper, from a real-time perspective, a hardware-software-GPU solution that addresses all the requirements mentioned before. Moreover we exemplify and quantify the hard and soft deadlines required by such a system and illustrate how they are supported in our implementation.

  15. Quantum Simulation of Tunneling in Small Systems

    PubMed Central

    Sornborger, Andrew T.

    2012-01-01

    A number of quantum algorithms have been performed on small quantum computers; these include Shor's prime factorization algorithm, error correction, Grover's search algorithm and a number of analog and digital quantum simulations. Because of the number of gates and qubits necessary, however, digital quantum particle simulations remain untested. A contributing factor to the system size required is the number of ancillary qubits needed to implement matrix exponentials of the potential operator. Here, we show that a set of tunneling problems may be investigated with no ancillary qubits and a cost of one single-qubit operator per time step for the potential evolution, eliminating at least half of the quantum gates required for the algorithm and more than that in the general case. Such simulations are within reach of current quantum computer architectures. PMID:22916333

  16. An efficient algorithm to compute marginal posterior genotype probabilities for every member of a pedigree with loops

    PubMed Central

    2009-01-01

    Background Marginal posterior genotype probabilities need to be computed for genetic analyses such as geneticcounseling in humans and selective breeding in animal and plant species. Methods In this paper, we describe a peeling based, deterministic, exact algorithm to compute efficiently genotype probabilities for every member of a pedigree with loops without recourse to junction-tree methods from graph theory. The efficiency in computing the likelihood by peeling comes from storing intermediate results in multidimensional tables called cutsets. Computing marginal genotype probabilities for individual i requires recomputing the likelihood for each of the possible genotypes of individual i. This can be done efficiently by storing intermediate results in two types of cutsets called anterior and posterior cutsets and reusing these intermediate results to compute the likelihood. Examples A small example is used to illustrate the theoretical concepts discussed in this paper, and marginal genotype probabilities are computed at a monogenic disease locus for every member in a real cattle pedigree. PMID:19958551

  17. GPU-accelerated computing for Lagrangian coherent structures of multi-body gravitational regimes

    NASA Astrophysics Data System (ADS)

    Lin, Mingpei; Xu, Ming; Fu, Xiaoyu

    2017-04-01

    Based on a well-established theoretical foundation, Lagrangian Coherent Structures (LCSs) have elicited widespread research on the intrinsic structures of dynamical systems in many fields, including the field of astrodynamics. Although the application of LCSs in dynamical problems seems straightforward theoretically, its associated computational cost is prohibitive. We propose a block decomposition algorithm developed on Compute Unified Device Architecture (CUDA) platform for the computation of the LCSs of multi-body gravitational regimes. In order to take advantage of GPU's outstanding computing properties, such as Shared Memory, Constant Memory, and Zero-Copy, the algorithm utilizes a block decomposition strategy to facilitate computation of finite-time Lyapunov exponent (FTLE) fields of arbitrary size and timespan. Simulation results demonstrate that this GPU-based algorithm can satisfy double-precision accuracy requirements and greatly decrease the time needed to calculate final results, increasing speed by approximately 13 times. Additionally, this algorithm can be generalized to various large-scale computing problems, such as particle filters, constellation design, and Monte-Carlo simulation.

  18. The implementation and use of Ada on distributed systems with high reliability requirements

    NASA Technical Reports Server (NTRS)

    Knight, J. C.

    1987-01-01

    A preliminary analysis of the Ada implementation of the Advanced Transport Operating System (ATOPS), an experimental computer control system developed at NASA Langley for a modified Boeing 737 aircraft, is presented. The criteria that was determined for the evaluation of this approach is described. A preliminary version of the requirements for the ATOPS is contained. This requirements specification is not a formal document, but rather a description of certain aspects of the ATOPS system at a level of detail that best suits the needs of the research. The survey of backward error recovery techniques is also presented.

  19. Virtual aluminum castings: An industrial application of ICME

    NASA Astrophysics Data System (ADS)

    Allison, John; Li, Mei; Wolverton, C.; Su, Xuming

    2006-11-01

    The automotive product design and manufacturing community is continually besieged by Hercule an engineering, timing, and cost challenges. Nowhere is this more evident than in the development of designs and manufacturing processes for cast aluminum engine blocks and cylinder heads. Increasing engine performance requirements coupled with stringent weight and packaging constraints are pushing aluminum alloys to the limits of their capabilities. To provide high-quality blocks and heads at the lowest possible cost, manufacturing process engineers are required to find increasingly innovative ways to cast and heat treat components. Additionally, to remain competitive, products and manufacturing methods must be developed and implemented in record time. To bridge the gaps between program needs and engineering reality, the use of robust computational models in up-front analysis will take on an increasingly important role. This article describes just such a computational approach, the Virtual Aluminum Castings methodology, which was developed and implemented at Ford Motor Company and demonstrates the feasibility and benefits of integrated computational materials engineering.

  20. Iterative approach as alternative to S-matrix in modal methods

    NASA Astrophysics Data System (ADS)

    Semenikhin, Igor; Zanuccoli, Mauro

    2014-12-01

    The continuously increasing complexity of opto-electronic devices and the rising demands of simulation accuracy lead to the need of solving very large systems of linear equations making iterative methods promising and attractive from the computational point of view with respect to direct methods. In particular, iterative approach potentially enables the reduction of required computational time to solve Maxwell's equations by Eigenmode Expansion algorithms. Regardless of the particular eigenmodes finding method used, the expansion coefficients are computed as a rule by scattering matrix (S-matrix) approach or similar techniques requiring order of M3 operations. In this work we consider alternatives to the S-matrix technique which are based on pure iterative or mixed direct-iterative approaches. The possibility to diminish the impact of M3 -order calculations to overall time and in some cases even to reduce the number of arithmetic operations to M2 by applying iterative techniques are discussed. Numerical results are illustrated to discuss validity and potentiality of the proposed approaches.

  1. Cloud Infrastructures for In Silico Drug Discovery: Economic and Practical Aspects

    PubMed Central

    Clematis, Andrea; Quarati, Alfonso; Cesini, Daniele; Milanesi, Luciano; Merelli, Ivan

    2013-01-01

    Cloud computing opens new perspectives for small-medium biotechnology laboratories that need to perform bioinformatics analysis in a flexible and effective way. This seems particularly true for hybrid clouds that couple the scalability offered by general-purpose public clouds with the greater control and ad hoc customizations supplied by the private ones. A hybrid cloud broker, acting as an intermediary between users and public providers, can support customers in the selection of the most suitable offers, optionally adding the provisioning of dedicated services with higher levels of quality. This paper analyses some economic and practical aspects of exploiting cloud computing in a real research scenario for the in silico drug discovery in terms of requirements, costs, and computational load based on the number of expected users. In particular, our work is aimed at supporting both the researchers and the cloud broker delivering an IaaS cloud infrastructure for biotechnology laboratories exposing different levels of nonfunctional requirements. PMID:24106693

  2. ZOOM: a generic personal computer-based teaching program for public health and its application in schistosomiasis control.

    PubMed Central

    Martin, G. T.; Yoon, S. S.; Mott, K. E.

    1991-01-01

    Schistosomiasis, a group of parasitic diseases caused by Schistosoma parasites, is associated with water resources development and affects more than 200 million people in 76 countries. Depending on the species of parasite involved, disease of the liver, spleen, gastrointestinal or urinary tract, or kidneys may result. A computer-assisted teaching package has been developed by WHO for use in the training of public health workers involved in schistosomiasis control. The package consists of the software, ZOOM, and a schistosomiasis information file, Dr Schisto, and uses hypermedia technology to link pictures and text. ZOOM runs on the IBM-PC and IBM-compatible computers, is user-friendly, requires a minimal hardware configuration, and can interact with the user in English, French, Spanish or Portuguese. The information files for ZOOM can be created or modified by the instructor using a word processor, and thus can be designed to suit the need of students. No programming knowledge is required to create the stacks. PMID:1786618

  3. FAWKES Information Management for Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Spetka, S.; Ramseyer, G.; Tucker, S.

    2010-09-01

    Current space situational awareness assets can be fully utilized by managing their inputs and outputs in real time. Ideally, sensors are tasked to perform specific functions to maximize their effectiveness. Many sensors are capable of collecting more data than is needed for a particular purpose, leading to the potential to enhance a sensor’s utilization by allowing it to be re-tasked in real time when it is determined that sufficient data has been acquired to meet the first task’s requirements. In addition, understanding a situation involving fast-traveling objects in space may require inputs from more than one sensor, leading to a need for information sharing in real time. Observations that are not processed in real time may be archived to support forensic analysis for accidents and for long-term studies. Space Situational Awareness (SSA) requires an extremely robust distributed software platform to appropriately manage the collection and distribution for both real-time decision-making as well as for analysis. FAWKES is being developed as a Joint Space Operations Center (JSPOC) Mission System (JMS) compliant implementation of the AFRL Phoenix information management architecture. It implements a pub/sub/archive/query (PSAQ) approach to communications designed for high performance applications. FAWKES provides an easy to use, reliable interface for structuring parallel processing, and is particularly well suited to the requirements of SSA. In addition to supporting point-to-point communications, it offers an elegant and robust implementation of collective communications, to scatter, gather and reduce values. A query capability is also supported that enhances reliability. Archived messages can be queried to re-create a computation or to selectively retrieve previous publications. PSAQ processes express their role in a computation by subscribing to their inputs and by publishing their results. Sensors on the edge can subscribe to inputs by appropriately authorized users, allowing dynamic tasking capabilities. Previously, the publication of sensor data collected by mobile systems was demonstrated. Thumbnails of infrared imagery that were imaged in real time by an aircraft [1] were published over a grid. This airborne system subscribed to requests for and then published the requested detailed images. In another experiment a system employing video subscriptions [2] drove the analysis of live video streams, resulting in a published stream of processed video output. We are currently implementing an SSA system that uses FAWKES to deliver imagery from telescopes through a pipeline of processing steps that are performed on high performance computers. PSAQ facilitates the decomposition of a problem into components that can be distributed across processing assets from the smallest sensors in space to the largest high performance computing (HPC) centers, as well as the integration and distribution of the results, all in real time. FAWKES supports the real-time latency requirements demanded by all of these applications. It also enhances reliability by easily supporting redundant computation. This study shows how FAWKES/PSAQ is utilized in SSA applications, and presents performance results for latency and throughput that meet these needs.

  4. Quantum adiabatic computation with a constant gap is not useful in one dimension.

    PubMed

    Hastings, M B

    2009-07-31

    We show that it is possible to use a classical computer to efficiently simulate the adiabatic evolution of a quantum system in one dimension with a constant spectral gap, starting the adiabatic evolution from a known initial product state. The proof relies on a recently proven area law for such systems, implying the existence of a good matrix product representation of the ground state, combined with an appropriate algorithm to update the matrix product state as the Hamiltonian is changed. This implies that adiabatic evolution with such Hamiltonians is not useful for universal quantum computation. Therefore, adiabatic algorithms which are useful for universal quantum computation either require a spectral gap tending to zero or need to be implemented in more than one dimension (we leave open the question of the computational power of adiabatic simulation with a constant gap in more than one dimension).

  5. High End Computing Technologies for Earth Science Applications: Trends, Challenges, and Innovations

    NASA Technical Reports Server (NTRS)

    Parks, John (Technical Monitor); Biswas, Rupak; Yan, Jerry C.; Brooks, Walter F.; Sterling, Thomas L.

    2003-01-01

    Earth science applications of the future will stress the capabilities of even the highest performance supercomputers in the areas of raw compute power, mass storage management, and software environments. These NASA mission critical problems demand usable multi-petaflops and exabyte-scale systems to fully realize their science goals. With an exciting vision of the technologies needed, NASA has established a comprehensive program of advanced research in computer architecture, software tools, and device technology to ensure that, in partnership with US industry, it can meet these demanding requirements with reliable, cost effective, and usable ultra-scale systems. NASA will exploit, explore, and influence emerging high end computing architectures and technologies to accelerate the next generation of engineering, operations, and discovery processes for NASA Enterprises. This article captures this vision and describes the concepts, accomplishments, and the potential payoff of the key thrusts that will help meet the computational challenges in Earth science applications.

  6. Two-Level Weld-Material Homogenization for Efficient Computational Analysis of Welded Structure Blast-Survivability

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Arakere, G.; Hariharan, A.; Pandurangan, B.

    2012-06-01

    The introduction of newer joining technologies like the so-called friction-stir welding (FSW) into automotive engineering entails the knowledge of the joint-material microstructure and properties. Since, the development of vehicles (including military vehicles capable of surviving blast and ballistic impacts) nowadays involves extensive use of the computational engineering analyses (CEA), robust high-fidelity material models are needed for the FSW joints. A two-level material-homogenization procedure is proposed and utilized in this study to help manage computational cost and computer storage requirements for such CEAs. The method utilizes experimental (microstructure, microhardness, tensile testing, and x-ray diffraction) data to construct: (a) the material model for each weld zone and (b) the material model for the entire weld. The procedure is validated by comparing its predictions with the predictions of more detailed but more costly computational analyses.

  7. Informatics in Radiology (infoRAD): personal computer security: part 2. Software Configuration and file protection.

    PubMed

    Caruso, Ronald D

    2004-01-01

    Proper configuration of software security settings and proper file management are necessary and important elements of safe computer use. Unfortunately, the configuration of software security options is often not user friendly. Safe file management requires the use of several utilities, most of which are already installed on the computer or available as freeware. Among these file operations are setting passwords, defragmentation, deletion, wiping, removal of personal information, and encryption. For example, Digital Imaging and Communications in Medicine medical images need to be anonymized, or "scrubbed," to remove patient identifying information in the header section prior to their use in a public educational or research environment. The choices made with respect to computer security may affect the convenience of the computing process. Ultimately, the degree of inconvenience accepted will depend on the sensitivity of the files and communications to be protected and the tolerance of the user. Copyright RSNA, 2004

  8. Perspectives on an education in computational biology and medicine.

    PubMed

    Rubinstein, Jill C

    2012-09-01

    The mainstream application of massively parallel, high-throughput assays in biomedical research has created a demand for scientists educated in Computational Biology and Bioinformatics (CBB). In response, formalized graduate programs have rapidly evolved over the past decade. Concurrently, there is increasing need for clinicians trained to oversee the responsible translation of CBB research into clinical tools. Physician-scientists with dedicated CBB training can facilitate such translation, positioning themselves at the intersection between computational biomedical research and medicine. This perspective explores key elements of the educational path to such a position, specifically addressing: 1) evolving perceptions of the role of the computational biologist and the impact on training and career opportunities; 2) challenges in and strategies for obtaining the core skill set required of a biomedical researcher in a computational world; and 3) how the combination of CBB with medical training provides a logical foundation for a career in academic medicine and/or biomedical research.

  9. gpuSPHASE-A shared memory caching implementation for 2D SPH using CUDA

    NASA Astrophysics Data System (ADS)

    Winkler, Daniel; Meister, Michael; Rezavand, Massoud; Rauch, Wolfgang

    2017-04-01

    Smoothed particle hydrodynamics (SPH) is a meshless Lagrangian method that has been successfully applied to computational fluid dynamics (CFD), solid mechanics and many other multi-physics problems. Using the method to solve transport phenomena in process engineering requires the simulation of several days to weeks of physical time. Based on the high computational demand of CFD such simulations in 3D need a computation time of years so that a reduction to a 2D domain is inevitable. In this paper gpuSPHASE, a new open-source 2D SPH solver implementation for graphics devices, is developed. It is optimized for simulations that must be executed with thousands of frames per second to be computed in reasonable time. A novel caching algorithm for Compute Unified Device Architecture (CUDA) shared memory is proposed and implemented. The software is validated and the performance is evaluated for the well established dambreak test case.

  10. Computer vision syndrome: a review.

    PubMed

    Blehm, Clayton; Vishnu, Seema; Khattak, Ashbala; Mitra, Shrabanee; Yee, Richard W

    2005-01-01

    As computers become part of our everyday life, more and more people are experiencing a variety of ocular symptoms related to computer use. These include eyestrain, tired eyes, irritation, redness, blurred vision, and double vision, collectively referred to as computer vision syndrome. This article describes both the characteristics and treatment modalities that are available at this time. Computer vision syndrome symptoms may be the cause of ocular (ocular-surface abnormalities or accommodative spasms) and/or extraocular (ergonomic) etiologies. However, the major contributor to computer vision syndrome symptoms by far appears to be dry eye. The visual effects of various display characteristics such as lighting, glare, display quality, refresh rates, and radiation are also discussed. Treatment requires a multidirectional approach combining ocular therapy with adjustment of the workstation. Proper lighting, anti-glare filters, ergonomic positioning of computer monitor and regular work breaks may help improve visual comfort. Lubricating eye drops and special computer glasses help relieve ocular surface-related symptoms. More work needs to be done to specifically define the processes that cause computer vision syndrome and to develop and improve effective treatments that successfully address these causes.

  11. Computational biology in the cloud: methods and new insights from computing at scale.

    PubMed

    Kasson, Peter M

    2013-01-01

    The past few years have seen both explosions in the size of biological data sets and the proliferation of new, highly flexible on-demand computing capabilities. The sheer amount of information available from genomic and metagenomic sequencing, high-throughput proteomics, experimental and simulation datasets on molecular structure and dynamics affords an opportunity for greatly expanded insight, but it creates new challenges of scale for computation, storage, and interpretation of petascale data. Cloud computing resources have the potential to help solve these problems by offering a utility model of computing and storage: near-unlimited capacity, the ability to burst usage, and cheap and flexible payment models. Effective use of cloud computing on large biological datasets requires dealing with non-trivial problems of scale and robustness, since performance-limiting factors can change substantially when a dataset grows by a factor of 10,000 or more. New computing paradigms are thus often needed. The use of cloud platforms also creates new opportunities to share data, reduce duplication, and to provide easy reproducibility by making the datasets and computational methods easily available.

  12. A parallel data management system for large-scale NASA datasets

    NASA Technical Reports Server (NTRS)

    Srivastava, Jaideep

    1993-01-01

    The past decade has experienced a phenomenal growth in the amount of data and resultant information generated by NASA's operations and research projects. A key application is the reprocessing problem which has been identified to require data management capabilities beyond those available today (PRAT93). The Intelligent Information Fusion (IIF) system (ROEL91) is an ongoing NASA project which has similar requirements. Deriving our understanding of NASA's future data management needs based on the above, this paper describes an approach to using parallel computer systems (processor and I/O architectures) to develop an efficient parallel database management system to address the needs. Specifically, we propose to investigate issues in low-level record organizations and management, complex query processing, and query compilation and scheduling.

  13. The GeantV project: Preparing the future of simulation

    DOE PAGES

    Amadio, G.; J. Apostolakis; Bandieramonte, M.; ...

    2015-12-23

    Detector simulation is consuming at least half of the HEP computing cycles, and even so, experiments have to take hard decisions on what to simulate, as their needs greatly surpass the availability of computing resources. New experiments still in the design phase such as FCC, CLIC and ILC as well as upgraded versions of the existing LHC detectors will push further the simulation requirements. Since the increase in computing resources is not likely to keep pace with our needs, it is therefore necessary to explore innovative ways of speeding up simulation in order to sustain the progress of High Energymore » Physics. The GeantV project aims at developing a high performance detector simulation system integrating fast and full simulation that can be ported on different computing architectures, including CPU accelerators. After more than two years of R&D the project has produced a prototype capable of transporting particles in complex geometries exploiting micro-parallelism, SIMD and multithreading. Portability is obtained via C++ template techniques that allow the development of machine- independent computational kernels. Furthermore, a set of tables derived from Geant4 for cross sections and final states provides a realistic shower development and, having been ported into a Geant4 physics list, can be used as a basis for a direct performance comparison.« less

  14. Highly parameterized model calibration with cloud computing: an example of regional flow model calibration in northeast Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Hayley, Kevin; Schumacher, J.; MacMillan, G. J.; Boutin, L. C.

    2014-05-01

    Expanding groundwater datasets collected by automated sensors, and improved groundwater databases, have caused a rapid increase in calibration data available for groundwater modeling projects. Improved methods of subsurface characterization have increased the need for model complexity to represent geological and hydrogeological interpretations. The larger calibration datasets and the need for meaningful predictive uncertainty analysis have both increased the degree of parameterization necessary during model calibration. Due to these competing demands, modern groundwater modeling efforts require a massive degree of parallelization in order to remain computationally tractable. A methodology for the calibration of highly parameterized, computationally expensive models using the Amazon EC2 cloud computing service is presented. The calibration of a regional-scale model of groundwater flow in Alberta, Canada, is provided as an example. The model covers a 30,865-km2 domain and includes 28 hydrostratigraphic units. Aquifer properties were calibrated to more than 1,500 static hydraulic head measurements and 10 years of measurements during industrial groundwater use. Three regionally extensive aquifers were parameterized (with spatially variable hydraulic conductivity fields), as was the aerial recharge boundary condition, leading to 450 adjustable parameters in total. The PEST-based model calibration was parallelized on up to 250 computing nodes located on Amazon's EC2 servers.

  15. Composition of web services using Markov decision processes and dynamic programming.

    PubMed

    Uc-Cetina, Víctor; Moo-Mena, Francisco; Hernandez-Ucan, Rafael

    2015-01-01

    We propose a Markov decision process model for solving the Web service composition (WSC) problem. Iterative policy evaluation, value iteration, and policy iteration algorithms are used to experimentally validate our approach, with artificial and real data. The experimental results show the reliability of the model and the methods employed, with policy iteration being the best one in terms of the minimum number of iterations needed to estimate an optimal policy, with the highest Quality of Service attributes. Our experimental work shows how the solution of a WSC problem involving a set of 100,000 individual Web services and where a valid composition requiring the selection of 1,000 services from the available set can be computed in the worst case in less than 200 seconds, using an Intel Core i5 computer with 6 GB RAM. Moreover, a real WSC problem involving only 7 individual Web services requires less than 0.08 seconds, using the same computational power. Finally, a comparison with two popular reinforcement learning algorithms, sarsa and Q-learning, shows that these algorithms require one or two orders of magnitude and more time than policy iteration, iterative policy evaluation, and value iteration to handle WSC problems of the same complexity.

  16. Simulation Of Seawater Intrusion With 2D And 3D Models: Nauru Island Case Study

    NASA Astrophysics Data System (ADS)

    Ghassemi, F.; Jakeman, A. J.; Jacobson, G.; Howard, K. W. F.

    1996-03-01

    With the advent of large computing capacities during the past few decades, sophisticated models have been developed for the simulation of seawater intrusion in coastal and island aquifers. Currently, several models are commercially available for the simulation of this problem. This paper describes the mathematical basis and application of the SUTRA and HST3D models to simulate seawater intrusion in Nauru Island, in the central Pacific Ocean. A comparison of the performance and limitations of these two models in simulating a real problem indicates that three-dimensional simulation of seawater intrusion with the HST3D model has the major advantage of being able to specify natural boundary conditions as well as pumping stresses. However, HST3D requires a small grid size and short time steps in order to maintain numerical stability and accuracy. These requirements lead to solution of a large set of linear equations that requires the availability of powerful computing facilities in terms of memory and computing speed. Combined results of the two simulation models indicate a safe pumping rate of 400 m3/d for the aquifer on Nauru Island, where additional fresh water is presently needed for the rehabilitation of mined-out land.

  17. Strategic directions of computing at Fermilab

    NASA Astrophysics Data System (ADS)

    Wolbers, Stephen

    1998-05-01

    Fermilab computing has changed a great deal over the years, driven by the demands of the Fermilab experimental community to record and analyze larger and larger datasets, by the desire to take advantage of advances in computing hardware and software, and by the advances coming from the R&D efforts of the Fermilab Computing Division. The strategic directions of Fermilab Computing continue to be driven by the needs of the experimental program. The current fixed-target run will produce over 100 TBytes of raw data and systems must be in place to allow the timely analysis of the data. The collider run II, beginning in 1999, is projected to produce of order 1 PByte of data per year. There will be a major change in methodology and software language as the experiments move away from FORTRAN and into object-oriented languages. Increased use of automation and the reduction of operator-assisted tape mounts will be required to meet the needs of the large experiments and large data sets. Work will continue on higher-rate data acquisition systems for future experiments and projects. R&D projects will be pursued as necessary to provide software, tools, or systems which cannot be purchased or acquired elsewhere. A closer working relation with other high energy laboratories will be pursued to reduce duplication of effort and to allow effective collaboration on many aspects of HEP computing.

  18. Parallel workflow manager for non-parallel bioinformatic applications to solve large-scale biological problems on a supercomputer.

    PubMed

    Suplatov, Dmitry; Popova, Nina; Zhumatiy, Sergey; Voevodin, Vladimir; Švedas, Vytas

    2016-04-01

    Rapid expansion of online resources providing access to genomic, structural, and functional information associated with biological macromolecules opens an opportunity to gain a deeper understanding of the mechanisms of biological processes due to systematic analysis of large datasets. This, however, requires novel strategies to optimally utilize computer processing power. Some methods in bioinformatics and molecular modeling require extensive computational resources. Other algorithms have fast implementations which take at most several hours to analyze a common input on a modern desktop station, however, due to multiple invocations for a large number of subtasks the full task requires a significant computing power. Therefore, an efficient computational solution to large-scale biological problems requires both a wise parallel implementation of resource-hungry methods as well as a smart workflow to manage multiple invocations of relatively fast algorithms. In this work, a new computer software mpiWrapper has been developed to accommodate non-parallel implementations of scientific algorithms within the parallel supercomputing environment. The Message Passing Interface has been implemented to exchange information between nodes. Two specialized threads - one for task management and communication, and another for subtask execution - are invoked on each processing unit to avoid deadlock while using blocking calls to MPI. The mpiWrapper can be used to launch all conventional Linux applications without the need to modify their original source codes and supports resubmission of subtasks on node failure. We show that this approach can be used to process huge amounts of biological data efficiently by running non-parallel programs in parallel mode on a supercomputer. The C++ source code and documentation are available from http://biokinet.belozersky.msu.ru/mpiWrapper .

  19. [Consideration of Mobile Medical Device Regulation].

    PubMed

    Peng, Liang; Yang, Pengfei; He, Weigang

    2015-07-01

    The regulation of mobile medical devices is one of the hot topics in the industry now. The definition, regulation scope and requirements, potential risks of mobile medical devices were analyzed and discussed based on mobile computing techniques and the FDA guidance of mobile medical applications. The regulation work of mobile medical devices in China needs to adopt the risk-based method.

  20. Technological Proficiency as a Key to Job Security. Trends and Issues Alert No. 6.

    ERIC Educational Resources Information Center

    Imel, Susan

    Although not all current jobs require basic computer skills, technological advances in society have created new jobs and changed the ways many existing jobs are performed. Clearly, workers who are proficient in technology have a greater advantage in the current workplace and the need for technologically proficient workers will only continue to…

  1. 45 CFR 263.13 - Is there a limit on the amount of Federal TANF funds that a State may spend on administrative costs?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Relating to Public Welfare OFFICE OF FAMILY ASSISTANCE (ASSISTANCE PROGRAMS), ADMINISTRATION FOR CHILDREN...) Expenditures on the information technology and computerization needed for tracking and monitoring required by..., support or operate the portions of information technology or computer systems used for tracking and...

  2. 45 CFR 263.13 - Is there a limit on the amount of Federal TANF funds that a State may spend on administrative costs?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Relating to Public Welfare OFFICE OF FAMILY ASSISTANCE (ASSISTANCE PROGRAMS), ADMINISTRATION FOR CHILDREN...) Expenditures on the information technology and computerization needed for tracking and monitoring required by..., support or operate the portions of information technology or computer systems used for tracking and...

  3. 45 CFR 263.13 - Is there a limit on the amount of Federal TANF funds that a State may spend on administrative costs?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Relating to Public Welfare OFFICE OF FAMILY ASSISTANCE (ASSISTANCE PROGRAMS), ADMINISTRATION FOR CHILDREN...) Expenditures on the information technology and computerization needed for tracking and monitoring required by..., support or operate the portions of information technology or computer systems used for tracking and...

  4. 45 CFR 263.13 - Is there a limit on the amount of Federal TANF funds that a State may spend on administrative costs?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Relating to Public Welfare OFFICE OF FAMILY ASSISTANCE (ASSISTANCE PROGRAMS), ADMINISTRATION FOR CHILDREN...) Expenditures on the information technology and computerization needed for tracking and monitoring required by..., support or operate the portions of information technology or computer systems used for tracking and...

  5. 45 CFR 263.13 - Is there a limit on the amount of Federal TANF funds that a State may spend on administrative costs?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Relating to Public Welfare OFFICE OF FAMILY ASSISTANCE (ASSISTANCE PROGRAMS), ADMINISTRATION FOR CHILDREN...) Expenditures on the information technology and computerization needed for tracking and monitoring required by..., support or operate the portions of information technology or computer systems used for tracking and...

  6. Integrating geospatial data and cropping system simulation within a geographic information system to analyze spatial seed cotton yield, water use, and irrigation requirements

    USDA-ARS?s Scientific Manuscript database

    The development of sensors that provide geospatial information on crop and soil conditions has been a primary success for precision agriculture. However, further developments are needed to integrate geospatial data into computer algorithms that spatially optimize crop production while considering po...

  7. Requirements for SPIRES II. An External Specification for the Stanford Public Information Retrieval System.

    ERIC Educational Resources Information Center

    Parker, Edwin B.

    SPIRES (Stanford Public Information Retrieval System) is a computerized information storage and retrieval system intended for use by students and faculty members who have little knowledge of computers but who need rapid and sophisticated retrieval and analysis. The functions and capabilities of the system from the user's point of view are…

  8. Integrated Teaching of Structure-Based Drug Design and Biopharmaceutics: A Computer-Based Approach

    ERIC Educational Resources Information Center

    Sutch, Brian T.; Romero, Rebecca M.; Neamati, Nouri; Haworth, Ian S.

    2012-01-01

    Rational drug design requires expertise in structural biology, medicinal chemistry, physiology, and related fields. In teaching structure-based drug design, it is important to develop an understanding of the need for early recognition of molecules with "drug-like" properties as a key component. That is, it is not merely sufficient to teach…

  9. Building a Community Infrastructure for Scalable On-Line Performance Analysis Tools around Open|Speedshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Barton

    2014-06-30

    Peta-scale computing environments pose significant challenges for both system and application developers and addressing them required more than simply scaling up existing tera-scale solutions. Performance analysis tools play an important role in gaining this understanding, but previous monolithic tools with fixed feature sets have not sufficed. Instead, this project worked on the design, implementation, and evaluation of a general, flexible tool infrastructure supporting the construction of performance tools as “pipelines” of high-quality tool building blocks. These tool building blocks provide common performance tool functionality, and are designed for scalability, lightweight data acquisition and analysis, and interoperability. For this project, wemore » built on Open|SpeedShop, a modular and extensible open source performance analysis tool set. The design and implementation of such a general and reusable infrastructure targeted for petascale systems required us to address several challenging research issues. All components needed to be designed for scale, a task made more difficult by the need to provide general modules. The infrastructure needed to support online data aggregation to cope with the large amounts of performance and debugging data. We needed to be able to map any combination of tool components to each target architecture. And we needed to design interoperable tool APIs and workflows that were concrete enough to support the required functionality, yet provide the necessary flexibility to address a wide range of tools. A major result of this project is the ability to use this scalable infrastructure to quickly create tools that match with a machine architecture and a performance problem that needs to be understood. Another benefit is the ability for application engineers to use the highly scalable, interoperable version of Open|SpeedShop, which are reassembled from the tool building blocks into a flexible, multi-user interface set of tools. This set of tools targeted at Office of Science Leadership Class computer systems and selected Office of Science application codes. We describe the contributions made by the team at the University of Wisconsin. The project built on the efforts in Open|SpeedShop funded by DOE/NNSA and the DOE/NNSA Tri-Lab community, extended Open|Speedshop to the Office of Science Leadership Class Computing Facilities, and addressed new challenges found on these cutting edge systems. Work done under this project at Wisconsin can be divided into two categories, new algorithms and techniques for debugging, and foundation infrastructure work on our Dyninst binary analysis and instrumentation toolkits and MRNet scalability infrastructure.« less

  10. The Computing and Data Grid Approach: Infrastructure for Distributed Science Applications

    NASA Technical Reports Server (NTRS)

    Johnston, William E.

    2002-01-01

    With the advent of Grids - infrastructure for using and managing widely distributed computing and data resources in the science environment - there is now an opportunity to provide a standard, large-scale, computing, data, instrument, and collaboration environment for science that spans many different projects and provides the required infrastructure and services in a relatively uniform and supportable way. Grid technology has evolved over the past several years to provide the services and infrastructure needed for building 'virtual' systems and organizations. We argue that Grid technology provides an excellent basis for the creation of the integrated environments that can combine the resources needed to support the large- scale science projects located at multiple laboratories and universities. We present some science case studies that indicate that a paradigm shift in the process of science will come about as a result of Grids providing transparent and secure access to advanced and integrated information and technologies infrastructure: powerful computing systems, large-scale data archives, scientific instruments, and collaboration tools. These changes will be in the form of services that can be integrated with the user's work environment, and that enable uniform and highly capable access to these computers, data, and instruments, regardless of the location or exact nature of these resources. These services will integrate transient-use resources like computing systems, scientific instruments, and data caches (e.g., as they are needed to perform a simulation or analyze data from a single experiment); persistent-use resources. such as databases, data catalogues, and archives, and; collaborators, whose involvement will continue for the lifetime of a project or longer. While we largely address large-scale science in this paper, Grids, particularly when combined with Web Services, will address a broad spectrum of science scenarios. both large and small scale.

  11. Using Adaptive Mesh Refinment to Simulate Storm Surge

    NASA Astrophysics Data System (ADS)

    Mandli, K. T.; Dawson, C.

    2012-12-01

    Coastal hazards related to strong storms such as hurricanes and typhoons are one of the most frequently recurring and wide spread hazards to coastal communities. Storm surges are among the most devastating effects of these storms, and their prediction and mitigation through numerical simulations is of great interest to coastal communities that need to plan for the subsequent rise in sea level during these storms. Unfortunately these simulations require a large amount of resolution in regions of interest to capture relevant effects resulting in a computational cost that may be intractable. This problem is exacerbated in situations where a large number of similar runs is needed such as in design of infrastructure or forecasting with ensembles of probable storms. One solution to address the problem of computational cost is to employ adaptive mesh refinement (AMR) algorithms. AMR functions by decomposing the computational domain into regions which may vary in resolution as time proceeds. Decomposing the domain as the flow evolves makes this class of methods effective at ensuring that computational effort is spent only where it is needed. AMR also allows for placement of computational resolution independent of user interaction and expectation of the dynamics of the flow as well as particular regions of interest such as harbors. The simulation of many different applications have only been made possible by using AMR-type algorithms, which have allowed otherwise impractical simulations to be performed for much less computational expense. Our work involves studying how storm surge simulations can be improved with AMR algorithms. We have implemented relevant storm surge physics in the GeoClaw package and tested how Hurricane Ike's surge into Galveston Bay and up the Houston Ship Channel compares to available tide gauge data. We will also discuss issues dealing with refinement criteria, optimal resolution and refinement ratios, and inundation.

  12. Techniques and equipment required for precise stream gaging in tide-affected fresh-water reaches of the Sacramento River, California

    USGS Publications Warehouse

    Smith, Winchell

    1971-01-01

    Current-meter measurements of high accuracy will be required for calibration of an acoustic flow-metering system proposed for installation in the Sacramento River at Chipps Island in California. This report presents an analysis of the problem of making continuous accurate current-meter measurements in this channel where the flow regime is changing constantly in response to tidal action. Gaging-system requirements are delineated, and a brief description is given of the several applicable techniques that have been developed by others. None of these techniques provides the accuracies required for the flowmeter calibration. A new system is described--one which has been assembled and tested in prototype and which will provide the matrix of data needed for accurate continuous current-meter measurements. Analysis of a large quantity of data on the velocity distribution in the channel of the Sacramento River at Chipps Island shows that adequate definition of the velocity can be made during the dominant flow periods--that is, at times other than slack-water periods--by use of current meters suspended at elevations 0.2 and 0.8 of the depth below the water surface. However, additional velocity surveys will be necessary to determine whether or not small systematic corrections need be applied during periods of rapidly changing flow. In the proposed system all gaged parameters, including velocities, depths, position in the stream, and related times, are monitored continuously as a boat moves across the river on the selected cross section. Data are recorded photographically and transferred later onto punchcards for computer processing. Computer programs have been written to permit computation of instantaneous discharges at any selected time interval throughout the period of the current meter measurement program. It is anticipated that current-meter traverses will be made at intervals of about one-half hour over periods of several days. Capability of performance for protracted periods was, consequently, one of the important elements in system design. Analysis of error sources in the proposed system indicates that errors in individual computed discharges can be kept smaller than 1.5 percent if the expected precision in all measured parameters is maintained.

  13. A Multifaceted Mathematical Approach for Complex Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, F.; Anitescu, M.; Bell, J.

    2012-03-07

    Applied mathematics has an important role to play in developing the tools needed for the analysis, simulation, and optimization of complex problems. These efforts require the development of the mathematical foundations for scientific discovery, engineering design, and risk analysis based on a sound integrated approach for the understanding of complex systems. However, maximizing the impact of applied mathematics on these challenges requires a novel perspective on approaching the mathematical enterprise. Previous reports that have surveyed the DOE's research needs in applied mathematics have played a key role in defining research directions with the community. Although these reports have had significantmore » impact, accurately assessing current research needs requires an evaluation of today's challenges against the backdrop of recent advances in applied mathematics and computing. To address these needs, the DOE Applied Mathematics Program sponsored a Workshop for Mathematics for the Analysis, Simulation and Optimization of Complex Systems on September 13-14, 2011. The workshop had approximately 50 participants from both the national labs and academia. The goal of the workshop was to identify new research areas in applied mathematics that will complement and enhance the existing DOE ASCR Applied Mathematics Program efforts that are needed to address problems associated with complex systems. This report describes recommendations from the workshop and subsequent analysis of the workshop findings by the organizing committee.« less

  14. Advanced Optical Burst Switched Network Concepts

    NASA Astrophysics Data System (ADS)

    Nejabati, Reza; Aracil, Javier; Castoldi, Piero; de Leenheer, Marc; Simeonidou, Dimitra; Valcarenghi, Luca; Zervas, Georgios; Wu, Jian

    In recent years, as the bandwidth and the speed of networks have increased significantly, a new generation of network-based applications using the concept of distributed computing and collaborative services is emerging (e.g., Grid computing applications). The use of the available fiber and DWDM infrastructure for these applications is a logical choice offering huge amounts of cheap bandwidth and ensuring global reach of computing resources [230]. Currently, there is a great deal of interest in deploying optical circuit (wavelength) switched network infrastructure for distributed computing applications that require long-lived wavelength paths and address the specific needs of a small number of well-known users. Typical users are particle physicists who, due to their international collaborations and experiments, generate enormous amounts of data (Petabytes per year). These users require a network infrastructures that can support processing and analysis of large datasets through globally distributed computing resources [230]. However, providing wavelength granularity bandwidth services is not an efficient and scalable solution for applications and services that address a wider base of user communities with different traffic profiles and connectivity requirements. Examples of such applications may be: scientific collaboration in smaller scale (e.g., bioinformatics, environmental research), distributed virtual laboratories (e.g., remote instrumentation), e-health, national security and defense, personalized learning environments and digital libraries, evolving broadband user services (i.e., high resolution home video editing, real-time rendering, high definition interactive TV). As a specific example, in e-health services and in particular mammography applications due to the size and quantity of images produced by remote mammography, stringent network requirements are necessary. Initial calculations have shown that for 100 patients to be screened remotely, the network would have to securely transport 1.2 GB of data every 30 s [230]. According to the above explanation it is clear that these types of applications need a new network infrastructure and transport technology that makes large amounts of bandwidth at subwavelength granularity, storage, computation, and visualization resources potentially available to a wide user base for specified time durations. As these types of collaborative and network-based applications evolve addressing a wide range and large number of users, it is infeasible to build dedicated networks for each application type or category. Consequently, there should be an adaptive network infrastructure able to support all application types, each with their own access, network, and resource usage patterns. This infrastructure should offer flexible and intelligent network elements and control mechanism able to deploy new applications quickly and efficiently.

  15. Number of repetitions required to retain single-digit multiplication math facts for elementary students.

    PubMed

    Burns, Matthew K; Ysseldyke, Jim; Nelson, Peter M; Kanive, Rebecca

    2015-09-01

    Computational fluency is an important aspect of math proficiency. Despite widely held beliefs about the differential difficulty of single-digit multiplication math facts, little empirical work has examined this issue. The current study analyzed the number of repetitions needed to master multiplication math facts. Data from 15,402 3rd, 4th, and 5th graders were analyzed using a national database. Results suggested that (a) students with lower math skills required significantly (p < .001) more repetitions than more skilled students; (b) across all students, single-digit multiplication facts with 4s, 5s, 6s, and 7s required significantly (p < .001) more repetition than did 2s and 3s; and (c) the number of practice sessions needed to attain mastery significantly (p < .001) decreased with increase in grade level. Implications for instructional planning and implementation are discussed. (c) 2015 APA, all rights reserved).

  16. Man-machine interface and control of the shuttle digital flight system

    NASA Technical Reports Server (NTRS)

    Burghduff, R. D.; Lewis, J. L., Jr.

    1985-01-01

    The space shuttle main engine (SSME) presented new requirements in the design of controls for large pump fed liquid rocket engine systems. These requirements were the need for built in full mission support capability, and complexity and flexibility of function not previously needed in this type of application. An engine mounted programmable digital control system was developed to meet these requirements. The engine system and controller and their function are described. Design challenges encountered during the course of development included accommodation for a very severe engine environment, the implementation of redundancy and redundancy management to provide fail operational/fail safe capability, removal of heat from the package, and significant constraints on computer memory size and processing time. The flexibility offered by programmable control reshaped the approach to engine design and development and set the pattern for future controls development in these types of applications.

  17. Using embedded computer-assisted instruction to teach science to students with Autism Spectrum Disorders

    NASA Astrophysics Data System (ADS)

    Smith, Bethany

    The need for promoting scientific literacy for all students has been the focus of recent education reform resulting in the rise of the Science Technology, Engineering, and Mathematics movement. For students with Autism Spectrum Disorders and intellectual disability, this need for scientific literacy is further complicated by the need for individualized instruction that is often required to teach new skills, especially when those skills are academic in nature. In order to address this need for specialized instruction, as well as scientific literacy, this study investigated the effects of embedded computer-assisted instruction to teach science terms and application of those terms to three middle school students with autism and intellectual disability. This study was implemented within an inclusive science classroom setting. A multiple probe across participants research design was used to examine the effectiveness of the intervention. Results of this study showed a functional relationship between the number of correct responses made during probe sessions and introduction of the intervention. Additionally, all three participants maintained the acquired science terms and applications over time and generalized these skills across materials and settings. The findings of this study suggest several implications for practice within inclusive settings and provide suggestions for future research investigating the effectiveness of computer-assisted instruction to teach academic skills to students with Autism Spectrum Disorders and intellectual disability.

  18. "Hypothetical" Heavy Particles Dynamics in LES of Turbulent Dispersed Two-Phase Channel Flow

    NASA Technical Reports Server (NTRS)

    Gorokhovski, M.; Chtab, A.

    2003-01-01

    The extensive experimental study of dispersed two-phase turbulent flow in a vertical channel has been performed in Eaton's research group in the Mechanical Engineering Department at Stanford University. In Wang & Squires (1996), this study motivated the validation of LES approach with Lagrangian tracking of round particles governed by drag forces. While the computed velocity of the flow have been predicted relatively well, the computed particle velocity differed strongly from the measured one. Using Monte Carlo simulation of inter-particle collisions, the computation of Yamamoto et al. (2001) was specifically performed to model Eaton's experiment. The results of Yamamoto et al. (2001) improved the particle velocity distribution. At the same time, Vance & Squires (2002) mentioned that the stochastic simualtion of inter-particle collisions is too expensive, requiring significantly more CPU resources than one needs for the gas flow computation. Therefore, the need comes to account for the inter-particle collisions in a simpler and still effective way. To present such a model in the framework of LES/Lagrangian particle approach, and to compare the calculated results with Eaton's measurement and modeling of Yamamoto is the main objective of the present paper.

  19. Multiscale modeling and distributed computing to predict cosmesis outcome after a lumpectomy

    NASA Astrophysics Data System (ADS)

    Garbey, M.; Salmon, R.; Thanoon, D.; Bass, B. L.

    2013-07-01

    Surgery for early stage breast carcinoma is either total mastectomy (complete breast removal) or surgical lumpectomy (only tumor removal). The lumpectomy or partial mastectomy is intended to preserve a breast that satisfies the woman's cosmetic, emotional and physical needs. But in a fairly large number of cases the cosmetic outcome is not satisfactory. Today, predicting that surgery outcome is essentially based on heuristic. Modeling such a complex process must encompass multiple scales, in space from cells to tissue, as well as in time, from minutes for the tissue mechanics to months for healing. The goal of this paper is to present a first step in multiscale modeling of the long time scale prediction of breast shape after tumor resection. This task requires coupling very different mechanical and biological models with very different computing needs. We provide a simple illustration of the application of heterogeneous distributed computing and modular software design to speed up the model development. Our computational framework serves currently to test hypothesis on breast tissue healing in a pilot study with women who have been elected to undergo BCT and are being treated at the Methodist Hospital in Houston, TX.

  20. SABrE User's Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, S.A.

    In computing landscape which has a plethora of different hardware architectures and supporting software systems ranging from compilers to operating systems, there is an obvious and strong need for a philosophy of software development that lends itself to the design and construction of portable code systems. The current efforts to standardize software bear witness to this need. SABrE is an effort to implement a software development environment which is itself portable and promotes the design and construction of portable applications. SABrE does not include such important tools as editors and compilers. Well built tools of that kind are readily availablemore » across virtually all computer platforms. The areas that SABrE addresses are at a higher level involving issues such as data portability, portable inter-process communication, and graphics. These blocks of functionality have particular significance to the kind of code development done at LLNL. That is partly why the general computing community has not supplied us with these tools already. This is another key feature of the software development environments which we must recognize. The general computing community cannot and should not be expected to produce all of the tools which we require.« less

Top