Oulas, Anastasis; Karathanasis, Nestoras; Louloupi, Annita; Pavlopoulos, Georgios A; Poirazi, Panayiota; Kalantidis, Kriton; Iliopoulos, Ioannis
2015-01-01
Computational methods for miRNA target prediction are currently undergoing extensive review and evaluation. There is still a great need for improvement of these tools and bioinformatics approaches are looking towards high-throughput experiments in order to validate predictions. The combination of large-scale techniques with computational tools will not only provide greater credence to computational predictions but also lead to the better understanding of specific biological questions. Current miRNA target prediction tools utilize probabilistic learning algorithms, machine learning methods and even empirical biologically defined rules in order to build models based on experimentally verified miRNA targets. Large-scale protein downregulation assays and next-generation sequencing (NGS) are now being used to validate methodologies and compare the performance of existing tools. Tools that exhibit greater correlation between computational predictions and protein downregulation or RNA downregulation are considered the state of the art. Moreover, efficiency in prediction of miRNA targets that are concurrently verified experimentally provides additional validity to computational predictions and further highlights the competitive advantage of specific tools and their efficacy in extracting biologically significant results. In this review paper, we discuss the computational methods for miRNA target prediction and provide a detailed comparison of methodologies and features utilized by each specific tool. Moreover, we provide an overview of current state-of-the-art high-throughput methods used in miRNA target prediction.
Common features of microRNA target prediction tools
Peterson, Sarah M.; Thompson, Jeffrey A.; Ufkin, Melanie L.; Sathyanarayana, Pradeep; Liaw, Lucy; Congdon, Clare Bates
2014-01-01
The human genome encodes for over 1800 microRNAs (miRNAs), which are short non-coding RNA molecules that function to regulate gene expression post-transcriptionally. Due to the potential for one miRNA to target multiple gene transcripts, miRNAs are recognized as a major mechanism to regulate gene expression and mRNA translation. Computational prediction of miRNA targets is a critical initial step in identifying miRNA:mRNA target interactions for experimental validation. The available tools for miRNA target prediction encompass a range of different computational approaches, from the modeling of physical interactions to the incorporation of machine learning. This review provides an overview of the major computational approaches to miRNA target prediction. Our discussion highlights three tools for their ease of use, reliance on relatively updated versions of miRBase, and range of capabilities, and these are DIANA-microT-CDS, miRanda-mirSVR, and TargetScan. In comparison across all miRNA target prediction tools, four main aspects of the miRNA:mRNA target interaction emerge as common features on which most target prediction is based: seed match, conservation, free energy, and site accessibility. This review explains these features and identifies how they are incorporated into currently available target prediction tools. MiRNA target prediction is a dynamic field with increasing attention on development of new analysis tools. This review attempts to provide a comprehensive assessment of these tools in a manner that is accessible across disciplines. Understanding the basis of these prediction methodologies will aid in user selection of the appropriate tools and interpretation of the tool output. PMID:24600468
Common features of microRNA target prediction tools.
Peterson, Sarah M; Thompson, Jeffrey A; Ufkin, Melanie L; Sathyanarayana, Pradeep; Liaw, Lucy; Congdon, Clare Bates
2014-01-01
The human genome encodes for over 1800 microRNAs (miRNAs), which are short non-coding RNA molecules that function to regulate gene expression post-transcriptionally. Due to the potential for one miRNA to target multiple gene transcripts, miRNAs are recognized as a major mechanism to regulate gene expression and mRNA translation. Computational prediction of miRNA targets is a critical initial step in identifying miRNA:mRNA target interactions for experimental validation. The available tools for miRNA target prediction encompass a range of different computational approaches, from the modeling of physical interactions to the incorporation of machine learning. This review provides an overview of the major computational approaches to miRNA target prediction. Our discussion highlights three tools for their ease of use, reliance on relatively updated versions of miRBase, and range of capabilities, and these are DIANA-microT-CDS, miRanda-mirSVR, and TargetScan. In comparison across all miRNA target prediction tools, four main aspects of the miRNA:mRNA target interaction emerge as common features on which most target prediction is based: seed match, conservation, free energy, and site accessibility. This review explains these features and identifies how they are incorporated into currently available target prediction tools. MiRNA target prediction is a dynamic field with increasing attention on development of new analysis tools. This review attempts to provide a comprehensive assessment of these tools in a manner that is accessible across disciplines. Understanding the basis of these prediction methodologies will aid in user selection of the appropriate tools and interpretation of the tool output.
SeedVicious: Analysis of microRNA target and near-target sites.
Marco, Antonio
2018-01-01
Here I describe seedVicious, a versatile microRNA target site prediction software that can be easily fitted into annotation pipelines and run over custom datasets. SeedVicious finds microRNA canonical sites plus other, less efficient, target sites. Among other novel features, seedVicious can compute evolutionary gains/losses of target sites using maximum parsimony, and also detect near-target sites, which have one nucleotide different from a canonical site. Near-target sites are important to study population variation in microRNA regulation. Some analyses suggest that near-target sites may also be functional sites, although there is no conclusive evidence for that, and they may actually be target alleles segregating in a population. SeedVicious does not aim to outperform but to complement existing microRNA prediction tools. For instance, the precision of TargetScan is almost doubled (from 11% to ~20%) when we filter predictions by the distance between target sites using this program. Interestingly, two adjacent canonical target sites are more likely to be present in bona fide target transcripts than pairs of target sites at slightly longer distances. The software is written in Perl and runs on 64-bit Unix computers (Linux and MacOS X). Users with no computing experience can also run the program in a dedicated web-server by uploading custom data, or browse pre-computed predictions. SeedVicious and its associated web-server and database (SeedBank) are distributed under the GPL/GNU license.
Fukunishi, Yoshifumi; Mashimo, Tadaaki; Misoo, Kiyotaka; Wakabayashi, Yoshinori; Miyaki, Toshiaki; Ohta, Seiji; Nakamura, Mayu; Ikeda, Kazuyoshi
2016-01-01
Computer-aided drug design is still a state-of-the-art process in medicinal chemistry, and the main topics in this field have been extensively studied and well reviewed. These topics include compound databases, ligand-binding pocket prediction, protein-compound docking, virtual screening, target/off-target prediction, physical property prediction, molecular simulation and pharmacokinetics/pharmacodynamics (PK/PD) prediction. Message and Conclusion: However, there are also a number of secondary or miscellaneous topics that have been less well covered. For example, methods for synthesizing and predicting the synthetic accessibility (SA) of designed compounds are important in practical drug development, and hardware/software resources for performing the computations in computer-aided drug design are crucial. Cloud computing and general purpose graphics processing unit (GPGPU) computing have been used in virtual screening and molecular dynamics simulations. Not surprisingly, there is a growing demand for computer systems which combine these resources. In the present review, we summarize and discuss these various topics of drug design.
Fukunishi, Yoshifumi; Mashimo, Tadaaki; Misoo, Kiyotaka; Wakabayashi, Yoshinori; Miyaki, Toshiaki; Ohta, Seiji; Nakamura, Mayu; Ikeda, Kazuyoshi
2016-01-01
Abstract: Background Computer-aided drug design is still a state-of-the-art process in medicinal chemistry, and the main topics in this field have been extensively studied and well reviewed. These topics include compound databases, ligand-binding pocket prediction, protein-compound docking, virtual screening, target/off-target prediction, physical property prediction, molecular simulation and pharmacokinetics/pharmacodynamics (PK/PD) prediction. Message and Conclusion: However, there are also a number of secondary or miscellaneous topics that have been less well covered. For example, methods for synthesizing and predicting the synthetic accessibility (SA) of designed compounds are important in practical drug development, and hardware/software resources for performing the computations in computer-aided drug design are crucial. Cloud computing and general purpose graphics processing unit (GPGPU) computing have been used in virtual screening and molecular dynamics simulations. Not surprisingly, there is a growing demand for computer systems which combine these resources. In the present review, we summarize and discuss these various topics of drug design. PMID:27075578
Kobayashi, Hiroki; Harada, Hiroko; Nakamura, Masaomi; Futamura, Yushi; Ito, Akihiro; Yoshida, Minoru; Iemura, Shun-Ichiro; Shin-Ya, Kazuo; Doi, Takayuki; Takahashi, Takashi; Natsume, Tohru; Imoto, Masaya; Sakakibara, Yasubumi
2012-04-05
Identification of the target proteins of bioactive compounds is critical for elucidating the mode of action; however, target identification has been difficult in general, mostly due to the low sensitivity of detection using affinity chromatography followed by CBB staining and MS/MS analysis. We applied our protocol of predicting target proteins combining in silico screening and experimental verification for incednine, which inhibits the anti-apoptotic function of Bcl-xL by an unknown mechanism. One hundred eighty-two target protein candidates were computationally predicted to bind to incednine by the statistical prediction method, and the predictions were verified by in vitro binding of incednine to seven proteins, whose expression can be confirmed in our cell system.As a result, 40% accuracy of the computational predictions was achieved successfully, and we newly found 3 incednine-binding proteins. This study revealed that our proposed protocol of predicting target protein combining in silico screening and experimental verification is useful, and provides new insight into a strategy for identifying target proteins of small molecules.
Drug-Target Interactions: Prediction Methods and Applications.
Anusuya, Shanmugam; Kesherwani, Manish; Priya, K Vishnu; Vimala, Antonydhason; Shanmugam, Gnanendra; Velmurugan, Devadasan; Gromiha, M Michael
2018-01-01
Identifying the interactions between drugs and target proteins is a key step in drug discovery. This not only aids to understand the disease mechanism, but also helps to identify unexpected therapeutic activity or adverse side effects of drugs. Hence, drug-target interaction prediction becomes an essential tool in the field of drug repurposing. The availability of heterogeneous biological data on known drug-target interactions enabled many researchers to develop various computational methods to decipher unknown drug-target interactions. This review provides an overview on these computational methods for predicting drug-target interactions along with available webservers and databases for drug-target interactions. Further, the applicability of drug-target interactions in various diseases for identifying lead compounds has been outlined. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Reutlinger, Michael; Rodrigues, Tiago; Schneider, Petra; Schneider, Gisbert
2014-01-07
Using the example of the Ugi three-component reaction we report a fast and efficient microfluidic-assisted entry into the imidazopyridine scaffold, where building block prioritization was coupled to a new computational method for predicting ligand-target associations. We identified an innovative GPCR-modulating combinatorial chemotype featuring ligand-efficient adenosine A1/2B and adrenergic α1A/B receptor antagonists. Our results suggest the tight integration of microfluidics-assisted synthesis with computer-based target prediction as a viable approach to rapidly generate bioactivity-focused combinatorial compound libraries with high success rates. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DIANA-microT web server: elucidating microRNA functions through target prediction.
Maragkakis, M; Reczko, M; Simossis, V A; Alexiou, P; Papadopoulos, G L; Dalamagas, T; Giannopoulos, G; Goumas, G; Koukis, E; Kourtis, K; Vergoulis, T; Koziris, N; Sellis, T; Tsanakas, P; Hatzigeorgiou, A G
2009-07-01
Computational microRNA (miRNA) target prediction is one of the key means for deciphering the role of miRNAs in development and disease. Here, we present the DIANA-microT web server as the user interface to the DIANA-microT 3.0 miRNA target prediction algorithm. The web server provides extensive information for predicted miRNA:target gene interactions with a user-friendly interface, providing extensive connectivity to online biological resources. Target gene and miRNA functions may be elucidated through automated bibliographic searches and functional information is accessible through Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The web server offers links to nomenclature, sequence and protein databases, and users are facilitated by being able to search for targeted genes using different nomenclatures or functional features, such as the genes possible involvement in biological pathways. The target prediction algorithm supports parameters calculated individually for each miRNA:target gene interaction and provides a signal-to-noise ratio and a precision score that helps in the evaluation of the significance of the predicted results. Using a set of miRNA targets recently identified through the pSILAC method, the performance of several computational target prediction programs was assessed. DIANA-microT 3.0 achieved there with 66% the highest ratio of correctly predicted targets over all predicted targets. The DIANA-microT web server is freely available at www.microrna.gr/microT.
Drug-Target Interaction Prediction through Label Propagation with Linear Neighborhood Information.
Zhang, Wen; Chen, Yanlin; Li, Dingfang
2017-11-25
Interactions between drugs and target proteins provide important information for the drug discovery. Currently, experiments identified only a small number of drug-target interactions. Therefore, the development of computational methods for drug-target interaction prediction is an urgent task of theoretical interest and practical significance. In this paper, we propose a label propagation method with linear neighborhood information (LPLNI) for predicting unobserved drug-target interactions. Firstly, we calculate drug-drug linear neighborhood similarity in the feature spaces, by considering how to reconstruct data points from neighbors. Then, we take similarities as the manifold of drugs, and assume the manifold unchanged in the interaction space. At last, we predict unobserved interactions between known drugs and targets by using drug-drug linear neighborhood similarity and known drug-target interactions. The experiments show that LPLNI can utilize only known drug-target interactions to make high-accuracy predictions on four benchmark datasets. Furthermore, we consider incorporating chemical structures into LPLNI models. Experimental results demonstrate that the model with integrated information (LPLNI-II) can produce improved performances, better than other state-of-the-art methods. The known drug-target interactions are an important information source for computational predictions. The usefulness of the proposed method is demonstrated by cross validation and the case study.
HomoTarget: a new algorithm for prediction of microRNA targets in Homo sapiens.
Ahmadi, Hamed; Ahmadi, Ali; Azimzadeh-Jamalkandi, Sadegh; Shoorehdeli, Mahdi Aliyari; Salehzadeh-Yazdi, Ali; Bidkhori, Gholamreza; Masoudi-Nejad, Ali
2013-02-01
MiRNAs play an essential role in the networks of gene regulation by inhibiting the translation of target mRNAs. Several computational approaches have been proposed for the prediction of miRNA target-genes. Reports reveal a large fraction of under-predicted or falsely predicted target genes. Thus, there is an imperative need to develop a computational method by which the target mRNAs of existing miRNAs can be correctly identified. In this study, combined pattern recognition neural network (PRNN) and principle component analysis (PCA) architecture has been proposed in order to model the complicated relationship between miRNAs and their target mRNAs in humans. The results of several types of intelligent classifiers and our proposed model were compared, showing that our algorithm outperformed them with higher sensitivity and specificity. Using the recent release of the mirBase database to find potential targets of miRNAs, this model incorporated twelve structural, thermodynamic and positional features of miRNA:mRNA binding sites to select target candidates. Copyright © 2012 Elsevier Inc. All rights reserved.
Predicting oligonucleotide affinity to nucleic acid targets.
Mathews, D H; Burkard, M E; Freier, S M; Wyatt, J R; Turner, D H
1999-01-01
A computer program, OligoWalk, is reported that predicts the equilibrium affinity of complementary DNA or RNA oligonucleotides to an RNA target. This program considers the predicted stability of the oligonucleotide-target helix and the competition with predicted secondary structure of both the target and the oligonucleotide. Both unimolecular and bimolecular oligonucleotide self structure are considered with a user-defined concentration. The application of OligoWalk is illustrated with three comparisons to experimental results drawn from the literature. PMID:10580474
Fang, Jiansong; Wu, Zengrui; Cai, Chuipu; Wang, Qi; Tang, Yun; Cheng, Feixiong
2017-11-27
Natural products with diverse chemical scaffolds have been recognized as an invaluable source of compounds in drug discovery and development. However, systematic identification of drug targets for natural products at the human proteome level via various experimental assays is highly expensive and time-consuming. In this study, we proposed a systems pharmacology infrastructure to predict new drug targets and anticancer indications of natural products. Specifically, we reconstructed a global drug-target network with 7,314 interactions connecting 751 targets and 2,388 natural products and built predictive network models via a balanced substructure-drug-target network-based inference approach. A high area under receiver operating characteristic curve of 0.96 was yielded for predicting new targets of natural products during cross-validation. The newly predicted targets of natural products (e.g., resveratrol, genistein, and kaempferol) with high scores were validated by various literature studies. We further built the statistical network models for identification of new anticancer indications of natural products through integration of both experimentally validated and computationally predicted drug-target interactions of natural products with known cancer proteins. We showed that the significantly predicted anticancer indications of multiple natural products (e.g., naringenin, disulfiram, and metformin) with new mechanism-of-action were validated by various published experimental evidence. In summary, this study offers powerful computational systems pharmacology approaches and tools for the development of novel targeted cancer therapies by exploiting the polypharmacology of natural products.
Exploring Polypharmacology Using a ROCS-Based Target Fishing Approach
2012-01-01
target representatives. Target profiles were then generated for a given query molecule by computing maximal shape/ chemistry overlap between the query...molecule and the drug sets assigned to each protein target. The overlap was computed using the program ROCS (Rapid Overlay of Chemical Structures ). We...approaches in off-target prediction has been reviewed.9,10 Many structure -based target fishing (SBTF) approaches, such as INVDOCK11 and Target Fishing Dock
Pinatubo global cooling on target
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerr, R.A.
1993-01-29
When Pinatubo blasted millions of tons of debris into the stratosphere in June 1991, Hansen of NASA's Goddard Institute for Space Studies used his computer climate model to predict that the shade cost by the debris would cool the globe by about half a degree C. Year end temperature reports for 1992 are now showing that the prediction was on target-confirming the tentative belief that volcanos can temporarily cool the climate and validating at least one component of the computer models predicting a greenhouse warming.
Sargent, Daniel J.; Buyse, Marc; Burzykowski, Tomasz
2011-01-01
SUMMARY Using multiple historical trials with surrogate and true endpoints, we consider various models to predict the effect of treatment on a true endpoint in a target trial in which only a surrogate endpoint is observed. This predicted result is computed using (1) a prediction model (mixture, linear, or principal stratification) estimated from historical trials and the surrogate endpoint of the target trial and (2) a random extrapolation error estimated from successively leaving out each trial among the historical trials. The method applies to either binary outcomes or survival to a particular time that is computed from censored survival data. We compute a 95% confidence interval for the predicted result and validate its coverage using simulation. To summarize the additional uncertainty from using a predicted instead of true result for the estimated treatment effect, we compute its multiplier of standard error. Software is available for download. PMID:21838732
NASA Astrophysics Data System (ADS)
Delogu, A.; Furini, F.
1991-09-01
Increasing interest in radar cross section (RCS) reduction is placing new demands on theoretical, computation, and graphic techniques for calculating scattering properties of complex targets. In particular, computer codes capable of predicting the RCS of an entire aircraft at high frequency and of achieving RCS control with modest structural changes, are becoming of paramount importance in stealth design. A computer code, evaluating the RCS of arbitrary shaped metallic objects that are computer aided design (CAD) generated, and its validation with measurements carried out using ALENIA RCS test facilities are presented. The code, based on the physical optics method, is characterized by an efficient integration algorithm with error control, in order to contain the computer time within acceptable limits, and by an accurate parametric representation of the target surface in terms of bicubic splines.
Schmitz, Ulf; Lai, Xin; Winter, Felix; Wolkenhauer, Olaf; Vera, Julio; Gupta, Shailendra K.
2014-01-01
MicroRNAs (miRNAs) are an integral part of gene regulation at the post-transcriptional level. Recently, it has been shown that pairs of miRNAs can repress the translation of a target mRNA in a cooperative manner, which leads to an enhanced effectiveness and specificity in target repression. However, it remains unclear which miRNA pairs can synergize and which genes are target of cooperative miRNA regulation. In this paper, we present a computational workflow for the prediction and analysis of cooperating miRNAs and their mutual target genes, which we refer to as RNA triplexes. The workflow integrates methods of miRNA target prediction; triplex structure analysis; molecular dynamics simulations and mathematical modeling for a reliable prediction of functional RNA triplexes and target repression efficiency. In a case study we analyzed the human genome and identified several thousand targets of cooperative gene regulation. Our results suggest that miRNA cooperativity is a frequent mechanism for an enhanced target repression by pairs of miRNAs facilitating distinctive and fine-tuned target gene expression patterns. Human RNA triplexes predicted and characterized in this study are organized in a web resource at www.sbi.uni-rostock.de/triplexrna/. PMID:24875477
NASA Astrophysics Data System (ADS)
Ramakrishnan, N.; Tourdot, Richard W.; Eckmann, David M.; Ayyaswamy, Portonovo S.; Muzykantov, Vladimir R.; Radhakrishnan, Ravi
2016-06-01
In order to achieve selective targeting of affinity-ligand coated nanoparticles to the target tissue, it is essential to understand the key mechanisms that govern their capture by the target cell. Next-generation pharmacokinetic (PK) models that systematically account for proteomic and mechanical factors can accelerate the design, validation and translation of targeted nanocarriers (NCs) in the clinic. Towards this objective, we have developed a computational model to delineate the roles played by target protein expression and mechanical factors of the target cell membrane in determining the avidity of functionalized NCs to live cells. Model results show quantitative agreement with in vivo experiments when specific and non-specific contributions to NC binding are taken into account. The specific contributions are accounted for through extensive simulations of multivalent receptor-ligand interactions, membrane mechanics and entropic factors such as membrane undulations and receptor translation. The computed NC avidity is strongly dependent on ligand density, receptor expression, bending mechanics of the target cell membrane, as well as entropic factors associated with the membrane and the receptor motion. Our computational model can predict the in vivo targeting levels of the intracellular adhesion molecule-1 (ICAM1)-coated NCs targeted to the lung, heart, kidney, liver and spleen of mouse, when the contributions due to endothelial capture are accounted for. The effect of other cells (such as monocytes, etc.) do not improve the model predictions at steady state. We demonstrate the predictive utility of our model by predicting partitioning coefficients of functionalized NCs in mice and human tissues and report the statistical accuracy of our model predictions under different scenarios.
Macromolecular target prediction by self-organizing feature maps.
Schneider, Gisbert; Schneider, Petra
2017-03-01
Rational drug discovery would greatly benefit from a more nuanced appreciation of the activity of pharmacologically active compounds against a diverse panel of macromolecular targets. Already, computational target-prediction models assist medicinal chemists in library screening, de novo molecular design, optimization of active chemical agents, drug re-purposing, in the spotting of potential undesired off-target activities, and in the 'de-orphaning' of phenotypic screening hits. The self-organizing map (SOM) algorithm has been employed successfully for these and other purposes. Areas covered: The authors recapitulate contemporary artificial neural network methods for macromolecular target prediction, and present the basic SOM algorithm at a conceptual level. Specifically, they highlight consensus target-scoring by the employment of multiple SOMs, and discuss the opportunities and limitations of this technique. Expert opinion: Self-organizing feature maps represent a straightforward approach to ligand clustering and classification. Some of the appeal lies in their conceptual simplicity and broad applicability domain. Despite known algorithmic shortcomings, this computational target prediction concept has been proven to work in prospective settings with high success rates. It represents a prototypic technique for future advances in the in silico identification of the modes of action and macromolecular targets of bioactive molecules.
Reinforcement learning and decision making in monkeys during a competitive game.
Lee, Daeyeol; Conroy, Michelle L; McGreevy, Benjamin P; Barraclough, Dominic J
2004-12-01
Animals living in a dynamic environment must adjust their decision-making strategies through experience. To gain insights into the neural basis of such adaptive decision-making processes, we trained monkeys to play a competitive game against a computer in an oculomotor free-choice task. The animal selected one of two visual targets in each trial and was rewarded only when it selected the same target as the computer opponent. To determine how the animal's decision-making strategy can be affected by the opponent's strategy, the computer opponent was programmed with three different algorithms that exploited different aspects of the animal's choice and reward history. When the computer selected its targets randomly with equal probabilities, animals selected one of the targets more often, violating the prediction of probability matching, and their choices were systematically influenced by the choice history of the two players. When the computer exploited only the animal's choice history but not its reward history, animal's choice became more independent of its own choice history but was still related to the choice history of the opponent. This bias was substantially reduced, but not completely eliminated, when the computer used the choice history of both players in making its predictions. These biases were consistent with the predictions of reinforcement learning, suggesting that the animals sought optimal decision-making strategies using reinforcement learning algorithms.
Predicting the Noise of High Power Fluid Targets Using Computational Fluid Dynamics
NASA Astrophysics Data System (ADS)
Moore, Michael; Covrig Dusa, Silviu
The 2.5 kW liquid hydrogen (LH2) target used in the Qweak parity violation experiment is the highest power LH2 target in the world and the first to be designed with Computational Fluid Dynamics (CFD) at Jefferson Lab. The Qweak experiment determined the weak charge of the proton by measuring the parity-violating elastic scattering asymmetry of longitudinally polarized electrons from unpolarized liquid hydrogen at small momentum transfer (Q2 = 0 . 025 GeV2). This target satisfied the design goals of < 1 % luminosity reduction and < 5 % contribution to the total asymmetry width (the Qweak target achieved 2 % or 55ppm). State of the art time dependent CFD simulations are being developed to improve the predictions of target noise on the time scale of the electron beam helicity period. These predictions will be bench-marked with the Qweak target data. This work is an essential component in future designs of very high power low noise targets like MOLLER (5 kW, target noise asymmetry contribution < 25 ppm) and MESA (4.5 kW).
Shmelkov, Evgeny; Krachmarov, Chavdar; Grigoryan, Arsen V.; Pinter, Abraham; Statnikov, Alexander; Cardozo, Timothy
2014-01-01
The extreme diversity of HIV-1 strains presents a formidable challenge for HIV-1 vaccine design. Although antibodies (Abs) can neutralize HIV-1 and potentially protect against infection, antibodies that target the immunogenic viral surface protein gp120 have widely variable and poorly predictable cross-strain reactivity. Here, we developed a novel computational approach, the Method of Dynamic Epitopes, for identification of neutralization epitopes targeted by anti-HIV-1 monoclonal antibodies (mAbs). Our data demonstrate that this approach, based purely on calculated energetics and 3D structural information, accurately predicts the presence of neutralization epitopes targeted by V3-specific mAbs 2219 and 447-52D in any HIV-1 strain. The method was used to calculate the range of conservation of these specific epitopes across all circulating HIV-1 viruses. Accurately identifying an Ab-targeted neutralization epitope in a virus by computational means enables easy prediction of the breadth of reactivity of specific mAbs across the diversity of thousands of different circulating HIV-1 variants and facilitates rational design and selection of immunogens mimicking specific mAb-targeted epitopes in a multivalent HIV-1 vaccine. The defined epitopes can also be used for the purpose of epitope-specific analyses of breakthrough sequences recorded in vaccine clinical trials. Thus, our study is a prototype for a valuable tool for rational HIV-1 vaccine design. PMID:24587168
Identification of human microRNA targets from isolated argonaute protein complexes.
Beitzinger, Michaela; Peters, Lasse; Zhu, Jia Yun; Kremmer, Elisabeth; Meister, Gunter
2007-06-01
MicroRNAs (miRNAs) constitute a class of small non-coding RNAs that regulate gene expression on the level of translation and/or mRNA stability. Mammalian miRNAs associate with members of the Argonaute (Ago) protein family and bind to partially complementary sequences in the 3' untranslated region (UTR) of specific target mRNAs. Computer algorithms based on factors such as free binding energy or sequence conservation have been used to predict miRNA target mRNAs. Based on such predictions, up to one third of all mammalian mRNAs seem to be under miRNA regulation. However, due to the low degree of complementarity between the miRNA and its target, such computer programs are often imprecise and therefore not very reliable. Here we report the first biochemical identification approach of miRNA targets from human cells. Using highly specific monoclonal antibodies against members of the Ago protein family, we co-immunoprecipitate Ago-bound mRNAs and identify them by cloning. Interestingly, most of the identified targets are also predicted by different computer programs. Moreover, we randomly analyzed six different target candidates and were able to experimentally validate five as miRNA targets. Our data clearly indicate that miRNA targets can be experimentally identified from Ago complexes and therefore provide a new tool to directly analyze miRNA function.
Korkut, Anil; Wang, Weiqing; Demir, Emek; Aksoy, Bülent Arman; Jing, Xiaohong; Molinelli, Evan J; Babur, Özgün; Bemis, Debra L; Onur Sumer, Selcuk; Solit, David B; Pratilas, Christine A; Sander, Chris
2015-08-18
Resistance to targeted cancer therapies is an important clinical problem. The discovery of anti-resistance drug combinations is challenging as resistance can arise by diverse escape mechanisms. To address this challenge, we improved and applied the experimental-computational perturbation biology method. Using statistical inference, we build network models from high-throughput measurements of molecular and phenotypic responses to combinatorial targeted perturbations. The models are computationally executed to predict the effects of thousands of untested perturbations. In RAF-inhibitor resistant melanoma cells, we measured 143 proteomic/phenotypic entities under 89 perturbation conditions and predicted c-Myc as an effective therapeutic co-target with BRAF or MEK. Experiments using the BET bromodomain inhibitor JQ1 affecting the level of c-Myc protein and protein kinase inhibitors targeting the ERK pathway confirmed the prediction. In conclusion, we propose an anti-cancer strategy of co-targeting a specific upstream alteration and a general downstream point of vulnerability to prevent or overcome resistance to targeted drugs.
A large-scale evaluation of computational protein function prediction
Radivojac, Predrag; Clark, Wyatt T; Ronnen Oron, Tal; Schnoes, Alexandra M; Wittkop, Tobias; Sokolov, Artem; Graim, Kiley; Funk, Christopher; Verspoor, Karin; Ben-Hur, Asa; Pandey, Gaurav; Yunes, Jeffrey M; Talwalkar, Ameet S; Repo, Susanna; Souza, Michael L; Piovesan, Damiano; Casadio, Rita; Wang, Zheng; Cheng, Jianlin; Fang, Hai; Gough, Julian; Koskinen, Patrik; Törönen, Petri; Nokso-Koivisto, Jussi; Holm, Liisa; Cozzetto, Domenico; Buchan, Daniel W A; Bryson, Kevin; Jones, David T; Limaye, Bhakti; Inamdar, Harshal; Datta, Avik; Manjari, Sunitha K; Joshi, Rajendra; Chitale, Meghana; Kihara, Daisuke; Lisewski, Andreas M; Erdin, Serkan; Venner, Eric; Lichtarge, Olivier; Rentzsch, Robert; Yang, Haixuan; Romero, Alfonso E; Bhat, Prajwal; Paccanaro, Alberto; Hamp, Tobias; Kassner, Rebecca; Seemayer, Stefan; Vicedo, Esmeralda; Schaefer, Christian; Achten, Dominik; Auer, Florian; Böhm, Ariane; Braun, Tatjana; Hecht, Maximilian; Heron, Mark; Hönigschmid, Peter; Hopf, Thomas; Kaufmann, Stefanie; Kiening, Michael; Krompass, Denis; Landerer, Cedric; Mahlich, Yannick; Roos, Manfred; Björne, Jari; Salakoski, Tapio; Wong, Andrew; Shatkay, Hagit; Gatzmann, Fanny; Sommer, Ingolf; Wass, Mark N; Sternberg, Michael J E; Škunca, Nives; Supek, Fran; Bošnjak, Matko; Panov, Panče; Džeroski, Sašo; Šmuc, Tomislav; Kourmpetis, Yiannis A I; van Dijk, Aalt D J; ter Braak, Cajo J F; Zhou, Yuanpeng; Gong, Qingtian; Dong, Xinran; Tian, Weidong; Falda, Marco; Fontana, Paolo; Lavezzo, Enrico; Di Camillo, Barbara; Toppo, Stefano; Lan, Liang; Djuric, Nemanja; Guo, Yuhong; Vucetic, Slobodan; Bairoch, Amos; Linial, Michal; Babbitt, Patricia C; Brenner, Steven E; Orengo, Christine; Rost, Burkhard; Mooney, Sean D; Friedberg, Iddo
2013-01-01
Automated annotation of protein function is challenging. As the number of sequenced genomes rapidly grows, the overwhelming majority of protein products can only be annotated computationally. If computational predictions are to be relied upon, it is crucial that the accuracy of these methods be high. Here we report the results from the first large-scale community-based Critical Assessment of protein Function Annotation (CAFA) experiment. Fifty-four methods representing the state-of-the-art for protein function prediction were evaluated on a target set of 866 proteins from eleven organisms. Two findings stand out: (i) today’s best protein function prediction algorithms significantly outperformed widely-used first-generation methods, with large gains on all types of targets; and (ii) although the top methods perform well enough to guide experiments, there is significant need for improvement of currently available tools. PMID:23353650
Recommendation Techniques for Drug-Target Interaction Prediction and Drug Repositioning.
Alaimo, Salvatore; Giugno, Rosalba; Pulvirenti, Alfredo
2016-01-01
The usage of computational methods in drug discovery is a common practice. More recently, by exploiting the wealth of biological knowledge bases, a novel approach called drug repositioning has raised. Several computational methods are available, and these try to make a high-level integration of all the knowledge in order to discover unknown mechanisms. In this chapter, we review drug-target interaction prediction methods based on a recommendation system. We also give some extensions which go beyond the bipartite network case.
Distinctive Behaviors of Druggable Proteins in Cellular Networks
Workman, Paul; Al-Lazikani, Bissan
2015-01-01
The interaction environment of a protein in a cellular network is important in defining the role that the protein plays in the system as a whole, and thus its potential suitability as a drug target. Despite the importance of the network environment, it is neglected during target selection for drug discovery. Here, we present the first systematic, comprehensive computational analysis of topological, community and graphical network parameters of the human interactome and identify discriminatory network patterns that strongly distinguish drug targets from the interactome as a whole. Importantly, we identify striking differences in the network behavior of targets of cancer drugs versus targets from other therapeutic areas and explore how they may relate to successful drug combinations to overcome acquired resistance to cancer drugs. We develop, computationally validate and provide the first public domain predictive algorithm for identifying druggable neighborhoods based on network parameters. We also make available full predictions for 13,345 proteins to aid target selection for drug discovery. All target predictions are available through canSAR.icr.ac.uk. Underlying data and tools are available at https://cansar.icr.ac.uk/cansar/publications/druggable_network_neighbourhoods/. PMID:26699810
Computational Predictions Provide Insights into the Biology of TAL Effector Target Sites
Grau, Jan; Wolf, Annett; Reschke, Maik; Bonas, Ulla; Posch, Stefan; Boch, Jens
2013-01-01
Transcription activator-like (TAL) effectors are injected into host plant cells by Xanthomonas bacteria to function as transcriptional activators for the benefit of the pathogen. The DNA binding domain of TAL effectors is composed of conserved amino acid repeat structures containing repeat-variable diresidues (RVDs) that determine DNA binding specificity. In this paper, we present TALgetter, a new approach for predicting TAL effector target sites based on a statistical model. In contrast to previous approaches, the parameters of TALgetter are estimated from training data computationally. We demonstrate that TALgetter successfully predicts known TAL effector target sites and often yields a greater number of predictions that are consistent with up-regulation in gene expression microarrays than an existing approach, Target Finder of the TALE-NT suite. We study the binding specificities estimated by TALgetter and approve that different RVDs are differently important for transcriptional activation. In subsequent studies, the predictions of TALgetter indicate a previously unreported positional preference of TAL effector target sites relative to the transcription start site. In addition, several TAL effectors are predicted to bind to the TATA-box, which might constitute one general mode of transcriptional activation by TAL effectors. Scrutinizing the predicted target sites of TALgetter, we propose several novel TAL effector virulence targets in rice and sweet orange. TAL-mediated induction of the candidates is supported by gene expression microarrays. Validity of these targets is also supported by functional analogy to known TAL effector targets, by an over-representation of TAL effector targets with similar function, or by a biological function related to pathogen infection. Hence, these predicted TAL effector virulence targets are promising candidates for studying the virulence function of TAL effectors. TALgetter is implemented as part of the open-source Java library Jstacs, and is freely available as a web-application and a command line program. PMID:23526890
Tertiary structure-based analysis of microRNA–target interactions
Gan, Hin Hark; Gunsalus, Kristin C.
2013-01-01
Current computational analysis of microRNA interactions is based largely on primary and secondary structure analysis. Computationally efficient tertiary structure-based methods are needed to enable more realistic modeling of the molecular interactions underlying miRNA-mediated translational repression. We incorporate algorithms for predicting duplex RNA structures, ionic strength effects, duplex entropy and free energy, and docking of duplex–Argonaute protein complexes into a pipeline to model and predict miRNA–target duplex binding energies. To ensure modeling accuracy and computational efficiency, we use an all-atom description of RNA and a continuum description of ionic interactions using the Poisson–Boltzmann equation. Our method predicts the conformations of two constructs of Caenorhabditis elegans let-7 miRNA–target duplexes to an accuracy of ∼3.8 Å root mean square distance of their NMR structures. We also show that the computed duplex formation enthalpies, entropies, and free energies for eight miRNA–target duplexes agree with titration calorimetry data. Analysis of duplex–Argonaute docking shows that structural distortions arising from single-base-pair mismatches in the seed region influence the activity of the complex by destabilizing both duplex hybridization and its association with Argonaute. Collectively, these results demonstrate that tertiary structure-based modeling of miRNA interactions can reveal structural mechanisms not accessible with current secondary structure-based methods. PMID:23417009
Moyle, Richard L.; Carvalhais, Lilia C.; Pretorius, Lara-Simone; Nowak, Ekaterina; Subramaniam, Gayathery; Dalton-Morgan, Jessica; Schenk, Peer M.
2017-01-01
Studies investigating the action of small RNAs on computationally predicted target genes require some form of experimental validation. Classical molecular methods of validating microRNA action on target genes are laborious, while approaches that tag predicted target sequences to qualitative reporter genes encounter technical limitations. The aim of this study was to address the challenge of experimentally validating large numbers of computationally predicted microRNA-target transcript interactions using an optimized, quantitative, cost-effective, and scalable approach. The presented method combines transient expression via agroinfiltration of Nicotiana benthamiana leaves with a quantitative dual luciferase reporter system, where firefly luciferase is used to report the microRNA-target sequence interaction and Renilla luciferase is used as an internal standard to normalize expression between replicates. We report the appropriate concentration of N. benthamiana leaf extracts and dilution factor to apply in order to avoid inhibition of firefly LUC activity. Furthermore, the optimal ratio of microRNA precursor expression construct to reporter construct and duration of the incubation period post-agroinfiltration were determined. The optimized dual luciferase assay provides an efficient, repeatable and scalable method to validate and quantify microRNA action on predicted target sequences. The optimized assay was used to validate five predicted targets of rice microRNA miR529b, with as few as six technical replicates. The assay can be extended to assess other small RNA-target sequence interactions, including assessing the functionality of an artificial miRNA or an RNAi construct on a targeted sequence. PMID:28979287
Computer Description of the M561 Utility Truck
1984-10-01
GIFT Computer Code Sustainabi1ity Predictions for Army Spare Components Requirements for Combat (SPARC) 20. ABSTRACT (Caotfmia «a NWM eitim ft...used as input to the GIFT computer code to generate target vulnerability data. DO FORM V JAM 73 1473 EDITION OF I NOV 65 IS OBSOLETE Unclass i f ied...anaLyiis requires input from the Geometric Information for Targets ( GIFT ) ’ computer code. This report documents the combina- torial geometry (Com-Geom
Drug-target interaction prediction using ensemble learning and dimensionality reduction.
Ezzat, Ali; Wu, Min; Li, Xiao-Li; Kwoh, Chee-Keong
2017-10-01
Experimental prediction of drug-target interactions is expensive, time-consuming and tedious. Fortunately, computational methods help narrow down the search space for interaction candidates to be further examined via wet-lab techniques. Nowadays, the number of attributes/features for drugs and targets, as well as the amount of their interactions, are increasing, making these computational methods inefficient or occasionally prohibitive. This motivates us to derive a reduced feature set for prediction. In addition, since ensemble learning techniques are widely used to improve the classification performance, it is also worthwhile to design an ensemble learning framework to enhance the performance for drug-target interaction prediction. In this paper, we propose a framework for drug-target interaction prediction leveraging both feature dimensionality reduction and ensemble learning. First, we conducted feature subspacing to inject diversity into the classifier ensemble. Second, we applied three different dimensionality reduction methods to the subspaced features. Third, we trained homogeneous base learners with the reduced features and then aggregated their scores to derive the final predictions. For base learners, we selected two classifiers, namely Decision Tree and Kernel Ridge Regression, resulting in two variants of ensemble models, EnsemDT and EnsemKRR, respectively. In our experiments, we utilized AUC (Area under ROC Curve) as an evaluation metric. We compared our proposed methods with various state-of-the-art methods under 5-fold cross validation. Experimental results showed EnsemKRR achieving the highest AUC (94.3%) for predicting drug-target interactions. In addition, dimensionality reduction helped improve the performance of EnsemDT. In conclusion, our proposed methods produced significant improvements for drug-target interaction prediction. Copyright © 2017 Elsevier Inc. All rights reserved.
Korkut, Anil; Wang, Weiqing; Demir, Emek; Aksoy, Bülent Arman; Jing, Xiaohong; Molinelli, Evan J; Babur, Özgün; Bemis, Debra L; Onur Sumer, Selcuk; Solit, David B; Pratilas, Christine A; Sander, Chris
2015-01-01
Resistance to targeted cancer therapies is an important clinical problem. The discovery of anti-resistance drug combinations is challenging as resistance can arise by diverse escape mechanisms. To address this challenge, we improved and applied the experimental-computational perturbation biology method. Using statistical inference, we build network models from high-throughput measurements of molecular and phenotypic responses to combinatorial targeted perturbations. The models are computationally executed to predict the effects of thousands of untested perturbations. In RAF-inhibitor resistant melanoma cells, we measured 143 proteomic/phenotypic entities under 89 perturbation conditions and predicted c-Myc as an effective therapeutic co-target with BRAF or MEK. Experiments using the BET bromodomain inhibitor JQ1 affecting the level of c-Myc protein and protein kinase inhibitors targeting the ERK pathway confirmed the prediction. In conclusion, we propose an anti-cancer strategy of co-targeting a specific upstream alteration and a general downstream point of vulnerability to prevent or overcome resistance to targeted drugs. DOI: http://dx.doi.org/10.7554/eLife.04640.001 PMID:26284497
Huang, Yu-An; You, Zhu-Hong; Chen, Xing
2018-01-01
Drug-Target Interactions (DTI) play a crucial role in discovering new drug candidates and finding new proteins to target for drug development. Although the number of detected DTI obtained by high-throughput techniques has been increasing, the number of known DTI is still limited. On the other hand, the experimental methods for detecting the interactions among drugs and proteins are costly and inefficient. Therefore, computational approaches for predicting DTI are drawing increasing attention in recent years. In this paper, we report a novel computational model for predicting the DTI using extremely randomized trees model and protein amino acids information. More specifically, the protein sequence is represented as a Pseudo Substitution Matrix Representation (Pseudo-SMR) descriptor in which the influence of biological evolutionary information is retained. For the representation of drug molecules, a novel fingerprint feature vector is utilized to describe its substructure information. Then the DTI pair is characterized by concatenating the two vector spaces of protein sequence and drug substructure. Finally, the proposed method is explored for predicting the DTI on four benchmark datasets: Enzyme, Ion Channel, GPCRs and Nuclear Receptor. The experimental results demonstrate that this method achieves promising prediction accuracies of 89.85%, 87.87%, 82.99% and 81.67%, respectively. For further evaluation, we compared the performance of Extremely Randomized Trees model with that of the state-of-the-art Support Vector Machine classifier. And we also compared the proposed model with existing computational models, and confirmed 15 potential drug-target interactions by looking for existing databases. The experiment results show that the proposed method is feasible and promising for predicting drug-target interactions for new drug candidate screening based on sizeable features. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Ravikumar, Balaguru; Parri, Elina; Timonen, Sanna; Airola, Antti; Wennerberg, Krister
2017-01-01
Due to relatively high costs and labor required for experimental profiling of the full target space of chemical compounds, various machine learning models have been proposed as cost-effective means to advance this process in terms of predicting the most potent compound-target interactions for subsequent verification. However, most of the model predictions lack direct experimental validation in the laboratory, making their practical benefits for drug discovery or repurposing applications largely unknown. Here, we therefore introduce and carefully test a systematic computational-experimental framework for the prediction and pre-clinical verification of drug-target interactions using a well-established kernel-based regression algorithm as the prediction model. To evaluate its performance, we first predicted unmeasured binding affinities in a large-scale kinase inhibitor profiling study, and then experimentally tested 100 compound-kinase pairs. The relatively high correlation of 0.77 (p < 0.0001) between the predicted and measured bioactivities supports the potential of the model for filling the experimental gaps in existing compound-target interaction maps. Further, we subjected the model to a more challenging task of predicting target interactions for such a new candidate drug compound that lacks prior binding profile information. As a specific case study, we used tivozanib, an investigational VEGF receptor inhibitor with currently unknown off-target profile. Among 7 kinases with high predicted affinity, we experimentally validated 4 new off-targets of tivozanib, namely the Src-family kinases FRK and FYN A, the non-receptor tyrosine kinase ABL1, and the serine/threonine kinase SLK. Our sub-sequent experimental validation protocol effectively avoids any possible information leakage between the training and validation data, and therefore enables rigorous model validation for practical applications. These results demonstrate that the kernel-based modeling approach offers practical benefits for probing novel insights into the mode of action of investigational compounds, and for the identification of new target selectivities for drug repurposing applications. PMID:28787438
Khan, Abdul Arif; Khan, Zakir; Kalam, Mohd Abul; Khan, Azmat Ali
2018-01-01
Microbial pathogenesis involves several aspects of host-pathogen interactions, including microbial proteins targeting host subcellular compartments and subsequent effects on host physiology. Such studies are supported by experimental data, but recent detection of bacterial proteins localization through computational eukaryotic subcellular protein targeting prediction tools has also come into practice. We evaluated inter-kingdom prediction certainty of these tools. The bacterial proteins experimentally known to target host subcellular compartments were predicted with eukaryotic subcellular targeting prediction tools, and prediction certainty was assessed. The results indicate that these tools alone are not sufficient for inter-kingdom protein targeting prediction. The correct prediction of pathogen's protein subcellular targeting depends on several factors, including presence of localization signal, transmembrane domain and molecular weight, etc., in addition to approach for subcellular targeting prediction. The detection of protein targeting in endomembrane system is comparatively difficult, as the proteins in this location are channelized to different compartments. In addition, the high specificity of training data set also creates low inter-kingdom prediction accuracy. Current data can help to suggest strategy for correct prediction of bacterial protein's subcellular localization in host cell. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Knowledge-transfer learning for prediction of matrix metalloprotease substrate-cleavage sites.
Wang, Yanan; Song, Jiangning; Marquez-Lago, Tatiana T; Leier, André; Li, Chen; Lithgow, Trevor; Webb, Geoffrey I; Shen, Hong-Bin
2017-07-18
Matrix Metalloproteases (MMPs) are an important family of proteases that play crucial roles in key cellular and disease processes. Therefore, MMPs constitute important targets for drug design, development and delivery. Advanced proteomic technologies have identified type-specific target substrates; however, the complete repertoire of MMP substrates remains uncharacterized. Indeed, computational prediction of substrate-cleavage sites associated with MMPs is a challenging problem. This holds especially true when considering MMPs with few experimentally verified cleavage sites, such as for MMP-2, -3, -7, and -8. To fill this gap, we propose a new knowledge-transfer computational framework which effectively utilizes the hidden shared knowledge from some MMP types to enhance predictions of other, distinct target substrate-cleavage sites. Our computational framework uses support vector machines combined with transfer machine learning and feature selection. To demonstrate the value of the model, we extracted a variety of substrate sequence-derived features and compared the performance of our method using both 5-fold cross-validation and independent tests. The results show that our transfer-learning-based method provides a robust performance, which is at least comparable to traditional feature-selection methods for prediction of MMP-2, -3, -7, -8, -9 and -12 substrate-cleavage sites on independent tests. The results also demonstrate that our proposed computational framework provides a useful alternative for the characterization of sequence-level determinants of MMP-substrate specificity.
Attention Modulates Spatial Precision in Multiple-Object Tracking.
Srivastava, Nisheeth; Vul, Ed
2016-01-01
We present a computational model of multiple-object tracking that makes trial-level predictions about the allocation of visual attention and the effect of this allocation on observers' ability to track multiple objects simultaneously. This model follows the intuition that increased attention to a location increases the spatial resolution of its internal representation. Using a combination of empirical and computational experiments, we demonstrate the existence of a tight coupling between cognitive and perceptual resources in this task: Low-level tracking of objects generates bottom-up predictions of error likelihood, and high-level attention allocation selectively reduces error probabilities in attended locations while increasing it at non-attended locations. Whereas earlier models of multiple-object tracking have predicted the big picture relationship between stimulus complexity and response accuracy, our approach makes accurate predictions of both the macro-scale effect of target number and velocity on tracking difficulty and micro-scale variations in difficulty across individual trials and targets arising from the idiosyncratic within-trial interactions of targets and distractors. Copyright © 2016 Cognitive Science Society, Inc.
Prediction-based Dynamic Energy Management in Wireless Sensor Networks
Wang, Xue; Ma, Jun-Jie; Wang, Sheng; Bi, Dao-Wei
2007-01-01
Energy consumption is a critical constraint in wireless sensor networks. Focusing on the energy efficiency problem of wireless sensor networks, this paper proposes a method of prediction-based dynamic energy management. A particle filter was introduced to predict a target state, which was adopted to awaken wireless sensor nodes so that their sleep time was prolonged. With the distributed computing capability of nodes, an optimization approach of distributed genetic algorithm and simulated annealing was proposed to minimize the energy consumption of measurement. Considering the application of target tracking, we implemented target position prediction, node sleep scheduling and optimal sensing node selection. Moreover, a routing scheme of forwarding nodes was presented to achieve extra energy conservation. Experimental results of target tracking verified that energy-efficiency is enhanced by prediction-based dynamic energy management.
Qweak Data Analysis for Target Modeling Using Computational Fluid Dynamics
NASA Astrophysics Data System (ADS)
Moore, Michael; Covrig, Silviu
2015-04-01
The 2.5 kW liquid hydrogen (LH2) target used in the Qweak parity violation experiment is the highest power LH2 target in the world and the first to be designed with Computational Fluid Dynamics (CFD) at Jefferson Lab. The Qweak experiment determined the weak charge of the proton by measuring the parity-violating elastic scattering asymmetry of longitudinally polarized electrons from unpolarized liquid hydrogen at small momentum transfer (Q2 = 0 . 025 GeV2). This target met the design goals of < 1 % luminosity reduction and < 5 % contribution to the total asymmetry width (the Qweak target achieved 2 % or 55 ppm). State of the art time dependent CFD simulations are being developed to improve the predictions of target noise on the time scale of the electron beam helicity period. These predictions will be bench-marked with the Qweak target data. This work is an essential ingredient in future designs of very high power low noise targets like MOLLER (5 kW, target noise asymmetry contribution < 25 ppm) and MESA (4.5 kW).
Benchmark data sets for structure-based computational target prediction.
Schomburg, Karen T; Rarey, Matthias
2014-08-25
Structure-based computational target prediction methods identify potential targets for a bioactive compound. Methods based on protein-ligand docking so far face many challenges, where the greatest probably is the ranking of true targets in a large data set of protein structures. Currently, no standard data sets for evaluation exist, rendering comparison and demonstration of improvements of methods cumbersome. Therefore, we propose two data sets and evaluation strategies for a meaningful evaluation of new target prediction methods, i.e., a small data set consisting of three target classes for detailed proof-of-concept and selectivity studies and a large data set consisting of 7992 protein structures and 72 drug-like ligands allowing statistical evaluation with performance metrics on a drug-like chemical space. Both data sets are built from openly available resources, and any information needed to perform the described experiments is reported. We describe the composition of the data sets, the setup of screening experiments, and the evaluation strategy. Performance metrics capable to measure the early recognition of enrichments like AUC, BEDROC, and NSLR are proposed. We apply a sequence-based target prediction method to the large data set to analyze its content of nontrivial evaluation cases. The proposed data sets are used for method evaluation of our new inverse screening method iRAISE. The small data set reveals the method's capability and limitations to selectively distinguish between rather similar protein structures. The large data set simulates real target identification scenarios. iRAISE achieves in 55% excellent or good enrichment a median AUC of 0.67 and RMSDs below 2.0 Å for 74% and was able to predict the first true target in 59 out of 72 cases in the top 2% of the protein data set of about 8000 structures.
Chemical and protein structural basis for biological crosstalk between PPAR α and COX enzymes
NASA Astrophysics Data System (ADS)
Cleves, Ann E.; Jain, Ajay N.
2015-02-01
We have previously validated a probabilistic framework that combined computational approaches for predicting the biological activities of small molecule drugs. Molecule comparison methods included molecular structural similarity metrics and similarity computed from lexical analysis of text in drug package inserts. Here we present an analysis of novel drug/target predictions, focusing on those that were not obvious based on known pharmacological crosstalk. Considering those cases where the predicted target was an enzyme with known 3D structure allowed incorporation of information from molecular docking and protein binding pocket similarity in addition to ligand-based comparisons. Taken together, the combination of orthogonal information sources led to investigation of a surprising predicted relationship between a transcription factor and an enzyme, specifically, PPAR α and the cyclooxygenase enzymes. These predictions were confirmed by direct biochemical experiments which validate the approach and show for the first time that PPAR α agonists are cyclooxygenase inhibitors.
Knowledge-based fragment binding prediction.
Tang, Grace W; Altman, Russ B
2014-04-01
Target-based drug discovery must assess many drug-like compounds for potential activity. Focusing on low-molecular-weight compounds (fragments) can dramatically reduce the chemical search space. However, approaches for determining protein-fragment interactions have limitations. Experimental assays are time-consuming, expensive, and not always applicable. At the same time, computational approaches using physics-based methods have limited accuracy. With increasing high-resolution structural data for protein-ligand complexes, there is now an opportunity for data-driven approaches to fragment binding prediction. We present FragFEATURE, a machine learning approach to predict small molecule fragments preferred by a target protein structure. We first create a knowledge base of protein structural environments annotated with the small molecule substructures they bind. These substructures have low-molecular weight and serve as a proxy for fragments. FragFEATURE then compares the structural environments within a target protein to those in the knowledge base to retrieve statistically preferred fragments. It merges information across diverse ligands with shared substructures to generate predictions. Our results demonstrate FragFEATURE's ability to rediscover fragments corresponding to the ligand bound with 74% precision and 82% recall on average. For many protein targets, it identifies high scoring fragments that are substructures of known inhibitors. FragFEATURE thus predicts fragments that can serve as inputs to fragment-based drug design or serve as refinement criteria for creating target-specific compound libraries for experimental or computational screening.
Knowledge-based Fragment Binding Prediction
Tang, Grace W.; Altman, Russ B.
2014-01-01
Target-based drug discovery must assess many drug-like compounds for potential activity. Focusing on low-molecular-weight compounds (fragments) can dramatically reduce the chemical search space. However, approaches for determining protein-fragment interactions have limitations. Experimental assays are time-consuming, expensive, and not always applicable. At the same time, computational approaches using physics-based methods have limited accuracy. With increasing high-resolution structural data for protein-ligand complexes, there is now an opportunity for data-driven approaches to fragment binding prediction. We present FragFEATURE, a machine learning approach to predict small molecule fragments preferred by a target protein structure. We first create a knowledge base of protein structural environments annotated with the small molecule substructures they bind. These substructures have low-molecular weight and serve as a proxy for fragments. FragFEATURE then compares the structural environments within a target protein to those in the knowledge base to retrieve statistically preferred fragments. It merges information across diverse ligands with shared substructures to generate predictions. Our results demonstrate FragFEATURE's ability to rediscover fragments corresponding to the ligand bound with 74% precision and 82% recall on average. For many protein targets, it identifies high scoring fragments that are substructures of known inhibitors. FragFEATURE thus predicts fragments that can serve as inputs to fragment-based drug design or serve as refinement criteria for creating target-specific compound libraries for experimental or computational screening. PMID:24762971
Predicting New Indications for Approved Drugs Using a Proteo-Chemometric Method
Dakshanamurthy, Sivanesan; Issa, Naiem T; Assefnia, Shahin; Seshasayee, Ashwini; Peters, Oakland J; Madhavan, Subha; Uren, Aykut; Brown, Milton L; Byers, Stephen W
2012-01-01
The most effective way to move from target identification to the clinic is to identify already approved drugs with the potential for activating or inhibiting unintended targets (repurposing or repositioning). This is usually achieved by high throughput chemical screening, transcriptome matching or simple in silico ligand docking. We now describe a novel rapid computational proteo-chemometric method called “Train, Match, Fit, Streamline” (TMFS) to map new drug-target interaction space and predict new uses. The TMFS method combines shape, topology and chemical signatures, including docking score and functional contact points of the ligand, to predict potential drug-target interactions with remarkable accuracy. Using the TMFS method, we performed extensive molecular fit computations on 3,671 FDA approved drugs across 2,335 human protein crystal structures. The TMFS method predicts drug-target associations with 91% accuracy for the majority of drugs. Over 58% of the known best ligands for each target were correctly predicted as top ranked, followed by 66%, 76%, 84% and 91% for agents ranked in the top 10, 20, 30 and 40, respectively, out of all 3,671 drugs. Drugs ranked in the top 1–40, that have not been experimentally validated for a particular target now become candidates for repositioning. Furthermore, we used the TMFS method to discover that mebendazole, an anti-parasitic with recently discovered and unexpected anti-cancer properties, has the structural potential to inhibit VEGFR2. We confirmed experimentally that mebendazole inhibits VEGFR2 kinase activity as well as angiogenesis at doses comparable with its known effects on hookworm. TMFS also predicted, and was confirmed with surface plasmon resonance, that dimethyl celecoxib and the anti-inflammatory agent celecoxib can bind cadherin-11, an adhesion molecule important in rheumatoid arthritis and poor prognosis malignancies for which no targeted therapies exist. We anticipate that expanding our TMFS method to the >27,000 clinically active agents available worldwide across all targets will be most useful in the repositioning of existing drugs for new therapeutic targets. PMID:22780961
Lim, Hansaim; Poleksic, Aleksandar; Yao, Yuan; Tong, Hanghang; He, Di; Zhuang, Luke; Meng, Patrick; Xie, Lei
2016-10-01
Target-based screening is one of the major approaches in drug discovery. Besides the intended target, unexpected drug off-target interactions often occur, and many of them have not been recognized and characterized. The off-target interactions can be responsible for either therapeutic or side effects. Thus, identifying the genome-wide off-targets of lead compounds or existing drugs will be critical for designing effective and safe drugs, and providing new opportunities for drug repurposing. Although many computational methods have been developed to predict drug-target interactions, they are either less accurate than the one that we are proposing here or computationally too intensive, thereby limiting their capability for large-scale off-target identification. In addition, the performances of most machine learning based algorithms have been mainly evaluated to predict off-target interactions in the same gene family for hundreds of chemicals. It is not clear how these algorithms perform in terms of detecting off-targets across gene families on a proteome scale. Here, we are presenting a fast and accurate off-target prediction method, REMAP, which is based on a dual regularized one-class collaborative filtering algorithm, to explore continuous chemical space, protein space, and their interactome on a large scale. When tested in a reliable, extensive, and cross-gene family benchmark, REMAP outperforms the state-of-the-art methods. Furthermore, REMAP is highly scalable. It can screen a dataset of 200 thousands chemicals against 20 thousands proteins within 2 hours. Using the reconstructed genome-wide target profile as the fingerprint of a chemical compound, we predicted that seven FDA-approved drugs can be repurposed as novel anti-cancer therapies. The anti-cancer activity of six of them is supported by experimental evidences. Thus, REMAP is a valuable addition to the existing in silico toolbox for drug target identification, drug repurposing, phenotypic screening, and side effect prediction. The software and benchmark are available at https://github.com/hansaimlim/REMAP.
Poleksic, Aleksandar; Yao, Yuan; Tong, Hanghang; Meng, Patrick; Xie, Lei
2016-01-01
Target-based screening is one of the major approaches in drug discovery. Besides the intended target, unexpected drug off-target interactions often occur, and many of them have not been recognized and characterized. The off-target interactions can be responsible for either therapeutic or side effects. Thus, identifying the genome-wide off-targets of lead compounds or existing drugs will be critical for designing effective and safe drugs, and providing new opportunities for drug repurposing. Although many computational methods have been developed to predict drug-target interactions, they are either less accurate than the one that we are proposing here or computationally too intensive, thereby limiting their capability for large-scale off-target identification. In addition, the performances of most machine learning based algorithms have been mainly evaluated to predict off-target interactions in the same gene family for hundreds of chemicals. It is not clear how these algorithms perform in terms of detecting off-targets across gene families on a proteome scale. Here, we are presenting a fast and accurate off-target prediction method, REMAP, which is based on a dual regularized one-class collaborative filtering algorithm, to explore continuous chemical space, protein space, and their interactome on a large scale. When tested in a reliable, extensive, and cross-gene family benchmark, REMAP outperforms the state-of-the-art methods. Furthermore, REMAP is highly scalable. It can screen a dataset of 200 thousands chemicals against 20 thousands proteins within 2 hours. Using the reconstructed genome-wide target profile as the fingerprint of a chemical compound, we predicted that seven FDA-approved drugs can be repurposed as novel anti-cancer therapies. The anti-cancer activity of six of them is supported by experimental evidences. Thus, REMAP is a valuable addition to the existing in silico toolbox for drug target identification, drug repurposing, phenotypic screening, and side effect prediction. The software and benchmark are available at https://github.com/hansaimlim/REMAP. PMID:27716836
Computational Modeling of Ablation on an Irradiated Target
NASA Astrophysics Data System (ADS)
Mehmedagic, Igbal; Thangam, Siva
2017-11-01
Computational modeling of pulsed nanosecond laser interaction with an irradiated metallic target is presented. The model formulation involves ablation of the metallic target irradiated by pulsed high intensity laser at normal atmospheric conditions. Computational findings based on effective representation and prediction of the heat transfer, melting and vaporization of the targeting material as well as plume formation and expansion are presented along with its relevance for the development of protective shields. In this context, the available results for a representative irradiation from 1064 nm laser pulse is used to analyze various ablation mechanisms, variable thermo-physical and optical properties, plume expansion and surface geometry. Funded in part by U. S. Army ARDEC, Picatinny Arsenal, NJ.
Echigoya, Yusuke; Mouly, Vincent; Garcia, Luis; Yokota, Toshifumi; Duddy, William
2015-01-01
The use of antisense ‘splice-switching’ oligonucleotides to induce exon skipping represents a potential therapeutic approach to various human genetic diseases. It has achieved greatest maturity in exon skipping of the dystrophin transcript in Duchenne muscular dystrophy (DMD), for which several clinical trials are completed or ongoing, and a large body of data exists describing tested oligonucleotides and their efficacy. The rational design of an exon skipping oligonucleotide involves the choice of an antisense sequence, usually between 15 and 32 nucleotides, targeting the exon that is to be skipped. Although parameters describing the target site can be computationally estimated and several have been identified to correlate with efficacy, methods to predict efficacy are limited. Here, an in silico pre-screening approach is proposed, based on predictive statistical modelling. Previous DMD data were compiled together and, for each oligonucleotide, some 60 descriptors were considered. Statistical modelling approaches were applied to derive algorithms that predict exon skipping for a given target site. We confirmed (1) the binding energetics of the oligonucleotide to the RNA, and (2) the distance in bases of the target site from the splice acceptor site, as the two most predictive parameters, and we included these and several other parameters (while discounting many) into an in silico screening process, based on their capacity to predict high or low efficacy in either phosphorodiamidate morpholino oligomers (89% correctly predicted) and/or 2’O Methyl RNA oligonucleotides (76% correctly predicted). Predictions correlated strongly with in vitro testing for sixteen de novo PMO sequences targeting various positions on DMD exons 44 (R2 0.89) and 53 (R2 0.89), one of which represents a potential novel candidate for clinical trials. We provide these algorithms together with a computational tool that facilitates screening to predict exon skipping efficacy at each position of a target exon. PMID:25816009
Crysalis: an integrated server for computational analysis and design of protein crystallization.
Wang, Huilin; Feng, Liubin; Zhang, Ziding; Webb, Geoffrey I; Lin, Donghai; Song, Jiangning
2016-02-24
The failure of multi-step experimental procedures to yield diffraction-quality crystals is a major bottleneck in protein structure determination. Accordingly, several bioinformatics methods have been successfully developed and employed to select crystallizable proteins. Unfortunately, the majority of existing in silico methods only allow the prediction of crystallization propensity, seldom enabling computational design of protein mutants that can be targeted for enhancing protein crystallizability. Here, we present Crysalis, an integrated crystallization analysis tool that builds on support-vector regression (SVR) models to facilitate computational protein crystallization prediction, analysis, and design. More specifically, the functionality of this new tool includes: (1) rapid selection of target crystallizable proteins at the proteome level, (2) identification of site non-optimality for protein crystallization and systematic analysis of all potential single-point mutations that might enhance protein crystallization propensity, and (3) annotation of target protein based on predicted structural properties. We applied the design mode of Crysalis to identify site non-optimality for protein crystallization on a proteome-scale, focusing on proteins currently classified as non-crystallizable. Our results revealed that site non-optimality is based on biases related to residues, predicted structures, physicochemical properties, and sequence loci, which provides in-depth understanding of the features influencing protein crystallization. Crysalis is freely available at http://nmrcen.xmu.edu.cn/crysalis/.
Crysalis: an integrated server for computational analysis and design of protein crystallization
Wang, Huilin; Feng, Liubin; Zhang, Ziding; Webb, Geoffrey I.; Lin, Donghai; Song, Jiangning
2016-01-01
The failure of multi-step experimental procedures to yield diffraction-quality crystals is a major bottleneck in protein structure determination. Accordingly, several bioinformatics methods have been successfully developed and employed to select crystallizable proteins. Unfortunately, the majority of existing in silico methods only allow the prediction of crystallization propensity, seldom enabling computational design of protein mutants that can be targeted for enhancing protein crystallizability. Here, we present Crysalis, an integrated crystallization analysis tool that builds on support-vector regression (SVR) models to facilitate computational protein crystallization prediction, analysis, and design. More specifically, the functionality of this new tool includes: (1) rapid selection of target crystallizable proteins at the proteome level, (2) identification of site non-optimality for protein crystallization and systematic analysis of all potential single-point mutations that might enhance protein crystallization propensity, and (3) annotation of target protein based on predicted structural properties. We applied the design mode of Crysalis to identify site non-optimality for protein crystallization on a proteome-scale, focusing on proteins currently classified as non-crystallizable. Our results revealed that site non-optimality is based on biases related to residues, predicted structures, physicochemical properties, and sequence loci, which provides in-depth understanding of the features influencing protein crystallization. Crysalis is freely available at http://nmrcen.xmu.edu.cn/crysalis/. PMID:26906024
Rastogi, Achal; Murik, Omer; Bowler, Chris; Tirichine, Leila
2016-07-01
With the emerging interest in phytoplankton research, the need to establish genetic tools for the functional characterization of genes is indispensable. The CRISPR/Cas9 system is now well recognized as an efficient and accurate reverse genetic tool for genome editing. Several computational tools have been published allowing researchers to find candidate target sequences for the engineering of the CRISPR vectors, while searching possible off-targets for the predicted candidates. These tools provide built-in genome databases of common model organisms that are used for CRISPR target prediction. Although their predictions are highly sensitive, the applicability to non-model genomes, most notably protists, makes their design inadequate. This motivated us to design a new CRISPR target finding tool, PhytoCRISP-Ex. Our software offers CRIPSR target predictions using an extended list of phytoplankton genomes and also delivers a user-friendly standalone application that can be used for any genome. The software attempts to integrate, for the first time, most available phytoplankton genomes information and provide a web-based platform for Cas9 target prediction within them with high sensitivity. By offering a standalone version, PhytoCRISP-Ex maintains an independence to be used with any organism and widens its applicability in high throughput pipelines. PhytoCRISP-Ex out pars all the existing tools by computing the availability of restriction sites over the most probable Cas9 cleavage sites, which can be ideal for mutant screens. PhytoCRISP-Ex is a simple, fast and accurate web interface with 13 pre-indexed and presently updating phytoplankton genomes. The software was also designed as a UNIX-based standalone application that allows the user to search for target sequences in the genomes of a variety of other species.
Mishra, Ajay Kumar; Duraisamy, Ganesh Selvaraj; Týcová, Anna; Matoušek, Jaroslav
2015-12-01
Among computationally predicted and experimentally validated plant miRNAs, several are conserved across species boundaries in the plant kingdom. In this study, a combined experimental-in silico computational based approach was adopted for the identification and characterization of miRNAs in Humulus lupulus (hop), which is widely cultivated for use by the brewing industry and apart from, used as a medicinal herb. A total of 22 miRNAs belonging to 17 miRNA families were identified in hop following comparative computational approach and EST-based homology search according to a series of filtering criteria. Selected miRNAs were validated by end-point PCR and quantitative reverse transcription-polymerase chain reaction (qRT-PCR), confirmed the existence of conserved miRNAs in hop. Based on the characteristic that miRNAs exhibit perfect or nearly perfect complementarity with their targeted mRNA sequences, a total of 47 potential miRNA targets were identified in hop. Strikingly, the majority of predicted targets were belong to transcriptional factors which could regulate hop growth and development, including leaf, root and even cone development. Moreover, the identified miRNAs may also be involved in other cellular and metabolic processes, such as stress response, signal transduction, and other physiological processes. The cis-regulatory elements relevant to biotic and abiotic stress, plant hormone response, flavonoid biosynthesis were identified in the promoter regions of those miRNA genes. Overall, findings from this study will accelerate the way for further researches of miRNAs, their functions in hop and shows a path for the prediction and analysis of miRNAs to those species whose genomes are not available. Copyright © 2015 Elsevier Ltd. All rights reserved.
A computational method for predicting regulation of human microRNAs on the influenza virus genome
2013-01-01
Background While it has been suggested that host microRNAs (miRNAs) may downregulate viral gene expression as an antiviral defense mechanism, such a mechanism has not been explored in the influenza virus for human flu studies. As it is difficult to conduct related experiments on humans, computational studies can provide some insight. Although many computational tools have been designed for miRNA target prediction, there is a need for cross-species prediction, especially for predicting viral targets of human miRNAs. However, finding putative human miRNAs targeting influenza virus genome is still challenging. Results We developed machine-learning features and conducted comprehensive data training for predicting interactions between H1N1 genome segments and host miRNA. We defined our seed region as the first ten nucleotides from the 5' end of the miRNA to the 3' end of the miRNA and integrated various features including the number of consecutive matching bases in the seed region of 10 bases, a triplet feature in seed regions, thermodynamic energy, penalty of bulges and wobbles at binding sites, and the secondary structure of viral RNA for the prediction. Conclusions Compared to general predictive models, our model fully takes into account the conservation patterns and features of viral RNA secondary structures, and greatly improves the prediction accuracy. Our model identified some key miRNAs including hsa-miR-489, hsa-miR-325, hsa-miR-876-3p and hsa-miR-2117, which target HA, PB2, MP and NS of H1N1, respectively. Our study provided an interesting hypothesis concerning the miRNA-based antiviral defense mechanism against influenza virus in human, i.e., the binding between human miRNA and viral RNAs may not result in gene silencing but rather may block the viral RNA replication. PMID:24565017
Stationary Temperature Distribution in a Rotating Ring-Shaped Target
NASA Astrophysics Data System (ADS)
Kazarinov, N. Yu.; Gulbekyan, G. G.; Kazacha, V. I.
2018-05-01
For a rotating ring-shaped target irradiated by a heavy-ion beam, a differential equation for computing the stationary distribution of the temperature averaged over the cross section is derived. The ion-beam diameter is assumed to be equal to the ring width. Solving this equation allows one to obtain the stationary temperature distribution along the ring-shaped target depending on the ion-beam, target, and cooling-gas parameters. Predictions are obtained for the rotating target to be installed at the DC-280 cyclotron. For an existing rotating target irradiated by an ion beam, our predictions are compared with the measured temperature distribution.
A new method for enhancer prediction based on deep belief network.
Bu, Hongda; Gan, Yanglan; Wang, Yang; Zhou, Shuigeng; Guan, Jihong
2017-10-16
Studies have shown that enhancers are significant regulatory elements to play crucial roles in gene expression regulation. Since enhancers are unrelated to the orientation and distance to their target genes, it is a challenging mission for scholars and researchers to accurately predicting distal enhancers. In the past years, with the high-throughout ChiP-seq technologies development, several computational techniques emerge to predict enhancers using epigenetic or genomic features. Nevertheless, the inconsistency of computational models across different cell-lines and the unsatisfactory prediction performance call for further research in this area. Here, we propose a new Deep Belief Network (DBN) based computational method for enhancer prediction, which is called EnhancerDBN. This method combines diverse features, composed of DNA sequence compositional features, DNA methylation and histone modifications. Our computational results indicate that 1) EnhancerDBN outperforms 13 existing methods in prediction, and 2) GC content and DNA methylation can serve as relevant features for enhancer prediction. Deep learning is effective in boosting the performance of enhancer prediction.
Isewon, Itunuoluwa; Aromolaran, Olufemi; Oladipupo, Olufunke
2018-01-01
Malaria is an infectious disease that affects close to half a million individuals every year and Plasmodium falciparum is a major cause of malaria. The treatment of this disease could be done effectively if the essential enzymes of this parasite are specifically targeted. Nevertheless, the development of the parasite in resisting existing drugs now makes discovering new drugs a core responsibility. In this study, a novel computational model that makes the prediction of new and validated antimalarial drug target cheaper, easier, and faster has been developed. We have identified new essential reactions as potential targets for drugs in the metabolic network of the parasite. Among the top seven (7) predicted essential reactions, four (4) have been previously identified in earlier studies with biological evidence and one (1) has been with computational evidence. The results from our study were compared with an extensive list of seventy-seven (77) essential reactions with biological evidence from a previous study. We present a list of thirty-one (31) potential candidates for drug targets in Plasmodium falciparum which includes twenty-four (24) new potential candidates for drug targets. PMID:29789805
Motion prediction of a non-cooperative space target
NASA Astrophysics Data System (ADS)
Zhou, Bang-Zhao; Cai, Guo-Ping; Liu, Yun-Meng; Liu, Pan
2018-01-01
Capturing a non-cooperative space target is a tremendously challenging research topic. Effective acquisition of motion information of the space target is the premise to realize target capture. In this paper, motion prediction of a free-floating non-cooperative target in space is studied and a motion prediction algorithm is proposed. In order to predict the motion of the free-floating non-cooperative target, dynamic parameters of the target must be firstly identified (estimated), such as inertia, angular momentum and kinetic energy and so on; then the predicted motion of the target can be acquired by substituting these identified parameters into the Euler's equations of the target. Accurate prediction needs precise identification. This paper presents an effective method to identify these dynamic parameters of a free-floating non-cooperative target. This method is based on two steps, (1) the rough estimation of the parameters is computed using the motion observation data to the target, and (2) the best estimation of the parameters is found by an optimization method. In the optimization problem, the objective function is based on the difference between the observed and the predicted motion, and the interior-point method (IPM) is chosen as the optimization algorithm, which starts at the rough estimate obtained in the first step and finds a global minimum to the objective function with the guidance of objective function's gradient. So the speed of IPM searching for the global minimum is fast, and an accurate identification can be obtained in time. The numerical results show that the proposed motion prediction algorithm is able to predict the motion of the target.
Validating models of target acquisition performance in the dismounted soldier context
NASA Astrophysics Data System (ADS)
Glaholt, Mackenzie G.; Wong, Rachel K.; Hollands, Justin G.
2018-04-01
The problem of predicting real-world operator performance with digital imaging devices is of great interest within the military and commercial domains. There are several approaches to this problem, including: field trials with imaging devices, laboratory experiments using imagery captured from these devices, and models that predict human performance based on imaging device parameters. The modeling approach is desirable, as both field trials and laboratory experiments are costly and time-consuming. However, the data from these experiments is required for model validation. Here we considered this problem in the context of dismounted soldiering, for which detection and identification of human targets are essential tasks. Human performance data were obtained for two-alternative detection and identification decisions in a laboratory experiment in which photographs of human targets were presented on a computer monitor and the images were digitally magnified to simulate range-to-target. We then compared the predictions of different performance models within the NV-IPM software package: Targeting Task Performance (TTP) metric model and the Johnson model. We also introduced a modification to the TTP metric computation that incorporates an additional correction for target angular size. We examined model predictions using NV-IPM default values for a critical model constant, V50, and we also considered predictions when this value was optimized to fit the behavioral data. When using default values, certain model versions produced a reasonably close fit to the human performance data in the detection task, while for the identification task all models substantially overestimated performance. When using fitted V50 values the models produced improved predictions, though the slopes of the performance functions were still shallow compared to the behavioral data. These findings are discussed in relation to the models' designs and parameters, and the characteristics of the behavioral paradigm.
Blow, Nikolaus; Biswas, Pradipta
2017-01-01
As computers become more and more essential for everyday life, people who cannot use them are missing out on an important tool. The predominant method of interaction with a screen is a mouse, and difficulty in using a mouse can be a huge obstacle for people who would otherwise gain great value from using a computer. If mouse pointing were to be made easier, then a large number of users may be able to begin using a computer efficiently where they may previously have been unable to. The present article aimed to improve pointing speeds for people with arm or hand impairments. The authors investigated different smoothing and prediction models on a stored data set involving 25 people, and the best of these algorithms were chosen. A web-based prototype was developed combining a polynomial smoothing algorithm with a time-weighted gradient target prediction model. The adapted interface gave an average improvement of 13.5% in target selection times in a 10-person study of representative users of the system. A demonstration video of the system is available at https://youtu.be/sAzbrKHivEY.
Predictability Experiments With the Navy Operational Global Atmospheric Prediction System
NASA Astrophysics Data System (ADS)
Reynolds, C. A.; Gelaro, R.; Rosmond, T. E.
2003-12-01
There are several areas of research in numerical weather prediction and atmospheric predictability, such as targeted observations and ensemble perturbation generation, where it is desirable to combine information about the uncertainty of the initial state with information about potential rapid perturbation growth. Singular vectors (SVs) provide a framework to accomplish this task in a mathematically rigorous and computationally feasible manner. In this study, SVs are calculated using the tangent and adjoint models of the Navy Operational Global Atmospheric Prediction System (NOGAPS). The analysis error variance information produced by the NRL Atmospheric Variational Data Assimilation System is used as the initial-time SV norm. These VAR SVs are compared to SVs for which total energy is both the initial and final time norms (TE SVs). The incorporation of analysis error variance information has a significant impact on the structure and location of the SVs. This in turn has a significant impact on targeted observing applications. The utility and implications of such experiments in assessing the analysis error variance estimates will be explored. Computing support has been provided by the Department of Defense High Performance Computing Center at the Naval Oceanographic Office Major Shared Resource Center at Stennis, Mississippi.
Olayan, Rawan S; Ashoor, Haitham; Bajic, Vladimir B
2018-04-01
Finding computationally drug-target interactions (DTIs) is a convenient strategy to identify new DTIs at low cost with reasonable accuracy. However, the current DTI prediction methods suffer the high false positive prediction rate. We developed DDR, a novel method that improves the DTI prediction accuracy. DDR is based on the use of a heterogeneous graph that contains known DTIs with multiple similarities between drugs and multiple similarities between target proteins. DDR applies non-linear similarity fusion method to combine different similarities. Before fusion, DDR performs a pre-processing step where a subset of similarities is selected in a heuristic process to obtain an optimized combination of similarities. Then, DDR applies a random forest model using different graph-based features extracted from the DTI heterogeneous graph. Using 5-repeats of 10-fold cross-validation, three testing setups, and the weighted average of area under the precision-recall curve (AUPR) scores, we show that DDR significantly reduces the AUPR score error relative to the next best start-of-the-art method for predicting DTIs by 34% when the drugs are new, by 23% when targets are new and by 34% when the drugs and the targets are known but not all DTIs between them are not known. Using independent sources of evidence, we verify as correct 22 out of the top 25 DDR novel predictions. This suggests that DDR can be used as an efficient method to identify correct DTIs. The data and code are provided at https://bitbucket.org/RSO24/ddr/. vladimir.bajic@kaust.edu.sa. Supplementary data are available at Bioinformatics online.
Wang, Lei; You, Zhu-Hong; Chen, Xing; Yan, Xin; Liu, Gang; Zhang, Wei
2018-01-01
Identification of interaction between drugs and target proteins plays an important role in discovering new drug candidates. However, through the experimental method to identify the drug-target interactions remain to be extremely time-consuming, expensive and challenging even nowadays. Therefore, it is urgent to develop new computational methods to predict potential drugtarget interactions (DTI). In this article, a novel computational model is developed for predicting potential drug-target interactions under the theory that each drug-target interaction pair can be represented by the structural properties from drugs and evolutionary information derived from proteins. Specifically, the protein sequences are encoded as Position-Specific Scoring Matrix (PSSM) descriptor which contains information of biological evolutionary and the drug molecules are encoded as fingerprint feature vector which represents the existence of certain functional groups or fragments. Four benchmark datasets involving enzymes, ion channels, GPCRs and nuclear receptors, are independently used for establishing predictive models with Rotation Forest (RF) model. The proposed method achieved the prediction accuracy of 91.3%, 89.1%, 84.1% and 71.1% for four datasets respectively. In order to make our method more persuasive, we compared our classifier with the state-of-theart Support Vector Machine (SVM) classifier. We also compared the proposed method with other excellent methods. Experimental results demonstrate that the proposed method is effective in the prediction of DTI, and can provide assistance for new drug research and development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Agrawal, Neeraj J; Helk, Bernhard; Trout, Bernhardt L
2014-01-21
Identifying hot-spot residues - residues that are critical to protein-protein binding - can help to elucidate a protein's function and assist in designing therapeutic molecules to target those residues. We present a novel computational tool, termed spatial-interaction-map (SIM), to predict the hot-spot residues of an evolutionarily conserved protein-protein interaction from the structure of an unbound protein alone. SIM can predict the protein hot-spot residues with an accuracy of 36-57%. Thus, the SIM tool can be used to predict the yet unknown hot-spot residues for many proteins for which the structure of the protein-protein complexes are not available, thereby providing a clue to their functions and an opportunity to design therapeutic molecules to target these proteins. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Quantitative self-assembly prediction yields targeted nanomedicines
NASA Astrophysics Data System (ADS)
Shamay, Yosi; Shah, Janki; Işık, Mehtap; Mizrachi, Aviram; Leibold, Josef; Tschaharganeh, Darjus F.; Roxbury, Daniel; Budhathoki-Uprety, Januka; Nawaly, Karla; Sugarman, James L.; Baut, Emily; Neiman, Michelle R.; Dacek, Megan; Ganesh, Kripa S.; Johnson, Darren C.; Sridharan, Ramya; Chu, Karen L.; Rajasekhar, Vinagolu K.; Lowe, Scott W.; Chodera, John D.; Heller, Daniel A.
2018-02-01
Development of targeted nanoparticle drug carriers often requires complex synthetic schemes involving both supramolecular self-assembly and chemical modification. These processes are generally difficult to predict, execute, and control. We describe herein a targeted drug delivery system that is accurately and quantitatively predicted to self-assemble into nanoparticles based on the molecular structures of precursor molecules, which are the drugs themselves. The drugs assemble with the aid of sulfated indocyanines into particles with ultrahigh drug loadings of up to 90%. We devised quantitative structure-nanoparticle assembly prediction (QSNAP) models to identify and validate electrotopological molecular descriptors as highly predictive indicators of nano-assembly and nanoparticle size. The resulting nanoparticles selectively targeted kinase inhibitors to caveolin-1-expressing human colon cancer and autochthonous liver cancer models to yield striking therapeutic effects while avoiding pERK inhibition in healthy skin. This finding enables the computational design of nanomedicines based on quantitative models for drug payload selection.
Machine learning properties of binary wurtzite superlattices
Pilania, G.; Liu, X. -Y.
2018-01-12
The burgeoning paradigm of high-throughput computations and materials informatics brings new opportunities in terms of targeted materials design and discovery. The discovery process can be significantly accelerated and streamlined if one can learn effectively from available knowledge and past data to predict materials properties efficiently. Indeed, a very active area in materials science research is to develop machine learning based methods that can deliver automated and cross-validated predictive models using either already available materials data or new data generated in a targeted manner. In the present paper, we show that fast and accurate predictions of a wide range of propertiesmore » of binary wurtzite superlattices, formed by a diverse set of chemistries, can be made by employing state-of-the-art statistical learning methods trained on quantum mechanical computations in combination with a judiciously chosen numerical representation to encode materials’ similarity. These surrogate learning models then allow for efficient screening of vast chemical spaces by providing instant predictions of the targeted properties. Moreover, the models can be systematically improved in an adaptive manner, incorporate properties computed at different levels of fidelities and are naturally amenable to inverse materials design strategies. Finally, while the learning approach to make predictions for a wide range of properties (including structural, elastic and electronic properties) is demonstrated here for a specific example set containing more than 1200 binary wurtzite superlattices, the adopted framework is equally applicable to other classes of materials as well.« less
Machine learning properties of binary wurtzite superlattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pilania, G.; Liu, X. -Y.
The burgeoning paradigm of high-throughput computations and materials informatics brings new opportunities in terms of targeted materials design and discovery. The discovery process can be significantly accelerated and streamlined if one can learn effectively from available knowledge and past data to predict materials properties efficiently. Indeed, a very active area in materials science research is to develop machine learning based methods that can deliver automated and cross-validated predictive models using either already available materials data or new data generated in a targeted manner. In the present paper, we show that fast and accurate predictions of a wide range of propertiesmore » of binary wurtzite superlattices, formed by a diverse set of chemistries, can be made by employing state-of-the-art statistical learning methods trained on quantum mechanical computations in combination with a judiciously chosen numerical representation to encode materials’ similarity. These surrogate learning models then allow for efficient screening of vast chemical spaces by providing instant predictions of the targeted properties. Moreover, the models can be systematically improved in an adaptive manner, incorporate properties computed at different levels of fidelities and are naturally amenable to inverse materials design strategies. Finally, while the learning approach to make predictions for a wide range of properties (including structural, elastic and electronic properties) is demonstrated here for a specific example set containing more than 1200 binary wurtzite superlattices, the adopted framework is equally applicable to other classes of materials as well.« less
How reliable are ligand-centric methods for Target Fishing?
NASA Astrophysics Data System (ADS)
Peon, Antonio; Dang, Cuong; Ballester, Pedro
2016-04-01
Computational methods for Target Fishing (TF), also known as Target Prediction or Polypharmacology Prediction, can be used to discover new targets for small-molecule drugs. This may result in repositioning the drug in a new indication or improving our current understanding of its efficacy and side effects. While there is a substantial body of research on TF methods, there is still a need to improve their validation, which is often limited to a small part of the available targets and not easily interpretable by the user. Here we discuss how target-centric TF methods are inherently limited by the number of targets that can possibly predict (this number is by construction much larger in ligand-centric techniques). We also propose a new benchmark to validate TF methods, which is particularly suited to analyse how predictive performance varies with the query molecule. On average over approved drugs, we estimate that only five predicted targets will have to be tested to find two true targets with submicromolar potency (a strong variability in performance is however observed). In addition, we find that an approved drug has currently an average of eight known targets, which reinforces the notion that polypharmacology is a common and strong event. Furthermore, with the assistance of a control group of randomly-selected molecules, we show that the targets of approved drugs are generally harder to predict.
Takemura, Naohiro; Fukui, Takao; Inui, Toshio
2015-01-01
In human reach-to-grasp movement, visual occlusion of a target object leads to a larger peak grip aperture compared to conditions where online vision is available. However, no previous computational and neural network models for reach-to-grasp movement explain the mechanism of this effect. We simulated the effect of online vision on the reach-to-grasp movement by proposing a computational control model based on the hypothesis that the grip aperture is controlled to compensate for both motor variability and sensory uncertainty. In this model, the aperture is formed to achieve a target aperture size that is sufficiently large to accommodate the actual target; it also includes a margin to ensure proper grasping despite sensory and motor variability. To this end, the model considers: (i) the variability of the grip aperture, which is predicted by the Kalman filter, and (ii) the uncertainty of the object size, which is affected by visual noise. Using this model, we simulated experiments in which the effect of the duration of visual occlusion was investigated. The simulation replicated the experimental result wherein the peak grip aperture increased when the target object was occluded, especially in the early phase of the movement. Both predicted motor variability and sensory uncertainty play important roles in the online visuomotor process responsible for grip aperture control. PMID:26696874
A Computational Approach to Finding Novel Targets for Existing Drugs
Li, Yvonne Y.; An, Jianghong; Jones, Steven J. M.
2011-01-01
Repositioning existing drugs for new therapeutic uses is an efficient approach to drug discovery. We have developed a computational drug repositioning pipeline to perform large-scale molecular docking of small molecule drugs against protein drug targets, in order to map the drug-target interaction space and find novel interactions. Our method emphasizes removing false positive interaction predictions using criteria from known interaction docking, consensus scoring, and specificity. In all, our database contains 252 human protein drug targets that we classify as reliable-for-docking as well as 4621 approved and experimental small molecule drugs from DrugBank. These were cross-docked, then filtered through stringent scoring criteria to select top drug-target interactions. In particular, we used MAPK14 and the kinase inhibitor BIM-8 as examples where our stringent thresholds enriched the predicted drug-target interactions with known interactions up to 20 times compared to standard score thresholds. We validated nilotinib as a potent MAPK14 inhibitor in vitro (IC50 40 nM), suggesting a potential use for this drug in treating inflammatory diseases. The published literature indicated experimental evidence for 31 of the top predicted interactions, highlighting the promising nature of our approach. Novel interactions discovered may lead to the drug being repositioned as a therapeutic treatment for its off-target's associated disease, added insight into the drug's mechanism of action, and added insight into the drug's side effects. PMID:21909252
Tools for in silico target fishing.
Cereto-Massagué, Adrià; Ojeda, María José; Valls, Cristina; Mulero, Miquel; Pujadas, Gerard; Garcia-Vallve, Santiago
2015-01-01
Computational target fishing methods are designed to identify the most probable target of a query molecule. This process may allow the prediction of the bioactivity of a compound, the identification of the mode of action of known drugs, the detection of drug polypharmacology, drug repositioning or the prediction of the adverse effects of a compound. The large amount of information regarding the bioactivity of thousands of small molecules now allows the development of these types of methods. In recent years, we have witnessed the emergence of many methods for in silico target fishing. Most of these methods are based on the similarity principle, i.e., that similar molecules might bind to the same targets and have similar bioactivities. However, the difficult validation of target fishing methods hinders comparisons of the performance of each method. In this review, we describe the different methods developed for target prediction, the bioactivity databases most frequently used by these methods, and the publicly available programs and servers that enable non-specialist users to obtain these types of predictions. It is expected that target prediction will have a large impact on drug development and on the functional food industry. Copyright © 2014 Elsevier Inc. All rights reserved.
Correlation tracking study for meter-class solar telescope on space shuttle. [solar granulation
NASA Technical Reports Server (NTRS)
Smithson, R. C.; Tarbell, T. D.
1977-01-01
The theory and expected performance level of correlation trackers used to control the pointing of a solar telescope in space using white light granulation as a target were studied. Three specific trackers were modeled and their performance levels predicted for telescopes of various apertures. The performance of the computer model trackers on computer enhanced granulation photographs was evaluated. Parametric equations for predicting tracker performance are presented.
Krishnaraj, R Navanietha; Chandran, Saravanan; Pal, Parimal; Berchmans, Sheela
2013-12-01
There is an immense interest among the researchers to identify new herbicides which are effective against the herbs without affecting the environment. In this work, photosynthetic pigments are used as the ligands to predict their herbicidal activity. The enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase is a good target for the herbicides. Homology modeling of the target enzyme is done using Modeler 9.11 and the model is validated. Docking studies were performed with AutoDock Vina algorithm to predict the binding of the natural pigments such as β-carotene, chlorophyll a, chlorophyll b, phycoerythrin and phycocyanin to the target. β-carotene, phycoerythrin and phycocyanin have higher binding energies indicating the herbicidal activity of the pigments. This work reports a procedure to screen herbicides with computational molecular approach. These pigments will serve as potential bioherbicides in the future.
Meng, Fan-Rong; You, Zhu-Hong; Chen, Xing; Zhou, Yong; An, Ji-Yong
2017-07-05
Knowledge of drug-target interaction (DTI) plays an important role in discovering new drug candidates. Unfortunately, there are unavoidable shortcomings; including the time-consuming and expensive nature of the experimental method to predict DTI. Therefore, it motivates us to develop an effective computational method to predict DTI based on protein sequence. In the paper, we proposed a novel computational approach based on protein sequence, namely PDTPS (Predicting Drug Targets with Protein Sequence) to predict DTI. The PDTPS method combines Bi-gram probabilities (BIGP), Position Specific Scoring Matrix (PSSM), and Principal Component Analysis (PCA) with Relevance Vector Machine (RVM). In order to evaluate the prediction capacity of the PDTPS, the experiment was carried out on enzyme, ion channel, GPCR, and nuclear receptor datasets by using five-fold cross-validation tests. The proposed PDTPS method achieved average accuracy of 97.73%, 93.12%, 86.78%, and 87.78% on enzyme, ion channel, GPCR and nuclear receptor datasets, respectively. The experimental results showed that our method has good prediction performance. Furthermore, in order to further evaluate the prediction performance of the proposed PDTPS method, we compared it with the state-of-the-art support vector machine (SVM) classifier on enzyme and ion channel datasets, and other exiting methods on four datasets. The promising comparison results further demonstrate that the efficiency and robust of the proposed PDTPS method. This makes it a useful tool and suitable for predicting DTI, as well as other bioinformatics tasks.
Predicting drug-target interactions by dual-network integrated logistic matrix factorization
NASA Astrophysics Data System (ADS)
Hao, Ming; Bryant, Stephen H.; Wang, Yanli
2017-01-01
In this work, we propose a dual-network integrated logistic matrix factorization (DNILMF) algorithm to predict potential drug-target interactions (DTI). The prediction procedure consists of four steps: (1) inferring new drug/target profiles and constructing profile kernel matrix; (2) diffusing drug profile kernel matrix with drug structure kernel matrix; (3) diffusing target profile kernel matrix with target sequence kernel matrix; and (4) building DNILMF model and smoothing new drug/target predictions based on their neighbors. We compare our algorithm with the state-of-the-art method based on the benchmark dataset. Results indicate that the DNILMF algorithm outperforms the previously reported approaches in terms of AUPR (area under precision-recall curve) and AUC (area under curve of receiver operating characteristic) based on the 5 trials of 10-fold cross-validation. We conclude that the performance improvement depends on not only the proposed objective function, but also the used nonlinear diffusion technique which is important but under studied in the DTI prediction field. In addition, we also compile a new DTI dataset for increasing the diversity of currently available benchmark datasets. The top prediction results for the new dataset are confirmed by experimental studies or supported by other computational research.
Method to determine transcriptional regulation pathways in organisms
Gardner, Timothy S.; Collins, James J.; Hayete, Boris; Faith, Jeremiah
2012-11-06
The invention relates to computer-implemented methods and systems for identifying regulatory relationships between expressed regulating polypeptides and targets of the regulatory activities of such regulating polypeptides. More specifically, the invention provides a new method for identifying regulatory dependencies between biochemical species in a cell. In particular embodiments, provided are computer-implemented methods for identifying a regulatory interaction between a transcription factor and a gene target of the transcription factor, or between a transcription factor and a set of gene targets of the transcription factor. Further provided are genome-scale methods for predicting regulatory interactions between a set of transcription factors and a corresponding set of transcriptional target substrates thereof.
Computer-based prediction of mitochondria-targeting peptides.
Martelli, Pier Luigi; Savojardo, Castrense; Fariselli, Piero; Tasco, Gianluca; Casadio, Rita
2015-01-01
Computational methods are invaluable when protein sequences, directly derived from genomic data, need functional and structural annotation. Subcellular localization is a feature necessary for understanding the protein role and the compartment where the mature protein is active and very difficult to characterize experimentally. Mitochondrial proteins encoded on the cytosolic ribosomes carry specific patterns in the precursor sequence from where it is possible to recognize a peptide targeting the protein to its final destination. Here we discuss to which extent it is feasible to develop computational methods for detecting mitochondrial targeting peptides in the precursor sequences and benchmark our and other methods on the human mitochondrial proteins endowed with experimentally characterized targeting peptides. Furthermore, we illustrate our newly implemented web server and its usage on the whole human proteome in order to infer mitochondrial targeting peptides, their cleavage sites, and whether the targeting peptide regions contain or not arginine-rich recurrent motifs. By this, we add some other 2,800 human proteins to the 124 ones already experimentally annotated with a mitochondrial targeting peptide.
Xu, Weijun; Lucke, Andrew J; Fairlie, David P
2015-04-01
Accurately predicting relative binding affinities and biological potencies for ligands that interact with proteins remains a significant challenge for computational chemists. Most evaluations of docking and scoring algorithms have focused on enhancing ligand affinity for a protein by optimizing docking poses and enrichment factors during virtual screening. However, there is still relatively limited information on the accuracy of commercially available docking and scoring software programs for correctly predicting binding affinities and biological activities of structurally related inhibitors of different enzyme classes. Presented here is a comparative evaluation of eight molecular docking programs (Autodock Vina, Fitted, FlexX, Fred, Glide, GOLD, LibDock, MolDock) using sixteen docking and scoring functions to predict the rank-order activity of different ligand series for six pharmacologically important protein and enzyme targets (Factor Xa, Cdk2 kinase, Aurora A kinase, COX-2, pla2g2a, β Estrogen receptor). Use of Fitted gave an excellent correlation (Pearson 0.86, Spearman 0.91) between predicted and experimental binding only for Cdk2 kinase inhibitors. FlexX and GOLDScore produced good correlations (Pearson>0.6) for hydrophilic targets such as Factor Xa, Cdk2 kinase and Aurora A kinase. By contrast, pla2g2a and COX-2 emerged as difficult targets for scoring functions to predict ligand activities. Although possessing a high hydrophobicity in its binding site, β Estrogen receptor produced reasonable correlations using LibDock (Pearson 0.75, Spearman 0.68). These findings can assist medicinal chemists to better match scoring functions with ligand-target systems for hit-to-lead optimization using computer-aided drug design approaches. Copyright © 2015 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Hsu, Chung-Yuan; Tsai, Chin-Chung; Liang, Jyh-Chong
2011-01-01
Educational researchers have suggested that computer games have a profound influence on students' motivation, knowledge construction, and learning performance, but little empirical research has targeted preschoolers. Thus, the purpose of the present study was to investigate the effects of implementing a computer game that integrates the…
TarPmiR: a new approach for microRNA target site prediction.
Ding, Jun; Li, Xiaoman; Hu, Haiyan
2016-09-15
The identification of microRNA (miRNA) target sites is fundamentally important for studying gene regulation. There are dozens of computational methods available for miRNA target site prediction. Despite their existence, we still cannot reliably identify miRNA target sites, partially due to our limited understanding of the characteristics of miRNA target sites. The recently published CLASH (crosslinking ligation and sequencing of hybrids) data provide an unprecedented opportunity to study the characteristics of miRNA target sites and improve miRNA target site prediction methods. Applying four different machine learning approaches to the CLASH data, we identified seven new features of miRNA target sites. Combining these new features with those commonly used by existing miRNA target prediction algorithms, we developed an approach called TarPmiR for miRNA target site prediction. Testing on two human and one mouse non-CLASH datasets, we showed that TarPmiR predicted more than 74.2% of true miRNA target sites in each dataset. Compared with three existing approaches, we demonstrated that TarPmiR is superior to these existing approaches in terms of better recall and better precision. The TarPmiR software is freely available at http://hulab.ucf.edu/research/projects/miRNA/TarPmiR/ CONTACTS: haihu@cs.ucf.edu or xiaoman@mail.ucf.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Computational Methods in Drug Discovery
Sliwoski, Gregory; Kothiwale, Sandeepkumar; Meiler, Jens
2014-01-01
Computer-aided drug discovery/design methods have played a major role in the development of therapeutically important small molecules for over three decades. These methods are broadly classified as either structure-based or ligand-based methods. Structure-based methods are in principle analogous to high-throughput screening in that both target and ligand structure information is imperative. Structure-based approaches include ligand docking, pharmacophore, and ligand design methods. The article discusses theory behind the most important methods and recent successful applications. Ligand-based methods use only ligand information for predicting activity depending on its similarity/dissimilarity to previously known active ligands. We review widely used ligand-based methods such as ligand-based pharmacophores, molecular descriptors, and quantitative structure-activity relationships. In addition, important tools such as target/ligand data bases, homology modeling, ligand fingerprint methods, etc., necessary for successful implementation of various computer-aided drug discovery/design methods in a drug discovery campaign are discussed. Finally, computational methods for toxicity prediction and optimization for favorable physiologic properties are discussed with successful examples from literature. PMID:24381236
Spotting and designing promiscuous ligands for drug discovery.
Schneider, P; Röthlisberger, M; Reker, D; Schneider, G
2016-01-21
The promiscuous binding behavior of bioactive compounds forms a mechanistic basis for understanding polypharmacological drug action. We present the development and prospective application of a computational tool for identifying potential promiscuous drug-like ligands. In combination with computational target prediction methods, the approach provides a working concept for rationally designing such molecular structures. We could confirm the multi-target binding of a de novo generated compound in a proof-of-concept study relying on the new method.
Predicting uncertainty in future marine ice sheet volume using Bayesian statistical methods
NASA Astrophysics Data System (ADS)
Davis, A. D.
2015-12-01
The marine ice instability can trigger rapid retreat of marine ice streams. Recent observations suggest that marine ice systems in West Antarctica have begun retreating. However, unknown ice dynamics, computationally intensive mathematical models, and uncertain parameters in these models make predicting retreat rate and ice volume difficult. In this work, we fuse current observational data with ice stream/shelf models to develop probabilistic predictions of future grounded ice sheet volume. Given observational data (e.g., thickness, surface elevation, and velocity) and a forward model that relates uncertain parameters (e.g., basal friction and basal topography) to these observations, we use a Bayesian framework to define a posterior distribution over the parameters. A stochastic predictive model then propagates uncertainties in these parameters to uncertainty in a particular quantity of interest (QoI)---here, the volume of grounded ice at a specified future time. While the Bayesian approach can in principle characterize the posterior predictive distribution of the QoI, the computational cost of both the forward and predictive models makes this effort prohibitively expensive. To tackle this challenge, we introduce a new Markov chain Monte Carlo method that constructs convergent approximations of the QoI target density in an online fashion, yielding accurate characterizations of future ice sheet volume at significantly reduced computational cost.Our second goal is to attribute uncertainty in these Bayesian predictions to uncertainties in particular parameters. Doing so can help target data collection, for the purpose of constraining the parameters that contribute most strongly to uncertainty in the future volume of grounded ice. For instance, smaller uncertainties in parameters to which the QoI is highly sensitive may account for more variability in the prediction than larger uncertainties in parameters to which the QoI is less sensitive. We use global sensitivity analysis to help answer this question, and make the computation of sensitivity indices computationally tractable using a combination of polynomial chaos and Monte Carlo techniques.
Modeling NIF experimental designs with adaptive mesh refinement and Lagrangian hydrodynamics
NASA Astrophysics Data System (ADS)
Koniges, A. E.; Anderson, R. W.; Wang, P.; Gunney, B. T. N.; Becker, R.; Eder, D. C.; MacGowan, B. J.; Schneider, M. B.
2006-06-01
Incorporation of adaptive mesh refinement (AMR) into Lagrangian hydrodynamics algorithms allows for the creation of a highly powerful simulation tool effective for complex target designs with three-dimensional structure. We are developing an advanced modeling tool that includes AMR and traditional arbitrary Lagrangian-Eulerian (ALE) techniques. Our goal is the accurate prediction of vaporization, disintegration and fragmentation in National Ignition Facility (NIF) experimental target elements. Although our focus is on minimizing the generation of shrapnel in target designs and protecting the optics, the general techniques are applicable to modern advanced targets that include three-dimensional effects such as those associated with capsule fill tubes. Several essential computations in ordinary radiation hydrodynamics need to be redesigned in order to allow for AMR to work well with ALE, including algorithms associated with radiation transport. Additionally, for our goal of predicting fragmentation, we include elastic/plastic flow into our computations. We discuss the integration of these effects into a new ALE-AMR simulation code. Applications of this newly developed modeling tool as well as traditional ALE simulations in two and three dimensions are applied to NIF early-light target designs.
A systematic investigation of computation models for predicting Adverse Drug Reactions (ADRs).
Kuang, Qifan; Wang, MinQi; Li, Rong; Dong, YongCheng; Li, Yizhou; Li, Menglong
2014-01-01
Early and accurate identification of adverse drug reactions (ADRs) is critically important for drug development and clinical safety. Computer-aided prediction of ADRs has attracted increasing attention in recent years, and many computational models have been proposed. However, because of the lack of systematic analysis and comparison of the different computational models, there remain limitations in designing more effective algorithms and selecting more useful features. There is therefore an urgent need to review and analyze previous computation models to obtain general conclusions that can provide useful guidance to construct more effective computational models to predict ADRs. In the current study, the main work is to compare and analyze the performance of existing computational methods to predict ADRs, by implementing and evaluating additional algorithms that have been earlier used for predicting drug targets. Our results indicated that topological and intrinsic features were complementary to an extent and the Jaccard coefficient had an important and general effect on the prediction of drug-ADR associations. By comparing the structure of each algorithm, final formulas of these algorithms were all converted to linear model in form, based on this finding we propose a new algorithm called the general weighted profile method and it yielded the best overall performance among the algorithms investigated in this paper. Several meaningful conclusions and useful findings regarding the prediction of ADRs are provided for selecting optimal features and algorithms.
Recovery of known T-cell epitopes by computational scanning of a viral genome
NASA Astrophysics Data System (ADS)
Logean, Antoine; Rognan, Didier
2002-04-01
A new computational method (EpiDock) is proposed for predicting peptide binding to class I MHC proteins, from the amino acid sequence of any protein of immunological interest. Starting from the primary structure of the target protein, individual three-dimensional structures of all possible MHC-peptide (8-, 9- and 10-mers) complexes are obtained by homology modelling. A free energy scoring function (Fresno) is then used to predict the absolute binding free energy of all possible peptides to the class I MHC restriction protein. Assuming that immunodominant epitopes are usually found among the top MHC binders, the method can thus be applied to predict the location of immunogenic peptides on the sequence of the protein target. When applied to the prediction of HLA-A*0201-restricted T-cell epitopes from the Hepatitis B virus, EpiDock was able to recover 92% of known high affinity binders and 80% of known epitopes within a filtered subset of all possible nonapeptides corresponding to about one tenth of the full theoretical list. The proposed method is fully automated and fast enough to scan a viral genome in less than an hour on a parallel computing architecture. As it requires very few starting experimental data, EpiDock can be used: (i) to predict potential T-cell epitopes from viral genomes (ii) to roughly predict still unknown peptide binding motifs for novel class I MHC alleles.
Global vision of druggability issues: applications and perspectives.
Abi Hussein, Hiba; Geneix, Colette; Petitjean, Michel; Borrel, Alexandre; Flatters, Delphine; Camproux, Anne-Claude
2017-02-01
During the preliminary stage of a drug discovery project, the lack of druggability information and poor target selection are the main causes of frequent failures. Elaborating on accurate computational druggability prediction methods is a requirement for prioritizing target selection, designing new drugs and avoiding side effects. In this review, we describe a survey of recently reported druggability prediction methods mainly based on networks, statistical pocket druggability predictions and virtual screening. An application for a frequent mutation of p53 tumor suppressor is presented, illustrating the complementarity of druggability prediction approaches, the remaining challenges and potential new drug development perspectives. Copyright © 2016 Elsevier Ltd. All rights reserved.
A computational cognitive model of self-efficacy and daily adherence in mHealth.
Pirolli, Peter
2016-12-01
Mobile health (mHealth) applications provide an excellent opportunity for collecting rich, fine-grained data necessary for understanding and predicting day-to-day health behavior change dynamics. A computational predictive model (ACT-R-DStress) is presented and fit to individual daily adherence in 28-day mHealth exercise programs. The ACT-R-DStress model refines the psychological construct of self-efficacy. To explain and predict the dynamics of self-efficacy and predict individual performance of targeted behaviors, the self-efficacy construct is implemented as a theory-based neurocognitive simulation of the interaction of behavioral goals, memories of past experiences, and behavioral performance.
A primary goal of computational toxicology is to generate predictive models of toxicity. An elusive target of alternative test methods and models has been the accurate prediction of systemic toxicity points of departure (PoD). We aim not only to provide a large and valuable resou...
OSPREY Predicts Resistance Mutations Using Positive and Negative Computational Protein Design.
Ojewole, Adegoke; Lowegard, Anna; Gainza, Pablo; Reeve, Stephanie M; Georgiev, Ivelin; Anderson, Amy C; Donald, Bruce R
2017-01-01
Drug resistance in protein targets is an increasingly common phenomenon that reduces the efficacy of both existing and new antibiotics. However, knowledge of future resistance mutations during pre-clinical phases of drug development would enable the design of novel antibiotics that are robust against not only known resistant mutants, but also against those that have not yet been clinically observed. Computational structure-based protein design (CSPD) is a transformative field that enables the prediction of protein sequences with desired biochemical properties such as binding affinity and specificity to a target. The use of CSPD to predict previously unseen resistance mutations represents one of the frontiers of computational protein design. In a recent study (Reeve et al. Proc Natl Acad Sci U S A 112(3):749-754, 2015), we used our OSPREY (Open Source Protein REdesign for You) suite of CSPD algorithms to prospectively predict resistance mutations that arise in the active site of the dihydrofolate reductase enzyme from methicillin-resistant Staphylococcus aureus (SaDHFR) in response to selective pressure from an experimental competitive inhibitor. We demonstrated that our top predicted candidates are indeed viable resistant mutants. Since that study, we have significantly enhanced the capabilities of OSPREY with not only improved modeling of backbone flexibility, but also efficient multi-state design, fast sparse approximations, partitioned continuous rotamers for more accurate energy bounds, and a computationally efficient representation of molecular-mechanics and quantum-mechanical energy functions. Here, using SaDHFR as an example, we present a protocol for resistance prediction using the latest version of OSPREY. Specifically, we show how to use a combination of positive and negative design to predict active site escape mutations that maintain the enzyme's catalytic function but selectively ablate binding of an inhibitor.
Predicting Drug-Target Interactions Based on Small Positive Samples.
Hu, Pengwei; Chan, Keith C C; Hu, Yanxing
2018-01-01
A basic task in drug discovery is to find new medication in the form of candidate compounds that act on a target protein. In other words, a drug has to interact with a target and such drug-target interaction (DTI) is not expected to be random. Significant and interesting patterns are expected to be hidden in them. If these patterns can be discovered, new drugs are expected to be more easily discoverable. Currently, a number of computational methods have been proposed to predict DTIs based on their similarity. However, such as approach does not allow biochemical features to be directly considered. As a result, some methods have been proposed to try to discover patterns in physicochemical interactions. Since the number of potential negative DTIs are very high both in absolute terms and in comparison to that of the known ones, these methods are rather computationally expensive and they can only rely on subsets, rather than the full set, of negative DTIs for training and validation. As there is always a relatively high chance for negative DTIs to be falsely identified and as only partial subset of such DTIs is considered, existing approaches can be further improved to better predict DTIs. In this paper, we present a novel approach, called ODT (one class drug target interaction prediction), for such purpose. One main task of ODT is to discover association patterns between interacting drugs and proteins from the chemical structure of the former and the protein sequence network of the latter. ODT does so in two phases. First, the DTI-network is transformed to a representation by structural properties. Second, it applies a oneclass classification algorithm to build a prediction model based only on known positive interactions. We compared the best AUROC scores of the ODT with several state-of-art approaches on Gold standard data. The prediction accuracy of the ODT is superior in comparison with all the other methods at GPCRs dataset and Ion channels dataset. Performance evaluation of ODT shows that it can be potentially useful. It confirms that predicting potential or missing DTIs based on the known interactions is a promising direction to solve problems related to the use of uncertain and unreliable negative samples and those related to the great demand in computational resources. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Meher, Prabina Kumar; Sahu, Tanmaya Kumar; Banchariya, Anjali; Rao, Atmakuri Ramakrishna
2017-03-24
Insecticide resistance is a major challenge for the control program of insect pests in the fields of crop protection, human and animal health etc. Resistance to different insecticides is conferred by the proteins encoded from certain class of genes of the insects. To distinguish the insecticide resistant proteins from non-resistant proteins, no computational tool is available till date. Thus, development of such a computational tool will be helpful in predicting the insecticide resistant proteins, which can be targeted for developing appropriate insecticides. Five different sets of feature viz., amino acid composition (AAC), di-peptide composition (DPC), pseudo amino acid composition (PAAC), composition-transition-distribution (CTD) and auto-correlation function (ACF) were used to map the protein sequences into numeric feature vectors. The encoded numeric vectors were then used as input in support vector machine (SVM) for classification of insecticide resistant and non-resistant proteins. Higher accuracies were obtained under RBF kernel than that of other kernels. Further, accuracies were observed to be higher for DPC feature set as compared to others. The proposed approach achieved an overall accuracy of >90% in discriminating resistant from non-resistant proteins. Further, the two classes of resistant proteins i.e., detoxification-based and target-based were discriminated from non-resistant proteins with >95% accuracy. Besides, >95% accuracy was also observed for discrimination of proteins involved in detoxification- and target-based resistance mechanisms. The proposed approach not only outperformed Blastp, PSI-Blast and Delta-Blast algorithms, but also achieved >92% accuracy while assessed using an independent dataset of 75 insecticide resistant proteins. This paper presents the first computational approach for discriminating the insecticide resistant proteins from non-resistant proteins. Based on the proposed approach, an online prediction server DIRProt has also been developed for computational prediction of insecticide resistant proteins, which is accessible at http://cabgrid.res.in:8080/dirprot/ . The proposed approach is believed to supplement the efforts needed to develop dynamic insecticides in wet-lab by targeting the insecticide resistant proteins.
LOCALIZER: subcellular localization prediction of both plant and effector proteins in the plant cell
Sperschneider, Jana; Catanzariti, Ann-Maree; DeBoer, Kathleen; Petre, Benjamin; Gardiner, Donald M.; Singh, Karam B.; Dodds, Peter N.; Taylor, Jennifer M.
2017-01-01
Pathogens secrete effector proteins and many operate inside plant cells to enable infection. Some effectors have been found to enter subcellular compartments by mimicking host targeting sequences. Although many computational methods exist to predict plant protein subcellular localization, they perform poorly for effectors. We introduce LOCALIZER for predicting plant and effector protein localization to chloroplasts, mitochondria, and nuclei. LOCALIZER shows greater prediction accuracy for chloroplast and mitochondrial targeting compared to other methods for 652 plant proteins. For 107 eukaryotic effectors, LOCALIZER outperforms other methods and predicts a previously unrecognized chloroplast transit peptide for the ToxA effector, which we show translocates into tobacco chloroplasts. Secretome-wide predictions and confocal microscopy reveal that rust fungi might have evolved multiple effectors that target chloroplasts or nuclei. LOCALIZER is the first method for predicting effector localisation in plants and is a valuable tool for prioritizing effector candidates for functional investigations. LOCALIZER is available at http://localizer.csiro.au/. PMID:28300209
Mollica, Luca; Theret, Isabelle; Antoine, Mathias; Perron-Sierra, Françoise; Charton, Yves; Fourquez, Jean-Marie; Wierzbicki, Michel; Boutin, Jean A; Ferry, Gilles; Decherchi, Sergio; Bottegoni, Giovanni; Ducrot, Pierre; Cavalli, Andrea
2016-08-11
Ligand-target residence time is emerging as a key drug discovery parameter because it can reliably predict drug efficacy in vivo. Experimental approaches to binding and unbinding kinetics are nowadays available, but we still lack reliable computational tools for predicting kinetics and residence time. Most attempts have been based on brute-force molecular dynamics (MD) simulations, which are CPU-demanding and not yet particularly accurate. We recently reported a new scaled-MD-based protocol, which showed potential for residence time prediction in drug discovery. Here, we further challenged our procedure's predictive ability by applying our methodology to a series of glucokinase activators that could be useful for treating type 2 diabetes mellitus. We combined scaled MD with experimental kinetics measurements and X-ray crystallography, promptly checking the protocol's reliability by directly comparing computational predictions and experimental measures. The good agreement highlights the potential of our scaled-MD-based approach as an innovative method for computationally estimating and predicting drug residence times.
Drug-target interaction prediction via class imbalance-aware ensemble learning.
Ezzat, Ali; Wu, Min; Li, Xiao-Li; Kwoh, Chee-Keong
2016-12-22
Multiple computational methods for predicting drug-target interactions have been developed to facilitate the drug discovery process. These methods use available data on known drug-target interactions to train classifiers with the purpose of predicting new undiscovered interactions. However, a key challenge regarding this data that has not yet been addressed by these methods, namely class imbalance, is potentially degrading the prediction performance. Class imbalance can be divided into two sub-problems. Firstly, the number of known interacting drug-target pairs is much smaller than that of non-interacting drug-target pairs. This imbalance ratio between interacting and non-interacting drug-target pairs is referred to as the between-class imbalance. Between-class imbalance degrades prediction performance due to the bias in prediction results towards the majority class (i.e. the non-interacting pairs), leading to more prediction errors in the minority class (i.e. the interacting pairs). Secondly, there are multiple types of drug-target interactions in the data with some types having relatively fewer members (or are less represented) than others. This variation in representation of the different interaction types leads to another kind of imbalance referred to as the within-class imbalance. In within-class imbalance, prediction results are biased towards the better represented interaction types, leading to more prediction errors in the less represented interaction types. We propose an ensemble learning method that incorporates techniques to address the issues of between-class imbalance and within-class imbalance. Experiments show that the proposed method improves results over 4 state-of-the-art methods. In addition, we simulated cases for new drugs and targets to see how our method would perform in predicting their interactions. New drugs and targets are those for which no prior interactions are known. Our method displayed satisfactory prediction performance and was able to predict many of the interactions successfully. Our proposed method has improved the prediction performance over the existing work, thus proving the importance of addressing problems pertaining to class imbalance in the data.
Improving compound-protein interaction prediction by building up highly credible negative samples.
Liu, Hui; Sun, Jianjiang; Guan, Jihong; Zheng, Jie; Zhou, Shuigeng
2015-06-15
Computational prediction of compound-protein interactions (CPIs) is of great importance for drug design and development, as genome-scale experimental validation of CPIs is not only time-consuming but also prohibitively expensive. With the availability of an increasing number of validated interactions, the performance of computational prediction approaches is severely impended by the lack of reliable negative CPI samples. A systematic method of screening reliable negative sample becomes critical to improving the performance of in silico prediction methods. This article aims at building up a set of highly credible negative samples of CPIs via an in silico screening method. As most existing computational models assume that similar compounds are likely to interact with similar target proteins and achieve remarkable performance, it is rational to identify potential negative samples based on the converse negative proposition that the proteins dissimilar to every known/predicted target of a compound are not much likely to be targeted by the compound and vice versa. We integrated various resources, including chemical structures, chemical expression profiles and side effects of compounds, amino acid sequences, protein-protein interaction network and functional annotations of proteins, into a systematic screening framework. We first tested the screened negative samples on six classical classifiers, and all these classifiers achieved remarkably higher performance on our negative samples than on randomly generated negative samples for both human and Caenorhabditis elegans. We then verified the negative samples on three existing prediction models, including bipartite local model, Gaussian kernel profile and Bayesian matrix factorization, and found that the performances of these models are also significantly improved on the screened negative samples. Moreover, we validated the screened negative samples on a drug bioactivity dataset. Finally, we derived two sets of new interactions by training an support vector machine classifier on the positive interactions annotated in DrugBank and our screened negative interactions. The screened negative samples and the predicted interactions provide the research community with a useful resource for identifying new drug targets and a helpful supplement to the current curated compound-protein databases. Supplementary files are available at: http://admis.fudan.edu.cn/negative-cpi/. © The Author 2015. Published by Oxford University Press.
Drug-target interaction prediction from PSSM based evolutionary information.
Mousavian, Zaynab; Khakabimamaghani, Sahand; Kavousi, Kaveh; Masoudi-Nejad, Ali
2016-01-01
The labor-intensive and expensive experimental process of drug-target interaction prediction has motivated many researchers to focus on in silico prediction, which leads to the helpful information in supporting the experimental interaction data. Therefore, they have proposed several computational approaches for discovering new drug-target interactions. Several learning-based methods have been increasingly developed which can be categorized into two main groups: similarity-based and feature-based. In this paper, we firstly use the bi-gram features extracted from the Position Specific Scoring Matrix (PSSM) of proteins in predicting drug-target interactions. Our results demonstrate the high-confidence prediction ability of the Bigram-PSSM model in terms of several performance indicators specifically for enzymes and ion channels. Moreover, we investigate the impact of negative selection strategy on the performance of the prediction, which is not widely taken into account in the other relevant studies. This is important, as the number of non-interacting drug-target pairs are usually extremely large in comparison with the number of interacting ones in existing drug-target interaction data. An interesting observation is that different levels of performance reduction have been attained for four datasets when we change the sampling method from the random sampling to the balanced sampling. Copyright © 2015 Elsevier Inc. All rights reserved.
An eye on reactor and computer control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schryver, J.; Knee, B.
1992-01-01
At ORNL computer software has been developed to make possible an improved eye-gaze measurement technology. Such an inovation could be the basis for advanced eye-gaze systems that may have applications in reactor control, software development, cognitive engineering, evaluation of displays, prediction of mental workloads, and military target recognition.
Ban, Tomohiro; Ohue, Masahito; Akiyama, Yutaka
2018-04-01
The identification of comprehensive drug-target interactions is important in drug discovery. Although numerous computational methods have been developed over the years, a gold standard technique has not been established. Computational ligand docking and structure-based drug design allow researchers to predict the binding affinity between a compound and a target protein, and thus, they are often used to virtually screen compound libraries. In addition, docking techniques have also been applied to the virtual screening of target proteins (inverse docking) to predict target proteins of a drug candidate. Nevertheless, a more accurate docking method is currently required. In this study, we proposed a method in which a predicted ligand-binding site is covered by multiple grids, termed multiple grid arrangement. Notably, multiple grid arrangement facilitates the conformational search for a grid-based ligand docking software and can be applied to the state-of-the-art commercial docking software Glide (Schrödinger, LLC). We validated the proposed method by re-docking with the Astex diverse benchmark dataset and blind binding site situations, which improved the correct prediction rate of the top scoring docking pose from 27.1% to 34.1%; however, only a slight improvement in target prediction accuracy was observed with inverse docking scenarios. These findings highlight the limitations and challenges of current scoring functions and the need for more accurate docking methods. The proposed multiple grid arrangement method was implemented in Glide by modifying a cross-docking script for Glide, xglide.py. The script of our method is freely available online at http://www.bi.cs.titech.ac.jp/mga_glide/. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Systematic review of computational methods for identifying miRNA-mediated RNA-RNA crosstalk.
Li, Yongsheng; Jin, Xiyun; Wang, Zishan; Li, Lili; Chen, Hong; Lin, Xiaoyu; Yi, Song; Zhang, Yunpeng; Xu, Juan
2017-10-25
Posttranscriptional crosstalk and communication between RNAs yield large regulatory competing endogenous RNA (ceRNA) networks via shared microRNAs (miRNAs), as well as miRNA synergistic networks. The ceRNA crosstalk represents a novel layer of gene regulation that controls both physiological and pathological processes such as development and complex diseases. The rapidly expanding catalogue of ceRNA regulation has provided evidence for exploitation as a general model to predict the ceRNAs in silico. In this article, we first reviewed the current progress of RNA-RNA crosstalk in human complex diseases. Then, the widely used computational methods for modeling ceRNA-ceRNA interaction networks are further summarized into five types: two types of global ceRNA regulation prediction methods and three types of context-specific prediction methods, which are based on miRNA-messenger RNA regulation alone, or by integrating heterogeneous data, respectively. To provide guidance in the computational prediction of ceRNA-ceRNA interactions, we finally performed a comparative study of different combinations of miRNA-target methods as well as five types of ceRNA identification methods by using literature-curated ceRNA regulation and gene perturbation. The results revealed that integration of different miRNA-target prediction methods and context-specific miRNA/gene expression profiles increased the performance for identifying ceRNA regulation. Moreover, different computational methods were complementary in identifying ceRNA regulation and captured different functional parts of similar pathways. We believe that the application of these computational techniques provides valuable functional insights into ceRNA regulation and is a crucial step for informing subsequent functional validation studies. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
In silico prediction of novel therapeutic targets using gene-disease association data.
Ferrero, Enrico; Dunham, Ian; Sanseau, Philippe
2017-08-29
Target identification and validation is a pressing challenge in the pharmaceutical industry, with many of the programmes that fail for efficacy reasons showing poor association between the drug target and the disease. Computational prediction of successful targets could have a considerable impact on attrition rates in the drug discovery pipeline by significantly reducing the initial search space. Here, we explore whether gene-disease association data from the Open Targets platform is sufficient to predict therapeutic targets that are actively being pursued by pharmaceutical companies or are already on the market. To test our hypothesis, we train four different classifiers (a random forest, a support vector machine, a neural network and a gradient boosting machine) on partially labelled data and evaluate their performance using nested cross-validation and testing on an independent set. We then select the best performing model and use it to make predictions on more than 15,000 genes. Finally, we validate our predictions by mining the scientific literature for proposed therapeutic targets. We observe that the data types with the best predictive power are animal models showing a disease-relevant phenotype, differential expression in diseased tissue and genetic association with the disease under investigation. On a test set, the neural network classifier achieves over 71% accuracy with an AUC of 0.76 when predicting therapeutic targets in a semi-supervised learning setting. We use this model to gain insights into current and failed programmes and to predict 1431 novel targets, of which a highly significant proportion has been independently proposed in the literature. Our in silico approach shows that data linking genes and diseases is sufficient to predict novel therapeutic targets effectively and confirms that this type of evidence is essential for formulating or strengthening hypotheses in the target discovery process. Ultimately, more rapid and automated target prioritisation holds the potential to reduce both the costs and the development times associated with bringing new medicines to patients.
TargetSpy: a supervised machine learning approach for microRNA target prediction.
Sturm, Martin; Hackenberg, Michael; Langenberger, David; Frishman, Dmitrij
2010-05-28
Virtually all currently available microRNA target site prediction algorithms require the presence of a (conserved) seed match to the 5' end of the microRNA. Recently however, it has been shown that this requirement might be too stringent, leading to a substantial number of missed target sites. We developed TargetSpy, a novel computational approach for predicting target sites regardless of the presence of a seed match. It is based on machine learning and automatic feature selection using a wide spectrum of compositional, structural, and base pairing features covering current biological knowledge. Our model does not rely on evolutionary conservation, which allows the detection of species-specific interactions and makes TargetSpy suitable for analyzing unconserved genomic sequences.In order to allow for an unbiased comparison of TargetSpy to other methods, we classified all algorithms into three groups: I) no seed match requirement, II) seed match requirement, and III) conserved seed match requirement. TargetSpy predictions for classes II and III are generated by appropriate postfiltering. On a human dataset revealing fold-change in protein production for five selected microRNAs our method shows superior performance in all classes. In Drosophila melanogaster not only our class II and III predictions are on par with other algorithms, but notably the class I (no-seed) predictions are just marginally less accurate. We estimate that TargetSpy predicts between 26 and 112 functional target sites without a seed match per microRNA that are missed by all other currently available algorithms. Only a few algorithms can predict target sites without demanding a seed match and TargetSpy demonstrates a substantial improvement in prediction accuracy in that class. Furthermore, when conservation and the presence of a seed match are required, the performance is comparable with state-of-the-art algorithms. TargetSpy was trained on mouse and performs well in human and drosophila, suggesting that it may be applicable to a broad range of species. Moreover, we have demonstrated that the application of machine learning techniques in combination with upcoming deep sequencing data results in a powerful microRNA target site prediction tool http://www.targetspy.org.
TargetSpy: a supervised machine learning approach for microRNA target prediction
2010-01-01
Background Virtually all currently available microRNA target site prediction algorithms require the presence of a (conserved) seed match to the 5' end of the microRNA. Recently however, it has been shown that this requirement might be too stringent, leading to a substantial number of missed target sites. Results We developed TargetSpy, a novel computational approach for predicting target sites regardless of the presence of a seed match. It is based on machine learning and automatic feature selection using a wide spectrum of compositional, structural, and base pairing features covering current biological knowledge. Our model does not rely on evolutionary conservation, which allows the detection of species-specific interactions and makes TargetSpy suitable for analyzing unconserved genomic sequences. In order to allow for an unbiased comparison of TargetSpy to other methods, we classified all algorithms into three groups: I) no seed match requirement, II) seed match requirement, and III) conserved seed match requirement. TargetSpy predictions for classes II and III are generated by appropriate postfiltering. On a human dataset revealing fold-change in protein production for five selected microRNAs our method shows superior performance in all classes. In Drosophila melanogaster not only our class II and III predictions are on par with other algorithms, but notably the class I (no-seed) predictions are just marginally less accurate. We estimate that TargetSpy predicts between 26 and 112 functional target sites without a seed match per microRNA that are missed by all other currently available algorithms. Conclusion Only a few algorithms can predict target sites without demanding a seed match and TargetSpy demonstrates a substantial improvement in prediction accuracy in that class. Furthermore, when conservation and the presence of a seed match are required, the performance is comparable with state-of-the-art algorithms. TargetSpy was trained on mouse and performs well in human and drosophila, suggesting that it may be applicable to a broad range of species. Moreover, we have demonstrated that the application of machine learning techniques in combination with upcoming deep sequencing data results in a powerful microRNA target site prediction tool http://www.targetspy.org. PMID:20509939
Schlecht, Ulrich; Erb, Ionas; Demougin, Philippe; Robine, Nicolas; Borde, Valérie; van Nimwegen, Erik; Nicolas, Alain
2008-01-01
The autonomously replicating sequence binding factor 1 (Abf1) was initially identified as an essential DNA replication factor and later shown to be a component of the regulatory network controlling mitotic and meiotic cell cycle progression in budding yeast. The protein is thought to exert its functions via specific interaction with its target site as part of distinct protein complexes, but its roles during mitotic growth and meiotic development are only partially understood. Here, we report a comprehensive approach aiming at the identification of direct Abf1-target genes expressed during fermentation, respiration, and sporulation. Computational prediction of the protein's target sites was integrated with a genome-wide DNA binding assay in growing and sporulating cells. The resulting data were combined with the output of expression profiling studies using wild-type versus temperature-sensitive alleles. This work identified 434 protein-coding loci as being transcriptionally dependent on Abf1. More than 60% of their putative promoter regions contained a computationally predicted Abf1 binding site and/or were bound by Abf1 in vivo, identifying them as direct targets. The present study revealed numerous loci previously unknown to be under Abf1 control, and it yielded evidence for the protein's variable DNA binding pattern during mitotic growth and meiotic development. PMID:18305101
Predicting Pilot Error in Nextgen: Pilot Performance Modeling and Validation Efforts
NASA Technical Reports Server (NTRS)
Wickens, Christopher; Sebok, Angelia; Gore, Brian; Hooey, Becky
2012-01-01
We review 25 articles presenting 5 general classes of computational models to predict pilot error. This more targeted review is placed within the context of the broader review of computational models of pilot cognition and performance, including such aspects as models of situation awareness or pilot-automation interaction. Particular emphasis is placed on the degree of validation of such models against empirical pilot data, and the relevance of the modeling and validation efforts to Next Gen technology and procedures.
Motor prediction in Brain-Computer Interfaces for controlling mobile robots.
Geng, Tao; Gan, John Q
2008-01-01
EEG-based Brain-Computer Interface (BCI) can be regarded as a new channel for motor control except that it does not involve muscles. Normal neuromuscular motor control has two fundamental components: (1) to control the body, and (2) to predict the consequences of the control command, which is called motor prediction. In this study, after training with a specially designed BCI paradigm based on motor imagery, two subjects learnt to predict the time course of some features of the EEG signals. It is shown that, with this newly-obtained motor prediction skill, subjects can use motor imagery of feet to directly control a mobile robot to avoid obstacles and reach a small target in a time-critical scenario.
Importance of ligand reorganization free energy in protein-ligand binding-affinity prediction.
Yang, Chao-Yie; Sun, Haiying; Chen, Jianyong; Nikolovska-Coleska, Zaneta; Wang, Shaomeng
2009-09-30
Accurate prediction of the binding affinities of small-molecule ligands to their biological targets is fundamental for structure-based drug design but remains a very challenging task. In this paper, we have performed computational studies to predict the binding models of 31 small-molecule Smac (the second mitochondria-derived activator of caspase) mimetics to their target, the XIAP (X-linked inhibitor of apoptosis) protein, and their binding affinities. Our results showed that computational docking was able to reliably predict the binding models, as confirmed by experimentally determined crystal structures of some Smac mimetics complexed with XIAP. However, all the computational methods we have tested, including an empirical scoring function, two knowledge-based scoring functions, and MM-GBSA (molecular mechanics and generalized Born surface area), yield poor to modest prediction for binding affinities. The linear correlation coefficient (r(2)) value between the predicted affinities and the experimentally determined affinities was found to be between 0.21 and 0.36. Inclusion of ensemble protein-ligand conformations obtained from molecular dynamic simulations did not significantly improve the prediction. However, major improvement was achieved when the free-energy change for ligands between their free- and bound-states, or "ligand-reorganization free energy", was included in the MM-GBSA calculation, and the r(2) value increased from 0.36 to 0.66. The prediction was validated using 10 additional Smac mimetics designed and evaluated by an independent group. This study demonstrates that ligand reorganization free energy plays an important role in the overall binding free energy between Smac mimetics and XIAP. This term should be evaluated for other ligand-protein systems and included in the development of new scoring functions. To our best knowledge, this is the first computational study to demonstrate the importance of ligand reorganization free energy for the prediction of protein-ligand binding free energy.
A Systematic Investigation of Computation Models for Predicting Adverse Drug Reactions (ADRs)
Kuang, Qifan; Wang, MinQi; Li, Rong; Dong, YongCheng; Li, Yizhou; Li, Menglong
2014-01-01
Background Early and accurate identification of adverse drug reactions (ADRs) is critically important for drug development and clinical safety. Computer-aided prediction of ADRs has attracted increasing attention in recent years, and many computational models have been proposed. However, because of the lack of systematic analysis and comparison of the different computational models, there remain limitations in designing more effective algorithms and selecting more useful features. There is therefore an urgent need to review and analyze previous computation models to obtain general conclusions that can provide useful guidance to construct more effective computational models to predict ADRs. Principal Findings In the current study, the main work is to compare and analyze the performance of existing computational methods to predict ADRs, by implementing and evaluating additional algorithms that have been earlier used for predicting drug targets. Our results indicated that topological and intrinsic features were complementary to an extent and the Jaccard coefficient had an important and general effect on the prediction of drug-ADR associations. By comparing the structure of each algorithm, final formulas of these algorithms were all converted to linear model in form, based on this finding we propose a new algorithm called the general weighted profile method and it yielded the best overall performance among the algorithms investigated in this paper. Conclusion Several meaningful conclusions and useful findings regarding the prediction of ADRs are provided for selecting optimal features and algorithms. PMID:25180585
Predicting bioactive conformations and binding modes of macrocycles
NASA Astrophysics Data System (ADS)
Anighoro, Andrew; de la Vega de León, Antonio; Bajorath, Jürgen
2016-10-01
Macrocyclic compounds experience increasing interest in drug discovery. It is often thought that these large and chemically complex molecules provide promising candidates to address difficult targets and interfere with protein-protein interactions. From a computational viewpoint, these molecules are difficult to treat. For example, flexible docking of macrocyclic compounds is hindered by the limited ability of current docking approaches to optimize conformations of extended ring systems for pose prediction. Herein, we report predictions of bioactive conformations of macrocycles using conformational search and binding modes using docking. Conformational ensembles generated using specialized search technique of about 70 % of the tested macrocycles contained accurate bioactive conformations. However, these conformations were difficult to identify on the basis of conformational energies. Moreover, docking calculations with limited ligand flexibility starting from individual low energy conformations rarely yielded highly accurate binding modes. In about 40 % of the test cases, binding modes were approximated with reasonable accuracy. However, when conformational ensembles were subjected to rigid body docking, an increase in meaningful binding mode predictions to more than 50 % of the test cases was observed. Electrostatic effects did not contribute to these predictions in a positive or negative manner. Rather, achieving shape complementarity at macrocycle-target interfaces was a decisive factor. In summary, a combined computational protocol using pre-computed conformational ensembles of macrocycles as a starting point for docking shows promise in modeling binding modes of macrocyclic compounds.
Myers, E W; Mount, D W
1986-01-01
We describe a program which may be used to find approximate matches to a short predefined DNA sequence in a larger target DNA sequence. The program predicts the usefulness of specific DNA probes and sequencing primers and finds nearly identical sequences that might represent the same regulatory signal. The program is written in the C programming language and will run on virtually any computer system with a C compiler, such as the IBM/PC and other computers running under the MS/DOS and UNIX operating systems. The program has been integrated into an existing software package for the IBM personal computer (see article by Mount and Conrad, this volume). Some examples of its use are given. PMID:3753785
Deep brain stimulation abolishes slowing of reactions to unlikely stimuli.
Antoniades, Chrystalina A; Bogacz, Rafal; Kennard, Christopher; FitzGerald, James J; Aziz, Tipu; Green, Alexander L
2014-08-13
The cortico-basal-ganglia circuit plays a critical role in decision making on the basis of probabilistic information. Computational models have suggested how this circuit could compute the probabilities of actions being appropriate according to Bayes' theorem. These models predict that the subthalamic nucleus (STN) provides feedback that normalizes the neural representation of probabilities, such that if the probability of one action increases, the probabilities of all other available actions decrease. Here we report the results of an experiment testing a prediction of this theory that disrupting information processing in the STN with deep brain stimulation should abolish the normalization of the neural representation of probabilities. In our experiment, we asked patients with Parkinson's disease to saccade to a target that could appear in one of two locations, and the probability of the target appearing in each location was periodically changed. When the stimulator was switched off, the target probability affected the reaction times (RT) of patients in a similar way to healthy participants. Specifically, the RTs were shorter for more probable targets and, importantly, they were longer for the unlikely targets. When the stimulator was switched on, the patients were still faster for more probable targets, but critically they did not increase RTs as the target was becoming less likely. This pattern of results is consistent with the prediction of the model that the patients on DBS no longer normalized their neural representation of prior probabilities. We discuss alternative explanations for the data in the context of other published results. Copyright © 2014 the authors 0270-6474/14/3410844-09$15.00/0.
Predicting Drug-Target Interactions With Multi-Information Fusion.
Peng, Lihong; Liao, Bo; Zhu, Wen; Li, Zejun; Li, Keqin
2017-03-01
Identifying potential associations between drugs and targets is a critical prerequisite for modern drug discovery and repurposing. However, predicting these associations is difficult because of the limitations of existing computational methods. Most models only consider chemical structures and protein sequences, and other models are oversimplified. Moreover, datasets used for analysis contain only true-positive interactions, and experimentally validated negative samples are unavailable. To overcome these limitations, we developed a semi-supervised based learning framework called NormMulInf through collaborative filtering theory by using labeled and unlabeled interaction information. The proposed method initially determines similarity measures, such as similarities among samples and local correlations among the labels of the samples, by integrating biological information. The similarity information is then integrated into a robust principal component analysis model, which is solved using augmented Lagrange multipliers. Experimental results on four classes of drug-target interaction networks suggest that the proposed approach can accurately classify and predict drug-target interactions. Part of the predicted interactions are reported in public databases. The proposed method can also predict possible targets for new drugs and can be used to determine whether atropine may interact with alpha1B- and beta1- adrenergic receptors. Furthermore, the developed technique identifies potential drugs for new targets and can be used to assess whether olanzapine and propiomazine may target 5HT2B. Finally, the proposed method can potentially address limitations on studies of multitarget drugs and multidrug targets.
Prediction of Drug-Target Interactions and Drug Repositioning via Network-Based Inference
Jiang, Jing; Lu, Weiqiang; Li, Weihua; Liu, Guixia; Zhou, Weixing; Huang, Jin; Tang, Yun
2012-01-01
Drug-target interaction (DTI) is the basis of drug discovery and design. It is time consuming and costly to determine DTI experimentally. Hence, it is necessary to develop computational methods for the prediction of potential DTI. Based on complex network theory, three supervised inference methods were developed here to predict DTI and used for drug repositioning, namely drug-based similarity inference (DBSI), target-based similarity inference (TBSI) and network-based inference (NBI). Among them, NBI performed best on four benchmark data sets. Then a drug-target network was created with NBI based on 12,483 FDA-approved and experimental drug-target binary links, and some new DTIs were further predicted. In vitro assays confirmed that five old drugs, namely montelukast, diclofenac, simvastatin, ketoconazole, and itraconazole, showed polypharmacological features on estrogen receptors or dipeptidyl peptidase-IV with half maximal inhibitory or effective concentration ranged from 0.2 to 10 µM. Moreover, simvastatin and ketoconazole showed potent antiproliferative activities on human MDA-MB-231 breast cancer cell line in MTT assays. The results indicated that these methods could be powerful tools in prediction of DTIs and drug repositioning. PMID:22589709
Freedman, Holly; Winter, Philip; Tuszynski, Jack; Tyrrell, D Lorne; Houghton, Michael
2018-06-22
In the development of antiviral drugs that target viral RNA-dependent RNA polymerases, off-target toxicity caused by the inhibition of the human mitochondrial RNA polymerase (POLRMT) is a major liability. Therefore, it is essential that all new ribonucleoside analogue drugs be accurately screened for POLRMT inhibition. A computational tool that can accurately predict NTP binding to POLRMT could assist in evaluating any potential toxicity and in designing possible salvaging strategies. Using the available crystal structure of POLRMT bound to an RNA transcript, here we created a model of POLRMT with an NTP molecule bound in the active site. Furthermore, we implemented a computational screening procedure that determines the relative binding free energy of an NTP analogue to POLRMT by free energy perturbation (FEP), i.e. a simulation in which the natural NTP molecule is slowly transformed into the analogue and back. In each direction, the transformation was performed over 40 ns of simulation on our IBM Blue Gene Q supercomputer. This procedure was validated across a panel of drugs for which experimental dissociation constants were available, showing that NTP relative binding free energies could be predicted to within 0.97 kcal/mol of the experimental values on average. These results demonstrate for the first time that free-energy simulation can be a useful tool for predicting binding affinities of NTP analogues to a polymerase. We expect that our model, together with similar models of viral polymerases, will be very useful in the screening and future design of NTP inhibitors of viral polymerases that have no mitochondrial toxicity. © 2018 Freedman et al.
PatchSurfers: Two methods for local molecular property-based binding ligand prediction.
Shin, Woong-Hee; Bures, Mark Gregory; Kihara, Daisuke
2016-01-15
Protein function prediction is an active area of research in computational biology. Function prediction can help biologists make hypotheses for characterization of genes and help interpret biological assays, and thus is a productive area for collaboration between experimental and computational biologists. Among various function prediction methods, predicting binding ligand molecules for a target protein is an important class because ligand binding events for a protein are usually closely intertwined with the proteins' biological function, and also because predicted binding ligands can often be directly tested by biochemical assays. Binding ligand prediction methods can be classified into two types: those which are based on protein-protein (or pocket-pocket) comparison, and those that compare a target pocket directly to ligands. Recently, our group proposed two computational binding ligand prediction methods, Patch-Surfer, which is a pocket-pocket comparison method, and PL-PatchSurfer, which compares a pocket to ligand molecules. The two programs apply surface patch-based descriptions to calculate similarity or complementarity between molecules. A surface patch is characterized by physicochemical properties such as shape, hydrophobicity, and electrostatic potentials. These properties on the surface are represented using three-dimensional Zernike descriptors (3DZD), which are based on a series expansion of a 3 dimensional function. Utilizing 3DZD for describing the physicochemical properties has two main advantages: (1) rotational invariance and (2) fast comparison. Here, we introduce Patch-Surfer and PL-PatchSurfer with an emphasis on PL-PatchSurfer, which is more recently developed. Illustrative examples of PL-PatchSurfer performance on binding ligand prediction as well as virtual drug screening are also provided. Copyright © 2015 Elsevier Inc. All rights reserved.
Ogorzalek, Tadeusz L; Hura, Greg L; Belsom, Adam; Burnett, Kathryn H; Kryshtafovych, Andriy; Tainer, John A; Rappsilber, Juri; Tsutakawa, Susan E; Fidelis, Krzysztof
2018-03-01
Experimental data offers empowering constraints for structure prediction. These constraints can be used to filter equivalently scored models or more powerfully within optimization functions toward prediction. In CASP12, Small Angle X-ray Scattering (SAXS) and Cross-Linking Mass Spectrometry (CLMS) data, measured on an exemplary set of novel fold targets, were provided to the CASP community of protein structure predictors. As solution-based techniques, SAXS and CLMS can efficiently measure states of the full-length sequence in its native solution conformation and assembly. However, this experimental data did not substantially improve prediction accuracy judged by fits to crystallographic models. One issue, beyond intrinsic limitations of the algorithms, was a disconnect between crystal structures and solution-based measurements. Our analyses show that many targets had substantial percentages of disordered regions (up to 40%) or were multimeric or both. Thus, solution measurements of flexibility and assembly support variations that may confound prediction algorithms trained on crystallographic data and expecting globular fully-folded monomeric proteins. Here, we consider the CLMS and SAXS data collected, the information in these solution measurements, and the challenges in incorporating them into computational prediction. As improvement opportunities were only partly realized in CASP12, we provide guidance on how data from the full-length biological unit and the solution state can better aid prediction of the folded monomer or subunit. We furthermore describe strategic integrations of solution measurements with computational prediction programs with the aim of substantially improving foundational knowledge and the accuracy of computational algorithms for biologically-relevant structure predictions for proteins in solution. © 2018 Wiley Periodicals, Inc.
New support vector machine-based method for microRNA target prediction.
Li, L; Gao, Q; Mao, X; Cao, Y
2014-06-09
MicroRNA (miRNA) plays important roles in cell differentiation, proliferation, growth, mobility, and apoptosis. An accurate list of precise target genes is necessary in order to fully understand the importance of miRNAs in animal development and disease. Several computational methods have been proposed for miRNA target-gene identification. However, these methods still have limitations with respect to their sensitivity and accuracy. Thus, we developed a new miRNA target-prediction method based on the support vector machine (SVM) model. The model supplies information of two binding sites (primary and secondary) for a radial basis function kernel as a similarity measure for SVM features. The information is categorized based on structural, thermodynamic, and sequence conservation. Using high-confidence datasets selected from public miRNA target databases, we obtained a human miRNA target SVM classifier model with high performance and provided an efficient tool for human miRNA target gene identification. Experiments have shown that our method is a reliable tool for miRNA target-gene prediction, and a successful application of an SVM classifier. Compared with other methods, the method proposed here improves the sensitivity and accuracy of miRNA prediction. Its performance can be further improved by providing more training examples.
Draft versus finished sequence data for DNA and protein diagnostic signature development
Gardner, Shea N.; Lam, Marisa W.; Smith, Jason R.; Torres, Clinton L.; Slezak, Tom R.
2005-01-01
Sequencing pathogen genomes is costly, demanding careful allocation of limited sequencing resources. We built a computational Sequencing Analysis Pipeline (SAP) to guide decisions regarding the amount of genomic sequencing necessary to develop high-quality diagnostic DNA and protein signatures. SAP uses simulations to estimate the number of target genomes and close phylogenetic relatives (near neighbors or NNs) to sequence. We use SAP to assess whether draft data are sufficient or finished sequencing is required using Marburg and variola virus sequences. Simulations indicate that intermediate to high-quality draft with error rates of 10−3–10−5 (∼8× coverage) of target organisms is suitable for DNA signature prediction. Low-quality draft with error rates of ∼1% (3× to 6× coverage) of target isolates is inadequate for DNA signature prediction, although low-quality draft of NNs is sufficient, as long as the target genomes are of high quality. For protein signature prediction, sequencing errors in target genomes substantially reduce the detection of amino acid sequence conservation, even if the draft is of high quality. In summary, high-quality draft of target and low-quality draft of NNs appears to be a cost-effective investment for DNA signature prediction, but may lead to underestimation of predicted protein signatures. PMID:16243783
Shi, Jian-Yu; Yiu, Siu-Ming; Li, Yiming; Leung, Henry C M; Chin, Francis Y L
2015-07-15
Predicting drug-target interaction using computational approaches is an important step in drug discovery and repositioning. To predict whether there will be an interaction between a drug and a target, most existing methods identify similar drugs and targets in the database. The prediction is then made based on the known interactions of these drugs and targets. This idea is promising. However, there are two shortcomings that have not yet been addressed appropriately. Firstly, most of the methods only use 2D chemical structures and protein sequences to measure the similarity of drugs and targets respectively. However, this information may not fully capture the characteristics determining whether a drug will interact with a target. Secondly, there are very few known interactions, i.e. many interactions are "missing" in the database. Existing approaches are biased towards known interactions and have no good solutions to handle possibly missing interactions which affect the accuracy of the prediction. In this paper, we enhance the similarity measures to include non-structural (and non-sequence-based) information and introduce the concept of a "super-target" to handle the problem of possibly missing interactions. Based on evaluations on real data, we show that our similarity measure is better than the existing measures and our approach is able to achieve higher accuracy than the two best existing algorithms, WNN-GIP and KBMF2K. Our approach is available at http://web.hku.hk/∼liym1018/projects/drug/drug.html or http://www.bmlnwpu.org/us/tools/PredictingDTI_S2/METHODS.html. Copyright © 2015 Elsevier Inc. All rights reserved.
Cheng, Feixiong; Li, Weihua; Wu, Zengrui; Wang, Xichuan; Zhang, Chen; Li, Jie; Liu, Guixia; Tang, Yun
2013-04-22
Prediction of polypharmacological profiles of drugs enables us to investigate drug side effects and further find their new indications, i.e. drug repositioning, which could reduce the costs while increase the productivity of drug discovery. Here we describe a new computational framework to predict polypharmacological profiles of drugs by the integration of chemical, side effect, and therapeutic space. On the basis of our previous developed drug side effects database, named MetaADEDB, a drug side effect similarity inference (DSESI) method was developed for drug-target interaction (DTI) prediction on a known DTI network connecting 621 approved drugs and 893 target proteins. The area under the receiver operating characteristic curve was 0.882 ± 0.011 averaged from 100 simulated tests of 10-fold cross-validation for the DSESI method, which is comparative with drug structural similarity inference and drug therapeutic similarity inference methods. Seven new predicted candidate target proteins for seven approved drugs were confirmed by published experiments, with the successful hit rate more than 15.9%. Moreover, network visualization of drug-target interactions and off-target side effect associations provide new mechanism-of-action of three approved antipsychotic drugs in a case study. The results indicated that the proposed methods could be helpful for prediction of polypharmacological profiles of drugs.
Roubelakis, Maria G; Zotos, Pantelis; Papachristoudis, Georgios; Michalopoulos, Ioannis; Pappa, Kalliopi I; Anagnou, Nicholas P; Kossida, Sophia
2009-01-01
Background microRNAs (miRNAs) are single-stranded RNA molecules of about 20–23 nucleotides length found in a wide variety of organisms. miRNAs regulate gene expression, by interacting with target mRNAs at specific sites in order to induce cleavage of the message or inhibit translation. Predicting or verifying mRNA targets of specific miRNAs is a difficult process of great importance. Results GOmir is a novel stand-alone application consisting of two separate tools: JTarget and TAGGO. JTarget integrates miRNA target prediction and functional analysis by combining the predicted target genes from TargetScan, miRanda, RNAhybrid and PicTar computational tools as well as the experimentally supported targets from TarBase and also providing a full gene description and functional analysis for each target gene. On the other hand, TAGGO application is designed to automatically group gene ontology annotations, taking advantage of the Gene Ontology (GO), in order to extract the main attributes of sets of proteins. GOmir represents a new tool incorporating two separate Java applications integrated into one stand-alone Java application. Conclusion GOmir (by using up to five different databases) introduces miRNA predicted targets accompanied by (a) full gene description, (b) functional analysis and (c) detailed gene ontology clustering. Additionally, a reverse search initiated by a potential target can also be conducted. GOmir can freely be downloaded BRFAA. PMID:19534746
Roubelakis, Maria G; Zotos, Pantelis; Papachristoudis, Georgios; Michalopoulos, Ioannis; Pappa, Kalliopi I; Anagnou, Nicholas P; Kossida, Sophia
2009-06-16
microRNAs (miRNAs) are single-stranded RNA molecules of about 20-23 nucleotides length found in a wide variety of organisms. miRNAs regulate gene expression, by interacting with target mRNAs at specific sites in order to induce cleavage of the message or inhibit translation. Predicting or verifying mRNA targets of specific miRNAs is a difficult process of great importance. GOmir is a novel stand-alone application consisting of two separate tools: JTarget and TAGGO. JTarget integrates miRNA target prediction and functional analysis by combining the predicted target genes from TargetScan, miRanda, RNAhybrid and PicTar computational tools as well as the experimentally supported targets from TarBase and also providing a full gene description and functional analysis for each target gene. On the other hand, TAGGO application is designed to automatically group gene ontology annotations, taking advantage of the Gene Ontology (GO), in order to extract the main attributes of sets of proteins. GOmir represents a new tool incorporating two separate Java applications integrated into one stand-alone Java application. GOmir (by using up to five different databases) introduces miRNA predicted targets accompanied by (a) full gene description, (b) functional analysis and (c) detailed gene ontology clustering. Additionally, a reverse search initiated by a potential target can also be conducted. GOmir can freely be downloaded BRFAA.
Li, Qian; Li, Xudong; Li, Canghai; Chen, Lirong; Song, Jun; Tang, Yalin; Xu, Xiaojie
2011-03-22
Traditional virtual screening method pays more attention on predicted binding affinity between drug molecule and target related to a certain disease instead of phenotypic data of drug molecule against disease system, as is often less effective on discovery of the drug which is used to treat many types of complex diseases. Virtual screening against a complex disease by general network estimation has become feasible with the development of network biology and system biology. More effective methods of computational estimation for the whole efficacy of a compound in a complex disease system are needed, given the distinct weightiness of the different target in a biological process and the standpoint that partial inhibition of several targets can be more efficient than the complete inhibition of a single target. We developed a novel approach by integrating the affinity predictions from multi-target docking studies with biological network efficiency analysis to estimate the anticoagulant activities of compounds. From results of network efficiency calculation for human clotting cascade, factor Xa and thrombin were identified as the two most fragile enzymes, while the catalytic reaction mediated by complex IXa:VIIIa and the formation of the complex VIIIa:IXa were recognized as the two most fragile biological matter in the human clotting cascade system. Furthermore, the method which combined network efficiency with molecular docking scores was applied to estimate the anticoagulant activities of a serial of argatroban intermediates and eight natural products respectively. The better correlation (r = 0.671) between the experimental data and the decrease of the network deficiency suggests that the approach could be a promising computational systems biology tool to aid identification of anticoagulant activities of compounds in drug discovery. This article proposes a network-based multi-target computational estimation method for anticoagulant activities of compounds by combining network efficiency analysis with scoring function from molecular docking.
Li, Canghai; Chen, Lirong; Song, Jun; Tang, Yalin; Xu, Xiaojie
2011-01-01
Background Traditional virtual screening method pays more attention on predicted binding affinity between drug molecule and target related to a certain disease instead of phenotypic data of drug molecule against disease system, as is often less effective on discovery of the drug which is used to treat many types of complex diseases. Virtual screening against a complex disease by general network estimation has become feasible with the development of network biology and system biology. More effective methods of computational estimation for the whole efficacy of a compound in a complex disease system are needed, given the distinct weightiness of the different target in a biological process and the standpoint that partial inhibition of several targets can be more efficient than the complete inhibition of a single target. Methodology We developed a novel approach by integrating the affinity predictions from multi-target docking studies with biological network efficiency analysis to estimate the anticoagulant activities of compounds. From results of network efficiency calculation for human clotting cascade, factor Xa and thrombin were identified as the two most fragile enzymes, while the catalytic reaction mediated by complex IXa:VIIIa and the formation of the complex VIIIa:IXa were recognized as the two most fragile biological matter in the human clotting cascade system. Furthermore, the method which combined network efficiency with molecular docking scores was applied to estimate the anticoagulant activities of a serial of argatroban intermediates and eight natural products respectively. The better correlation (r = 0.671) between the experimental data and the decrease of the network deficiency suggests that the approach could be a promising computational systems biology tool to aid identification of anticoagulant activities of compounds in drug discovery. Conclusions This article proposes a network-based multi-target computational estimation method for anticoagulant activities of compounds by combining network efficiency analysis with scoring function from molecular docking. PMID:21445339
ceRNAs in plants: computational approaches and associated challenges for target mimic research.
Paschoal, Alexandre Rossi; Lozada-Chávez, Irma; Domingues, Douglas Silva; Stadler, Peter F
2017-05-30
The competing endogenous RNA hypothesis has gained increasing attention as a potential global regulatory mechanism of microRNAs (miRNAs), and as a powerful tool to predict the function of many noncoding RNAs, including miRNAs themselves. Most studies have been focused on animals, although target mimic (TMs) discovery as well as important computational and experimental advances has been developed in plants over the past decade. Thus, our contribution summarizes recent progresses in computational approaches for research of miRNA:TM interactions. We divided this article in three main contributions. First, a general overview of research on TMs in plants is presented with practical descriptions of the available literature, tools, data, databases and computational reports. Second, we describe a common protocol for the computational and experimental analyses of TM. Third, we provide a bioinformatics approach for the prediction of TM motifs potentially cross-targeting both members within the same or from different miRNA families, based on the identification of consensus miRNA-binding sites from known TMs across sequenced genomes, transcriptomes and known miRNAs. This computational approach is promising because, in contrast to animals, miRNA families in plants are large with identical or similar members, several of which are also highly conserved. From the three consensus TM motifs found with our approach: MIM166, MIM171 and MIM159/319, the last one has found strong support on the recent experimental work by Reichel and Millar [Specificity of plant microRNA TMs: cross-targeting of mir159 and mir319. J Plant Physiol 2015;180:45-8]. Finally, we stress the discussion on the major computational and associated experimental challenges that have to be faced in future ceRNA studies. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Theory of Radar Target Discrimination
1991-02-01
which a capability for target or system identification could be put to good use: air traffic control , border patrol, security and surveillance...different targets from each other, there would be big advantages in air safety. Airport traffic controllers have made serious errors from their...in a way that we can neither predict nor control . Of course, any data function d(t) which can be recorded for computer processing will be digitized and
In silico pharmacology for drug discovery: applications to targets and beyond
Ekins, S; Mestres, J; Testa, B
2007-01-01
Computational (in silico) methods have been developed and widely applied to pharmacology hypothesis development and testing. These in silico methods include databases, quantitative structure-activity relationships, similarity searching, pharmacophores, homology models and other molecular modeling, machine learning, data mining, network analysis tools and data analysis tools that use a computer. Such methods have seen frequent use in the discovery and optimization of novel molecules with affinity to a target, the clarification of absorption, distribution, metabolism, excretion and toxicity properties as well as physicochemical characterization. The first part of this review discussed the methods that have been used for virtual ligand and target-based screening and profiling to predict biological activity. The aim of this second part of the review is to illustrate some of the varied applications of in silico methods for pharmacology in terms of the targets addressed. We will also discuss some of the advantages and disadvantages of in silico methods with respect to in vitro and in vivo methods for pharmacology research. Our conclusion is that the in silico pharmacology paradigm is ongoing and presents a rich array of opportunities that will assist in expediating the discovery of new targets, and ultimately lead to compounds with predicted biological activity for these novel targets. PMID:17549046
The serial nature of the masked onset priming effect revisited.
Mousikou, Petroula; Coltheart, Max
2014-01-01
Reading aloud is faster when target words/nonwords are preceded by masked prime words/nonwords that share their first sound with the target (e.g., save-SINK) compared to when primes and targets are unrelated to each other (e.g., farm-SINK). This empirical phenomenon is the masked onset priming effect (MOPE) and is known to be due to serial left-to-right processing of the prime by a sublexical reading mechanism. However, the literature in this domain lacks a critical experiment. It is possible that when primes are real words their orthographic/phonological representations are activated in parallel and holistically during prime presentation, so any phoneme overlap between primes and targets (and not just initial-phoneme overlap) could facilitate target reading aloud. This is the prediction made by the only computational models of reading aloud that are able to simulate the MOPE, namely the DRC1.2.1, CDP+, and CDP++ models. We tested this prediction in the present study and found that initial-phoneme overlap (blip-BEST), but not end-phoneme overlap (flat-BEST), facilitated target reading aloud compared to no phoneme overlap (junk-BEST). These results provide support for a reading mechanism that operates serially and from left to right, yet are inconsistent with all existing computational models of single-word reading aloud.
Improving scanner wafer alignment performance by target optimization
NASA Astrophysics Data System (ADS)
Leray, Philippe; Jehoul, Christiane; Socha, Robert; Menchtchikov, Boris; Raghunathan, Sudhar; Kent, Eric; Schoonewelle, Hielke; Tinnemans, Patrick; Tuffy, Paul; Belen, Jun; Wise, Rich
2016-03-01
In the process nodes of 10nm and below, the patterning complexity along with the processing and materials required has resulted in a need to optimize alignment targets in order to achieve the required precision, accuracy and throughput performance. Recent industry publications on the metrology target optimization process have shown a move from the expensive and time consuming empirical methodologies, towards a faster computational approach. ASML's Design for Control (D4C) application, which is currently used to optimize YieldStar diffraction based overlay (DBO) metrology targets, has been extended to support the optimization of scanner wafer alignment targets. This allows the necessary process information and design methodology, used for DBO target designs, to be leveraged for the optimization of alignment targets. In this paper, we show how we applied this computational approach to wafer alignment target design. We verify the correlation between predictions and measurements for the key alignment performance metrics and finally show the potential alignment and overlay performance improvements that an optimized alignment target could achieve.
In Silico Analysis of Epitope-Based Vaccine Candidates against Hepatitis B Virus Polymerase Protein
Zheng, Juzeng; Lin, Xianfan; Wang, Xiuyan; Zheng, Liyu; Lan, Songsong; Jin, Sisi; Ou, Zhanfan; Wu, Jinming
2017-01-01
Hepatitis B virus (HBV) infection has persisted as a major public health problem due to the lack of an effective treatment for those chronically infected. Therapeutic vaccination holds promise, and targeting HBV polymerase is pivotal for viral eradication. In this research, a computational approach was employed to predict suitable HBV polymerase targeting multi-peptides for vaccine candidate selection. We then performed in-depth computational analysis to evaluate the predicted epitopes’ immunogenicity, conservation, population coverage, and toxicity. Lastly, molecular docking and MHC-peptide complex stabilization assay were utilized to determine the binding energy and affinity of epitopes to the HLA-A0201 molecule. Criteria-based analysis provided four predicted epitopes, RVTGGVFLV, VSIPWTHKV, YMDDVVLGA and HLYSHPIIL. Assay results indicated the lowest binding energy and high affinity to the HLA-A0201 molecule for epitopes VSIPWTHKV and YMDDVVLGA and epitopes RVTGGVFLV and VSIPWTHKV, respectively. Regions 307 to 320 and 377 to 387 were considered to have the highest probability to be involved in B cell epitopes. The T cell and B cell epitopes identified in this study are promising targets for an epitope-focused, peptide-based HBV vaccine, and provide insight into HBV-induced immune response. PMID:28509875
Scalable and responsive event processing in the cloud
Suresh, Visalakshmi; Ezhilchelvan, Paul; Watson, Paul
2013-01-01
Event processing involves continuous evaluation of queries over streams of events. Response-time optimization is traditionally done over a fixed set of nodes and/or by using metrics measured at query-operator levels. Cloud computing makes it easy to acquire and release computing nodes as required. Leveraging this flexibility, we propose a novel, queueing-theory-based approach for meeting specified response-time targets against fluctuating event arrival rates by drawing only the necessary amount of computing resources from a cloud platform. In the proposed approach, the entire processing engine of a distinct query is modelled as an atomic unit for predicting response times. Several such units hosted on a single node are modelled as a multiple class M/G/1 system. These aspects eliminate intrusive, low-level performance measurements at run-time, and also offer portability and scalability. Using model-based predictions, cloud resources are efficiently used to meet response-time targets. The efficacy of the approach is demonstrated through cloud-based experiments. PMID:23230164
Chemical Structural Novelty: On-Targets and Off-Targets
Yera, Emmanuel R.; Cleves, Ann. E.; Jain, Ajay N.
2011-01-01
Drug structures may be quantitatively compared based on 2D topological structural considerations and based on 3D characteristics directly related to binding. A framework for combining multiple similarity computations is presented along with its systematic application to 358 drugs with overlapping pharmacology. Given a new molecule along with a set of molecules sharing some biological effect, a single score based on comparison to the known set is produced, reflecting either 2D similarity, 3D similarity, or their combination. For prediction of primary targets, the benefit of 3D over 2D was relatively small, but for prediction of off-targets, the added benefit was large. In addition to assessing prediction, the relationship between chemical similarity and pharmacological novelty was studied. Drug pairs that shared high 3D similarity but low 2D similarity (i.e. a novel scaffold) were shown to be much more likely to exhibit pharmacologically relevant differences in terms of specific protein target modulation. PMID:21916467
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheehey, P.T.; Faehl, R.J.; Kirkpatrick, R.C.
1997-12-31
Magnetized Target Fusion (MTF) experiments, in which a preheated and magnetized target plasma is hydrodynamically compressed to fusion conditions, present some challenging computational modeling problems. Recently, joint experiments relevant to MTF (Russian acronym MAGO, for Magnitnoye Obzhatiye, or magnetic compression) have been performed by Los Alamos National Laboratory and the All-Russian Scientific Research Institute of Experimental Physics (VNIIEF). Modeling of target plasmas must accurately predict plasma densities, temperatures, fields, and lifetime; dense plasma interactions with wall materials must be characterized. Modeling of magnetically driven imploding solid liners, for compression of target plasmas, must address issues such as Rayleigh-Taylor instability growthmore » in the presence of material strength, and glide plane-liner interactions. Proposed experiments involving liner-on-plasma compressions to fusion conditions will require integrated target plasma and liner calculations. Detailed comparison of the modeling results with experiment will be presented.« less
Towards crystal structure prediction of complex organic compounds – a report on the fifth blind test
Bardwell, David A.; Adjiman, Claire S.; Arnautova, Yelena A.; Bartashevich, Ekaterina; Boerrigter, Stephan X. M.; Braun, Doris E.; Cruz-Cabeza, Aurora J.; Day, Graeme M.; Della Valle, Raffaele G.; Desiraju, Gautam R.; van Eijck, Bouke P.; Facelli, Julio C.; Ferraro, Marta B.; Grillo, Damian; Habgood, Matthew; Hofmann, Detlef W. M.; Hofmann, Fridolin; Jose, K. V. Jovan; Karamertzanis, Panagiotis G.; Kazantsev, Andrei V.; Kendrick, John; Kuleshova, Liudmila N.; Leusen, Frank J. J.; Maleev, Andrey V.; Misquitta, Alston J.; Mohamed, Sharmarke; Needs, Richard J.; Neumann, Marcus A.; Nikylov, Denis; Orendt, Anita M.; Pal, Rumpa; Pantelides, Constantinos C.; Pickard, Chris J.; Price, Louise S.; Price, Sarah L.; Scheraga, Harold A.; van de Streek, Jacco; Thakur, Tejender S.; Tiwari, Siddharth; Venuti, Elisabetta; Zhitkov, Ilia K.
2011-01-01
Following on from the success of the previous crystal structure prediction blind tests (CSP1999, CSP2001, CSP2004 and CSP2007), a fifth such collaborative project (CSP2010) was organized at the Cambridge Crystallographic Data Centre. A range of methodologies was used by the participating groups in order to evaluate the ability of the current computational methods to predict the crystal structures of the six organic molecules chosen as targets for this blind test. The first four targets, two rigid molecules, one semi-flexible molecule and a 1:1 salt, matched the criteria for the targets from CSP2007, while the last two targets belonged to two new challenging categories – a larger, much more flexible molecule and a hydrate with more than one polymorph. Each group submitted three predictions for each target it attempted. There was at least one successful prediction for each target, and two groups were able to successfully predict the structure of the large flexible molecule as their first place submission. The results show that while not as many groups successfully predicted the structures of the three smallest molecules as in CSP2007, there is now evidence that methodologies such as dispersion-corrected density functional theory (DFT-D) are able to reliably do so. The results also highlight the many challenges posed by more complex systems and show that there are still issues to be overcome. PMID:22101543
Ultra wide band 3-D cross section (RCS) holography
NASA Astrophysics Data System (ADS)
Collins, H. D.; Hall, T. E.
1992-07-01
Ultra wide band impulse holography is an exciting new concept for predictive radar cross section (RCS) evaluation employing near-field measurements. Reconstruction of the near-field hologram data maps the target's scattering areas, and uniquely identifies the 'hot spot' locations on the target. In addition, the target and calibration sphere's plane wave angular spectrums are computed (via digital algorithm) and used to generate the target's far-field RCS values in three dimensions for each frequency component in the impulse. Thin and thick targets are defined in terms of their near-field amplitude variations in range. Range gating and computer holographic techniques are applied to correct these variations. Preliminary experimental results on various targets verify the concept of RCS holography. The unique 3-D presentation (i.e., typically containing 524,288 RCS values for a 1024 (times) 512 sampled aperture for every frequency component) illustrates the efficacy of target recognition in terms of its far-field plane wave angular spectrum image. RCS images can then be viewed at different angles for target recognition, etc.
Equilibrium Propagation: Bridging the Gap between Energy-Based Models and Backpropagation
Scellier, Benjamin; Bengio, Yoshua
2017-01-01
We introduce Equilibrium Propagation, a learning framework for energy-based models. It involves only one kind of neural computation, performed in both the first phase (when the prediction is made) and the second phase of training (after the target or prediction error is revealed). Although this algorithm computes the gradient of an objective function just like Backpropagation, it does not need a special computation or circuit for the second phase, where errors are implicitly propagated. Equilibrium Propagation shares similarities with Contrastive Hebbian Learning and Contrastive Divergence while solving the theoretical issues of both algorithms: our algorithm computes the gradient of a well-defined objective function. Because the objective function is defined in terms of local perturbations, the second phase of Equilibrium Propagation corresponds to only nudging the prediction (fixed point or stationary distribution) toward a configuration that reduces prediction error. In the case of a recurrent multi-layer supervised network, the output units are slightly nudged toward their target in the second phase, and the perturbation introduced at the output layer propagates backward in the hidden layers. We show that the signal “back-propagated” during this second phase corresponds to the propagation of error derivatives and encodes the gradient of the objective function, when the synaptic update corresponds to a standard form of spike-timing dependent plasticity. This work makes it more plausible that a mechanism similar to Backpropagation could be implemented by brains, since leaky integrator neural computation performs both inference and error back-propagation in our model. The only local difference between the two phases is whether synaptic changes are allowed or not. We also show experimentally that multi-layer recurrently connected networks with 1, 2, and 3 hidden layers can be trained by Equilibrium Propagation on the permutation-invariant MNIST task. PMID:28522969
lncRNATargets: A platform for lncRNA target prediction based on nucleic acid thermodynamics.
Hu, Ruifeng; Sun, Xiaobo
2016-08-01
Many studies have supported that long noncoding RNAs (lncRNAs) perform various functions in various critical biological processes. Advanced experimental and computational technologies allow access to more information on lncRNAs. Determining the functions and action mechanisms of these RNAs on a large scale is urgently needed. We provided lncRNATargets, which is a web-based platform for lncRNA target prediction based on nucleic acid thermodynamics. The nearest-neighbor (NN) model was used to calculate binging-free energy. The main principle of NN model for nucleic acid assumes that identity and orientation of neighbor base pairs determine stability of a given base pair. lncRNATargets features the following options: setting of a specific temperature that allow use not only for human but also for other animals or plants; processing all lncRNAs in high throughput without RNA size limitation that is superior to any other existing tool; and web-based, user-friendly interface, and colored result displays that allow easy access for nonskilled computer operators and provide better understanding of results. This technique could provide accurate calculation on the binding-free energy of lncRNA-target dimers to predict if these structures are well targeted together. lncRNATargets provides high accuracy calculations, and this user-friendly program is available for free at http://www.herbbol.org:8001/lrt/ .
Domain Adaptation for Pedestrian Detection Based on Prediction Consistency
Huan-ling, Tang; Zhi-yong, An
2014-01-01
Pedestrian detection is an active area of research in computer vision. It remains a quite challenging problem in many applications where many factors cause a mismatch between source dataset used to train the pedestrian detector and samples in the target scene. In this paper, we propose a novel domain adaptation model for merging plentiful source domain samples with scared target domain samples to create a scene-specific pedestrian detector that performs as well as rich target domain simples are present. Our approach combines the boosting-based learning algorithm with an entropy-based transferability, which is derived from the prediction consistency with the source classifications, to selectively choose the samples showing positive transferability in source domains to the target domain. Experimental results show that our approach can improve the detection rate, especially with the insufficient labeled data in target scene. PMID:25013850
UniDrug-target: a computational tool to identify unique drug targets in pathogenic bacteria.
Chanumolu, Sree Krishna; Rout, Chittaranjan; Chauhan, Rajinder S
2012-01-01
Targeting conserved proteins of bacteria through antibacterial medications has resulted in both the development of resistant strains and changes to human health by destroying beneficial microbes which eventually become breeding grounds for the evolution of resistances. Despite the availability of more than 800 genomes sequences, 430 pathways, 4743 enzymes, 9257 metabolic reactions and protein (three-dimensional) 3D structures in bacteria, no pathogen-specific computational drug target identification tool has been developed. A web server, UniDrug-Target, which combines bacterial biological information and computational methods to stringently identify pathogen-specific proteins as drug targets, has been designed. Besides predicting pathogen-specific proteins essentiality, chokepoint property, etc., three new algorithms were developed and implemented by using protein sequences, domains, structures, and metabolic reactions for construction of partial metabolic networks (PMNs), determination of conservation in critical residues, and variation analysis of residues forming similar cavities in proteins sequences. First, PMNs are constructed to determine the extent of disturbances in metabolite production by targeting a protein as drug target. Conservation of pathogen-specific protein's critical residues involved in cavity formation and biological function determined at domain-level with low-matching sequences. Last, variation analysis of residues forming similar cavities in proteins sequences from pathogenic versus non-pathogenic bacteria and humans is performed. The server is capable of predicting drug targets for any sequenced pathogenic bacteria having fasta sequences and annotated information. The utility of UniDrug-Target server was demonstrated for Mycobacterium tuberculosis (H37Rv). The UniDrug-Target identified 265 mycobacteria pathogen-specific proteins, including 17 essential proteins which can be potential drug targets. UniDrug-Target is expected to accelerate pathogen-specific drug targets identification which will increase their success and durability as drugs developed against them have less chance to develop resistances and adverse impact on environment. The server is freely available at http://117.211.115.67/UDT/main.html. The standalone application (source codes) is available at http://www.bioinformatics.org/ftp/pub/bioinfojuit/UDT.rar.
Computational approach to analyze isolated ssDNA aptamers against angiotensin II.
Heiat, Mohammad; Najafi, Ali; Ranjbar, Reza; Latifi, Ali Mohammad; Rasaee, Mohammad Javad
2016-07-20
Aptamers are oligonucleotides with highly structured molecules that can bind to their targets through specific 3-D conformation. Commonly, not all the nucleotides such as primer binding fixed region and some other sequences are vital for aptamers folding and interaction. Elimination of unnecessary regions needs trustworthy prediction tools to reduce experimental efforts and errors. Here we introduced a manipulated in-silico approach to predict the 3-D structure of aptamers and their target interactions. To design an approach for computational analysis of isolated ssDNA aptamers (FLC112, FLC125 and their truncated core region including CRC112 and CRC125), their secondary and tertiary structures were modeled by Mfold and RNA composer respectively. Output PDB files were modified from RNA to DNA in the discovery studio visualizer software. Using ZDOCK server, the aptamer-target interactions were predicted. Finally, the interaction scores were compared with the experimental results. In-silico interaction scores and the experimental outcomes were in the same descending arrangement of FLC112>CRC125>CRC112>FLC125 with similar intensity. The consistent results of innovative in-silico method with experimental outputs, affirmed that the present method may be a reliable approach. Also, it showed that the exact in-silico predictions can be utilized as a credible reference to find aptameric fragments binding potency. Copyright © 2016 Elsevier B.V. All rights reserved.
Realizing drug repositioning by adapting a recommendation system to handle the process.
Ozsoy, Makbule Guclin; Özyer, Tansel; Polat, Faruk; Alhajj, Reda
2018-04-12
Drug repositioning is the process of identifying new targets for known drugs. It can be used to overcome problems associated with traditional drug discovery by adapting existing drugs to treat new discovered diseases. Thus, it may reduce associated risk, cost and time required to identify and verify new drugs. Nowadays, drug repositioning has received more attention from industry and academia. To tackle this problem, researchers have applied many different computational methods and have used various features of drugs and diseases. In this study, we contribute to the ongoing research efforts by combining multiple features, namely chemical structures, protein interactions and side-effects to predict new indications of target drugs. To achieve our target, we realize drug repositioning as a recommendation process and this leads to a new perspective in tackling the problem. The utilized recommendation method is based on Pareto dominance and collaborative filtering. It can also integrate multiple data-sources and multiple features. For the computation part, we applied several settings and we compared their performance. Evaluation results show that the proposed method can achieve more concentrated predictions with high precision, where nearly half of the predictions are true. Compared to other state of the art methods described in the literature, the proposed method is better at making right predictions by having higher precision. The reported results demonstrate the applicability and effectiveness of recommendation methods for drug repositioning.
Bioinformatics approaches to predict target genes from transcription factor binding data.
Essebier, Alexandra; Lamprecht, Marnie; Piper, Michael; Bodén, Mikael
2017-12-01
Transcription factors regulate gene expression and play an essential role in development by maintaining proliferative states, driving cellular differentiation and determining cell fate. Transcription factors are capable of regulating multiple genes over potentially long distances making target gene identification challenging. Currently available experimental approaches to detect distal interactions have multiple weaknesses that have motivated the development of computational approaches. Although an improvement over experimental approaches, existing computational approaches are still limited in their application, with different weaknesses depending on the approach. Here, we review computational approaches with a focus on data dependency, cell type specificity and usability. With the aim of identifying transcription factor target genes, we apply available approaches to typical transcription factor experimental datasets. We show that approaches are not always capable of annotating all transcription factor binding sites; binding sites should be treated disparately; and a combination of approaches can increase the biological relevance of the set of genes identified as targets. Copyright © 2017 Elsevier Inc. All rights reserved.
Open-source chemogenomic data-driven algorithms for predicting drug-target interactions.
Hao, Ming; Bryant, Stephen H; Wang, Yanli
2018-02-06
While novel technologies such as high-throughput screening have advanced together with significant investment by pharmaceutical companies during the past decades, the success rate for drug development has not yet been improved prompting researchers looking for new strategies of drug discovery. Drug repositioning is a potential approach to solve this dilemma. However, experimental identification and validation of potential drug targets encoded by the human genome is both costly and time-consuming. Therefore, effective computational approaches have been proposed to facilitate drug repositioning, which have proved to be successful in drug discovery. Doubtlessly, the availability of open-accessible data from basic chemical biology research and the success of human genome sequencing are crucial to develop effective in silico drug repositioning methods allowing the identification of potential targets for existing drugs. In this work, we review several chemogenomic data-driven computational algorithms with source codes publicly accessible for predicting drug-target interactions (DTIs). We organize these algorithms by model properties and model evolutionary relationships. We re-implemented five representative algorithms in R programming language, and compared these algorithms by means of mean percentile ranking, a new recall-based evaluation metric in the DTI prediction research field. We anticipate that this review will be objective and helpful to researchers who would like to further improve existing algorithms or need to choose appropriate algorithms to infer potential DTIs in the projects. The source codes for DTI predictions are available at: https://github.com/minghao2016/chemogenomicAlg4DTIpred. Published by Oxford University Press 2018. This work is written by US Government employees and is in the public domain in the US.
Statistical use of argonaute expression and RISC assembly in microRNA target identification.
Stanhope, Stephen A; Sengupta, Srikumar; den Boon, Johan; Ahlquist, Paul; Newton, Michael A
2009-09-01
MicroRNAs (miRNAs) posttranscriptionally regulate targeted messenger RNAs (mRNAs) by inducing cleavage or otherwise repressing their translation. We address the problem of detecting m/miRNA targeting relationships in homo sapiens from microarray data by developing statistical models that are motivated by the biological mechanisms used by miRNAs. The focus of our modeling is the construction, activity, and mediation of RNA-induced silencing complexes (RISCs) competent for targeted mRNA cleavage. We demonstrate that regression models accommodating RISC abundance and controlling for other mediating factors fit the expression profiles of known target pairs substantially better than models based on m/miRNA expressions alone, and lead to verifications of computational target pair predictions that are more sensitive than those based on marginal expression levels. Because our models are fully independent of exogenous results from sequence-based computational methods, they are appropriate for use as either a primary or secondary source of information regarding m/miRNA target pair relationships, especially in conjunction with high-throughput expression studies.
XPATCH: a high-frequency electromagnetic scattering prediction code using shooting and bouncing rays
NASA Astrophysics Data System (ADS)
Hazlett, Michael; Andersh, Dennis J.; Lee, Shung W.; Ling, Hao; Yu, C. L.
1995-06-01
This paper describes an electromagnetic computer prediction code for generating radar cross section (RCS), time domain signatures, and synthetic aperture radar (SAR) images of realistic 3-D vehicles. The vehicle, typically an airplane or a ground vehicle, is represented by a computer-aided design (CAD) file with triangular facets, curved surfaces, or solid geometries. The computer code, XPATCH, based on the shooting and bouncing ray technique, is used to calculate the polarimetric radar return from the vehicles represented by these different CAD files. XPATCH computes the first-bounce physical optics plus the physical theory of diffraction contributions and the multi-bounce ray contributions for complex vehicles with materials. It has been found that the multi-bounce contributions are crucial for many aspect angles of all classes of vehicles. Without the multi-bounce calculations, the radar return is typically 10 to 15 dB too low. Examples of predicted range profiles, SAR imagery, and radar cross sections (RCS) for several different geometries are compared with measured data to demonstrate the quality of the predictions. The comparisons are from the UHF through the Ka frequency ranges. Recent enhancements to XPATCH for MMW applications and target Doppler predictions are also presented.
Rapid computational identification of the targets of protein kinase inhibitors.
Rockey, William M; Elcock, Adrian H
2005-06-16
We describe a method for rapidly computing the relative affinities of an inhibitor for all individual members of a family of homologous receptors. The approach, implemented in a new program, SCR, models inhibitor-receptor interactions in full atomic detail with an empirical energy function and includes an explicit account of flexibility in homology-modeled receptors through sampling of libraries of side chain rotamers. SCR's general utility was demonstrated by application to seven different protein kinase inhibitors: for each inhibitor, relative binding affinities with panels of approximately 20 protein kinases were computed and compared with experimental data. For five of the inhibitors (SB203580, purvalanol B, imatinib, H89, and hymenialdisine), SCR provided excellent reproduction of the experimental trends and, importantly, was capable of identifying the targets of inhibitors even when they belonged to different kinase families. The method's performance in a predictive setting was demonstrated by performing separate training and testing applications, and its key assumptions were tested by comparison with a number of alternative approaches employing the ligand-docking program AutoDock (Morris et al. J. Comput. Chem. 1998, 19, 1639-1662). These comparison tests included using AutoDock in nondocking and docking modes and performing energy minimizations of inhibitor-kinase complexes with the molecular mechanics code GROMACS (Berendsen et al. Comput. Phys. Commun. 1995, 91, 43-56). It was found that a surprisingly important aspect of SCR's approach is its assumption that the inhibitor be modeled in the same orientation for each kinase: although this assumption is in some respects unrealistic, calculations that used apparently more realistic approaches produced clearly inferior results. Finally, as a large-scale application of the method, SB203580, purvalanol B, and imatinib were screened against an almost full complement of 493 human protein kinases using SCR in order to identify potential new targets; the predicted targets of SB203580 were compared with those identified in recent proteomics-based experiments. These kinome-wide screens, performed within a day on a small cluster of PCs, indicate that explicit computation of inhibitor-receptor binding affinities has the potential to promote rapid discovery of new therapeutic targets for existing inhibitors.
Samad, Abdul Fatah A; Nazaruddin, Nazaruddin; Murad, Abdul Munir Abdul; Jani, Jaeyres; Zainal, Zamri; Ismail, Ismanizan
2018-03-01
In current era, majority of microRNA (miRNA) are being discovered through computational approaches which are more confined towards model plants. Here, for the first time, we have described the identification and characterization of novel miRNA in a non-model plant, Persicaria minor ( P . minor ) using computational approach. Unannotated sequences from deep sequencing were analyzed based on previous well-established parameters. Around 24 putative novel miRNAs were identified from 6,417,780 reads of the unannotated sequence which represented 11 unique putative miRNA sequences. PsRobot target prediction tool was deployed to identify the target transcripts of putative novel miRNAs. Most of the predicted target transcripts (mRNAs) were known to be involved in plant development and stress responses. Gene ontology showed that majority of the putative novel miRNA targets involved in cellular component (69.07%), followed by molecular function (30.08%) and biological process (0.85%). Out of 11 unique putative miRNAs, 7 miRNAs were validated through semi-quantitative PCR. These novel miRNAs discoveries in P . minor may develop and update the current public miRNA database.
NASA Astrophysics Data System (ADS)
Bender, Jason; Raman, Kumar; Huntington, Channing; Nagel, Sabrina; Morgan, Brandon; Prisbrey, Shon; MacLaren, Stephan
2017-10-01
Experiments at the National Ignition Facility (NIF) are studying Richtmyer-Meshkov and Rayleigh-Taylor hydrodynamic instabilities in multiply-shocked plasmas. Targets feature two different-density fluids with a multimode initial perturbation at the interface, which is struck by two X-ray-driven shock waves. Here we discuss computational hydrodynamics simulations investigating the effect of second-shock (``reshock'') strength on instability growth, and how these simulations are informing target design for the ongoing experimental campaign. A Reynolds-Averaged Navier Stokes (RANS) model was used to predict motion of the spike and bubble fronts and the mixing-layer width. In addition to reshock strength, the reshock ablator thickness and the total length of the target were varied; all three parameters were found to be important for target design, particularly for ameliorating undesirable reflected shocks. The RANS data are compared to theoretical models that predict multimode instability growth proportional to the shock-induced change in interface velocity, and to currently-available data from the NIF experiments. Work performed under the auspices of the U.S. D.O.E. by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. LLNL-ABS-734611.
Free energy landscape for the binding process of Huperzine A to acetylcholinesterase
Bai, Fang; Xu, Yechun; Chen, Jing; Liu, Qiufeng; Gu, Junfeng; Wang, Xicheng; Ma, Jianpeng; Li, Honglin; Onuchic, José N.; Jiang, Hualiang
2013-01-01
Drug-target residence time (t = 1/koff, where koff is the dissociation rate constant) has become an important index in discovering better- or best-in-class drugs. However, little effort has been dedicated to developing computational methods that can accurately predict this kinetic parameter or related parameters, koff and activation free energy of dissociation (). In this paper, energy landscape theory that has been developed to understand protein folding and function is extended to develop a generally applicable computational framework that is able to construct a complete ligand-target binding free energy landscape. This enables both the binding affinity and the binding kinetics to be accurately estimated. We applied this method to simulate the binding event of the anti-Alzheimer’s disease drug (−)−Huperzine A to its target acetylcholinesterase (AChE). The computational results are in excellent agreement with our concurrent experimental measurements. All of the predicted values of binding free energy and activation free energies of association and dissociation deviate from the experimental data only by less than 1 kcal/mol. The method also provides atomic resolution information for the (−)−Huperzine A binding pathway, which may be useful in designing more potent AChE inhibitors. We expect this methodology to be widely applicable to drug discovery and development. PMID:23440190
Free energy landscape for the binding process of Huperzine A to acetylcholinesterase.
Bai, Fang; Xu, Yechun; Chen, Jing; Liu, Qiufeng; Gu, Junfeng; Wang, Xicheng; Ma, Jianpeng; Li, Honglin; Onuchic, José N; Jiang, Hualiang
2013-03-12
Drug-target residence time (t = 1/k(off), where k(off) is the dissociation rate constant) has become an important index in discovering better- or best-in-class drugs. However, little effort has been dedicated to developing computational methods that can accurately predict this kinetic parameter or related parameters, k(off) and activation free energy of dissociation (ΔG(off)≠). In this paper, energy landscape theory that has been developed to understand protein folding and function is extended to develop a generally applicable computational framework that is able to construct a complete ligand-target binding free energy landscape. This enables both the binding affinity and the binding kinetics to be accurately estimated. We applied this method to simulate the binding event of the anti-Alzheimer's disease drug (-)-Huperzine A to its target acetylcholinesterase (AChE). The computational results are in excellent agreement with our concurrent experimental measurements. All of the predicted values of binding free energy and activation free energies of association and dissociation deviate from the experimental data only by less than 1 kcal/mol. The method also provides atomic resolution information for the (-)-Huperzine A binding pathway, which may be useful in designing more potent AChE inhibitors. We expect this methodology to be widely applicable to drug discovery and development.
Meng, Jun; Shi, Lin; Luan, Yushi
2014-01-01
Background Confident identification of microRNA-target interactions is significant for studying the function of microRNA (miRNA). Although some computational miRNA target prediction methods have been proposed for plants, results of various methods tend to be inconsistent and usually lead to more false positive. To address these issues, we developed an integrated model for identifying plant miRNA–target interactions. Results Three online miRNA target prediction toolkits and machine learning algorithms were integrated to identify and analyze Arabidopsis thaliana miRNA-target interactions. Principle component analysis (PCA) feature extraction and self-training technology were introduced to improve the performance. Results showed that the proposed model outperformed the previously existing methods. The results were validated by using degradome sequencing supported Arabidopsis thaliana miRNA-target interactions. The proposed model constructed on Arabidopsis thaliana was run over Oryza sativa and Vitis vinifera to demonstrate that our model is effective for other plant species. Conclusions The integrated model of online predictors and local PCA-SVM classifier gained credible and high quality miRNA-target interactions. The supervised learning algorithm of PCA-SVM classifier was employed in plant miRNA target identification for the first time. Its performance can be substantially improved if more experimentally proved training samples are provided. PMID:25051153
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, M; Jung, J; Yoon, D
Purpose: Respiratory gated radiation therapy (RGRT) gives accurate results when a patient’s breathing is stable and regular. Thus, the patient should be fully aware during respiratory pattern training before undergoing the RGRT treatment. In order to bypass the process of respiratory pattern training, we propose a target location prediction system for RGRT that uses only natural respiratory volume, and confirm its application. Methods: In order to verify the proposed target location prediction system, an in-house phantom set was used. This set involves a chest phantom including target, external markers, and motion generator. Natural respiratory volume signals were generated using themore » random function in MATLAB code. In the chest phantom, the target takes a linear motion based on the respiratory signal. After a four-dimensional computed tomography (4DCT) scan of the in-house phantom, the motion trajectory was derived as a linear equation. The accuracy of the linear equation was compared with that of the motion algorithm used by the operating motion generator. In addition, we attempted target location prediction using random respiratory volume values. Results: The correspondence rate of the linear equation derived from the 4DCT images with the motion algorithm of the motion generator was 99.41%. In addition, the average error rate of target location prediction was 1.23% for 26 cases. Conclusion: We confirmed the applicability of our proposed target location prediction system for RGRT using natural respiratory volume. If additional clinical studies can be conducted, a more accurate prediction system can be realized without requiring respiratory pattern training.« less
MOST: most-similar ligand based approach to target prediction.
Huang, Tao; Mi, Hong; Lin, Cheng-Yuan; Zhao, Ling; Zhong, Linda L D; Liu, Feng-Bin; Zhang, Ge; Lu, Ai-Ping; Bian, Zhao-Xiang
2017-03-11
Many computational approaches have been used for target prediction, including machine learning, reverse docking, bioactivity spectra analysis, and chemical similarity searching. Recent studies have suggested that chemical similarity searching may be driven by the most-similar ligand. However, the extent of bioactivity of most-similar ligands has been oversimplified or even neglected in these studies, and this has impaired the prediction power. Here we propose the MOst-Similar ligand-based Target inference approach, namely MOST, which uses fingerprint similarity and explicit bioactivity of the most-similar ligands to predict targets of the query compound. Performance of MOST was evaluated by using combinations of different fingerprint schemes, machine learning methods, and bioactivity representations. In sevenfold cross-validation with a benchmark Ki dataset from CHEMBL release 19 containing 61,937 bioactivity data of 173 human targets, MOST achieved high average prediction accuracy (0.95 for pKi ≥ 5, and 0.87 for pKi ≥ 6). Morgan fingerprint was shown to be slightly better than FP2. Logistic Regression and Random Forest methods performed better than Naïve Bayes. In a temporal validation, the Ki dataset from CHEMBL19 were used to train models and predict the bioactivity of newly deposited ligands in CHEMBL20. MOST also performed well with high accuracy (0.90 for pKi ≥ 5, and 0.76 for pKi ≥ 6), when Logistic Regression and Morgan fingerprint were employed. Furthermore, the p values associated with explicit bioactivity were found be a robust index for removing false positive predictions. Implicit bioactivity did not offer this capability. Finally, p values generated with Logistic Regression, Morgan fingerprint and explicit activity were integrated with a false discovery rate (FDR) control procedure to reduce false positives in multiple-target prediction scenario, and the success of this strategy it was demonstrated with a case of fluanisone. In the case of aloe-emodin's laxative effect, MOST predicted that acetylcholinesterase was the mechanism-of-action target; in vivo studies validated this prediction. Using the MOST approach can result in highly accurate and robust target prediction. Integrated with a FDR control procedure, MOST provides a reliable framework for multiple-target inference. It has prospective applications in drug repurposing and mechanism-of-action target prediction.
Ensemble Methods for MiRNA Target Prediction from Expression Data.
Le, Thuc Duy; Zhang, Junpeng; Liu, Lin; Li, Jiuyong
2015-01-01
microRNAs (miRNAs) are short regulatory RNAs that are involved in several diseases, including cancers. Identifying miRNA functions is very important in understanding disease mechanisms and determining the efficacy of drugs. An increasing number of computational methods have been developed to explore miRNA functions by inferring the miRNA-mRNA regulatory relationships from data. Each of the methods is developed based on some assumptions and constraints, for instance, assuming linear relationships between variables. For such reasons, computational methods are often subject to the problem of inconsistent performance across different datasets. On the other hand, ensemble methods integrate the results from individual methods and have been proved to outperform each of their individual component methods in theory. In this paper, we investigate the performance of some ensemble methods over the commonly used miRNA target prediction methods. We apply eight different popular miRNA target prediction methods to three cancer datasets, and compare their performance with the ensemble methods which integrate the results from each combination of the individual methods. The validation results using experimentally confirmed databases show that the results of the ensemble methods complement those obtained by the individual methods and the ensemble methods perform better than the individual methods across different datasets. The ensemble method, Pearson+IDA+Lasso, which combines methods in different approaches, including a correlation method, a causal inference method, and a regression method, is the best performed ensemble method in this study. Further analysis of the results of this ensemble method shows that the ensemble method can obtain more targets which could not be found by any of the single methods, and the discovered targets are more statistically significant and functionally enriched. The source codes, datasets, miRNA target predictions by all methods, and the ground truth for validation are available in the Supplementary materials.
Ensemble Methods for MiRNA Target Prediction from Expression Data
Le, Thuc Duy; Zhang, Junpeng; Liu, Lin; Li, Jiuyong
2015-01-01
Background microRNAs (miRNAs) are short regulatory RNAs that are involved in several diseases, including cancers. Identifying miRNA functions is very important in understanding disease mechanisms and determining the efficacy of drugs. An increasing number of computational methods have been developed to explore miRNA functions by inferring the miRNA-mRNA regulatory relationships from data. Each of the methods is developed based on some assumptions and constraints, for instance, assuming linear relationships between variables. For such reasons, computational methods are often subject to the problem of inconsistent performance across different datasets. On the other hand, ensemble methods integrate the results from individual methods and have been proved to outperform each of their individual component methods in theory. Results In this paper, we investigate the performance of some ensemble methods over the commonly used miRNA target prediction methods. We apply eight different popular miRNA target prediction methods to three cancer datasets, and compare their performance with the ensemble methods which integrate the results from each combination of the individual methods. The validation results using experimentally confirmed databases show that the results of the ensemble methods complement those obtained by the individual methods and the ensemble methods perform better than the individual methods across different datasets. The ensemble method, Pearson+IDA+Lasso, which combines methods in different approaches, including a correlation method, a causal inference method, and a regression method, is the best performed ensemble method in this study. Further analysis of the results of this ensemble method shows that the ensemble method can obtain more targets which could not be found by any of the single methods, and the discovered targets are more statistically significant and functionally enriched. The source codes, datasets, miRNA target predictions by all methods, and the ground truth for validation are available in the Supplementary materials. PMID:26114448
Role of post-mapping computed tomography in virtual-assisted lung mapping.
Sato, Masaaki; Nagayama, Kazuhiro; Kuwano, Hideki; Nitadori, Jun-Ichi; Anraku, Masaki; Nakajima, Jun
2017-02-01
Background Virtual-assisted lung mapping is a novel bronchoscopic preoperative lung marking technique in which virtual bronchoscopy is used to predict the locations of multiple dye markings. Post-mapping computed tomography is performed to confirm the locations of the actual markings. This study aimed to examine the accuracy of marking locations predicted by virtual bronchoscopy and elucidate the role of post-mapping computed tomography. Methods Automated and manual virtual bronchoscopy was used to predict marking locations. After bronchoscopic dye marking under local anesthesia, computed tomography was performed to confirm the actual marking locations before surgery. Discrepancies between marking locations predicted by the different methods and the actual markings were examined on computed tomography images. Forty-three markings in 11 patients were analyzed. Results The average difference between the predicted and actual marking locations was 30 mm. There was no significant difference between the latest version of the automated virtual bronchoscopy system (30.7 ± 17.2 mm) and manual virtual bronchoscopy (29.8 ± 19.1 mm). The difference was significantly greater in the upper vs. lower lobes (37.1 ± 20.1 vs. 23.0 ± 6.8 mm, for automated virtual bronchoscopy; p < 0.01). Despite this discrepancy, all targeted lesions were successfully resected using 3-dimensional image guidance based on post-mapping computed tomography reflecting the actual marking locations. Conclusions Markings predicted by virtual bronchoscopy were dislocated from the actual markings by an average of 3 cm. However, surgery was accurately performed using post-mapping computed tomography guidance, demonstrating the indispensable role of post-mapping computed tomography in virtual-assisted lung mapping.
Context influences on TALE–DNA binding revealed by quantitative profiling
Rogers, Julia M.; Barrera, Luis A.; Reyon, Deepak; Sander, Jeffry D.; Kellis, Manolis; Joung, J Keith; Bulyk, Martha L.
2015-01-01
Transcription activator-like effector (TALE) proteins recognize DNA using a seemingly simple DNA-binding code, which makes them attractive for use in genome engineering technologies that require precise targeting. Although this code is used successfully to design TALEs to target specific sequences, off-target binding has been observed and is difficult to predict. Here we explore TALE–DNA interactions comprehensively by quantitatively assaying the DNA-binding specificities of 21 representative TALEs to ∼5,000–20,000 unique DNA sequences per protein using custom-designed protein-binding microarrays (PBMs). We find that protein context features exert significant influences on binding. Thus, the canonical recognition code does not fully capture the complexity of TALE–DNA binding. We used the PBM data to develop a computational model, Specificity Inference For TAL-Effector Design (SIFTED), to predict the DNA-binding specificity of any TALE. We provide SIFTED as a publicly available web tool that predicts potential genomic off-target sites for improved TALE design. PMID:26067805
Context influences on TALE-DNA binding revealed by quantitative profiling.
Rogers, Julia M; Barrera, Luis A; Reyon, Deepak; Sander, Jeffry D; Kellis, Manolis; Joung, J Keith; Bulyk, Martha L
2015-06-11
Transcription activator-like effector (TALE) proteins recognize DNA using a seemingly simple DNA-binding code, which makes them attractive for use in genome engineering technologies that require precise targeting. Although this code is used successfully to design TALEs to target specific sequences, off-target binding has been observed and is difficult to predict. Here we explore TALE-DNA interactions comprehensively by quantitatively assaying the DNA-binding specificities of 21 representative TALEs to ∼5,000-20,000 unique DNA sequences per protein using custom-designed protein-binding microarrays (PBMs). We find that protein context features exert significant influences on binding. Thus, the canonical recognition code does not fully capture the complexity of TALE-DNA binding. We used the PBM data to develop a computational model, Specificity Inference For TAL-Effector Design (SIFTED), to predict the DNA-binding specificity of any TALE. We provide SIFTED as a publicly available web tool that predicts potential genomic off-target sites for improved TALE design.
General overview on structure prediction of twilight-zone proteins.
Khor, Bee Yin; Tye, Gee Jun; Lim, Theam Soon; Choong, Yee Siew
2015-09-04
Protein structure prediction from amino acid sequence has been one of the most challenging aspects in computational structural biology despite significant progress in recent years showed by critical assessment of protein structure prediction (CASP) experiments. When experimentally determined structures are unavailable, the predictive structures may serve as starting points to study a protein. If the target protein consists of homologous region, high-resolution (typically <1.5 Å) model can be built via comparative modelling. However, when confronted with low sequence similarity of the target protein (also known as twilight-zone protein, sequence identity with available templates is less than 30%), the protein structure prediction has to be initiated from scratch. Traditionally, twilight-zone proteins can be predicted via threading or ab initio method. Based on the current trend, combination of different methods brings an improved success in the prediction of twilight-zone proteins. In this mini review, the methods, progresses and challenges for the prediction of twilight-zone proteins were discussed.
Wang, Nanyi; Wang, Lirong; Xie, Xiang-Qun
2017-11-27
Molecular docking is widely applied to computer-aided drug design and has become relatively mature in the recent decades. Application of docking in modeling varies from single lead compound optimization to large-scale virtual screening. The performance of molecular docking is highly dependent on the protein structures selected. It is especially challenging for large-scale target prediction research when multiple structures are available for a single target. Therefore, we have established ProSelection, a docking preferred-protein selection algorithm, in order to generate the proper structure subset(s). By the ProSelection algorithm, protein structures of "weak selectors" are filtered out whereas structures of "strong selectors" are kept. Specifically, the structure which has a good statistical performance of distinguishing active ligands from inactive ligands is defined as a strong selector. In this study, 249 protein structures of 14 autophagy-related targets are investigated. Surflex-dock was used as the docking engine to distinguish active and inactive compounds against these protein structures. Both t test and Mann-Whitney U test were used to distinguish the strong from the weak selectors based on the normality of the docking score distribution. The suggested docking score threshold for active ligands (SDA) was generated for each strong selector structure according to the receiver operating characteristic (ROC) curve. The performance of ProSelection was further validated by predicting the potential off-targets of 43 U.S. Federal Drug Administration approved small molecule antineoplastic drugs. Overall, ProSelection will accelerate the computational work in protein structure selection and could be a useful tool for molecular docking, target prediction, and protein-chemical database establishment research.
The bitter pill: clinical drugs that activate the human bitter taste receptor TAS2R14.
Levit, Anat; Nowak, Stefanie; Peters, Maximilian; Wiener, Ayana; Meyerhof, Wolfgang; Behrens, Maik; Niv, Masha Y
2014-03-01
Bitter taste receptors (TAS2Rs) mediate aversive response to toxic food, which is often bitter. These G-protein-coupled receptors are also expressed in extraoral tissues, and emerge as novel targets for therapeutic indications such as asthma and infection. Our goal was to identify ligands of the broadly tuned TAS2R14 among clinical drugs. Molecular properties of known human bitter taste receptor TAS2R14 agonists were incorporated into pharmacophore- and shape-based models and used to computationally predict additional ligands. Predictions were tested by calcium imaging of TAS2R14-transfected HEK293 cells. In vitro testing of the virtual screening predictions resulted in 30-80% success rates, and 15 clinical drugs were found to activate the TAS2R14. hERG potassium channel, which is predominantly expressed in the heart, emerged as a common off-target of bitter drugs. Despite immense chemical diversity of known TAS2R14 ligands, novel ligands and previously unknown polypharmacology of drugs were unraveled by in vitro screening of computational predictions. This enables rational repurposing of traditional and standard drugs for bitter taste signaling modulation for therapeutic indications.
Geometric saliency to characterize radar exploitation performance
NASA Astrophysics Data System (ADS)
Nolan, Adam; Keserich, Brad; Lingg, Andrew; Goley, Steve
2014-06-01
Based on the fundamental scattering mechanisms of facetized computer-aided design (CAD) models, we are able to define expected contributions (EC) to the radar signature. The net result of this analysis is the prediction of the salient aspects and contributing vehicle morphology based on the aspect. Although this approach does not provide the fidelity of an asymptotic electromagnetic (EM) simulation, it does provide very fast estimates of the unique scattering that can be consumed by a signature exploitation algorithm. The speed of this approach is particularly relevant when considering the high dimensionality of target configuration variability due to articulating parts which are computationally burdensome to predict. The key scattering phenomena considered in this work are the specular response from a single bounce interaction with surfaces and dihedral response formed between the ground plane and vehicle. Results of this analysis are demonstrated for a set of civilian target models.
A Template-Based Protein Structure Reconstruction Method Using Deep Autoencoder Learning.
Li, Haiou; Lyu, Qiang; Cheng, Jianlin
2016-12-01
Protein structure prediction is an important problem in computational biology, and is widely applied to various biomedical problems such as protein function study, protein design, and drug design. In this work, we developed a novel deep learning approach based on a deeply stacked denoising autoencoder for protein structure reconstruction. We applied our approach to a template-based protein structure prediction using only the 3D structural coordinates of homologous template proteins as input. The templates were identified for a target protein by a PSI-BLAST search. 3DRobot (a program that automatically generates diverse and well-packed protein structure decoys) was used to generate initial decoy models for the target from the templates. A stacked denoising autoencoder was trained on the decoys to obtain a deep learning model for the target protein. The trained deep model was then used to reconstruct the final structural model for the target sequence. With target proteins that have highly similar template proteins as benchmarks, the GDT-TS score of the predicted structures is greater than 0.7, suggesting that the deep autoencoder is a promising method for protein structure reconstruction.
Optimum viewing distance for target acquisition
NASA Astrophysics Data System (ADS)
Holst, Gerald C.
2015-05-01
Human visual system (HVS) "resolution" (a.k.a. visual acuity) varies with illumination level, target characteristics, and target contrast. For signage, computer displays, cell phones, and TVs a viewing distance and display size are selected. Then the number of display pixels is chosen such that each pixel subtends 1 min-1. Resolution of low contrast targets is quite different. It is best described by Barten's contrast sensitivity function. Target acquisition models predict maximum range when the display pixel subtends 3.3 min-1. The optimum viewing distance is nearly independent of magnification. Noise increases the optimum viewing distance.
Computational prediction of formulation strategies for beyond-rule-of-5 compounds.
Bergström, Christel A S; Charman, William N; Porter, Christopher J H
2016-06-01
The physicochemical properties of some contemporary drug candidates are moving towards higher molecular weight, and coincidentally also higher lipophilicity in the quest for biological selectivity and specificity. These physicochemical properties move the compounds towards beyond rule-of-5 (B-r-o-5) chemical space and often result in lower water solubility. For such B-r-o-5 compounds non-traditional delivery strategies (i.e. those other than conventional tablet and capsule formulations) typically are required to achieve adequate exposure after oral administration. In this review, we present the current status of computational tools for prediction of intestinal drug absorption, models for prediction of the most suitable formulation strategies for B-r-o-5 compounds and models to obtain an enhanced understanding of the interplay between drug, formulation and physiological environment. In silico models are able to identify the likely molecular basis for low solubility in physiologically relevant fluids such as gastric and intestinal fluids. With this baseline information, a formulation scientist can, at an early stage, evaluate different orally administered, enabling formulation strategies. Recent computational models have emerged that predict glass-forming ability and crystallisation tendency and therefore the potential utility of amorphous solid dispersion formulations. Further, computational models of loading capacity in lipids, and therefore the potential for formulation as a lipid-based formulation, are now available. Whilst such tools are useful for rapid identification of suitable formulation strategies, they do not reveal drug localisation and molecular interaction patterns between drug and excipients. For the latter, Molecular Dynamics simulations provide an insight into the interplay between drug, formulation and intestinal fluid. These different computational approaches are reviewed. Additionally, we analyse the molecular requirements of different targets, since these can provide an early signal that enabling formulation strategies will be required. Based on the analysis we conclude that computational biopharmaceutical profiling can be used to identify where non-conventional gateways, such as prediction of 'formulate-ability' during lead optimisation and early development stages, are important and may ultimately increase the number of orally tractable contemporary targets. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Computational predictions of energy materials using density functional theory
NASA Astrophysics Data System (ADS)
Jain, Anubhav; Shin, Yongwoo; Persson, Kristin A.
2016-01-01
In the search for new functional materials, quantum mechanics is an exciting starting point. The fundamental laws that govern the behaviour of electrons have the possibility, at the other end of the scale, to predict the performance of a material for a targeted application. In some cases, this is achievable using density functional theory (DFT). In this Review, we highlight DFT studies predicting energy-related materials that were subsequently confirmed experimentally. The attributes and limitations of DFT for the computational design of materials for lithium-ion batteries, hydrogen production and storage materials, superconductors, photovoltaics and thermoelectric materials are discussed. In the future, we expect that the accuracy of DFT-based methods will continue to improve and that growth in computing power will enable millions of materials to be virtually screened for specific applications. Thus, these examples represent a first glimpse of what may become a routine and integral step in materials discovery.
Tandem internal models execute motor learning in the cerebellum.
Honda, Takeru; Nagao, Soichi; Hashimoto, Yuji; Ishikawa, Kinya; Yokota, Takanori; Mizusawa, Hidehiro; Ito, Masao
2018-06-25
In performing skillful movement, humans use predictions from internal models formed by repetition learning. However, the computational organization of internal models in the brain remains unknown. Here, we demonstrate that a computational architecture employing a tandem configuration of forward and inverse internal models enables efficient motor learning in the cerebellum. The model predicted learning adaptations observed in hand-reaching experiments in humans wearing a prism lens and explained the kinetic components of these behavioral adaptations. The tandem system also predicted a form of subliminal motor learning that was experimentally validated after training intentional misses of hand targets. Patients with cerebellar degeneration disease showed behavioral impairments consistent with tandemly arranged internal models. These findings validate computational tandemization of internal models in motor control and its potential uses in more complex forms of learning and cognition. Copyright © 2018 the Author(s). Published by PNAS.
Narrowing the scope of failure prediction using targeted fault load injection
NASA Astrophysics Data System (ADS)
Jordan, Paul L.; Peterson, Gilbert L.; Lin, Alan C.; Mendenhall, Michael J.; Sellers, Andrew J.
2018-05-01
As society becomes more dependent upon computer systems to perform increasingly critical tasks, ensuring that those systems do not fail becomes increasingly important. Many organizations depend heavily on desktop computers for day-to-day operations. Unfortunately, the software that runs on these computers is written by humans and, as such, is still subject to human error and consequent failure. A natural solution is to use statistical machine learning to predict failure. However, since failure is still a relatively rare event, obtaining labelled training data to train these models is not a trivial task. This work presents new simulated fault-inducing loads that extend the focus of traditional fault injection techniques to predict failure in the Microsoft enterprise authentication service and Apache web server. These new fault loads were successful in creating failure conditions that were identifiable using statistical learning methods, with fewer irrelevant faults being created.
An improved multi-domain convolution tracking algorithm
NASA Astrophysics Data System (ADS)
Sun, Xin; Wang, Haiying; Zeng, Yingsen
2018-04-01
Along with the wide application of the Deep Learning in the field of Computer vision, Deep learning has become a mainstream direction in the field of object tracking. The tracking algorithm in this paper is based on the improved multidomain convolution neural network, and the VOT video set is pre-trained on the network by multi-domain training strategy. In the process of online tracking, the network evaluates candidate targets sampled from vicinity of the prediction target in the previous with Gaussian distribution, and the candidate target with the highest score is recognized as the prediction target of this frame. The Bounding Box Regression model is introduced to make the prediction target closer to the ground-truths target box of the test set. Grouping-update strategy is involved to extract and select useful update samples in each frame, which can effectively prevent over fitting. And adapt to changes in both target and environment. To improve the speed of the algorithm while maintaining the performance, the number of candidate target succeed in adjusting dynamically with the help of Self-adaption parameter Strategy. Finally, the algorithm is tested by OTB set, compared with other high-performance tracking algorithms, and the plot of success rate and the accuracy are drawn. which illustrates outstanding performance of the tracking algorithm in this paper.
Analytic Guided-Search Model of Human Performance Accuracy in Target- Localization Search Tasks
NASA Technical Reports Server (NTRS)
Eckstein, Miguel P.; Beutter, Brent R.; Stone, Leland S.
2000-01-01
Current models of human visual search have extended the traditional serial/parallel search dichotomy. Two successful models for predicting human visual search are the Guided Search model and the Signal Detection Theory model. Although these models are inherently different, it has been difficult to compare them because the Guided Search model is designed to predict response time, while Signal Detection Theory models are designed to predict performance accuracy. Moreover, current implementations of the Guided Search model require the use of Monte-Carlo simulations, a method that makes fitting the model's performance quantitatively to human data more computationally time consuming. We have extended the Guided Search model to predict human accuracy in target-localization search tasks. We have also developed analytic expressions that simplify simulation of the model to the evaluation of a small set of equations using only three free parameters. This new implementation and extension of the Guided Search model will enable direct quantitative comparisons with human performance in target-localization search experiments and with the predictions of Signal Detection Theory and other search accuracy models.
Kilambi, Krishna Praneeth; Pacella, Michael S; Xu, Jianqing; Labonte, Jason W; Porter, Justin R; Muthu, Pravin; Drew, Kevin; Kuroda, Daisuke; Schueler-Furman, Ora; Bonneau, Richard; Gray, Jeffrey J
2013-12-01
Rounds 20-27 of the Critical Assessment of PRotein Interactions (CAPRI) provided a testing platform for computational methods designed to address a wide range of challenges. The diverse targets drove the creation of and new combinations of computational tools. In this study, RosettaDock and other novel Rosetta protocols were used to successfully predict four of the 10 blind targets. For example, for DNase domain of Colicin E2-Im2 immunity protein, RosettaDock and RosettaLigand were used to predict the positions of water molecules at the interface, recovering 46% of the native water-mediated contacts. For α-repeat Rep4-Rep2 and g-type lysozyme-PliG inhibitor complexes, homology models were built and standard and pH-sensitive docking algorithms were used to generate structures with interface RMSD values of 3.3 Å and 2.0 Å, respectively. A novel flexible sugar-protein docking protocol was also developed and used for structure prediction of the BT4661-heparin-like saccharide complex, recovering 71% of the native contacts. Challenges remain in the generation of accurate homology models for protein mutants and sampling during global docking. On proteins designed to bind influenza hemagglutinin, only about half of the mutations were identified that affect binding (T55: 54%; T56: 48%). The prediction of the structure of the xylanase complex involving homology modeling and multidomain docking pushed the limits of global conformational sampling and did not result in any successful prediction. The diversity of problems at hand requires computational algorithms to be versatile; the recent additions to the Rosetta suite expand the capabilities to encompass more biologically realistic docking problems. Copyright © 2013 Wiley Periodicals, Inc.
Altwaijry, Nojood A; Baron, Michael; Wright, David W; Coveney, Peter V; Townsend-Nicholson, Andrea
2017-05-09
The accurate identification of the specific points of interaction between G protein-coupled receptor (GPCR) oligomers is essential for the design of receptor ligands targeting oligomeric receptor targets. A coarse-grained molecular dynamics computer simulation approach would provide a compelling means of identifying these specific protein-protein interactions and could be applied both for known oligomers of interest and as a high-throughput screen to identify novel oligomeric targets. However, to be effective, this in silico modeling must provide accurate, precise, and reproducible information. This has been achieved recently in numerous biological systems using an ensemble-based all-atom molecular dynamics approach. In this study, we describe an equivalent methodology for ensemble-based coarse-grained simulations. We report the performance of this method when applied to four different GPCRs known to oligomerize using error analysis to determine the ensemble size and individual replica simulation time required. Our measurements of distance between residues shown to be involved in oligomerization of the fifth transmembrane domain from the adenosine A 2A receptor are in very good agreement with the existing biophysical data and provide information about the nature of the contact interface that cannot be determined experimentally. Calculations of distance between rhodopsin, CXCR4, and β 1 AR transmembrane domains reported to form contact points in homodimers correlate well with the corresponding measurements obtained from experimental structural data, providing an ability to predict contact interfaces computationally. Interestingly, error analysis enables identification of noninteracting regions. Our results confirm that GPCR interactions can be reliably predicted using this novel methodology.
Autonomous Motion Planning Using a Predictive Temporal Method
2009-01-01
interception test. ......150 5-20 Target and solution path heading angles for target interception test. ..............................151 10 LIST...environment as a series of distances and angles . Regardless of the technique, this knowledge of the surrounding area is crucial for the issue of...to, the rather simplistic vector driver algorithms which compute the angle between the current vehicle heading and the heading to the goal and
Computational design of thermostabilizing point mutations for G protein-coupled receptors
Popov, Petr; Peng, Yao; Shen, Ling; Stevens, Raymond C; Cherezov, Vadim; Liu, Zhi-Jie
2018-01-01
Engineering of GPCR constructs with improved thermostability is a key for successful structural and biochemical studies of this transmembrane protein family, targeted by 40% of all therapeutic drugs. Here we introduce a comprehensive computational approach to effective prediction of stabilizing mutations in GPCRs, named CompoMug, which employs sequence-based analysis, structural information, and a derived machine learning predictor. Tested experimentally on the serotonin 5-HT2C receptor target, CompoMug predictions resulted in 10 new stabilizing mutations, with an apparent thermostability gain ~8.8°C for the best single mutation and ~13°C for a triple mutant. Binding of antagonists confers further stabilization for the triple mutant receptor, with total gains of ~21°C as compared to wild type apo 5-HT2C. The predicted mutations enabled crystallization and structure determination for the 5-HT2C receptor complexes in inactive and active-like states. While CompoMug already shows high 25% hit rate and utility in GPCR structural studies, further improvements are expected with accumulation of structural and mutation data. PMID:29927385
Wing Leading Edge RCC Rapid Response Damage Prediction Tool (IMPACT2)
NASA Technical Reports Server (NTRS)
Clark, Robert; Cottter, Paul; Michalopoulos, Constantine
2013-01-01
This rapid response computer program predicts Orbiter Wing Leading Edge (WLE) damage caused by ice or foam impact during a Space Shuttle launch (Program "IMPACT2"). The program was developed after the Columbia accident in order to assess quickly WLE damage due to ice, foam, or metal impact (if any) during a Shuttle launch. IMPACT2 simulates an impact event in a few minutes for foam impactors, and in seconds for ice and metal impactors. The damage criterion is derived from results obtained from one sophisticated commercial program, which requires hours to carry out simulations of the same impact events. The program was designed to run much faster than the commercial program with prediction of projectile threshold velocities within 10 to 15% of commercial-program values. The mathematical model involves coupling of Orbiter wing normal modes of vibration to nonlinear or linear springmass models. IMPACT2 solves nonlinear or linear impact problems using classical normal modes of vibration of a target, and nonlinear/ linear time-domain equations for the projectile. Impact loads and stresses developed in the target are computed as functions of time. This model is novel because of its speed of execution. A typical model of foam, or other projectile characterized by material nonlinearities, impacting an RCC panel is executed in minutes instead of hours needed by the commercial programs. Target damage due to impact can be assessed quickly, provided that target vibration modes and allowable stress are known.
A tale of two sequences: microRNA-target chimeric reads.
Broughton, James P; Pasquinelli, Amy E
2016-04-04
In animals, a functional interaction between a microRNA (miRNA) and its target RNA requires only partial base pairing. The limited number of base pair interactions required for miRNA targeting provides miRNAs with broad regulatory potential and also makes target prediction challenging. Computational approaches to target prediction have focused on identifying miRNA target sites based on known sequence features that are important for canonical targeting and may miss non-canonical targets. Current state-of-the-art experimental approaches, such as CLIP-seq (cross-linking immunoprecipitation with sequencing), PAR-CLIP (photoactivatable-ribonucleoside-enhanced CLIP), and iCLIP (individual-nucleotide resolution CLIP), require inference of which miRNA is bound at each site. Recently, the development of methods to ligate miRNAs to their target RNAs during the preparation of sequencing libraries has provided a new tool for the identification of miRNA target sites. The chimeric, or hybrid, miRNA-target reads that are produced by these methods unambiguously identify the miRNA bound at a specific target site. The information provided by these chimeric reads has revealed extensive non-canonical interactions between miRNAs and their target mRNAs, and identified many novel interactions between miRNAs and noncoding RNAs.
Quantitative Predictive Models for Systemic Toxicity (SOT)
Models to identify systemic and specific target organ toxicity were developed to help transition the field of toxicology towards computational models. By leveraging multiple data sources to incorporate read-across and machine learning approaches, a quantitative model of systemic ...
Using Deep Learning for Compound Selectivity Prediction.
Zhang, Ruisheng; Li, Juan; Lu, Jingjing; Hu, Rongjing; Yuan, Yongna; Zhao, Zhili
2016-01-01
Compound selectivity prediction plays an important role in identifying potential compounds that bind to the target of interest with high affinity. However, there is still short of efficient and accurate computational approaches to analyze and predict compound selectivity. In this paper, we propose two methods to improve the compound selectivity prediction. We employ an improved multitask learning method in Neural Networks (NNs), which not only incorporates both activity and selectivity for other targets, but also uses a probabilistic classifier with a logistic regression. We further improve the compound selectivity prediction by using the multitask learning method in Deep Belief Networks (DBNs) which can build a distributed representation model and improve the generalization of the shared tasks. In addition, we assign different weights to the auxiliary tasks that are related to the primary selectivity prediction task. In contrast to other related work, our methods greatly improve the accuracy of the compound selectivity prediction, in particular, using the multitask learning in DBNs with modified weights obtains the best performance.
Cao, Han; Ng, Marcus C K; Jusoh, Siti Azma; Tai, Hio Kuan; Siu, Shirley W I
2017-09-01
[Formula: see text]-Helical transmembrane proteins are the most important drug targets in rational drug development. However, solving the experimental structures of these proteins remains difficult, therefore computational methods to accurately and efficiently predict the structures are in great demand. We present an improved structure prediction method TMDIM based on Park et al. (Proteins 57:577-585, 2004) for predicting bitopic transmembrane protein dimers. Three major algorithmic improvements are introduction of the packing type classification, the multiple-condition decoy filtering, and the cluster-based candidate selection. In a test of predicting nine known bitopic dimers, approximately 78% of our predictions achieved a successful fit (RMSD <2.0 Å) and 78% of the cases are better predicted than the two other methods compared. Our method provides an alternative for modeling TM bitopic dimers of unknown structures for further computational studies. TMDIM is freely available on the web at https://cbbio.cis.umac.mo/TMDIM . Website is implemented in PHP, MySQL and Apache, with all major browsers supported.
TMDIM: an improved algorithm for the structure prediction of transmembrane domains of bitopic dimers
NASA Astrophysics Data System (ADS)
Cao, Han; Ng, Marcus C. K.; Jusoh, Siti Azma; Tai, Hio Kuan; Siu, Shirley W. I.
2017-09-01
α-Helical transmembrane proteins are the most important drug targets in rational drug development. However, solving the experimental structures of these proteins remains difficult, therefore computational methods to accurately and efficiently predict the structures are in great demand. We present an improved structure prediction method TMDIM based on Park et al. (Proteins 57:577-585, 2004) for predicting bitopic transmembrane protein dimers. Three major algorithmic improvements are introduction of the packing type classification, the multiple-condition decoy filtering, and the cluster-based candidate selection. In a test of predicting nine known bitopic dimers, approximately 78% of our predictions achieved a successful fit (RMSD <2.0 Å) and 78% of the cases are better predicted than the two other methods compared. Our method provides an alternative for modeling TM bitopic dimers of unknown structures for further computational studies. TMDIM is freely available on the web at https://cbbio.cis.umac.mo/TMDIM. Website is implemented in PHP, MySQL and Apache, with all major browsers supported.
Recommendations for evaluation of computational methods
NASA Astrophysics Data System (ADS)
Jain, Ajay N.; Nicholls, Anthony
2008-03-01
The field of computational chemistry, particularly as applied to drug design, has become increasingly important in terms of the practical application of predictive modeling to pharmaceutical research and development. Tools for exploiting protein structures or sets of ligands known to bind particular targets can be used for binding-mode prediction, virtual screening, and prediction of activity. A serious weakness within the field is a lack of standards with respect to quantitative evaluation of methods, data set preparation, and data set sharing. Our goal should be to report new methods or comparative evaluations of methods in a manner that supports decision making for practical applications. Here we propose a modest beginning, with recommendations for requirements on statistical reporting, requirements for data sharing, and best practices for benchmark preparation and usage.
Kahlous, Nour Aldin; Bawarish, Muhammad Al Mohdi; Sarhan, Muhammad Arabi; Küpper, Manfred; Hasaba, Ali; Rajab, Mazen
2017-04-01
Discovering of new and effective antibiotics is a major issue facing scientists today. Luckily, the development of computer science offers new methods to overcome this issue. In this study, a set of computer software was used to predict the antibacterial activity of nonantibiotic Food and Drug Administration (FDA)-approved drugs, and to explain their action by possible binding to well-known bacterial protein targets, along with testing their antibacterial activity against Gram-positive and Gram-negative bacteria. A three-dimensional virtual screening method that relies on chemical and shape similarity was applied using rapid overlay of chemical structures (ROCS) software to select candidate compounds from the FDA-approved drugs database that share similarity with 17 known antibiotics. Then, to check their antibacterial activity, disk diffusion test was applied on Staphylococcus aureus and Escherichia coli. Finally, a protein docking method was applied using HYBRID software to predict the binding of the active candidate to the target receptor of its similar antibiotic. Of the 1,991 drugs that were screened, 34 had been selected and among them 10 drugs showed antibacterial activity, whereby drotaverine and metoclopramide activities were without precedent reports. Furthermore, the docking process predicted that diclofenac, drotaverine, (S)-flurbiprofen, (S)-ibuprofen, and indomethacin could bind to the protein target of their similar antibiotics. Nevertheless, their antibacterial activities are weak compared with those of their similar antibiotics, which can be potentiated further by performing chemical modifications on their structure.
Durán, Claudio; Daminelli, Simone; Thomas, Josephine M; Haupt, V Joachim; Schroeder, Michael; Cannistraci, Carlo Vittorio
2017-04-26
The bipartite network representation of the drug-target interactions (DTIs) in a biosystem enhances understanding of the drugs' multifaceted action modes, suggests therapeutic switching for approved drugs and unveils possible side effects. As experimental testing of DTIs is costly and time-consuming, computational predictors are of great aid. Here, for the first time, state-of-the-art DTI supervised predictors custom-made in network biology were compared-using standard and innovative validation frameworks-with unsupervised pure topological-based models designed for general-purpose link prediction in bipartite networks. Surprisingly, our results show that the bipartite topology alone, if adequately exploited by means of the recently proposed local-community-paradigm (LCP) theory-initially detected in brain-network topological self-organization and afterwards generalized to any complex network-is able to suggest highly reliable predictions, with comparable performance with the state-of-the-art-supervised methods that exploit additional (non-topological, for instance biochemical) DTI knowledge. Furthermore, a detailed analysis of the novel predictions revealed that each class of methods prioritizes distinct true interactions; hence, combining methodologies based on diverse principles represents a promising strategy to improve drug-target discovery. To conclude, this study promotes the power of bio-inspired computing, demonstrating that simple unsupervised rules inspired by principles of topological self-organization and adaptiveness arising during learning in living intelligent systems (like the brain) can efficiently equal perform complicated algorithms based on advanced, supervised and knowledge-based engineering. © The Author 2017. Published by Oxford University Press.
Gompelmann, Daniela; Hofbauer, Tobias; Gerovasili, Vasiliki; Eberhardt, Ralf; Lim, Hyun-Ju; Herth, Felix; Heussel, Claus-Peter
2016-10-01
The aim of endoscopic valve therapy in patients with emphysema is complete lobar atelectasis of the most emphysematous lobe. However, even after the radiological advent of atelectasis, great variability in clinical outcomes can be observed. The baseline clinical measures (vital capacity (VC), forced expiratory flow in 1 s (FEV1 ), residual volume (RV) and 6-min walk test (6-MWT)) and computed tomography variables (low attenuation volume (LAV) of the target lobe, LAV% of the target and the ipsilateral untreated lobe and LAV of the target lobe to LAV of the target lung and to LAV of the total lung) of 77 patients with complete atelectasis following valve therapy were retrospectively examined to determine their impact on patient´s outcome (changes in VC, FEV1 , RV and 6-MWT from baseline to the time of atelectasis). Low attenuation volume of the target lobe to LAV of the target lung predicts a significant FEV1 improvement in patients with complete lobar atelectasis following valve therapy. A 10% difference in that computed tomography predictor was associated with a 82-mL improvement in FEV1 (P = 0.006). Lower 6-MWT scores, low VC and high RV at baseline were significantly associated with greater improvement in the respective parameter (all P < 0.001). Low attenuation volume of the target lobe to LAV of the target lung and baseline clinical measures seem to significantly predict clinical outcomes in patients with complete lobar atelectasis following valve treatment. © 2016 Asian Pacific Society of Respirology.
Predicting new molecular targets for known drugs
Keiser, Michael J.; Setola, Vincent; Irwin, John J.; Laggner, Christian; Abbas, Atheir; Hufeisen, Sandra J.; Jensen, Niels H.; Kuijer, Michael B.; Matos, Roberto C.; Tran, Thuy B.; Whaley, Ryan; Glennon, Richard A.; Hert, Jérôme; Thomas, Kelan L.H.; Edwards, Douglas D.; Shoichet, Brian K.; Roth, Bryan L.
2009-01-01
Whereas drugs are intended to be selective, at least some bind to several physiologic targets, explaining both side effects and efficacy. As many drug-target combinations exist, it would be useful to explore possible interactions computationally. Here, we compared 3,665 FDA-approved and investigational drugs against hundreds of targets, defining each target by its ligands. Chemical similarities between drugs and ligand sets predicted thousands of unanticipated associations. Thirty were tested experimentally, including the antagonism of the β1 receptor by the transporter inhibitor Prozac, the inhibition of the 5-HT transporter by the ion channel drug Vadilex, and antagonism of the histamine H4 receptor by the enzyme inhibitor Rescriptor. Overall, 23 new drug-target associations were confirmed, five of which were potent (< 100 nM). The physiological relevance of one such, the drug DMT on serotonergic receptors, was confirmed in a knock-out mouse. The chemical similarity approach is systematic and comprehensive, and may suggest side-effects and new indications for many drugs. PMID:19881490
Forecasting Occurrences of Activities.
Minor, Bryan; Cook, Diane J
2017-07-01
While activity recognition has been shown to be valuable for pervasive computing applications, less work has focused on techniques for forecasting the future occurrence of activities. We present an activity forecasting method to predict the time that will elapse until a target activity occurs. This method generates an activity forecast using a regression tree classifier and offers an advantage over sequence prediction methods in that it can predict expected time until an activity occurs. We evaluate this algorithm on real-world smart home datasets and provide evidence that our proposed approach is most effective at predicting activity timings.
Visual detection following retinal damage: predictions of an inhomogeneous retino-cortical model
NASA Astrophysics Data System (ADS)
Arnow, Thomas L.; Geisler, Wilson S.
1996-04-01
A model of human visual detection performance has been developed, based on available anatomical and physiological data for the primate visual system. The inhomogeneous retino- cortical (IRC) model computes detection thresholds by comparing simulated neural responses to target patterns with responses to a uniform background of the same luminance. The model incorporates human ganglion cell sampling distributions; macaque monkey ganglion cell receptive field properties; macaque cortical cell contrast nonlinearities; and a optical decision rule based on ideal observer theory. Spatial receptive field properties of cortical neurons were not included. Two parameters were allowed to vary while minimizing the squared error between predicted and observed thresholds. One parameter was decision efficiency, the other was the relative strength of the ganglion-cell center and surround. The latter was only allowed to vary within a small range consistent with known physiology. Contrast sensitivity was measured for sinewave gratings as a function of spatial frequency, target size and eccentricity. Contrast sensitivity was also measured for an airplane target as a function of target size, with and without artificial scotomas. The results of these experiments, as well as contrast sensitivity data from the literature were compared to predictions of the IRC model. Predictions were reasonably good for grating and airplane targets.
Computational prediction of host-pathogen protein-protein interactions.
Dyer, Matthew D; Murali, T M; Sobral, Bruno W
2007-07-01
Infectious diseases such as malaria result in millions of deaths each year. An important aspect of any host-pathogen system is the mechanism by which a pathogen can infect its host. One method of infection is via protein-protein interactions (PPIs) where pathogen proteins target host proteins. Developing computational methods that identify which PPIs enable a pathogen to infect a host has great implications in identifying potential targets for therapeutics. We present a method that integrates known intra-species PPIs with protein-domain profiles to predict PPIs between host and pathogen proteins. Given a set of intra-species PPIs, we identify the functional domains in each of the interacting proteins. For every pair of functional domains, we use Bayesian statistics to assess the probability that two proteins with that pair of domains will interact. We apply our method to the Homo sapiens-Plasmodium falciparum host-pathogen system. Our system predicts 516 PPIs between proteins from these two organisms. We show that pairs of human proteins we predict to interact with the same Plasmodium protein are close to each other in the human PPI network and that Plasmodium pairs predicted to interact with same human protein are co-expressed in DNA microarray datasets measured during various stages of the Plasmodium life cycle. Finally, we identify functionally enriched sub-networks spanned by the predicted interactions and discuss the plausibility of our predictions. Supplementary data are available at http://staff.vbi.vt.edu/dyermd/publications/dyer2007a.html. Supplementary data are available at Bioinformatics online.
Probabilistic neural networks modeling of the 48-h LC50 acute toxicity endpoint to Daphnia magna.
Niculescu, S P; Lewis, M A; Tigner, J
2008-01-01
Two modeling experiments based on the maximum likelihood estimation paradigm and targeting prediction of the Daphnia magna 48-h LC50 acute toxicity endpoint for both organic and inorganic compounds are reported. The resulting models computational algorithms are implemented as basic probabilistic neural networks with Gaussian kernel (statistical corrections included). The first experiment uses strictly D. magna information for 971 structures as training/learning data and the resulting model targets practical applications. The second experiment uses the same training/learning information plus additional data on another 29 compounds whose endpoint information is originating from D. pulex and Ceriodaphnia dubia. It only targets investigation of the effect of mixing strictly D. magna 48-h LC50 modeling information with small amounts of similar information estimated from related species, and this is done as part of the validation process. A complementary 81 compounds dataset (involving only strictly D. magna information) is used to perform external testing. On this external test set, the Gaussian character of the distribution of the residuals is confirmed for both models. This allows the use of traditional statistical methodology to implement computation of confidence intervals for the unknown measured values based on the models predictions. Examples are provided for the model targeting practical applications. For the same model, a comparison with other existing models targeting the same endpoint is performed.
Statistical Use of Argonaute Expression and RISC Assembly in microRNA Target Identification
Stanhope, Stephen A.; Sengupta, Srikumar; den Boon, Johan; Ahlquist, Paul; Newton, Michael A.
2009-01-01
MicroRNAs (miRNAs) posttranscriptionally regulate targeted messenger RNAs (mRNAs) by inducing cleavage or otherwise repressing their translation. We address the problem of detecting m/miRNA targeting relationships in homo sapiens from microarray data by developing statistical models that are motivated by the biological mechanisms used by miRNAs. The focus of our modeling is the construction, activity, and mediation of RNA-induced silencing complexes (RISCs) competent for targeted mRNA cleavage. We demonstrate that regression models accommodating RISC abundance and controlling for other mediating factors fit the expression profiles of known target pairs substantially better than models based on m/miRNA expressions alone, and lead to verifications of computational target pair predictions that are more sensitive than those based on marginal expression levels. Because our models are fully independent of exogenous results from sequence-based computational methods, they are appropriate for use as either a primary or secondary source of information regarding m/miRNA target pair relationships, especially in conjunction with high-throughput expression studies. PMID:19779550
LaBute, Montiago X; Zhang, Xiaohua; Lenderman, Jason; Bennion, Brian J; Wong, Sergio E; Lightstone, Felice C
2014-01-01
Late-stage or post-market identification of adverse drug reactions (ADRs) is a significant public health issue and a source of major economic liability for drug development. Thus, reliable in silico screening of drug candidates for possible ADRs would be advantageous. In this work, we introduce a computational approach that predicts ADRs by combining the results of molecular docking and leverages known ADR information from DrugBank and SIDER. We employed a recently parallelized version of AutoDock Vina (VinaLC) to dock 906 small molecule drugs to a virtual panel of 409 DrugBank protein targets. L1-regularized logistic regression models were trained on the resulting docking scores of a 560 compound subset from the initial 906 compounds to predict 85 side effects, grouped into 10 ADR phenotype groups. Only 21% (87 out of 409) of the drug-protein binding features involve known targets of the drug subset, providing a significant probe of off-target effects. As a control, associations of this drug subset with the 555 annotated targets of these compounds, as reported in DrugBank, were used as features to train a separate group of models. The Vina off-target models and the DrugBank on-target models yielded comparable median area-under-the-receiver-operating-characteristic-curves (AUCs) during 10-fold cross-validation (0.60-0.69 and 0.61-0.74, respectively). Evidence was found in the PubMed literature to support several putative ADR-protein associations identified by our analysis. Among them, several associations between neoplasm-related ADRs and known tumor suppressor and tumor invasiveness marker proteins were found. A dual role for interstitial collagenase in both neoplasms and aneurysm formation was also identified. These associations all involve off-target proteins and could not have been found using available drug/on-target interaction data. This study illustrates a path forward to comprehensive ADR virtual screening that can potentially scale with increasing number of CPUs to tens of thousands of protein targets and millions of potential drug candidates.
An efficient hybrid technique in RCS predictions of complex targets at high frequencies
NASA Astrophysics Data System (ADS)
Algar, María-Jesús; Lozano, Lorena; Moreno, Javier; González, Iván; Cátedra, Felipe
2017-09-01
Most computer codes in Radar Cross Section (RCS) prediction use Physical Optics (PO) and Physical theory of Diffraction (PTD) combined with Geometrical Optics (GO) and Geometrical Theory of Diffraction (GTD). The latter approaches are computationally cheaper and much more accurate for curved surfaces, but not applicable for the computation of the RCS of all surfaces of a complex object due to the presence of caustic problems in the analysis of concave surfaces or flat surfaces in the far field. The main contribution of this paper is the development of a hybrid method based on a new combination of two asymptotic techniques: GTD and PO, considering the advantages and avoiding the disadvantages of each of them. A very efficient and accurate method to analyze the RCS of complex structures at high frequencies is obtained with the new combination. The proposed new method has been validated comparing RCS results obtained for some simple cases using the proposed approach and RCS using the rigorous technique of Method of Moments (MoM). Some complex cases have been examined at high frequencies contrasting the results with PO. This study shows the accuracy and the efficiency of the hybrid method and its suitability for the computation of the RCS at really large and complex targets at high frequencies.
NASA Astrophysics Data System (ADS)
Özyörük, Y.; Tester, B. J.
2011-08-01
Although it is widely accepted that aircraft noise needs to be further reduced, there is an equally important, on-going requirement to accurately predict the strengths of all the different aircraft noise sources, not only to ensure that a new aircraft is certifiable and can meet the ever more stringent local airport noise rules but also to prioritize and apply appropriate noise source reduction technologies at the design stage. As the bypass ratio of aircraft engines is increased - in order to reduce fuel consumption, emissions and jet mixing noise - the fan noise that radiates from the bypass exhaust nozzle is becoming one of the loudest engine sources, despite the large areas of acoustically absorptive treatment in the bypass duct. This paper addresses this 'aft fan' noise source, in particular the prediction of the propagation of fan noise through the bypass exhaust nozzle/jet exhaust flow and radiation out to the far-field observer. The proposed prediction method is equally applicable to fan tone and fan broadband noise (and also turbine and core noise) but here the method is validated with measured test data using simulated fan tones. The measured data had been previously acquired on two model scale turbofan engine exhausts with bypass and heated core flows typical of those found in a modern high bypass engine, but under static conditions (i.e. no flight simulation). The prediction method is based on frequency-domain solutions of the linearized Euler equations in conjunction with perfectly matched layer equations at the inlet and far-field boundaries using high-order finite differences. The discrete system of equations is inverted by the parallel sparse solver MUMPS. Far-field predictions are carried out by integrating Kirchhoff's formula in frequency domain. In addition to the acoustic modes excited and radiated, some non-acoustic waves within the cold stream-ambient shear layer are also captured by the computations at some flow and excitation frequencies. By extracting phase speed information from the near-field pressure solution, these non-acoustic waves are shown to be convective Kelvin-Helmholtz instability waves. Strouhal numbers computed along the shear layer, based on the local momentum thickness also confirm this in accordance with Michalke's instability criterion for incompressible round jets with a similar shear layer profile. Comparisons of the computed far-field results with the measured acoustic data reveal that, in general, the solver predicts the peak sound levels well when the farfield is dominated by the in-duct target mode (the target mode being the one specified to the in-duct mode generator). Calculations also show that the agreement can be considerably improved when the non-target modes are also included, despite their low in-duct levels. This is due to the fact that each duct mode has its own distinct directionality and a non-target low level mode may become dominant at angles where the higher-level target mode is directionally weak. The overall agreement between the computations and experiment strongly suggests that, at least for the range of mean flows and acoustic conditions considered, the physical aeroacoustic radiation processes are fully captured through the frequency-domain solutions to the linearized Euler equations and hence this could form the basis of a reliable aircraft noise prediction method.
TARGET researchers use various sequencing and array-based methods to examine the genomes, transcriptomes, and for some diseases epigenomes of select childhood cancers. This “multi-omic” approach generates a comprehensive profile of molecular alterations for each cancer type. Alterations are changes in DNA or RNA, such as rearrangements in chromosome structure or variations in gene expression, respectively. Through computational analyses and assays to validate biological function, TARGET researchers predict which alterations disrupt the function of a gene or pathway and promote cancer growth, progression, and/or survival. Researchers identify candidate therapeutic targets and/or prognostic markers from the cancer-associated alterations.
Delle Monache, Sergio; Lacquaniti, Francesco; Bosco, Gianfranco
2015-02-01
Manual interceptions are known to depend critically on integration of visual feedback information and experience-based predictions of the interceptive event. Within this framework, coupling between gaze and limb movements might also contribute to the interceptive outcome, since eye movements afford acquisition of high-resolution visual information. We investigated this issue by analyzing subjects' head-fixed oculomotor behavior during manual interceptions. Subjects moved a mouse cursor to intercept computer-generated ballistic trajectories either congruent with Earth's gravity or perturbed with weightlessness (0 g) or hypergravity (2 g) effects. In separate sessions, trajectories were either fully visible or occluded before interception to enforce visual prediction. Subjects' oculomotor behavior was classified in terms of amounts of time they gazed at different visual targets and of overall number of saccades. Then, by way of multivariate analyses, we assessed the following: (1) whether eye movement patterns depended on targets' laws of motion and occlusions; and (2) whether interceptive performance was related to the oculomotor behavior. First, we found that eye movement patterns depended significantly on targets' laws of motion and occlusion, suggesting predictive mechanisms. Second, subjects coupled differently oculomotor and interceptive behavior depending on whether targets were visible or occluded. With visible targets, subjects made smaller interceptive errors if they gazed longer at the mouse cursor. Instead, with occluded targets, they achieved better performance by increasing the target's tracking accuracy and by avoiding gaze shifts near interception, suggesting that precise ocular tracking provided better trajectory predictions for the interceptive response.
Informatics Approaches for Predicting, Understanding, and Testing Cancer Drug Combinations.
Tang, Jing
2017-01-01
Making cancer treatment more effective is one of the grand challenges in our health care system. However, many drugs have entered clinical trials but so far showed limited efficacy or induced rapid development of resistance. We urgently need multi-targeted drug combinations, which shall selectively inhibit the cancer cells and block the emergence of drug resistance. The book chapter focuses on mathematical and computational tools to facilitate the discovery of the most promising drug combinations to improve efficacy and prevent resistance. Data integration approaches that leverage drug-target interactions, cancer molecular features, and signaling pathways for predicting, understanding, and testing drug combinations are critically reviewed.
2012-01-01
Background Plants respond to external stimuli through fine regulation of gene expression partially ensured by small RNAs. Of these, microRNAs (miRNAs) play a crucial role. They negatively regulate gene expression by targeting the cleavage or translational inhibition of target messenger RNAs (mRNAs). In Hevea brasiliensis, environmental and harvesting stresses are known to affect natural rubber production. This study set out to identify abiotic stress-related miRNAs in Hevea using next-generation sequencing and bioinformatic analysis. Results Deep sequencing of small RNAs was carried out on plantlets subjected to severe abiotic stress using the Solexa technique. By combining the LeARN pipeline, data from the Plant microRNA database (PMRD) and Hevea EST sequences, we identified 48 conserved miRNA families already characterized in other plant species, and 10 putatively novel miRNA families. The results showed the most abundant size for miRNAs to be 24 nucleotides, except for seven families. Several MIR genes produced both 20-22 nucleotides and 23-27 nucleotides. The two miRNA class sizes were detected for both conserved and putative novel miRNA families, suggesting their functional duality. The EST databases were scanned with conserved and novel miRNA sequences. MiRNA targets were computationally predicted and analysed. The predicted targets involved in "responses to stimuli" and to "antioxidant" and "transcription activities" are presented. Conclusions Deep sequencing of small RNAs combined with transcriptomic data is a powerful tool for identifying conserved and novel miRNAs when the complete genome is not yet available. Our study provided additional information for evolutionary studies and revealed potentially specific regulation of the control of redox status in Hevea. PMID:22330773
Prado-Prado, Francisco; García-Mera, Xerardo; Escobar, Manuel; Alonso, Nerea; Caamaño, Olga; Yañez, Matilde; González-Díaz, Humberto
2012-01-01
The number of neurodegenerative diseases has been increasing in recent years. Many of the drug candidates to be used in the treatment of neurodegenerative diseases present specific 3D structural features. An important protein in this sense is the acetylcholinesterase (AChE), which is the target of many Alzheimer's dementia drugs. Consequently, the prediction of Drug-Protein Interactions (DPIs/nDPIs) between new drug candidates and specific 3D structure and targets is of major importance. To this end, we can use Quantitative Structure-Activity Relationships (QSAR) models to carry out a rational DPIs prediction. Unfortunately, many previous QSAR models developed to predict DPIs take into consideration only 2D structural information and codify the activity against only one target. To solve this problem we can develop some 3D multi-target QSAR (3D mt-QSAR) models. In this study, using the 3D MI-DRAGON technique, we have introduced a new predictor for DPIs based on two different well-known software. We have used the MARCH-INSIDE (MI) and DRAGON software to calculate 3D structural parameters for drugs and targets respectively. Both classes of 3D parameters were used as input to train Artificial Neuronal Network (ANN) algorithms using as benchmark dataset the complex network (CN) made up of all DPIs between US FDA approved drugs and their targets. The entire dataset was downloaded from the DrugBank database. The best 3D mt-QSAR predictor found was an ANN of Multi-Layer Perceptron-type (MLP) with profile MLP 37:37-24-1:1. This MLP classifies correctly 274 out of 321 DPIs (Sensitivity = 85.35%) and 1041 out of 1190 nDPIs (Specificity = 87.48%), corresponding to training Accuracy = 87.03%. We have validated the model with external predicting series with Sensitivity = 84.16% (542/644 DPIs; Specificity = 87.51% (2039/2330 nDPIs) and Accuracy = 86.78%. The new CNs of DPIs reconstructed from US FDA can be used to explore large DPI databases in order to discover both new drugs and/or targets. We have carried out some theoretical-experimental studies to illustrate the practical use of 3D MI-DRAGON. First, we have reported the prediction and pharmacological assay of 22 different rasagiline derivatives with possible AChE inhibitory activity. In this work, we have reviewed different computational studies on Drug- Protein models. First, we have reviewed 10 studies on DP computational models. Next, we have reviewed 2D QSAR, 3D QSAR, CoMFA, CoMSIA and Docking with different compounds to find Drug-Protein QSAR models. Last, we have developped a 3D multi-target QSAR (3D mt-QSAR) models for the prediction of the activity of new compounds against different targets or the discovery of new targets.
Representational constraints on children's suggestibility.
Ceci, Stephen J; Papierno, Paul B; Kulkofsky, Sarah
2007-06-01
In a multistage experiment, twelve 4- and 9-year-old children participated in a triad rating task. Their ratings were mapped with multidimensional scaling, from which euclidean distances were computed to operationalize semantic distance between items in target pairs. These children and age-mates then participated in an experiment that employed these target pairs in a story, which was followed by a misinformation manipulation. Analyses linked individual and developmental differences in suggestibility to children's representations of the target items. Semantic proximity was a strong predictor of differences in suggestibility: The closer a suggested distractor was to the original item's representation, the greater was the distractor's suggestive influence. The triad participants' semantic proximity subsequently served as the basis for correctly predicting memory performance in the larger group. Semantic proximity enabled a priori counterintuitive predictions of reverse age-related trends to be confirmed whenever the distance between representations of items in a target pair was greater for younger than for older children.
Sulfonylureas and Glinides as New PPARγ Agonists:. Virtual Screening and Biological Assays
NASA Astrophysics Data System (ADS)
Scarsi, Marco; Podvinec, Michael; Roth, Adrian; Hug, Hubert; Kersten, Sander; Albrecht, Hugo; Schwede, Torsten; Meyer, Urs A.; Rücker, Christoph
2007-12-01
This work combines the predictive power of computational drug discovery with experimental validation by means of biological assays. In this way, a new mode of action for type 2 diabetes drugs has been unvealed. Most drugs currently employed in the treatment of type 2 diabetes either target the sulfonylurea receptor stimulating insulin release (sulfonylureas, glinides), or target PPARγ improving insulin resistance (thiazolidinediones). Our work shows that sulfonylureas and glinides bind to PPARγ and exhibit PPARγ agonistic activity. This result was predicted in silico by virtual screening and confirmed in vitro by three biological assays. This dual mode of action of sulfonylureas and glinides may open new perspectives for the molecular pharmacology of antidiabetic drugs, since it provides evidence that drugs can be designed which target both the sulfonylurea receptor and PPARγ. Targeting both receptors could in principle allow to increase pancreatic insulin secretion, as well as to improve insulin resistance.
Computational Approaches to Chemical Hazard Assessment
Luechtefeld, Thomas; Hartung, Thomas
2018-01-01
Summary Computational prediction of toxicity has reached new heights as a result of decades of growth in the magnitude and diversity of biological data. Public packages for statistics and machine learning make model creation faster. New theory in machine learning and cheminformatics enables integration of chemical structure, toxicogenomics, simulated and physical data in the prediction of chemical health hazards, and other toxicological information. Our earlier publications have characterized a toxicological dataset of unprecedented scale resulting from the European REACH legislation (Registration Evaluation Authorisation and Restriction of Chemicals). These publications dove into potential use cases for regulatory data and some models for exploiting this data. This article analyzes the options for the identification and categorization of chemicals, moves on to the derivation of descriptive features for chemicals, discusses different kinds of targets modeled in computational toxicology, and ends with a high-level perspective of the algorithms used to create computational toxicology models. PMID:29101769
Reduced Fragment Diversity for Alpha and Alpha-Beta Protein Structure Prediction using Rosetta.
Abbass, Jad; Nebel, Jean-Christophe
2017-01-01
Protein structure prediction is considered a main challenge in computational biology. The biannual international competition, Critical Assessment of protein Structure Prediction (CASP), has shown in its eleventh experiment that free modelling target predictions are still beyond reliable accuracy, therefore, much effort should be made to improve ab initio methods. Arguably, Rosetta is considered as the most competitive method when it comes to targets with no homologues. Relying on fragments of length 9 and 3 from known structures, Rosetta creates putative structures by assembling candidate fragments. Generally, the structure with the lowest energy score, also known as first model, is chosen to be the "predicted one". A thorough study has been conducted on the role and diversity of 3-mers involved in Rosetta's model "refinement" phase. Usage of the standard number of 3-mers - i.e. 200 - has been shown to degrade alpha and alpha-beta protein conformations initially achieved by assembling 9-mers. Therefore, a new prediction pipeline is proposed for Rosetta where the "refinement" phase is customised according to a target's structural class prediction. Over 8% improvement in terms of first model structure accuracy is reported for alpha and alpha-beta classes when decreasing the number of 3- mers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Prediction of resource volumes at untested locations using simple local prediction models
Attanasi, E.D.; Coburn, T.C.; Freeman, P.A.
2006-01-01
This paper shows how local spatial nonparametric prediction models can be applied to estimate volumes of recoverable gas resources at individual undrilled sites, at multiple sites on a regional scale, and to compute confidence bounds for regional volumes based on the distribution of those estimates. An approach that combines cross-validation, the jackknife, and bootstrap procedures is used to accomplish this task. Simulation experiments show that cross-validation can be applied beneficially to select an appropriate prediction model. The cross-validation procedure worked well for a wide range of different states of nature and levels of information. Jackknife procedures are used to compute individual prediction estimation errors at undrilled locations. The jackknife replicates also are used with a bootstrap resampling procedure to compute confidence bounds for the total volume. The method was applied to data (partitioned into a training set and target set) from the Devonian Antrim Shale continuous-type gas play in the Michigan Basin in Otsego County, Michigan. The analysis showed that the model estimate of total recoverable volumes at prediction sites is within 4 percent of the total observed volume. The model predictions also provide frequency distributions of the cell volumes at the production unit scale. Such distributions are the basis for subsequent economic analyses. ?? Springer Science+Business Media, LLC 2007.
Lawrenz, Morgan; Baron, Riccardo; Wang, Yi; McCammon, J Andrew
2012-01-01
The Independent-Trajectory Thermodynamic Integration (IT-TI) approach for free energy calculation with distributed computing is described. IT-TI utilizes diverse conformational sampling obtained from multiple, independent simulations to obtain more reliable free energy estimates compared to single TI predictions. The latter may significantly under- or over-estimate the binding free energy due to finite sampling. We exemplify the advantages of the IT-TI approach using two distinct cases of protein-ligand binding. In both cases, IT-TI yields distributions of absolute binding free energy estimates that are remarkably centered on the target experimental values. Alternative protocols for the practical and general application of IT-TI calculations are investigated. We highlight a protocol that maximizes predictive power and computational efficiency.
High-throughput screening, predictive modeling and computational embryology - Abstract
High-throughput screening (HTS) studies are providing a rich source of data that can be applied to chemical profiling to address sensitivity and specificity of molecular targets, biological pathways, cellular and developmental processes. EPA’s ToxCast project is testing 960 uniq...
Benson, M
2016-03-01
Many patients with common diseases do not respond to treatment. This is a key challenge to modern health care, which causes both suffering and enormous costs. One important reason for the lack of treatment response is that common diseases are associated with altered interactions between thousands of genes, in combinations that differ between subgroups of patients who do or do not respond to a given treatment. Such subgroups, or even distinct disease entities, have been described recently in asthma, diabetes, autoimmune diseases and cancer. High-throughput techniques (omics) allow identification and characterization of such subgroups or entities. This may have important clinical implications, such as identification of diagnostic markers for individualized medicine, as well as new therapeutic targets for patients who do not respond to existing drugs. For example, whole-genome sequencing may be applied to more accurately guide treatment of neurodevelopmental diseases, or to identify drugs specifically targeting mutated genes in cancer. A study published in 2015 showed that 28% of hepatocellular carcinomas contained mutated genes that potentially could be targeted by drugs already approved by the US Food and Drug Administration. A translational study, which is described in detail, showed how combined omics, computational, functional and clinical studies could identify and validate a novel diagnostic and therapeutic candidate gene in allergy. Another important clinical implication is the identification of potential diagnostic markers and therapeutic targets for predictive and preventative medicine. By combining computational and experimental methods, early disease regulators may be identified and potentially used to predict and treat disease before it becomes symptomatic. Systems medicine is an emerging discipline, which may contribute to such developments through combining omics with computational, functional and clinical studies. The aims of this review are to provide a brief introduction to systems medicine and discuss how it may contribute to the clinical implementation of individualized treatment, using clinically relevant examples. © 2015 The Association for the Publication of the Journal of Internal Medicine.
Wang, Yongcui; Chen, Shilong; Deng, Naiyang; Wang, Yong
2013-01-01
Computational inference of novel therapeutic values for existing drugs, i.e., drug repositioning, offers the great prospect for faster and low-risk drug development. Previous researches have indicated that chemical structures, target proteins, and side-effects could provide rich information in drug similarity assessment and further disease similarity. However, each single data source is important in its own way and data integration holds the great promise to reposition drug more accurately. Here, we propose a new method for drug repositioning, PreDR (Predict Drug Repositioning), to integrate molecular structure, molecular activity, and phenotype data. Specifically, we characterize drug by profiling in chemical structure, target protein, and side-effects space, and define a kernel function to correlate drugs with diseases. Then we train a support vector machine (SVM) to computationally predict novel drug-disease interactions. PreDR is validated on a well-established drug-disease network with 1,933 interactions among 593 drugs and 313 diseases. By cross-validation, we find that chemical structure, drug target, and side-effects information are all predictive for drug-disease relationships. More experimentally observed drug-disease interactions can be revealed by integrating these three data sources. Comparison with existing methods demonstrates that PreDR is competitive both in accuracy and coverage. Follow-up database search and pathway analysis indicate that our new predictions are worthy of further experimental validation. Particularly several novel predictions are supported by clinical trials databases and this shows the significant prospects of PreDR in future drug treatment. In conclusion, our new method, PreDR, can serve as a useful tool in drug discovery to efficiently identify novel drug-disease interactions. In addition, our heterogeneous data integration framework can be applied to other problems. PMID:24244318
2017-01-01
The accurate identification of the specific points of interaction between G protein-coupled receptor (GPCR) oligomers is essential for the design of receptor ligands targeting oligomeric receptor targets. A coarse-grained molecular dynamics computer simulation approach would provide a compelling means of identifying these specific protein–protein interactions and could be applied both for known oligomers of interest and as a high-throughput screen to identify novel oligomeric targets. However, to be effective, this in silico modeling must provide accurate, precise, and reproducible information. This has been achieved recently in numerous biological systems using an ensemble-based all-atom molecular dynamics approach. In this study, we describe an equivalent methodology for ensemble-based coarse-grained simulations. We report the performance of this method when applied to four different GPCRs known to oligomerize using error analysis to determine the ensemble size and individual replica simulation time required. Our measurements of distance between residues shown to be involved in oligomerization of the fifth transmembrane domain from the adenosine A2A receptor are in very good agreement with the existing biophysical data and provide information about the nature of the contact interface that cannot be determined experimentally. Calculations of distance between rhodopsin, CXCR4, and β1AR transmembrane domains reported to form contact points in homodimers correlate well with the corresponding measurements obtained from experimental structural data, providing an ability to predict contact interfaces computationally. Interestingly, error analysis enables identification of noninteracting regions. Our results confirm that GPCR interactions can be reliably predicted using this novel methodology. PMID:28383913
Li, Guang-Qing; Liu, Zi; Shen, Hong-Bin; Yu, Dong-Jun
2016-10-01
As one of the most ubiquitous post-transcriptional modifications of RNA, N 6 -methyladenosine ( [Formula: see text]) plays an essential role in many vital biological processes. The identification of [Formula: see text] sites in RNAs is significantly important for both basic biomedical research and practical drug development. In this study, we designed a computational-based method, called TargetM6A, to rapidly and accurately target [Formula: see text] sites solely from the primary RNA sequences. Two new features, i.e., position-specific nucleotide/dinucleotide propensities (PSNP/PSDP), are introduced and combined with the traditional nucleotide composition (NC) feature to formulate RNA sequences. The extracted features are further optimized to obtain a much more compact and discriminative feature subset by applying an incremental feature selection (IFS) procedure. Based on the optimized feature subset, we trained TargetM6A on the training dataset with a support vector machine (SVM) as the prediction engine. We compared the proposed TargetM6A method with existing methods for predicting [Formula: see text] sites by performing stringent jackknife tests and independent validation tests on benchmark datasets. The experimental results show that the proposed TargetM6A method outperformed the existing methods for predicting [Formula: see text] sites and remarkably improved the prediction performances, with MCC = 0.526 and AUC = 0.818. We also provided a user-friendly web server for TargetM6A, which is publicly accessible for academic use at http://csbio.njust.edu.cn/bioinf/TargetM6A.
Stempler, Shiri; Yizhak, Keren; Ruppin, Eytan
2014-01-01
Accumulating evidence links numerous abnormalities in cerebral metabolism with the progression of Alzheimer's disease (AD), beginning in its early stages. Here, we integrate transcriptomic data from AD patients with a genome-scale computational human metabolic model to characterize the altered metabolism in AD, and employ state-of-the-art metabolic modelling methods to predict metabolic biomarkers and drug targets in AD. The metabolic descriptions derived are first tested and validated on a large scale versus existing AD proteomics and metabolomics data. Our analysis shows a significant decrease in the activity of several key metabolic pathways, including the carnitine shuttle, folate metabolism and mitochondrial transport. We predict several metabolic biomarkers of AD progression in the blood and the CSF, including succinate and prostaglandin D2. Vitamin D and steroid metabolism pathways are enriched with predicted drug targets that could mitigate the metabolic alterations observed. Taken together, this study provides the first network wide view of the metabolic alterations associated with AD progression. Most importantly, it offers a cohort of new metabolic leads for the diagnosis of AD and its treatment. PMID:25127241
Computational prediction of protein hot spot residues.
Morrow, John Kenneth; Zhang, Shuxing
2012-01-01
Most biological processes involve multiple proteins interacting with each other. It has been recently discovered that certain residues in these protein-protein interactions, which are called hot spots, contribute more significantly to binding affinity than others. Hot spot residues have unique and diverse energetic properties that make them challenging yet important targets in the modulation of protein-protein complexes. Design of therapeutic agents that interact with hot spot residues has proven to be a valid methodology in disrupting unwanted protein-protein interactions. Using biological methods to determine which residues are hot spots can be costly and time consuming. Recent advances in computational approaches to predict hot spots have incorporated a myriad of features, and have shown increasing predictive successes. Here we review the state of knowledge around protein-protein interactions, hot spots, and give an overview of multiple in silico prediction techniques of hot spot residues.
Computational Prediction of Hot Spot Residues
Morrow, John Kenneth; Zhang, Shuxing
2013-01-01
Most biological processes involve multiple proteins interacting with each other. It has been recently discovered that certain residues in these protein-protein interactions, which are called hot spots, contribute more significantly to binding affinity than others. Hot spot residues have unique and diverse energetic properties that make them challenging yet important targets in the modulation of protein-protein complexes. Design of therapeutic agents that interact with hot spot residues has proven to be a valid methodology in disrupting unwanted protein-protein interactions. Using biological methods to determine which residues are hot spots can be costly and time consuming. Recent advances in computational approaches to predict hot spots have incorporated a myriad of features, and have shown increasing predictive successes. Here we review the state of knowledge around protein-protein interactions, hot spots, and give an overview of multiple in silico prediction techniques of hot spot residues. PMID:22316154
A systematic study of chemogenomics of carbohydrates.
Gu, Jiangyong; Luo, Fang; Chen, Lirong; Yuan, Gu; Xu, Xiaojie
2014-03-04
Chemogenomics focuses on the interactions between biologically active molecules and protein targets for drug discovery. Carbohydrates are the most abundant compounds in natural products. Compared with other drugs, the carbohydrate drugs show weaker side effects. Searching for multi-target carbohydrate drugs can be regarded as a solution to improve therapeutic efficacy and safety. In this work, we collected 60 344 carbohydrates from the Universal Natural Products Database (UNPD) and explored the chemical space of carbohydrates by principal component analysis. We found that there is a large quantity of potential lead compounds among carbohydrates. Then we explored the potential of carbohydrates in drug discovery by using a network-based multi-target computational approach. All carbohydrates were docked to 2389 target proteins. The most potential carbohydrates for drug discovery and their indications were predicted based on a docking score-weighted prediction model. We also explored the interactions between carbohydrates and target proteins to find the pathological networks, potential drug candidates and new indications.
A Production System Model of Capturing Reactive Moving Targets. M.S. Thesis
NASA Technical Reports Server (NTRS)
Jagacinski, R. J.; Plamondon, B. D.; Miller, R. A.
1984-01-01
Subjects manipulated a control stick to position a cursor over a moving target that reacted with a computer-generated escape strategy. The cursor movements were described at two levels of abstraction. At the upper level, a production system described transitions among four modes of activity; rapid acquisition, close following, a predictive mode, and herding. Within each mode, differential equations described trajectory-generating mechanisms. A simulation of this two-level model captures the targets in a manner resembling the episodic time histories of human subjects.
NASA Astrophysics Data System (ADS)
Nooruddin, Hasan A.; Anifowose, Fatai; Abdulraheem, Abdulazeez
2014-03-01
Soft computing techniques are recently becoming very popular in the oil industry. A number of computational intelligence-based predictive methods have been widely applied in the industry with high prediction capabilities. Some of the popular methods include feed-forward neural networks, radial basis function network, generalized regression neural network, functional networks, support vector regression and adaptive network fuzzy inference system. A comparative study among most popular soft computing techniques is presented using a large dataset published in literature describing multimodal pore systems in the Arab D formation. The inputs to the models are air porosity, grain density, and Thomeer parameters obtained using mercury injection capillary pressure profiles. Corrected air permeability is the target variable. Applying developed permeability models in recent reservoir characterization workflow ensures consistency between micro and macro scale information represented mainly by Thomeer parameters and absolute permeability. The dataset was divided into two parts with 80% of data used for training and 20% for testing. The target permeability variable was transformed to the logarithmic scale as a pre-processing step and to show better correlations with the input variables. Statistical and graphical analysis of the results including permeability cross-plots and detailed error measures were created. In general, the comparative study showed very close results among the developed models. The feed-forward neural network permeability model showed the lowest average relative error, average absolute relative error, standard deviations of error and root means squares making it the best model for such problems. Adaptive network fuzzy inference system also showed very good results.
Getting the Most out of PubChem for Virtual Screening
Kim, Sunghwan
2016-01-01
Introduction With the emergence of the “big data” era, the biomedical research community has great interest in exploiting publicly available chemical information for drug discovery. PubChem is an example of public databases that provide a large amount of chemical information free of charge. Areas covered This article provides an overview of how PubChem’s data, tools, and services can be used for virtual screening and reviews recent publications that discuss important aspects of exploiting PubChem for drug discovery. Expert opinion PubChem offers comprehensive chemical information useful for drug discovery. It also provides multiple programmatic access routes, which are essential to build automated virtual screening pipelines that exploit PubChem data. In addition, PubChemRDF allows users to download PubChem data and load them into a local computing facility, facilitating data integration between PubChem and other resources. PubChem resources have been used in many studies for developing bioactivity and toxicity prediction models, discovering polypharmacologic (multi-target) ligands, and identifying new macromolecule targets of compounds (for drug-repurposing or off-target side effect prediction). These studies demonstrate the usefulness of PubChem as a key resource for computer-aided drug discovery and related area. PMID:27454129
Outside influence: The sense of agency takes into account what is in our surroundings.
Hon, Nicholas; Seow, Yin-Yi; Pereira, Don
2018-05-01
We are quite capable of distinguishing those outcomes we cause from those we do not. This ability to sense self-agency is thought to be produced by a comparison between a predictive representation of an outcome and the actual outcome that occurs. It is unclear, though, specifically what types of information can be entered into agency computations. Here, we demonstrate that information from non-target stimuli (stimuli that are not directly acted upon) incidentally present in our surroundings can influence predictions of outcomes, consequently modulating the sense of agency over clearly-defined target outcomes (those that occur to acted-upon stimuli). This provides the first evidence that our sense of agency is contextualized with respect to what is in our immediate visual environment. Furthermore, our data suggest that agency computations, instead of just a single comparison, may involve comparisons performed in stages, with different stages involving different types/classes of information. A model of such multi-stage comparisons is described. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Krusienski, D. J.; Shih, J. J.
2011-04-01
A brain-computer interface (BCI) is a device that enables severely disabled people to communicate and interact with their environments using their brain waves. Most research investigating BCI in humans has used scalp-recorded electroencephalography or intracranial electrocorticography. The use of brain signals obtained directly from stereotactic depth electrodes to control a BCI has not previously been explored. In this study, event-related potentials (ERPs) recorded from bilateral stereotactic depth electrodes implanted in and adjacent to the hippocampus were used to control a P300 Speller paradigm. The ERPs were preprocessed and used to train a linear classifier to subsequently predict the intended target letters. The classifier was able to predict the intended target character at or near 100% accuracy using fewer than 15 stimulation sequences in the two subjects tested. Our results demonstrate that ERPs from hippocampal and hippocampal adjacent depth electrodes can be used to reliably control the P300 Speller BCI paradigm.
Quantum mechanical design of enzyme active sites.
Zhang, Xiyun; DeChancie, Jason; Gunaydin, Hakan; Chowdry, Arnab B; Clemente, Fernando R; Smith, Adam J T; Handel, T M; Houk, K N
2008-02-01
The design of active sites has been carried out using quantum mechanical calculations to predict the rate-determining transition state of a desired reaction in presence of the optimal arrangement of catalytic functional groups (theozyme). Eleven versatile reaction targets were chosen, including hydrolysis, dehydration, isomerization, aldol, and Diels-Alder reactions. For each of the targets, the predicted mechanism and the rate-determining transition state (TS) of the uncatalyzed reaction in water is presented. For the rate-determining TS, a catalytic site was designed using naturalistic catalytic units followed by an estimation of the rate acceleration provided by a reoptimization of the catalytic site. Finally, the geometries of the sites were compared to the X-ray structures of related natural enzymes. Recent advances in computational algorithms and power, coupled with successes in computational protein design, have provided a powerful context for undertaking such an endeavor. We propose that theozymes are excellent candidates to serve as the active site models for design processes.
Xiong, Dapeng; Zeng, Jianyang; Gong, Haipeng
2017-09-01
Residue-residue contacts are of great value for protein structure prediction, since contact information, especially from those long-range residue pairs, can significantly reduce the complexity of conformational sampling for protein structure prediction in practice. Despite progresses in the past decade on protein targets with abundant homologous sequences, accurate contact prediction for proteins with limited sequence information is still far from satisfaction. Methodologies for these hard targets still need further improvement. We presented a computational program DeepConPred, which includes a pipeline of two novel deep-learning-based methods (DeepCCon and DeepRCon) as well as a contact refinement step, to improve the prediction of long-range residue contacts from primary sequences. When compared with previous prediction approaches, our framework employed an effective scheme to identify optimal and important features for contact prediction, and was only trained with coevolutionary information derived from a limited number of homologous sequences to ensure robustness and usefulness for hard targets. Independent tests showed that 59.33%/49.97%, 64.39%/54.01% and 70.00%/59.81% of the top L/5, top L/10 and top 5 predictions were correct for CASP10/CASP11 proteins, respectively. In general, our algorithm ranked as one of the best methods for CASP targets. All source data and codes are available at http://166.111.152.91/Downloads.html . hgong@tsinghua.edu.cn or zengjy321@tsinghua.edu.cn. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
A novel in silico approach to drug discovery via computational intelligence.
Hecht, David; Fogel, Gary B
2009-04-01
A computational intelligence drug discovery platform is introduced as an innovative technology designed to accelerate high-throughput drug screening for generalized protein-targeted drug discovery. This technology results in collections of novel small molecule compounds that bind to protein targets as well as details on predicted binding modes and molecular interactions. The approach was tested on dihydrofolate reductase (DHFR) for novel antimalarial drug discovery; however, the methods developed can be applied broadly in early stage drug discovery and development. For this purpose, an initial fragment library was defined, and an automated fragment assembly algorithm was generated. These were combined with a computational intelligence screening tool for prescreening of compounds relative to DHFR inhibition. The entire method was assayed relative to spaces of known DHFR inhibitors and with chemical feasibility in mind, leading to experimental validation in future studies.
BUSCA: an integrative web server to predict subcellular localization of proteins.
Savojardo, Castrense; Martelli, Pier Luigi; Fariselli, Piero; Profiti, Giuseppe; Casadio, Rita
2018-04-30
Here, we present BUSCA (http://busca.biocomp.unibo.it), a novel web server that integrates different computational tools for predicting protein subcellular localization. BUSCA combines methods for identifying signal and transit peptides (DeepSig and TPpred3), GPI-anchors (PredGPI) and transmembrane domains (ENSEMBLE3.0 and BetAware) with tools for discriminating subcellular localization of both globular and membrane proteins (BaCelLo, MemLoci and SChloro). Outcomes from the different tools are processed and integrated for annotating subcellular localization of both eukaryotic and bacterial protein sequences. We benchmark BUSCA against protein targets derived from recent CAFA experiments and other specific data sets, reporting performance at the state-of-the-art. BUSCA scores better than all other evaluated methods on 2732 targets from CAFA2, with a F1 value equal to 0.49 and among the best methods when predicting targets from CAFA3. We propose BUSCA as an integrated and accurate resource for the annotation of protein subcellular localization.
How good are publicly available web services that predict bioactivity profiles for drug repurposing?
Murtazalieva, K A; Druzhilovskiy, D S; Goel, R K; Sastry, G N; Poroikov, V V
2017-10-01
Drug repurposing provides a non-laborious and less expensive way for finding new human medicines. Computational assessment of bioactivity profiles shed light on the hidden pharmacological potential of the launched drugs. Currently, several freely available computational tools are available via the Internet, which predict multitarget profiles of drug-like compounds. They are based on chemical similarity assessment (ChemProt, SuperPred, SEA, SwissTargetPrediction and TargetHunter) or machine learning methods (ChemProt and PASS). To compare their performance, this study has created two evaluation sets, consisting of (1) 50 well-known repositioned drugs and (2) 12 drugs recently patented for new indications. In the first set, sensitivity values varied from 0.64 (TarPred) to 1.00 (PASS Online) for the initial indications and from 0.64 (TarPred) to 0.98 (PASS Online) for the repurposed indications. In the second set, sensitivity values varied from 0.08 (SuperPred) to 1.00 (PASS Online) for the initial indications and from 0.00 (SuperPred) to 1.00 (PASS Online) for the repurposed indications. Thus, this analysis demonstrated that the performance of machine learning methods surpassed those of chemical similarity assessments, particularly in the case of novel repurposed indications.
Computational prediction of new auxetic materials.
Dagdelen, John; Montoya, Joseph; de Jong, Maarten; Persson, Kristin
2017-08-22
Auxetics comprise a rare family of materials that manifest negative Poisson's ratio, which causes an expansion instead of contraction under tension. Most known homogeneously auxetic materials are porous foams or artificial macrostructures and there are few examples of inorganic materials that exhibit this behavior as polycrystalline solids. It is now possible to accelerate the discovery of materials with target properties, such as auxetics, using high-throughput computations, open databases, and efficient search algorithms. Candidates exhibiting features correlating with auxetic behavior were chosen from the set of more than 67 000 materials in the Materials Project database. Poisson's ratios were derived from the calculated elastic tensor of each material in this reduced set of compounds. We report that this strategy results in the prediction of three previously unidentified homogeneously auxetic materials as well as a number of compounds with a near-zero homogeneous Poisson's ratio, which are here denoted "anepirretic materials".There are very few inorganic materials with auxetic homogenous Poisson's ratio in polycrystalline form. Here authors develop an approach to screening materials databases for target properties such as negative Poisson's ratio by using stability and structural motifs to predict new instances of homogenous auxetic behavior as well as a number of materials with near-zero Poisson's ratio.
Chaturvedi, Anurag; Raeymaekers, Joost A M; Volckaert, Filip A M
2014-07-01
An intriguing question in biology is how the evolution of gene regulation is shaped by natural selection in natural populations. Among the many known regulatory mechanisms, regulation of gene expression by microRNAs (miRNAs) is of critical importance. However, our understanding of their evolution in natural populations is limited. Studying the role of miRNAs in three-spined stickleback, an important natural model for speciation research, may provide new insights into adaptive polymorphisms. However, lack of annotation of miRNA genes in its genome is a bottleneck. To fill this research gap, we used the genome of three-spined stickleback to predict miRNAs and their targets. We predicted 1486 mature miRNAs using the homology-based miRNA prediction approach. We then performed functional annotation and enrichment analysis of these targets, which identified over-represented motifs. Further, a database resource (GAmiRdb) has been developed for dynamically searching miRNAs and their targets exclusively in three-spined stickleback. Finally, the database was used in two case studies focusing on freshwater adaptation in natural populations. In the first study, we found 44 genomic regions overlapping with predicted miRNA targets. In the second study, we identified two SNPs altering the MRE seed site of sperm-specific glyceraldehyde-3-phosphate gene. These findings highlight the importance of the GAmiRdb knowledge base in understanding adaptive evolution. © 2014 John Wiley & Sons Ltd.
Hsin, Kun-Yi; Ghosh, Samik; Kitano, Hiroaki
2013-01-01
Increased availability of bioinformatics resources is creating opportunities for the application of network pharmacology to predict drug effects and toxicity resulting from multi-target interactions. Here we present a high-precision computational prediction approach that combines two elaborately built machine learning systems and multiple molecular docking tools to assess binding potentials of a test compound against proteins involved in a complex molecular network. One of the two machine learning systems is a re-scoring function to evaluate binding modes generated by docking tools. The second is a binding mode selection function to identify the most predictive binding mode. Results from a series of benchmark validations and a case study show that this approach surpasses the prediction reliability of other techniques and that it also identifies either primary or off-targets of kinase inhibitors. Integrating this approach with molecular network maps makes it possible to address drug safety issues by comprehensively investigating network-dependent effects of a drug or drug candidate. PMID:24391846
Qian, Jiang; Esumi, Noriko; Chen, Yangjian; Wang, Qingliang; Chowers, Itay; Zack, Donald J.
2005-01-01
Identification of tissue-specific gene regulatory networks can yield insights into the molecular basis of a tissue's development, function and pathology. Here, we present a computational approach designed to identify potential regulatory target genes of photoreceptor cell-specific transcription factors (TFs). The approach is based on the hypothesis that genes related to the retina in terms of expression, disease and/or function are more likely to be the targets of retina-specific TFs than other genes. A list of genes that are preferentially expressed in retina was obtained by integrating expressed sequence tag, SAGE and microarray datasets. The regulatory targets of retina-specific TFs are enriched in this set of retina-related genes. A Bayesian approach was employed to integrate information about binding site location relative to a gene's transcription start site. Our method was applied to three retina-specific TFs, CRX, NRL and NR2E3, and a number of potential targets were predicted. To experimentally assess the validity of the bioinformatic predictions, mobility shift, transient transfection and chromatin immunoprecipitation assays were performed with five predicted CRX targets, and the results were suggestive of CRX regulation in 5/5, 3/5 and 4/5 cases, respectively. Together, these experiments strongly suggest that RP1, GUCY2D, ABCA4 are novel targets of CRX. PMID:15967807
Hot-spot analysis for drug discovery targeting protein-protein interactions.
Rosell, Mireia; Fernández-Recio, Juan
2018-04-01
Protein-protein interactions are important for biological processes and pathological situations, and are attractive targets for drug discovery. However, rational drug design targeting protein-protein interactions is still highly challenging. Hot-spot residues are seen as the best option to target such interactions, but their identification requires detailed structural and energetic characterization, which is only available for a tiny fraction of protein interactions. Areas covered: In this review, the authors cover a variety of computational methods that have been reported for the energetic analysis of protein-protein interfaces in search of hot-spots, and the structural modeling of protein-protein complexes by docking. This can help to rationalize the discovery of small-molecule inhibitors of protein-protein interfaces of therapeutic interest. Computational analysis and docking can help to locate the interface, molecular dynamics can be used to find suitable cavities, and hot-spot predictions can focus the search for inhibitors of protein-protein interactions. Expert opinion: A major difficulty for applying rational drug design methods to protein-protein interactions is that in the majority of cases the complex structure is not available. Fortunately, computational docking can complement experimental data. An interesting aspect to explore in the future is the integration of these strategies for targeting PPIs with large-scale mutational analysis.
Evidence for object permanence in the smooth-pursuit eye movements of monkeys.
Churchland, Mark M; Chou, I-Han; Lisberger, Stephen G
2003-10-01
We recorded the smooth-pursuit eye movements of monkeys in response to targets that were extinguished (blinked) for 200 ms in mid-trajectory. Eye velocity declined considerably during the target blinks, even when the blinks were completely predictable in time and space. Eye velocity declined whether blinks were presented during steady-state pursuit of a constant-velocity target, during initiation of pursuit before target velocity was reached, or during eye accelerations induced by a change in target velocity. When a physical occluder covered the trajectory of the target during blinks, creating the impression that the target moved behind it, the decline in eye velocity was reduced or abolished. If the target was occluded once the eye had reached target velocity, pursuit was only slightly poorer than normal, uninterrupted pursuit. In contrast, if the target was occluded during the initiation of pursuit, while the eye was accelerating toward target velocity, pursuit during occlusion was very different from normal pursuit. Eye velocity remained relatively stable during target occlusion, showing much less acceleration than normal pursuit and much less of a decline than was produced by a target blink. Anticipatory or predictive eye acceleration was typically observed just prior to the reappearance of the target. Computer simulations show that these results are best understood by assuming that a mechanism of eye-velocity memory remains engaged during target occlusion but is disengaged during target blinks.
Ensemble-based docking: From hit discovery to metabolism and toxicity predictions
Evangelista, Wilfredo; Weir, Rebecca; Ellingson, Sally; ...
2016-07-29
The use of ensemble-based docking for the exploration of biochemical pathways and toxicity prediction of drug candidates is described. We describe the computational engineering work necessary to enable large ensemble docking campaigns on supercomputers. We show examples where ensemble-based docking has significantly increased the number and the diversity of validated drug candidates. Finally, we illustrate how ensemble-based docking can be extended beyond hit discovery and toward providing a structural basis for the prediction of metabolism and off-target binding relevant to pre-clinical and clinical trials.
DrugECs: An Ensemble System with Feature Subspaces for Accurate Drug-Target Interaction Prediction
Jiang, Jinjian; Wang, Nian; Zhang, Jun
2017-01-01
Background Drug-target interaction is key in drug discovery, especially in the design of new lead compound. However, the work to find a new lead compound for a specific target is complicated and hard, and it always leads to many mistakes. Therefore computational techniques are commonly adopted in drug design, which can save time and costs to a significant extent. Results To address the issue, a new prediction system is proposed in this work to identify drug-target interaction. First, drug-target pairs are encoded with a fragment technique and the software “PaDEL-Descriptor.” The fragment technique is for encoding target proteins, which divides each protein sequence into several fragments in order and encodes each fragment with several physiochemical properties of amino acids. The software “PaDEL-Descriptor” creates encoding vectors for drug molecules. Second, the dataset of drug-target pairs is resampled and several overlapped subsets are obtained, which are then input into kNN (k-Nearest Neighbor) classifier to build an ensemble system. Conclusion Experimental results on the drug-target dataset showed that our method performs better and runs faster than the state-of-the-art predictors. PMID:28744468
NASA Astrophysics Data System (ADS)
Basant, Nikita; Gupta, Shikha
2018-03-01
The reactions of molecular ozone (O3), hydroxyl (•OH) and nitrate (NO3) radicals are among the major pathways of removal of volatile organic compounds (VOCs) in the atmospheric environment. The gas-phase kinetic rate constants (kO3, kOH, kNO3) are thus, important in assessing the ultimate fate and exposure risk of atmospheric VOCs. Experimental data for rate constants are not available for many emerging VOCs and the computational methods reported so far address a single target modeling only. In this study, we have developed a multi-target (mt) QSPR model for simultaneous prediction of multiple kinetic rate constants (kO3, kOH, kNO3) of diverse organic chemicals considering an experimental data set of VOCs for which values of all the three rate constants are available. The mt-QSPR model identified and used five descriptors related to the molecular size, degree of saturation and electron density in a molecule, which were mechanistically interpretable. These descriptors successfully predicted three rate constants simultaneously. The model yielded high correlations (R2 = 0.874-0.924) between the experimental and simultaneously predicted endpoint rate constant (kO3, kOH, kNO3) values in test arrays for all the three systems. The model also passed all the stringent statistical validation tests for external predictivity. The proposed multi-target QSPR model can be successfully used for predicting reactivity of new VOCs simultaneously for their exposure risk assessment.
Lessons from (co-)evolution in the docking of proteins and peptides for CAPRI Rounds 28-35.
Yu, Jinchao; Andreani, Jessica; Ochsenbein, Françoise; Guerois, Raphaël
2017-03-01
Computational protein-protein docking is of great importance for understanding protein interactions at the structural level. Critical assessment of prediction of interactions (CAPRI) experiments provide the protein docking community with a unique opportunity to blindly test methods based on real-life cases and help accelerate methodology development. For CAPRI Rounds 28-35, we used an automatic docking pipeline integrating the coarse-grained co-evolution-based potential InterEvScore. This score was developed to exploit the information contained in the multiple sequence alignments of binding partners and selectively recognize co-evolved interfaces. Together with Zdock/Frodock for rigid-body docking, SOAP-PP for atomic potential and Rosetta applications for structural refinement, this pipeline reached high performance on a majority of targets. For protein-peptide docking and interfacial water position predictions, we also explored different means of taking evolutionary information into account. Overall, our group ranked 1 st by correctly predicting 10 targets, composed of 1 High, 7 Medium and 2 Acceptable predictions. Excellent and Outstanding levels of accuracy were reached for each of the two water prediction targets, respectively. Altogether, in 15 out of 18 targets in total, evolutionary information, either through co-evolution or conservation analyses, could provide key constraints to guide modeling towards the most likely assemblies. These results open promising perspectives regarding the way evolutionary information can be valuable to improve docking prediction accuracy. Proteins 2017; 85:378-390. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Head-target tracking control of well drilling
NASA Astrophysics Data System (ADS)
Agzamov, Z. V.
2018-05-01
The method of directional drilling trajectory control for oil and gas wells using predictive models is considered in the paper. The developed method does not apply optimization and therefore there is no need for the high-performance computing. Nevertheless, it allows following the well-plan with high precision taking into account process input saturation. Controller output is calculated both from the present target reference point of the well-plan and from well trajectory prediction with using the analytical model. This method allows following a well-plan not only on angular, but also on the Cartesian coordinates. Simulation of the control system has confirmed the high precision and operation performance with a wide range of random disturbance action.
Evaluating Computational Gene Ontology Annotations.
Škunca, Nives; Roberts, Richard J; Steffen, Martin
2017-01-01
Two avenues to understanding gene function are complementary and often overlapping: experimental work and computational prediction. While experimental annotation generally produces high-quality annotations, it is low throughput. Conversely, computational annotations have broad coverage, but the quality of annotations may be variable, and therefore evaluating the quality of computational annotations is a critical concern.In this chapter, we provide an overview of strategies to evaluate the quality of computational annotations. First, we discuss why evaluating quality in this setting is not trivial. We highlight the various issues that threaten to bias the evaluation of computational annotations, most of which stem from the incompleteness of biological databases. Second, we discuss solutions that address these issues, for example, targeted selection of new experimental annotations and leveraging the existing experimental annotations.
Modeling covalent-modifier drugs.
Awoonor-Williams, Ernest; Walsh, Andrew G; Rowley, Christopher N
2017-11-01
In this review, we present a summary of how computer modeling has been used in the development of covalent-modifier drugs. Covalent-modifier drugs bind by forming a chemical bond with their target. This covalent binding can improve the selectivity of the drug for a target with complementary reactivity and result in increased binding affinities due to the strength of the covalent bond formed. In some cases, this results in irreversible inhibition of the target, but some targeted covalent inhibitor (TCI) drugs bind covalently but reversibly. Computer modeling is widely used in drug discovery, but different computational methods must be used to model covalent modifiers because of the chemical bonds formed. Structural and bioinformatic analysis has identified sites of modification that could yield selectivity for a chosen target. Docking methods, which are used to rank binding poses of large sets of inhibitors, have been augmented to support the formation of protein-ligand bonds and are now capable of predicting the binding pose of covalent modifiers accurately. The pK a 's of amino acids can be calculated in order to assess their reactivity towards electrophiles. QM/MM methods have been used to model the reaction mechanisms of covalent modification. The continued development of these tools will allow computation to aid in the development of new covalent-modifier drugs. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taleyarkhan, R.P.; Kim, S.H.; Haines, J.
The authors provide a perspective overview of pretest modeling and analysis work related to thermal shock effects in spallation neutron source targets that were designed for conducting thermal shock experiments at the Los Alamos Neutron Science Center (LANSCE). Data to be derived are to be used for benchmarking computational tools as well as to assess the efficacy of optical gauges for monitoring dynamic fluid pressures and phenomena such as the onset of cavitation.
2017-09-01
target is modeled based on the kinematic constraints for the type of vehicle and the type of path on which it is traveling . The discrete- time position...is modeled based on the kinematic constraints for the type of vehicle and the type of path on which it is traveling . The discrete- time position...49 A. TRAVELING TIME COMPUTATION ............................................. 49 B. CONVERSION TO
Combinatorial therapy discovery using mixed integer linear programming.
Pang, Kaifang; Wan, Ying-Wooi; Choi, William T; Donehower, Lawrence A; Sun, Jingchun; Pant, Dhruv; Liu, Zhandong
2014-05-15
Combinatorial therapies play increasingly important roles in combating complex diseases. Owing to the huge cost associated with experimental methods in identifying optimal drug combinations, computational approaches can provide a guide to limit the search space and reduce cost. However, few computational approaches have been developed for this purpose, and thus there is a great need of new algorithms for drug combination prediction. Here we proposed to formulate the optimal combinatorial therapy problem into two complementary mathematical algorithms, Balanced Target Set Cover (BTSC) and Minimum Off-Target Set Cover (MOTSC). Given a disease gene set, BTSC seeks a balanced solution that maximizes the coverage on the disease genes and minimizes the off-target hits at the same time. MOTSC seeks a full coverage on the disease gene set while minimizing the off-target set. Through simulation, both BTSC and MOTSC demonstrated a much faster running time over exhaustive search with the same accuracy. When applied to real disease gene sets, our algorithms not only identified known drug combinations, but also predicted novel drug combinations that are worth further testing. In addition, we developed a web-based tool to allow users to iteratively search for optimal drug combinations given a user-defined gene set. Our tool is freely available for noncommercial use at http://www.drug.liuzlab.org/. zhandong.liu@bcm.edu Supplementary data are available at Bioinformatics online.
Control of a visual keyboard using an electrocorticographic brain-computer interface.
Krusienski, Dean J; Shih, Jerry J
2011-05-01
Brain-computer interfaces (BCIs) are devices that enable severely disabled people to communicate and interact with their environments using their brain waves. Most studies investigating BCI in humans have used scalp EEG as the source of electrical signals and focused on motor control of prostheses or computer cursors on a screen. The authors hypothesize that the use of brain signals obtained directly from the cortical surface will more effectively control a communication/spelling task compared to scalp EEG. A total of 6 patients with medically intractable epilepsy were tested for the ability to control a visual keyboard using electrocorticographic (ECOG) signals. ECOG data collected during a P300 visual task paradigm were preprocessed and used to train a linear classifier to subsequently predict the intended target letters. The classifier was able to predict the intended target character at or near 100% accuracy using fewer than 15 stimulation sequences in 5 of the 6 people tested. ECOG data from electrodes outside the language cortex contributed to the classifier and enabled participants to write words on a visual keyboard. This is a novel finding because previous invasive BCI research in humans used signals exclusively from the motor cortex to control a computer cursor or prosthetic device. These results demonstrate that ECOG signals from electrodes both overlying and outside the language cortex can reliably control a visual keyboard to generate language output without voice or limb movements.
Adeli, Hossein; Vitu, Françoise; Zelinsky, Gregory J
2017-02-08
Modern computational models of attention predict fixations using saliency maps and target maps, which prioritize locations for fixation based on feature contrast and target goals, respectively. But whereas many such models are biologically plausible, none have looked to the oculomotor system for design constraints or parameter specification. Conversely, although most models of saccade programming are tightly coupled to underlying neurophysiology, none have been tested using real-world stimuli and tasks. We combined the strengths of these two approaches in MASC, a model of attention in the superior colliculus (SC) that captures known neurophysiological constraints on saccade programming. We show that MASC predicted the fixation locations of humans freely viewing naturalistic scenes and performing exemplar and categorical search tasks, a breadth achieved by no other existing model. Moreover, it did this as well or better than its more specialized state-of-the-art competitors. MASC's predictive success stems from its inclusion of high-level but core principles of SC organization: an over-representation of foveal information, size-invariant population codes, cascaded population averaging over distorted visual and motor maps, and competition between motor point images for saccade programming, all of which cause further modulation of priority (attention) after projection of saliency and target maps to the SC. Only by incorporating these organizing brain principles into our models can we fully understand the transformation of complex visual information into the saccade programs underlying movements of overt attention. With MASC, a theoretical footing now exists to generate and test computationally explicit predictions of behavioral and neural responses in visually complex real-world contexts. SIGNIFICANCE STATEMENT The superior colliculus (SC) performs a visual-to-motor transformation vital to overt attention, but existing SC models cannot predict saccades to visually complex real-world stimuli. We introduce a brain-inspired SC model that outperforms state-of-the-art image-based competitors in predicting the sequences of fixations made by humans performing a range of everyday tasks (scene viewing and exemplar and categorical search), making clear the value of looking to the brain for model design. This work is significant in that it will drive new research by making computationally explicit predictions of SC neural population activity in response to naturalistic stimuli and tasks. It will also serve as a blueprint for the construction of other brain-inspired models, helping to usher in the next generation of truly intelligent autonomous systems. Copyright © 2017 the authors 0270-6474/17/371453-15$15.00/0.
Li, Yaohang; Liu, Hui; Rata, Ionel; Jakobsson, Eric
2013-02-25
The rapidly increasing number of protein crystal structures available in the Protein Data Bank (PDB) has naturally made statistical analyses feasible in studying complex high-order inter-residue correlations. In this paper, we report a context-based secondary structure potential (CSSP) for assessing the quality of predicted protein secondary structures generated by various prediction servers. CSSP is a sequence-position-specific knowledge-based potential generated based on the potentials of mean force approach, where high-order inter-residue interactions are taken into consideration. The CSSP potential is effective in identifying secondary structure predictions with good quality. In 56% of the targets in the CB513 benchmark, the optimal CSSP potential is able to recognize the native secondary structure or a prediction with Q3 accuracy higher than 90% as best scored in the predicted secondary structures generated by 10 popularly used secondary structure prediction servers. In more than 80% of the CB513 targets, the predicted secondary structures with the lowest CSSP potential values yield higher than 80% Q3 accuracy. Similar performance of CSSP is found on the CASP9 targets as well. Moreover, our computational results also show that the CSSP potential using triplets outperforms the CSSP potential using doublets and is currently better than the CSSP potential using quartets.
OPS MCC level B/C formulation requirements: Area targets and space volumes processor
NASA Technical Reports Server (NTRS)
Bishop, M. J., Jr.
1979-01-01
The level B/C mathematical specifications for the area targets and space volumes processor (ATSVP) are described. The processor is designed to compute the acquisition-of-signal (AOS) and loss-of-signal (LOS) times for area targets and space volumes. The characteristics of the area targets and space volumes are given. The mathematical equations necessary to determine whether the spacecraft lies within the area target or space volume are given. These equations provide a detailed model of the target geometry. A semianalytical technique for predicting the AOS and LOS time periods is disucssed. This technique was designed to bound the actual visibility period using a simplified target geometry model and unperturbed orbital motion. Functional overview of the ATSVP is presented and it's detailed logic flow is described.
On the accuracy and reliability of predictions by control-system theory.
Bourbon, W T; Copeland, K E; Dyer, V R; Harman, W K; Mosley, B L
1990-12-01
In three experiments we used control-system theory (CST) to predict the results of tracking tasks on which people held a handle to keep a cursor even with a target on a computer screen. 10 people completed a total of 104 replications of the task. In each experiment, there were two conditions: in one, only the handle affected the position of the cursor; in the other, a random disturbance also affected the cursor. From a person's performance during Condition 1, we derived constants used in the CST model to predict the results of Condition 2. In two experiments, predictions occurred a few minutes before Condition 2; in one experiment, the delay was 1 yr. During a 1-min. experimental run, the positions of handle and cursor, produced by the person, were each sampled 1800 times, once every 1/30 sec. During a modeling run, the model predicted the positions of the handle and target for each of the 1800 intervals sampled in the experimental run. In 104 replications, the mean correlation between predicted and actual positions of the handle was .996; SD = .002.
Targeted proteomics identifies liquid-biopsy signatures for extracapsular prostate cancer
Kim, Yunee; Jeon, Jouhyun; Mejia, Salvador; Yao, Cindy Q; Ignatchenko, Vladimir; Nyalwidhe, Julius O; Gramolini, Anthony O; Lance, Raymond S; Troyer, Dean A; Drake, Richard R; Boutros, Paul C; Semmes, O. John; Kislinger, Thomas
2016-01-01
Biomarkers are rapidly gaining importance in personalized medicine. Although numerous molecular signatures have been developed over the past decade, there is a lack of overlap and many biomarkers fail to validate in independent patient cohorts and hence are not useful for clinical application. For these reasons, identification of novel and robust biomarkers remains a formidable challenge. We combine targeted proteomics with computational biology to discover robust proteomic signatures for prostate cancer. Quantitative proteomics conducted in expressed prostatic secretions from men with extraprostatic and organ-confined prostate cancers identified 133 differentially expressed proteins. Using synthetic peptides, we evaluate them by targeted proteomics in a 74-patient cohort of expressed prostatic secretions in urine. We quantify a panel of 34 candidates in an independent 207-patient cohort. We apply machine-learning approaches to develop clinical predictive models for prostate cancer diagnosis and prognosis. Our results demonstrate that computationally guided proteomics can discover highly accurate non-invasive biomarkers. PMID:27350604
Slama, Matous; Benes, Peter M.; Bila, Jiri
2015-01-01
During radiotherapy treatment for thoracic and abdomen cancers, for example, lung cancers, respiratory motion moves the target tumor and thus badly affects the accuracy of radiation dose delivery into the target. A real-time image-guided technique can be used to monitor such lung tumor motion for accurate dose delivery, but the system latency up to several hundred milliseconds for repositioning the radiation beam also affects the accuracy. In order to compensate the latency, neural network prediction technique with real-time retraining can be used. We have investigated real-time prediction of 3D time series of lung tumor motion on a classical linear model, perceptron model, and on a class of higher-order neural network model that has more attractive attributes regarding its optimization convergence and computational efficiency. The implemented static feed-forward neural architectures are compared when using gradient descent adaptation and primarily the Levenberg-Marquardt batch algorithm as the ones of the most common and most comprehensible learning algorithms. The proposed technique resulted in fast real-time retraining, so the total computational time on a PC platform was equal to or even less than the real treatment time. For one-second prediction horizon, the proposed techniques achieved accuracy less than one millimeter of 3D mean absolute error in one hundred seconds of total treatment time. PMID:25893194
Bukovsky, Ivo; Homma, Noriyasu; Ichiji, Kei; Cejnek, Matous; Slama, Matous; Benes, Peter M; Bila, Jiri
2015-01-01
During radiotherapy treatment for thoracic and abdomen cancers, for example, lung cancers, respiratory motion moves the target tumor and thus badly affects the accuracy of radiation dose delivery into the target. A real-time image-guided technique can be used to monitor such lung tumor motion for accurate dose delivery, but the system latency up to several hundred milliseconds for repositioning the radiation beam also affects the accuracy. In order to compensate the latency, neural network prediction technique with real-time retraining can be used. We have investigated real-time prediction of 3D time series of lung tumor motion on a classical linear model, perceptron model, and on a class of higher-order neural network model that has more attractive attributes regarding its optimization convergence and computational efficiency. The implemented static feed-forward neural architectures are compared when using gradient descent adaptation and primarily the Levenberg-Marquardt batch algorithm as the ones of the most common and most comprehensible learning algorithms. The proposed technique resulted in fast real-time retraining, so the total computational time on a PC platform was equal to or even less than the real treatment time. For one-second prediction horizon, the proposed techniques achieved accuracy less than one millimeter of 3D mean absolute error in one hundred seconds of total treatment time.
Deorphaning the Macromolecular Targets of the Natural Anticancer Compound Doliculide.
Schneider, Gisbert; Reker, Daniel; Chen, Tao; Hauenstein, Kurt; Schneider, Petra; Altmann, Karl-Heinz
2016-09-26
The cyclodepsipeptide doliculide is a marine natural product with strong actin-polymerizing and anticancer activities. Evidence for doliculide acting as a potent and subtype-selective antagonist of prostanoid E receptor 3 (EP3) is presented. Computational target prediction suggested that this membrane receptor is a likely macromolecular target and enabled immediate in vitro validation. This proof-of-concept study demonstrates the in silico deorphanization of phenotypic screening hits as a viable concept for future natural-product-inspired chemical biology and drug discovery efforts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mathematical modeling and computational prediction of cancer drug resistance.
Sun, Xiaoqiang; Hu, Bin
2017-06-23
Diverse forms of resistance to anticancer drugs can lead to the failure of chemotherapy. Drug resistance is one of the most intractable issues for successfully treating cancer in current clinical practice. Effective clinical approaches that could counter drug resistance by restoring the sensitivity of tumors to the targeted agents are urgently needed. As numerous experimental results on resistance mechanisms have been obtained and a mass of high-throughput data has been accumulated, mathematical modeling and computational predictions using systematic and quantitative approaches have become increasingly important, as they can potentially provide deeper insights into resistance mechanisms, generate novel hypotheses or suggest promising treatment strategies for future testing. In this review, we first briefly summarize the current progress of experimentally revealed resistance mechanisms of targeted therapy, including genetic mechanisms, epigenetic mechanisms, posttranslational mechanisms, cellular mechanisms, microenvironmental mechanisms and pharmacokinetic mechanisms. Subsequently, we list several currently available databases and Web-based tools related to drug sensitivity and resistance. Then, we focus primarily on introducing some state-of-the-art computational methods used in drug resistance studies, including mechanism-based mathematical modeling approaches (e.g. molecular dynamics simulation, kinetic model of molecular networks, ordinary differential equation model of cellular dynamics, stochastic model, partial differential equation model, agent-based model, pharmacokinetic-pharmacodynamic model, etc.) and data-driven prediction methods (e.g. omics data-based conventional screening approach for node biomarkers, static network approach for edge biomarkers and module biomarkers, dynamic network approach for dynamic network biomarkers and dynamic module network biomarkers, etc.). Finally, we discuss several further questions and future directions for the use of computational methods for studying drug resistance, including inferring drug-induced signaling networks, multiscale modeling, drug combinations and precision medicine. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Neumann, D. W.; Zagona, E. A.; Rajagopalan, B.
2005-12-01
Warm summer stream temperatures due to low flows and high air temperatures are a critical water quality problem in many western U.S. river basins because they impact threatened fish species' habitat. Releases from storage reservoirs and river diversions are typically driven by human demands such as irrigation, municipal and industrial uses and hydropower production. Historically, fish needs have not been formally incorporated in the operating procedures, which do not supply adequate flows for fish in the warmest, driest periods. One way to address this problem is for local and federal organizations to purchase water rights to be used to increase flows, hence decrease temperatures. A statistical model-predictive technique for efficient and effective use of a limited supply of fish water has been developed and incorporated in a Decision Support System (DSS) that can be used in an operations mode to effectively use water acquired to mitigate warm stream temperatures. The DSS is a rule-based system that uses the empirical, statistical predictive model to predict maximum daily stream temperatures based on flows that meet the non-fish operating criteria, and to compute reservoir releases of allocated fish water when predicted temperatures exceed fish habitat temperature targets with a user specified confidence of the temperature predictions. The empirical model is developed using a step-wise linear regression procedure to select significant predictors, and includes the computation of a prediction confidence interval to quantify the uncertainty of the prediction. The DSS also includes a strategy for managing a limited amount of water throughout the season based on degree-days in which temperatures are allowed to exceed the preferred targets for a limited number of days that can be tolerated by the fish. The DSS is demonstrated by an example application to the Truckee River near Reno, Nevada using historical flows from 1988 through 1994. In this case, the statistical model predicts maximum daily Truckee River stream temperatures in June, July, and August using predicted maximum daily air temperature and modeled average daily flow. The empirical relationship was created using a step-wise linear regression selection process using 1993 and 1994 data. The adjusted R2 value for this relationship is 0.91. The model is validated using historic data and demonstrated in a predictive mode with a prediction confidence interval to quantify the uncertainty. Results indicate that the DSS could substantially reduce the number of target temperature violations, i.e., stream temperatures exceeding the target temperature levels detrimental to fish habitat. The results show that large volumes of water are necessary to meet a temperature target with a high degree of certainty and violations may still occur if all of the stored water is depleted. A lower degree of certainty requires less water but there is a higher probability that the temperature targets will be exceeded. Addition of the rules that consider degree-days resulted in a reduction of the number of temperature violations without increasing the amount of water used. This work is described in detail in publications referenced in the URL below.
Kryshtafovych, Andriy; Moult, John; Bartual, Sergio G.; Bazan, J. Fernando; Berman, Helen; Casteel, Darren E.; Christodoulou, Evangelos; Everett, John K.; Hausmann, Jens; Heidebrecht, Tatjana; Hills, Tanya; Hui, Raymond; Hunt, John F.; Jayaraman, Seetharaman; Joachimiak, Andrzej; Kennedy, Michael A.; Kim, Choel; Lingel, Andreas; Michalska, Karolina; Montelione, Gaetano T.; Otero, José M.; Perrakis, Anastassis; Pizarro, Juan C.; van Raaij, Mark J.; Ramelot, Theresa A.; Rousseau, Francois; Tong, Liang; Wernimont, Amy K.; Young, Jasmine; Schwede, Torsten
2011-01-01
One goal of the CASP Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction is to identify the current state of the art in protein structure prediction and modeling. A fundamental principle of CASP is blind prediction on a set of relevant protein targets, i.e. the participating computational methods are tested on a common set of experimental target proteins, for which the experimental structures are not known at the time of modeling. Therefore, the CASP experiment would not have been possible without broad support of the experimental protein structural biology community. In this manuscript, several experimental groups discuss the structures of the proteins which they provided as prediction targets for CASP9, highlighting structural and functional peculiarities of these structures: the long tail fibre protein gp37 from bacteriophage T4, the cyclic GMP-dependent protein kinase Iβ (PKGIβ) dimerization/docking domain, the ectodomain of the JTB (Jumping Translocation Breakpoint) transmembrane receptor, Autotaxin (ATX) in complex with an inhibitor, the DNA-Binding J-Binding Protein 1 (JBP1) domain essential for biosynthesis and maintenance of DNA base-J (β-D-glucosyl-hydroxymethyluracil) in Trypanosoma and Leishmania, an so far uncharacterized 73 residue domain from Ruminococcus gnavus with a fold typical for PDZ-like domains, a domain from the Phycobilisome (PBS) core-membrane linker (LCM) phycobiliprotein ApcE from Synechocystis, the Heat shock protein 90 (Hsp90) activators PFC0360w and PFC0270w from Plasmodium falciparum, and 2-oxo-3-deoxygalactonate kinase from Klebsiella pneumoniae. PMID:22020785
Yan, Yumeng; Wen, Zeyu; Wang, Xinxiang; Huang, Sheng-You
2017-03-01
Protein-protein docking is an important computational tool for predicting protein-protein interactions. With the rapid development of proteomics projects, more and more experimental binding information ranging from mutagenesis data to three-dimensional structures of protein complexes are becoming available. Therefore, how to appropriately incorporate the biological information into traditional ab initio docking has been an important issue and challenge in the field of protein-protein docking. To address these challenges, we have developed a Hybrid DOCKing protocol of template-based and template-free approaches, referred to as HDOCK. The basic procedure of HDOCK is to model the structures of individual components based on the template complex by a template-based method if a template is available; otherwise, the component structures will be modeled based on monomer proteins by regular homology modeling. Then, the complex structure of the component models is predicted by traditional protein-protein docking. With the HDOCK protocol, we have participated in the CPARI experiment for rounds 28-35. Out of the 25 CASP-CAPRI targets for oligomer modeling, our HDOCK protocol predicted correct models for 16 targets, ranking one of the top algorithms in this challenge. Our docking method also made correct predictions on other CAPRI challenges such as protein-peptide binding for 6 out of 8 targets and water predictions for 2 out of 2 targets. The advantage of our hybrid docking approach over pure template-based docking was further confirmed by a comparative evaluation on 20 CASP-CAPRI targets. Proteins 2017; 85:497-512. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
MicroRNA Targeting Specificity in Mammals: Determinants Beyond Seed Pairing
Grimson, Andrew; Farh, Kyle Kai-How; Johnston, Wendy K.; Garrett-Engele, Philip; Lim, Lee P.; Bartel, David P.
2013-01-01
Summary Mammalian microRNAs (miRNAs) pair to 3'UTRs of mRNAs to direct their posttranscriptional repression. Important for target recognition are ~7-nt sites that match the seed region of the miRNA. However, these seed matches are not always sufficient for repression, indicating that other characteristics help specify targeting. By combining computational and experimental approaches, we uncovered five general features of site context that boost site efficacy: AU-rich nucleotide composition near the site, proximity to sites for co-expressed miRNAs (which leads to cooperative action), proximity to residues pairing to miRNA nucleotides 13–16, and positioning within the 3'UTR at least 15 nt from the stop codon and away from the center of long UTRs. A model combining these context determinants quantitatively predicts site performance both for exogenously added miRNAs and for endogenous miRNA-message interactions. Because it predicts site efficacy without recourse to evolutionary conservation, the model also identifies effective nonconserved sites and siRNA off-targets. PMID:17612493
Explaining the disease phenotype of intergenic SNP through predicted long range regulation
Chen, Jingqi; Tian, Weidong
2016-01-01
Thousands of disease-associated SNPs (daSNPs) are located in intergenic regions (IGR), making it difficult to understand their association with disease phenotypes. Recent analysis found that non-coding daSNPs were frequently located in or approximate to regulatory elements, inspiring us to try to explain the disease phenotypes of IGR daSNPs through nearby regulatory sequences. Hence, after locating the nearest distal regulatory element (DRE) to a given IGR daSNP, we applied a computational method named INTREPID to predict the target genes regulated by the DRE, and then investigated their functional relevance to the IGR daSNP's disease phenotypes. 36.8% of all IGR daSNP-disease phenotype associations investigated were possibly explainable through the predicted target genes, which were enriched with, were functionally relevant to, or consisted of the corresponding disease genes. This proportion could be further increased to 60.5% if the LD SNPs of daSNPs were also considered. Furthermore, the predicted SNP-target gene pairs were enriched with known eQTL/mQTL SNP-gene relationships. Overall, it's likely that IGR daSNPs may contribute to disease phenotypes by interfering with the regulatory function of their nearby DREs and causing abnormal expression of disease genes. PMID:27280978
Facial-Attractiveness Choices Are Predicted by Divisive Normalization.
Furl, Nicholas
2016-10-01
Do people appear more attractive or less attractive depending on the company they keep? A divisive-normalization account-in which representation of stimulus intensity is normalized (divided) by concurrent stimulus intensities-predicts that choice preferences among options increase with the range of option values. In the first experiment reported here, I manipulated the range of attractiveness of the faces presented on each trial by varying the attractiveness of an undesirable distractor face that was presented simultaneously with two attractive targets, and participants were asked to choose the most attractive face. I used normalization models to predict the context dependence of preferences regarding facial attractiveness. The more unattractive the distractor, the more one of the targets was preferred over the other target, which suggests that divisive normalization (a potential canonical computation in the brain) influences social evaluations. I obtained the same result when I manipulated faces' averageness and participants chose the most average face. This finding suggests that divisive normalization is not restricted to value-based decisions (e.g., attractiveness). This new application to social evaluation of normalization, a classic theory, opens possibilities for predicting social decisions in naturalistic contexts such as advertising or dating.
An Efficient Semi-supervised Learning Approach to Predict SH2 Domain Mediated Interactions.
Kundu, Kousik; Backofen, Rolf
2017-01-01
Src homology 2 (SH2) domain is an important subclass of modular protein domains that plays an indispensable role in several biological processes in eukaryotes. SH2 domains specifically bind to the phosphotyrosine residue of their binding peptides to facilitate various molecular functions. For determining the subtle binding specificities of SH2 domains, it is very important to understand the intriguing mechanisms by which these domains recognize their target peptides in a complex cellular environment. There are several attempts have been made to predict SH2-peptide interactions using high-throughput data. However, these high-throughput data are often affected by a low signal to noise ratio. Furthermore, the prediction methods have several additional shortcomings, such as linearity problem, high computational complexity, etc. Thus, computational identification of SH2-peptide interactions using high-throughput data remains challenging. Here, we propose a machine learning approach based on an efficient semi-supervised learning technique for the prediction of 51 SH2 domain mediated interactions in the human proteome. In our study, we have successfully employed several strategies to tackle the major problems in computational identification of SH2-peptide interactions.
Computational prediction of protein-protein interactions in Leishmania predicted proteomes.
Rezende, Antonio M; Folador, Edson L; Resende, Daniela de M; Ruiz, Jeronimo C
2012-01-01
The Trypanosomatids parasites Leishmania braziliensis, Leishmania major and Leishmania infantum are important human pathogens. Despite of years of study and genome availability, effective vaccine has not been developed yet, and the chemotherapy is highly toxic. Therefore, it is clear just interdisciplinary integrated studies will have success in trying to search new targets for developing of vaccines and drugs. An essential part of this rationale is related to protein-protein interaction network (PPI) study which can provide a better understanding of complex protein interactions in biological system. Thus, we modeled PPIs for Trypanosomatids through computational methods using sequence comparison against public database of protein or domain interaction for interaction prediction (Interolog Mapping) and developed a dedicated combined system score to address the predictions robustness. The confidence evaluation of network prediction approach was addressed using gold standard positive and negative datasets and the AUC value obtained was 0.94. As result, 39,420, 43,531 and 45,235 interactions were predicted for L. braziliensis, L. major and L. infantum respectively. For each predicted network the top 20 proteins were ranked by MCC topological index. In addition, information related with immunological potential, degree of protein sequence conservation among orthologs and degree of identity compared to proteins of potential parasite hosts was integrated. This information integration provides a better understanding and usefulness of the predicted networks that can be valuable to select new potential biological targets for drug and vaccine development. Network modularity which is a key when one is interested in destabilizing the PPIs for drug or vaccine purposes along with multiple alignments of the predicted PPIs were performed revealing patterns associated with protein turnover. In addition, around 50% of hypothetical protein present in the networks received some degree of functional annotation which represents an important contribution since approximately 60% of Leishmania predicted proteomes has no predicted function.
Protein-protein interactions (PPIs) mediate the transmission and regulation of oncogenic signals that are essential to cellular proliferation and survival, and thus represent potential targets for anti-cancer therapeutic discovery. Despite their significance, there is no method to experimentally disrupt and interrogate the essentiality of individual endogenous PPIs. The ability to computationally predict or infer PPI essentiality would help prioritize PPIs for drug discovery and help advance understanding of cancer biology.
Rational Design of an Ultrasensitive Quorum-Sensing Switch.
Zeng, Weiqian; Du, Pei; Lou, Qiuli; Wu, Lili; Zhang, Haoqian M; Lou, Chunbo; Wang, Hongli; Ouyang, Qi
2017-08-18
One of the purposes of synthetic biology is to develop rational methods that accelerate the design of genetic circuits, saving time and effort spent on experiments and providing reliably predictable circuit performance. We applied a reverse engineering approach to design an ultrasensitive transcriptional quorum-sensing switch. We want to explore how systems biology can guide synthetic biology in the choice of specific DNA sequences and their regulatory relations to achieve a targeted function. The workflow comprises network enumeration that achieves the target function robustly, experimental restriction of the obtained candidate networks, global parameter optimization via mathematical analysis, selection and engineering of parts based on these calculations, and finally, circuit construction based on the principles of standardization and modularization. The performance of realized quorum-sensing switches was in good qualitative agreement with the computational predictions. This study provides practical principles for the rational design of genetic circuits with targeted functions.
NASA Astrophysics Data System (ADS)
Hsu, Chung-Yuan; Tsai, Chin-Chung; Liang, Jyh-Chong
2011-10-01
Educational researchers have suggested that computer games have a profound influence on students' motivation, knowledge construction, and learning performance, but little empirical research has targeted preschoolers. Thus, the purpose of the present study was to investigate the effects of implementing a computer game that integrates the prediction-observation-explanation (POE) strategy (White and Gunstone in Probing understanding. Routledge, New York, 1992) on facilitating preschoolers' acquisition of scientific concepts regarding light and shadow. The children's alternative conceptions were explored as well. Fifty participants were randomly assigned into either an experimental group that played a computer game integrating the POE model or a control group that played a non-POE computer game. By assessing the students' conceptual understanding through interviews, this study revealed that the students in the experimental group significantly outperformed their counterparts in the concepts regarding "shadow formation in daylight" and "shadow orientation." However, children in both groups, after playing the games, still expressed some alternative conceptions such as "Shadows always appear behind a person" and "Shadows should be on the same side as the sun."
NASA Astrophysics Data System (ADS)
de Tullio, Marco D.; Singh, Jaykrishna; Pascazio, Giuseppe; Decuzzi, Paolo
2014-03-01
Vascular targeted nanoparticles have been developed for the delivery of therapeutic and imaging agents in cancer and cardiovascular diseases. However, at authors' knowledge, a comprehensive systematic analysis on their delivery efficiency is still missing. Here, a computational model is developed to predict the vessel wall accumulation of agents released from vascular targeted nanoconstructs. The transport problem for the released agent is solved using a finite volume scheme in terms of three governing parameters: the local wall shear rate , ranging from to ; the wall filtration velocity , varying from to ; and the agent diffusion coefficient , ranging from to . It is shown that the percentage of released agent adsorbing on the vessel walls in the vicinity of the vascular targeted nanoconstructs reduces with an increase in shear rate , and with a decrease in filtration velocity and agent diffusivity . In particular, in tumor microvessels, characterized by lower shear rates () and higher filtration velocities (), an agent with a diffusivity (i.e. a 50 nm particle) is predicted to deposit on the vessel wall up to of the total released dose. Differently, drug molecules, exhibiting a smaller size and much higher diffusion coefficient (), are predicted to accumulate up to . In healthy vessels, characterized by higher and lower , the largest majority of the released agent is redistributed directly in the circulation. These data suggest that drug molecules and small nanoparticles only can be efficiently released from vascular targeted nanoconstructs towards the diseased vessel walls and tissue.
Venko, Katja; Roy Choudhury, A; Novič, Marjana
2017-01-01
The structural and functional details of transmembrane proteins are vastly underexplored, mostly due to experimental difficulties regarding their solubility and stability. Currently, the majority of transmembrane protein structures are still unknown and this present a huge experimental and computational challenge. Nowadays, thanks to X-ray crystallography or NMR spectroscopy over 3000 structures of membrane proteins have been solved, among them only a few hundred unique ones. Due to the vast biological and pharmaceutical interest in the elucidation of the structure and the functional mechanisms of transmembrane proteins, several computational methods have been developed to overcome the experimental gap. If combined with experimental data the computational information enables rapid, low cost and successful predictions of the molecular structure of unsolved proteins. The reliability of the predictions depends on the availability and accuracy of experimental data associated with structural information. In this review, the following methods are proposed for in silico structure elucidation: sequence-dependent predictions of transmembrane regions, predictions of transmembrane helix-helix interactions, helix arrangements in membrane models, and testing their stability with molecular dynamics simulations. We also demonstrate the usage of the computational methods listed above by proposing a model for the molecular structure of the transmembrane protein bilitranslocase. Bilitranslocase is bilirubin membrane transporter, which shares similar tissue distribution and functional properties with some of the members of the Organic Anion Transporter family and is the only member classified in the Bilirubin Transporter Family. Regarding its unique properties, bilitranslocase is a potentially interesting drug target.
Zhang, Xuetao; Huang, Jie; Yigit-Elliott, Serap; Rosenholtz, Ruth
2015-03-16
Observers can quickly search among shaded cubes for one lit from a unique direction. However, replace the cubes with similar 2-D patterns that do not appear to have a 3-D shape, and search difficulty increases. These results have challenged models of visual search and attention. We demonstrate that cube search displays differ from those with "equivalent" 2-D search items in terms of the informativeness of fairly low-level image statistics. This informativeness predicts peripheral discriminability of target-present from target-absent patches, which in turn predicts visual search performance, across a wide range of conditions. Comparing model performance on a number of classic search tasks, cube search does not appear unexpectedly easy. Easy cube search, per se, does not provide evidence for preattentive computation of 3-D scene properties. However, search asymmetries derived from rotating and/or flipping the cube search displays cannot be explained by the information in our current set of image statistics. This may merely suggest a need to modify the model's set of 2-D image statistics. Alternatively, it may be difficult cube search that provides evidence for preattentive computation of 3-D scene properties. By attributing 2-D luminance variations to a shaded 3-D shape, 3-D scene understanding may slow search for 2-D features of the target. © 2015 ARVO.
Zhang, Xuetao; Huang, Jie; Yigit-Elliott, Serap; Rosenholtz, Ruth
2015-01-01
Observers can quickly search among shaded cubes for one lit from a unique direction. However, replace the cubes with similar 2-D patterns that do not appear to have a 3-D shape, and search difficulty increases. These results have challenged models of visual search and attention. We demonstrate that cube search displays differ from those with “equivalent” 2-D search items in terms of the informativeness of fairly low-level image statistics. This informativeness predicts peripheral discriminability of target-present from target-absent patches, which in turn predicts visual search performance, across a wide range of conditions. Comparing model performance on a number of classic search tasks, cube search does not appear unexpectedly easy. Easy cube search, per se, does not provide evidence for preattentive computation of 3-D scene properties. However, search asymmetries derived from rotating and/or flipping the cube search displays cannot be explained by the information in our current set of image statistics. This may merely suggest a need to modify the model's set of 2-D image statistics. Alternatively, it may be difficult cube search that provides evidence for preattentive computation of 3-D scene properties. By attributing 2-D luminance variations to a shaded 3-D shape, 3-D scene understanding may slow search for 2-D features of the target. PMID:25780063
Advanced systems biology methods in drug discovery and translational biomedicine.
Zou, Jun; Zheng, Ming-Wu; Li, Gen; Su, Zhi-Guang
2013-01-01
Systems biology is in an exponential development stage in recent years and has been widely utilized in biomedicine to better understand the molecular basis of human disease and the mechanism of drug action. Here, we discuss the fundamental concept of systems biology and its two computational methods that have been commonly used, that is, network analysis and dynamical modeling. The applications of systems biology in elucidating human disease are highlighted, consisting of human disease networks, treatment response prediction, investigation of disease mechanisms, and disease-associated gene prediction. In addition, important advances in drug discovery, to which systems biology makes significant contributions, are discussed, including drug-target networks, prediction of drug-target interactions, investigation of drug adverse effects, drug repositioning, and drug combination prediction. The systems biology methods and applications covered in this review provide a framework for addressing disease mechanism and approaching drug discovery, which will facilitate the translation of research findings into clinical benefits such as novel biomarkers and promising therapies.
Graph wavelet alignment kernels for drug virtual screening.
Smalter, Aaron; Huan, Jun; Lushington, Gerald
2009-06-01
In this paper, we introduce a novel statistical modeling technique for target property prediction, with applications to virtual screening and drug design. In our method, we use graphs to model chemical structures and apply a wavelet analysis of graphs to summarize features capturing graph local topology. We design a novel graph kernel function to utilize the topology features to build predictive models for chemicals via Support Vector Machine classifier. We call the new graph kernel a graph wavelet-alignment kernel. We have evaluated the efficacy of the wavelet-alignment kernel using a set of chemical structure-activity prediction benchmarks. Our results indicate that the use of the kernel function yields performance profiles comparable to, and sometimes exceeding that of the existing state-of-the-art chemical classification approaches. In addition, our results also show that the use of wavelet functions significantly decreases the computational costs for graph kernel computation with more than ten fold speedup.
Whalen, Katie L; Chang, Kevin M; Spies, M Ashley
2011-05-16
Existing techniques which attempt to predict the affinity of protein-ligand interactions have demonstrated a direct relationship between computational cost and prediction accuracy. We present here the first application of a hybrid ensemble docking and steered molecular dynamics scheme (with a minimized computational cost), which achieves a binding affinity rank-ordering of ligands with a Spearman correlation coefficient of 0.79 and an RMS error of 0.7 kcal/mol. The scheme, termed Flexible Enzyme Receptor Method by Steered Molecular Dynamics (FERM-SMD), is applied to an in-house collection of 17 validated ligands of glutamate racemase. The resulting improved accuracy in affinity prediction allows elucidation of the key structural components of a heretofore unreported glutamate racemase inhibitor (K(i) = 9 µM), a promising new lead in the development of antibacterial therapeutics.
Modulation of the error-related negativity by response conflict.
Danielmeier, Claudia; Wessel, Jan R; Steinhauser, Marco; Ullsperger, Markus
2009-11-01
An arrow version of the Eriksen flanker task was employed to investigate the influence of conflict on the error-related negativity (ERN). The degree of conflict was modulated by varying the distance between flankers and the target arrow (CLOSE and FAR conditions). Error rates and reaction time data from a behavioral experiment were used to adapt a connectionist model of this task. This model was based on the conflict monitoring theory and simulated behavioral and event-related potential data. The computational model predicted an increased ERN amplitude in FAR incompatible (the low-conflict condition) compared to CLOSE incompatible errors (the high-conflict condition). A subsequent ERP experiment confirmed the model predictions. The computational model explains this finding with larger post-response conflict in far trials. In addition, data and model predictions of the N2 and the LRP support the conflict interpretation of the ERN.
2013-01-01
Background The wild grass Brachypodium distachyon has emerged as a model system for temperate grasses and biofuel plants. However, the global analysis of miRNAs, molecules known to be key for eukaryotic gene regulation, has been limited in B. distachyon to studies examining a few samples or that rely on computational predictions. Similarly an in-depth global analysis of miRNA-mediated target cleavage using parallel analysis of RNA ends (PARE) data is lacking in B. distachyon. Results B. distachyon small RNAs were cloned and deeply sequenced from 17 libraries that represent different tissues and stresses. Using a computational pipeline, we identified 116 miRNAs including not only conserved miRNAs that have not been reported in B. distachyon, but also non-conserved miRNAs that were not found in other plants. To investigate miRNA-mediated cleavage function, four PARE libraries were constructed from key tissues and sequenced to a total depth of approximately 70 million sequences. The roughly 5 million distinct genome-matched sequences that resulted represent an extensive dataset for analyzing small RNA-guided cleavage events. Analysis of the PARE and miRNA data provided experimental evidence for miRNA-mediated cleavage of 264 sites in predicted miRNA targets. In addition, PARE analysis revealed that differentially expressed miRNAs in the same family guide specific target RNA cleavage in a correspondingly tissue-preferential manner. Conclusions B. distachyon miRNAs and target RNAs were experimentally identified and analyzed. Knowledge gained from this study should provide insights into the roles of miRNAs and the regulation of their targets in B. distachyon and related plants. PMID:24367943
Accuracy of Robotic Radiosurgical Liver Treatment Throughout the Respiratory Cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winter, Jeff D.; Wong, Raimond; Swaminath, Anand
Purpose: To quantify random uncertainties in robotic radiosurgical treatment of liver lesions with real-time respiratory motion management. Methods and Materials: We conducted a retrospective analysis of 27 liver cancer patients treated with robotic radiosurgery over 118 fractions. The robotic radiosurgical system uses orthogonal x-ray images to determine internal target position and correlates this position with an external surrogate to provide robotic corrections of linear accelerator positioning. Verification and update of this internal–external correlation model was achieved using periodic x-ray images collected throughout treatment. To quantify random uncertainties in targeting, we analyzed logged tracking information and isolated x-ray images collected immediately beforemore » beam delivery. For translational correlation errors, we quantified the difference between correlation model–estimated target position and actual position determined by periodic x-ray imaging. To quantify prediction errors, we computed the mean absolute difference between the predicted coordinates and actual modeled position calculated 115 milliseconds later. We estimated overall random uncertainty by quadratically summing correlation, prediction, and end-to-end targeting errors. We also investigated relationships between tracking errors and motion amplitude using linear regression. Results: The 95th percentile absolute correlation errors in each direction were 2.1 mm left–right, 1.8 mm anterior–posterior, 3.3 mm cranio–caudal, and 3.9 mm 3-dimensional radial, whereas 95th percentile absolute radial prediction errors were 0.5 mm. Overall 95th percentile random uncertainty was 4 mm in the radial direction. Prediction errors were strongly correlated with modeled target amplitude (r=0.53-0.66, P<.001), whereas only weak correlations existed for correlation errors. Conclusions: Study results demonstrate that model correlation errors are the primary random source of uncertainty in Cyberknife liver treatment and, unlike prediction errors, are not strongly correlated with target motion amplitude. Aggregate 3-dimensional radial position errors presented here suggest the target will be within 4 mm of the target volume for 95% of the beam delivery.« less
Lo, Yu-Chen; Senese, Silvia; Li, Chien-Ming; Hu, Qiyang; Huang, Yong; Damoiseaux, Robert; Torres, Jorge Z.
2015-01-01
Target identification is one of the most critical steps following cell-based phenotypic chemical screens aimed at identifying compounds with potential uses in cell biology and for developing novel disease therapies. Current in silico target identification methods, including chemical similarity database searches, are limited to single or sequential ligand analysis that have limited capabilities for accurate deconvolution of a large number of compounds with diverse chemical structures. Here, we present CSNAP (Chemical Similarity Network Analysis Pulldown), a new computational target identification method that utilizes chemical similarity networks for large-scale chemotype (consensus chemical pattern) recognition and drug target profiling. Our benchmark study showed that CSNAP can achieve an overall higher accuracy (>80%) of target prediction with respect to representative chemotypes in large (>200) compound sets, in comparison to the SEA approach (60–70%). Additionally, CSNAP is capable of integrating with biological knowledge-based databases (Uniprot, GO) and high-throughput biology platforms (proteomic, genetic, etc) for system-wise drug target validation. To demonstrate the utility of the CSNAP approach, we combined CSNAP's target prediction with experimental ligand evaluation to identify the major mitotic targets of hit compounds from a cell-based chemical screen and we highlight novel compounds targeting microtubules, an important cancer therapeutic target. The CSNAP method is freely available and can be accessed from the CSNAP web server (http://services.mbi.ucla.edu/CSNAP/). PMID:25826798
Targeted intervention: Computational approaches to elucidate and predict relapse in alcoholism.
Heinz, Andreas; Deserno, Lorenz; Zimmermann, Ulrich S; Smolka, Michael N; Beck, Anne; Schlagenhauf, Florian
2017-05-01
Alcohol use disorder (AUD) and addiction in general is characterized by failures of choice resulting in repeated drug intake despite severe negative consequences. Behavioral change is hard to accomplish and relapse after detoxification is common and can be promoted by consumption of small amounts of alcohol as well as exposure to alcohol-associated cues or stress. While those environmental factors contributing to relapse have long been identified, the underlying psychological and neurobiological mechanism on which those factors act are to date incompletely understood. Based on the reinforcing effects of drugs of abuse, animal experiments showed that drug, cue and stress exposure affect Pavlovian and instrumental learning processes, which can increase salience of drug cues and promote habitual drug intake. In humans, computational approaches can help to quantify changes in key learning mechanisms during the development and maintenance of alcohol dependence, e.g. by using sequential decision making in combination with computational modeling to elucidate individual differences in model-free versus more complex, model-based learning strategies and their neurobiological correlates such as prediction error signaling in fronto-striatal circuits. Computational models can also help to explain how alcohol-associated cues trigger relapse: mechanisms such as Pavlovian-to-Instrumental Transfer can quantify to which degree Pavlovian conditioned stimuli can facilitate approach behavior including alcohol seeking and intake. By using generative models of behavioral and neural data, computational approaches can help to quantify individual differences in psychophysiological mechanisms that underlie the development and maintenance of AUD and thus promote targeted intervention. Copyright © 2016 Elsevier Inc. All rights reserved.
Estimating the decomposition of predictive information in multivariate systems
NASA Astrophysics Data System (ADS)
Faes, Luca; Kugiumtzis, Dimitris; Nollo, Giandomenico; Jurysta, Fabrice; Marinazzo, Daniele
2015-03-01
In the study of complex systems from observed multivariate time series, insight into the evolution of one system may be under investigation, which can be explained by the information storage of the system and the information transfer from other interacting systems. We present a framework for the model-free estimation of information storage and information transfer computed as the terms composing the predictive information about the target of a multivariate dynamical process. The approach tackles the curse of dimensionality employing a nonuniform embedding scheme that selects progressively, among the past components of the multivariate process, only those that contribute most, in terms of conditional mutual information, to the present target process. Moreover, it computes all information-theoretic quantities using a nearest-neighbor technique designed to compensate the bias due to the different dimensionality of individual entropy terms. The resulting estimators of prediction entropy, storage entropy, transfer entropy, and partial transfer entropy are tested on simulations of coupled linear stochastic and nonlinear deterministic dynamic processes, demonstrating the superiority of the proposed approach over the traditional estimators based on uniform embedding. The framework is then applied to multivariate physiologic time series, resulting in physiologically well-interpretable information decompositions of cardiovascular and cardiorespiratory interactions during head-up tilt and of joint brain-heart dynamics during sleep.
Kopsch, Thomas; Murnane, Darragh; Symons, Digby
2017-08-30
In dry powder inhalers (DPIs) the patient's inhalation manoeuvre strongly influences the release of drug. Drug release from a DPI may also be influenced by the size of any air bypass incorporated in the device. If the amount of bypass is high less air flows through the entrainment geometry and the release rate is lower. In this study we propose to reduce the intra- and inter-patient variations of drug release by controlling the amount of air bypass in a DPI. A fast computational method is proposed that can predict how much bypass is needed for a specified drug delivery rate for a particular patient. This method uses a meta-model which was constructed using multiphase computational fluid dynamic (CFD) simulations. The meta-model is applied in an optimization framework to predict the required amount of bypass needed for drug delivery that is similar to a desired target release behaviour. The meta-model was successfully validated by comparing its predictions to results from additional CFD simulations. The optimization framework has been applied to identify the optimal amount of bypass needed for fictitious sample inhalation manoeuvres in order to deliver a target powder release profile for two patients. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Takagawa, T.
2017-12-01
A rapid and precise tsunami forecast based on offshore monitoring is getting attention to reduce human losses due to devastating tsunami inundation. We developed a forecast method based on the combination of hierarchical Bayesian inversion with pre-computed database and rapid post-computing of tsunami inundation. The method was applied to Tokyo bay to evaluate the efficiency of observation arrays against three tsunamigenic earthquakes. One is a scenario earthquake at Nankai trough and the other two are historic ones of Genroku in 1703 and Enpo in 1677. In general, rich observation array near the tsunami source has an advantage in both accuracy and rapidness of tsunami forecast. To examine the effect of observation time length we used four types of data with the lengths of 5, 10, 20 and 45 minutes after the earthquake occurrences. Prediction accuracy of tsunami inundation was evaluated by the simulated tsunami inundation areas around Tokyo bay due to target earthquakes. The shortest time length of accurate prediction varied with target earthquakes. Here, accurate prediction means the simulated values fall within the 95% credible intervals of prediction. In Enpo earthquake case, 5-minutes observation is enough for accurate prediction for Tokyo bay, but 10-minutes and 45-minutes are needed in the case of Nankai trough and Genroku, respectively. The difference of the shortest time length for accurate prediction shows the strong relationship with the relative distance from the tsunami source and observation arrays. In the Enpo case, offshore tsunami observation points are densely distributed even in the source region. So, accurate prediction can be rapidly achieved within 5 minutes. This precise prediction is useful for early warnings. Even in the worst case of Genroku, where less observation points are available near the source, accurate prediction can be obtained within 45 minutes. This information can be useful to figure out the outline of the hazard in an early stage of reaction.
Shirdel, Elize A.; Xie, Wing; Mak, Tak W.; Jurisica, Igor
2011-01-01
Background MicroRNAs are a class of small RNAs known to regulate gene expression at the transcript level, the protein level, or both. Since microRNA binding is sequence-based but possibly structure-specific, work in this area has resulted in multiple databases storing predicted microRNA:target relationships computed using diverse algorithms. We integrate prediction databases, compare predictions to in vitro data, and use cross-database predictions to model the microRNA:transcript interactome – referred to as the micronome – to study microRNA involvement in well-known signalling pathways as well as associations with disease. We make this data freely available with a flexible user interface as our microRNA Data Integration Portal — mirDIP (http://ophid.utoronto.ca/mirDIP). Results mirDIP integrates prediction databases to elucidate accurate microRNA:target relationships. Using NAViGaTOR to produce interaction networks implicating microRNAs in literature-based, KEGG-based and Reactome-based pathways, we find these signalling pathway networks have significantly more microRNA involvement compared to chance (p<0.05), suggesting microRNAs co-target many genes in a given pathway. Further examination of the micronome shows two distinct classes of microRNAs; universe microRNAs, which are involved in many signalling pathways; and intra-pathway microRNAs, which target multiple genes within one signalling pathway. We find universe microRNAs to have more targets (p<0.0001), to be more studied (p<0.0002), and to have higher degree in the KEGG cancer pathway (p<0.0001), compared to intra-pathway microRNAs. Conclusions Our pathway-based analysis of mirDIP data suggests microRNAs are involved in intra-pathway signalling. We identify two distinct classes of microRNAs, suggesting a hierarchical organization of microRNAs co-targeting genes both within and between pathways, and implying differential involvement of universe and intra-pathway microRNAs at the disease level. PMID:21364759
2009-06-01
data, and then returns an array that describes the line. This function, when compared to the LOGEST statistical function of the Microsoft Excel, which...threats continues to grow, the ability to predict materials performances using advanced modeling tools increases. The current paper has demonstrated
A Field Study of Employee E-Learning Activity and Outcomes
ERIC Educational Resources Information Center
Brown, Kenneth G.
2005-01-01
Employees with access to e-learning courses targeting computer skills were tracked during a year-long study. Employees' perceptions of peer and supervisor support, job characteristics (such as workload and autonomy), and motivation to learn were used to predict total time spent using e-learning. Results suggest the importance of motivation to…
Murata, Atsuo; Fukunaga, Daichi
2018-04-01
This study attempted to investigate the effects of the target shape and the movement direction on the pointing time using an eye-gaze input system and extend Fitts' model so that these factors are incorporated into the model and the predictive power of Fitts' model is enhanced. The target shape, the target size, the movement distance, and the direction of target presentation were set as within-subject experimental variables. The target shape included: a circle, and rectangles with an aspect ratio of 1:1, 1:2, 1:3, and 1:4. The movement direction included eight directions: upper, lower, left, right, upper left, upper right, lower left, and lower right. On the basis of the data for identifying the effects of the target shape and the movement direction on the pointing time, an attempt was made to develop a generalized and extended Fitts' model that took into account the movement direction and the target shape. As a result, the generalized and extended model was found to fit better to the experimental data, and be more effective for predicting the pointing time for a variety of human-computer interaction (HCI) task using an eye-gaze input system. Copyright © 2017. Published by Elsevier Ltd.
Brainstorming: weighted voting prediction of inhibitors for protein targets.
Plewczynski, Dariusz
2011-09-01
The "Brainstorming" approach presented in this paper is a weighted voting method that can improve the quality of predictions generated by several machine learning (ML) methods. First, an ensemble of heterogeneous ML algorithms is trained on available experimental data, then all solutions are gathered and a consensus is built between them. The final prediction is performed using a voting procedure, whereby the vote of each method is weighted according to a quality coefficient calculated using multivariable linear regression (MLR). The MLR optimization procedure is very fast, therefore no additional computational cost is introduced by using this jury approach. Here, brainstorming is applied to selecting actives from large collections of compounds relating to five diverse biological targets of medicinal interest, namely HIV-reverse transcriptase, cyclooxygenase-2, dihydrofolate reductase, estrogen receptor, and thrombin. The MDL Drug Data Report (MDDR) database was used for selecting known inhibitors for these protein targets, and experimental data was then used to train a set of machine learning methods. The benchmark dataset (available at http://bio.icm.edu.pl/∼darman/chemoinfo/benchmark.tar.gz ) can be used for further testing of various clustering and machine learning methods when predicting the biological activity of compounds. Depending on the protein target, the overall recall value is raised by at least 20% in comparison to any single machine learning method (including ensemble methods like random forest) and unweighted simple majority voting procedures.
Alvarez, M Lucrecia
2014-01-01
Different target prediction algorithms have been developed to provide a list of candidate target genes for a given animal microRNAs (miRNAs). However, these computational approaches provide both false-positive and false-negative predictions. Therefore, the target genes of a specific miRNA identified in silico should be experimentally validated. In this chapter, we describe a step-by-step protocol for the experimental validation of a direct miRNA target using a faster Dual Firefly-Renilla Luciferase Reporter Assay. We describe how to construct reporter plasmids using the simple, fast, and highly efficient cold fusion cloning technology, which does not require ligase, phosphatase, or restriction enzymes. In addition, we provide a protocol for co-transfection of reporter plasmids with either miRNA mimics or miRNA inhibitors in human embryonic kidney 293 (HEK293) cells, as well as a description on how to measure Firefly and Renilla luciferase activity using the Dual-Glo Luciferase Assay kit. As an example of the use of this technology, we will validate glucose-6-phosphate dehydrogenase (G6PD) as a direct target of miR-1207-5p.
Catching What We Can't See: Manual Interception of Occluded Fly-Ball Trajectories
Bosco, Gianfranco; Delle Monache, Sergio; Lacquaniti, Francesco
2012-01-01
Control of interceptive actions may involve fine interplay between feedback-based and predictive mechanisms. These processes rely heavily on target motion information available when the target is visible. However, short-term visual memory signals as well as implicit knowledge about the environment may also contribute to elaborate a predictive representation of the target trajectory, especially when visual feedback is partially unavailable because other objects occlude the visual target. To determine how different processes and information sources are integrated in the control of the interceptive action, we manipulated a computer-generated visual environment representing a baseball game. Twenty-four subjects intercepted fly-ball trajectories by moving a mouse cursor and by indicating the interception with a button press. In two separate sessions, fly-ball trajectories were either fully visible or occluded for 750, 1000 or 1250 ms before ball landing. Natural ball motion was perturbed during the descending trajectory with effects of either weightlessness (0 g) or increased gravity (2 g) at times such that, for occluded trajectories, 500 ms of perturbed motion were visible before ball disappearance. To examine the contribution of previous visual experience with the perturbed trajectories to the interception of invisible targets, the order of visible and occluded sessions was permuted among subjects. Under these experimental conditions, we showed that, with fully visible targets, subjects combined servo-control and predictive strategies. Instead, when intercepting occluded targets, subjects relied mostly on predictive mechanisms based, however, on different type of information depending on previous visual experience. In fact, subjects without prior experience of the perturbed trajectories showed interceptive errors consistent with predictive estimates of the ball trajectory based on a-priori knowledge of gravity. Conversely, the interceptive responses of subjects previously exposed to fully visible trajectories were compatible with the fact that implicit knowledge of the perturbed motion was also taken into account for the extrapolation of occluded trajectories. PMID:23166653
Catching what we can't see: manual interception of occluded fly-ball trajectories.
Bosco, Gianfranco; Delle Monache, Sergio; Lacquaniti, Francesco
2012-01-01
Control of interceptive actions may involve fine interplay between feedback-based and predictive mechanisms. These processes rely heavily on target motion information available when the target is visible. However, short-term visual memory signals as well as implicit knowledge about the environment may also contribute to elaborate a predictive representation of the target trajectory, especially when visual feedback is partially unavailable because other objects occlude the visual target. To determine how different processes and information sources are integrated in the control of the interceptive action, we manipulated a computer-generated visual environment representing a baseball game. Twenty-four subjects intercepted fly-ball trajectories by moving a mouse cursor and by indicating the interception with a button press. In two separate sessions, fly-ball trajectories were either fully visible or occluded for 750, 1000 or 1250 ms before ball landing. Natural ball motion was perturbed during the descending trajectory with effects of either weightlessness (0 g) or increased gravity (2 g) at times such that, for occluded trajectories, 500 ms of perturbed motion were visible before ball disappearance. To examine the contribution of previous visual experience with the perturbed trajectories to the interception of invisible targets, the order of visible and occluded sessions was permuted among subjects. Under these experimental conditions, we showed that, with fully visible targets, subjects combined servo-control and predictive strategies. Instead, when intercepting occluded targets, subjects relied mostly on predictive mechanisms based, however, on different type of information depending on previous visual experience. In fact, subjects without prior experience of the perturbed trajectories showed interceptive errors consistent with predictive estimates of the ball trajectory based on a-priori knowledge of gravity. Conversely, the interceptive responses of subjects previously exposed to fully visible trajectories were compatible with the fact that implicit knowledge of the perturbed motion was also taken into account for the extrapolation of occluded trajectories.
Itu, Lucian; Rapaka, Saikiran; Passerini, Tiziano; Georgescu, Bogdan; Schwemmer, Chris; Schoebinger, Max; Flohr, Thomas; Sharma, Puneet; Comaniciu, Dorin
2016-07-01
Fractional flow reserve (FFR) is a functional index quantifying the severity of coronary artery lesions and is clinically obtained using an invasive, catheter-based measurement. Recently, physics-based models have shown great promise in being able to noninvasively estimate FFR from patient-specific anatomical information, e.g., obtained from computed tomography scans of the heart and the coronary arteries. However, these models have high computational demand, limiting their clinical adoption. In this paper, we present a machine-learning-based model for predicting FFR as an alternative to physics-based approaches. The model is trained on a large database of synthetically generated coronary anatomies, where the target values are computed using the physics-based model. The trained model predicts FFR at each point along the centerline of the coronary tree, and its performance was assessed by comparing the predictions against physics-based computations and against invasively measured FFR for 87 patients and 125 lesions in total. Correlation between machine-learning and physics-based predictions was excellent (0.9994, P < 0.001), and no systematic bias was found in Bland-Altman analysis: mean difference was -0.00081 ± 0.0039. Invasive FFR ≤ 0.80 was found in 38 lesions out of 125 and was predicted by the machine-learning algorithm with a sensitivity of 81.6%, a specificity of 83.9%, and an accuracy of 83.2%. The correlation was 0.729 (P < 0.001). Compared with the physics-based computation, average execution time was reduced by more than 80 times, leading to near real-time assessment of FFR. Average execution time went down from 196.3 ± 78.5 s for the CFD model to ∼2.4 ± 0.44 s for the machine-learning model on a workstation with 3.4-GHz Intel i7 8-core processor. Copyright © 2016 the American Physiological Society.
In silico re-identification of properties of drug target proteins.
Kim, Baeksoo; Jo, Jihoon; Han, Jonghyun; Park, Chungoo; Lee, Hyunju
2017-05-31
Computational approaches in the identification of drug targets are expected to reduce time and effort in drug development. Advances in genomics and proteomics provide the opportunity to uncover properties of druggable genomes. Although several studies have been conducted for distinguishing drug targets from non-drug targets, they mainly focus on the sequences and functional roles of proteins. Many other properties of proteins have not been fully investigated. Using the DrugBank (version 3.0) database containing nearly 6,816 drug entries including 760 FDA-approved drugs and 1822 of their targets and human UniProt/Swiss-Prot databases, we defined 1578 non-redundant drug target and 17,575 non-drug target proteins. To select these non-redundant protein datasets, we built four datasets (A, B, C, and D) by considering clustering of paralogous proteins. We first reassessed the widely used properties of drug target proteins. We confirmed and extended that drug target proteins (1) are likely to have more hydrophobic, less polar, less PEST sequences, and more signal peptide sequences higher and (2) are more involved in enzyme catalysis, oxidation and reduction in cellular respiration, and operational genes. In this study, we proposed new properties (essentiality, expression pattern, PTMs, and solvent accessibility) for effectively identifying drug target proteins. We found that (1) drug targetability and protein essentiality are decoupled, (2) druggability of proteins has high expression level and tissue specificity, and (3) functional post-translational modification residues are enriched in drug target proteins. In addition, to predict the drug targetability of proteins, we exploited two machine learning methods (Support Vector Machine and Random Forest). When we predicted drug targets by combining previously known protein properties and proposed new properties, an F-score of 0.8307 was obtained. When the newly proposed properties are integrated, the prediction performance is improved and these properties are related to drug targets. We believe that our study will provide a new aspect in inferring drug-target interactions.
The MicroRNA Interaction Network of Lipid Diseases
Kandhro, Abdul H.; Shoombuatong, Watshara; Nantasenamat, Chanin; Prachayasittikul, Virapong; Nuchnoi, Pornlada
2017-01-01
Background: Dyslipidemia is one of the major forms of lipid disorder, characterized by increased triglycerides (TGs), increased low-density lipoprotein-cholesterol (LDL-C), and decreased high-density lipoprotein-cholesterol (HDL-C) levels in blood. Recently, MicroRNAs (miRNAs) have been reported to involve in various biological processes; their potential usage being a biomarkers and in diagnosis of various diseases. Computational approaches including text mining have been used recently to analyze abstracts from the public databases to observe the relationships/associations between the biological molecules, miRNAs, and disease phenotypes. Materials and Methods: In the present study, significance of text mined extracted pair associations (miRNA-lipid disease) were estimated by one-sided Fisher's exact test. The top 20 significant miRNA-disease associations were visualized on Cytoscape. The CyTargetLinker plug-in tool on Cytoscape was used to extend the network and predicts new miRNA target genes. The Biological Networks Gene Ontology (BiNGO) plug-in tool on Cytoscape was used to retrieve gene ontology (GO) annotations for the targeted genes. Results: We retrieved 227 miRNA-lipid disease associations including 148 miRNAs. The top 20 significant miRNAs analysis on CyTargetLinker provides defined, predicted and validated gene targets, further targeted genes analyzed by BiNGO showed targeted genes were significantly associated with lipid, cholesterol, apolipoprotein, and fatty acids GO terms. Conclusion: We are the first to provide a reliable miRNA-lipid disease association network based on text mining. This could help future experimental studies that aim to validate predicted gene targets. PMID:29018475
iDrug: a web-accessible and interactive drug discovery and design platform
2014-01-01
Background The progress in computer-aided drug design (CADD) approaches over the past decades accelerated the early-stage pharmaceutical research. Many powerful standalone tools for CADD have been developed in academia. As programs are developed by various research groups, a consistent user-friendly online graphical working environment, combining computational techniques such as pharmacophore mapping, similarity calculation, scoring, and target identification is needed. Results We presented a versatile, user-friendly, and efficient online tool for computer-aided drug design based on pharmacophore and 3D molecular similarity searching. The web interface enables binding sites detection, virtual screening hits identification, and drug targets prediction in an interactive manner through a seamless interface to all adapted packages (e.g., Cavity, PocketV.2, PharmMapper, SHAFTS). Several commercially available compound databases for hit identification and a well-annotated pharmacophore database for drug targets prediction were integrated in iDrug as well. The web interface provides tools for real-time molecular building/editing, converting, displaying, and analyzing. All the customized configurations of the functional modules can be accessed through featured session files provided, which can be saved to the local disk and uploaded to resume or update the history work. Conclusions iDrug is easy to use, and provides a novel, fast and reliable tool for conducting drug design experiments. By using iDrug, various molecular design processing tasks can be submitted and visualized simply in one browser without installing locally any standalone modeling softwares. iDrug is accessible free of charge at http://lilab.ecust.edu.cn/idrug. PMID:24955134
Ahir, Bhavesh K.; Sanders, Alison P.; Rager, Julia E.
2013-01-01
Background: The biological mechanisms by which environmental metals are associated with birth defects are largely unknown. Systems biology–based approaches may help to identify key pathways that mediate metal-induced birth defects as well as potential targets for prevention. Objectives: First, we applied a novel computational approach to identify a prioritized biological pathway that associates metals with birth defects. Second, in a laboratory setting, we sought to determine whether inhibition of the identified pathway prevents developmental defects. Methods: Seven environmental metals were selected for inclusion in the computational analysis: arsenic, cadmium, chromium, lead, mercury, nickel, and selenium. We used an in silico strategy to predict genes and pathways associated with both metal exposure and developmental defects. The most significant pathway was identified and tested using an in ovo whole chick embryo culture assay. We further evaluated the role of the pathway as a mediator of metal-induced toxicity using the in vitro midbrain micromass culture assay. Results: The glucocorticoid receptor pathway was computationally predicted to be a key mediator of multiple metal-induced birth defects. In the chick embryo model, structural malformations induced by inorganic arsenic (iAs) were prevented when signaling of the glucocorticoid receptor pathway was inhibited. Further, glucocorticoid receptor inhibition demonstrated partial to complete protection from both iAs- and cadmium-induced neurodevelopmental toxicity in vitro. Conclusions: Our findings highlight a novel approach to computationally identify a targeted biological pathway for examining birth defects prevention. PMID:23458687
Kleftogiannis, Dimitrios; Korfiati, Aigli; Theofilatos, Konstantinos; Likothanassis, Spiros; Tsakalidis, Athanasios; Mavroudi, Seferina
2013-06-01
Traditional biology was forced to restate some of its principles when the microRNA (miRNA) genes and their regulatory role were firstly discovered. Typically, miRNAs are small non-coding RNA molecules which have the ability to bind to the 3'untraslated region (UTR) of their mRNA target genes for cleavage or translational repression. Existing experimental techniques for their identification and the prediction of the target genes share some important limitations such as low coverage, time consuming experiments and high cost reagents. Hence, many computational methods have been proposed for these tasks to overcome these limitations. Recently, many researchers emphasized on the development of computational approaches to predict the participation of miRNA genes in regulatory networks and to analyze their transcription mechanisms. All these approaches have certain advantages and disadvantages which are going to be described in the present survey. Our work is differentiated from existing review papers by updating the methodologies list and emphasizing on the computational issues that arise from the miRNA data analysis. Furthermore, in the present survey, the various miRNA data analysis steps are treated as an integrated procedure whose aims and scope is to uncover the regulatory role and mechanisms of the miRNA genes. This integrated view of the miRNA data analysis steps may be extremely useful for all researchers even if they work on just a single step. Copyright © 2013 Elsevier Inc. All rights reserved.
In silico polypharmacology of natural products.
Fang, Jiansong; Liu, Chuang; Wang, Qi; Lin, Ping; Cheng, Feixiong
2017-04-27
Natural products with polypharmacological profiles have demonstrated promise as novel therapeutics for various complex diseases, including cancer. Currently, many gaps exist in our knowledge of which compounds interact with which targets, and experimentally testing all possible interactions is infeasible. Recent advances and developments of systems pharmacology and computational (in silico) approaches provide powerful tools for exploring the polypharmacological profiles of natural products. In this review, we introduce recent progresses and advances of computational tools and systems pharmacology approaches for identifying drug targets of natural products by focusing on the development of targeted cancer therapy. We survey the polypharmacological and systems immunology profiles of five representative natural products that are being considered as cancer therapies. We summarize various chemoinformatics, bioinformatics and systems biology resources for reconstructing drug-target networks of natural products. We then review currently available computational approaches and tools for prediction of drug-target interactions by focusing on five domains: target-based, ligand-based, chemogenomics-based, network-based and omics-based systems biology approaches. In addition, we describe a practical example of the application of systems pharmacology approaches by integrating the polypharmacology of natural products and large-scale cancer genomics data for the development of precision oncology under the systems biology framework. Finally, we highlight the promise of cancer immunotherapies and combination therapies that target tumor ecosystems (e.g. clones or 'selfish' sub-clones) via exploiting the immunological and inflammatory 'side' effects of natural products in the cancer post-genomics era. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Automated target recognition using passive radar and coordinated flight models
NASA Astrophysics Data System (ADS)
Ehrman, Lisa M.; Lanterman, Aaron D.
2003-09-01
Rather than emitting pulses, passive radar systems rely on illuminators of opportunity, such as TV and FM radio, to illuminate potential targets. These systems are particularly attractive since they allow receivers to operate without emitting energy, rendering them covert. Many existing passive radar systems estimate the locations and velocities of targets. This paper focuses on adding an automatic target recognition (ATR) component to such systems. Our approach to ATR compares the Radar Cross Section (RCS) of targets detected by a passive radar system to the simulated RCS of known targets. To make the comparison as accurate as possible, the received signal model accounts for aircraft position and orientation, propagation losses, and antenna gain patterns. The estimated positions become inputs for an algorithm that uses a coordinated flight model to compute probable aircraft orientation angles. The Fast Illinois Solver Code (FISC) simulates the RCS of several potential target classes as they execute the estimated maneuvers. The RCS is then scaled by the Advanced Refractive Effects Prediction System (AREPS) code to account for propagation losses that occur as functions of altitude and range. The Numerical Electromagnetic Code (NEC2) computes the antenna gain pattern, so that the RCS can be further scaled. The Rician model compares the RCS of the illuminated aircraft with those of the potential targets. This comparison results in target identification.
Advanced Computational Methods for High-accuracy Refinement of Protein Low-quality Models
NASA Astrophysics Data System (ADS)
Zang, Tianwu
Predicting the 3-dimentional structure of protein has been a major interest in the modern computational biology. While lots of successful methods can generate models with 3˜5A root-mean-square deviation (RMSD) from the solution, the progress of refining these models is quite slow. It is therefore urgently needed to develop effective methods to bring low-quality models to higher-accuracy ranges (e.g., less than 2 A RMSD). In this thesis, I present several novel computational methods to address the high-accuracy refinement problem. First, an enhanced sampling method, named parallel continuous simulated tempering (PCST), is developed to accelerate the molecular dynamics (MD) simulation. Second, two energy biasing methods, Structure-Based Model (SBM) and Ensemble-Based Model (EBM), are introduced to perform targeted sampling around important conformations. Third, a three-step method is developed to blindly select high-quality models along the MD simulation. These methods work together to make significant refinement of low-quality models without any knowledge of the solution. The effectiveness of these methods is examined in different applications. Using the PCST-SBM method, models with higher global distance test scores (GDT_TS) are generated and selected in the MD simulation of 18 targets from the refinement category of the 10th Critical Assessment of Structure Prediction (CASP10). In addition, in the refinement test of two CASP10 targets using the PCST-EBM method, it is indicated that EBM may bring the initial model to even higher-quality levels. Furthermore, a multi-round refinement protocol of PCST-SBM improves the model quality of a protein to the level that is sufficient high for the molecular replacement in X-ray crystallography. Our results justify the crucial position of enhanced sampling in the protein structure prediction and demonstrate that a considerable improvement of low-accuracy structures is still achievable with current force fields.
Hassan, Syed S.; Jamal, Syed B.; Radusky, Leandro G.; Tiwari, Sandeep; Ullah, Asad; Ali, Javed; Behramand; de Carvalho, Paulo V. S. D.; Shams, Rida; Khan, Sabir; Figueiredo, Henrique C. P.; Barh, Debmalya; Ghosh, Preetam; Silva, Artur; Baumbach, Jan; Röttger, Richard; Turjanski, Adrián G.; Azevedo, Vasco A. C.
2018-01-01
Diphtheria is an acute and highly infectious disease, previously regarded as endemic in nature but vaccine-preventable, is caused by Corynebacterium diphtheriae (Cd). In this work, we used an in silico approach along the 13 complete genome sequences of C. diphtheriae followed by a computational assessment of structural information of the binding sites to characterize the “pocketome druggability.” To this end, we first computed the “modelome” (3D structures of a complete genome) of a randomly selected reference strain Cd NCTC13129; that had 13,763 open reading frames (ORFs) and resulted in 1,253 (∼9%) structure models. The amino acid sequences of these modeled structures were compared with the remaining 12 genomes and consequently, 438 conserved protein sequences were obtained. The RCSB-PDB database was consulted to check the template structures for these conserved proteins and as a result, 401 adequate 3D models were obtained. We subsequently predicted the protein pockets for the obtained set of models and kept only the conserved pockets that had highly druggable (HD) values (137 across all strains). Later, an off-target host homology analyses was performed considering the human proteome using NCBI database. Furthermore, the gene essentiality analysis was carried out that gave a final set of 10-conserved targets possessing highly druggable protein pockets. To check the target identification robustness of the pipeline used in this work, we crosschecked the final target list with another in-house target identification approach for C. diphtheriae thereby obtaining three common targets, these were; hisE-phosphoribosyl-ATP pyrophosphatase, glpX-fructose 1,6-bisphosphatase II, and rpsH-30S ribosomal protein S8. Our predicted results suggest that the in silico approach used could potentially aid in experimental polypharmacological target determination in C. diphtheriae and other pathogens, thereby, might complement the existing and new drug-discovery pipelines. PMID:29487617
Armutlu, Pelin; Ozdemir, Muhittin E; Uney-Yuksektepe, Fadime; Kavakli, I Halil; Turkay, Metin
2008-10-03
A priori analysis of the activity of drugs on the target protein by computational approaches can be useful in narrowing down drug candidates for further experimental tests. Currently, there are a large number of computational methods that predict the activity of drugs on proteins. In this study, we approach the activity prediction problem as a classification problem and, we aim to improve the classification accuracy by introducing an algorithm that combines partial least squares regression with mixed-integer programming based hyper-boxes classification method, where drug molecules are classified as low active or high active regarding their binding activity (IC50 values) on target proteins. We also aim to determine the most significant molecular descriptors for the drug molecules. We first apply our approach by analyzing the activities of widely known inhibitor datasets including Acetylcholinesterase (ACHE), Benzodiazepine Receptor (BZR), Dihydrofolate Reductase (DHFR), Cyclooxygenase-2 (COX-2) with known IC50 values. The results at this stage proved that our approach consistently gives better classification accuracies compared to 63 other reported classification methods such as SVM, Naïve Bayes, where we were able to predict the experimentally determined IC50 values with a worst case accuracy of 96%. To further test applicability of this approach we first created dataset for Cytochrome P450 C17 inhibitors and then predicted their activities with 100% accuracy. Our results indicate that this approach can be utilized to predict the inhibitory effects of inhibitors based on their molecular descriptors. This approach will not only enhance drug discovery process, but also save time and resources committed.
The Enzyme Function Initiative†
Gerlt, John A.; Allen, Karen N.; Almo, Steven C.; Armstrong, Richard N.; Babbitt, Patricia C.; Cronan, John E.; Dunaway-Mariano, Debra; Imker, Heidi J.; Jacobson, Matthew P.; Minor, Wladek; Poulter, C. Dale; Raushel, Frank M.; Sali, Andrej; Shoichet, Brian K.; Sweedler, Jonathan V.
2011-01-01
The Enzyme Function Initiative (EFI) was recently established to address the challenge of assigning reliable functions to enzymes discovered in bacterial genome projects; in this Current Topic we review the structure and operations of the EFI. The EFI includes the Superfamily/Genome, Protein, Structure, Computation, and Data/Dissemination Cores that provide the infrastructure for reliably predicting the in vitro functions of unknown enzymes. The initial targets for functional assignment are selected from five functionally diverse superfamilies (amidohydrolase, enolase, glutathione transferase, haloalkanoic acid dehalogenase, and isoprenoid synthase), with five superfamily-specific Bridging Projects experimentally testing the predicted in vitro enzymatic activities. The EFI also includes the Microbiology Core that evaluates the in vivo context of in vitro enzymatic functions and confirms the functional predictions of the EFI. The deliverables of the EFI to the scientific community include: 1) development of a large-scale, multidisciplinary sequence/structure-based strategy for functional assignment of unknown enzymes discovered in genome projects (target selection, protein production, structure determination, computation, experimental enzymology, microbiology, and structure-based annotation); 2) dissemination of the strategy to the community via publications, collaborations, workshops, and symposia; 3) computational and bioinformatic tools for using the strategy; 4) provision of experimental protocols and/or reagents for enzyme production and characterization; and 5) dissemination of data via the EFI’s website, enzymefunction.org. The realization of multidisciplinary strategies for functional assignment will begin to define the full metabolic diversity that exists in nature and will impact basic biochemical and evolutionary understanding, as well as a wide range of applications of central importance to industrial, medicinal and pharmaceutical efforts. PMID:21999478
The Enzyme Function Initiative.
Gerlt, John A; Allen, Karen N; Almo, Steven C; Armstrong, Richard N; Babbitt, Patricia C; Cronan, John E; Dunaway-Mariano, Debra; Imker, Heidi J; Jacobson, Matthew P; Minor, Wladek; Poulter, C Dale; Raushel, Frank M; Sali, Andrej; Shoichet, Brian K; Sweedler, Jonathan V
2011-11-22
The Enzyme Function Initiative (EFI) was recently established to address the challenge of assigning reliable functions to enzymes discovered in bacterial genome projects; in this Current Topic, we review the structure and operations of the EFI. The EFI includes the Superfamily/Genome, Protein, Structure, Computation, and Data/Dissemination Cores that provide the infrastructure for reliably predicting the in vitro functions of unknown enzymes. The initial targets for functional assignment are selected from five functionally diverse superfamilies (amidohydrolase, enolase, glutathione transferase, haloalkanoic acid dehalogenase, and isoprenoid synthase), with five superfamily specific Bridging Projects experimentally testing the predicted in vitro enzymatic activities. The EFI also includes the Microbiology Core that evaluates the in vivo context of in vitro enzymatic functions and confirms the functional predictions of the EFI. The deliverables of the EFI to the scientific community include (1) development of a large-scale, multidisciplinary sequence/structure-based strategy for functional assignment of unknown enzymes discovered in genome projects (target selection, protein production, structure determination, computation, experimental enzymology, microbiology, and structure-based annotation), (2) dissemination of the strategy to the community via publications, collaborations, workshops, and symposia, (3) computational and bioinformatic tools for using the strategy, (4) provision of experimental protocols and/or reagents for enzyme production and characterization, and (5) dissemination of data via the EFI's Website, http://enzymefunction.org. The realization of multidisciplinary strategies for functional assignment will begin to define the full metabolic diversity that exists in nature and will impact basic biochemical and evolutionary understanding, as well as a wide range of applications of central importance to industrial, medicinal, and pharmaceutical efforts. © 2011 American Chemical Society
Manku, H K; Dhanoa, J K; Kaur, S; Arora, J S; Mukhopadhyay, C S
2017-10-01
MicroRNAs (miRNAs) are small (19-25 base long), non-coding RNAs that regulate post-transcriptional gene expression by cleaving targeted mRNAs in several eukaryotes. The miRNAs play vital roles in multiple biological and metabolic processes, including developmental timing, signal transduction, cell maintenance and differentiation, diseases and cancers. Experimental identification of microRNAs is expensive and lab-intensive. Alternatively, computational approaches for predicting putative miRNAs from genomic or exomic sequences rely on features of miRNAs viz. secondary structures, sequence conservation, minimum free energy index (MFEI) etc. To date, not a single miRNA has been identified in bubaline (Bubalus bubalis), which is an economically important livestock. The present study aims at predicting the putative miRNAs of buffalo using comparative computational approach from buffalo whole genome shotgun sequencing data (INSDC: AWWX00000000.1). The sequences were blasted against the known mammalian miRNA. The obtained miRNAs were then passed through a series of filtration criteria to obtain the set of predicted (putative and novel) bubaline miRNA. Eight miRNAs were selected based on lowest E-value and validated by real time PCR (SYBR green chemistry) using RNU6 as endogenous control. The results from different trails of real time PCR shows that out of selected 8 miRNAs, only 2 (hsa-miR-1277-5p; bta-miR-2285b) are not expressed in bubaline PBMCs. The potential target genes based on their sequence complementarities were then predicted using miRanda. This work is the first report on prediction of bubaline miRNA from whole genome sequencing data followed by experimental validation. The finding could pave the way to future studies in economically important traits in buffalo. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chiddarwar, Rucha K; Rohrer, Sebastian G; Wolf, Antje; Tresch, Stefan; Wollenhaupt, Sabrina; Bender, Andreas
2017-01-01
The rapid emergence of pesticide resistance has given rise to a demand for herbicides with new mode of action (MoA). In the agrochemical sector, with the availability of experimental high throughput screening (HTS) data, it is now possible to utilize in silico target prediction methods in the early discovery phase to suggest the MoA of a compound via data mining of bioactivity data. While having been established in the pharmaceutical context, in the agrochemical area this approach poses rather different challenges, as we have found in this work, partially due to different chemistry, but even more so due to different (usually smaller) amounts of data, and different ways of conducting HTS. With the aim to apply computational methods for facilitating herbicide target identification, 48,000 bioactivity data against 16 herbicide targets were processed to train Laplacian modified Naïve Bayesian (NB) classification models. The herbicide target prediction model ("HerbiMod") is an ensemble of 16 binary classification models which are evaluated by internal, external and prospective validation sets. In addition to the experimental inactives, 10,000 random agrochemical inactives were included in the training process, which showed to improve the overall balanced accuracy of our models up to 40%. For all the models, performance in terms of balanced accuracy of≥80% was achieved in five-fold cross validation. Ranking target predictions was addressed by means of z-scores which improved predictivity over using raw scores alone. An external testset of 247 compounds from ChEMBL and a prospective testset of 394 compounds from BASF SE tested against five well studied herbicide targets (ACC, ALS, HPPD, PDS and PROTOX) were used for further validation. Only 4% of the compounds in the external testset lied in the applicability domain and extrapolation (and correct prediction) was hence impossible, which on one hand was surprising, and on the other hand illustrated the utilization of using applicability domains in the first place. However, performance better than 60% in balanced accuracy was achieved on the prospective testset, where all the compounds fell within the applicability domain, and which hence underlines the possibility of using target prediction also in the area of agrochemicals. Copyright © 2016 Elsevier Inc. All rights reserved.
Model predictive control for spacecraft rendezvous in elliptical orbit
NASA Astrophysics Data System (ADS)
Li, Peng; Zhu, Zheng H.
2018-05-01
This paper studies the control of spacecraft rendezvous with attitude stable or spinning targets in an elliptical orbit. The linearized Tschauner-Hempel equation is used to describe the motion of spacecraft and the problem is formulated by model predictive control. The control objective is to maximize control accuracy and smoothness simultaneously to avoid unexpected change or overshoot of trajectory for safe rendezvous. It is achieved by minimizing the weighted summations of control errors and increments. The effects of two sets of horizons (control and predictive horizons) in the model predictive control are examined in terms of fuel consumption, rendezvous time and computational effort. The numerical results show the proposed control strategy is effective.
Kalash, Leen; Val, Cristina; Azuaje, Jhonny; Loza, María I; Svensson, Fredrik; Zoufir, Azedine; Mervin, Lewis; Ladds, Graham; Brea, José; Glen, Robert; Sotelo, Eddy; Bender, Andreas
2017-12-30
Compounds designed to display polypharmacology may have utility in treating complex diseases, where activity at multiple targets is required to produce a clinical effect. In particular, suitable compounds may be useful in treating neurodegenerative diseases by promoting neuronal survival in a synergistic manner via their multi-target activity at the adenosine A 1 and A 2A receptors (A 1 R and A 2A R) and phosphodiesterase 10A (PDE10A), which modulate intracellular cAMP levels. Hence, in this work we describe a computational method for the design of synthetically feasible ligands that bind to A 1 and A 2A receptors and inhibit phosphodiesterase 10A (PDE10A), involving a retrosynthetic approach employing in silico target prediction and docking, which may be generally applicable to multi-target compound design at several target classes. This approach has identified 2-aminopyridine-3-carbonitriles as the first multi-target ligands at A 1 R, A 2A R and PDE10A, by showing agreement between the ligand and structure based predictions at these targets. The series were synthesized via an efficient one-pot scheme and validated pharmacologically as A 1 R/A 2A R-PDE10A ligands, with IC 50 values of 2.4-10.0 μM at PDE10A and K i values of 34-294 nM at A 1 R and/or A 2A R. Furthermore, selectivity profiling of the synthesized 2-amino-pyridin-3-carbonitriles against other subtypes of both protein families showed that the multi-target ligand 8 exhibited a minimum of twofold selectivity over all tested off-targets. In addition, both compounds 8 and 16 exhibited the desired multi-target profile, which could be considered for further functional efficacy assessment, analog modification for the improvement of selectivity towards A 1 R, A 2A R and PDE10A collectively, and evaluation of their potential synergy in modulating cAMP levels.
Zhou, Weiqiang; Sherwood, Ben; Ji, Hongkai
2017-01-01
Technological advances have led to an explosive growth of high-throughput functional genomic data. Exploiting the correlation among different data types, it is possible to predict one functional genomic data type from other data types. Prediction tools are valuable in understanding the relationship among different functional genomic signals. They also provide a cost-efficient solution to inferring the unknown functional genomic profiles when experimental data are unavailable due to resource or technological constraints. The predicted data may be used for generating hypotheses, prioritizing targets, interpreting disease variants, facilitating data integration, quality control, and many other purposes. This article reviews various applications of prediction methods in functional genomics, discusses analytical challenges, and highlights some common and effective strategies used to develop prediction methods for functional genomic data. PMID:28076869
Computational methods for a three-dimensional model of the petroleum-discovery process
Schuenemeyer, J.H.; Bawiec, W.J.; Drew, L.J.
1980-01-01
A discovery-process model devised by Drew, Schuenemeyer, and Root can be used to predict the amount of petroleum to be discovered in a basin from some future level of exploratory effort: the predictions are based on historical drilling and discovery data. Because marginal costs of discovery and production are a function of field size, the model can be used to make estimates of future discoveries within deposit size classes. The modeling approach is a geometric one in which the area searched is a function of the size and shape of the targets being sought. A high correlation is assumed between the surface-projection area of the fields and the volume of petroleum. To predict how much oil remains to be found, the area searched must be computed, and the basin size and discovery efficiency must be estimated. The basin is assumed to be explored randomly rather than by pattern drilling. The model may be used to compute independent estimates of future oil at different depth intervals for a play involving multiple producing horizons. We have written FORTRAN computer programs that are used with Drew, Schuenemeyer, and Root's model to merge the discovery and drilling information and perform the necessary computations to estimate undiscovered petroleum. These program may be modified easily for the estimation of remaining quantities of commodities other than petroleum. ?? 1980.
Reverse screening methods to search for the protein targets of chemopreventive compounds
NASA Astrophysics Data System (ADS)
Huang, Hongbin; Zhang, Guigui; Zhou, Yuquan; Lin, Chenru; Chen, Suling; Lin, Yutong; Mai, Shangkang; Huang, Zunnan
2018-05-01
This article is a systematic review of reverse screening methods used to search for the protein targets of chemopreventive compounds or drugs. Typical chemopreventive compounds include components of traditional Chinese medicine, natural compounds and Food and Drug Administration (FDA)-approved drugs. Such compounds are somewhat selective but are predisposed to bind multiple protein targets distributed throughout diverse signaling pathways in human cells. In contrast to conventional virtual screening, which identifies the ligands of a targeted protein from a compound database, reverse screening is used to identify the potential targets or unintended targets of a given compound from a large number of receptors by examining their known ligands or crystal structures. This method, also known as in silico or computational target fishing, is highly valuable for discovering the target receptors of query molecules from terrestrial or marine natural products, exploring the molecular mechanisms of chemopreventive compounds, finding alternative indications of existing drugs by drug repositioning, and detecting adverse drug reactions and drug toxicity. Reverse screening can be divided into three major groups: shape screening, pharmacophore screening and reverse docking. Several large software packages, such as Schrödinger and Discovery Studio; typical software/network services such as ChemMapper, PharmMapper, idTarget and INVDOCK; and practical databases of known target ligands and receptor crystal structures, such as ChEMBL, BindingDB and the Protein Data Bank (PDB), are available for use in these computational methods. Different programs, online services and databases have different applications and constraints. Here, we conducted a systematic analysis and multilevel classification of the computational programs, online services and compound libraries available for shape screening, pharmacophore screening and reverse docking to enable non-specialist users to quickly learn and grasp the types of calculations used in protein target fishing. In addition, we review the main features of these methods, programs and databases and provide a variety of examples illustrating the application of one or a combination of reverse screening methods for accurate target prediction.
Reverse Screening Methods to Search for the Protein Targets of Chemopreventive Compounds.
Huang, Hongbin; Zhang, Guigui; Zhou, Yuquan; Lin, Chenru; Chen, Suling; Lin, Yutong; Mai, Shangkang; Huang, Zunnan
2018-01-01
This article is a systematic review of reverse screening methods used to search for the protein targets of chemopreventive compounds or drugs. Typical chemopreventive compounds include components of traditional Chinese medicine, natural compounds and Food and Drug Administration (FDA)-approved drugs. Such compounds are somewhat selective but are predisposed to bind multiple protein targets distributed throughout diverse signaling pathways in human cells. In contrast to conventional virtual screening, which identifies the ligands of a targeted protein from a compound database, reverse screening is used to identify the potential targets or unintended targets of a given compound from a large number of receptors by examining their known ligands or crystal structures. This method, also known as in silico or computational target fishing, is highly valuable for discovering the target receptors of query molecules from terrestrial or marine natural products, exploring the molecular mechanisms of chemopreventive compounds, finding alternative indications of existing drugs by drug repositioning, and detecting adverse drug reactions and drug toxicity. Reverse screening can be divided into three major groups: shape screening, pharmacophore screening and reverse docking. Several large software packages, such as Schrödinger and Discovery Studio; typical software/network services such as ChemMapper, PharmMapper, idTarget, and INVDOCK; and practical databases of known target ligands and receptor crystal structures, such as ChEMBL, BindingDB, and the Protein Data Bank (PDB), are available for use in these computational methods. Different programs, online services and databases have different applications and constraints. Here, we conducted a systematic analysis and multilevel classification of the computational programs, online services and compound libraries available for shape screening, pharmacophore screening and reverse docking to enable non-specialist users to quickly learn and grasp the types of calculations used in protein target fishing. In addition, we review the main features of these methods, programs and databases and provide a variety of examples illustrating the application of one or a combination of reverse screening methods for accurate target prediction.
Reverse Screening Methods to Search for the Protein Targets of Chemopreventive Compounds
Huang, Hongbin; Zhang, Guigui; Zhou, Yuquan; Lin, Chenru; Chen, Suling; Lin, Yutong; Mai, Shangkang; Huang, Zunnan
2018-01-01
This article is a systematic review of reverse screening methods used to search for the protein targets of chemopreventive compounds or drugs. Typical chemopreventive compounds include components of traditional Chinese medicine, natural compounds and Food and Drug Administration (FDA)-approved drugs. Such compounds are somewhat selective but are predisposed to bind multiple protein targets distributed throughout diverse signaling pathways in human cells. In contrast to conventional virtual screening, which identifies the ligands of a targeted protein from a compound database, reverse screening is used to identify the potential targets or unintended targets of a given compound from a large number of receptors by examining their known ligands or crystal structures. This method, also known as in silico or computational target fishing, is highly valuable for discovering the target receptors of query molecules from terrestrial or marine natural products, exploring the molecular mechanisms of chemopreventive compounds, finding alternative indications of existing drugs by drug repositioning, and detecting adverse drug reactions and drug toxicity. Reverse screening can be divided into three major groups: shape screening, pharmacophore screening and reverse docking. Several large software packages, such as Schrödinger and Discovery Studio; typical software/network services such as ChemMapper, PharmMapper, idTarget, and INVDOCK; and practical databases of known target ligands and receptor crystal structures, such as ChEMBL, BindingDB, and the Protein Data Bank (PDB), are available for use in these computational methods. Different programs, online services and databases have different applications and constraints. Here, we conducted a systematic analysis and multilevel classification of the computational programs, online services and compound libraries available for shape screening, pharmacophore screening and reverse docking to enable non-specialist users to quickly learn and grasp the types of calculations used in protein target fishing. In addition, we review the main features of these methods, programs and databases and provide a variety of examples illustrating the application of one or a combination of reverse screening methods for accurate target prediction. PMID:29868550
Drug search for leishmaniasis: a virtual screening approach by grid computing
NASA Astrophysics Data System (ADS)
Ochoa, Rodrigo; Watowich, Stanley J.; Flórez, Andrés; Mesa, Carol V.; Robledo, Sara M.; Muskus, Carlos
2016-07-01
The trypanosomatid protozoa Leishmania is endemic in 100 countries, with infections causing 2 million new cases of leishmaniasis annually. Disease symptoms can include severe skin and mucosal ulcers, fever, anemia, splenomegaly, and death. Unfortunately, therapeutics approved to treat leishmaniasis are associated with potentially severe side effects, including death. Furthermore, drug-resistant Leishmania parasites have developed in most endemic countries. To address an urgent need for new, safe and inexpensive anti-leishmanial drugs, we utilized the IBM World Community Grid to complete computer-based drug discovery screens (Drug Search for Leishmaniasis) using unique leishmanial proteins and a database of 600,000 drug-like small molecules. Protein structures from different Leishmania species were selected for molecular dynamics (MD) simulations, and a series of conformational "snapshots" were chosen from each MD trajectory to simulate the protein's flexibility. A Relaxed Complex Scheme methodology was used to screen 2000 MD conformations against the small molecule database, producing >1 billion protein-ligand structures. For each protein target, a binding spectrum was calculated to identify compounds predicted to bind with highest average affinity to all protein conformations. Significantly, four different Leishmania protein targets were predicted to strongly bind small molecules, with the strongest binding interactions predicted to occur for dihydroorotate dehydrogenase (LmDHODH; PDB:3MJY). A number of predicted tight-binding LmDHODH inhibitors were tested in vitro and potent selective inhibitors of Leishmania panamensis were identified. These promising small molecules are suitable for further development using iterative structure-based optimization and in vitro/in vivo validation assays.
Drug search for leishmaniasis: a virtual screening approach by grid computing.
Ochoa, Rodrigo; Watowich, Stanley J; Flórez, Andrés; Mesa, Carol V; Robledo, Sara M; Muskus, Carlos
2016-07-01
The trypanosomatid protozoa Leishmania is endemic in ~100 countries, with infections causing ~2 million new cases of leishmaniasis annually. Disease symptoms can include severe skin and mucosal ulcers, fever, anemia, splenomegaly, and death. Unfortunately, therapeutics approved to treat leishmaniasis are associated with potentially severe side effects, including death. Furthermore, drug-resistant Leishmania parasites have developed in most endemic countries. To address an urgent need for new, safe and inexpensive anti-leishmanial drugs, we utilized the IBM World Community Grid to complete computer-based drug discovery screens (Drug Search for Leishmaniasis) using unique leishmanial proteins and a database of 600,000 drug-like small molecules. Protein structures from different Leishmania species were selected for molecular dynamics (MD) simulations, and a series of conformational "snapshots" were chosen from each MD trajectory to simulate the protein's flexibility. A Relaxed Complex Scheme methodology was used to screen ~2000 MD conformations against the small molecule database, producing >1 billion protein-ligand structures. For each protein target, a binding spectrum was calculated to identify compounds predicted to bind with highest average affinity to all protein conformations. Significantly, four different Leishmania protein targets were predicted to strongly bind small molecules, with the strongest binding interactions predicted to occur for dihydroorotate dehydrogenase (LmDHODH; PDB:3MJY). A number of predicted tight-binding LmDHODH inhibitors were tested in vitro and potent selective inhibitors of Leishmania panamensis were identified. These promising small molecules are suitable for further development using iterative structure-based optimization and in vitro/in vivo validation assays.
Geerts, Hugo; Spiros, Athan; Roberts, Patrick; Twyman, Roy; Alphs, Larry; Grace, Anthony A.
2012-01-01
The tremendous advances in understanding the neurobiological circuits involved in schizophrenia have not translated into more effective treatments. An alternative strategy is to use a recently published ‘Quantitative Systems Pharmacology’ computer-based mechanistic disease model of cortical/subcortical and striatal circuits based upon preclinical physiology, human pathology and pharmacology. The physiology of 27 relevant dopamine, serotonin, acetylcholine, norepinephrine, gamma-aminobutyric acid (GABA) and glutamate-mediated targets is calibrated using retrospective clinical data on 24 different antipsychotics. The model was challenged to predict quantitatively the clinical outcome in a blinded fashion of two experimental antipsychotic drugs; JNJ37822681, a highly selective low-affinity dopamine D2 antagonist and ocaperidone, a very high affinity dopamine D2 antagonist, using only pharmacology and human positron emission tomography (PET) imaging data. The model correctly predicted the lower performance of JNJ37822681 on the positive and negative syndrome scale (PANSS) total score and the higher extra-pyramidal symptom (EPS) liability compared to olanzapine and the relative performance of ocaperidone against olanzapine, but did not predict the absolute PANSS total score outcome and EPS liability for ocaperidone, possibly due to placebo responses and EPS assessment methods. Because of its virtual nature, this modeling approach can support central nervous system research and development by accounting for unique human drug properties, such as human metabolites, exposure, genotypes and off-target effects and can be a helpful tool for drug discovery and development. PMID:23251349
Nisius, Britta; Gohlke, Holger
2012-09-24
Analyzing protein binding sites provides detailed insights into the biological processes proteins are involved in, e.g., into drug-target interactions, and so is of crucial importance in drug discovery. Herein, we present novel alignment-independent binding site descriptors based on DrugScore potential fields. The potential fields are transformed to a set of information-rich descriptors using a series expansion in 3D Zernike polynomials. The resulting Zernike descriptors show a promising performance in detecting similarities among proteins with low pairwise sequence identities that bind identical ligands, as well as within subfamilies of one target class. Furthermore, the Zernike descriptors are robust against structural variations among protein binding sites. Finally, the Zernike descriptors show a high data compression power, and computing similarities between binding sites based on these descriptors is highly efficient. Consequently, the Zernike descriptors are a useful tool for computational binding site analysis, e.g., to predict the function of novel proteins, off-targets for drug candidates, or novel targets for known drugs.
Computer-aided drug design at Boehringer Ingelheim
NASA Astrophysics Data System (ADS)
Muegge, Ingo; Bergner, Andreas; Kriegl, Jan M.
2017-03-01
Computer-Aided Drug Design (CADD) is an integral part of the drug discovery endeavor at Boehringer Ingelheim (BI). CADD contributes to the evaluation of new therapeutic concepts, identifies small molecule starting points for drug discovery, and develops strategies for optimizing hit and lead compounds. The CADD scientists at BI benefit from the global use and development of both software platforms and computational services. A number of computational techniques developed in-house have significantly changed the way early drug discovery is carried out at BI. In particular, virtual screening in vast chemical spaces, which can be accessed by combinatorial chemistry, has added a new option for the identification of hits in many projects. Recently, a new framework has been implemented allowing fast, interactive predictions of relevant on and off target endpoints and other optimization parameters. In addition to the introduction of this new framework at BI, CADD has been focusing on the enablement of medicinal chemists to independently perform an increasing amount of molecular modeling and design work. This is made possible through the deployment of MOE as a global modeling platform, allowing computational and medicinal chemists to freely share ideas and modeling results. Furthermore, a central communication layer called the computational chemistry framework provides broad access to predictive models and other computational services.
LRSSLMDA: Laplacian Regularized Sparse Subspace Learning for MiRNA-Disease Association prediction
Huang, Li
2017-01-01
Predicting novel microRNA (miRNA)-disease associations is clinically significant due to miRNAs’ potential roles of diagnostic biomarkers and therapeutic targets for various human diseases. Previous studies have demonstrated the viability of utilizing different types of biological data to computationally infer new disease-related miRNAs. Yet researchers face the challenge of how to effectively integrate diverse datasets and make reliable predictions. In this study, we presented a computational model named Laplacian Regularized Sparse Subspace Learning for MiRNA-Disease Association prediction (LRSSLMDA), which projected miRNAs/diseases’ statistical feature profile and graph theoretical feature profile to a common subspace. It used Laplacian regularization to preserve the local structures of the training data and a L1-norm constraint to select important miRNA/disease features for prediction. The strength of dimensionality reduction enabled the model to be easily extended to much higher dimensional datasets than those exploited in this study. Experimental results showed that LRSSLMDA outperformed ten previous models: the AUC of 0.9178 in global leave-one-out cross validation (LOOCV) and the AUC of 0.8418 in local LOOCV indicated the model’s superior prediction accuracy; and the average AUC of 0.9181+/-0.0004 in 5-fold cross validation justified its accuracy and stability. In addition, three types of case studies further demonstrated its predictive power. Potential miRNAs related to Colon Neoplasms, Lymphoma, Kidney Neoplasms, Esophageal Neoplasms and Breast Neoplasms were predicted by LRSSLMDA. Respectively, 98%, 88%, 96%, 98% and 98% out of the top 50 predictions were validated by experimental evidences. Therefore, we conclude that LRSSLMDA would be a valuable computational tool for miRNA-disease association prediction. PMID:29253885
2013-01-01
Herpes simplex virus (HSV) types 1 and 2 (HSV-1 and HSV-2) are the most common infectious agents of humans. No safe and effective HSV vaccines have been licensed. Reverse vaccinology is an emerging and revolutionary vaccine development strategy that starts with the prediction of vaccine targets by informatics analysis of genome sequences. Vaxign (http://www.violinet.org/vaxign) is the first web-based vaccine design program based on reverse vaccinology. In this study, we used Vaxign to analyze 52 herpesvirus genomes, including 3 HSV-1 genomes, one HSV-2 genome, 8 other human herpesvirus genomes, and 40 non-human herpesvirus genomes. The HSV-1 strain 17 genome that contains 77 proteins was used as the seed genome. These 77 proteins are conserved in two other HSV-1 strains (strain F and strain H129). Two envelope glycoproteins gJ and gG do not have orthologs in HSV-2 or 8 other human herpesviruses. Seven HSV-1 proteins (including gJ and gG) do not have orthologs in all 40 non-human herpesviruses. Nineteen proteins are conserved in all human herpesviruses, including capsid scaffold protein UL26.5 (NP_044628.1). As the only HSV-1 protein predicted to be an adhesin, UL26.5 is a promising vaccine target. The MHC Class I and II epitopes were predicted by the Vaxign Vaxitop prediction program and IEDB prediction programs recently installed and incorporated in Vaxign. Our comparative analysis found that the two programs identified largely the same top epitopes but also some positive results predicted from one program might not be positive from another program. Overall, our Vaxign computational prediction provides many promising candidates for rational HSV vaccine development. The method is generic and can also be used to predict other viral vaccine targets. PMID:23514126
Yuan, Qingjun; Gao, Junning; Wu, Dongliang; Zhang, Shihua; Mamitsuka, Hiroshi; Zhu, Shanfeng
2016-01-01
Motivation: Identifying drug–target interactions is an important task in drug discovery. To reduce heavy time and financial cost in experimental way, many computational approaches have been proposed. Although these approaches have used many different principles, their performance is far from satisfactory, especially in predicting drug–target interactions of new candidate drugs or targets. Methods: Approaches based on machine learning for this problem can be divided into two types: feature-based and similarity-based methods. Learning to rank is the most powerful technique in the feature-based methods. Similarity-based methods are well accepted, due to their idea of connecting the chemical and genomic spaces, represented by drug and target similarities, respectively. We propose a new method, DrugE-Rank, to improve the prediction performance by nicely combining the advantages of the two different types of methods. That is, DrugE-Rank uses LTR, for which multiple well-known similarity-based methods can be used as components of ensemble learning. Results: The performance of DrugE-Rank is thoroughly examined by three main experiments using data from DrugBank: (i) cross-validation on FDA (US Food and Drug Administration) approved drugs before March 2014; (ii) independent test on FDA approved drugs after March 2014; and (iii) independent test on FDA experimental drugs. Experimental results show that DrugE-Rank outperforms competing methods significantly, especially achieving more than 30% improvement in Area under Prediction Recall curve for FDA approved new drugs and FDA experimental drugs. Availability: http://datamining-iip.fudan.edu.cn/service/DrugE-Rank Contact: zhusf@fudan.edu.cn Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307615
Yuan, Qingjun; Gao, Junning; Wu, Dongliang; Zhang, Shihua; Mamitsuka, Hiroshi; Zhu, Shanfeng
2016-06-15
Identifying drug-target interactions is an important task in drug discovery. To reduce heavy time and financial cost in experimental way, many computational approaches have been proposed. Although these approaches have used many different principles, their performance is far from satisfactory, especially in predicting drug-target interactions of new candidate drugs or targets. Approaches based on machine learning for this problem can be divided into two types: feature-based and similarity-based methods. Learning to rank is the most powerful technique in the feature-based methods. Similarity-based methods are well accepted, due to their idea of connecting the chemical and genomic spaces, represented by drug and target similarities, respectively. We propose a new method, DrugE-Rank, to improve the prediction performance by nicely combining the advantages of the two different types of methods. That is, DrugE-Rank uses LTR, for which multiple well-known similarity-based methods can be used as components of ensemble learning. The performance of DrugE-Rank is thoroughly examined by three main experiments using data from DrugBank: (i) cross-validation on FDA (US Food and Drug Administration) approved drugs before March 2014; (ii) independent test on FDA approved drugs after March 2014; and (iii) independent test on FDA experimental drugs. Experimental results show that DrugE-Rank outperforms competing methods significantly, especially achieving more than 30% improvement in Area under Prediction Recall curve for FDA approved new drugs and FDA experimental drugs. http://datamining-iip.fudan.edu.cn/service/DrugE-Rank zhusf@fudan.edu.cn Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Advanced studies of electromagnetic scattering
NASA Technical Reports Server (NTRS)
Ling, Hao
1994-01-01
In radar signature applications it is often desirable to generate the range profiles and inverse synthetic aperture radar (ISAR) images of a target. They can be used either as identification tools to distinguish and classify the target from a collection of possible targets, or as diagnostic/design tools to pinpoint the key scattering centers on the target. The simulation of synthetic range profiles and ISAR images is usually a time intensive task and computation time is of prime importance. Our research has been focused on the development of fast simulation algorithms for range profiles and ISAR images using the shooting and bouncing ray (SBR) method, a high frequency electromagnetic simulation technique for predicting the radar returns from realistic aerospace vehicles and the scattering by complex media.
Roadmap for Computer-Aided Modeling of Theranostics and Related Nanosystems
NASA Astrophysics Data System (ADS)
Ulicny, Jozef; Kozar, Tibor
2018-02-01
Detailed understanding of the interactions of novel metal-containing nanoparticles with biological membranes, macromolecules and other molecular targets of the living cell is crucial for the elucidation of the biological actions of such functionalized nanosystems. We present here the construction and modeling of thiolate-protected gold clusters and the prediction of their static and dynamic properties.
Microarray profiling of chemical-induced effects is being increasingly used in medium and high-throughput formats. In this study, we describe computational methods to identify molecular targets from whole-genome microarray data using as an example the estrogen receptor α (ERα), ...
Computational Aeroheating Predictions for Mars Lander Configurations
NASA Technical Reports Server (NTRS)
Edquist, Karl T.; Alter, Stephen J.
2003-01-01
The proposed Mars Science Laboratory (MSL) mission is intended to deliver a large rover to the Martian surface within 10 km of the target site. This paper presents computational fluid dynamics (CFD) predictions of forebody heating rates for two MSL entry configurations with fixed aerodynamic trim tabs. Results are compared to heating on a 70-deg sphere-cone reference geometry. All three heatshield geometries are designed to trim hypersonically at a 16 deg angle of attack in order to generate the lift-to-drag ratio (L/D) required for precision landing. Comparisons between CFD and tunnel data are generally in good agreement for each configuration, but the computations predict more flow separation and higher heating on a trim tab inclined 10 deg relative to the surface. CFD solutions at flight conditions were obtained using an 8-species Mars gas in chemical and thermal nonequilibrium. Laminar and Baldwin-Lomax solutions were used to estimate the effects of the trim tabs and turbulence on heating. A tab extending smoothly from the heatshield flank is not predicted to increase laminar or turbulent heating rates above the reference levels. Laminar heating on a tab deflected 10 deg from the conical heatshield is influenced by flow separation and is up to 35% above the baseline heating rate. The turbulent solution on the inclined tab configuration predicts attached flow and a 43% heating increase above the reference level.
Computational Aeroheating Predictions for Mars Lander Configurations
NASA Technical Reports Server (NTRS)
Edquist, Karl T.; Alter, Stephen J.
2003-01-01
The proposed Mars Science Laboratory (MSL) mission is intended to deliver a large rover to the Martian surface within 10 km of the target site. This paper presents computational fluid dynamics (CFD) predictions of forebody heating rates for two MSL entry configurations with fixed aerodynamic trim tabs. Results are compared to heating on a 70-deg sphere-cone reference geometry. All three heatshield geometries are designed to trim hypersonically at a 16 deg angle of attack in order to generate the lift-to-drag ratio (LID) required for precision landing. Comparisons between CFD and tunnel data are generally in good agreement for each configuration, but the computations predict more flow separation and higher heating on a trim tab inclined 10 deg relative to the surface. CFD solutions at flight conditions were obtained using an 8-species Mars gas in chemical and thermal non-equilibrium. Laminar and Baldwin-Lomax solutions were used to estimate the effects of the trim tabs and turbulence on heating. A tab extending smoothly from the heatshield flank is not predicted to increase laminar or turbulent heating rates above the reference levels. Laminar heating on a tab deflected 10 deg from the conical heatshield is influenced by flow separation and is up to 35% above the baseline heating rate. The turbulent solution on the inclined tab configuration predicts attached flow and a 43% heating increase above the reference level.
Li, Mao; Miller, Karol; Joldes, Grand Roman; Kikinis, Ron; Wittek, Adam
2016-01-01
Patient-specific biomechanical models have been advocated as a tool for predicting deformations of soft body organs/tissue for medical image registration (aligning two sets of images) when differences between the images are large. However, complex and irregular geometry of the body organs makes generation of patient-specific biomechanical models very time consuming. Meshless discretisation has been proposed to solve this challenge. However, applications so far have been limited to 2-D models and computing single organ deformations. In this study, 3-D comprehensive patient-specific non-linear biomechanical models implemented using Meshless Total Lagrangian Explicit Dynamics (MTLED) algorithms are applied to predict a 3-D deformation field for whole-body image registration. Unlike a conventional approach which requires dividing (segmenting) the image into non-overlapping constituents representing different organs/tissues, the mechanical properties are assigned using the Fuzzy C-Means (FCM) algorithm without the image segmentation. Verification indicates that the deformations predicted using the proposed meshless approach are for practical purposes the same as those obtained using the previously validated finite element models. To quantitatively evaluate the accuracy of the predicted deformations, we determined the spatial misalignment between the registered (i.e. source images warped using the predicted deformations) and target images by computing the edge-based Hausdorff distance. The Hausdorff distance-based evaluation determines that our meshless models led to successful registration of the vast majority of the image features. PMID:26791945
Khan, Abdul Arif
2014-06-01
The potential role of Escherichia coli in the development of colorectal carcinoma (CRC) has been investigated in many studies. Although the exact mechanism is not clear, chronic inflammation caused by E. coli and other related events are suggested as possible causes behind E. coli-induced colon cancer. It has been found that CRC cells, but not normal cells, are colonized by an intracellular form of E. coli. We predicted nuclear targeting of bacterial proteins in the host cell through computational tools nuclear localization signal (NLS) mapper and balanced subcellular localization predictor (BaCeILo). During intracellular E. coli residence, such targeting is highly likely and may have a possible role in colon cancer etiology. We observed that several gene expression-associated proteins of E. coli can migrate to the host nucleus during intracellular infections. This situation provides an opportunity for competitive interaction of host and pathogen proteins with similar cellular substrates, thereby increasing the chances of development of colon cancer. Moreover, the results indicated that proteins localized in the membrane of E. coli mostly act as secretary proteins in host cells. No exact correlation was observed between NLS prediction and nuclear localization prediction by BaCeILo. This is partly because of a number of reasons, including that only 30% of nuclear proteins carry NLS and that proteins <40 kDa molecular weight can passively target the host nucleus. This study concludes that detection of gene expression-specific E. coli proteins and their targeting of the nucleus may have a profound impact on CRC etiology.
Explaining the disease phenotype of intergenic SNP through predicted long range regulation.
Chen, Jingqi; Tian, Weidong
2016-10-14
Thousands of disease-associated SNPs (daSNPs) are located in intergenic regions (IGR), making it difficult to understand their association with disease phenotypes. Recent analysis found that non-coding daSNPs were frequently located in or approximate to regulatory elements, inspiring us to try to explain the disease phenotypes of IGR daSNPs through nearby regulatory sequences. Hence, after locating the nearest distal regulatory element (DRE) to a given IGR daSNP, we applied a computational method named INTREPID to predict the target genes regulated by the DRE, and then investigated their functional relevance to the IGR daSNP's disease phenotypes. 36.8% of all IGR daSNP-disease phenotype associations investigated were possibly explainable through the predicted target genes, which were enriched with, were functionally relevant to, or consisted of the corresponding disease genes. This proportion could be further increased to 60.5% if the LD SNPs of daSNPs were also considered. Furthermore, the predicted SNP-target gene pairs were enriched with known eQTL/mQTL SNP-gene relationships. Overall, it's likely that IGR daSNPs may contribute to disease phenotypes by interfering with the regulatory function of their nearby DREs and causing abnormal expression of disease genes. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Mora, Emanuel C.; Macías, Silvio; Hechavarría, Julio; Vater, Marianne; Kössl, Manfred
2013-01-01
Echolocating bats use the time elapsed from biosonar pulse emission to the arrival of echo (defined as echo-delay) to assess target-distance. Target-distance is represented in the brain by delay-tuned neurons that are classified as either “heteroharmonic” or “homoharmormic.” Heteroharmonic neurons respond more strongly to pulse-echo pairs in which the timing of the pulse is given by the fundamental biosonar harmonic while the timing of echoes is provided by one (or several) of the higher order harmonics. On the other hand, homoharmonic neurons are tuned to the echo delay between similar harmonics in the emitted pulse and echo. It is generally accepted that heteroharmonic computations are advantageous over homoharmonic computations; i.e., heteroharmonic neurons receive information from call and echo in different frequency-bands which helps to avoid jamming between pulse and echo signals. Heteroharmonic neurons have been found in two species of the family Mormoopidae (Pteronotus parnellii and Pteronotus quadridens) and in Rhinolophus rouxi. Recently, it was proposed that heteroharmonic target-range computations are a primitive feature of the genus Pteronotus that was preserved in the evolution of the genus. Here, we review recent findings on the evolution of echolocation in Mormoopidae, and try to link those findings to the evolution of the heteroharmonic computation strategy (HtHCS). We stress the hypothesis that the ability to perform heteroharmonic computations evolved separately from the ability of using long constant-frequency echolocation calls, high duty cycle echolocation, and Doppler Shift Compensation. Also, we present the idea that heteroharmonic computations might have been of advantage for categorizing prey size, hunting eared insects, and living in large conspecific colonies. We make five testable predictions that might help future investigations to clarify the evolution of the heteroharmonic echolocation in Mormoopidae and other families. PMID:23781209
Image Discrimination Models Predict Object Detection in Natural Backgrounds
NASA Technical Reports Server (NTRS)
Ahumada, Albert J., Jr.; Rohaly, A. M.; Watson, Andrew B.; Null, Cynthia H. (Technical Monitor)
1994-01-01
Object detection involves looking for one of a large set of object sub-images in a large set of background images. Image discrimination models only predict the probability that an observer will detect a difference between two images. In a recent study based on only six different images, we found that discrimination models can predict the relative detectability of objects in those images, suggesting that these simpler models may be useful in some object detection applications. Here we replicate this result using a new, larger set of images. Fifteen images of a vehicle in an other-wise natural setting were altered to remove the vehicle and mixed with the original image in a proportion chosen to make the target neither perfectly recognizable nor unrecognizable. The target was also rotated about a vertical axis through its center and mixed with the background. Sixteen observers rated these 30 target images and the 15 background-only images for the presence of a vehicle. The likelihoods of the observer responses were computed from a Thurstone scaling model with the assumption that the detectabilities are proportional to the predictions of an image discrimination model. Three image discrimination models were used: a cortex transform model, a single channel model with a contrast sensitivity function filter, and the Root-Mean-Square (RMS) difference of the digital target and background-only images. As in the previous study, the cortex transform model performed best; the RMS difference predictor was second best; and last, but still a reasonable predictor, was the single channel model. Image discrimination models can predict the relative detectabilities of objects in natural backgrounds.
Camacho, Carlos J
2005-08-01
The CAPRI-II experiment added an extra level of complexity to the problem of predicting protein-protein interactions by including 5 targets for which participants had to build or complete the 3-dimensional (3D) structure of either the receptor or ligand based on the structure of a close homolog. In this article, we describe how modeling key side-chains using molecular dynamics (MD) in explicit solvent improved the recognition of the binding region of a free energy- based computational docking method. In particular, we show that MD is able to predict with relatively high accuracy the rotamer conformation of the anchor side-chains important for molecular recognition as suggested by Rajamani et al. (Proc Natl Acad Sci USA 2004;101:11287-11292). As expected, the conformations are some of the most common rotamers for the given residue, while latch side-chains that undergo induced fit upon binding are forced into less common conformations. Using these models as starting conformations in conjunction with the rigid-body docking server ClusPro and the flexible docking algorithm SmoothDock, we produced valuable predictions for 6 of the 9 targets in CAPRI-II, missing only the 3 targets that underwent significant structural rearrangements upon binding. We also show that our free energy- based scoring function, consisting of the sum of van der Waals, Coulombic electrostatic with a distance-dependent dielectric, and desolvation free energy successfully discriminates the nativelike conformation of our submitted predictions. The latter emphasizes the critical role that thermodynamics plays on our methodology, and validates the generality of the algorithm to predict protein interactions.
Browne, Patrick; Barret, Matthieu; O'Gara, Fergal; Morrissey, John P
2010-11-25
Catabolite repression control (CRC) is an important global control system in Pseudomonas that fine tunes metabolism in order optimise growth and metabolism in a range of different environments. The mechanism of CRC in Pseudomonas spp. centres on the binding of a protein, Crc, to an A-rich motif on the 5' end of an mRNA resulting in translational down-regulation of target genes. Despite the identification of several Crc targets in Pseudomonas spp. the Crc regulon has remained largely unexplored. In order to predict direct targets of Crc, we used a bioinformatics approach based on detection of A-rich motifs near the initiation of translation of all protein-encoding genes in twelve fully sequenced Pseudomonas genomes. As expected, our data predict that genes related to the utilisation of less preferred nutrients, such as some carbohydrates, nitrogen sources and aromatic carbon compounds are targets of Crc. A general trend in this analysis is that the regulation of transporters is conserved across species whereas regulation of specific enzymatic steps or transcriptional activators are often conserved only within a species. Interestingly, some nucleoid associated proteins (NAPs) such as HU and IHF are predicted to be regulated by Crc. This finding indicates a possible role of Crc in indirect control over a subset of genes that depend on the DNA bending properties of NAPs for expression or repression. Finally, some virulence traits such as alginate and rhamnolipid production also appear to be regulated by Crc, which links nutritional status cues with the regulation of virulence traits. Catabolite repression control regulates a broad spectrum of genes in Pseudomonas. Some targets are genus-wide and are typically related to central metabolism, whereas other targets are species-specific, or even unique to particular strains. Further study of these novel targets will enhance our understanding of how Pseudomonas bacteria integrate nutritional status cues with the regulation of traits that are of ecological, industrial and clinical importance.
Thermal Convection on an Irradiated Target
NASA Astrophysics Data System (ADS)
Mehmedagic, Igbal; Thangam, Siva
2016-11-01
The present work involves the computational modeling of metallic targets subject to steady and high intensity heat flux. The ablation and associated fluid dynamics when metallic surfaces are exposed to high intensity laser fluence at normal atmospheric conditions is modelled. The incident energy from the laser is partly absorbed and partly reflected by the surface during ablation and subsequent vaporization of the melt. Computational findings based on effective representation and prediction of the heat transfer, melting and vaporization of the targeting material as well as plume formation and expansion are presented and discussed in the context of various ablation mechanisms, variable thermo-physical and optical properties, plume expansion and surface geometry. The energy distribution during the process between the bulk and vapor phase strongly depends on optical and thermodynamic properties of the irradiated material, radiation wavelength, and laser intensity. The relevance of the findings to various manufacturing processes as well as for the development of protective shields is discussed. Funded in part by U. S. Army ARDEC, Picatinny Arsenal, NJ.
Using computer-aided drug design and medicinal chemistry strategies in the fight against diabetes.
Semighini, Evandro P; Resende, Jonathan A; de Andrade, Peterson; Morais, Pedro A B; Carvalho, Ivone; Taft, Carlton A; Silva, Carlos H T P
2011-04-01
The aim of this work is to present a simple, practical and efficient protocol for drug design, in particular Diabetes, which includes selection of the illness, good choice of a target as well as a bioactive ligand and then usage of various computer aided drug design and medicinal chemistry tools to design novel potential drug candidates in different diseases. We have selected the validated target dipeptidyl peptidase IV (DPP-IV), whose inhibition contributes to reduce glucose levels in type 2 diabetes patients. The most active inhibitor with complex X-ray structure reported was initially extracted from the BindingDB database. By using molecular modification strategies widely used in medicinal chemistry, besides current state-of-the-art tools in drug design (including flexible docking, virtual screening, molecular interaction fields, molecular dynamics, ADME and toxicity predictions), we have proposed 4 novel potential DPP-IV inhibitors with drug properties for Diabetes control, which have been supported and validated by all the computational tools used herewith.
Sarkar, Debasree; Patra, Piya; Ghosh, Abhirupa; Saha, Sudipto
2016-01-01
A considerable proportion of protein-protein interactions (PPIs) in the cell are estimated to be mediated by very short peptide segments that approximately conform to specific sequence patterns known as linear motifs (LMs), often present in the disordered regions in the eukaryotic proteins. These peptides have been found to interact with low affinity and are able bind to multiple interactors, thus playing an important role in the PPI networks involving date hubs. In this work, PPI data and de novo motif identification based method (MEME) were used to identify such peptides in three cancer-associated hub proteins-MYC, APC and MDM2. The peptides corresponding to the significant LMs identified for each hub protein were aligned, the overlapping regions across these peptides being termed as overlapping linear peptides (OLPs). These OLPs were thus predicted to be responsible for multiple PPIs of the corresponding hub proteins and a scoring system was developed to rank them. We predicted six OLPs in MYC and five OLPs in MDM2 that scored higher than OLP predictions from randomly generated protein sets. Two OLP sequences from the C-terminal of MYC were predicted to bind with FBXW7, component of an E3 ubiquitin-protein ligase complex involved in proteasomal degradation of MYC. Similarly, we identified peptides in the C-terminal of MDM2 interacting with FKBP3, which has a specific role in auto-ubiquitinylation of MDM2. The peptide sequences predicted in MYC and MDM2 look promising for designing orthosteric inhibitors against possible disease-associated PPIs. Since these OLPs can interact with other proteins as well, these inhibitors should be specific to the targeted interactor to prevent undesired side-effects. This computational framework has been designed to predict and rank the peptide regions that may mediate multiple PPIs and can be applied to other disease-associated date hub proteins for prediction of novel therapeutic targets of small molecule PPI modulators.
Kim, Taewook; Park, June Hyun; Lee, Sang-Gil; Kim, Soyoung; Kim, Jihyun; Lee, Jungho; Shin, Chanseok
2017-08-01
MicroRNAs (miRNAs) are essential small RNA molecules that regulate the expression of target mRNAs in plants and animals. Here, we aimed to identify miRNAs and their putative targets in Hibiscus syriacus , the national flower of South Korea. We employed high-throughput sequencing of small RNAs obtained from four different tissues ( i.e. , leaf, root, flower, and ovary) and identified 33 conserved and 30 novel miRNA families, many of which showed differential tissue-specific expressions. In addition, we computationally predicted novel targets of miRNAs and validated some of them using 5' rapid amplification of cDNA ends analysis. One of the validated novel targets of miR477 was a terpene synthase, the primary gene involved in the formation of disease-resistant terpene metabolites such as sterols and phytoalexins. In addition, a predicted target of conserved miRNAs, miR396, is SHORT VEGETATIVE PHASE , which is involved in flower initiation and is duplicated in H. syriacus . Collectively, this study provides the first reliable draft of the H. syriacus miRNA transcriptome that should constitute a basis for understanding the biological roles of miRNAs in H. syriacus.
Kuu, Wei Y; Nail, Steven L
2009-09-01
Computer programs in FORTRAN were developed to rapidly determine the optimal shelf temperature, T(f), and chamber pressure, P(c), to achieve the shortest primary drying time. The constraint for the optimization is to ensure that the product temperature profile, T(b), is below the target temperature, T(target). Five percent mannitol was chosen as the model formulation. After obtaining the optimal sets of T(f) and P(c), each cycle was assigned with a cycle rank number in terms of the length of drying time. Further optimization was achieved by dividing the drying time into a series of ramping steps for T(f), in a cascading manner (termed the cascading T(f) cycle), to further shorten the cycle time. For the purpose of demonstrating the validity of the optimized T(f) and P(c), four cycles with different predicted lengths of drying time, along with the cascading T(f) cycle, were chosen for experimental cycle runs. Tunable diode laser absorption spectroscopy (TDLAS) was used to continuously measure the sublimation rate. As predicted, maximum product temperatures were controlled slightly below the target temperature of -25 degrees C, and the cascading T(f)-ramping cycle is the most efficient cycle design. In addition, the experimental cycle rank order closely matches with that determined by modeling.
NASA Astrophysics Data System (ADS)
Gianti, Eleonora; Messick, Troy E.; Lieberman, Paul M.; Zauhar, Randy J.
2016-04-01
The Epstein-Barr Nuclear Antigen 1 (EBNA1) is a critical protein encoded by the Epstein-Barr Virus (EBV). During latent infection, EBNA1 is essential for DNA replication and transcription initiation of viral and cellular genes and is necessary to immortalize primary B-lymphocytes. Nonetheless, the concept of EBNA1 as drug target is novel. Two EBNA1 crystal structures are publicly available and the first small-molecule EBNA1 inhibitors were recently discovered. However, no systematic studies have been reported on the structural details of EBNA1 "druggable" binding sites. We conducted computational identification and structural characterization of EBNA1 binding pockets, likely to accommodate ligand molecules (i.e. "druggable" binding sites). Then, we validated our predictions by docking against a set of compounds previously tested in vitro for EBNA1 inhibition (PubChem AID-2381). Finally, we supported assessments of pocket druggability by performing induced fit docking and molecular dynamics simulations paired with binding affinity predictions by Molecular Mechanics Generalized Born Surface Area calculations for a number of hits belonging to druggable binding sites. Our results establish EBNA1 as a target for drug discovery, and provide the computational evidence that active AID-2381 hits disrupt EBNA1:DNA binding upon interacting at individual sites. Lastly, structural properties of top scoring hits are proposed to support the rational design of the next generation of EBNA1 inhibitors.
Drug repurposing: translational pharmacology, chemistry, computers and the clinic.
Issa, Naiem T; Byers, Stephen W; Dakshanamurthy, Sivanesan
2013-01-01
The process of discovering a pharmacological compound that elicits a desired clinical effect with minimal side effects is a challenge. Prior to the advent of high-performance computing and large-scale screening technologies, drug discovery was largely a serendipitous endeavor, as in the case of thalidomide for erythema nodosum leprosum or cancer drugs in general derived from flora located in far-reaching geographic locations. More recently, de novo drug discovery has become a more rationalized process where drug-target-effect hypotheses are formulated on the basis of already known compounds/protein targets and their structures. Although this approach is hypothesis-driven, the actual success has been very low, contributing to the soaring costs of research and development as well as the diminished pharmaceutical pipeline in the United States. In this review, we discuss the evolution in computational pharmacology as the next generation of successful drug discovery and implementation in the clinic where high-performance computing (HPC) is used to generate and validate drug-target-effect hypotheses completely in silico. The use of HPC would decrease development time and errors while increasing productivity prior to in vitro, animal and human testing. We highlight approaches in chemoinformatics, bioinformatics as well as network biopharmacology to illustrate potential avenues from which to design clinically efficacious drugs. We further discuss the implications of combining these approaches into an integrative methodology for high-accuracy computational predictions within the context of drug repositioning for the efficient streamlining of currently approved drugs back into clinical trials for possible new indications.
Prediction of Host-Derived miRNAs with the Potential to Target PVY in Potato Plants
Iqbal, Muhammad S.; Hafeez, Muhammad N.; Wattoo, Javed I.; Ali, Arfan; Sharif, Muhammad N.; Rashid, Bushra; Tabassum, Bushra; Nasir, Idrees A.
2016-01-01
Potato virus Y has emerged as a threatening problem in all potato growing areas around the globe. PVY reduces the yield and quality of potato cultivars. During the last 30 years, significant genetic changes in PVY strains have been observed with an increased incidence associated with crop damage. In the current study, computational approaches were applied to predict Potato derived miRNA targets in the PVY genome. The PVY genome is approximately 9 thousand nucleotides, which transcribes the following 6 genes:CI, NIa, NIb-Pro, HC-Pro, CP, and VPg. A total of 343 mature miRNAs were retrieved from the miRBase database and were examined for their target sequences in PVY genes using the minimum free energy (mfe), minimum folding energy, sequence complementarity and mRNA-miRNA hybridization approaches. The identified potato miRNAs against viral mRNA targets have antiviral activities, leading to translational inhibition by mRNA cleavage and/or mRNA blockage. We found 86 miRNAs targeting the PVY genome at 151 different sites. Moreover, only 36 miRNAs potentially targeted the PVY genome at 101 loci. The CI gene of the PVY genome was targeted by 32 miRNAs followed by the complementarity of 26, 19, 18, 16, and 13 miRNAs. Most importantly, we found 5 miRNAs (miR160a-5p, miR7997b, miR166c-3p, miR399h, and miR5303d) that could target the CI, NIa, NIb-Pro, HC-Pro, CP, and VPg genes of PVY. The predicted miRNAs can be used for the development of PVY-resistant potato crops in the future. PMID:27683585
Luo, Jiawei; Xiao, Qiu
2017-02-01
MicroRNAs (miRNAs) play a critical role by regulating their targets in post-transcriptional level. Identification of potential miRNA-disease associations will aid in deciphering the pathogenesis of human polygenic diseases. Several computational models have been developed to uncover novel miRNA-disease associations based on the predicted target genes. However, due to the insufficient number of experimentally validated miRNA-target interactions as well as the relatively high false-positive and false-negative rates of predicted target genes, it is still challenging for these prediction models to obtain remarkable performances. The purpose of this study is to prioritize miRNA candidates for diseases. We first construct a heterogeneous network, which consists of a disease similarity network, a miRNA functional similarity network and a known miRNA-disease association network. Then, an unbalanced bi-random walk-based algorithm on the heterogeneous network (BRWH) is adopted to discover potential associations by exploiting bipartite subgraphs. Based on 5-fold cross validation, the proposed network-based method achieves AUC values ranging from 0.782 to 0.907 for the 22 human diseases and an average AUC of almost 0.846. The experiments indicated that BRWH can achieve better performances compared with several popular methods. In addition, case studies of some common diseases further demonstrated the superior performance of our proposed method on prioritizing disease-related miRNA candidates. Copyright © 2017 Elsevier Inc. All rights reserved.
A Binaural Grouping Model for Predicting Speech Intelligibility in Multitalker Environments
Colburn, H. Steven
2016-01-01
Spatially separating speech maskers from target speech often leads to a large intelligibility improvement. Modeling this phenomenon has long been of interest to binaural-hearing researchers for uncovering brain mechanisms and for improving signal-processing algorithms in hearing-assistive devices. Much of the previous binaural modeling work focused on the unmasking enabled by binaural cues at the periphery, and little quantitative modeling has been directed toward the grouping or source-separation benefits of binaural processing. In this article, we propose a binaural model that focuses on grouping, specifically on the selection of time-frequency units that are dominated by signals from the direction of the target. The proposed model uses Equalization-Cancellation (EC) processing with a binary decision rule to estimate a time-frequency binary mask. EC processing is carried out to cancel the target signal and the energy change between the EC input and output is used as a feature that reflects target dominance in each time-frequency unit. The processing in the proposed model requires little computational resources and is straightforward to implement. In combination with the Coherence-based Speech Intelligibility Index, the model is applied to predict the speech intelligibility data measured by Marrone et al. The predicted speech reception threshold matches the pattern of the measured data well, even though the predicted intelligibility improvements relative to the colocated condition are larger than some of the measured data, which may reflect the lack of internal noise in this initial version of the model. PMID:27698261
A Binaural Grouping Model for Predicting Speech Intelligibility in Multitalker Environments.
Mi, Jing; Colburn, H Steven
2016-10-03
Spatially separating speech maskers from target speech often leads to a large intelligibility improvement. Modeling this phenomenon has long been of interest to binaural-hearing researchers for uncovering brain mechanisms and for improving signal-processing algorithms in hearing-assistive devices. Much of the previous binaural modeling work focused on the unmasking enabled by binaural cues at the periphery, and little quantitative modeling has been directed toward the grouping or source-separation benefits of binaural processing. In this article, we propose a binaural model that focuses on grouping, specifically on the selection of time-frequency units that are dominated by signals from the direction of the target. The proposed model uses Equalization-Cancellation (EC) processing with a binary decision rule to estimate a time-frequency binary mask. EC processing is carried out to cancel the target signal and the energy change between the EC input and output is used as a feature that reflects target dominance in each time-frequency unit. The processing in the proposed model requires little computational resources and is straightforward to implement. In combination with the Coherence-based Speech Intelligibility Index, the model is applied to predict the speech intelligibility data measured by Marrone et al. The predicted speech reception threshold matches the pattern of the measured data well, even though the predicted intelligibility improvements relative to the colocated condition are larger than some of the measured data, which may reflect the lack of internal noise in this initial version of the model. © The Author(s) 2016.
Stopping power of Au for Cu ions with energies below Bragg’s peak
NASA Astrophysics Data System (ADS)
Linares, R.; Freire, J. A.; Ribas, R. V.; Medina, N. H.; Oliveira, J. R. B.; Cybulska, E. W.; Seale, W. A.; Added, N.; Silveira, M. A. G.; Wiedemann, K. T.
2007-10-01
The stopping power of Au for Cu in the energy range 6 < E < 25 MeV was measured using a secondary beam of low velocity heavy ions produced by elastic scattering of an energetic primary beam (typically 28Si or 16O) on a natural Cu target. The results were compared to predictions of the Lindhard, Scharf and Schiott (LSS) theory, the binary theory (BT), and the unitary convolution approximation (UCA) and also to semi-empirical predictions such as the Northcliffe and Schilling tables and the SRIM2003 computer program.
Improving real-time efficiency of case-based reasoning for medical diagnosis.
Park, Yoon-Joo
2014-01-01
Conventional case-based reasoning (CBR) does not perform efficiently for high volume dataset because of case-retrieval time. Some previous researches overcome this problem by clustering a case-base into several small groups, and retrieve neighbors within a corresponding group to a target case. However, this approach generally produces less accurate predictive performances than the conventional CBR. This paper suggests a new case-based reasoning method called the Clustering-Merging CBR (CM-CBR) which produces similar level of predictive performances than the conventional CBR with spending significantly less computational cost.
In Silico Analysis for the Study of Botulinum Toxin Structure
NASA Astrophysics Data System (ADS)
Suzuki, Tomonori; Miyazaki, Satoru
2010-01-01
Protein-protein interactions play many important roles in biological function. Knowledge of protein-protein complex structure is required for understanding the function. The determination of protein-protein complex structure by experimental studies remains difficult, therefore computational prediction of protein structures by structure modeling and docking studies is valuable method. In addition, MD simulation is also one of the most popular methods for protein structure modeling and characteristics. Here, we attempt to predict protein-protein complex structure and property using some of bioinformatic methods, and we focus botulinum toxin complex as target structure.
Richardson, Casey R.; Luo, Qing-Jun; Gontcharova, Viktoria; Jiang, Ying-Wen; Samanta, Manoj; Youn, Eunseog; Rock, Christopher D.
2010-01-01
Background MicroRNAs (miRNAs) and trans-acting small-interfering RNAs (tasi-RNAs) are small (20–22 nt long) RNAs (smRNAs) generated from hairpin secondary structures or antisense transcripts, respectively, that regulate gene expression by Watson-Crick pairing to a target mRNA and altering expression by mechanisms related to RNA interference. The high sequence homology of plant miRNAs to their targets has been the mainstay of miRNA prediction algorithms, which are limited in their predictive power for other kingdoms because miRNA complementarity is less conserved yet transitive processes (production of antisense smRNAs) are active in eukaryotes. We hypothesize that antisense transcription and associated smRNAs are biomarkers which can be computationally modeled for gene discovery. Principal Findings We explored rice (Oryza sativa) sense and antisense gene expression in publicly available whole genome tiling array transcriptome data and sequenced smRNA libraries (as well as C. elegans) and found evidence of transitivity of MIRNA genes similar to that found in Arabidopsis. Statistical analysis of antisense transcript abundances, presence of antisense ESTs, and association with smRNAs suggests several hundred Arabidopsis ‘orphan’ hypothetical genes are non-coding RNAs. Consistent with this hypothesis, we found novel Arabidopsis homologues of some MIRNA genes on the antisense strand of previously annotated protein-coding genes. A Support Vector Machine (SVM) was applied using thermodynamic energy of binding plus novel expression features of sense/antisense transcription topology and siRNA abundances to build a prediction model of miRNA targets. The SVM when trained on targets could predict the “ancient” (deeply conserved) class of validated Arabidopsis MIRNA genes with an accuracy of 84%, and 76% for “new” rapidly-evolving MIRNA genes. Conclusions Antisense and smRNA expression features and computational methods may identify novel MIRNA genes and other non-coding RNAs in plants and potentially other kingdoms, which can provide insight into antisense transcription, miRNA evolution, and post-transcriptional gene regulation. PMID:20520764
SChloro: directing Viridiplantae proteins to six chloroplastic sub-compartments.
Savojardo, Castrense; Martelli, Pier Luigi; Fariselli, Piero; Casadio, Rita
2017-02-01
Chloroplasts are organelles found in plants and involved in several important cell processes. Similarly to other compartments in the cell, chloroplasts have an internal structure comprising several sub-compartments, where different proteins are targeted to perform their functions. Given the relation between protein function and localization, the availability of effective computational tools to predict protein sub-organelle localizations is crucial for large-scale functional studies. In this paper we present SChloro, a novel machine-learning approach to predict protein sub-chloroplastic localization, based on targeting signal detection and membrane protein information. The proposed approach performs multi-label predictions discriminating six chloroplastic sub-compartments that include inner membrane, outer membrane, stroma, thylakoid lumen, plastoglobule and thylakoid membrane. In comparative benchmarks, the proposed method outperforms current state-of-the-art methods in both single- and multi-compartment predictions, with an overall multi-label accuracy of 74%. The results demonstrate the relevance of the approach that is eligible as a good candidate for integration into more general large-scale annotation pipelines of protein subcellular localization. The method is available as web server at http://schloro.biocomp.unibo.it gigi@biocomp.unibo.it.
Tracking children's mental states while solving algebra equations.
Anderson, John R; Betts, Shawn; Ferris, Jennifer L; Fincham, Jon M
2012-11-01
Behavioral and function magnetic resonance imagery (fMRI) data were combined to infer the mental states of students as they interacted with an intelligent tutoring system. Sixteen children interacted with a computer tutor for solving linear equations over a six-day period (days 0-5), with days 1 and 5 occurring in an fMRI scanner. Hidden Markov model algorithms combined a model of student behavior with multi-voxel imaging pattern data to predict the mental states of students. We separately assessed the algorithms' ability to predict which step in a problem-solving sequence was performed and whether the step was performed correctly. For day 1, the data patterns of other students were used to predict the mental states of a target student. These predictions were improved on day 5 by adding information about the target student's behavioral and imaging data from day 1. Successful tracking of mental states depended on using the combination of a behavioral model and multi-voxel pattern analysis, illustrating the effectiveness of an integrated approach to tracking the cognition of individuals in real time as they perform complex tasks. Copyright © 2011 Wiley Periodicals, Inc.
Afterbody Heating Predictions for a Mars Science Laboratory Entry Vehicle
NASA Technical Reports Server (NTRS)
Edquist, Karl T.
2005-01-01
The Mars Science Laboratory mission intends to deliver a large rover to the Martian surface within 10 km of its target site. One candidate entry vehicle aeroshell consists of a 3.75-m diameter, 70-deg sphere-cone forebody and a biconic afterbody similar to that of Viking. This paper presents computational fluid dynamics predictions of laminar afterbody heating rates for this configuration and a 2010 arrival at Mars. Computational solutions at flight conditions used an 8-species Mars gas model in chemical and thermal non-equilibrium. A grid resolution study examined the effects of mesh spacing on afterbody heating rates and resulted in grids used for heating predictions on a reference entry trajectory. Afterbody heating rate reaches its maximum value near 0.6 W/sq cm on the first windward afterbody cone at the time of peak freestream dynamic pressure. Predicted afterbody heating rates generally are below 3% of the forebody laminar nose cap heating rate throughout the design trajectory. The heating rates integrated over time provide total heat load during entry, which drives thermal protection material thickness.
Prosodic persistence in music performance and speech production
NASA Astrophysics Data System (ADS)
Jungers, Melissa K.; Palmer, Caroline; Speer, Shari R.
2002-05-01
Does the rate of melodies that listeners hear affect the rate of their performed melodies? Skilled adult pianists performed two short melodies as a measure of their preferred performance rate. Next they heard, on each trial, a computer-generated performance of a prime melody at a slow or fast rate (600 or 300 ms per quarter-note beat). Following each prime melody, the pianists performed a target melody from notation. The prime and target melodies were matched for meter and length. The rate of pianists' target melody performances was slower for performances that followed a slow prime than a fast prime, indicating that pianists' performances were influenced by the rate of the prime melody. Performance duration was predicted by a model that includes prime and preferred durations. Findings from an analogous speech production experiment show that a similar model predicts speakers' sentence rate from preferred and prime sentence rates. [Work supported by NIMH Grant 45764 and the Center for Cognitive Science.
Double-null divertor configuration discharge and disruptive heat flux simulation using TSC on EAST
NASA Astrophysics Data System (ADS)
Bo, SHI; Jinhong, YANG; Cheng, YANG; Desheng, CHENG; Hui, WANG; Hui, ZHANG; Haifei, DENG; Junli, QI; Xianzu, GONG; Weihua, WANG
2018-07-01
The tokamak simulation code (TSC) is employed to simulate the complete evolution of a disruptive discharge in the experimental advanced superconducting tokamak. The multiplication factor of the anomalous transport coefficient was adjusted to model the major disruptive discharge with double-null divertor configuration based on shot 61 916. The real-time feed-back control system for the plasma displacement was employed. Modeling results of the evolution of the poloidal field coil currents, the plasma current, the major radius, the plasma configuration all show agreement with experimental measurements. Results from the simulation show that during disruption, heat flux about 8 MW m‑2 flows to the upper divertor target plate and about 6 MW m‑2 flows to the lower divertor target plate. Computations predict that different amounts of heat fluxes on the divertor target plate could result by adjusting the multiplication factor of the anomalous transport coefficient. This shows that TSC has high flexibility and predictability.
RaptorX server: a resource for template-based protein structure modeling.
Källberg, Morten; Margaryan, Gohar; Wang, Sheng; Ma, Jianzhu; Xu, Jinbo
2014-01-01
Assigning functional properties to a newly discovered protein is a key challenge in modern biology. To this end, computational modeling of the three-dimensional atomic arrangement of the amino acid chain is often crucial in determining the role of the protein in biological processes. We present a community-wide web-based protocol, RaptorX server ( http://raptorx.uchicago.edu ), for automated protein secondary structure prediction, template-based tertiary structure modeling, and probabilistic alignment sampling.Given a target sequence, RaptorX server is able to detect even remotely related template sequences by means of a novel nonlinear context-specific alignment potential and probabilistic consistency algorithm. Using the protocol presented here it is thus possible to obtain high-quality structural models for many target protein sequences when only distantly related protein domains have experimentally solved structures. At present, RaptorX server can perform secondary and tertiary structure prediction of a 200 amino acid target sequence in approximately 30 min.
Lardy, Matthew A; Lebrun, Laurie; Bullard, Drew; Kissinger, Charles; Gobbi, Alberto
2012-05-25
In modern day drug discovery campaigns, computational chemists have to be concerned not only about improving the potency of molecules but also reducing any off-target ADMET activity. There are a plethora of antitargets that computational chemists may have to consider. Fortunately many antitargets have crystal structures deposited in the PDB. These structures are immediately useful to our Autocorrelator: an automated model generator that optimizes variables for building computational models. This paper describes the use of the Autocorrelator to construct high quality docking models for cytochrome P450 2C9 (CYP2C9) from two publicly available crystal structures. Both models result in strong correlation coefficients (R² > 0.66) between the predicted and experimental determined log(IC₅₀) values. Results from the two models overlap well with each other, converging on the same scoring function, deprotonated charge state, and predicted the binding orientation for our collection of molecules.
Computational Study on New Natural Compound Inhibitors of Pyruvate Dehydrogenase Kinases
Zhou, Xiaoli; Yu, Shanshan; Su, Jing; Sun, Liankun
2016-01-01
Pyruvate dehydrogenase kinases (PDKs) are key enzymes in glucose metabolism, negatively regulating pyruvate dehyrogenase complex (PDC) activity through phosphorylation. Inhibiting PDKs could upregulate PDC activity and drive cells into more aerobic metabolism. Therefore, PDKs are potential targets for metabolism related diseases, such as cancers and diabetes. In this study, a series of computer-aided virtual screening techniques were utilized to discover potential inhibitors of PDKs. Structure-based screening using Libdock was carried out following by ADME (adsorption, distribution, metabolism, excretion) and toxicity prediction. Molecular docking was used to analyze the binding mechanism between these compounds and PDKs. Molecular dynamic simulation was utilized to confirm the stability of potential compound binding. From the computational results, two novel natural coumarins compounds (ZINC12296427 and ZINC12389251) from the ZINC database were found binding to PDKs with favorable interaction energy and predicted to be non-toxic. Our study provide valuable information of PDK-coumarins binding mechanisms in PDK inhibitor-based drug discovery. PMID:26959013
Computational Study on New Natural Compound Inhibitors of Pyruvate Dehydrogenase Kinases.
Zhou, Xiaoli; Yu, Shanshan; Su, Jing; Sun, Liankun
2016-03-04
Pyruvate dehydrogenase kinases (PDKs) are key enzymes in glucose metabolism, negatively regulating pyruvate dehyrogenase complex (PDC) activity through phosphorylation. Inhibiting PDKs could upregulate PDC activity and drive cells into more aerobic metabolism. Therefore, PDKs are potential targets for metabolism related diseases, such as cancers and diabetes. In this study, a series of computer-aided virtual screening techniques were utilized to discover potential inhibitors of PDKs. Structure-based screening using Libdock was carried out following by ADME (adsorption, distribution, metabolism, excretion) and toxicity prediction. Molecular docking was used to analyze the binding mechanism between these compounds and PDKs. Molecular dynamic simulation was utilized to confirm the stability of potential compound binding. From the computational results, two novel natural coumarins compounds (ZINC12296427 and ZINC12389251) from the ZINC database were found binding to PDKs with favorable interaction energy and predicted to be non-toxic. Our study provide valuable information of PDK-coumarins binding mechanisms in PDK inhibitor-based drug discovery.
Airborne target tracking algorithm against oppressive decoys in infrared imagery
NASA Astrophysics Data System (ADS)
Sun, Xiechang; Zhang, Tianxu
2009-10-01
This paper presents an approach for tracking airborne target against oppressive infrared decoys. Oppressive decoy lures infrared guided missile by its high infrared radiation. Traditional tracking algorithms have degraded stability even come to tracking failure when airborne target continuously throw out many decoys. The proposed approach first determines an adaptive tracking window. The center of the tracking window is set at a predicted target position which is computed based on uniform motion model. Different strategies are applied for determination of tracking window size according to target state. The image within tracking window is segmented and multi features of candidate targets are extracted. The most similar candidate target is associated to the tracking target by using a decision function, which calculates a weighted sum of normalized feature differences between two comparable targets. Integrated intensity ratio of association target and tracking target, and target centroid are examined to estimate target state in the presence of decoys. The tracking ability and robustness of proposed approach has been validated by processing available real-world and simulated infrared image sequences containing airborne targets and oppressive decoys.
NASA Astrophysics Data System (ADS)
Deng, Dongdong; Murphy, Michael J.; Hakim, Joe B.; Franceschi, William H.; Zahid, Sohail; Pashakhanloo, Farhad; Trayanova, Natalia A.; Boyle, Patrick M.
2017-09-01
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia, causing morbidity and mortality in millions worldwide. The atria of patients with persistent AF (PsAF) are characterized by the presence of extensive and distributed atrial fibrosis, which facilitates the formation of persistent reentrant drivers (RDs, i.e., spiral waves), which promote fibrillatory activity. Targeted catheter ablation of RD-harboring tissues has shown promise as a clinical treatment for PsAF, but the outcomes remain sub-par. Personalized computational modeling has been proposed as a means of non-invasively predicting optimal ablation targets in individual PsAF patients, but it remains unclear how RD localization dynamics are influenced by inter-patient variability in the spatial distribution of atrial fibrosis, action potential duration (APD), and conduction velocity (CV). Here, we conduct simulations in computational models of fibrotic atria derived from the clinical imaging of PsAF patients to characterize the sensitivity of RD locations to these three factors. We show that RDs consistently anchor to boundaries between fibrotic and non-fibrotic tissues, as delineated by late gadolinium-enhanced magnetic resonance imaging, but those changes in APD/CV can enhance or attenuate the likelihood that an RD will anchor to a specific site. These findings show that the level of uncertainty present in patient-specific atrial models reconstructed without any invasive measurements (i.e., incorporating each individual's unique distribution of fibrotic tissue from medical imaging alongside an average representation of AF-remodeled electrophysiology) is sufficiently high that a personalized ablation strategy based on targeting simulation-predicted RD trajectories alone may not produce the desired result.
Dynamics of Receptor-Mediated Nanoparticle Internalization into Endothelial Cells
Gonzalez-Rodriguez, David; Barakat, Abdul I.
2015-01-01
Nanoparticles offer a promising medical tool for targeted drug delivery, for example to treat inflamed endothelial cells during the development of atherosclerosis. To inform the design of such therapeutic strategies, we develop a computational model of nanoparticle internalization into endothelial cells, where internalization is driven by receptor-ligand binding and limited by the deformation of the cell membrane and cytoplasm. We specifically consider the case of nanoparticles targeted against ICAM-1 receptors, of relevance for treating atherosclerosis. The model computes the kinetics of the internalization process, the dynamics of binding, and the distribution of stresses exerted between the nanoparticle and the cell membrane. The model predicts the existence of an optimal nanoparticle size for fastest internalization, consistent with experimental observations, as well as the role of bond characteristics, local cell mechanical properties, and external forces in the nanoparticle internalization process. PMID:25901833
Chen, Hanyong; Yao, Ke; Chang, Xiaoyu; Shim, Jung-Hyun; Kim, Hong-Gyum; Malakhova, Margarita; Kim, Dong-Joon; Bode, Ann M; Dong, Zigang
2015-01-01
The most active anticancer component in green tea is epigallocatechin-3-gallate (EGCG). Protein interaction with EGCG is a critical step for mediating the effects of EGCG on the regulation of various key molecules involved in signal transduction. By using computational docking screening methods for protein identification, we identified a serine/threonine kinase, 90-kDa ribosomal S6 kinase (RSK2), as a novel molecular target of EGCG. RSK2 includes two kinase catalytic domains in the N-terminal (NTD) and the C-terminal (CTD) and RSK2 full activation requires phosphorylation of both terminals. The computer prediction was confirmed by an in vitro kinase assay in which EGCG inhibited RSK2 activity in a dose-dependent manner. Pull-down assay results showed that EGCG could bind with RSK2 at both kinase catalytic domains in vitro and ex vivo. Furthermore, results of an ATP competition assay and a computer-docking model showed that EGCG binds with RSK2 in an ATP-dependent manner. In RSK2+/+ and RSK2-/- murine embryonic fibroblasts, EGCG decreased viability only in the presence of RSK2. EGCG also suppressed epidermal growth factor-induced neoplastic cell transformation by inhibiting phosphorylation of histone H3 at Ser10. Overall, these results indicate that RSK2 is a novel molecular target of EGCG.
Kamatuka, Kenta; Hattori, Masahiro; Sugiyama, Tomoyasu
2016-12-01
RNA interference (RNAi) screening is extensively used in the field of reverse genetics. RNAi libraries constructed using random oligonucleotides have made this technology affordable. However, the new methodology requires exploration of the RNAi target gene information after screening because the RNAi library includes non-natural sequences that are not found in genes. Here, we developed a web-based tool to support RNAi screening. The system performs short hairpin RNA (shRNA) target prediction that is informed by comprehensive enquiry (SPICE). SPICE automates several tasks that are laborious but indispensable to evaluate the shRNAs obtained by RNAi screening. SPICE has four main functions: (i) sequence identification of shRNA in the input sequence (the sequence might be obtained by sequencing clones in the RNAi library), (ii) searching the target genes in the database, (iii) demonstrating biological information obtained from the database, and (iv) preparation of search result files that can be utilized in a local personal computer (PC). Using this system, we demonstrated that genes targeted by random oligonucleotide-derived shRNAs were not different from those targeted by organism-specific shRNA. The system facilitates RNAi screening, which requires sequence analysis after screening. The SPICE web application is available at http://www.spice.sugysun.org/.
GTARG - The TOPEX/Poseidon ground track maintenance maneuver targeting program
NASA Technical Reports Server (NTRS)
Shapiro, Bruce E.; Bhat, Ramachandra S.
1993-01-01
GTARG is a computer program used to design orbit maintenance maneuvers for the TOPEX/Poseidon satellite. These maneuvers ensure that the ground track is kept within +/-1 km with of an = 9.9 day exact repeat pattern. Maneuver parameters are determined using either of two targeting strategies: longitude targeting, which maximizes the time between maneuvers, and time targeting, in which maneuvers are targeted to occur at specific intervals. The GTARG algorithm propagates nonsingular mean elements, taking into account anticipated error sigma's in orbit determination, Delta v execution, drag prediction and Delta v quantization. A satellite unique drag model is used which incorporates an approximate mean orbital Jacchia-Roberts atmosphere and a variable mean area model. Maneuver Delta v magnitudes are targeted to precisely maintain either the unbiased ground track itself, or a comfortable (3 sigma) error envelope about the unbiased ground track.
Computational Fragment-Based Drug Design: Current Trends, Strategies, and Applications.
Bian, Yuemin; Xie, Xiang-Qun Sean
2018-04-09
Fragment-based drug design (FBDD) has become an effective methodology for drug development for decades. Successful applications of this strategy brought both opportunities and challenges to the field of Pharmaceutical Science. Recent progress in the computational fragment-based drug design provide an additional approach for future research in a time- and labor-efficient manner. Combining multiple in silico methodologies, computational FBDD possesses flexibilities on fragment library selection, protein model generation, and fragments/compounds docking mode prediction. These characteristics provide computational FBDD superiority in designing novel and potential compounds for a certain target. The purpose of this review is to discuss the latest advances, ranging from commonly used strategies to novel concepts and technologies in computational fragment-based drug design. Particularly, in this review, specifications and advantages are compared between experimental and computational FBDD, and additionally, limitations and future prospective are discussed and emphasized.
Computational Identification of MicroRNAs and Their Targets from Finger Millet (Eleusine coracana).
Usha, S; Jyothi, M N; Suchithra, B; Dixit, Rekha; Rai, D V; Nagesh Babu, R
2017-03-01
MicroRNAs are endogenous small RNAs regulating intrinsic normal growth and development of plant. Discovering miRNAs, their targets and further inferring their functions had become routine process to comprehend the normal biological processes of miRNAs and their roles in plant development. In this study, we used homology-based analysis with available expressed sequence tag of finger millet (Eleusine coracana) to predict conserved miRNAs. Three potent miRNAs targeting 88 genes were identified. The newly identified miRNAs were found to be homologous with miR166 and miR1310. The targets recognized were transcription factors and enzymes, and GO analysis showed these miRNAs played varied roles in gene regulation. The identification of miRNAs and their targets is anticipated to hasten the pace of key epigenetic regulators in plant development.
A Performance Prediction Model for a Fault-Tolerant Computer During Recovery and Restoration
NASA Technical Reports Server (NTRS)
Obando, Rodrigo A.; Stoughton, John W.
1995-01-01
The modeling and design of a fault-tolerant multiprocessor system is addressed. Of interest is the behavior of the system during recovery and restoration after a fault has occurred. The multiprocessor systems are based on the Algorithm to Architecture Mapping Model (ATAMM) and the fault considered is the death of a processor. The developed model is useful in the determination of performance bounds of the system during recovery and restoration. The performance bounds include time to recover from the fault, time to restore the system, and determination of any permanent delay in the input to output latency after the system has regained steady state. Implementation of an ATAMM based computer was developed for a four-processor generic VHSIC spaceborne computer (GVSC) as the target system. A simulation of the GVSC was also written on the code used in the ATAMM Multicomputer Operating System (AMOS). The simulation is used to verify the new model for tracking the propagation of the delay through the system and predicting the behavior of the transient state of recovery and restoration. The model is shown to accurately predict the transient behavior of an ATAMM based multicomputer during recovery and restoration.
Application of theoretical methods to increase succinate production in engineered strains.
Valderrama-Gomez, M A; Kreitmayer, D; Wolf, S; Marin-Sanguino, A; Kremling, A
2017-04-01
Computational methods have enabled the discovery of non-intuitive strategies to enhance the production of a variety of target molecules. In the case of succinate production, reviews covering the topic have not yet analyzed the impact and future potential that such methods may have. In this work, we review the application of computational methods to the production of succinic acid. We found that while a total of 26 theoretical studies were published between 2002 and 2016, only 10 studies reported the successful experimental implementation of any kind of theoretical knowledge. None of the experimental studies reported an exact application of the computational predictions. However, the combination of computational analysis with complementary strategies, such as directed evolution and comparative genome analysis, serves as a proof of concept and demonstrates that successful metabolic engineering can be guided by rational computational methods.
Duffy, Fergal J; O'Donovan, Darragh; Devocelle, Marc; Moran, Niamh; O'Connell, David J; Shields, Denis C
2015-03-23
Protein-protein and protein-peptide interactions are responsible for the vast majority of biological functions in vivo, but targeting these interactions with small molecules has historically been difficult. What is required are efficient combined computational and experimental screening methods to choose among a number of potential protein interfaces worthy of targeting lead macrocyclic compounds for further investigation. To achieve this, we have generated combinatorial 3D virtual libraries of short disulfide-bonded peptides and compared them to pharmacophore models of important protein-protein and protein-peptide structures, including short linear motifs (SLiMs), protein-binding peptides, and turn structures at protein-protein interfaces, built from 3D models available in the Protein Data Bank. We prepared a total of 372 reference pharmacophores, which were matched against 108,659 multiconformer cyclic peptides. After normalization to exclude nonspecific cyclic peptides, the top hits notably are enriched for mimetics of turn structures, including a turn at the interaction surface of human α thrombin, and also feature several protein-binding peptides. The top cyclic peptide hits also cover the critical "hot spot" interaction sites predicted from the interaction crystal structure. We have validated our method by testing cyclic peptides predicted to inhibit thrombin, a key protein in the blood coagulation pathway of important therapeutic interest, identifying a cyclic peptide inhibitor with lead-like activity. We conclude that protein interfaces most readily targetable by cyclic peptides and related macrocyclic drugs may be identified computationally among a set of candidate interfaces, accelerating the choice of interfaces against which lead compounds may be screened.
NASA Astrophysics Data System (ADS)
Hill, A.; Weiss, C.; Ancell, B. C.
2017-12-01
The basic premise of observation targeting is that additional observations, when gathered and assimilated with a numerical weather prediction (NWP) model, will produce a more accurate forecast related to a specific phenomenon. Ensemble-sensitivity analysis (ESA; Ancell and Hakim 2007; Torn and Hakim 2008) is a tool capable of accurately estimating the proper location of targeted observations in areas that have initial model uncertainty and large error growth, as well as predicting the reduction of forecast variance due to the assimilated observation. ESA relates an ensemble of NWP model forecasts, specifically an ensemble of scalar forecast metrics, linearly to earlier model states. A thorough investigation is presented to determine how different factors of the forecast process are impacting our ability to successfully target new observations for mesoscale convection forecasts. Our primary goals for this work are to determine: (1) If targeted observations hold more positive impact over non-targeted (i.e. randomly chosen) observations; (2) If there are lead-time constraints to targeting for convection; (3) How inflation, localization, and the assimilation filter influence impact prediction and realized results; (4) If there exist differences between targeted observations at the surface versus aloft; and (5) how physics errors and nonlinearity may augment observation impacts.Ten cases of dryline-initiated convection between 2011 to 2013 are simulated within a simplified OSSE framework and presented here. Ensemble simulations are produced from a cycling system that utilizes the Weather Research and Forecasting (WRF) model v3.8.1 within the Data Assimilation Research Testbed (DART). A "truth" (nature) simulation is produced by supplying a 3-km WRF run with GFS analyses and integrating the model forward 90 hours, from the beginning of ensemble initialization through the end of the forecast. Target locations for surface and radiosonde observations are computed 6, 12, and 18 hours into the forecast based on a chosen scalar forecast response metric (e.g., maximum reflectivity at convection initiation). A variety of experiments are designed to achieve the aforementioned goals and will be presented, along with their results, detailing the feasibility of targeting for mesoscale convection forecasts.
On-Line Fringe Tracking and Prediction at IOTA
NASA Technical Reports Server (NTRS)
Wilson, Edward; Mah, Robert; Lau, Sonie (Technical Monitor)
1999-01-01
The Infrared/Optical Telescope Array (IOTA) is a multi-aperture Michelson interferometer located on Mt. Hopkins near Tucson, Arizona. To enable viewing of fainter targets, an on-line fringe tracking system is presently under development at NASA Ames Research Center. The system has been developed off-line using actual data from IOTA, and is presently undergoing on-line implementation at IOTA. The system has two parts: (1) a fringe tracking system that identifies the center of a fringe packet by fitting a parametric model to the data; and (2) a fringe packet motion prediction system that uses characteristics of past fringe packets to predict fringe packet motion. Combined, this information will be used to optimize on-line the scanning trajectory, resulting in improved visibility of faint targets. Fringe packet identification is highly accurate and robust (99% of the 4000 fringe packets were identified correctly, the remaining 1% were either out of the scan range or too noisy to be seen) and is performed in 30-90 milliseconds on a Pentium II-based computer. Fringe packet prediction, currently performed using an adaptive linear predictor, delivers a 10% improvement over the baseline of predicting no motion.
Pandey, Bharati; Gupta, Om Prakash; Pandey, Dev Mani; Sharma, Indu; Sharma, Pradeep
2013-05-01
MicroRNAs (miRNAs) are a class of short endogenous non-coding small RNA molecules of about 18-22 nucleotides in length. Their main function is to downregulate gene expression in different manners like translational repression, mRNA cleavage and epigenetic modification. Computational predictions have raised the number of miRNAs in wheat significantly using an EST based approach. Hence, a combinatorial approach which is amalgamation of bioinformatics software and perl script was used to identify new miRNA to add to the growing database of wheat miRNA. Identification of miRNAs was initiated by mining the EST (Expressed Sequence Tags) database available at National Center for Biotechnology Information. In this investigation, 4677 mature microRNA sequences belonging to 50 miRNA families from different plant species were used to predict miRNA in wheat. A total of five abiotic stress-responsive new miRNAs were predicted and named Ta-miR5653, Ta-miR855, Ta-miR819k, Ta-miR3708 and Ta-miR5156. In addition, four previously identified miRNA, i.e., Ta-miR1122, miR1117, Ta-miR1134 and Ta-miR1133 were predicted in newly identified EST sequence and 14 potential target genes were subsequently predicted, most of which seems to encode ubiquitin carrier protein, serine/threonine protein kinase, 40S ribosomal protein, F-box/kelch-repeat protein, BTB/POZ domain-containing protein, transcription factors which are involved in growth, development, metabolism and stress response. Our result has increased the number of miRNAs in wheat, which should be useful for further investigation into the biological functions and evolution of miRNAs in wheat and other plant species.
Emerging Computational Methods for the Rational Discovery of Allosteric Drugs
2016-01-01
Allosteric drug development holds promise for delivering medicines that are more selective and less toxic than those that target orthosteric sites. To date, the discovery of allosteric binding sites and lead compounds has been mostly serendipitous, achieved through high-throughput screening. Over the past decade, structural data has become more readily available for larger protein systems and more membrane protein classes (e.g., GPCRs and ion channels), which are common allosteric drug targets. In parallel, improved simulation methods now provide better atomistic understanding of the protein dynamics and cooperative motions that are critical to allosteric mechanisms. As a result of these advances, the field of predictive allosteric drug development is now on the cusp of a new era of rational structure-based computational methods. Here, we review algorithms that predict allosteric sites based on sequence data and molecular dynamics simulations, describe tools that assess the druggability of these pockets, and discuss how Markov state models and topology analyses provide insight into the relationship between protein dynamics and allosteric drug binding. In each section, we first provide an overview of the various method classes before describing relevant algorithms and software packages. PMID:27074285
Emerging Computational Methods for the Rational Discovery of Allosteric Drugs.
Wagner, Jeffrey R; Lee, Christopher T; Durrant, Jacob D; Malmstrom, Robert D; Feher, Victoria A; Amaro, Rommie E
2016-06-08
Allosteric drug development holds promise for delivering medicines that are more selective and less toxic than those that target orthosteric sites. To date, the discovery of allosteric binding sites and lead compounds has been mostly serendipitous, achieved through high-throughput screening. Over the past decade, structural data has become more readily available for larger protein systems and more membrane protein classes (e.g., GPCRs and ion channels), which are common allosteric drug targets. In parallel, improved simulation methods now provide better atomistic understanding of the protein dynamics and cooperative motions that are critical to allosteric mechanisms. As a result of these advances, the field of predictive allosteric drug development is now on the cusp of a new era of rational structure-based computational methods. Here, we review algorithms that predict allosteric sites based on sequence data and molecular dynamics simulations, describe tools that assess the druggability of these pockets, and discuss how Markov state models and topology analyses provide insight into the relationship between protein dynamics and allosteric drug binding. In each section, we first provide an overview of the various method classes before describing relevant algorithms and software packages.
Zhang, Yan-Qiong; Chen, Dong-Liang; Tian, Hai-Feng; Zhang, Bao-Hong; Wen, Jian-Fan
2009-10-01
Using a combined computational program, we identified 50 potential microRNAs (miRNAs) in Giardia lamblia, one of the most primitive unicellular eukaryotes. These miRNAs are unique to G. lamblia and no homologues have been found in other organisms; miRNAs, currently known in other species, were not found in G. lamblia. This suggests that miRNA biogenesis and miRNA-mediated gene regulation pathway may evolve independently, especially in evolutionarily distant lineages. A majority (43) of the predicted miRNAs are located at one single locus; however, some miRNAs have two or more copies in the genome. Among the 58 miRNA genes, 28 are located in the intergenic regions whereas 30 are present in the anti-sense strands of the protein-coding sequences. Five predicted miRNAs are expressed in G. lamblia trophozoite cells evidenced by expressed sequence tags or RT-PCR. Thirty-seven identified miRNAs may target 50 protein-coding genes, including seven variant-specific surface proteins (VSPs). Our findings provide a clue that miRNA-mediated gene regulation may exist in the early stage of eukaryotic evolution, suggesting that it is an important regulation system ubiquitous in eukaryotes.
Paull, Evan O; Carlin, Daniel E; Niepel, Mario; Sorger, Peter K; Haussler, David; Stuart, Joshua M
2013-11-01
Identifying the cellular wiring that connects genomic perturbations to transcriptional changes in cancer is essential to gain a mechanistic understanding of disease initiation, progression and ultimately to predict drug response. We have developed a method called Tied Diffusion Through Interacting Events (TieDIE) that uses a network diffusion approach to connect genomic perturbations to gene expression changes characteristic of cancer subtypes. The method computes a subnetwork of protein-protein interactions, predicted transcription factor-to-target connections and curated interactions from literature that connects genomic and transcriptomic perturbations. Application of TieDIE to The Cancer Genome Atlas and a breast cancer cell line dataset identified key signaling pathways, with examples impinging on MYC activity. Interlinking genes are predicted to correspond to essential components of cancer signaling and may provide a mechanistic explanation of tumor character and suggest subtype-specific drug targets. Software is available from the Stuart lab's wiki: https://sysbiowiki.soe.ucsc.edu/tiedie. jstuart@ucsc.edu. Supplementary data are available at Bioinformatics online.
A cross docking pipeline for improving pose prediction and virtual screening performance
NASA Astrophysics Data System (ADS)
Kumar, Ashutosh; Zhang, Kam Y. J.
2018-01-01
Pose prediction and virtual screening performance of a molecular docking method depend on the choice of protein structures used for docking. Multiple structures for a target protein are often used to take into account the receptor flexibility and problems associated with a single receptor structure. However, the use of multiple receptor structures is computationally expensive when docking a large library of small molecules. Here, we propose a new cross-docking pipeline suitable to dock a large library of molecules while taking advantage of multiple target protein structures. Our method involves the selection of a suitable receptor for each ligand in a screening library utilizing ligand 3D shape similarity with crystallographic ligands. We have prospectively evaluated our method in D3R Grand Challenge 2 and demonstrated that our cross-docking pipeline can achieve similar or better performance than using either single or multiple-receptor structures. Moreover, our method displayed not only decent pose prediction performance but also better virtual screening performance over several other methods.
Language-driven anticipatory eye movements in virtual reality.
Eichert, Nicole; Peeters, David; Hagoort, Peter
2018-06-01
Predictive language processing is often studied by measuring eye movements as participants look at objects on a computer screen while they listen to spoken sentences. This variant of the visual-world paradigm has revealed that information encountered by a listener at a spoken verb can give rise to anticipatory eye movements to a target object, which is taken to indicate that people predict upcoming words. The ecological validity of such findings remains questionable, however, because these computer experiments used two-dimensional stimuli that were mere abstractions of real-world objects. Here we present a visual-world paradigm study in a three-dimensional (3-D) immersive virtual reality environment. Despite significant changes in the stimulus materials and the different mode of stimulus presentation, language-mediated anticipatory eye movements were still observed. These findings thus indicate that people do predict upcoming words during language comprehension in a more naturalistic setting where natural depth cues are preserved. Moreover, the results confirm the feasibility of using eyetracking in rich and multimodal 3-D virtual environments.
Wang, Yin-Yin; Li, Jie; Wu, Zeng-Rui; Zhang, Bo; Yang, Hong-Bin; Wang, Qin; Cai, Ying-Chun; Liu, Gui-Xia; Li, Wei-Hua; Tang, Yun
2017-05-01
An increasing number of cases of herb-induced liver injury (HILI) have been reported, presenting new clinical challenges. In this study, taking Polygonum multiflorum Thunb (PmT) as an example, we proposed a computational systems toxicology approach to explore the molecular mechanisms of HILI. First, the chemical components of PmT were extracted from 3 main TCM databases as well as the literature related to natural products. Then, the known targets were collected through data integration, and the potential compound-target interactions (CTIs) were predicted using our substructure-drug-target network-based inference (SDTNBI) method. After screening for hepatotoxicity-related genes by assessing the symptoms of HILI, a compound-target interaction network was constructed. A scoring function, namely, Ascore, was developed to estimate the toxicity of chemicals in the liver. We conducted network analysis to determine the possible mechanisms of the biphasic effects using the analysis tools, including BiNGO, pathway enrichment, organ distribution analysis and predictions of interactions with CYP450 enzymes. Among the chemical components of PmT, 54 components with good intestinal absorption were used for analysis, and 2939 CTIs were obtained. After analyzing the mRNA expression data in the BioGPS database, 1599 CTIs and 125 targets related to liver diseases were identified. In the top 15 compounds, seven with Ascore values >3000 (emodin, quercetin, apigenin, resveratrol, gallic acid, kaempferol and luteolin) were obviously associated with hepatotoxicity. The results from the pathway enrichment analysis suggest that multiple interactions between apoptosis and metabolism may underlie PmT-induced liver injury. Many of the pathways have been verified in specific compounds, such as glutathione metabolism, cytochrome P450 metabolism, and the p53 pathway, among others. Hepatitis symptoms, the perturbation of nine bile acids and yellow or tawny urine also had corresponding pathways, justifying our method. In conclusion, this computational systems toxicology method reveals possible toxic components and could be very helpful for understanding the mechanisms of HILI. In this way, the method might also facilitate the identification of novel hepatotoxic herbs.
Small target detection using bilateral filter and temporal cross product in infrared images
NASA Astrophysics Data System (ADS)
Bae, Tae-Wuk
2011-09-01
We introduce a spatial and temporal target detection method using spatial bilateral filter (BF) and temporal cross product (TCP) of temporal pixels in infrared (IR) image sequences. At first, the TCP is presented to extract the characteristics of temporal pixels by using temporal profile in respective spatial coordinates of pixels. The TCP represents the cross product values by the gray level distance vector of a current temporal pixel and the adjacent temporal pixel, as well as the horizontal distance vector of the current temporal pixel and a temporal pixel corresponding to potential target center. The summation of TCP values of temporal pixels in spatial coordinates makes the temporal target image (TTI), which represents the temporal target information of temporal pixels in spatial coordinates. And then the proposed BF filter is used to extract the spatial target information. In order to predict background without targets, the proposed BF filter uses standard deviations obtained by an exponential mapping of the TCP value corresponding to the coordinate of a pixel processed spatially. The spatial target image (STI) is made by subtracting the predicted image from the original image. Thus, the spatial and temporal target image (STTI) is achieved by multiplying the STI and the TTI, and then targets finally are detected in STTI. In experimental result, the receiver operating characteristics (ROC) curves were computed experimentally to compare the objective performance. From the results, the proposed algorithm shows better discrimination of target and clutters and lower false alarm rates than the existing target detection methods.
Development of a high-power neutron-producing lithium target for boron neutron capture therapy
NASA Astrophysics Data System (ADS)
Brown, Adam V.; Scott, Malcolm C.
2000-12-01
A neutron producing lithium target for a novel, accelerator based cancer treatment requires the removal of up to 6kW of heat produced by 1-2mA beam of 2.3-3.0MeV protons. This paper presents the results form computer simulations which show that, using submerged jet cooling, a solid lithium target can be maintained up to 1.6mA, and a liquid target up to 2.6mA, assuming a 3.0MeV proton beam. The predictions from the simulations are verified through the use of an experimental heat transfer test-rig and the result form a number of metallurgical studies made to select a compatible substrate material for the lithium are reported.
Computer Aided Drug Design: Success and Limitations.
Baig, Mohammad Hassan; Ahmad, Khurshid; Roy, Sudeep; Ashraf, Jalaluddin Mohammad; Adil, Mohd; Siddiqui, Mohammad Haris; Khan, Saif; Kamal, Mohammad Amjad; Provazník, Ivo; Choi, Inho
2016-01-01
Over the last few decades, computer-aided drug design has emerged as a powerful technique playing a crucial role in the development of new drug molecules. Structure-based drug design and ligand-based drug design are two methods commonly used in computer-aided drug design. In this article, we discuss the theory behind both methods, as well as their successful applications and limitations. To accomplish this, we reviewed structure based and ligand based virtual screening processes. Molecular dynamics simulation, which has become one of the most influential tool for prediction of the conformation of small molecules and changes in their conformation within the biological target, has also been taken into account. Finally, we discuss the principles and concepts of molecular docking, pharmacophores and other methods used in computer-aided drug design.
Proctor, CJ; Macdonald, C; Milner, JM; Rowan, AD; Cawston, TE
2014-01-01
Objective To use a novel computational approach to examine the molecular pathways involved in cartilage breakdown and to use computer simulation to test possible interventions for reducing collagen release. Methods We constructed a computational model of the relevant molecular pathways using the Systems Biology Markup Language, a computer-readable format of a biochemical network. The model was constructed using our experimental data showing that interleukin-1 (IL-1) and oncostatin M (OSM) act synergistically to up-regulate collagenase protein levels and activity and initiate cartilage collagen breakdown. Simulations were performed using the COPASI software package. Results The model predicted that simulated inhibition of JNK or p38 MAPK, and overexpression of tissue inhibitor of metalloproteinases 3 (TIMP-3) led to a reduction in collagen release. Overexpression of TIMP-1 was much less effective than that of TIMP-3 and led to a delay, rather than a reduction, in collagen release. Simulated interventions of receptor antagonists and inhibition of JAK-1, the first kinase in the OSM pathway, were ineffective. So, importantly, the model predicts that it is more effective to intervene at targets that are downstream, such as the JNK pathway, rather than those that are close to the cytokine signal. In vitro experiments confirmed the effectiveness of JNK inhibition. Conclusion Our study shows the value of computer modeling as a tool for examining possible interventions by which to reduce cartilage collagen breakdown. The model predicts that interventions that either prevent transcription or inhibit the activity of collagenases are promising strategies and should be investigated further in an experimental setting. PMID:24757149
2012-01-01
Background MicroRNAs (miRNAs) are one of the functional non-coding small RNAs involved in the epigenetic control of the plant genome. Although plants contain both evolutionary conserved miRNAs and species-specific miRNAs within their genomes, computational methods often only identify evolutionary conserved miRNAs. The recent sequencing of the Brassica rapa genome enables us to identify miRNAs and their putative target genes. In this study, we sought to provide a more comprehensive prediction of B. rapa miRNAs based on high throughput small RNA deep sequencing. Results We sequenced small RNAs from five types of tissue: seedlings, roots, petioles, leaves, and flowers. By analyzing 2.75 million unique reads that mapped to the B. rapa genome, we identified 216 novel and 196 conserved miRNAs that were predicted to target approximately 20% of the genome’s protein coding genes. Quantitative analysis of miRNAs from the five types of tissue revealed that novel miRNAs were expressed in diverse tissues but their expression levels were lower than those of the conserved miRNAs. Comparative analysis of the miRNAs between the B. rapa and Arabidopsis thaliana genomes demonstrated that redundant copies of conserved miRNAs in the B. rapa genome may have been deleted after whole genome triplication. Novel miRNA members seemed to have spontaneously arisen from the B. rapa and A. thaliana genomes, suggesting the species-specific expansion of miRNAs. We have made this data publicly available in a miRNA database of B. rapa called BraMRs. The database allows the user to retrieve miRNA sequences, their expression profiles, and a description of their target genes from the five tissue types investigated here. Conclusions This is the first report to identify novel miRNAs from Brassica crops using genome-wide high throughput techniques. The combination of computational methods and small RNA deep sequencing provides robust predictions of miRNAs in the genome. The finding of numerous novel miRNAs, many with few target genes and low expression levels, suggests the rapid evolution of miRNA genes. The development of a miRNA database, BraMRs, enables us to integrate miRNA identification, target prediction, and functional annotation of target genes. BraMRs will represent a valuable public resource with which to study the epigenetic control of B. rapa and other closely related Brassica species. The database is available at the following link: http://bramrs.rna.kr [1]. PMID:23163954
Calculation and application of activity discriminants in lead optimization.
Luo, Xincai; Krumrine, Jennifer R; Shenvi, Ashok B; Pierson, M Edward; Bernstein, Peter R
2010-11-01
We present a technique for computing activity discriminants of in vitro (pharmacological, DMPK, and safety) assays and the application to the prediction of in vitro activities of proposed synthetic targets during the lead optimization phase of drug discovery projects. This technique emulates how medicinal chemists perform SAR analysis and activity prediction. The activity discriminants that are functions of 6 commonly used medicinal chemistry descriptors can be interpreted easily by medicinal chemists. Further, visualization with Spotfire allows medicinal chemists to analyze how the query molecule is related to compounds tested previously, and to evaluate easily the relevance of the activity discriminants to the activities of the query molecule. Validation with all compounds synthesized and tested in AstraZeneca Wilmington since 2006 demonstrates that this approach is useful for prioritizing new synthetic targets for synthesis. Copyright © 2010 Elsevier Inc. All rights reserved.
From laptop to benchtop to bedside: Structure-based Drug Design on Protein Targets
Chen, Lu; Morrow, John K.; Tran, Hoang T.; Phatak, Sharangdhar S.; Du-Cuny, Lei; Zhang, Shuxing
2013-01-01
As an important aspect of computer-aided drug design, structure-based drug design brought a new horizon to pharmaceutical development. This in silico method permeates all aspects of drug discovery today, including lead identification, lead optimization, ADMET prediction and drug repurposing. Structure-based drug design has resulted in fruitful successes drug discovery targeting protein-ligand and protein-protein interactions. Meanwhile, challenges, noted by low accuracy and combinatoric issues, may also cause failures. In this review, state-of-the-art techniques for protein modeling (e.g. structure prediction, modeling protein flexibility, etc.), hit identification/optimization (e.g. molecular docking, focused library design, fragment-based design, molecular dynamic, etc.), and polypharmacology design will be discussed. We will explore how structure-based techniques can facilitate the drug discovery process and interplay with other experimental approaches. PMID:22316152
Target controlled infusion for kids: trials and simulations.
Mehta, Disha; McCormack, Jon; Fung, Parry; Dumont, Guy; Ansermino, J
2008-01-01
Target controlled infusion (TCI) for Kids is a computer controlled system designed to administer propofol for general anesthesia. A controller establishes infusion rates required to achieve a specified concentration at the drug's effect site (C(e)) by implementing a continuously updated pharmacokinetic-pharmacodymanic model. This manuscript provides an overview of the system's design, preclinical tests, and a clinical pilot study. In pre-clinical tests, predicted infusion rates for 20 simulated procedures displayed complete convergent validity between two software implementations, Labview and Matlab, at computational intervals of 5, 10, and 15s, but diverged with 20s intervals due to system rounding errors. The volume of drug delivered by the TCI system also displayed convergent validity with Tivatrainer, a widely used TCI simulation software. Further tests, were conducted for 50 random procedures to evaluate discrepancies between volumes reported and those actually delivered by the system. Accuracies were within clinically acceptable ranges and normally distributed with a mean of 0.08 +/- 0.01 ml. In the clinical study, propofol pharmacokinetics were simulated for 30 surgical procedures involving children aged 3 months to 9 years. Predicted C(e) values during standard clinical practice, the accuracy of wake-up times predicted by the system, and potential correlations between patient wake-up times, C(e), and state entropy (SE) were assessed. Neither Ce nor SE was a reliable predictor of wake-up time in children, but the small sample size of this study does not fully accommodate the noted variation in children's response to propofol. A C(e) value of 1.9 mug/ml was found to best predict emergence from anesthesia in children.
High-Throughput Gene Expression Profiles to Define Drug Similarity and Predict Compound Activity.
De Wolf, Hans; Cougnaud, Laure; Van Hoorde, Kirsten; De Bondt, An; Wegner, Joerg K; Ceulemans, Hugo; Göhlmann, Hinrich
2018-04-01
By adding biological information, beyond the chemical properties and desired effect of a compound, uncharted compound areas and connections can be explored. In this study, we add transcriptional information for 31K compounds of Janssen's primary screening deck, using the HT L1000 platform and assess (a) the transcriptional connection score for generating compound similarities, (b) machine learning algorithms for generating target activity predictions, and (c) the scaffold hopping potential of the resulting hits. We demonstrate that the transcriptional connection score is best computed from the significant genes only and should be interpreted within its confidence interval for which we provide the stats. These guidelines help to reduce noise, increase reproducibility, and enable the separation of specific and promiscuous compounds. The added value of machine learning is demonstrated for the NR3C1 and HSP90 targets. Support Vector Machine models yielded balanced accuracy values ≥80% when the expression values from DDIT4 & SERPINE1 and TMEM97 & SPR were used to predict the NR3C1 and HSP90 activity, respectively. Combining both models resulted in 22 new and confirmed HSP90-independent NR3C1 inhibitors, providing two scaffolds (i.e., pyrimidine and pyrazolo-pyrimidine), which could potentially be of interest in the treatment of depression (i.e., inhibiting the glucocorticoid receptor (i.e., NR3C1), while leaving its chaperone, HSP90, unaffected). As such, the initial hit rate increased by a factor 300, as less, but more specific chemistry could be screened, based on the upfront computed activity predictions.
Semi-supervised protein subcellular localization.
Xu, Qian; Hu, Derek Hao; Xue, Hong; Yu, Weichuan; Yang, Qiang
2009-01-30
Protein subcellular localization is concerned with predicting the location of a protein within a cell using computational method. The location information can indicate key functionalities of proteins. Accurate predictions of subcellular localizations of protein can aid the prediction of protein function and genome annotation, as well as the identification of drug targets. Computational methods based on machine learning, such as support vector machine approaches, have already been widely used in the prediction of protein subcellular localization. However, a major drawback of these machine learning-based approaches is that a large amount of data should be labeled in order to let the prediction system learn a classifier of good generalization ability. However, in real world cases, it is laborious, expensive and time-consuming to experimentally determine the subcellular localization of a protein and prepare instances of labeled data. In this paper, we present an approach based on a new learning framework, semi-supervised learning, which can use much fewer labeled instances to construct a high quality prediction model. We construct an initial classifier using a small set of labeled examples first, and then use unlabeled instances to refine the classifier for future predictions. Experimental results show that our methods can effectively reduce the workload for labeling data using the unlabeled data. Our method is shown to enhance the state-of-the-art prediction results of SVM classifiers by more than 10%.
Improved prediction of antibody VL–VH orientation
Marze, Nicholas A.; Lyskov, Sergey; Gray, Jeffrey J.
2016-01-01
Antibodies are important immune molecules with high commercial value and therapeutic interest because of their ability to bind diverse antigens. Computational prediction of antibody structure can quickly reveal valuable information about the nature of these antigen-binding interactions, but only if the models are of sufficient quality. To achieve high model quality during complementarity-determining region (CDR) structural prediction, one must account for the VL–VH orientation. We developed a novel four-metric VL–VH orientation coordinate frame. Additionally, we extended the CDR grafting protocol in RosettaAntibody with a new method that diversifies VL–VH orientation by using 10 VL–VH orientation templates rather than a single one. We tested the multiple-template grafting protocol on two datasets of known antibody crystal structures. During the template-grafting phase, the new protocol improved the fraction of accurate VL–VH orientation predictions from only 26% (12/46) to 72% (33/46) of targets. After the full RosettaAntibody protocol, including CDR H3 remodeling and VL–VH re-orientation, the new protocol produced more candidate structures with accurate VL–VH orientation than the standard protocol in 43/46 targets (93%). The improved ability to predict VL–VH orientation will bolster predictions of other parts of the paratope, including the conformation of CDR H3, a grand challenge of antibody homology modeling. PMID:27276984
2014-01-01
Background Genome-wide microarrays have been useful for predicting chemical-genetic interactions at the gene level. However, interpreting genome-wide microarray results can be overwhelming due to the vast output of gene expression data combined with off-target transcriptional responses many times induced by a drug treatment. This study demonstrates how experimental and computational methods can interact with each other, to arrive at more accurate predictions of drug-induced perturbations. We present a two-stage strategy that links microarray experimental testing and network training conditions to predict gene perturbations for a drug with a known mechanism of action in a well-studied organism. Results S. cerevisiae cells were treated with the antifungal, fluconazole, and expression profiling was conducted under different biological conditions using Affymetrix genome-wide microarrays. Transcripts were filtered with a formal network-based method, sparse simultaneous equation models and Lasso regression (SSEM-Lasso), under different network training conditions. Gene expression results were evaluated using both gene set and single gene target analyses, and the drug’s transcriptional effects were narrowed first by pathway and then by individual genes. Variables included: (i) Testing conditions – exposure time and concentration and (ii) Network training conditions – training compendium modifications. Two analyses of SSEM-Lasso output – gene set and single gene – were conducted to gain a better understanding of how SSEM-Lasso predicts perturbation targets. Conclusions This study demonstrates that genome-wide microarrays can be optimized using a two-stage strategy for a more in-depth understanding of how a cell manifests biological reactions to a drug treatment at the transcription level. Additionally, a more detailed understanding of how the statistical model, SSEM-Lasso, propagates perturbations through a network of gene regulatory interactions is achieved. PMID:24444313
Liu, Zhao; Zhu, Yunhong; Wu, Chenxue
2016-01-01
Spatial-temporal k-anonymity has become a mainstream approach among techniques for protection of users’ privacy in location-based services (LBS) applications, and has been applied to several variants such as LBS snapshot queries and continuous queries. Analyzing large-scale spatial-temporal anonymity sets may benefit several LBS applications. In this paper, we propose two location prediction methods based on transition probability matrices constructing from sequential rules for spatial-temporal k-anonymity dataset. First, we define single-step sequential rules mined from sequential spatial-temporal k-anonymity datasets generated from continuous LBS queries for multiple users. We then construct transition probability matrices from mined single-step sequential rules, and normalize the transition probabilities in the transition matrices. Next, we regard a mobility model for an LBS requester as a stationary stochastic process and compute the n-step transition probability matrices by raising the normalized transition probability matrices to the power n. Furthermore, we propose two location prediction methods: rough prediction and accurate prediction. The former achieves the probabilities of arriving at target locations along simple paths those include only current locations, target locations and transition steps. By iteratively combining the probabilities for simple paths with n steps and the probabilities for detailed paths with n-1 steps, the latter method calculates transition probabilities for detailed paths with n steps from current locations to target locations. Finally, we conduct extensive experiments, and correctness and flexibility of our proposed algorithm have been verified. PMID:27508502
Li, Mao; Miller, Karol; Joldes, Grand Roman; Kikinis, Ron; Wittek, Adam
2016-12-01
Patient-specific biomechanical models have been advocated as a tool for predicting deformations of soft body organs/tissue for medical image registration (aligning two sets of images) when differences between the images are large. However, complex and irregular geometry of the body organs makes generation of patient-specific biomechanical models very time-consuming. Meshless discretisation has been proposed to solve this challenge. However, applications so far have been limited to 2D models and computing single organ deformations. In this study, 3D comprehensive patient-specific nonlinear biomechanical models implemented using meshless Total Lagrangian explicit dynamics algorithms are applied to predict a 3D deformation field for whole-body image registration. Unlike a conventional approach that requires dividing (segmenting) the image into non-overlapping constituents representing different organs/tissues, the mechanical properties are assigned using the fuzzy c-means algorithm without the image segmentation. Verification indicates that the deformations predicted using the proposed meshless approach are for practical purposes the same as those obtained using the previously validated finite element models. To quantitatively evaluate the accuracy of the predicted deformations, we determined the spatial misalignment between the registered (i.e. source images warped using the predicted deformations) and target images by computing the edge-based Hausdorff distance. The Hausdorff distance-based evaluation determines that our meshless models led to successful registration of the vast majority of the image features. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Progress Toward Efficient Laminar Flow Analysis and Design
NASA Technical Reports Server (NTRS)
Campbell, Richard L.; Campbell, Matthew L.; Streit, Thomas
2011-01-01
A multi-fidelity system of computer codes for the analysis and design of vehicles having extensive areas of laminar flow is under development at the NASA Langley Research Center. The overall approach consists of the loose coupling of a flow solver, a transition prediction method and a design module using shell scripts, along with interface modules to prepare the input for each method. This approach allows the user to select the flow solver and transition prediction module, as well as run mode for each code, based on the fidelity most compatible with the problem and available resources. The design module can be any method that designs to a specified target pressure distribution. In addition to the interface modules, two new components have been developed: 1) an efficient, empirical transition prediction module (MATTC) that provides n-factor growth distributions without requiring boundary layer information; and 2) an automated target pressure generation code (ATPG) that develops a target pressure distribution that meets a variety of flow and geometry constraints. The ATPG code also includes empirical estimates of several drag components to allow the optimization of the target pressure distribution. The current system has been developed for the design of subsonic and transonic airfoils and wings, but may be extendable to other speed ranges and components. Several analysis and design examples are included to demonstrate the current capabilities of the system.
Automatic prediction of tongue muscle activations using a finite element model.
Stavness, Ian; Lloyd, John E; Fels, Sidney
2012-11-15
Computational modeling has improved our understanding of how muscle forces are coordinated to generate movement in musculoskeletal systems. Muscular-hydrostat systems, such as the human tongue, involve very different biomechanics than musculoskeletal systems, and modeling efforts to date have been limited by the high computational complexity of representing continuum-mechanics. In this study, we developed a computationally efficient tracking-based algorithm for prediction of muscle activations during dynamic 3D finite element simulations. The formulation uses a local quadratic-programming problem at each simulation time-step to find a set of muscle activations that generated target deformations and movements in finite element muscular-hydrostat models. We applied the technique to a 3D finite element tongue model for protrusive and bending movements. Predicted muscle activations were consistent with experimental recordings of tongue strain and electromyography. Upward tongue bending was achieved by recruitment of the superior longitudinal sheath muscle, which is consistent with muscular-hydrostat theory. Lateral tongue bending, however, required recruitment of contralateral transverse and vertical muscles in addition to the ipsilateral margins of the superior longitudinal muscle, which is a new proposition for tongue muscle coordination. Our simulation framework provides a new computational tool for systematic analysis of muscle forces in continuum-mechanics models that is complementary to experimental data and shows promise for eliciting a deeper understanding of human tongue function. Copyright © 2012 Elsevier Ltd. All rights reserved.
Vilar, Santiago; Hripcsak, George
2017-07-01
Explosion of the availability of big data sources along with the development in computational methods provides a useful framework to study drugs' actions, such as interactions with pharmacological targets and off-targets. Databases related to protein interactions, adverse effects and genomic profiles are available to be used for the construction of computational models. In this article, we focus on the description of biological profiles for drugs that can be used as a system to compare similarity and create methods to predict and analyze drugs' actions. We highlight profiles constructed with different biological data, such as target-protein interactions, gene expression measurements, adverse effects and disease profiles. We focus on the discovery of new targets or pathways for drugs already in the pharmaceutical market, also called drug repurposing, in the interaction with off-targets responsible for adverse reactions and in drug-drug interaction analysis. The current and future applications, strengths and challenges facing all these methods are also discussed. Biological profiles or signatures are an important source of data generation to deeply analyze biological actions with important implications in drug-related studies. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Cucinotta, F. A.; Wilson, J. W.; Shinn, J. L.; Badavi, F. F.; Badhwar, G. D.
1996-01-01
We present calculations of linear energy transfer (LET) spectra in low earth orbit from galactic cosmic rays and trapped protons using the HZETRN/BRYNTRN computer code. The emphasis of our calculations is on the analysis of the effects of secondary nuclei produced through target fragmentation in the spacecraft shield or detectors. Recent improvements in the HZETRN/BRYNTRN radiation transport computer code are described. Calculations show that at large values of LET (> 100 keV/micrometer) the LET spectra seen in free space and low earth orbit (LEO) are dominated by target fragments and not the primary nuclei. Although the evaluation of microdosimetric spectra is not considered here, calculations of LET spectra support that the large lineal energy (y) events are dominated by the target fragments. Finally, we discuss the situation for interplanetary exposures to galactic cosmic rays and show that current radiation transport codes predict that in the region of high LET values the LET spectra at significant shield depths (> 10 g/cm2 of Al) is greatly modified by target fragments. These results suggest that studies of track structure and biological response of space radiation should place emphasis on short tracks of medium charge fragments produced in the human body by high energy protons and neutrons.
NASA Technical Reports Server (NTRS)
Thomas, B. K.
1978-01-01
The Coulomb-modified form of the Glauber approximation is applied to the n = 2 and n = 3 excitation of hydrogenlike ions by incident electrons for various values of the target-ion nuclear charge Z sub n. The properly computed e(-)-He(+) 1s - 2s,2p Glauber predictions, including appropriate cascade effects, are compared with available experiment. The Z sub n dependence of the scaled integrated (over scattering angles) cross section is discussed, including the limit as Z sub n approaches infinity.
Ensemble-based docking: From hit discovery to metabolism and toxicity predictions.
Evangelista, Wilfredo; Weir, Rebecca L; Ellingson, Sally R; Harris, Jason B; Kapoor, Karan; Smith, Jeremy C; Baudry, Jerome
2016-10-15
This paper describes and illustrates the use of ensemble-based docking, i.e., using a collection of protein structures in docking calculations for hit discovery, the exploration of biochemical pathways and toxicity prediction of drug candidates. We describe the computational engineering work necessary to enable large ensemble docking campaigns on supercomputers. We show examples where ensemble-based docking has significantly increased the number and the diversity of validated drug candidates. Finally, we illustrate how ensemble-based docking can be extended beyond hit discovery and toward providing a structural basis for the prediction of metabolism and off-target binding relevant to pre-clinical and clinical trials. Copyright © 2016 Elsevier Ltd. All rights reserved.
Como, F; Carnesecchi, E; Volani, S; Dorne, J L; Richardson, J; Bassan, A; Pavan, M; Benfenati, E
2017-01-01
Ecological risk assessment of plant protection products (PPPs) requires an understanding of both the toxicity and the extent of exposure to assess risks for a range of taxa of ecological importance including target and non-target species. Non-target species such as honey bees (Apis mellifera), solitary bees and bumble bees are of utmost importance because of their vital ecological services as pollinators of wild plants and crops. To improve risk assessment of PPPs in bee species, computational models predicting the acute and chronic toxicity of a range of PPPs and contaminants can play a major role in providing structural and physico-chemical properties for the prioritisation of compounds of concern and future risk assessments. Over the last three decades, scientific advisory bodies and the research community have developed toxicological databases and quantitative structure-activity relationship (QSAR) models that are proving invaluable to predict toxicity using historical data and reduce animal testing. This paper describes the development and validation of a k-Nearest Neighbor (k-NN) model using in-house software for the prediction of acute contact toxicity of pesticides on honey bees. Acute contact toxicity data were collected from different sources for 256 pesticides, which were divided into training and test sets. The k-NN models were validated with good prediction, with an accuracy of 70% for all compounds and of 65% for highly toxic compounds, suggesting that they might reliably predict the toxicity of structurally diverse pesticides and could be used to screen and prioritise new pesticides. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fang, Jing-Jing; Liu, Jia-Kuang; Wu, Tzu-Chieh; Lee, Jing-Wei; Kuo, Tai-Hong
2013-05-01
Computer-aided design has gained increasing popularity in clinical practice, and the advent of rapid prototyping technology has further enhanced the quality and predictability of surgical outcomes. It provides target guides for complex bony reconstruction during surgery. Therefore, surgeons can efficiently and precisely target fracture restorations. Based on three-dimensional models generated from a computed tomographic scan, precise preoperative planning simulation on a computer is possible. Combining the interdisciplinary knowledge of surgeons and engineers, this study proposes a novel surgical guidance method that incorporates a built-in occlusal wafer that serves as the positioning reference.Two patients with complex facial deformity suffering from severe facial asymmetry problems were recruited. In vitro facial reconstruction was first rehearsed on physical models, where a customized surgical guide incorporating a built-in occlusal stent as the positioning reference was designed to implement the surgery plan. This study is intended to present the authors' preliminary experience in a complex facial reconstruction procedure. It suggests that in regions with less information, where intraoperative computed tomographic scans or navigation systems are not available, our approach could be an effective, expedient, straightforward aid to enhance surgical outcome in a complex facial repair.
Binding-Site Assessment by Virtual Fragment Screening
Huang, Niu; Jacobson, Matthew P.
2010-01-01
The accurate prediction of protein druggability (propensity to bind high-affinity drug-like small molecules) would greatly benefit the fields of chemical genomics and drug discovery. We have developed a novel approach to quantitatively assess protein druggability by computationally screening a fragment-like compound library. In analogy to NMR-based fragment screening, we dock ∼11000 fragments against a given binding site and compute a computational hit rate based on the fraction of molecules that exceed an empirically chosen score cutoff. We perform a large-scale evaluation of the approach on four datasets, totaling 152 binding sites. We demonstrate that computed hit rates correlate with hit rates measured experimentally in a previously published NMR-based screening method. Secondly, we show that the in silico fragment screening method can be used to distinguish known druggable and non-druggable targets, including both enzymes and protein-protein interaction sites. Finally, we explore the sensitivity of the results to different receptor conformations, including flexible protein-protein interaction sites. Besides its original aim to assess druggability of different protein targets, this method could be used to identifying druggable conformations of flexible binding site for lead discovery, and suggesting strategies for growing or joining initial fragment hits to obtain more potent inhibitors. PMID:20404926
Manoharan, Prabu; Chennoju, Kiranmai; Ghoshal, Nanda
2015-07-01
BACE1 is an attractive target in Alzheimer's disease (AD) treatment. A rational drug design effort for the inhibition of BACE1 is actively pursued by researchers in both academic and pharmaceutical industries. This continued effort led to the steady accumulation of BACE1 crystal structures, co-complexed with different classes of inhibitors. This wealth of information is used in this study to develop target specific proteochemometric models and these models are exploited for predicting the prospective BACE1 inhibitors. The models developed in this study have performed excellently in predicting the computationally generated poses, separately obtained from single and ensemble docking approaches. The simple protein-ligand contact (SPLC) model outperforms other sophisticated high end models, in virtual screening performance, developed during this study. In an attempt to account for BACE1 protein active site flexibility information in predictive models, we included the change in the area of solvent accessible surface and the change in the volume of solvent accessible surface in our models. The ensemble and single receptor docking results obtained from this study indicate that the structural water mediated interactions improve the virtual screening results. Also, these waters are essential for recapitulating bioactive conformation during docking study. The proteochemometric models developed in this study can be used for the prediction of BACE1 inhibitors, during the early stage of AD drug discovery.
Anderson, Eric J; Falls, Thomas D; Sorkin, Adam M; Tate, Melissa L Knothe
2006-01-01
Background In vitro mechanotransduction studies are designed to elucidate cell behavior in response to a well-defined mechanical signal that is imparted to cultured cells, e.g. through fluid flow. Typically, flow rates are calculated based on a parallel plate flow assumption, to achieve a targeted cellular shear stress. This study evaluates the performance of specific flow/perfusion chambers in imparting the targeted stress at the cellular level. Methods To evaluate how well actual flow chambers meet their target stresses (set for 1 and 10 dyn/cm2 for this study) at a cellular level, computational models were developed to calculate flow velocity components and imparted shear stresses for a given pressure gradient. Computational predictions were validated with micro-particle image velocimetry (μPIV) experiments. Results Based on these computational and experimental studies, as few as 66% of cells seeded along the midplane of commonly implemented flow/perfusion chambers are subjected to stresses within ±10% of the target stress. In addition, flow velocities and shear stresses imparted through fluid drag vary as a function of location within each chamber. Hence, not only a limited number of cells are exposed to target stress levels within each chamber, but also neighboring cells may experience different flow regimes. Finally, flow regimes are highly dependent on flow chamber geometry, resulting in significant variation in magnitudes and spatial distributions of stress between chambers. Conclusion The results of this study challenge the basic premise of in vitro mechanotransduction studies, i.e. that a controlled flow regime is applied to impart a defined mechanical stimulus to cells. These results also underscore the fact that data from studies in which different chambers are utilized can not be compared, even if the target stress regimes are comparable. PMID:16672051
Plaimas, Kitiporn; Wang, Yulin; Rotimi, Solomon O; Olasehinde, Grace; Fatumo, Segun; Lanzer, Michael; Adebiyi, Ezekiel; König, Rainer
2013-12-01
Plasmodium falciparum (PF) is the most severe malaria parasite. It is developing resistance quickly to existing drugs making it indispensable to discover new drugs. Effective drugs have been discovered targeting metabolic enzymes of the parasite. In order to predict new drug targets, computational methods can be used employing database information of metabolism. Using this data, we performed recently a computational network analysis of metabolism of PF. We analyzed the topology of the network to find reactions which are sensitive against perturbations, i.e., when a single enzyme is blocked by drugs. We now used a refined network comprising also the host enzymes which led to a refined set of the five targets glutamyl-tRNA (gln) amidotransferase, hydroxyethylthiazole kinase, deoxyribose-phophate aldolase, pseudouridylate synthase, and deoxyhypusine synthase. It was shown elsewhere that glutamyl-tRNA (gln) amidotransferase of other microorganisms can be inhibited by 6-diazo-5-oxonorleucine. Performing a half maximal inhibitory concentration (IC50) assay, we showed, that 6-diazo-5-oxonorleucine is also severely affecting viability of PF in blood plasma of the human host. We confirmed this by an in vivo study observing Plasmodium berghei infected mice. Copyright © 2013 Elsevier B.V. All rights reserved.
Controlling data transfers from an origin compute node to a target compute node
Archer, Charles J [Rochester, MN; Blocksome, Michael A [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian E [Rochester, MN
2011-06-21
Methods, apparatus, and products are disclosed for controlling data transfers from an origin compute node to a target compute node that include: receiving, by an application messaging module on the target compute node, an indication of a data transfer from an origin compute node to the target compute node; and administering, by the application messaging module on the target compute node, the data transfer using one or more messaging primitives of a system messaging module in dependence upon the indication.
Iwazawa, J; Ohue, S; Hashimoto, N; Mitani, T
2014-02-01
To compare the accuracy of computer software analysis using three different target-definition protocols to detect tumour feeder vessels for transarterial chemoembolization of hepatocellular carcinoma. C-arm computed tomography (CT) data were analysed for 81 tumours from 57 patients who had undergone chemoembolization using software-assisted detection of tumour feeders. Small, medium, and large-sized targets were manually defined for each tumour. The tumour feeder was verified when the target tumour was enhanced on selective C-arm CT of the investigated vessel during chemoembolization. The sensitivity, specificity, and accuracy of the three protocols were evaluated and compared. One hundred and eight feeder vessels supplying 81 lesions were detected. The sensitivity of the small, medium, and large target protocols was 79.8%, 91.7%, and 96.3%, respectively; specificity was 95%, 88%, and 50%, respectively; and accuracy was 87.5%, 89.9%, and 74%, respectively. The sensitivity was significantly higher for the medium (p = 0.003) and large (p < 0.001) target protocols than for the small target protocol. The specificity and accuracy were higher for the small (p < 0.001 and p < 0.001, respectively) and medium (p < 0.001 and p < 0.001, respectively) target protocols than for the large target protocol. The overall accuracy of software-assisted automated feeder analysis in transarterial chemoembolization for hepatocellular carcinoma is affected by the target definition size. A large target definition increases sensitivity and decreases specificity in detecting tumour feeders. A target size equivalent to the tumour size most accurately predicts tumour feeders. Copyright © 2013 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Shock and Release Response of Unreacted Epon 828: Shot 2s-905
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pisa, Matthew Alexander; Fredenburg, David A.; Dattelbaum, Dana M.
This document summarizes the shock and release response of Epon 828 measured in the dynamic impact experiment 2s-905. Experimentally, a thin Kel-F impactor backed by a low impedance foam impacted an Epon 828 target with embedded electromagnetic gauges. Computationally, a one dimensional simulation of the impact event was performed, and tracer particles were located at the corresponding electromagnetic gauge locations. The experimental configuration was such that the Epon 828 target was initially shocked, and then allowed to release from the high-pressure state. Comparisons of the experimental gauge and computational tracer data were made to assess the performance of equation ofmore » state (EOS) 7603, a SESAME EOS for Epon 828, on and off the principal shock Hugoniot. Results indicate that while EOS 7603 can capture the Hugoniot response to better that 1%, while the sound speeds at pressure are under-predicted by 6 - 7%.« less
Uddin, Reaz; Tariq, Syeda Sumayya; Azam, Syed Sikander; Wadood, Abdul; Moin, Syed Tarique
2017-08-30
Patently, Protein-Protein Interactions (PPIs) lie at the core of significant biological functions and make the foundation of host-pathogen relationships. Hence, the current study is aimed to use computational biology techniques to predict host-pathogen Protein-Protein Interactions (HP-PPIs) between MRSA and Humans as potential drug targets ultimately proposing new possible inhibitors against them. As a matter of fact this study is based on the Interolog method which implies that homologous proteins retain their ability to interact. A distant homolog approach based on Interolog method was employed to speculate MRSA protein homologs in Humans using PSI-BLAST. In addition the protein interaction partners of these homologs as listed in Database of Interacting Proteins (DIP) were predicted to interact with MRSA as well. Moreover, a direct approach using BLAST was also applied so as to attain further confidence in the strategy. Consequently, the common HP-PPIs predicted by both approaches are suggested as potential drug targets (22%) whereas, the unique HP-PPIs estimated only through distant homolog approach are presented as novel drug targets (12%). Furthermore, the most repeated entry in our results was found to be MRSA Histone Deacetylase (HDAC) which was then modeled using SWISS-MODEL. Eventually, small molecules from ZINC, selected randomly, were docked against HDAC using Auto Dock and are suggested as potential binders (inhibitors) based on their energetic profiles. Thus the current study provides basis for further in-depth analysis of such data which not only include MRSA but other deadly pathogens as well. Copyright © 2017 Elsevier B.V. All rights reserved.
Bremmer, Frank; Kaminiarz, Andre; Klingenhoefer, Steffen; Churan, Jan
2016-01-01
Primates perform saccadic eye movements in order to bring the image of an interesting target onto the fovea. Compared to stationary targets, saccades toward moving targets are computationally more demanding since the oculomotor system must use speed and direction information about the target as well as knowledge about its own processing latency to program an adequate, predictive saccade vector. In monkeys, different brain regions have been implicated in the control of voluntary saccades, among them the lateral intraparietal area (LIP). Here we asked, if activity in area LIP reflects the distance between fovea and saccade target, or the amplitude of an upcoming saccade, or both. We recorded single unit activity in area LIP of two macaque monkeys. First, we determined for each neuron its preferred saccade direction. Then, monkeys performed visually guided saccades along the preferred direction toward either stationary or moving targets in pseudo-randomized order. LIP population activity allowed to decode both, the distance between fovea and saccade target as well as the size of an upcoming saccade. Previous work has shown comparable results for saccade direction (Graf and Andersen, 2014a,b). Hence, LIP population activity allows to predict any two-dimensional saccade vector. Functional equivalents of macaque area LIP have been identified in humans. Accordingly, our results provide further support for the concept of activity from area LIP as neural basis for the control of an oculomotor brain-machine interface. PMID:27630547
NASA Technical Reports Server (NTRS)
Stoughton, John W.; Obando, Rodrigo A.
1993-01-01
The modeling and design of a fault-tolerant multiprocessor system is addressed. In particular, the behavior of the system during recovery and restoration after a fault has occurred is investigated. Given that a multicomputer system is designed using the Algorithm to Architecture to Mapping Model (ATAMM), and that a fault (death of a computing resource) occurs during its normal steady-state operation, a model is presented as a viable research tool for predicting the performance bounds of the system during its recovery and restoration phases. Furthermore, the bounds of the performance behavior of the system during this transient mode can be assessed. These bounds include: time to recover from the fault (t(sub rec)), time to restore the system (t(sub rec)) and whether there is a permanent delay in the system's Time Between Input and Output (TBIO) after the system has reached a steady state. An implementation of an ATAMM based computer was developed with the Generic VHSIC Spaceborne Computer (GVSC) as the target system. A simulation of the GVSC was also written based on the code used in ATAMM Multicomputer Operating System (AMOS). The simulation is in turn used to validate the new model in the usefulness and accuracy in tracking the propagation of the delay through the system and predicting the behavior in the transient state of recovery and restoration. The model is validated as an accurate method to predict the transient behavior of an ATAMM based multicomputer during recovery and restoration.
Context in Generalized Conversational Implicatures: The Case of Some
Dupuy, Ludivine E.; Van der Henst, Jean-Baptiste; Cheylus, Anne; Reboul, Anne C.
2016-01-01
There is now general agreement about the optionality of scalar implicatures: the pragmatic interpretation will be accessed depending on the context relative to which the utterance is interpreted. The question, then, is what makes a context upper- (vs. lower-) bounding. Neo-Gricean accounts should predict that contexts including factual information will enhance the rate of pragmatic interpretations. Post-Gricean accounts should predict that contexts including psychological attributions will enhance the rate of pragmatic interpretations. We tested two factors using the quantifier scale
Protein-Protein Interface Predictions by Data-Driven Methods: A Review
Xue, Li C; Dobbs, Drena; Bonvin, Alexandre M.J.J.; Honavar, Vasant
2015-01-01
Reliably pinpointing which specific amino acid residues form the interface(s) between a protein and its binding partner(s) is critical for understanding the structural and physicochemical determinants of protein recognition and binding affinity, and has wide applications in modeling and validating protein interactions predicted by high-throughput methods, in engineering proteins, and in prioritizing drug targets. Here, we review the basic concepts, principles and recent advances in computational approaches to the analysis and prediction of protein-protein interfaces. We point out caveats for objectively evaluating interface predictors, and discuss various applications of data-driven interface predictors for improving energy model-driven protein-protein docking. Finally, we stress the importance of exploiting binding partner information in reliably predicting interfaces and highlight recent advances in this emerging direction. PMID:26460190
Attentional priorities and access to short-term memory: parietal interactions.
Gillebert, Céline R; Dyrholm, Mads; Vangkilde, Signe; Kyllingsbæk, Søren; Peeters, Ronald; Vandenberghe, Rik
2012-09-01
The intraparietal sulcus (IPS) has been implicated in selective attention as well as visual short-term memory (VSTM). To contrast mechanisms of target selection, distracter filtering, and access to VSTM, we combined behavioral testing, computational modeling and functional magnetic resonance imaging. Sixteen healthy subjects participated in a change detection task in which we manipulated both target and distracter set sizes. We directly compared the IPS response as a function of the number of targets and distracters in the display and in VSTM. When distracters were not present, the posterior and middle segments of IPS showed the predicted asymptotic activity increase with an increasing target set size. When distracters were added to a single target, activity also increased as predicted. However, the addition of distracters to multiple targets suppressed both middle and posterior IPS activities, thereby displaying a significant interaction between the two factors. The interaction between target and distracter set size in IPS could not be accounted for by a simple explanation in terms of number of items accessing VSTM. Instead, it led us to a model where items accessing VSTM receive differential weights depending on their behavioral relevance, and secondly, a suppressive effect originates during the selection phase when multiple targets and multiple distracters are simultaneously present. The reverse interaction between target and distracter set size was significant in the right temporoparietal junction (TPJ), where activity was highest for a single target compared to any other condition. Our study reconciles the role of middle IPS in attentional selection and biased competition with its role in VSTM access. Copyright © 2012 Elsevier Inc. All rights reserved.
Consensus models to predict endocrine disruption for all ...
Humans are potentially exposed to tens of thousands of man-made chemicals in the environment. It is well known that some environmental chemicals mimic natural hormones and thus have the potential to be endocrine disruptors. Most of these environmental chemicals have never been tested for their ability to disrupt the endocrine system, in particular, their ability to interact with the estrogen receptor. EPA needs tools to prioritize thousands of chemicals, for instance in the Endocrine Disruptor Screening Program (EDSP). Collaborative Estrogen Receptor Activity Prediction Project (CERAPP) was intended to be a demonstration of the use of predictive computational models on HTS data including ToxCast and Tox21 assays to prioritize a large chemical universe of 32464 unique structures for one specific molecular target – the estrogen receptor. CERAPP combined multiple computational models for prediction of estrogen receptor activity, and used the predicted results to build a unique consensus model. Models were developed in collaboration between 17 groups in the U.S. and Europe and applied to predict the common set of chemicals. Structure-based techniques such as docking and several QSAR modeling approaches were employed, mostly using a common training set of 1677 compounds provided by U.S. EPA, to build a total of 42 classification models and 8 regression models for binding, agonist and antagonist activity. All predictions were evaluated on ToxCast data and on an exte
Computational modeling of membrane proteins
Leman, Julia Koehler; Ulmschneider, Martin B.; Gray, Jeffrey J.
2014-01-01
The determination of membrane protein (MP) structures has always trailed that of soluble proteins due to difficulties in their overexpression, reconstitution into membrane mimetics, and subsequent structure determination. The percentage of MP structures in the protein databank (PDB) has been at a constant 1-2% for the last decade. In contrast, over half of all drugs target MPs, only highlighting how little we understand about drug-specific effects in the human body. To reduce this gap, researchers have attempted to predict structural features of MPs even before the first structure was experimentally elucidated. In this review, we present current computational methods to predict MP structure, starting with secondary structure prediction, prediction of trans-membrane spans, and topology. Even though these methods generate reliable predictions, challenges such as predicting kinks or precise beginnings and ends of secondary structure elements are still waiting to be addressed. We describe recent developments in the prediction of 3D structures of both α-helical MPs as well as β-barrels using comparative modeling techniques, de novo methods, and molecular dynamics (MD) simulations. The increase of MP structures has (1) facilitated comparative modeling due to availability of more and better templates, and (2) improved the statistics for knowledge-based scoring functions. Moreover, de novo methods have benefitted from the use of correlated mutations as restraints. Finally, we outline current advances that will likely shape the field in the forthcoming decade. PMID:25355688
Kel, AlexanderE
2017-02-01
Computational analysis of master regulators through the search for transcription factor binding sites followed by analysis of signal transduction networks of a cell is a new approach of causal analysis of multi-omics data. This paper contains results on analysis of multi-omics data that include transcriptomics, proteomics and epigenomics data of methotrexate (MTX) resistant colon cancer cell line. The data were used for analysis of mechanisms of resistance and for prediction of potential drug targets and promising compounds for reverting the MTX resistance of these cancer cells. We present all results of the analysis including the lists of identified transcription factors and their binding sites in genome and the list of predicted master regulators - potential drug targets. This data was generated in the study recently published in the article "Multi-omics "Upstream Analysis" of regulatory genomic regions helps identifying targets against methotrexate resistance of colon cancer" (Kel et al., 2016) [4]. These data are of interest for researchers from the field of multi-omics data analysis and for biologists who are interested in identification of novel drug targets against NTX resistance.
Computational Approaches to Drug Repurposing and Pharmacology
Hodos, Rachel A; Kidd, Brian A; Khader, Shameer; Readhead, Ben P; Dudley, Joel T
2016-01-01
Data in the biological, chemical, and clinical domains are accumulating at ever-increasing rates and have the potential to accelerate and inform drug development in new ways. Challenges and opportunities now lie in developing analytic tools to transform these often complex and heterogeneous data into testable hypotheses and actionable insights. This is the aim of computational pharmacology, which uses in silico techniques to better understand and predict how drugs affect biological systems, which can in turn improve clinical use, avoid unwanted side effects, and guide selection and development of better treatments. One exciting application of computational pharmacology is drug repurposing- finding new uses for existing drugs. Already yielding many promising candidates, this strategy has the potential to improve the efficiency of the drug development process and reach patient populations with previously unmet needs such as those with rare diseases. While current techniques in computational pharmacology and drug repurposing often focus on just a single data modality such as gene expression or drug-target interactions, we rationalize that methods such as matrix factorization that can integrate data within and across diverse data types have the potential to improve predictive performance and provide a fuller picture of a drug's pharmacological action. PMID:27080087
The role of water molecules in computational drug design.
de Beer, Stephanie B A; Vermeulen, Nico P E; Oostenbrink, Chris
2010-01-01
Although water molecules are small and only consist of two different atom types, they play various roles in cellular systems. This review discusses their influence on the binding process between biomacromolecular targets and small molecule ligands and how this influence can be modeled in computational drug design approaches. Both the structure and the thermodynamics of active site waters will be discussed as these influence the binding process significantly. Structurally conserved waters cannot always be determined experimentally and if observed, it is not clear if they will be replaced upon ligand binding, even if sufficient space is available. Methods to predict the presence of water in protein-ligand complexes will be reviewed. Subsequently, we will discuss methods to include water in computational drug research. Either as an additional factor in automated docking experiments, or explicitly in detailed molecular dynamics simulations, the effect of water on the quality of the simulations is significant, but not easily predicted. The most detailed calculations involve estimates of the free energy contribution of water molecules to protein-ligand complexes. These calculations are computationally demanding, but give insight in the versatility and importance of water in ligand binding.
Hendrikson, Wim. J.; van Blitterswijk, Clemens. A.; Rouwkema, Jeroen; Moroni, Lorenzo
2017-01-01
Computational modeling has been increasingly applied to the field of tissue engineering and regenerative medicine. Where in early days computational models were used to better understand the biomechanical requirements of targeted tissues to be regenerated, recently, more and more models are formulated to combine such biomechanical requirements with cell fate predictions to aid in the design of functional three-dimensional scaffolds. In this review, we highlight how computational modeling has been used to understand the mechanisms behind tissue formation and can be used for more rational and biomimetic scaffold-based tissue regeneration strategies. With a particular focus on musculoskeletal tissues, we discuss recent models attempting to predict cell activity in relation to specific mechanical and physical stimuli that can be applied to them through porous three-dimensional scaffolds. In doing so, we review the most common scaffold fabrication methods, with a critical view on those technologies that offer better properties to be more easily combined with computational modeling. Finally, we discuss how modeling, and in particular finite element analysis, can be used to optimize the design of scaffolds for skeletal tissue regeneration. PMID:28567371
Blueprint for antimicrobial hit discovery targeting metabolic networks.
Shen, Y; Liu, J; Estiu, G; Isin, B; Ahn, Y-Y; Lee, D-S; Barabási, A-L; Kapatral, V; Wiest, O; Oltvai, Z N
2010-01-19
Advances in genome analysis, network biology, and computational chemistry have the potential to revolutionize drug discovery by combining system-level identification of drug targets with the atomistic modeling of small molecules capable of modulating their activity. To demonstrate the effectiveness of such a discovery pipeline, we deduced common antibiotic targets in Escherichia coli and Staphylococcus aureus by identifying shared tissue-specific or uniformly essential metabolic reactions in their metabolic networks. We then predicted through virtual screening dozens of potential inhibitors for several enzymes of these reactions and showed experimentally that a subset of these inhibited both enzyme activities in vitro and bacterial cell viability. This blueprint is applicable for any sequenced organism with high-quality metabolic reconstruction and suggests a general strategy for strain-specific antiinfective therapy.
GAMUT: GPU accelerated microRNA analysis to uncover target genes through CUDA-miRanda
2014-01-01
Background Non-coding sequences such as microRNAs have important roles in disease processes. Computational microRNA target identification (CMTI) is becoming increasingly important since traditional experimental methods for target identification pose many difficulties. These methods are time-consuming, costly, and often need guidance from computational methods to narrow down candidate genes anyway. However, most CMTI methods are computationally demanding, since they need to handle not only several million query microRNA and reference RNA pairs, but also several million nucleotide comparisons within each given pair. Thus, the need to perform microRNA identification at such large scale has increased the demand for parallel computing. Methods Although most CMTI programs (e.g., the miRanda algorithm) are based on a modified Smith-Waterman (SW) algorithm, the existing parallel SW implementations (e.g., CUDASW++ 2.0/3.0, SWIPE) are unable to meet this demand in CMTI tasks. We present CUDA-miRanda, a fast microRNA target identification algorithm that takes advantage of massively parallel computing on Graphics Processing Units (GPU) using NVIDIA's Compute Unified Device Architecture (CUDA). CUDA-miRanda specifically focuses on the local alignment of short (i.e., ≤ 32 nucleotides) sequences against longer reference sequences (e.g., 20K nucleotides). Moreover, the proposed algorithm is able to report multiple alignments (up to 191 top scores) and the corresponding traceback sequences for any given (query sequence, reference sequence) pair. Results Speeds over 5.36 Giga Cell Updates Per Second (GCUPs) are achieved on a server with 4 NVIDIA Tesla M2090 GPUs. Compared to the original miRanda algorithm, which is evaluated on an Intel Xeon E5620@2.4 GHz CPU, the experimental results show up to 166 times performance gains in terms of execution time. In addition, we have verified that the exact same targets were predicted in both CUDA-miRanda and the original miRanda implementations through multiple test datasets. Conclusions We offer a GPU-based alternative to high performance compute (HPC) that can be developed locally at a relatively small cost. The community of GPU developers in the biomedical research community, particularly for genome analysis, is still growing. With increasing shared resources, this community will be able to advance CMTI in a very significant manner. Our source code is available at https://sourceforge.net/projects/cudamiranda/. PMID:25077821
Computational Studies of Snake Venom Toxins
Ojeda, Paola G.; Caballero, Julio; Kaas, Quentin; González, Wendy
2017-01-01
Most snake venom toxins are proteins, and participate to envenomation through a diverse array of bioactivities, such as bleeding, inflammation, and pain, cytotoxic, cardiotoxic or neurotoxic effects. The venom of a single snake species contains hundreds of toxins, and the venoms of the 725 species of venomous snakes represent a large pool of potentially bioactive proteins. Despite considerable discovery efforts, most of the snake venom toxins are still uncharacterized. Modern bioinformatics tools have been recently developed to mine snake venoms, helping focus experimental research on the most potentially interesting toxins. Some computational techniques predict toxin molecular targets, and the binding mode to these targets. This review gives an overview of current knowledge on the ~2200 sequences, and more than 400 three-dimensional structures of snake toxins deposited in public repositories, as well as of molecular modeling studies of the interaction between these toxins and their molecular targets. We also describe how modern bioinformatics have been used to study the snake venom protein phospholipase A2, the small basic myotoxin Crotamine, and the three-finger peptide Mambalgin. PMID:29271884
Ferrante, Michele; Blackwell, Kim T.; Migliore, Michele; Ascoli, Giorgio A.
2012-01-01
The identification and characterization of potential pharmacological targets in neurology and psychiatry is a fundamental problem at the intersection between medicinal chemistry and the neurosciences. Exciting new techniques in proteomics and genomics have fostered rapid progress, opening numerous questions as to the functional consequences of ligand binding at the systems level. Psycho- and neuro-active drugs typically work in nerve cells by affecting one or more aspects of electrophysiological activity. Thus, an integrated understanding of neuropharmacological agents requires bridging the gap between their molecular mechanisms and the biophysical determinants of neuronal function. Computational neuroscience and bioinformatics can play a major role in this functional connection. Robust quantitative models exist describing all major active membrane properties under endogenous and exogenous chemical control. These include voltage-dependent ionic channels (sodium, potassium, calcium, etc.), synaptic receptor channels (e.g. glutamatergic, GABAergic, cholinergic), and G protein coupled signaling pathways (protein kinases, phosphatases, and other enzymatic cascades). This brief review of neuromolecular medicine from the computational perspective provides compelling examples of how simulations can elucidate, explain, and predict the effect of chemical agonists, antagonists, and modulators in the nervous system. PMID:18855673
Computational modeling of an endovascular approach to deep brain stimulation
NASA Astrophysics Data System (ADS)
Teplitzky, Benjamin A.; Connolly, Allison T.; Bajwa, Jawad A.; Johnson, Matthew D.
2014-04-01
Objective. Deep brain stimulation (DBS) therapy currently relies on a transcranial neurosurgical technique to implant one or more electrode leads into the brain parenchyma. In this study, we used computational modeling to investigate the feasibility of using an endovascular approach to target DBS therapy. Approach. Image-based anatomical reconstructions of the human brain and vasculature were used to identify 17 established and hypothesized anatomical targets of DBS, of which five were found adjacent to a vein or artery with intraluminal diameter ≥1 mm. Two of these targets, the fornix and subgenual cingulate white matter (SgCwm) tracts, were further investigated using a computational modeling framework that combined segmented volumes of the vascularized brain, finite element models of the tissue voltage during DBS, and multi-compartment axon models to predict the direct electrophysiological effects of endovascular DBS. Main results. The models showed that: (1) a ring-electrode conforming to the vessel wall was more efficient at neural activation than a guidewire design, (2) increasing the length of a ring-electrode had minimal effect on neural activation thresholds, (3) large variability in neural activation occurred with suboptimal placement of a ring-electrode along the targeted vessel, and (4) activation thresholds for the fornix and SgCwm tracts were comparable for endovascular and stereotactic DBS, though endovascular DBS was able to produce significantly larger contralateral activation for a unilateral implantation. Significance. Together, these results suggest that endovascular DBS can serve as a complementary approach to stereotactic DBS in select cases.
Bi, Yanqi; Pei, Guangsheng; Sun, Tao; Chen, Zixi; Chen, Lei; Zhang, Weiwen
2018-01-01
Microbial small RNAs (sRNAs) play essential roles against many stress conditions in cyanobacteria. However, little is known on their regulatory mechanisms on biofuels tolerance. In our previous sRNA analysis, a trans -encoded sRNA Nc117 was found involved in the tolerance to ethanol and 1-butanol in Synechocystis sp. PCC 6803. However, its functional mechanism is yet to be determined. In this study, functional characterization of sRNA Nc117 was performed. Briefly, the exact length of the trans -encoded sRNA Nc117 was determined to be 102 nucleotides using 3' RACE, and the positive regulation of Nc117 on short chain alcohols tolerance was further confirmed. Then, computational target prediction and transcriptomic analysis were integrated to explore the potential targets of Nc117. A total of 119 up-regulated and 116 down-regulated genes were identified in nc117 overexpression strain compared with the wild type by comparative transcriptomic analysis, among which the upstream regions of five genes were overlapped with those predicted by computational target approach. Based on the phenotype analysis of gene deletion and overexpression strains under short chain alcohols stress, one gene slr0007 encoding D-glycero-alpha-D-manno-heptose 1-phosphate guanylyltransferase was determined as a potential target of Nc117, suggesting that the synthesis of LPS or S-layer glycoprotein may be responsible for the tolerance enhancement. As the first reported trans -encoded sRNA positively regulating biofuels tolerance in cyanobacteria, this study not only provided evidence for a new regulatory mechanism of trans -encoded sRNA in cyanobacteria, but also valuable information for rational construction of high-tolerant cyanobacterial chassis.
NASA Astrophysics Data System (ADS)
Bagheri, Zahra M.; Cazzolato, Benjamin S.; Grainger, Steven; O'Carroll, David C.; Wiederman, Steven D.
2017-08-01
Objective. Many computer vision and robotic applications require the implementation of robust and efficient target-tracking algorithms on a moving platform. However, deployment of a real-time system is challenging, even with the computational power of modern hardware. Lightweight and low-powered flying insects, such as dragonflies, track prey or conspecifics within cluttered natural environments, illustrating an efficient biological solution to the target-tracking problem. Approach. We used our recent recordings from ‘small target motion detector’ neurons in the dragonfly brain to inspire the development of a closed-loop target detection and tracking algorithm. This model exploits facilitation, a slow build-up of response to targets which move along long, continuous trajectories, as seen in our electrophysiological data. To test performance in real-world conditions, we implemented this model on a robotic platform that uses active pursuit strategies based on insect behaviour. Main results. Our robot performs robustly in closed-loop pursuit of targets, despite a range of challenging conditions used in our experiments; low contrast targets, heavily cluttered environments and the presence of distracters. We show that the facilitation stage boosts responses to targets moving along continuous trajectories, improving contrast sensitivity and detection of small moving targets against textured backgrounds. Moreover, the temporal properties of facilitation play a useful role in handling vibration of the robotic platform. We also show that the adoption of feed-forward models which predict the sensory consequences of self-movement can significantly improve target detection during saccadic movements. Significance. Our results provide insight into the neuronal mechanisms that underlie biological target detection and selection (from a moving platform), as well as highlight the effectiveness of our bio-inspired algorithm in an artificial visual system.
Computational design of d-peptide inhibitors of hepatitis delta antigen dimerization
NASA Astrophysics Data System (ADS)
Elkin, Carl D.; Zuccola, Harmon J.; Hogle, James M.; Joseph-McCarthy, Diane
2000-11-01
Hepatitis delta virus (HDV) encodes a single polypeptide called hepatitis delta antigen (DAg). Dimerization of DAg is required for viral replication. The structure of the dimerization region, residues 12 to 60, consists of an anti-parallel coiled coil [Zuccola et al., Structure, 6 (1998) 821]. Multiple Copy Simultaneous Searches (MCSS) of the hydrophobic core region formed by the bend in the helix of one monomer of this structure were carried out for many diverse functional groups. Six critical interaction sites were identified. The Protein Data Bank was searched for backbone templates to use in the subsequent design process by matching to these sites. A 14 residue helix expected to bind to the d-isomer of the target structure was selected as the template. Over 200 000 mutant sequences of this peptide were generated based on the MCSS results. A secondary structure prediction algorithm was used to screen all sequences, and in general only those that were predicted to be highly helical were retained. Approximately 100 of these 14-mers were model built as d-peptides and docked with the l-isomer of the target monomer. Based on calculated interaction energies, predicted helicity, and intrahelical salt bridge patterns, a small number of peptides were selected as the most promising candidates. The ligand design approach presented here is the computational analogue of mirror image phage display. The results have been used to characterize the interactions responsible for formation of this model anti-parallel coiled coil and to suggest potential ligands to disrupt it.
Target mimics: an embedded layer of microRNA-involved gene regulatory networks in plants.
Meng, Yijun; Shao, Chaogang; Wang, Huizhong; Jin, Yongfeng
2012-05-21
MicroRNAs (miRNAs) play an essential role in gene regulation in plants. At the same time, the expression of miRNA genes is also tightly controlled. Recently, a novel mechanism called "target mimicry" was discovered, providing another layer for modulating miRNA activities. However, except for the artificial target mimics manipulated for functional studies on certain miRNA genes, only one example, IPS1 (Induced by Phosphate Starvation 1)-miR399 was experimentally confirmed in planta. To date, few analyses for comprehensive identification of natural target mimics have been performed in plants. Thus, limited evidences are available to provide detailed information for interrogating the questionable issue whether target mimicry was widespread in planta, and implicated in certain biological processes. In this study, genome-wide computational prediction of endogenous miRNA mimics was performed in Arabidopsis and rice, and dozens of target mimics were identified. In contrast to a recent report, the densities of target mimic sites were found to be much higher within the untranslated regions (UTRs) when compared to those within the coding sequences (CDSs) in both plants. Some novel sequence characteristics were observed for the miRNAs that were potentially regulated by the target mimics. GO (Gene Ontology) term enrichment analysis revealed some functional insights into the predicted mimics. After degradome sequencing data-based identification of miRNA targets, the regulatory networks constituted by target mimics, miRNAs and their downstream targets were constructed, and some intriguing subnetworks were further exploited. These results together suggest that target mimicry may be widely implicated in regulating miRNA activities in planta, and we hope this study could expand the current understanding of miRNA-involved regulatory networks.
A polymer dataset for accelerated property prediction and design.
Huan, Tran Doan; Mannodi-Kanakkithodi, Arun; Kim, Chiho; Sharma, Vinit; Pilania, Ghanshyam; Ramprasad, Rampi
2016-03-01
Emerging computation- and data-driven approaches are particularly useful for rationally designing materials with targeted properties. Generally, these approaches rely on identifying structure-property relationships by learning from a dataset of sufficiently large number of relevant materials. The learned information can then be used to predict the properties of materials not already in the dataset, thus accelerating the materials design. Herein, we develop a dataset of 1,073 polymers and related materials and make it available at http://khazana.uconn.edu/. This dataset is uniformly prepared using first-principles calculations with structures obtained either from other sources or by using structure search methods. Because the immediate target of this work is to assist the design of high dielectric constant polymers, it is initially designed to include the optimized structures, atomization energies, band gaps, and dielectric constants. It will be progressively expanded by accumulating new materials and including additional properties calculated for the optimized structures provided.
[Artificial Intelligence in Drug Discovery].
Fujiwara, Takeshi; Kamada, Mayumi; Okuno, Yasushi
2018-04-01
According to the increase of data generated from analytical instruments, application of artificial intelligence(AI)technology in medical field is indispensable. In particular, practical application of AI technology is strongly required in "genomic medicine" and "genomic drug discovery" that conduct medical practice and novel drug development based on individual genomic information. In our laboratory, we have been developing a database to integrate genome data and clinical information obtained by clinical genome analysis and a computational support system for clinical interpretation of variants using AI. In addition, with the aim of creating new therapeutic targets in genomic drug discovery, we have been also working on the development of a binding affinity prediction system for mutated proteins and drugs by molecular dynamics simulation using supercomputer "Kei". We also have tackled for problems in a drug virtual screening. Our developed AI technology has successfully generated virtual compound library, and deep learning method has enabled us to predict interaction between compound and target protein.
Toward structure prediction of cyclic peptides.
Yu, Hongtao; Lin, Yu-Shan
2015-02-14
Cyclic peptides are a promising class of molecules that can be used to target specific protein-protein interactions. A computational method to accurately predict their structures would substantially advance the development of cyclic peptides as modulators of protein-protein interactions. Here, we develop a computational method that integrates bias-exchange metadynamics simulations, a Boltzmann reweighting scheme, dihedral principal component analysis and a modified density peak-based cluster analysis to provide a converged structural description for cyclic peptides. Using this method, we evaluate the performance of a number of popular protein force fields on a model cyclic peptide. All the tested force fields seem to over-stabilize the α-helix and PPII/β regions in the Ramachandran plot, commonly populated by linear peptides and proteins. Our findings suggest that re-parameterization of a force field that well describes the full Ramachandran plot is necessary to accurately model cyclic peptides.
The natural mathematics of behavior analysis.
Li, Don; Hautus, Michael J; Elliffe, Douglas
2018-04-19
Models that generate event records have very general scope regarding the dimensions of the target behavior that we measure. From a set of predicted event records, we can generate predictions for any dependent variable that we could compute from the event records of our subjects. In this sense, models that generate event records permit us a freely multivariate analysis. To explore this proposition, we conducted a multivariate examination of Catania's Operant Reserve on single VI schedules in transition using a Markov Chain Monte Carlo scheme for Approximate Bayesian Computation. Although we found systematic deviations between our implementation of Catania's Operant Reserve and our observed data (e.g., mismatches in the shape of the interresponse time distributions), the general approach that we have demonstrated represents an avenue for modelling behavior that transcends the typical constraints of algebraic models. © 2018 Society for the Experimental Analysis of Behavior.
Computational prediction of new auxetic materials
Dagdelen, John; Montoya, Joseph; de Jong, Maarten; ...
2017-08-22
Auxetics comprise a rare family of materials that manifest negative Poisson’s ratio, which causes an expansion instead of contraction under tension. Most known homogeneously auxetic materials are porous foams or artificial macrostructures and there are few examples of inorganic materials that exhibit this behavior as polycrystalline solids. It is now possible to accelerate the discovery of materials with target properties, such as auxetics, using high-throughput computations, open databases, and efficient search algorithms. Candidates exhibiting features correlating with auxetic behavior were chosen from the set of more than 67 000 materials in the Materials Project database. Poisson’s ratios were derived frommore » the calculated elastic tensor of each material in this reduced set of compounds. We report that this strategy results in the prediction of three previously unidentified homogeneously auxetic materials as well as a number of compounds with a near-zero homogeneous Poisson’s ratio, which are here denoted “anepirretic materials”.« less
Chapter 17. Extension of endogenous primers as a tool to detect micro-RNA targets.
Vatolin, Sergei; Weil, Robert J
2008-01-01
Mammalian cells express a large number of small, noncoding RNAs, including micro-RNAs (miRNAs), that can regulate both the level of a target mRNA and the protein produced by the target mRNA. Recognition of miRNA targets is a complicated process, as a single target mRNA may be regulated by several miRNAs. The potential for combinatorial miRNA-mediated regulation of miRNA targets complicates diagnostic and therapeutic applications of miRNAs. Despite significant progress in understanding the biology of miRNAs and advances in computational predictions of miRNA targets, methods that permit direct physical identification of miRNA-mRNA complexes in eukaryotic cells are still required. Several groups have utilized coimmunoprecipitation of RNA associated with a protein(s) that is part of the RNA silencing macromolecular complex. This chapter describes a detailed but straightforward strategy that identifies miRNA targets based on the assumption that small RNAs base paired with a complementary target mRNA can be used as a primer to synthesize cDNA that may be used for cloning, identification, and functional analysis.
MicroRNAs and complex diseases: from experimental results to computational models.
Chen, Xing; Xie, Di; Zhao, Qi; You, Zhu-Hong
2017-10-17
Plenty of microRNAs (miRNAs) were discovered at a rapid pace in plants, green algae, viruses and animals. As one of the most important components in the cell, miRNAs play a growing important role in various essential and important biological processes. For the recent few decades, amounts of experimental methods and computational models have been designed and implemented to identify novel miRNA-disease associations. In this review, the functions of miRNAs, miRNA-target interactions, miRNA-disease associations and some important publicly available miRNA-related databases were discussed in detail. Specially, considering the important fact that an increasing number of miRNA-disease associations have been experimentally confirmed, we selected five important miRNA-related human diseases and five crucial disease-related miRNAs and provided corresponding introductions. Identifying disease-related miRNAs has become an important goal of biomedical research, which will accelerate the understanding of disease pathogenesis at the molecular level and molecular tools design for disease diagnosis, treatment and prevention. Computational models have become an important means for novel miRNA-disease association identification, which could select the most promising miRNA-disease pairs for experimental validation and significantly reduce the time and cost of the biological experiments. Here, we reviewed 20 state-of-the-art computational models of predicting miRNA-disease associations from different perspectives. Finally, we summarized four important factors for the difficulties of predicting potential disease-related miRNAs, the framework of constructing powerful computational models to predict potential miRNA-disease associations including five feasible and important research schemas, and future directions for further development of computational models. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
TU-AB-202-03: Prediction of PET Transfer Uncertainty by DIR Error Estimating Software, AUTODIRECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, H; Chen, J; Phillips, J
2016-06-15
Purpose: Deformable image registration (DIR) is a powerful tool, but DIR errors can adversely affect its clinical applications. To estimate voxel-specific DIR uncertainty, a software tool, called AUTODIRECT (automated DIR evaluation of confidence tool), has been developed and validated. This work tests the ability of this software to predict uncertainty for the transfer of standard uptake values (SUV) from positron-emission tomography (PET) with DIR. Methods: Virtual phantoms are used for this study. Each phantom has a planning computed tomography (CT) image and a diagnostic PET-CT image set. A deformation was digitally applied to the diagnostic CT to create the planningmore » CT image and establish a known deformation between the images. One lung and three rectum patient datasets were employed to create the virtual phantoms. Both of these sites have difficult deformation scenarios associated with them, which can affect DIR accuracy (lung tissue sliding and changes in rectal filling). The virtual phantoms were created to simulate these scenarios by introducing discontinuities in the deformation field at the lung rectum border. The DIR algorithm from Plastimatch software was applied to these phantoms. The SUV mapping errors from the DIR were then compared to that predicted by AUTODIRECT. Results: The SUV error distributions closely followed the AUTODIRECT predicted error distribution for the 4 test cases. The minimum and maximum PET SUVs were produced from AUTODIRECT at 95% confidence interval before applying gradient-based SUV segmentation for each of these volumes. Notably, 93.5% of the target volume warped by the true deformation was included within the AUTODIRECT-predicted maximum SUV volume after the segmentation, while 78.9% of the target volume was within the target volume warped by Plastimatch. Conclusion: The AUTODIRECT framework is able to predict PET transfer uncertainty caused by DIR, which enables an understanding of the associated target volume uncertainty.« less
MatureP: prediction of secreted proteins with exclusive information from their mature regions.
Orfanoudaki, Georgia; Markaki, Maria; Chatzi, Katerina; Tsamardinos, Ioannis; Economou, Anastassios
2017-06-12
More than a third of the cellular proteome is non-cytoplasmic. Most secretory proteins use the Sec system for export and are targeted to membranes using signal peptides and mature domains. To specifically analyze bacterial mature domain features, we developed MatureP, a classifier that predicts secretory sequences through features exclusively computed from their mature domains. MatureP was trained using Just Add Data Bio, an automated machine learning tool. Mature domains are predicted efficiently with ~92% success, as measured by the Area Under the Receiver Operating Characteristic Curve (AUC). Predictions were validated using experimental datasets of mutated secretory proteins. The features selected by MatureP reveal prominent differences in amino acid content between secreted and cytoplasmic proteins. Amino-terminal mature domain sequences have enhanced disorder, more hydroxyl and polar residues and less hydrophobics. Cytoplasmic proteins have prominent amino-terminal hydrophobic stretches and charged regions downstream. Presumably, secretory mature domains comprise a distinct protein class. They balance properties that promote the necessary flexibility required for the maintenance of non-folded states during targeting and secretion with the ability of post-secretion folding. These findings provide novel insight in protein trafficking, sorting and folding mechanisms and may benefit protein secretion biotechnology.
Antunes, Deborah; Jorge, Natasha A. N.; Caffarena, Ernesto R.; Passetti, Fabio
2018-01-01
RNA molecules are essential players in many fundamental biological processes. Prokaryotes and eukaryotes have distinct RNA classes with specific structural features and functional roles. Computational prediction of protein structures is a research field in which high confidence three-dimensional protein models can be proposed based on the sequence alignment between target and templates. However, to date, only a few approaches have been developed for the computational prediction of RNA structures. Similar to proteins, RNA structures may be altered due to the interaction with various ligands, including proteins, other RNAs, and metabolites. A riboswitch is a molecular mechanism, found in the three kingdoms of life, in which the RNA structure is modified by the binding of a metabolite. It can regulate multiple gene expression mechanisms, such as transcription, translation initiation, and mRNA splicing and processing. Due to their nature, these entities also act on the regulation of gene expression and detection of small metabolites and have the potential to helping in the discovery of new classes of antimicrobial agents. In this review, we describe software and web servers currently available for riboswitch aptamer identification and secondary and tertiary structure prediction, including applications. PMID:29403526
NASA Astrophysics Data System (ADS)
Hudson, Douglas J.; Torres, Manuel; Dougherty, Catherine; Rajendran, Natesan; Thompson, Rhoe A.
2003-09-01
The Air Force Research Laboratory (AFRL) Aerothermal Targets Analysis Program (ATAP) is a user-friendly, engineering-level computational tool that features integrated aerodynamics, six-degree-of-freedom (6-DoF) trajectory/motion, convective and radiative heat transfer, and thermal/material response to provide an optimal blend of accuracy and speed for design and analysis applications. ATAP is sponsored by the Kinetic Kill Vehicle Hardware-in-the-Loop Simulator (KHILS) facility at Eglin AFB, where it is used with the CHAMP (Composite Hardbody and Missile Plume) technique for rapid infrared (IR) signature and imagery predictions. ATAP capabilities include an integrated 1-D conduction model for up to 5 in-depth material layers (with options for gaps/voids with radiative heat transfer), fin modeling, several surface ablation modeling options, a materials library with over 250 materials, options for user-defined materials, selectable/definable atmosphere and earth models, multiple trajectory options, and an array of aerodynamic prediction methods. All major code modeling features have been validated with ground-test data from wind tunnels, shock tubes, and ballistics ranges, and flight-test data for both U.S. and foreign strategic and theater systems. Numerous applications include the design and analysis of interceptors, booster and shroud configurations, window environments, tactical missiles, and reentry vehicles.
Chen, Zhangxing; Huang, Tianyu; Shao, Yimin; ...
2018-03-15
Predicting the mechanical behavior of the chopped carbon fiber Sheet Molding Compound (SMC) due to spatial variations in local material properties is critical for the structural performance analysis but is computationally challenging. Such spatial variations are induced by the material flow in the compression molding process. In this work, a new multiscale SMC modeling framework and the associated computational techniques are developed to provide accurate and efficient predictions of SMC mechanical performance. The proposed multiscale modeling framework contains three modules. First, a stochastic algorithm for 3D chip-packing reconstruction is developed to efficiently generate the SMC mesoscale Representative Volume Element (RVE)more » model for Finite Element Analysis (FEA). A new fiber orientation tensor recovery function is embedded in the reconstruction algorithm to match reconstructions with the target characteristics of fiber orientation distribution. Second, a metamodeling module is established to improve the computational efficiency by creating the surrogates of mesoscale analyses. Third, the macroscale behaviors are predicted by an efficient multiscale model, in which the spatially varying material properties are obtained based on the local fiber orientation tensors. Our approach is further validated through experiments at both meso- and macro-scales, such as tensile tests assisted by Digital Image Correlation (DIC) and mesostructure imaging.« less
Strategy generalization across orientation tasks: testing a computational cognitive model.
Gunzelmann, Glenn
2008-07-08
Humans use their spatial information processing abilities flexibly to facilitate problem solving and decision making in a variety of tasks. This article explores the question of whether a general strategy can be adapted for performing two different spatial orientation tasks by testing the predictions of a computational cognitive model. Human performance was measured on an orientation task requiring participants to identify the location of a target either on a map (find-on-map) or within an egocentric view of a space (find-in-scene). A general strategy instantiated in a computational cognitive model of the find-on-map task, based on the results from Gunzelmann and Anderson (2006), was adapted to perform both tasks and used to generate performance predictions for a new study. The qualitative fit of the model to the human data supports the view that participants were able to tailor a general strategy to the requirements of particular spatial tasks. The quantitative differences between the predictions of the model and the performance of human participants in the new experiment expose individual differences in sample populations. The model provides a means of accounting for those differences and a framework for understanding how human spatial abilities are applied to naturalistic spatial tasks that involve reasoning with maps. 2008 Cognitive Science Society, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Zhangxing; Huang, Tianyu; Shao, Yimin
Predicting the mechanical behavior of the chopped carbon fiber Sheet Molding Compound (SMC) due to spatial variations in local material properties is critical for the structural performance analysis but is computationally challenging. Such spatial variations are induced by the material flow in the compression molding process. In this work, a new multiscale SMC modeling framework and the associated computational techniques are developed to provide accurate and efficient predictions of SMC mechanical performance. The proposed multiscale modeling framework contains three modules. First, a stochastic algorithm for 3D chip-packing reconstruction is developed to efficiently generate the SMC mesoscale Representative Volume Element (RVE)more » model for Finite Element Analysis (FEA). A new fiber orientation tensor recovery function is embedded in the reconstruction algorithm to match reconstructions with the target characteristics of fiber orientation distribution. Second, a metamodeling module is established to improve the computational efficiency by creating the surrogates of mesoscale analyses. Third, the macroscale behaviors are predicted by an efficient multiscale model, in which the spatially varying material properties are obtained based on the local fiber orientation tensors. Our approach is further validated through experiments at both meso- and macro-scales, such as tensile tests assisted by Digital Image Correlation (DIC) and mesostructure imaging.« less
On the Potential Role of MRI Biomarkers of COPD to Guide Bronchoscopic Lung Volume Reduction.
Adams, Colin J; Capaldi, Dante P I; Di Cesare, Robert; McCormack, David G; Parraga, Grace
2018-02-01
In patients with severe emphysema and poor quality of life, bronchoscopic lung volume reduction (BLVR) may be considered and guided based on lobar emphysema severity. In particular, x-ray computed tomography (CT) emphysema measurements are used to identify the most diseased and the second-most diseased lobes as BLVR targets. Inhaled gas magnetic resonance imaging (MRI) also provides chronic obstructive pulmonary disease (COPD) biomarkers of lobar emphysema and ventilation abnormalities. Our objective was to retrospectively evaluate CT and MRI biomarkers of lobar emphysema and ventilation in patients with COPD eligible for BLVR. We hypothesized that MRI would provide complementary biomarkers of emphysema and ventilation that help determine the most appropriate lung lobar targets for BLVR in patients with COPD. We retrospectively evaluated 22 BLVR-eligible patients from the Thoracic Imaging Network of Canada cohort (diffusing capacity of the lung for carbon monoxide = 37 ± 12% predicted , forced expiratory volume in 1 second = 34 ± 7% predicted , total lung capacity = 131 ± 17% predicted , and residual volume = 216 ± 36% predicted ). Lobar CT emphysema, measured using a relative area of <-950 Hounsfield units (RA 950 ) and MRI ventilation defect percent, was independently used to rank lung lobe disease severity. In 7 of 22 patients, there were different CT and MRI predictions of the most diseased lobe. In some patients, there were large ventilation defects in lobes not targeted by CT, indicative of a poorly ventilated lung. CT and MRI classification of the most diseased and the second-most diseased lobes showed a fair-to-moderate intermethod reliability (Cohen κ = 0.40-0.59). In this proof-of-concept retrospective analysis, quantitative MRI ventilation and CT emphysema measurements provided different BLVR targets in over 30% of the patients. The presence of large MRI ventilation defects in lobes next to CT-targeted lobes might also change the decision to proceed or to guide BLVR to a different lobar target. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Salience-Based Selection: Attentional Capture by Distractors Less Salient Than the Target
Goschy, Harriet; Müller, Hermann Joseph
2013-01-01
Current accounts of attentional capture predict the most salient stimulus to be invariably selected first. However, existing salience and visual search models assume noise in the map computation or selection process. Consequently, they predict the first selection to be stochastically dependent on salience, implying that attention could even be captured first by the second most salient (instead of the most salient) stimulus in the field. Yet, capture by less salient distractors has not been reported and salience-based selection accounts claim that the distractor has to be more salient in order to capture attention. We tested this prediction using an empirical and modeling approach of the visual search distractor paradigm. For the empirical part, we manipulated salience of target and distractor parametrically and measured reaction time interference when a distractor was present compared to absent. Reaction time interference was strongly correlated with distractor salience relative to the target. Moreover, even distractors less salient than the target captured attention, as measured by reaction time interference and oculomotor capture. In the modeling part, we simulated first selection in the distractor paradigm using behavioral measures of salience and considering the time course of selection including noise. We were able to replicate the result pattern we obtained in the empirical part. We conclude that each salience value follows a specific selection time distribution and attentional capture occurs when the selection time distributions of target and distractor overlap. Hence, selection is stochastic in nature and attentional capture occurs with a certain probability depending on relative salience. PMID:23382820
Sphinx: merging knowledge-based and ab initio approaches to improve protein loop prediction
Marks, Claire; Nowak, Jaroslaw; Klostermann, Stefan; Georges, Guy; Dunbar, James; Shi, Jiye; Kelm, Sebastian
2017-01-01
Abstract Motivation: Loops are often vital for protein function, however, their irregular structures make them difficult to model accurately. Current loop modelling algorithms can mostly be divided into two categories: knowledge-based, where databases of fragments are searched to find suitable conformations and ab initio, where conformations are generated computationally. Existing knowledge-based methods only use fragments that are the same length as the target, even though loops of slightly different lengths may adopt similar conformations. Here, we present a novel method, Sphinx, which combines ab initio techniques with the potential extra structural information contained within loops of a different length to improve structure prediction. Results: We show that Sphinx is able to generate high-accuracy predictions and decoy sets enriched with near-native loop conformations, performing better than the ab initio algorithm on which it is based. In addition, it is able to provide predictions for every target, unlike some knowledge-based methods. Sphinx can be used successfully for the difficult problem of antibody H3 prediction, outperforming RosettaAntibody, one of the leading H3-specific ab initio methods, both in accuracy and speed. Availability and Implementation: Sphinx is available at http://opig.stats.ox.ac.uk/webapps/sphinx. Contact: deane@stats.ox.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28453681
Sphinx: merging knowledge-based and ab initio approaches to improve protein loop prediction.
Marks, Claire; Nowak, Jaroslaw; Klostermann, Stefan; Georges, Guy; Dunbar, James; Shi, Jiye; Kelm, Sebastian; Deane, Charlotte M
2017-05-01
Loops are often vital for protein function, however, their irregular structures make them difficult to model accurately. Current loop modelling algorithms can mostly be divided into two categories: knowledge-based, where databases of fragments are searched to find suitable conformations and ab initio, where conformations are generated computationally. Existing knowledge-based methods only use fragments that are the same length as the target, even though loops of slightly different lengths may adopt similar conformations. Here, we present a novel method, Sphinx, which combines ab initio techniques with the potential extra structural information contained within loops of a different length to improve structure prediction. We show that Sphinx is able to generate high-accuracy predictions and decoy sets enriched with near-native loop conformations, performing better than the ab initio algorithm on which it is based. In addition, it is able to provide predictions for every target, unlike some knowledge-based methods. Sphinx can be used successfully for the difficult problem of antibody H3 prediction, outperforming RosettaAntibody, one of the leading H3-specific ab initio methods, both in accuracy and speed. Sphinx is available at http://opig.stats.ox.ac.uk/webapps/sphinx. deane@stats.ox.ac.uk. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.
NASA Astrophysics Data System (ADS)
Rylander, Marissa N.; Feng, Yusheng; Zhang, Yongjie; Bass, Jon; Stafford, Roger J.; Hazle, John D.; Diller, Kenneth R.
2006-07-01
Thermal therapy efficacy can be diminished due to heat shock protein (HSP) induction in regions of a tumor where temperatures are insufficient to coagulate proteins. HSP expression enhances tumor cell viability and imparts resistance to chemotherapy and radiation treatments, which are generally employed in conjunction with hyperthermia. Therefore, an understanding of the thermally induced HSP expression within the targeted tumor must be incorporated into the treatment plan to optimize the thermal dose delivery and permit prediction of the overall tissue response. A treatment planning computational model capable of predicting the temperature, HSP27 and HSP70 expression, and damage fraction distributions associated with laser heating in healthy prostate tissue and tumors is presented. Measured thermally induced HSP27 and HSP70 expression kinetics and injury data for normal and cancerous prostate cells and prostate tumors are employed to create the first HSP expression predictive model and formulate an Arrhenius damage model. The correlation coefficients between measured and model predicted temperature, HSP27, and HSP70 were 0.98, 0.99, and 0.99, respectively, confirming the accuracy of the model. Utilization of the treatment planning model in the design of prostate cancer thermal therapies can enable optimization of the treatment outcome by controlling HSP expression and injury.
miREE: miRNA recognition elements ensemble
2011-01-01
Background Computational methods for microRNA target prediction are a fundamental step to understand the miRNA role in gene regulation, a key process in molecular biology. In this paper we present miREE, a novel microRNA target prediction tool. miREE is an ensemble of two parts entailing complementary but integrated roles in the prediction. The Ab-Initio module leverages upon a genetic algorithmic approach to generate a set of candidate sites on the basis of their microRNA-mRNA duplex stability properties. Then, a Support Vector Machine (SVM) learning module evaluates the impact of microRNA recognition elements on the target gene. As a result the prediction takes into account information regarding both miRNA-target structural stability and accessibility. Results The proposed method significantly improves the state-of-the-art prediction tools in terms of accuracy with a better balance between specificity and sensitivity, as demonstrated by the experiments conducted on several large datasets across different species. miREE achieves this result by tackling two of the main challenges of current prediction tools: (1) The reduced number of false positives for the Ab-Initio part thanks to the integration of a machine learning module (2) the specificity of the machine learning part, obtained through an innovative technique for rich and representative negative records generation. The validation was conducted on experimental datasets where the miRNA:mRNA interactions had been obtained through (1) direct validation where even the binding site is provided, or through (2) indirect validation, based on gene expression variations obtained from high-throughput experiments where the specific interaction is not validated in detail and consequently the specific binding site is not provided. Conclusions The coupling of two parts: a sensitive Ab-Initio module and a selective machine learning part capable of recognizing the false positives, leads to an improved balance between sensitivity and specificity. miREE obtains a reasonable trade-off between filtering false positives and identifying targets. miREE tool is available online at http://didattica-online.polito.it/eda/miREE/ PMID:22115078
Analogical and category-based inference: a theoretical integration with Bayesian causal models.
Holyoak, Keith J; Lee, Hee Seung; Lu, Hongjing
2010-11-01
A fundamental issue for theories of human induction is to specify constraints on potential inferences. For inferences based on shared category membership, an analogy, and/or a relational schema, it appears that the basic goal of induction is to make accurate and goal-relevant inferences that are sensitive to uncertainty. People can use source information at various levels of abstraction (including both specific instances and more general categories), coupled with prior causal knowledge, to build a causal model for a target situation, which in turn constrains inferences about the target. We propose a computational theory in the framework of Bayesian inference and test its predictions (parameter-free for the cases we consider) in a series of experiments in which people were asked to assess the probabilities of various causal predictions and attributions about a target on the basis of source knowledge about generative and preventive causes. The theory proved successful in accounting for systematic patterns of judgments about interrelated types of causal inferences, including evidence that analogical inferences are partially dissociable from overall mapping quality.
How Open Data Shapes In Silico Transporter Modeling.
Montanari, Floriane; Zdrazil, Barbara
2017-03-07
Chemical compound bioactivity and related data are nowadays easily available from open data sources and the open medicinal chemistry literature for many transmembrane proteins. Computational ligand-based modeling of transporters has therefore experienced a shift from local (quantitative) models to more global, qualitative, predictive models. As the size and heterogeneity of the data set rises, careful data curation becomes even more important. This includes, for example, not only a tailored cutoff setting for the generation of binary classes, but also the proper assessment of the applicability domain. Powerful machine learning algorithms (such as multi-label classification) now allow the simultaneous prediction of multiple related targets. However, the more complex, the less interpretable these models will get. We emphasize that transmembrane transporters are very peculiar, some of which act as off-targets rather than as real drug targets. Thus, careful selection of the right modeling technique is important, as well as cautious interpretation of results. We hope that, as more and more data will become available, we will be able to ameliorate and specify our models, coming closer towards function elucidation and the development of safer medicine.
Functional characterization of EI24-induced autophagy in the degradation of RING-domain E3 ligases
Devkota, Sushil; Jeong, Hyobin; Kim, Yunmi; Ali, Muhammad; Roh, Jae-il; Hwang, Daehee; Lee, Han-Woong
2016-01-01
ABSTRACT Historically, the ubiquitin-proteasome system (UPS) and autophagy pathways were believed to be independent; however, recent data indicate that these pathways engage in crosstalk. To date, the players mediating this crosstalk have been elusive. Here, we show experimentally that EI24 (EI24, autophagy associated transmembrane protein), a key component of basal macroautophagy/autophagy, degrades 14 physiologically important E3 ligases with a RING (really interesting new gene) domain, whereas 5 other ligases were not degraded. Based on the degradation results, we built a statistical model that predicts the RING E3 ligases targeted by EI24 using partial least squares discriminant analysis. Of 381 RING E3 ligases examined computationally, our model predicted 161 EI24 targets. Those targets are primarily involved in transcription, proteolysis, cellular bioenergetics, and apoptosis and regulated by TP53 and MTOR signaling. Collectively, our work demonstrates that EI24 is an essential player in UPS-autophagy crosstalk via degradation of RING E3 ligases. These results indicate a paradigm shift regarding the fate of E3 ligases. PMID:27541728
Altan, Irem; Charbonneau, Patrick; Snell, Edward H.
2016-01-01
Crystallization is a key step in macromolecular structure determination by crystallography. While a robust theoretical treatment of the process is available, due to the complexity of the system, the experimental process is still largely one of trial and error. In this article, efforts in the field are discussed together with a theoretical underpinning using a solubility phase diagram. Prior knowledge has been used to develop tools that computationally predict the crystallization outcome and define mutational approaches that enhance the likelihood of crystallization. For the most part these tools are based on binary outcomes (crystal or no crystal), and the full information contained in an assembly of crystallization screening experiments is lost. The potential of this additional information is illustrated by examples where new biological knowledge can be obtained and where a target can be sub-categorized to predict which class of reagents provides the crystallization driving force. Computational analysis of crystallization requires complete and correctly formatted data. While massive crystallization screening efforts are under way, the data available from many of these studies are sparse. The potential for this data and the steps needed to realize this potential are discussed. PMID:26792536
NASA Astrophysics Data System (ADS)
Hartmann Siantar, Christine L.; Moses, Edward I.
1998-11-01
When using radiation to treat cancer, doctors rely on physics and computer technology to predict where the radiation dose will be deposited in the patient. The accuracy of computerized treatment planning plays a critical role in the ultimate success or failure of the radiation treatment. Inaccurate dose calculations can result in either insufficient radiation for cure, or excessive radiation to nearby healthy tissue, which can reduce the patient's quality of life. This paper describes how advanced physics, computer, and engineering techniques originally developed for nuclear weapons and high-energy physics research are being used to predict radiation dose in cancer patients. Results for radiation therapy planning, achieved in the Lawrence Livermore National Laboratory (LLNL) 0143-0807/19/6/005/img2 program show that these tools can give doctors new insights into their patients' treatments by providing substantially more accurate dose distributions than have been available in the past. It is believed that greater accuracy in radiation therapy treatment planning will save lives by improving doctors' ability to target radiation to the tumour and reduce suffering by reducing the incidence of radiation-induced complications.
Zhang, Weixiong; Ruan, Jianhua; Ho, Tuan-Hua David; You, Youngsook; Yu, Taotao; Quatrano, Ralph S
2005-07-15
A fundamental problem of computational genomics is identifying the genes that respond to certain endogenous cues and environmental stimuli. This problem can be referred to as targeted gene finding. Since gene regulation is mainly determined by the binding of transcription factors and cis-regulatory DNA sequences, most existing gene annotation methods, which exploit the conservation of open reading frames, are not effective in finding target genes. A viable approach to targeted gene finding is to exploit the cis-regulatory elements that are known to be responsible for the transcription of target genes. Given such cis-elements, putative target genes whose promoters contain the elements can be identified. As a case study, we apply the above approach to predict the genes in model plant Arabidopsis thaliana which are inducible by a phytohormone, abscisic acid (ABA), and abiotic stress, such as drought, cold and salinity. We first construct and analyze two ABA specific cis-elements, ABA-responsive element (ABRE) and its coupling element (CE), in A.thaliana, based on their conservation in rice and other cereal plants. We then use the ABRE-CE module to identify putative ABA-responsive genes in A.thaliana. Based on RT-PCR verification and the results from literature, this method has an accuracy rate of 67.5% for the top 40 predictions. The cis-element based targeted gene finding approach is expected to be widely applicable since a large number of cis-elements in many species are available.
TARDEC FIXED HEEL POINT (FHP): DRIVER CAD ACCOMMODATION MODEL VERIFICATION REPORT
2017-11-09
SUPPLEMENTARY NOTES N/A 14. ABSTRACT Easy-to-use Computer-Aided Design (CAD) tools, known as accommodation models, are needed by the ground vehicle... designers when developing the interior workspace for the occupant. The TARDEC Fixed Heel Point (FHP): Driver CAD Accommodation Model described in this...is intended to provide the composite boundaries representing the body of the defined target design population, including posture prediction
2016-11-01
layered glass/PC systems,Functionally Graded Materials (FGMs), polycrystalline AlON, and fiber-reinforced composite (FRC) materials. For the first time we...multi-layered glass/PC systems,Functionally Graded Materials (FGMs), polycrystalline AlON, and fiber-reinforced composite (FRC) materials. For the... Composite Lamina with Peridynamics, International Journal for Multiscale Computational Engineering, (12 2011): 0. doi: Florin Bobaru, Youn Doh Ha
Integrated Modeling and Analysis of Physical Oceanographic and Acoustic Processes
2015-09-30
goal is to improve ocean physical state and acoustic state predictive capabilities. The goal fitting the scope of this project is the creation of... Project -scale objectives are to complete targeted studies of oceanographic processes in a few regimes, accompanied by studies of acoustic propagation...by the basic research efforts of this project . An additional objective is to develop improved computational tools for acoustics and for the
Molecular determinants of blood-brain barrier permeation.
Geldenhuys, Werner J; Mohammad, Afroz S; Adkins, Chris E; Lockman, Paul R
2015-01-01
The blood-brain barrier (BBB) is a microvascular unit which selectively regulates the permeability of drugs to the brain. With the rise in CNS drug targets and diseases, there is a need to be able to accurately predict a priori which compounds in a company database should be pursued for favorable properties. In this review, we will explore the different computational tools available today, as well as underpin these to the experimental methods used to determine BBB permeability. These include in vitro models and the in vivo models that yield the dataset we use to generate predictive models. Understanding of how these models were experimentally derived determines our accurate and predicted use for determining a balance between activity and BBB distribution.
Automated Protocol for Large-Scale Modeling of Gene Expression Data.
Hall, Michelle Lynn; Calkins, David; Sherman, Woody
2016-11-28
With the continued rise of phenotypic- and genotypic-based screening projects, computational methods to analyze, process, and ultimately make predictions in this field take on growing importance. Here we show how automated machine learning workflows can produce models that are predictive of differential gene expression as a function of a compound structure using data from A673 cells as a proof of principle. In particular, we present predictive models with an average accuracy of greater than 70% across a highly diverse ∼1000 gene expression profile. In contrast to the usual in silico design paradigm, where one interrogates a particular target-based response, this work opens the opportunity for virtual screening and lead optimization for desired multitarget gene expression profiles.
Molecular determinants of blood–brain barrier permeation
Geldenhuys, Werner J; Mohammad, Afroz S; Adkins, Chris E; Lockman, Paul R
2015-01-01
The blood–brain barrier (BBB) is a microvascular unit which selectively regulates the permeability of drugs to the brain. With the rise in CNS drug targets and diseases, there is a need to be able to accurately predict a priori which compounds in a company database should be pursued for favorable properties. In this review, we will explore the different computational tools available today, as well as underpin these to the experimental methods used to determine BBB permeability. These include in vitro models and the in vivo models that yield the dataset we use to generate predictive models. Understanding of how these models were experimentally derived determines our accurate and predicted use for determining a balance between activity and BBB distribution. PMID:26305616
Modularity of Protein Folds as a Tool for Template-Free Modeling of Structures.
Vallat, Brinda; Madrid-Aliste, Carlos; Fiser, Andras
2015-08-01
Predicting the three-dimensional structure of proteins from their amino acid sequences remains a challenging problem in molecular biology. While the current structural coverage of proteins is almost exclusively provided by template-based techniques, the modeling of the rest of the protein sequences increasingly require template-free methods. However, template-free modeling methods are much less reliable and are usually applicable for smaller proteins, leaving much space for improvement. We present here a novel computational method that uses a library of supersecondary structure fragments, known as Smotifs, to model protein structures. The library of Smotifs has saturated over time, providing a theoretical foundation for efficient modeling. The method relies on weak sequence signals from remotely related protein structures to create a library of Smotif fragments specific to the target protein sequence. This Smotif library is exploited in a fragment assembly protocol to sample decoys, which are assessed by a composite scoring function. Since the Smotif fragments are larger in size compared to the ones used in other fragment-based methods, the proposed modeling algorithm, SmotifTF, can employ an exhaustive sampling during decoy assembly. SmotifTF successfully predicts the overall fold of the target proteins in about 50% of the test cases and performs competitively when compared to other state of the art prediction methods, especially when sequence signal to remote homologs is diminishing. Smotif-based modeling is complementary to current prediction methods and provides a promising direction in addressing the structure prediction problem, especially when targeting larger proteins for modeling.
A human judgment approach to epidemiological forecasting
Farrow, David C.; Brooks, Logan C.; Rosenfeld, Roni
2017-01-01
Infectious diseases impose considerable burden on society, despite significant advances in technology and medicine over the past century. Advanced warning can be helpful in mitigating and preparing for an impending or ongoing epidemic. Historically, such a capability has lagged for many reasons, including in particular the uncertainty in the current state of the system and in the understanding of the processes that drive epidemic trajectories. Presently we have access to data, models, and computational resources that enable the development of epidemiological forecasting systems. Indeed, several recent challenges hosted by the U.S. government have fostered an open and collaborative environment for the development of these technologies. The primary focus of these challenges has been to develop statistical and computational methods for epidemiological forecasting, but here we consider a serious alternative based on collective human judgment. We created the web-based “Epicast” forecasting system which collects and aggregates epidemic predictions made in real-time by human participants, and with these forecasts we ask two questions: how accurate is human judgment, and how do these forecasts compare to their more computational, data-driven alternatives? To address the former, we assess by a variety of metrics how accurately humans are able to predict influenza and chikungunya trajectories. As for the latter, we show that real-time, combined human predictions of the 2014–2015 and 2015–2016 U.S. flu seasons are often more accurate than the same predictions made by several statistical systems, especially for short-term targets. We conclude that there is valuable predictive power in collective human judgment, and we discuss the benefits and drawbacks of this approach. PMID:28282375
A human judgment approach to epidemiological forecasting.
Farrow, David C; Brooks, Logan C; Hyun, Sangwon; Tibshirani, Ryan J; Burke, Donald S; Rosenfeld, Roni
2017-03-01
Infectious diseases impose considerable burden on society, despite significant advances in technology and medicine over the past century. Advanced warning can be helpful in mitigating and preparing for an impending or ongoing epidemic. Historically, such a capability has lagged for many reasons, including in particular the uncertainty in the current state of the system and in the understanding of the processes that drive epidemic trajectories. Presently we have access to data, models, and computational resources that enable the development of epidemiological forecasting systems. Indeed, several recent challenges hosted by the U.S. government have fostered an open and collaborative environment for the development of these technologies. The primary focus of these challenges has been to develop statistical and computational methods for epidemiological forecasting, but here we consider a serious alternative based on collective human judgment. We created the web-based "Epicast" forecasting system which collects and aggregates epidemic predictions made in real-time by human participants, and with these forecasts we ask two questions: how accurate is human judgment, and how do these forecasts compare to their more computational, data-driven alternatives? To address the former, we assess by a variety of metrics how accurately humans are able to predict influenza and chikungunya trajectories. As for the latter, we show that real-time, combined human predictions of the 2014-2015 and 2015-2016 U.S. flu seasons are often more accurate than the same predictions made by several statistical systems, especially for short-term targets. We conclude that there is valuable predictive power in collective human judgment, and we discuss the benefits and drawbacks of this approach.
A deep learning framework for modeling structural features of RNA-binding protein targets
Zhang, Sai; Zhou, Jingtian; Hu, Hailin; Gong, Haipeng; Chen, Ligong; Cheng, Chao; Zeng, Jianyang
2016-01-01
RNA-binding proteins (RBPs) play important roles in the post-transcriptional control of RNAs. Identifying RBP binding sites and characterizing RBP binding preferences are key steps toward understanding the basic mechanisms of the post-transcriptional gene regulation. Though numerous computational methods have been developed for modeling RBP binding preferences, discovering a complete structural representation of the RBP targets by integrating their available structural features in all three dimensions is still a challenging task. In this paper, we develop a general and flexible deep learning framework for modeling structural binding preferences and predicting binding sites of RBPs, which takes (predicted) RNA tertiary structural information into account for the first time. Our framework constructs a unified representation that characterizes the structural specificities of RBP targets in all three dimensions, which can be further used to predict novel candidate binding sites and discover potential binding motifs. Through testing on the real CLIP-seq datasets, we have demonstrated that our deep learning framework can automatically extract effective hidden structural features from the encoded raw sequence and structural profiles, and predict accurate RBP binding sites. In addition, we have conducted the first study to show that integrating the additional RNA tertiary structural features can improve the model performance in predicting RBP binding sites, especially for the polypyrimidine tract-binding protein (PTB), which also provides a new evidence to support the view that RBPs may own specific tertiary structural binding preferences. In particular, the tests on the internal ribosome entry site (IRES) segments yield satisfiable results with experimental support from the literature and further demonstrate the necessity of incorporating RNA tertiary structural information into the prediction model. The source code of our approach can be found in https://github.com/thucombio/deepnet-rbp. PMID:26467480
NASA Astrophysics Data System (ADS)
Salmaso, Veronica; Sturlese, Mattia; Cuzzolin, Alberto; Moro, Stefano
2018-01-01
Molecular docking is a powerful tool in the field of computer-aided molecular design. In particular, it is the technique of choice for the prediction of a ligand pose within its target binding site. A multitude of docking methods is available nowadays, whose performance may vary depending on the data set. Therefore, some non-trivial choices should be made before starting a docking simulation. In the same framework, the selection of the target structure to use could be challenging, since the number of available experimental structures is increasing. Both issues have been explored within this work. The pose prediction of a pool of 36 compounds provided by D3R Grand Challenge 2 organizers was preceded by a pipeline to choose the best protein/docking-method couple for each blind ligand. An integrated benchmark approach including ligand shape comparison and cross-docking evaluations was implemented inside our DockBench software. The results are encouraging and show that bringing attention to the choice of the docking simulation fundamental components improves the results of the binding mode predictions.
Theory-Guided Synthesis of a Metastable Lead-Free Piezoelectric Polymorph
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garten, Lauren M; Ndione, Paul F; Beaton, Daniel A
Many technologically critical materials are metastable under ambient conditions, yet the understanding of how to rationally design and guide the synthesis of these materials is limited. This work presents an integrated approach that targets a metastable lead-free piezoelectric polymorph of SrHfO3. First-principles calculations predict that the previous experimentally unrealized, metastable P4mm phase of SrHfO3 should exhibit a direct piezoelectric response (d33) of 36.9 pC N-1 (compared to d33 = 0 for the ground state). Combining computationally optimized substrate selection and synthesis conditions lead to the epitaxial stabilization of the polar P4mm phase of SrHfO3 on SrTiO3. The films are structurallymore » consistent with the theory predictions. A ferroelectric-induced large signal effective converse piezoelectric response of 5.2 pm V-1 for a 35 nm film is observed, indicating the ability to predict and target multifunctionality. This illustrates a coupled theory-experimental approach to the discovery and realization of new multifunctional polymorphs.« less
Theory-Guided Synthesis of a Metastable Lead-Free Piezoelectric Polymorph.
Garten, Lauren M; Dwaraknath, Shyam; Walker, Julian; Mangum, John S; Ndione, Paul F; Park, Yoonsang; Beaton, Daniel A; Gopalan, Venkatraman; Gorman, Brian P; Schelhas, Laura T; Toney, Michael F; Trolier-McKinstry, Susan; Persson, Kristin A; Ginley, David S
2018-05-10
Many technologically critical materials are metastable under ambient conditions, yet the understanding of how to rationally design and guide the synthesis of these materials is limited. This work presents an integrated approach that targets a metastable lead-free piezoelectric polymorph of SrHfO 3 . First-principles calculations predict that the previous experimentally unrealized, metastable P4mm phase of SrHfO 3 should exhibit a direct piezoelectric response (d 33 ) of 36.9 pC N -1 (compared to d 33 = 0 for the ground state). Combining computationally optimized substrate selection and synthesis conditions lead to the epitaxial stabilization of the polar P4mm phase of SrHfO 3 on SrTiO 3 . The films are structurally consistent with the theory predictions. A ferroelectric-induced large signal effective converse piezoelectric response of 5.2 pm V -1 for a 35 nm film is observed, indicating the ability to predict and target multifunctionality. This illustrates a coupled theory-experimental approach to the discovery and realization of new multifunctional polymorphs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Local sharpening and subspace wavefront correction with predictive dynamic digital holography
NASA Astrophysics Data System (ADS)
Sulaiman, Sennan; Gibson, Steve
2017-09-01
Digital holography holds several advantages over conventional imaging and wavefront sensing, chief among these being significantly fewer and simpler optical components and the retrieval of complex field. Consequently, many imaging and sensing applications including microscopy and optical tweezing have turned to using digital holography. A significant obstacle for digital holography in real-time applications, such as wavefront sensing for high energy laser systems and high speed imaging for target racking, is the fact that digital holography is computationally intensive; it requires iterative virtual wavefront propagation and hill-climbing to optimize some sharpness criteria. It has been shown recently that minimum-variance wavefront prediction can be integrated with digital holography and image sharpening to reduce significantly large number of costly sharpening iterations required to achieve near-optimal wavefront correction. This paper demonstrates further gains in computational efficiency with localized sharpening in conjunction with predictive dynamic digital holography for real-time applications. The method optimizes sharpness of local regions in a detector plane by parallel independent wavefront correction on reduced-dimension subspaces of the complex field in a spectral plane.
Azeem, Syeda Maryam; Muwonge, Alecia N; Thakkar, Nehaben; Lam, Kristina W; Frey, Kathleen M
2018-01-01
Resistance to non-nucleoside reverse transcriptase inhibitors (NNRTIs) is a leading cause of HIV treatment failure. Often included in antiviral therapy, NNRTIs are chemically diverse compounds that bind an allosteric pocket of enzyme target reverse transcriptase (RT). Several new NNRTIs incorporate flexibility in order to compensate for lost interactions with amino acid conferring mutations in RT. Unfortunately, even successful inhibitors such as diarylpyrimidine (DAPY) inhibitor rilpivirine are affected by mutations in RT that confer resistance. In order to aid drug design efforts, it would be efficient and cost effective to pre-evaluate NNRTI compounds in development using a structure-based computational approach. As proof of concept, we applied a residue scan and molecular dynamics strategy using RT crystal structures to predict mutations that confer resistance to DAPYs rilpivirine, etravirine, and investigational microbicide dapivirine. Our predictive values, changes in affinity and stability, are correlative with fold-resistance data for several RT mutants. Consistent with previous studies, mutation K101P is predicted to confer high-level resistance to DAPYs. These findings were further validated using structural analysis, molecular dynamics, and an enzymatic reverse transcription assay. Our results confirm that changes in affinity and stability for mutant complexes are predictive parameters of resistance as validated by experimental and clinical data. In future work, we believe that this computational approach may be useful to predict resistance mutations for inhibitors in development. Published by Elsevier Inc.
Bioinformatics in translational drug discovery.
Wooller, Sarah K; Benstead-Hume, Graeme; Chen, Xiangrong; Ali, Yusuf; Pearl, Frances M G
2017-08-31
Bioinformatics approaches are becoming ever more essential in translational drug discovery both in academia and within the pharmaceutical industry. Computational exploitation of the increasing volumes of data generated during all phases of drug discovery is enabling key challenges of the process to be addressed. Here, we highlight some of the areas in which bioinformatics resources and methods are being developed to support the drug discovery pipeline. These include the creation of large data warehouses, bioinformatics algorithms to analyse 'big data' that identify novel drug targets and/or biomarkers, programs to assess the tractability of targets, and prediction of repositioning opportunities that use licensed drugs to treat additional indications. © 2017 The Author(s).
Analytical Bistatic k Space Images Compared to Experimental Swept Frequency EAR Images
NASA Technical Reports Server (NTRS)
Shaeffer, John; Cooper, Brett; Hom, Kam
2004-01-01
A case study of flat plate scattering images obtained by the analytical bistatic k space and experimental swept frequency ISAR methods is presented. The key advantage of the bistatic k space image is that a single excitation is required, i.e., one frequency I one angle. This means that prediction approaches such as MOM only need to compute one solution at a single frequency. Bistatic image Fourier transform data are obtained by computing the scattered field at various bistatic positions about the body in k space. Experimental image Fourier transform data are obtained from the measured response to a bandwidth of frequencies over a target rotation range.
Human behavior and human performance: Psychomotor demands
NASA Technical Reports Server (NTRS)
1992-01-01
The results of several experiments are presented in abstract form. These studies are critical for the interpretation and acceptance of flight based science to be conducted by the Behavior and Performance project. Some representative titles are as follow: External audio for IBM/PC compatible computers; A comparative assessment of psychomotor performance (target prediction by humans and macaques); Response path (a dependent measure for computer maze solving and other tasks); Behavioral asymmetries of psychomotor performance in Rhesus monkey (a dissociation between hand preference and skill); Testing primates with joystick based automated apparatus; and Environmental enrichment and performance assessment for ground or flight based research with primates;
Wang, Ting; Wang, Jian; Zhang, Conglu; Yang, Zhao; Dai, Xinpeng; Cheng, Maosheng; Hou, Xiaohong
2015-08-07
An attractive metal-organic framework (MOF) MIL-101(Cr) material was synthesized at the nanoscale and applied as a sorbent in the porous membrane-protected micro-solid-phase extraction (μ-SPE) device for the pre-concentration of phthalate esters (PAEs) in drinking water samples for the first time. Parameters influencing the extraction efficiency, such as the selection of sorbent materials, pH adjustment, the effect of salt, magnetic-stirring extraction time, the desorption solvent and the desorption time, were investigated. Under the optimum conditions, the limits of detection from gas chromatography-mass spectrometric analysis for PAEs varied from 0.004 to 0.02 μg L(-1). The linear ranges were from 0.1 to 50 μg L(-1) or from 0.2 to 50 μg L(-1) for the analytes with the relative standard deviations fluctuating from 0.8 to 10.9% (n = 5). The enrichment factors (EFs) for the target PAEs were varied from 143 to 187. MIL-101(Cr) exhibited remarkable advantages compared to activated carbon and MIL-100(Fe). On the other hand, the computational method was first used to predict the adsorption of MIL-101(Cr) towards PAEs. The molecular interactions and the free binding energies between MIL-101(Cr) and PAEs were observed and calculated in terms of the molecular modeling method. MIL-101(Cr) showed high potential in the analysis of PAEs at trace levels in drinking water. The computational result was consistent with the detected enrichment factors. The computational modeling accurately predicted the extraction efficiency of MOF-based material towards the target analytes. Therefore, the combination of experimental and computational study provided a new strategy on the trace contaminant analysis.
A Deterministic Approach to Active Debris Removal Target Selection
NASA Astrophysics Data System (ADS)
Lidtke, A.; Lewis, H.; Armellin, R.
2014-09-01
Many decisions, with widespread economic, political and legal consequences, are being considered based on space debris simulations that show that Active Debris Removal (ADR) may be necessary as the concerns about the sustainability of spaceflight are increasing. The debris environment predictions are based on low-accuracy ephemerides and propagators. This raises doubts about the accuracy of those prognoses themselves but also the potential ADR target-lists that are produced. Target selection is considered highly important as removal of many objects will increase the overall mission cost. Selecting the most-likely candidates as soon as possible would be desirable as it would enable accurate mission design and allow thorough evaluation of in-orbit validations, which are likely to occur in the near-future, before any large investments are made and implementations realized. One of the primary factors that should be used in ADR target selection is the accumulated collision probability of every object. A conjunction detection algorithm, based on the smart sieve method, has been developed. Another algorithm is then applied to the found conjunctions to compute the maximum and true probabilities of collisions taking place. The entire framework has been verified against the Conjunction Analysis Tools in AGIs Systems Toolkit and relative probability error smaller than 1.5% has been achieved in the final maximum collision probability. Two target-lists are produced based on the ranking of the objects according to the probability they will take part in any collision over the simulated time window. These probabilities are computed using the maximum probability approach, that is time-invariant, and estimates of the true collision probability that were computed with covariance information. The top-priority targets are compared, and the impacts of the data accuracy and its decay are highlighted. General conclusions regarding the importance of Space Surveillance and Tracking for the purpose of ADR are also drawn and a deterministic method for ADR target selection, which could reduce the number of ADR missions to be performed, is proposed.
Sarmady, Mahdi; Dampier, William; Tozeren, Aydin
2011-01-01
Virus proteins alter protein pathways of the host toward the synthesis of viral particles by breaking and making edges via binding to host proteins. In this study, we developed a computational approach to predict viral sequence hotspots for binding to host proteins based on sequences of viral and host proteins and literature-curated virus-host protein interactome data. We use a motif discovery algorithm repeatedly on collections of sequences of viral proteins and immediate binding partners of their host targets and choose only those motifs that are conserved on viral sequences and highly statistically enriched among binding partners of virus protein targeted host proteins. Our results match experimental data on binding sites of Nef to host proteins such as MAPK1, VAV1, LCK, HCK, HLA-A, CD4, FYN, and GNB2L1 with high statistical significance but is a poor predictor of Nef binding sites on highly flexible, hoop-like regions. Predicted hotspots recapture CD8 cell epitopes of HIV Nef highlighting their importance in modulating virus-host interactions. Host proteins potentially targeted or outcompeted by Nef appear crowding the T cell receptor, natural killer cell mediated cytotoxicity, and neurotrophin signaling pathways. Scanning of HIV Nef motifs on multiple alignments of hepatitis C protein NS5A produces results consistent with literature, indicating the potential value of the hotspot discovery in advancing our understanding of virus-host crosstalk. PMID:21738584
Ferreira da Costa, Joana; Silva, David; Caamaño, Olga; Brea, José M; Loza, Maria Isabel; Munteanu, Cristian R; Pazos, Alejandro; García-Mera, Xerardo; González-Díaz, Humbert
2018-06-25
Predicting drug-protein interactions (DPIs) for target proteins involved in dopamine pathways is a very important goal in medicinal chemistry. We can tackle this problem using Molecular Docking or Machine Learning (ML) models for one specific protein. Unfortunately, these models fail to account for large and complex big data sets of preclinical assays reported in public databases. This includes multiple conditions of assays, such as different experimental parameters, biological assays, target proteins, cell lines, organism of the target, or organism of assay. On the other hand, perturbation theory (PT) models allow us to predict the properties of a query compound or molecular system in experimental assays with multiple boundary conditions based on a previously known case of reference. In this work, we report the first PTML (PT + ML) study of a large ChEMBL data set of preclinical assays of compounds targeting dopamine pathway proteins. The best PTML model found predicts 50000 cases with accuracy of 70-91% in training and external validation series. We also compared the linear PTML model with alternative PTML models trained with multiple nonlinear methods (artificial neural network (ANN), Random Forest, Deep Learning, etc.). Some of the nonlinear methods outperform the linear model but at the cost of a notable increment of the complexity of the model. We illustrated the practical use of the new model with a proof-of-concept theoretical-experimental study. We reported for the first time the organic synthesis, chemical characterization, and pharmacological assay of a new series of l-prolyl-l-leucyl-glycinamide (PLG) peptidomimetic compounds. In addition, we performed a molecular docking study for some of these compounds with the software Vina AutoDock. The work ends with a PTML model predictive study of the outcomes of the new compounds in a large number of assays. Therefore, this study offers a new computational methodology for predicting the outcome for any compound in new assays. This PTML method focuses on the prediction with a simple linear model of multiple pharmacological parameters (IC 50 , EC 50 , K i , etc.) for compounds in assays involving different cell lines used, organisms of the protein target, or organism of assay for proteins in the dopamine pathway.
Pacing a data transfer operation between compute nodes on a parallel computer
Blocksome, Michael A [Rochester, MN
2011-09-13
Methods, systems, and products are disclosed for pacing a data transfer between compute nodes on a parallel computer that include: transferring, by an origin compute node, a chunk of an application message to a target compute node; sending, by the origin compute node, a pacing request to a target direct memory access (`DMA`) engine on the target compute node using a remote get DMA operation; determining, by the origin compute node, whether a pacing response to the pacing request has been received from the target DMA engine; and transferring, by the origin compute node, a next chunk of the application message if the pacing response to the pacing request has been received from the target DMA engine.
Cortical Coupling Reflects Bayesian Belief Updating in the Deployment of Spatial Attention.
Vossel, Simone; Mathys, Christoph; Stephan, Klaas E; Friston, Karl J
2015-08-19
The deployment of visuospatial attention and the programming of saccades are governed by the inferred likelihood of events. In the present study, we combined computational modeling of psychophysical data with fMRI to characterize the computational and neural mechanisms underlying this flexible attentional control. Sixteen healthy human subjects performed a modified version of Posner's location-cueing paradigm in which the percentage of cue validity varied in time and the targets required saccadic responses. Trialwise estimates of the certainty (precision) of the prediction that the target would appear at the cued location were derived from a hierarchical Bayesian model fitted to individual trialwise saccadic response speeds. Trial-specific model parameters then entered analyses of fMRI data as parametric regressors. Moreover, dynamic causal modeling (DCM) was performed to identify the most likely functional architecture of the attentional reorienting network and its modulation by (Bayes-optimal) precision-dependent attention. While the frontal eye fields (FEFs), intraparietal sulcus, and temporoparietal junction (TPJ) of both hemispheres showed higher activity on invalid relative to valid trials, reorienting responses in right FEF, TPJ, and the putamen were significantly modulated by precision-dependent attention. Our DCM results suggested that the precision of predictability underlies the attentional modulation of the coupling of TPJ with FEF and the putamen. Our results shed new light on the computational architecture and neuronal network dynamics underlying the context-sensitive deployment of visuospatial attention. Spatial attention and its neural correlates in the human brain have been studied extensively with the help of fMRI and cueing paradigms in which the location of targets is pre-cued on a trial-by-trial basis. One aspect that has so far been neglected concerns the question of how the brain forms attentional expectancies when no a priori probability information is available but needs to be inferred from observations. This study elucidates the computational and neural mechanisms under which probabilistic inference governs attentional deployment. Our results show that Bayesian belief updating explains changes in cortical connectivity; in that directional influences from the temporoparietal junction on the frontal eye fields and the putamen were modulated by (Bayes-optimal) updates. Copyright © 2015 Vossel et al.
AAA gunnermodel based on observer theory. [predicting a gunner's tracking response
NASA Technical Reports Server (NTRS)
Kou, R. S.; Glass, B. C.; Day, C. N.; Vikmanis, M. M.
1978-01-01
The Luenberger observer theory is used to develop a predictive model of a gunner's tracking response in antiaircraft artillery systems. This model is composed of an observer, a feedback controller and a remnant element. An important feature of the model is that the structure is simple, hence a computer simulation requires only a short execution time. A parameter identification program based on the least squares curve fitting method and the Gauss Newton gradient algorithm is developed to determine the parameter values of the gunner model. Thus, a systematic procedure exists for identifying model parameters for a given antiaircraft tracking task. Model predictions of tracking errors are compared with human tracking data obtained from manned simulation experiments. Model predictions are in excellent agreement with the empirical data for several flyby and maneuvering target trajectories.
NASA Technical Reports Server (NTRS)
Sebok, Angelia; Wickens, Christopher; Sargent, Robert
2015-01-01
One human factors challenge is predicting operator performance in novel situations. Approaches such as drawing on relevant previous experience, and developing computational models to predict operator performance in complex situations, offer potential methods to address this challenge. A few concerns with modeling operator performance are that models need to realistic, and they need to be tested empirically and validated. In addition, many existing human performance modeling tools are complex and require that an analyst gain significant experience to be able to develop models for meaningful data collection. This paper describes an effort to address these challenges by developing an easy to use model-based tool, using models that were developed from a review of existing human performance literature and targeted experimental studies, and performing an empirical validation of key model predictions.
Low latency, high bandwidth data communications between compute nodes in a parallel computer
Archer, Charles J.; Blocksome, Michael A.; Ratterman, Joseph D.; Smith, Brian E.
2010-11-02
Methods, parallel computers, and computer program products are disclosed for low latency, high bandwidth data communications between compute nodes in a parallel computer. Embodiments include receiving, by an origin direct memory access (`DMA`) engine of an origin compute node, data for transfer to a target compute node; sending, by the origin DMA engine of the origin compute node to a target DMA engine on the target compute node, a request to send (`RTS`) message; transferring, by the origin DMA engine, a predetermined portion of the data to the target compute node using memory FIFO operation; determining, by the origin DMA engine whether an acknowledgement of the RTS message has been received from the target DMA engine; if the an acknowledgement of the RTS message has not been received, transferring, by the origin DMA engine, another predetermined portion of the data to the target compute node using a memory FIFO operation; and if the acknowledgement of the RTS message has been received by the origin DMA engine, transferring, by the origin DMA engine, any remaining portion of the data to the target compute node using a direct put operation.
Huang, Lixing; Hu, Jiao; Su, Yongquan; Qin, Yingxue; Kong, Wendi; Ma, Ying; Xu, Xiaojin; Lin, Mao; Yan, Qingpi
2015-01-01
The capability of Vibrio alginolyticus to adhere to fish mucus is a key virulence factor of the bacteria. Our previous research showed that stress conditions, such as Cu(2+), Pb(2+), Hg(2+), and low pH, can reduce this adhesion ability. Non-coding (nc) RNAs play a crucial role in regulating bacterial gene expression, affecting the bacteria's pathogenicity. To investigate the mechanism(s) underlying the decline in adhesion ability caused by stressors, we combined high-throughput sequencing with computational techniques to detect stressed ncRNA dynamics. These approaches yielded three commonly altered ncRNAs that are predicted to regulate the bacterial chemotaxis pathway, which plays a key role in the adhesion process of bacteria. We hypothesized they play a key role in the adhesion process of V. alginolyticus. In this study, we validated the effects of these three ncRNAs on their predicted target genes and their role in the V. alginolyticus adhesion process with RNA interference (i), quantitative real-time polymerase chain reaction (qPCR), northern blot, capillary assay, and in vitro adhesion assays. The expression of these ncRNAs and their predicted target genes were confirmed by qPCR and northern blot, which reinforced the reliability of the sequencing data and the target prediction. Overexpression of these ncRNAs was capable of reducing the chemotactic and adhesion ability of V. alginolyticus, and the expression levels of their target genes were also significantly reduced. Our results indicated that these three ncRNAs: (1) are able to regulate the bacterial chemotaxis pathway, and (2) play a key role in the adhesion process of V. alginolyticus.
A Kernel for Open Source Drug Discovery in Tropical Diseases
Ortí, Leticia; Carbajo, Rodrigo J.; Pieper, Ursula; Eswar, Narayanan; Maurer, Stephen M.; Rai, Arti K.; Taylor, Ginger; Todd, Matthew H.; Pineda-Lucena, Antonio; Sali, Andrej; Marti-Renom, Marc A.
2009-01-01
Background Conventional patent-based drug development incentives work badly for the developing world, where commercial markets are usually small to non-existent. For this reason, the past decade has seen extensive experimentation with alternative R&D institutions ranging from private–public partnerships to development prizes. Despite extensive discussion, however, one of the most promising avenues—open source drug discovery—has remained elusive. We argue that the stumbling block has been the absence of a critical mass of preexisting work that volunteers can improve through a series of granular contributions. Historically, open source software collaborations have almost never succeeded without such “kernels”. Methodology/Principal Findings Here, we use a computational pipeline for: (i) comparative structure modeling of target proteins, (ii) predicting the localization of ligand binding sites on their surfaces, and (iii) assessing the similarity of the predicted ligands to known drugs. Our kernel currently contains 143 and 297 protein targets from ten pathogen genomes that are predicted to bind a known drug or a molecule similar to a known drug, respectively. The kernel provides a source of potential drug targets and drug candidates around which an online open source community can nucleate. Using NMR spectroscopy, we have experimentally tested our predictions for two of these targets, confirming one and invalidating the other. Conclusions/Significance The TDI kernel, which is being offered under the Creative Commons attribution share-alike license for free and unrestricted use, can be accessed on the World Wide Web at http://www.tropicaldisease.org. We hope that the kernel will facilitate collaborative efforts towards the discovery of new drugs against parasites that cause tropical diseases. PMID:19381286
ZHENG, CHUN-SONG; WU, YIN-SHENG; BAO, HONG-JUAN; XU, XIAO-JIE; CHEN, XING-QIANG; YE, HONG-ZHI; WU, GUANG-WEN; XU, HUI-FENG; LI, XI-HAI; CHEN, JIA-SHOU; LIU, XIAN-XIANG
2014-01-01
Xiao Chai Hu Tang (XCHT), a traditional herbal formula, is widely administered as a cancer treatment. However, the underlying molecular mechanisms of its anticancer effects are not fully understood. In the present study, a computational pharmacological model that combined chemical space mapping, molecular docking and network analysis was employed to predict which chemical compounds in XCHT are potential inhibitors of cancer-associated targets, and to establish a compound-target (C-T) network and compound-compound (C-C) association network. The identified compounds from XCHT demonstrated diversity in chemical space. Furthermore, they occupied regions of chemical space that were the same, or close to, those occupied by drug or drug-like compounds that are associated with cancer, according to the Therapeutic Targets Database. The analysis of the molecular docking and the C-T network demonstrated that the potential inhibitors possessed the properties of promiscuous drugs and combination therapies. The C-C network was classified into four clusters and the different clusters contained various multi-compound combinations that acted on different targets. The study indicated that XCHT has a polypharmacological role in treating cancer and the potential inhibitory components of XCHT require further investigation as potential therapeutic strategies for cancer patients. PMID:24926384
From Lévy to Brownian: a computational model based on biological fluctuation.
Nurzaman, Surya G; Matsumoto, Yoshio; Nakamura, Yutaka; Shirai, Kazumichi; Koizumi, Satoshi; Ishiguro, Hiroshi
2011-02-03
Theoretical studies predict that Lévy walks maximizes the chance of encountering randomly distributed targets with a low density, but Brownian walks is favorable inside a patch of targets with high density. Recently, experimental data reports that some animals indeed show a Lévy and Brownian walk movement patterns when forage for foods in areas with low and high density. This paper presents a simple, Gaussian-noise utilizing computational model that can realize such behavior. We extend Lévy walks model of one of the simplest creature, Escherichia coli, based on biological fluctuation framework. We build a simulation of a simple, generic animal to observe whether Lévy or Brownian walks will be performed properly depends on the target density, and investigate the emergent behavior in a commonly faced patchy environment where the density alternates. Based on the model, animal behavior of choosing Lévy or Brownian walk movement patterns based on the target density is able to be generated, without changing the essence of the stochastic property in Escherichia coli physiological mechanism as explained by related researches. The emergent behavior and its benefits in a patchy environment are also discussed. The model provides a framework for further investigation on the role of internal noise in realizing adaptive and efficient foraging behavior.
Integrating publicly-available data to generate computationally ...
The adverse outcome pathway (AOP) framework provides a way of organizing knowledge related to the key biological events that result in a particular health outcome. For the majority of environmental chemicals, the availability of curated pathways characterizing potential toxicity is limited. Methods are needed to assimilate large amounts of available molecular data and quickly generate putative AOPs for further testing and use in hazard assessment. A graph-based workflow was used to facilitate the integration of multiple data types to generate computationally-predicted (cp) AOPs. Edges between graph entities were identified through direct experimental or literature information or computationally inferred using frequent itemset mining. Data from the TG-GATEs and ToxCast programs were used to channel large-scale toxicogenomics information into a cpAOP network (cpAOPnet) of over 20,000 relationships describing connections between chemical treatments, phenotypes, and perturbed pathways measured by differential gene expression and high-throughput screening targets. Sub-networks of cpAOPs for a reference chemical (carbon tetrachloride, CCl4) and outcome (hepatic steatosis) were extracted using the network topology. Comparison of the cpAOP subnetworks to published mechanistic descriptions for both CCl4 toxicity and hepatic steatosis demonstrate that computational approaches can be used to replicate manually curated AOPs and identify pathway targets that lack genomic mar
Blueprint for antimicrobial hit discovery targeting metabolic networks
Shen, Y.; Liu, J.; Estiu, G.; Isin, B.; Ahn, Y-Y.; Lee, D-S.; Barabási, A-L.; Kapatral, V.; Wiest, O.; Oltvai, Z. N.
2010-01-01
Advances in genome analysis, network biology, and computational chemistry have the potential to revolutionize drug discovery by combining system-level identification of drug targets with the atomistic modeling of small molecules capable of modulating their activity. To demonstrate the effectiveness of such a discovery pipeline, we deduced common antibiotic targets in Escherichia coli and Staphylococcus aureus by identifying shared tissue-specific or uniformly essential metabolic reactions in their metabolic networks. We then predicted through virtual screening dozens of potential inhibitors for several enzymes of these reactions and showed experimentally that a subset of these inhibited both enzyme activities in vitro and bacterial cell viability. This blueprint is applicable for any sequenced organism with high-quality metabolic reconstruction and suggests a general strategy for strain-specific antiinfective therapy. PMID:20080587
Mind the Gap! A Journey towards Computational Toxicology.
Mangiatordi, Giuseppe Felice; Alberga, Domenico; Altomare, Cosimo Damiano; Carotti, Angelo; Catto, Marco; Cellamare, Saverio; Gadaleta, Domenico; Lattanzi, Gianluca; Leonetti, Francesco; Pisani, Leonardo; Stefanachi, Angela; Trisciuzzi, Daniela; Nicolotti, Orazio
2016-09-01
Computational methods have advanced toxicology towards the development of target-specific models based on a clear cause-effect rationale. However, the predictive potential of these models presents strengths and weaknesses. On the good side, in silico models are valuable cheap alternatives to in vitro and in vivo experiments. On the other, the unconscious use of in silico methods can mislead end-users with elusive results. The focus of this review is on the basic scientific and regulatory recommendations in the derivation and application of computational models. Attention is paid to examine the interplay between computational toxicology and drug discovery and development. Avoiding the easy temptation of an overoptimistic future, we report our view on what can, or cannot, realistically be done. Indeed, studies of safety/toxicity represent a key element of chemical prioritization programs carried out by chemical industries, and primarily by pharmaceutical companies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Periwal, Vinita
2017-07-01
Genome editing with engineered nucleases (zinc finger nucleases, TAL effector nucleases s and Clustered regularly inter-spaced short palindromic repeats/CRISPR-associated) has recently been shown to have great promise in a variety of therapeutic and biotechnological applications. However, their exploitation in genetic analysis and clinical settings largely depends on their specificity for the intended genomic target. Large and complex genomes often contain highly homologous/repetitive sequences, which limits the specificity of genome editing tools and could result in off-target activity. Over the past few years, various computational approaches have been developed to assist the design process and predict/reduce the off-target activity of these nucleases. These tools could be efficiently used to guide the design of constructs for engineered nucleases and evaluate results after genome editing. This review provides a comprehensive overview of various databases, tools, web servers and resources for genome editing and compares their features and functionalities. Additionally, it also describes tools that have been developed to analyse post-genome editing results. The article also discusses important design parameters that could be considered while designing these nucleases. This review is intended to be a quick reference guide for experimentalists as well as computational biologists working in the field of genome editing with engineered nucleases. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Artificial intelligence for optimal anemia management in end-stage renal disease.
Brier, Michael E; Gaweda, Adam E
2016-08-01
Computational intelligence for the prediction of hemoglobin to guide the selection of erythropoiesis-stimulating agent dose results in improved anemia management. The models used for the prediction result from the use of individual patient data and help to increase the number of hemoglobin observations within the target range. The benefits of using these modeling techniques appear to be a decrease in erythropoiesis-stimulating agent use and a decrease in the number of transfusions. This study confirms the results of previous smaller studies and suggests that additional beneficial results may be achieved. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
PRISM offers a comprehensive genomic approach to transcription factor function prediction
Wenger, Aaron M.; Clarke, Shoa L.; Guturu, Harendra; Chen, Jenny; Schaar, Bruce T.; McLean, Cory Y.; Bejerano, Gill
2013-01-01
The human genome encodes 1500–2000 different transcription factors (TFs). ChIP-seq is revealing the global binding profiles of a fraction of TFs in a fraction of their biological contexts. These data show that the majority of TFs bind directly next to a large number of context-relevant target genes, that most binding is distal, and that binding is context specific. Because of the effort and cost involved, ChIP-seq is seldom used in search of novel TF function. Such exploration is instead done using expression perturbation and genetic screens. Here we propose a comprehensive computational framework for transcription factor function prediction. We curate 332 high-quality nonredundant TF binding motifs that represent all major DNA binding domains, and improve cross-species conserved binding site prediction to obtain 3.3 million conserved, mostly distal, binding site predictions. We combine these with 2.4 million facts about all human and mouse gene functions, in a novel statistical framework, in search of enrichments of particular motifs next to groups of target genes of particular functions. Rigorous parameter tuning and a harsh null are used to minimize false positives. Our novel PRISM (predicting regulatory information from single motifs) approach obtains 2543 TF function predictions in a large variety of contexts, at a false discovery rate of 16%. The predictions are highly enriched for validated TF roles, and 45 of 67 (67%) tested binding site regions in five different contexts act as enhancers in functionally matched cells. PMID:23382538
NASA Astrophysics Data System (ADS)
Wang, Jun; Wang, Yang; Zeng, Hui
2016-01-01
A key issue to address in synthesizing spatial data with variable-support in spatial analysis and modeling is the change-of-support problem. We present an approach for solving the change-of-support and variable-support data fusion problems. This approach is based on geostatistical inverse modeling that explicitly accounts for differences in spatial support. The inverse model is applied here to produce both the best predictions of a target support and prediction uncertainties, based on one or more measurements, while honoring measurements. Spatial data covering large geographic areas often exhibit spatial nonstationarity and can lead to computational challenge due to the large data size. We developed a local-window geostatistical inverse modeling approach to accommodate these issues of spatial nonstationarity and alleviate computational burden. We conducted experiments using synthetic and real-world raster data. Synthetic data were generated and aggregated to multiple supports and downscaled back to the original support to analyze the accuracy of spatial predictions and the correctness of prediction uncertainties. Similar experiments were conducted for real-world raster data. Real-world data with variable-support were statistically fused to produce single-support predictions and associated uncertainties. The modeling results demonstrate that geostatistical inverse modeling can produce accurate predictions and associated prediction uncertainties. It is shown that the local-window geostatistical inverse modeling approach suggested offers a practical way to solve the well-known change-of-support problem and variable-support data fusion problem in spatial analysis and modeling.
Archer, Charles J.; Blocksome, Michael A.
2012-12-11
Methods, parallel computers, and computer program products are disclosed for remote direct memory access. Embodiments include transmitting, from an origin DMA engine on an origin compute node to a plurality target DMA engines on target compute nodes, a request to send message, the request to send message specifying a data to be transferred from the origin DMA engine to data storage on each target compute node; receiving, by each target DMA engine on each target compute node, the request to send message; preparing, by each target DMA engine, to store data according to the data storage reference and the data length, including assigning a base storage address for the data storage reference; sending, by one or more of the target DMA engines, an acknowledgment message acknowledging that all the target DMA engines are prepared to receive a data transmission from the origin DMA engine; receiving, by the origin DMA engine, the acknowledgement message from the one or more of the target DMA engines; and transferring, by the origin DMA engine, data to data storage on each of the target compute nodes according to the data storage reference using a single direct put operation.
Adaptive neuron-to-EMG decoder training for FES neuroprostheses
NASA Astrophysics Data System (ADS)
Ethier, Christian; Acuna, Daniel; Solla, Sara A.; Miller, Lee E.
2016-08-01
Objective. We have previously demonstrated a brain-machine interface neuroprosthetic system that provided continuous control of functional electrical stimulation (FES) and restoration of grasp in a primate model of spinal cord injury (SCI). Predicting intended EMG directly from cortical recordings provides a flexible high-dimensional control signal for FES. However, no peripheral signal such as force or EMG is available for training EMG decoders in paralyzed individuals. Approach. Here we present a method for training an EMG decoder in the absence of muscle activity recordings; the decoder relies on mapping behaviorally relevant cortical activity to the inferred EMG activity underlying an intended action. Monkeys were trained at a 2D isometric wrist force task to control a computer cursor by applying force in the flexion, extension, ulnar, and radial directions and execute a center-out task. We used a generic muscle force-to-endpoint force model based on muscle pulling directions to relate each target force to an optimal EMG pattern that attained the target force while minimizing overall muscle activity. We trained EMG decoders during the target hold periods using a gradient descent algorithm that compared EMG predictions to optimal EMG patterns. Main results. We tested this method both offline and online. We quantified both the accuracy of offline force predictions and the ability of a monkey to use these real-time force predictions for closed-loop cursor control. We compared both offline and online results to those obtained with several other direct force decoders, including an optimal decoder computed from concurrently measured neural and force signals. Significance. This novel approach to training an adaptive EMG decoder could make a brain-control FES neuroprosthesis an effective tool to restore the hand function of paralyzed individuals. Clinical implementation would make use of individualized EMG-to-force models. Broad generalization could be achieved by including data from multiple grasping tasks in the training of the neuron-to-EMG decoder. Our approach would make it possible for persons with SCI to grasp objects with their own hands, using near-normal motor intent.
Pacharawongsakda, Eakasit; Theeramunkong, Thanaruk
2013-12-01
Predicting protein subcellular location is one of major challenges in Bioinformatics area since such knowledge helps us understand protein functions and enables us to select the targeted proteins during drug discovery process. While many computational techniques have been proposed to improve predictive performance for protein subcellular location, they have several shortcomings. In this work, we propose a method to solve three main issues in such techniques; i) manipulation of multiplex proteins which may exist or move between multiple cellular compartments, ii) handling of high dimensionality in input and output spaces and iii) requirement of sufficient labeled data for model training. Towards these issues, this work presents a new computational method for predicting proteins which have either single or multiple locations. The proposed technique, namely iFLAST-CORE, incorporates the dimensionality reduction in the feature and label spaces with co-training paradigm for semi-supervised multi-label classification. For this purpose, the Singular Value Decomposition (SVD) is applied to transform the high-dimensional feature space and label space into the lower-dimensional spaces. After that, due to limitation of labeled data, the co-training regression makes use of unlabeled data by predicting the target values in the lower-dimensional spaces of unlabeled data. In the last step, the component of SVD is used to project labels in the lower-dimensional space back to those in the original space and an adaptive threshold is used to map a numeric value to a binary value for label determination. A set of experiments on viral proteins and gram-negative bacterial proteins evidence that our proposed method improve the classification performance in terms of various evaluation metrics such as Aiming (or Precision), Coverage (or Recall) and macro F-measure, compared to the traditional method that uses only labeled data.
Jayaswal, Vivek; Lutherborrow, Mark; Ma, David D F; Hwa Yang, Yee
2009-05-01
Over the past decade, a class of small RNA molecules called microRNAs (miRNAs) has been shown to regulate gene expression at the post-transcription stage. While early work focused on the identification of miRNAs using a combination of experimental and computational techniques, subsequent studies have focused on identification of miRNA-target mRNA pairs as each miRNA can have hundreds of mRNA targets. The experimental validation of some miRNAs as oncogenic has provided further motivation for research in this area. In this article we propose an odds-ratio (OR) statistic for identification of regulatory miRNAs. It is based on integrative analysis of matched miRNA and mRNA time-course microarray data. The OR-statistic was used for (i) identification of miRNAs with regulatory potential, (ii) identification of miRNA-target mRNA pairs and (iii) identification of time lags between changes in miRNA expression and those of its target mRNAs. We applied the OR-statistic to a cancer data set and identified a small set of miRNAs that were negatively correlated to mRNAs. A literature survey revealed that some of the miRNAs that were predicted to be regulatory, were indeed oncogenic or tumor suppressors. Finally, some of the predicted miRNA targets have been shown to be experimentally valid.
NASA Astrophysics Data System (ADS)
Bukhari, W.; Hong, S.-M.
2016-03-01
The prediction as well as the gating of respiratory motion have received much attention over the last two decades for reducing the targeting error of the radiation treatment beam due to respiratory motion. In this article, we present a real-time algorithm for predicting respiratory motion in 3D space and realizing a gating function without pre-specifying a particular phase of the patient’s breathing cycle. The algorithm, named EKF-GPRN+ , first employs an extended Kalman filter (EKF) independently along each coordinate to predict the respiratory motion and then uses a Gaussian process regression network (GPRN) to correct the prediction error of the EKF in 3D space. The GPRN is a nonparametric Bayesian algorithm for modeling input-dependent correlations between the output variables in multi-output regression. Inference in GPRN is intractable and we employ variational inference with mean field approximation to compute an approximate predictive mean and predictive covariance matrix. The approximate predictive mean is used to correct the prediction error of the EKF. The trace of the approximate predictive covariance matrix is utilized to capture the uncertainty in EKF-GPRN+ prediction error and systematically identify breathing points with a higher probability of large prediction error in advance. This identification enables us to pause the treatment beam over such instances. EKF-GPRN+ implements a gating function by using simple calculations based on the trace of the predictive covariance matrix. Extensive numerical experiments are performed based on a large database of 304 respiratory motion traces to evaluate EKF-GPRN+ . The experimental results show that the EKF-GPRN+ algorithm reduces the patient-wise prediction error to 38%, 40% and 40% in root-mean-square, compared to no prediction, at lookahead lengths of 192 ms, 384 ms and 576 ms, respectively. The EKF-GPRN+ algorithm can further reduce the prediction error by employing the gating function, albeit at the cost of reduced duty cycle. The error reduction allows the clinical target volume to planning target volume (CTV-PTV) margin to be reduced, leading to decreased normal-tissue toxicity and possible dose escalation. The CTV-PTV margin is also evaluated to quantify clinical benefits of EKF-GPRN+ prediction.
Machine learning approaches for estimation of prediction interval for the model output.
Shrestha, Durga L; Solomatine, Dimitri P
2006-03-01
A novel method for estimating prediction uncertainty using machine learning techniques is presented. Uncertainty is expressed in the form of the two quantiles (constituting the prediction interval) of the underlying distribution of prediction errors. The idea is to partition the input space into different zones or clusters having similar model errors using fuzzy c-means clustering. The prediction interval is constructed for each cluster on the basis of empirical distributions of the errors associated with all instances belonging to the cluster under consideration and propagated from each cluster to the examples according to their membership grades in each cluster. Then a regression model is built for in-sample data using computed prediction limits as targets, and finally, this model is applied to estimate the prediction intervals (limits) for out-of-sample data. The method was tested on artificial and real hydrologic data sets using various machine learning techniques. Preliminary results show that the method is superior to other methods estimating the prediction interval. A new method for evaluating performance for estimating prediction interval is proposed as well.
Widespread long noncoding RNAs as endogenous target mimics for microRNAs in plants.
Wu, Hua-Jun; Wang, Zhi-Min; Wang, Meng; Wang, Xiu-Jie
2013-04-01
Target mimicry is a recently identified regulatory mechanism for microRNA (miRNA) functions in plants in which the decoy RNAs bind to miRNAs via complementary sequences and therefore block the interaction between miRNAs and their authentic targets. Both endogenous decoy RNAs (miRNA target mimics) and engineered artificial RNAs can induce target mimicry effects. Yet until now, only the Induced by Phosphate Starvation1 RNA has been proven to be a functional endogenous microRNA target mimic (eTM). In this work, we developed a computational method and systematically identified intergenic or noncoding gene-originated eTMs for 20 conserved miRNAs in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). The predicted miRNA binding sites were well conserved among eTMs of the same miRNA, whereas sequences outside of the binding sites varied a lot. We proved that the eTMs of miR160 and miR166 are functional target mimics and identified their roles in the regulation of plant development. The effectiveness of eTMs for three other miRNAs was also confirmed by transient agroinfiltration assay.
Ku-Band rendezvous radar performance computer simulation model
NASA Technical Reports Server (NTRS)
Magnusson, H. G.; Goff, M. F.
1984-01-01
All work performed on the Ku-band rendezvous radar performance computer simulation model program since the release of the preliminary final report is summarized. Developments on the program fall into three distinct categories: (1) modifications to the existing Ku-band radar tracking performance computer model; (2) the addition of a highly accurate, nonrealtime search and acquisition performance computer model to the total software package developed on this program; and (3) development of radar cross section (RCS) computation models for three additional satellites. All changes in the tracking model involved improvements in the automatic gain control (AGC) and the radar signal strength (RSS) computer models. Although the search and acquisition computer models were developed under the auspices of the Hughes Aircraft Company Ku-Band Integrated Radar and Communications Subsystem program office, they have been supplied to NASA as part of the Ku-band radar performance comuter model package. Their purpose is to predict Ku-band acquisition performance for specific satellite targets on specific missions. The RCS models were developed for three satellites: the Long Duration Exposure Facility (LDEF) spacecraft, the Solar Maximum Mission (SMM) spacecraft, and the Space Telescopes.
Ku-Band rendezvous radar performance computer simulation model
NASA Astrophysics Data System (ADS)
Magnusson, H. G.; Goff, M. F.
1984-06-01
All work performed on the Ku-band rendezvous radar performance computer simulation model program since the release of the preliminary final report is summarized. Developments on the program fall into three distinct categories: (1) modifications to the existing Ku-band radar tracking performance computer model; (2) the addition of a highly accurate, nonrealtime search and acquisition performance computer model to the total software package developed on this program; and (3) development of radar cross section (RCS) computation models for three additional satellites. All changes in the tracking model involved improvements in the automatic gain control (AGC) and the radar signal strength (RSS) computer models. Although the search and acquisition computer models were developed under the auspices of the Hughes Aircraft Company Ku-Band Integrated Radar and Communications Subsystem program office, they have been supplied to NASA as part of the Ku-band radar performance comuter model package. Their purpose is to predict Ku-band acquisition performance for specific satellite targets on specific missions. The RCS models were developed for three satellites: the Long Duration Exposure Facility (LDEF) spacecraft, the Solar Maximum Mission (SMM) spacecraft, and the Space Telescopes.
Radiant Heat Testing of the H1224A Shipping/Storage Container
1994-05-01
re - entry vehicles caused by credible accidents during air and ground transportation. Radiant heat testing of the H1224A storage/shipping container is...inner container, and re - entry vehicle (RV) temperatures during radiant heat testing. Computer modelling can be used to predict weapon response throughout...Nomenclature RV Re - entry Vehicle midsection mass mock-up WR War Reserve STS Stockpile-to-Target Sequence NAWC Simulated H1224A container by Naval Air
The effect of monitor raster latency on VEPs, ERPs and Brain-Computer Interface performance.
Nagel, Sebastian; Dreher, Werner; Rosenstiel, Wolfgang; Spüler, Martin
2018-02-01
Visual neuroscience experiments and Brain-Computer Interface (BCI) control often require strict timings in a millisecond scale. As most experiments are performed using a personal computer (PC), the latencies that are introduced by the setup should be taken into account and be corrected. As a standard computer monitor uses a rastering to update each line of the image sequentially, this causes a monitor raster latency which depends on the position, on the monitor and the refresh rate. We technically measured the raster latencies of different monitors and present the effects on visual evoked potentials (VEPs) and event-related potentials (ERPs). Additionally we present a method for correcting the monitor raster latency and analyzed the performance difference of a code-modulated VEP BCI speller by correcting the latency. There are currently no other methods validating the effects of monitor raster latency on VEPs and ERPs. The timings of VEPs and ERPs are directly affected by the raster latency. Furthermore, correcting the raster latency resulted in a significant reduction of the target prediction error from 7.98% to 4.61% and also in a more reliable classification of targets by significantly increasing the distance between the most probable and the second most probable target by 18.23%. The monitor raster latency affects the timings of VEPs and ERPs, and correcting resulted in a significant error reduction of 42.23%. It is recommend to correct the raster latency for an increased BCI performance and methodical correctness. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jani, S; Kishan, A; O'Connell, D
2014-06-01
Purpose: To investigate if pelvic nodal coverage for prostate patients undergoing intensity modulated radiotherapy (IMRT) can be predicted using mutual image information computed between planning and cone-beam CTs (CBCTs). Methods: Four patients with high-risk prostate adenocarcinoma were treated with IMRT on a Varian TrueBeam. Plans were designed such that 95% of the nodal planning target volume (PTV) received the prescription dose of 45 Gy (N=1) or 50.4 Gy (N=3). Weekly CBCTs (N=25) were acquired and the nodal clinical target volumes and organs at risk were contoured by a physician. The percent nodal volume receiving prescription dose was recorded as amore » ground truth. Using the recorded shifts performed by the radiation therapists at the time of image acquisition, CBCTs were aligned with the planning kVCT. Mutual image information (MI) was calculated between the CBCT and the aligned planning CT within the contour of the nodal PTV. Due to variable CBCT fields-of-view, CBCT images covering less than 90% of the nodal volume were excluded from the analysis, resulting in the removal of eight CBCTs. Results: A correlation coefficient of 0.40 was observed between the MI metric and the percent of the nodal target volume receiving the prescription dose. One patient's CBCTs had clear outliers from the rest of the patients. Upon further investigation, we discovered image artifacts that were present only in that patient's images. When those four images were excluded, the correlation improved to 0.81. Conclusion: This pilot study shows the potential of predicting pelvic nodal dosimetry by computing the mutual image information between planning CTs and patient setup CBCTs. Importantly, this technique does not involve manual or automatic contouring of the CBCT images. Additional patients and more robust exclusion criteria will help validate our findings.« less
An Evolution-Based Approach to De Novo Protein Design and Case Study on Mycobacterium tuberculosis
Brender, Jeffrey R.; Czajka, Jeff; Marsh, David; Gray, Felicia; Cierpicki, Tomasz; Zhang, Yang
2013-01-01
Computational protein design is a reverse procedure of protein folding and structure prediction, where constructing structures from evolutionarily related proteins has been demonstrated to be the most reliable method for protein 3-dimensional structure prediction. Following this spirit, we developed a novel method to design new protein sequences based on evolutionarily related protein families. For a given target structure, a set of proteins having similar fold are identified from the PDB library by structural alignments. A structural profile is then constructed from the protein templates and used to guide the conformational search of amino acid sequence space, where physicochemical packing is accommodated by single-sequence based solvation, torsion angle, and secondary structure predictions. The method was tested on a computational folding experiment based on a large set of 87 protein structures covering different fold classes, which showed that the evolution-based design significantly enhances the foldability and biological functionality of the designed sequences compared to the traditional physics-based force field methods. Without using homologous proteins, the designed sequences can be folded with an average root-mean-square-deviation of 2.1 Å to the target. As a case study, the method is extended to redesign all 243 structurally resolved proteins in the pathogenic bacteria Mycobacterium tuberculosis, which is the second leading cause of death from infectious disease. On a smaller scale, five sequences were randomly selected from the design pool and subjected to experimental validation. The results showed that all the designed proteins are soluble with distinct secondary structure and three have well ordered tertiary structure, as demonstrated by circular dichroism and NMR spectroscopy. Together, these results demonstrate a new avenue in computational protein design that uses knowledge of evolutionary conservation from protein structural families to engineer new protein molecules of improved fold stability and biological functionality. PMID:24204234