An efficient method for hybrid density functional calculation with spin-orbit coupling
NASA Astrophysics Data System (ADS)
Wang, Maoyuan; Liu, Gui-Bin; Guo, Hong; Yao, Yugui
2018-03-01
In first-principles calculations, hybrid functional is often used to improve accuracy from local exchange correlation functionals. A drawback is that evaluating the hybrid functional needs significantly more computing effort. When spin-orbit coupling (SOC) is taken into account, the non-collinear spin structure increases computing effort by at least eight times. As a result, hybrid functional calculations with SOC are intractable in most cases. In this paper, we present an approximate solution to this problem by developing an efficient method based on a mixed linear combination of atomic orbital (LCAO) scheme. We demonstrate the power of this method using several examples and we show that the results compare very well with those of direct hybrid functional calculations with SOC, yet the method only requires a computing effort similar to that without SOC. The presented technique provides a good balance between computing efficiency and accuracy, and it can be extended to magnetic materials.
NASA Technical Reports Server (NTRS)
Walston, W. H., Jr.
1986-01-01
The comparative computational efficiencies of the finite element (FEM), boundary element (BEM), and hybrid boundary element-finite element (HVFEM) analysis techniques are evaluated for representative bounded domain interior and unbounded domain exterior problems in elastostatics. Computational efficiency is carefully defined in this study as the computer time required to attain a specified level of solution accuracy. The study found the FEM superior to the BEM for the interior problem, while the reverse was true for the exterior problem. The hybrid analysis technique was found to be comparable or superior to both the FEM and BEM for both the interior and exterior problems.
Cilfone, Nicholas A.; Kirschner, Denise E.; Linderman, Jennifer J.
2015-01-01
Biologically related processes operate across multiple spatiotemporal scales. For computational modeling methodologies to mimic this biological complexity, individual scale models must be linked in ways that allow for dynamic exchange of information across scales. A powerful methodology is to combine a discrete modeling approach, agent-based models (ABMs), with continuum models to form hybrid models. Hybrid multi-scale ABMs have been used to simulate emergent responses of biological systems. Here, we review two aspects of hybrid multi-scale ABMs: linking individual scale models and efficiently solving the resulting model. We discuss the computational choices associated with aspects of linking individual scale models while simultaneously maintaining model tractability. We demonstrate implementations of existing numerical methods in the context of hybrid multi-scale ABMs. Using an example model describing Mycobacterium tuberculosis infection, we show relative computational speeds of various combinations of numerical methods. Efficient linking and solution of hybrid multi-scale ABMs is key to model portability, modularity, and their use in understanding biological phenomena at a systems level. PMID:26366228
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Yuqi; Wang, Jinan; Shao, Qiang, E-mail: qshao@mail.shcnc.ac.cn, E-mail: Jiye.Shi@ucb.com, E-mail: wlzhu@mail.shcnc.ac.cn
2015-03-28
The application of temperature replica exchange molecular dynamics (REMD) simulation on protein motion is limited by its huge requirement of computational resource, particularly when explicit solvent model is implemented. In the previous study, we developed a velocity-scaling optimized hybrid explicit/implicit solvent REMD method with the hope to reduce the temperature (replica) number on the premise of maintaining high sampling efficiency. In this study, we utilized this method to characterize and energetically identify the conformational transition pathway of a protein model, the N-terminal domain of calmodulin. In comparison to the standard explicit solvent REMD simulation, the hybrid REMD is much lessmore » computationally expensive but, meanwhile, gives accurate evaluation of the structural and thermodynamic properties of the conformational transition which are in well agreement with the standard REMD simulation. Therefore, the hybrid REMD could highly increase the computational efficiency and thus expand the application of REMD simulation to larger-size protein systems.« less
Gartner, Thomas E; Epps, Thomas H; Jayaraman, Arthi
2016-11-08
We describe an extension of the Gibbs ensemble molecular dynamics (GEMD) method for studying phase equilibria. Our modifications to GEMD allow for direct control over particle transfer between phases and improve the method's numerical stability. Additionally, we found that the modified GEMD approach had advantages in computational efficiency in comparison to a hybrid Monte Carlo (MC)/MD Gibbs ensemble scheme in the context of the single component Lennard-Jones fluid. We note that this increase in computational efficiency does not compromise the close agreement of phase equilibrium results between the two methods. However, numerical instabilities in the GEMD scheme hamper GEMD's use near the critical point. We propose that the computationally efficient GEMD simulations can be used to map out the majority of the phase window, with hybrid MC/MD used as a follow up for conditions under which GEMD may be unstable (e.g., near-critical behavior). In this manner, we can capitalize on the contrasting strengths of these two methods to enable the efficient study of phase equilibria for systems that present challenges for a purely stochastic GEMC method, such as dense or low temperature systems, and/or those with complex molecular topologies.
NASA Astrophysics Data System (ADS)
Luo, Ye; Esler, Kenneth; Kent, Paul; Shulenburger, Luke
Quantum Monte Carlo (QMC) calculations of giant molecules, surface and defect properties of solids have been feasible recently due to drastically expanding computational resources. However, with the most computationally efficient basis set, B-splines, these calculations are severely restricted by the memory capacity of compute nodes. The B-spline coefficients are shared on a node but not distributed among nodes, to ensure fast evaluation. A hybrid representation which incorporates atomic orbitals near the ions and B-spline ones in the interstitial regions offers a more accurate and less memory demanding description of the orbitals because they are naturally more atomic like near ions and much smoother in between, thus allowing coarser B-spline grids. We will demonstrate the advantage of hybrid representation over pure B-spline and Gaussian basis sets and also show significant speed-up like computing the non-local pseudopotentials with our new scheme. Moreover, we discuss a new algorithm for atomic orbital initialization which used to require an extra workflow step taking a few days. With this work, the highly efficient hybrid representation paves the way to simulate large size even in-homogeneous systems using QMC. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Computational Materials Sciences Program.
Computing all hybridization networks for multiple binary phylogenetic input trees.
Albrecht, Benjamin
2015-07-30
The computation of phylogenetic trees on the same set of species that are based on different orthologous genes can lead to incongruent trees. One possible explanation for this behavior are interspecific hybridization events recombining genes of different species. An important approach to analyze such events is the computation of hybridization networks. This work presents the first algorithm computing the hybridization number as well as a set of representative hybridization networks for multiple binary phylogenetic input trees on the same set of taxa. To improve its practical runtime, we show how this algorithm can be parallelized. Moreover, we demonstrate the efficiency of the software Hybroscale, containing an implementation of our algorithm, by comparing it to PIRNv2.0, which is so far the best available software computing the exact hybridization number for multiple binary phylogenetic trees on the same set of taxa. The algorithm is part of the software Hybroscale, which was developed specifically for the investigation of hybridization networks including their computation and visualization. Hybroscale is freely available(1) and runs on all three major operating systems. Our simulation study indicates that our approach is on average 100 times faster than PIRNv2.0. Moreover, we show how Hybroscale improves the interpretation of the reported hybridization networks by adding certain features to its graphical representation.
Jiang, Xiaoqian; Aziz, Md Momin Al; Wang, Shuang; Mohammed, Noman
2018-01-01
Background Machine learning is an effective data-driven tool that is being widely used to extract valuable patterns and insights from data. Specifically, predictive machine learning models are very important in health care for clinical data analysis. The machine learning algorithms that generate predictive models often require pooling data from different sources to discover statistical patterns or correlations among different attributes of the input data. The primary challenge is to fulfill one major objective: preserving the privacy of individuals while discovering knowledge from data. Objective Our objective was to develop a hybrid cryptographic framework for performing regression analysis over distributed data in a secure and efficient way. Methods Existing secure computation schemes are not suitable for processing the large-scale data that are used in cutting-edge machine learning applications. We designed, developed, and evaluated a hybrid cryptographic framework, which can securely perform regression analysis, a fundamental machine learning algorithm using somewhat homomorphic encryption and a newly introduced secure hardware component of Intel Software Guard Extensions (Intel SGX) to ensure both privacy and efficiency at the same time. Results Experimental results demonstrate that our proposed method provides a better trade-off in terms of security and efficiency than solely secure hardware-based methods. Besides, there is no approximation error. Computed model parameters are exactly similar to plaintext results. Conclusions To the best of our knowledge, this kind of secure computation model using a hybrid cryptographic framework, which leverages both somewhat homomorphic encryption and Intel SGX, is not proposed or evaluated to this date. Our proposed framework ensures data security and computational efficiency at the same time. PMID:29506966
Sadat, Md Nazmus; Jiang, Xiaoqian; Aziz, Md Momin Al; Wang, Shuang; Mohammed, Noman
2018-03-05
Machine learning is an effective data-driven tool that is being widely used to extract valuable patterns and insights from data. Specifically, predictive machine learning models are very important in health care for clinical data analysis. The machine learning algorithms that generate predictive models often require pooling data from different sources to discover statistical patterns or correlations among different attributes of the input data. The primary challenge is to fulfill one major objective: preserving the privacy of individuals while discovering knowledge from data. Our objective was to develop a hybrid cryptographic framework for performing regression analysis over distributed data in a secure and efficient way. Existing secure computation schemes are not suitable for processing the large-scale data that are used in cutting-edge machine learning applications. We designed, developed, and evaluated a hybrid cryptographic framework, which can securely perform regression analysis, a fundamental machine learning algorithm using somewhat homomorphic encryption and a newly introduced secure hardware component of Intel Software Guard Extensions (Intel SGX) to ensure both privacy and efficiency at the same time. Experimental results demonstrate that our proposed method provides a better trade-off in terms of security and efficiency than solely secure hardware-based methods. Besides, there is no approximation error. Computed model parameters are exactly similar to plaintext results. To the best of our knowledge, this kind of secure computation model using a hybrid cryptographic framework, which leverages both somewhat homomorphic encryption and Intel SGX, is not proposed or evaluated to this date. Our proposed framework ensures data security and computational efficiency at the same time. ©Md Nazmus Sadat, Xiaoqian Jiang, Md Momin Al Aziz, Shuang Wang, Noman Mohammed. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 05.03.2018.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaskey, Alexander J.
Hybrid programming models for beyond-CMOS technologies will prove critical for integrating new computing technologies alongside our existing infrastructure. Unfortunately the software infrastructure required to enable this is lacking or not available. XACC is a programming framework for extreme-scale, post-exascale accelerator architectures that integrates alongside existing conventional applications. It is a pluggable framework for programming languages developed for next-gen computing hardware architectures like quantum and neuromorphic computing. It lets computational scientists efficiently off-load classically intractable work to attached accelerators through user-friendly Kernel definitions. XACC makes post-exascale hybrid programming approachable for domain computational scientists.
Long Chen; Zhongpeng Wang; Feng He; Jiajia Yang; Hongzhi Qi; Peng Zhou; Baikun Wan; Dong Ming
2015-08-01
The hybrid brain computer interface (hBCI) could provide higher information transfer rate than did the classical BCIs. It included more than one brain-computer or human-machine interact paradigms, such as the combination of the P300 and SSVEP paradigms. Research firstly constructed independent subsystems of three different paradigms and tested each of them with online experiments. Then we constructed a serial hybrid BCI system which combined these paradigms to achieve the functions of typing letters, moving and clicking cursor, and switching among them for the purpose of browsing webpages. Five subjects were involved in this study. They all successfully realized these functions in the online tests. The subjects could achieve an accuracy above 90% after training, which met the requirement in operating the system efficiently. The results demonstrated that it was an efficient system capable of robustness, which provided an approach for the clinic application.
Barreiros, Willian; Teodoro, George; Kurc, Tahsin; Kong, Jun; Melo, Alba C. M. A.; Saltz, Joel
2017-01-01
We investigate efficient sensitivity analysis (SA) of algorithms that segment and classify image features in a large dataset of high-resolution images. Algorithm SA is the process of evaluating variations of methods and parameter values to quantify differences in the output. A SA can be very compute demanding because it requires re-processing the input dataset several times with different parameters to assess variations in output. In this work, we introduce strategies to efficiently speed up SA via runtime optimizations targeting distributed hybrid systems and reuse of computations from runs with different parameters. We evaluate our approach using a cancer image analysis workflow on a hybrid cluster with 256 nodes, each with an Intel Phi and a dual socket CPU. The SA attained a parallel efficiency of over 90% on 256 nodes. The cooperative execution using the CPUs and the Phi available in each node with smart task assignment strategies resulted in an additional speedup of about 2×. Finally, multi-level computation reuse lead to an additional speedup of up to 2.46× on the parallel version. The level of performance attained with the proposed optimizations will allow the use of SA in large-scale studies. PMID:29081725
A hybrid framework for coupling arbitrary summation-by-parts schemes on general meshes
NASA Astrophysics Data System (ADS)
Lundquist, Tomas; Malan, Arnaud; Nordström, Jan
2018-06-01
We develop a general interface procedure to couple both structured and unstructured parts of a hybrid mesh in a non-collocated, multi-block fashion. The target is to gain optimal computational efficiency in fluid dynamics simulations involving complex geometries. While guaranteeing stability, the proposed procedure is optimized for accuracy and requires minimal algorithmic modifications to already existing schemes. Initial numerical investigations confirm considerable efficiency gains compared to non-hybrid calculations of up to an order of magnitude.
Model-Invariant Hybrid Computations of Separated Flows for RCA Standard Test Cases
NASA Technical Reports Server (NTRS)
Woodruff, Stephen
2016-01-01
NASA's Revolutionary Computational Aerosciences (RCA) subproject has identified several smooth-body separated flows as standard test cases to emphasize the challenge these flows present for computational methods and their importance to the aerospace community. Results of computations of two of these test cases, the NASA hump and the FAITH experiment, are presented. The computations were performed with the model-invariant hybrid LES-RANS formulation, implemented in the NASA code VULCAN-CFD. The model- invariant formulation employs gradual LES-RANS transitions and compensation for model variation to provide more accurate and efficient hybrid computations. Comparisons revealed that the LES-RANS transitions employed in these computations were sufficiently gradual that the compensating terms were unnecessary. Agreement with experiment was achieved only after reducing the turbulent viscosity to mitigate the effect of numerical dissipation. The stream-wise evolution of peak Reynolds shear stress was employed as a measure of turbulence dynamics in separated flows useful for evaluating computations.
All-Particle Multiscale Computation of Hypersonic Rarefied Flow
NASA Astrophysics Data System (ADS)
Jun, E.; Burt, J. M.; Boyd, I. D.
2011-05-01
This study examines a new hybrid particle scheme used as an alternative means of multiscale flow simulation. The hybrid particle scheme employs the direct simulation Monte Carlo (DSMC) method in rarefied flow regions and the low diffusion (LD) particle method in continuum flow regions. The numerical procedures of the low diffusion particle method are implemented within an existing DSMC algorithm. The performance of the LD-DSMC approach is assessed by studying Mach 10 nitrogen flow over a sphere with a global Knudsen number of 0.002. The hybrid scheme results show good overall agreement with results from standard DSMC and CFD computation. Subcell procedures are utilized to improve computational efficiency and reduce sensitivity to DSMC cell size in the hybrid scheme. This makes it possible to perform the LD-DSMC simulation on a much coarser mesh that leads to a significant reduction in computation time.
An efficient hybrid technique in RCS predictions of complex targets at high frequencies
NASA Astrophysics Data System (ADS)
Algar, María-Jesús; Lozano, Lorena; Moreno, Javier; González, Iván; Cátedra, Felipe
2017-09-01
Most computer codes in Radar Cross Section (RCS) prediction use Physical Optics (PO) and Physical theory of Diffraction (PTD) combined with Geometrical Optics (GO) and Geometrical Theory of Diffraction (GTD). The latter approaches are computationally cheaper and much more accurate for curved surfaces, but not applicable for the computation of the RCS of all surfaces of a complex object due to the presence of caustic problems in the analysis of concave surfaces or flat surfaces in the far field. The main contribution of this paper is the development of a hybrid method based on a new combination of two asymptotic techniques: GTD and PO, considering the advantages and avoiding the disadvantages of each of them. A very efficient and accurate method to analyze the RCS of complex structures at high frequencies is obtained with the new combination. The proposed new method has been validated comparing RCS results obtained for some simple cases using the proposed approach and RCS using the rigorous technique of Method of Moments (MoM). Some complex cases have been examined at high frequencies contrasting the results with PO. This study shows the accuracy and the efficiency of the hybrid method and its suitability for the computation of the RCS at really large and complex targets at high frequencies.
SCOTCH: Secure Counting Of encrypTed genomiC data using a Hybrid approach.
Chenghong, Wang; Jiang, Yichen; Mohammed, Noman; Chen, Feng; Jiang, Xiaoqian; Al Aziz, Md Momin; Sadat, Md Nazmus; Wang, Shuang
2017-01-01
As genomic data are usually at large scale and highly sensitive, it is essential to enable both efficient and secure analysis, by which the data owner can securely delegate both computation and storage on untrusted public cloud. Counting query of genotypes is a basic function for many downstream applications in biomedical research (e.g., computing allele frequency, calculating chi-squared statistics, etc.). Previous solutions show promise on secure counting of outsourced data but the efficiency is still a big limitation for real world applications. In this paper, we propose a novel hybrid solution to combine a rigorous theoretical model (homomorphic encryption) and the latest hardware-based infrastructure (i.e., Software Guard Extensions) to speed up the computation while preserving the privacy of both data owners and data users. Our results demonstrated efficiency by using the real data from the personal genome project.
SCOTCH: Secure Counting Of encrypTed genomiC data using a Hybrid approach
Chenghong, Wang; Jiang, Yichen; Mohammed, Noman; Chen, Feng; Jiang, Xiaoqian; Al Aziz, Md Momin; Sadat, Md Nazmus; Wang, Shuang
2017-01-01
As genomic data are usually at large scale and highly sensitive, it is essential to enable both efficient and secure analysis, by which the data owner can securely delegate both computation and storage on untrusted public cloud. Counting query of genotypes is a basic function for many downstream applications in biomedical research (e.g., computing allele frequency, calculating chi-squared statistics, etc.). Previous solutions show promise on secure counting of outsourced data but the efficiency is still a big limitation for real world applications. In this paper, we propose a novel hybrid solution to combine a rigorous theoretical model (homomorphic encryption) and the latest hardware-based infrastructure (i.e., Software Guard Extensions) to speed up the computation while preserving the privacy of both data owners and data users. Our results demonstrated efficiency by using the real data from the personal genome project. PMID:29854245
Estimating the efficiency of fish cross-species cDNA microarray hybridization.
Cohen, Raphael; Chalifa-Caspi, Vered; Williams, Timothy D; Auslander, Meirav; George, Stephen G; Chipman, James K; Tom, Moshe
2007-01-01
Using an available cross-species cDNA microarray is advantageous for examining multigene expression patterns in non-model organisms, saving the need for construction of species-specific arrays. The aim of the present study was to estimate relative efficiency of cross-species hybridizations across bony fishes, using bioinformatics tools. The methodology may serve also as a model for similar evaluations in other taxa. The theoretical evaluation was done by substituting comparative whole-transcriptome sequence similarity information into the thermodynamic hybridization equation. Complementary DNA sequence assemblages of nine fish species belonging to common families or suborders and distributed across the bony fish taxonomic branch were selected for transcriptome-wise comparisons. Actual cross-species hybridizations among fish of different taxonomic distances were used to validate and eventually to calibrate the theoretically computed relative efficiencies.
Ma, Teng; Li, Hui; Deng, Lili; Yang, Hao; Lv, Xulin; Li, Peiyang; Li, Fali; Zhang, Rui; Liu, Tiejun; Yao, Dezhong; Xu, Peng
2017-04-01
Movement control is an important application for EEG-BCI (EEG-based brain-computer interface) systems. A single-modality BCI cannot provide an efficient and natural control strategy, but a hybrid BCI system that combines two or more different tasks can effectively overcome the drawbacks encountered in single-modality BCI control. In the current paper, we developed a new hybrid BCI system by combining MI (motor imagery) and mVEP (motion-onset visual evoked potential), aiming to realize the more efficient 2D movement control of a cursor. The offline analysis demonstrates that the hybrid BCI system proposed in this paper could evoke the desired MI and mVEP signal features simultaneously, and both are very close to those evoked in the single-modality BCI task. Furthermore, the online 2D movement control experiment reveals that the proposed hybrid BCI system could provide more efficient and natural control commands. The proposed hybrid BCI system is compensative to realize efficient 2D movement control for a practical online system, especially for those situations in which P300 stimuli are not suitable to be applied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, W Michael; Kohlmeyer, Axel; Plimpton, Steven J
The use of accelerators such as graphics processing units (GPUs) has become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power requirements. Hybrid high-performance computers, machines with nodes containing more than one type of floating-point processor (e.g. CPU and GPU), are now becoming more prevalent due to these advantages. In this paper, we present a continuation of previous work implementing algorithms for using accelerators into the LAMMPS molecular dynamics software for distributed memory parallel hybrid machines. In our previous work, we focused on acceleration for short-range models with anmore » approach intended to harness the processing power of both the accelerator and (multi-core) CPUs. To augment the existing implementations, we present an efficient implementation of long-range electrostatic force calculation for molecular dynamics. Specifically, we present an implementation of the particle-particle particle-mesh method based on the work by Harvey and De Fabritiis. We present benchmark results on the Keeneland InfiniBand GPU cluster. We provide a performance comparison of the same kernels compiled with both CUDA and OpenCL. We discuss limitations to parallel efficiency and future directions for improving performance on hybrid or heterogeneous computers.« less
Ishihara, Koji; Morimoto, Jun
2018-03-01
Humans use multiple muscles to generate such joint movements as an elbow motion. With multiple lightweight and compliant actuators, joint movements can also be efficiently generated. Similarly, robots can use multiple actuators to efficiently generate a one degree of freedom movement. For this movement, the desired joint torque must be properly distributed to each actuator. One approach to cope with this torque distribution problem is an optimal control method. However, solving the optimal control problem at each control time step has not been deemed a practical approach due to its large computational burden. In this paper, we propose a computationally efficient method to derive an optimal control strategy for a hybrid actuation system composed of multiple actuators, where each actuator has different dynamical properties. We investigated a singularly perturbed system of the hybrid actuator model that subdivided the original large-scale control problem into smaller subproblems so that the optimal control outputs for each actuator can be derived at each control time step and applied our proposed method to our pneumatic-electric hybrid actuator system. Our method derived a torque distribution strategy for the hybrid actuator by dealing with the difficulty of solving real-time optimal control problems. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Computational Research Division, Lawrence Berkeley National Laboratory; NERSC, Lawrence Berkeley National Laboratory; Computer Science Department, University of California, Berkeley
2009-05-04
We apply auto-tuning to a hybrid MPI-pthreads lattice Boltzmann computation running on the Cray XT4 at National Energy Research Scientific Computing Center (NERSC). Previous work showed that multicore-specific auto-tuning can improve the performance of lattice Boltzmann magnetohydrodynamics (LBMHD) by a factor of 4x when running on dual- and quad-core Opteron dual-socket SMPs. We extend these studies to the distributed memory arena via a hybrid MPI/pthreads implementation. In addition to conventional auto-tuning at the local SMP node, we tune at the message-passing level to determine the optimal aspect ratio as well as the correct balance between MPI tasks and threads permore » MPI task. Our study presents a detailed performance analysis when moving along an isocurve of constant hardware usage: fixed total memory, total cores, and total nodes. Overall, our work points to approaches for improving intra- and inter-node efficiency on large-scale multicore systems for demanding scientific applications.« less
CSP: A Multifaceted Hybrid Architecture for Space Computing
NASA Technical Reports Server (NTRS)
Rudolph, Dylan; Wilson, Christopher; Stewart, Jacob; Gauvin, Patrick; George, Alan; Lam, Herman; Crum, Gary Alex; Wirthlin, Mike; Wilson, Alex; Stoddard, Aaron
2014-01-01
Research on the CHREC Space Processor (CSP) takes a multifaceted hybrid approach to embedded space computing. Working closely with the NASA Goddard SpaceCube team, researchers at the National Science Foundation (NSF) Center for High-Performance Reconfigurable Computing (CHREC) at the University of Florida and Brigham Young University are developing hybrid space computers that feature an innovative combination of three technologies: commercial-off-the-shelf (COTS) devices, radiation-hardened (RadHard) devices, and fault-tolerant computing. Modern COTS processors provide the utmost in performance and energy-efficiency but are susceptible to ionizing radiation in space, whereas RadHard processors are virtually immune to this radiation but are more expensive, larger, less energy-efficient, and generations behind in speed and functionality. By featuring COTS devices to perform the critical data processing, supported by simpler RadHard devices that monitor and manage the COTS devices, and augmented with novel uses of fault-tolerant hardware, software, information, and networking within and between COTS devices, the resulting system can maximize performance and reliability while minimizing energy consumption and cost. NASA Goddard has adopted the CSP concept and technology with plans underway to feature flight-ready CSP boards on two upcoming space missions.
An Efficient Model-based Diagnosis Engine for Hybrid Systems Using Structural Model Decomposition
NASA Technical Reports Server (NTRS)
Bregon, Anibal; Narasimhan, Sriram; Roychoudhury, Indranil; Daigle, Matthew; Pulido, Belarmino
2013-01-01
Complex hybrid systems are present in a large range of engineering applications, like mechanical systems, electrical circuits, or embedded computation systems. The behavior of these systems is made up of continuous and discrete event dynamics that increase the difficulties for accurate and timely online fault diagnosis. The Hybrid Diagnosis Engine (HyDE) offers flexibility to the diagnosis application designer to choose the modeling paradigm and the reasoning algorithms. The HyDE architecture supports the use of multiple modeling paradigms at the component and system level. However, HyDE faces some problems regarding performance in terms of complexity and time. Our focus in this paper is on developing efficient model-based methodologies for online fault diagnosis in complex hybrid systems. To do this, we propose a diagnosis framework where structural model decomposition is integrated within the HyDE diagnosis framework to reduce the computational complexity associated with the fault diagnosis of hybrid systems. As a case study, we apply our approach to a diagnostic testbed, the Advanced Diagnostics and Prognostics Testbed (ADAPT), using real data.
NASA Technical Reports Server (NTRS)
Alfano, Robert R. (Inventor); Cai, Wei (Inventor)
2007-01-01
A reconstruction technique for reducing computation burden in the 3D image processes, wherein the reconstruction procedure comprises an inverse and a forward model. The inverse model uses a hybrid dual Fourier algorithm that combines a 2D Fourier inversion with a 1D matrix inversion to thereby provide high-speed inverse computations. The inverse algorithm uses a hybrid transfer to provide fast Fourier inversion for data of multiple sources and multiple detectors. The forward model is based on an analytical cumulant solution of a radiative transfer equation. The accurate analytical form of the solution to the radiative transfer equation provides an efficient formalism for fast computation of the forward model.
Drawert, Brian; Lawson, Michael J; Petzold, Linda; Khammash, Mustafa
2010-02-21
We have developed a computational framework for accurate and efficient simulation of stochastic spatially inhomogeneous biochemical systems. The new computational method employs a fractional step hybrid strategy. A novel formulation of the finite state projection (FSP) method, called the diffusive FSP method, is introduced for the efficient and accurate simulation of diffusive transport. Reactions are handled by the stochastic simulation algorithm.
Dynamical analysis of Parkinsonian state emulated by hybrid Izhikevich neuron models
NASA Astrophysics Data System (ADS)
Liu, Chen; Wang, Jiang; Yu, Haitao; Deng, Bin; Wei, Xile; Li, Huiyan; Loparo, Kenneth A.; Fietkiewicz, Chris
2015-11-01
Computational models play a significant role in exploring novel theories to complement the findings of physiological experiments. Various computational models have been developed to reveal the mechanisms underlying brain functions. Particularly, in the development of therapies to modulate behavioral and pathological abnormalities, computational models provide the basic foundations to exhibit transitions between physiological and pathological conditions. Considering the significant roles of the intrinsic properties of the globus pallidus and the coupling connections between neurons in determining the firing patterns and the dynamical activities of the basal ganglia neuronal network, we propose a hypothesis that pathological behaviors under the Parkinsonian state may originate from combined effects of intrinsic properties of globus pallidus neurons and synaptic conductances in the whole neuronal network. In order to establish a computational efficient network model, hybrid Izhikevich neuron model is used due to its capacity of capturing the dynamical characteristics of the biological neuronal activities. Detailed analysis of the individual Izhikevich neuron model can assist in understanding the roles of model parameters, which then facilitates the establishment of the basal ganglia-thalamic network model, and contributes to a further exploration of the underlying mechanisms of the Parkinsonian state. Simulation results show that the hybrid Izhikevich neuron model is capable of capturing many of the dynamical properties of the basal ganglia-thalamic neuronal network, such as variations of the firing rates and emergence of synchronous oscillations under the Parkinsonian condition, despite the simplicity of the two-dimensional neuronal model. It may suggest that the computational efficient hybrid Izhikevich neuron model can be used to explore basal ganglia normal and abnormal functions. Especially it provides an efficient way of emulating the large-scale neuron network and potentially contributes to development of improved therapy for neurological disorders such as Parkinson's disease.
Hybrid RANS-LES using high order numerical methods
NASA Astrophysics Data System (ADS)
Henry de Frahan, Marc; Yellapantula, Shashank; Vijayakumar, Ganesh; Knaus, Robert; Sprague, Michael
2017-11-01
Understanding the impact of wind turbine wake dynamics on downstream turbines is particularly important for the design of efficient wind farms. Due to their tractable computational cost, hybrid RANS/LES models are an attractive framework for simulating separation flows such as the wake dynamics behind a wind turbine. High-order numerical methods can be computationally efficient and provide increased accuracy in simulating complex flows. In the context of LES, high-order numerical methods have shown some success in predictions of turbulent flows. However, the specifics of hybrid RANS-LES models, including the transition region between both modeling frameworks, pose unique challenges for high-order numerical methods. In this work, we study the effect of increasing the order of accuracy of the numerical scheme in simulations of canonical turbulent flows using RANS, LES, and hybrid RANS-LES models. We describe the interactions between filtering, model transition, and order of accuracy and their effect on turbulence quantities such as kinetic energy spectra, boundary layer evolution, and dissipation rate. This work was funded by the U.S. Department of Energy, Exascale Computing Project, under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory.
NASA Astrophysics Data System (ADS)
Marchetti, Luca; Priami, Corrado; Thanh, Vo Hong
2016-07-01
This paper introduces HRSSA (Hybrid Rejection-based Stochastic Simulation Algorithm), a new efficient hybrid stochastic simulation algorithm for spatially homogeneous biochemical reaction networks. HRSSA is built on top of RSSA, an exact stochastic simulation algorithm which relies on propensity bounds to select next reaction firings and to reduce the average number of reaction propensity updates needed during the simulation. HRSSA exploits the computational advantage of propensity bounds to manage time-varying transition propensities and to apply dynamic partitioning of reactions, which constitute the two most significant bottlenecks of hybrid simulation. A comprehensive set of simulation benchmarks is provided for evaluating performance and accuracy of HRSSA against other state of the art algorithms.
NASA Astrophysics Data System (ADS)
Mora, A.; Han, F.; Lubineau, G.
2018-04-01
One strategy to ensure that nanofiller networks in a polymer composite percolate at low volume fractions is to promote segregation. In a segregated structure, the concentration of nanofillers is kept low in some regions of the sample. In turn, the concentration in the remaining regions is much higher than the average concentration of the sample. This selective placement of the nanofillers ensures percolation at low average concentration. One original strategy to promote segregation is by tuning the shape of the nanofillers. We use a computational approach to study the conductive networks formed by hybrid particles obtained by growing carbon nanotubes (CNTs) on graphene nanoplatelets (GNPs). The objective of this study is (1) to show that the higher electrical conductivity of these composites is due to the hybrid particles forming a segregated structure and (2) to understand which parameters defining the hybrid particles determine the efficiency of the segregation. We construct a microstructure to observe the conducting paths and determine whether a segregated structure has indeed been formed inside the composite. A measure of efficiency is presented based on the fraction of nanofillers that contribute to the conductive network. Then, the efficiency of the hybrid-particle networks is compared to those of three other networks of carbon-based nanofillers in which no hybrid particles are used: only CNTs, only GNPs, and a mix of CNTs and GNPs. Finally, some parameters of the hybrid particle are studied: the CNT density on the GNPs, and the CNT and GNP geometries. We also present recommendations for the further improvement of a composite’s conductivity based on these parameters.
NASA Astrophysics Data System (ADS)
Schwörer, Magnus; Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul
2015-03-01
Recently, a novel approach to hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations has been suggested [Schwörer et al., J. Chem. Phys. 138, 244103 (2013)]. Here, the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 103-105 molecules as negative gradients of a DFT/PMM hybrid Hamiltonian. The electrostatic interactions are efficiently described by a hierarchical fast multipole method (FMM). Adopting recent progress of this FMM technique [Lorenzen et al., J. Chem. Theory Comput. 10, 3244 (2014)], which particularly entails a strictly linear scaling of the computational effort with the system size, and adapting this revised FMM approach to the computation of the interactions between the DFT and PMM fragments of a simulation system, here, we show how one can further enhance the efficiency and accuracy of such DFT/PMM-MD simulations. The resulting gain of total performance, as measured for alanine dipeptide (DFT) embedded in water (PMM) by the product of the gains in efficiency and accuracy, amounts to about one order of magnitude. We also demonstrate that the jointly parallelized implementation of the DFT and PMM-MD parts of the computation enables the efficient use of high-performance computing systems. The associated software is available online.
NASA Astrophysics Data System (ADS)
Ma, Teng; Li, Hui; Deng, Lili; Yang, Hao; Lv, Xulin; Li, Peiyang; Li, Fali; Zhang, Rui; Liu, Tiejun; Yao, Dezhong; Xu, Peng
2017-04-01
Objective. Movement control is an important application for EEG-BCI (EEG-based brain-computer interface) systems. A single-modality BCI cannot provide an efficient and natural control strategy, but a hybrid BCI system that combines two or more different tasks can effectively overcome the drawbacks encountered in single-modality BCI control. Approach. In the current paper, we developed a new hybrid BCI system by combining MI (motor imagery) and mVEP (motion-onset visual evoked potential), aiming to realize the more efficient 2D movement control of a cursor. Main result. The offline analysis demonstrates that the hybrid BCI system proposed in this paper could evoke the desired MI and mVEP signal features simultaneously, and both are very close to those evoked in the single-modality BCI task. Furthermore, the online 2D movement control experiment reveals that the proposed hybrid BCI system could provide more efficient and natural control commands. Significance. The proposed hybrid BCI system is compensative to realize efficient 2D movement control for a practical online system, especially for those situations in which P300 stimuli are not suitable to be applied.
Development of Advanced Light-Duty Powertrain and Hybrid Analysis Tool (SAE 2013-01-0808)
The Advanced Light-Duty Powertrain and Hybrid Analysis tool was created by Environmental Protection Agency to evaluate the Greenhouse gas emissions and fuel efficiency from light-duty vehicles. It is a physics-based, forward-looking, full vehicle computer simulator, which is cap...
Hybrid discrete/continuum algorithms for stochastic reaction networks
Safta, Cosmin; Sargsyan, Khachik; Debusschere, Bert; ...
2014-10-22
Direct solutions of the Chemical Master Equation (CME) governing Stochastic Reaction Networks (SRNs) are generally prohibitively expensive due to excessive numbers of possible discrete states in such systems. To enhance computational efficiency we develop a hybrid approach where the evolution of states with low molecule counts is treated with the discrete CME model while that of states with large molecule counts is modeled by the continuum Fokker-Planck equation. The Fokker-Planck equation is discretized using a 2nd order finite volume approach with appropriate treatment of flux components to avoid negative probability values. The numerical construction at the interface between the discretemore » and continuum regions implements the transfer of probability reaction by reaction according to the stoichiometry of the system. As a result, the performance of this novel hybrid approach is explored for a two-species circadian model with computational efficiency gains of about one order of magnitude.« less
Implementing Molecular Dynamics for Hybrid High Performance Computers - 1. Short Range Forces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, W Michael; Wang, Peng; Plimpton, Steven J
The use of accelerators such as general-purpose graphics processing units (GPGPUs) have become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power requirements. Hybrid high performance computers, machines with more than one type of floating-point processor, are now becoming more prevalent due to these advantages. In this work, we discuss several important issues in porting a large molecular dynamics code for use on parallel hybrid machines - 1) choosing a hybrid parallel decomposition that works on central processing units (CPUs) with distributed memory and accelerator cores with shared memory,more » 2) minimizing the amount of code that must be ported for efficient acceleration, 3) utilizing the available processing power from both many-core CPUs and accelerators, and 4) choosing a programming model for acceleration. We present our solution to each of these issues for short-range force calculation in the molecular dynamics package LAMMPS. We describe algorithms for efficient short range force calculation on hybrid high performance machines. We describe a new approach for dynamic load balancing of work between CPU and accelerator cores. We describe the Geryon library that allows a single code to compile with both CUDA and OpenCL for use on a variety of accelerators. Finally, we present results on a parallel test cluster containing 32 Fermi GPGPUs and 180 CPU cores.« less
Iurov, Iu B; Khazatskiĭ, I A; Akindinov, V A; Dovgilov, L V; Kobrinskiĭ, B A; Vorsanova, S G
2000-08-01
Original software FISHMet has been developed and tried for improving the efficiency of diagnosis of hereditary diseases caused by chromosome aberrations and for chromosome mapping by fluorescent in situ hybridization (FISH) method. The program allows creation and analysis of pseudocolor chromosome images and hybridization signals in the Windows 95 system, allows computer analysis and editing of the results of pseudocolor hybridization in situ, including successive imposition of initial black-and-white images created using fluorescent filters (blue, green, and red), and editing of each image individually or of a summary pseudocolor image in BMP, TIFF, and JPEG formats. Components of image computer analysis system (LOMO, Leitz Ortoplan, and Axioplan fluorescent microscopes, COHU 4910 and Sanyo VCB-3512P CCD cameras, Miro-Video, Scion LG-3 and VG-5 image capture maps, and Pentium 100 and Pentium 200 computers) and specialized software for image capture and visualization (Scion Image PC and Video-Cup) have been used with good results in the study.
Study of a hybrid multispectral processor
NASA Technical Reports Server (NTRS)
Marshall, R. E.; Kriegler, F. J.
1973-01-01
A hybrid processor is described offering enough handling capacity and speed to process efficiently the large quantities of multispectral data that can be gathered by scanner systems such as MSDS, SKYLAB, ERTS, and ERIM M-7. Combinations of general-purpose and special-purpose hybrid computers were examined to include both analog and digital types as well as all-digital configurations. The current trend toward lower costs for medium-scale digital circuitry suggests that the all-digital approach may offer the better solution within the time frame of the next few years. The study recommends and defines such a hybrid digital computing system in which both special-purpose and general-purpose digital computers would be employed. The tasks of recognizing surface objects would be performed in a parallel, pipeline digital system while the tasks of control and monitoring would be handled by a medium-scale minicomputer system. A program to design and construct a small, prototype, all-digital system has been started.
NASA Astrophysics Data System (ADS)
Aziz, Nur Liyana Afiqah Abdul; Siah Yap, Keem; Afif Bunyamin, Muhammad
2013-06-01
This paper presents a new approach of the fault detection for improving efficiency of circulating water system (CWS) in a power generation plant using a hybrid Fuzzy Logic System (FLS) and Extreme Learning Machine (ELM) neural network. The FLS is a mathematical tool for calculating the uncertainties where precision and significance are applied in the real world. It is based on natural language which has the ability of "computing the word". The ELM is an extremely fast learning algorithm for neural network that can completed the training cycle in a very short time. By combining the FLS and ELM, new hybrid model, i.e., FLS-ELM is developed. The applicability of this proposed hybrid model is validated in fault detection in CWS which may help to improve overall efficiency of power generation plant, hence, consuming less natural recourses and producing less pollutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchetti, Luca, E-mail: marchetti@cosbi.eu; Priami, Corrado, E-mail: priami@cosbi.eu; University of Trento, Department of Mathematics
This paper introduces HRSSA (Hybrid Rejection-based Stochastic Simulation Algorithm), a new efficient hybrid stochastic simulation algorithm for spatially homogeneous biochemical reaction networks. HRSSA is built on top of RSSA, an exact stochastic simulation algorithm which relies on propensity bounds to select next reaction firings and to reduce the average number of reaction propensity updates needed during the simulation. HRSSA exploits the computational advantage of propensity bounds to manage time-varying transition propensities and to apply dynamic partitioning of reactions, which constitute the two most significant bottlenecks of hybrid simulation. A comprehensive set of simulation benchmarks is provided for evaluating performance andmore » accuracy of HRSSA against other state of the art algorithms.« less
Implementing Molecular Dynamics on Hybrid High Performance Computers - Three-Body Potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, W Michael; Yamada, Masako
The use of coprocessors or accelerators such as graphics processing units (GPUs) has become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power re- quirements. Hybrid high-performance computers, defined as machines with nodes containing more than one type of floating-point processor (e.g. CPU and GPU), are now becoming more prevalent due to these advantages. Although there has been extensive research into methods to efficiently use accelerators to improve the performance of molecular dynamics (MD) employing pairwise potential energy models, little is reported in the literature for models that includemore » many-body effects. 3-body terms are required for many popular potentials such as MEAM, Tersoff, REBO, AIREBO, Stillinger-Weber, Bond-Order Potentials, and others. Because the per-atom simulation times are much higher for models incorporating 3-body terms, there is a clear need for efficient algo- rithms usable on hybrid high performance computers. Here, we report a shared-memory force-decomposition for 3-body potentials that avoids memory conflicts to allow for a deterministic code with substantial performance improvements on hybrid machines. We describe modifications necessary for use in distributed memory MD codes and show results for the simulation of water with Stillinger-Weber on the hybrid Titan supercomputer. We compare performance of the 3-body model to the SPC/E water model when using accelerators. Finally, we demonstrate that our approach can attain a speedup of 5.1 with acceleration on Titan for production simulations to study water droplet freezing on a surface.« less
Efficient and Robust Optimization for Building Energy Simulation
Pourarian, Shokouh; Kearsley, Anthony; Wen, Jin; Pertzborn, Amanda
2016-01-01
Efficiently, robustly and accurately solving large sets of structured, non-linear algebraic and differential equations is one of the most computationally expensive steps in the dynamic simulation of building energy systems. Here, the efficiency, robustness and accuracy of two commonly employed solution methods are compared. The comparison is conducted using the HVACSIM+ software package, a component based building system simulation tool. The HVACSIM+ software presently employs Powell’s Hybrid method to solve systems of nonlinear algebraic equations that model the dynamics of energy states and interactions within buildings. It is shown here that the Powell’s method does not always converge to a solution. Since a myriad of other numerical methods are available, the question arises as to which method is most appropriate for building energy simulation. This paper finds considerable computational benefits result from replacing the Powell’s Hybrid method solver in HVACSIM+ with a solver more appropriate for the challenges particular to numerical simulations of buildings. Evidence is provided that a variant of the Levenberg-Marquardt solver has superior accuracy and robustness compared to the Powell’s Hybrid method presently used in HVACSIM+. PMID:27325907
Efficient and Robust Optimization for Building Energy Simulation.
Pourarian, Shokouh; Kearsley, Anthony; Wen, Jin; Pertzborn, Amanda
2016-06-15
Efficiently, robustly and accurately solving large sets of structured, non-linear algebraic and differential equations is one of the most computationally expensive steps in the dynamic simulation of building energy systems. Here, the efficiency, robustness and accuracy of two commonly employed solution methods are compared. The comparison is conducted using the HVACSIM+ software package, a component based building system simulation tool. The HVACSIM+ software presently employs Powell's Hybrid method to solve systems of nonlinear algebraic equations that model the dynamics of energy states and interactions within buildings. It is shown here that the Powell's method does not always converge to a solution. Since a myriad of other numerical methods are available, the question arises as to which method is most appropriate for building energy simulation. This paper finds considerable computational benefits result from replacing the Powell's Hybrid method solver in HVACSIM+ with a solver more appropriate for the challenges particular to numerical simulations of buildings. Evidence is provided that a variant of the Levenberg-Marquardt solver has superior accuracy and robustness compared to the Powell's Hybrid method presently used in HVACSIM+.
Efficient hybrid-symbolic methods for quantum mechanical calculations
NASA Astrophysics Data System (ADS)
Scott, T. C.; Zhang, Wenxing
2015-06-01
We present hybrid symbolic-numerical tools to generate optimized numerical code for rapid prototyping and fast numerical computation starting from a computer algebra system (CAS) and tailored to any given quantum mechanical problem. Although a major focus concerns the quantum chemistry methods of H. Nakatsuji which has yielded successful and very accurate eigensolutions for small atoms and molecules, the tools are general and may be applied to any basis set calculation with a variational principle applied to its linear and non-linear parameters.
A Benders based rolling horizon algorithm for a dynamic facility location problem
Marufuzzaman,, Mohammad; Gedik, Ridvan; Roni, Mohammad S.
2016-06-28
This study presents a well-known capacitated dynamic facility location problem (DFLP) that satisfies the customer demand at a minimum cost by determining the time period for opening, closing, or retaining an existing facility in a given location. To solve this challenging NP-hard problem, this paper develops a unique hybrid solution algorithm that combines a rolling horizon algorithm with an accelerated Benders decomposition algorithm. Extensive computational experiments are performed on benchmark test instances to evaluate the hybrid algorithm’s efficiency and robustness in solving the DFLP problem. Computational results indicate that the hybrid Benders based rolling horizon algorithm consistently offers high qualitymore » feasible solutions in a much shorter computational time period than the standalone rolling horizon and accelerated Benders decomposition algorithms in the experimental range.« less
An efficient hybrid pseudospectral/finite-difference scheme for solving the TTI pure P-wave equation
NASA Astrophysics Data System (ADS)
Zhan, Ge; Pestana, Reynam C.; Stoffa, Paul L.
2013-04-01
The pure P-wave equation for modelling and migration in tilted transversely isotropic (TTI) media has attracted more and more attention in imaging seismic data with anisotropy. The desirable feature is that it is absolutely free of shear-wave artefacts and the consequent alleviation of numerical instabilities generally suffered by some systems of coupled equations. However, due to several forward-backward Fourier transforms in wavefield updating at each time step, the computational cost is significant, and thereby hampers its prevalence. We propose to use a hybrid pseudospectral (PS) and finite-difference (FD) scheme to solve the pure P-wave equation. In the hybrid solution, most of the cost-consuming wavenumber terms in the equation are replaced by inexpensive FD operators, which in turn accelerates the computation and reduces the computational cost. To demonstrate the benefit in cost saving of the new scheme, 2D and 3D reverse-time migration (RTM) examples using the hybrid solution to the pure P-wave equation are carried out, and respective runtimes are listed and compared. Numerical results show that the hybrid strategy demands less computation time and is faster than using the PS method alone. Furthermore, this new TTI RTM algorithm with the hybrid method is computationally less expensive than that with the FD solution to conventional TTI coupled equations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sreepathi, Sarat; Kumar, Jitendra; Mills, Richard T.
A proliferation of data from vast networks of remote sensing platforms (satellites, unmanned aircraft systems (UAS), airborne etc.), observational facilities (meteorological, eddy covariance etc.), state-of-the-art sensors, and simulation models offer unprecedented opportunities for scientific discovery. Unsupervised classification is a widely applied data mining approach to derive insights from such data. However, classification of very large data sets is a complex computational problem that requires efficient numerical algorithms and implementations on high performance computing (HPC) platforms. Additionally, increasing power, space, cooling and efficiency requirements has led to the deployment of hybrid supercomputing platforms with complex architectures and memory hierarchies like themore » Titan system at Oak Ridge National Laboratory. The advent of such accelerated computing architectures offers new challenges and opportunities for big data analytics in general and specifically, large scale cluster analysis in our case. Although there is an existing body of work on parallel cluster analysis, those approaches do not fully meet the needs imposed by the nature and size of our large data sets. Moreover, they had scaling limitations and were mostly limited to traditional distributed memory computing platforms. We present a parallel Multivariate Spatio-Temporal Clustering (MSTC) technique based on k-means cluster analysis that can target hybrid supercomputers like Titan. We developed a hybrid MPI, CUDA and OpenACC implementation that can utilize both CPU and GPU resources on computational nodes. We describe performance results on Titan that demonstrate the scalability and efficacy of our approach in processing large ecological data sets.« less
Multi-GPU hybrid programming accelerated three-dimensional phase-field model in binary alloy
NASA Astrophysics Data System (ADS)
Zhu, Changsheng; Liu, Jieqiong; Zhu, Mingfang; Feng, Li
2018-03-01
In the process of dendritic growth simulation, the computational efficiency and the problem scales have extremely important influence on simulation efficiency of three-dimensional phase-field model. Thus, seeking for high performance calculation method to improve the computational efficiency and to expand the problem scales has a great significance to the research of microstructure of the material. A high performance calculation method based on MPI+CUDA hybrid programming model is introduced. Multi-GPU is used to implement quantitative numerical simulations of three-dimensional phase-field model in binary alloy under the condition of multi-physical processes coupling. The acceleration effect of different GPU nodes on different calculation scales is explored. On the foundation of multi-GPU calculation model that has been introduced, two optimization schemes, Non-blocking communication optimization and overlap of MPI and GPU computing optimization, are proposed. The results of two optimization schemes and basic multi-GPU model are compared. The calculation results show that the use of multi-GPU calculation model can improve the computational efficiency of three-dimensional phase-field obviously, which is 13 times to single GPU, and the problem scales have been expanded to 8193. The feasibility of two optimization schemes is shown, and the overlap of MPI and GPU computing optimization has better performance, which is 1.7 times to basic multi-GPU model, when 21 GPUs are used.
A hybrid hydrostatic and non-hydrostatic numerical model for shallow flow simulations
NASA Astrophysics Data System (ADS)
Zhang, Jingxin; Liang, Dongfang; Liu, Hua
2018-05-01
Hydrodynamics of geophysical flows in oceanic shelves, estuaries, and rivers, are often studied by solving shallow water model equations. Although hydrostatic models are accurate and cost efficient for many natural flows, there are situations where the hydrostatic assumption is invalid, whereby a fully hydrodynamic model is necessary to increase simulation accuracy. There is a growing concern about the decrease of the computational cost of non-hydrostatic pressure models to improve the range of their applications in large-scale flows with complex geometries. This study describes a hybrid hydrostatic and non-hydrostatic model to increase the efficiency of simulating shallow water flows. The basic numerical model is a three-dimensional hydrostatic model solved by the finite volume method (FVM) applied to unstructured grids. Herein, a second-order total variation diminishing (TVD) scheme is adopted. Using a predictor-corrector method to calculate the non-hydrostatic pressure, we extended the hydrostatic model to a fully hydrodynamic model. By localising the computational domain in the corrector step for non-hydrostatic pressure calculations, a hybrid model was developed. There was no prior special treatment on mode switching, and the developed numerical codes were highly efficient and robust. The hybrid model is applicable to the simulation of shallow flows when non-hydrostatic pressure is predominant only in the local domain. Beyond the non-hydrostatic domain, the hydrostatic model is still accurate. The applicability of the hybrid method was validated using several study cases.
Manipulation of oligonucleotides immobilized on solid supports - DNA computations on surfaces
NASA Astrophysics Data System (ADS)
Liu, Qinghua
The manipulation of DNA oligonucleotides immobilized on various solid supports has been studied intensively, especially in the area of surface hybridization. Recently, surface-based biotechnology has been applied to the area of molecular computing. These surface-based methods have advantages with regard to ease of handling, facile purification, and less interference when compared to solution methodologies. This dissertation describes the investigation of molecular approaches to DNA computing. The feasibility of encoding a bit (0 or 1) of information for DNA-based computations at the single nucleotide level was studied, particularly with regard to the efficiency and specificity of hybridization discrimination. Both gold and glass surfaces, with addressed arrays of 32 oligonucleotides, were employed with similar hybridization results. Although single-base discrimination may be achieved in the system, it is at the cost of a severe decrease in the efficiency of hybridization to perfectly matched sequences. This compromises the utility of single nucleotide encoding for DNA computing applications in the absence of some additional mechanism for increasing specificity. Several methods are suggested including a multiple-base encoding strategy. The multiple-base encoding strategy was employed to develop a prototype DNA computer. The approach was demonstrated by solving a small example of the Satisfiability (SAT) problem, an NP-complete problem in Boolean logic. 16 distinct DNA oligonucleotides, encoding all candidate solutions to the 4-variable-4-clause-3-SAT problem, were immobilized on a gold surface in the non-addressed format. Four cycles of MARK (hybridization), DESTROY (enzymatic destruction) and UNMARK (denaturation) were performed, which identified and eliminated members of the set which were not solutions to the problem. Determination of the answer was accomplished in the READOUT (sequence identification) operation by PCR amplification of the remaining molecules and hybridization to an addressed array. Four answers were determined and the S/N ratio between correct and incorrect solutions ranged from 10 to 777, making discrimination between correct and incorrect solutions to the problem straightforward. Additionally, studies of enzymatic manipulations of DNA molecules on surfaces suggested the use of E. coli Exonuclease I (Exo I) and perhaps EarI in the DESTROY operation.
New hybrid conjugate gradient methods with the generalized Wolfe line search.
Xu, Xiao; Kong, Fan-Yu
2016-01-01
The conjugate gradient method was an efficient technique for solving the unconstrained optimization problem. In this paper, we made a linear combination with parameters β k of the DY method and the HS method, and putted forward the hybrid method of DY and HS. We also proposed the hybrid of FR and PRP by the same mean. Additionally, to present the two hybrid methods, we promoted the Wolfe line search respectively to compute the step size α k of the two hybrid methods. With the new Wolfe line search, the two hybrid methods had descent property and global convergence property of the two hybrid methods that can also be proved.
Pope, Bernard J; Fitch, Blake G; Pitman, Michael C; Rice, John J; Reumann, Matthias
2011-01-01
Future multiscale and multiphysics models must use the power of high performance computing (HPC) systems to enable research into human disease, translational medical science, and treatment. Previously we showed that computationally efficient multiscale models will require the use of sophisticated hybrid programming models, mixing distributed message passing processes (e.g. the message passing interface (MPI)) with multithreading (e.g. OpenMP, POSIX pthreads). The objective of this work is to compare the performance of such hybrid programming models when applied to the simulation of a lightweight multiscale cardiac model. Our results show that the hybrid models do not perform favourably when compared to an implementation using only MPI which is in contrast to our results using complex physiological models. Thus, with regards to lightweight multiscale cardiac models, the user may not need to increase programming complexity by using a hybrid programming approach. However, considering that model complexity will increase as well as the HPC system size in both node count and number of cores per node, it is still foreseeable that we will achieve faster than real time multiscale cardiac simulations on these systems using hybrid programming models.
Hybrid transport and diffusion modeling using electron thermal transport Monte Carlo SNB in DRACO
NASA Astrophysics Data System (ADS)
Chenhall, Jeffrey; Moses, Gregory
2017-10-01
The iSNB (implicit Schurtz Nicolai Busquet) multigroup diffusion electron thermal transport method is adapted into an Electron Thermal Transport Monte Carlo (ETTMC) transport method to better model angular and long mean free path non-local effects. Previously, the ETTMC model had been implemented in the 2D DRACO multiphysics code and found to produce consistent results with the iSNB method. Current work is focused on a hybridization of the computationally slower but higher fidelity ETTMC transport method with the computationally faster iSNB diffusion method in order to maximize computational efficiency. Furthermore, effects on the energy distribution of the heat flux divergence are studied. Work to date on the hybrid method will be presented. This work was supported by Sandia National Laboratories and the Univ. of Rochester Laboratory for Laser Energetics.
Mathematical and computational model for the analysis of micro hybrid rocket motor
NASA Astrophysics Data System (ADS)
Stoia-Djeska, Marius; Mingireanu, Florin
2012-11-01
The hybrid rockets use a two-phase propellant system. In the present work we first develop a simplified model of the coupling of the hybrid combustion process with the complete unsteady flow, starting from the combustion port and ending with the nozzle. The physical and mathematical model are adapted to the simulations of micro hybrid rocket motors. The flow model is based on the one-dimensional Euler equations with source terms. The flow equations and the fuel regression rate law are solved in a coupled manner. The platform of the numerical simulations is an implicit fourth-order Runge-Kutta second order cell-centred finite volume method. The numerical results obtained with this model show a good agreement with published experimental and numerical results. The computational model developed in this work is simple, computationally efficient and offers the advantage of taking into account a large number of functional and constructive parameters that are used by the engineers.
Computing border bases using mutant strategies
NASA Astrophysics Data System (ADS)
Ullah, E.; Abbas Khan, S.
2014-01-01
Border bases, a generalization of Gröbner bases, have actively been addressed during recent years due to their applicability to industrial problems. In cryptography and coding theory a useful application of border based is to solve zero-dimensional systems of polynomial equations over finite fields, which motivates us for developing optimizations of the algorithms that compute border bases. In 2006, Kehrein and Kreuzer formulated the Border Basis Algorithm (BBA), an algorithm which allows the computation of border bases that relate to a degree compatible term ordering. In 2007, J. Ding et al. introduced mutant strategies bases on finding special lower degree polynomials in the ideal. The mutant strategies aim to distinguish special lower degree polynomials (mutants) from the other polynomials and give them priority in the process of generating new polynomials in the ideal. In this paper we develop hybrid algorithms that use the ideas of J. Ding et al. involving the concept of mutants to optimize the Border Basis Algorithm for solving systems of polynomial equations over finite fields. In particular, we recall a version of the Border Basis Algorithm which is actually called the Improved Border Basis Algorithm and propose two hybrid algorithms, called MBBA and IMBBA. The new mutants variants provide us space efficiency as well as time efficiency. The efficiency of these newly developed hybrid algorithms is discussed using standard cryptographic examples.
Free-piston engine linear generator for hybrid vehicles modeling study
NASA Astrophysics Data System (ADS)
Callahan, T. J.; Ingram, S. K.
1995-05-01
Development of a free piston engine linear generator was investigated for use as an auxiliary power unit for a hybrid electric vehicle. The main focus of the program was to develop an efficient linear generator concept to convert the piston motion directly into electrical power. Computer modeling techniques were used to evaluate five different designs for linear generators. These designs included permanent magnet generators, reluctance generators, linear DC generators, and two and three-coil induction generators. The efficiency of the linear generator was highly dependent on the design concept. The two-coil induction generator was determined to be the best design, with an efficiency of approximately 90 percent.
NASA Astrophysics Data System (ADS)
Furlong, Cosme; Pryputniewicz, Ryszard J.
1998-05-01
Increased demands on the performance and efficiency of mechanical components impose challenges on their engineering design and optimization, especially when new and more demanding applications must be developed in relatively short periods of time while satisfying design objectives, as well as cost and manufacturability. In addition, reliability and durability must be taken into consideration. As a consequence, effective quantitative methodologies, computational and experimental, should be applied in the study and optimization of mechanical components. Computational investigations enable parametric studies and the determination of critical engineering design conditions, while experimental investigations, especially those using optical techniques, provide qualitative and quantitative information on the actual response of the structure of interest to the applied load and boundary conditions. We discuss a hybrid experimental and computational approach for investigation and optimization of mechanical components. The approach is based on analytical, computational, and experimental resolutions methodologies in the form of computational, noninvasive optical techniques, and fringe prediction analysis tools. Practical application of the hybrid approach is illustrated with representative examples that demonstrate the viability of the approach as an effective engineering tool for analysis and optimization.
Dynamic mass transfer methods have been developed to better describe the interaction of the aerosol population with semi-volatile species such as nitrate, ammonia, and chloride. Unfortunately, these dynamic methods are computationally expensive. Assumptions are often made to r...
Improved treatment of exact exchange in Quantum ESPRESSO
Barnes, Taylor A.; Kurth, Thorsten; Carrier, Pierre; ...
2017-01-18
Here, we present an algorithm and implementation for the parallel computation of exact exchange in Quantum ESPRESSO (QE) that exhibits greatly improved strong scaling. QE is an open-source software package for electronic structure calculations using plane wave density functional theory, and supports the use of local, semi-local, and hybrid DFT functionals. Wider application of hybrid functionals is desirable for the improved simulation of electronic band energy alignments and thermodynamic properties, but the computational complexity of evaluating the exact exchange potential limits the practical application of hybrid functionals to large systems and requires efficient implementations. We demonstrate that existing implementations ofmore » hybrid DFT that utilize a single data structure for both the local and exact exchange regions of the code are significantly limited in the degree of parallelization achievable. We present a band-pair parallelization approach, in which the calculation of exact exchange is parallelized and evaluated independently from the parallelization of the remainder of the calculation, with the wavefunction data being efficiently transformed on-the-fly into a form that is optimal for each part of the calculation. For a 64 water molecule supercell, our new algorithm reduces the overall time to solution by nearly an order of magnitude.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, Taylor A.; Kurth, Thorsten; Carrier, Pierre
Here, we present an algorithm and implementation for the parallel computation of exact exchange in Quantum ESPRESSO (QE) that exhibits greatly improved strong scaling. QE is an open-source software package for electronic structure calculations using plane wave density functional theory, and supports the use of local, semi-local, and hybrid DFT functionals. Wider application of hybrid functionals is desirable for the improved simulation of electronic band energy alignments and thermodynamic properties, but the computational complexity of evaluating the exact exchange potential limits the practical application of hybrid functionals to large systems and requires efficient implementations. We demonstrate that existing implementations ofmore » hybrid DFT that utilize a single data structure for both the local and exact exchange regions of the code are significantly limited in the degree of parallelization achievable. We present a band-pair parallelization approach, in which the calculation of exact exchange is parallelized and evaluated independently from the parallelization of the remainder of the calculation, with the wavefunction data being efficiently transformed on-the-fly into a form that is optimal for each part of the calculation. For a 64 water molecule supercell, our new algorithm reduces the overall time to solution by nearly an order of magnitude.« less
High performance hybrid functional Petri net simulations of biological pathway models on CUDA.
Chalkidis, Georgios; Nagasaki, Masao; Miyano, Satoru
2011-01-01
Hybrid functional Petri nets are a wide-spread tool for representing and simulating biological models. Due to their potential of providing virtual drug testing environments, biological simulations have a growing impact on pharmaceutical research. Continuous research advancements in biology and medicine lead to exponentially increasing simulation times, thus raising the demand for performance accelerations by efficient and inexpensive parallel computation solutions. Recent developments in the field of general-purpose computation on graphics processing units (GPGPU) enabled the scientific community to port a variety of compute intensive algorithms onto the graphics processing unit (GPU). This work presents the first scheme for mapping biological hybrid functional Petri net models, which can handle both discrete and continuous entities, onto compute unified device architecture (CUDA) enabled GPUs. GPU accelerated simulations are observed to run up to 18 times faster than sequential implementations. Simulating the cell boundary formation by Delta-Notch signaling on a CUDA enabled GPU results in a speedup of approximately 7x for a model containing 1,600 cells.
Energy efficient hybrid computing systems using spin devices
NASA Astrophysics Data System (ADS)
Sharad, Mrigank
Emerging spin-devices like magnetic tunnel junctions (MTJ's), spin-valves and domain wall magnets (DWM) have opened new avenues for spin-based logic design. This work explored potential computing applications which can exploit such devices for higher energy-efficiency and performance. The proposed applications involve hybrid design schemes, where charge-based devices supplement the spin-devices, to gain large benefits at the system level. As an example, lateral spin valves (LSV) involve switching of nanomagnets using spin-polarized current injection through a metallic channel such as Cu. Such spin-torque based devices possess several interesting properties that can be exploited for ultra-low power computation. Analog characteristic of spin current facilitate non-Boolean computation like majority evaluation that can be used to model a neuron. The magneto-metallic neurons can operate at ultra-low terminal voltage of ˜20mV, thereby resulting in small computation power. Moreover, since nano-magnets inherently act as memory elements, these devices can facilitate integration of logic and memory in interesting ways. The spin based neurons can be integrated with CMOS and other emerging devices leading to different classes of neuromorphic/non-Von-Neumann architectures. The spin-based designs involve `mixed-mode' processing and hence can provide very compact and ultra-low energy solutions for complex computation blocks, both digital as well as analog. Such low-power, hybrid designs can be suitable for various data processing applications like cognitive computing, associative memory, and currentmode on-chip global interconnects. Simulation results for these applications based on device-circuit co-simulation framework predict more than ˜100x improvement in computation energy as compared to state of the art CMOS design, for optimal spin-device parameters.
Ghosh, Arindam; Lee, Jae-Won; Cho, Ho-Shin
2013-01-01
Due to its efficiency, reliability and better channel and resource utilization, cooperative transmission technologies have been attractive options in underwater as well as terrestrial sensor networks. Their performance can be further improved if merged with forward error correction (FEC) techniques. In this paper, we propose and analyze a retransmission protocol named Cooperative-Hybrid Automatic Repeat reQuest (C-HARQ) for underwater acoustic sensor networks, which exploits both the reliability of cooperative ARQ (CARQ) and the efficiency of incremental redundancy-hybrid ARQ (IR-HARQ) using rate-compatible punctured convolution (RCPC) codes. Extensive Monte Carlo simulations are performed to investigate the performance of the protocol, in terms of both throughput and energy efficiency. The results clearly reveal the enhancement in performance achieved by the C-HARQ protocol, which outperforms both CARQ and conventional stop and wait ARQ (S&W ARQ). Further, using computer simulations, optimum values of various network parameters are estimated so as to extract the best performance out of the C-HARQ protocol. PMID:24217359
Pope, Bernard J; Fitch, Blake G; Pitman, Michael C; Rice, John J; Reumann, Matthias
2011-10-01
Future multiscale and multiphysics models that support research into human disease, translational medical science, and treatment can utilize the power of high-performance computing (HPC) systems. We anticipate that computationally efficient multiscale models will require the use of sophisticated hybrid programming models, mixing distributed message-passing processes [e.g., the message-passing interface (MPI)] with multithreading (e.g., OpenMP, Pthreads). The objective of this study is to compare the performance of such hybrid programming models when applied to the simulation of a realistic physiological multiscale model of the heart. Our results show that the hybrid models perform favorably when compared to an implementation using only the MPI and, furthermore, that OpenMP in combination with the MPI provides a satisfactory compromise between performance and code complexity. Having the ability to use threads within MPI processes enables the sophisticated use of all processor cores for both computation and communication phases. Considering that HPC systems in 2012 will have two orders of magnitude more cores than what was used in this study, we believe that faster than real-time multiscale cardiac simulations can be achieved on these systems.
Efficient parallel implicit methods for rotary-wing aerodynamics calculations
NASA Astrophysics Data System (ADS)
Wissink, Andrew M.
Euler/Navier-Stokes Computational Fluid Dynamics (CFD) methods are commonly used for prediction of the aerodynamics and aeroacoustics of modern rotary-wing aircraft. However, their widespread application to large complex problems is limited lack of adequate computing power. Parallel processing offers the potential for dramatic increases in computing power, but most conventional implicit solution methods are inefficient in parallel and new techniques must be adopted to realize its potential. This work proposes alternative implicit schemes for Euler/Navier-Stokes rotary-wing calculations which are robust and efficient in parallel. The first part of this work proposes an efficient parallelizable modification of the Lower Upper-Symmetric Gauss Seidel (LU-SGS) implicit operator used in the well-known Transonic Unsteady Rotor Navier Stokes (TURNS) code. The new hybrid LU-SGS scheme couples a point-relaxation approach of the Data Parallel-Lower Upper Relaxation (DP-LUR) algorithm for inter-processor communication with the Symmetric Gauss Seidel algorithm of LU-SGS for on-processor computations. With the modified operator, TURNS is implemented in parallel using Message Passing Interface (MPI) for communication. Numerical performance and parallel efficiency are evaluated on the IBM SP2 and Thinking Machines CM-5 multi-processors for a variety of steady-state and unsteady test cases. The hybrid LU-SGS scheme maintains the numerical performance of the original LU-SGS algorithm in all cases and shows a good degree of parallel efficiency. It experiences a higher degree of robustness than DP-LUR for third-order upwind solutions. The second part of this work examines use of Krylov subspace iterative solvers for the nonlinear CFD solutions. The hybrid LU-SGS scheme is used as a parallelizable preconditioner. Two iterative methods are tested, Generalized Minimum Residual (GMRES) and Orthogonal s-Step Generalized Conjugate Residual (OSGCR). The Newton method demonstrates good parallel performance on the IBM SP2, with OS-GCR giving slightly better performance than GMRES on large numbers of processors. For steady and quasi-steady calculations, the convergence rate is accelerated but the overall solution time remains about the same as the standard hybrid LU-SGS scheme. For unsteady calculations, however, the Newton method maintains a higher degree of time-accuracy which allows tbe use of larger timesteps and results in CPU savings of 20-35%.
NASA Astrophysics Data System (ADS)
Sheikhan, Mansour; Abbasnezhad Arabi, Mahdi; Gharavian, Davood
2015-10-01
Artificial neural networks are efficient models in pattern recognition applications, but their performance is dependent on employing suitable structure and connection weights. This study used a hybrid method for obtaining the optimal weight set and architecture of a recurrent neural emotion classifier based on gravitational search algorithm (GSA) and its binary version (BGSA), respectively. By considering the features of speech signal that were related to prosody, voice quality, and spectrum, a rich feature set was constructed. To select more efficient features, a fast feature selection method was employed. The performance of the proposed hybrid GSA-BGSA method was compared with similar hybrid methods based on particle swarm optimisation (PSO) algorithm and its binary version, PSO and discrete firefly algorithm, and hybrid of error back-propagation and genetic algorithm that were used for optimisation. Experimental tests on Berlin emotional database demonstrated the superior performance of the proposed method using a lighter network structure.
NASA Astrophysics Data System (ADS)
Rong, Bao; Rui, Xiaoting; Lu, Kun; Tao, Ling; Wang, Guoping; Ni, Xiaojun
2018-05-01
In this paper, an efficient method of dynamics modeling and vibration control design of a linear hybrid multibody system (MS) is studied based on the transfer matrix method. The natural vibration characteristics of a linear hybrid MS are solved by using low-order transfer equations. Then, by constructing the brand-new body dynamics equation, augmented operator and augmented eigenvector, the orthogonality of augmented eigenvector of a linear hybrid MS is satisfied, and its state space model expressed in each independent model space is obtained easily. According to this dynamics model, a robust independent modal space-fuzzy controller is designed for vibration control of a general MS, and the genetic optimization of some critical control parameters of fuzzy tuners is also presented. Two illustrative examples are performed, which results show that this method is computationally efficient and with perfect control performance.
Design and implementation of a hybrid sub-band acoustic echo canceller (AEC)
NASA Astrophysics Data System (ADS)
Bai, Mingsian R.; Yang, Cheng-Ken; Hur, Ker-Nan
2009-04-01
An efficient method is presented for implementing an acoustic echo canceller (AEC) that makes use of hybrid sub-band approach. The hybrid system is comprised of a fixed processor and an adaptive filter in each sub-band. The AEC aims at reducing the echo resulting from the acoustic feedback in loudspeaker-enclosure-microphone (LEM) systems such as teleconferencing and hands-free systems. In order to cancel the acoustical echo efficiently, various processing architectures including fixed filters, hybrid processors, and sub-band structure are investigated. A double-talk detector is incorporated into the proposed AEC to prevent the adaptive filter from diverging in double-talk situations. A de-correlation filter is also used alongside sub-band processing in order to enhance the performance and efficiency of AEC. All algorithms are implemented and verified on the platform of a fixed-point digital signal processor (DSP). The AECs are evaluated in terms of cancellation performance and computation complexity. In addition, listening tests are conducted to assess the subjective performance of the AECs. From the results, the proposed hybrid sub-band AEC was found to be the most effective among all methods in terms of echo reduction and timbral quality.
Hybrid soft computing systems for electromyographic signals analysis: a review.
Xie, Hong-Bo; Guo, Tianruo; Bai, Siwei; Dokos, Socrates
2014-02-03
Electromyographic (EMG) is a bio-signal collected on human skeletal muscle. Analysis of EMG signals has been widely used to detect human movement intent, control various human-machine interfaces, diagnose neuromuscular diseases, and model neuromusculoskeletal system. With the advances of artificial intelligence and soft computing, many sophisticated techniques have been proposed for such purpose. Hybrid soft computing system (HSCS), the integration of these different techniques, aims to further improve the effectiveness, efficiency, and accuracy of EMG analysis. This paper reviews and compares key combinations of neural network, support vector machine, fuzzy logic, evolutionary computing, and swarm intelligence for EMG analysis. Our suggestions on the possible future development of HSCS in EMG analysis are also given in terms of basic soft computing techniques, further combination of these techniques, and their other applications in EMG analysis.
Hybrid soft computing systems for electromyographic signals analysis: a review
2014-01-01
Electromyographic (EMG) is a bio-signal collected on human skeletal muscle. Analysis of EMG signals has been widely used to detect human movement intent, control various human-machine interfaces, diagnose neuromuscular diseases, and model neuromusculoskeletal system. With the advances of artificial intelligence and soft computing, many sophisticated techniques have been proposed for such purpose. Hybrid soft computing system (HSCS), the integration of these different techniques, aims to further improve the effectiveness, efficiency, and accuracy of EMG analysis. This paper reviews and compares key combinations of neural network, support vector machine, fuzzy logic, evolutionary computing, and swarm intelligence for EMG analysis. Our suggestions on the possible future development of HSCS in EMG analysis are also given in terms of basic soft computing techniques, further combination of these techniques, and their other applications in EMG analysis. PMID:24490979
JiTTree: A Just-in-Time Compiled Sparse GPU Volume Data Structure.
Labschütz, Matthias; Bruckner, Stefan; Gröller, M Eduard; Hadwiger, Markus; Rautek, Peter
2016-01-01
Sparse volume data structures enable the efficient representation of large but sparse volumes in GPU memory for computation and visualization. However, the choice of a specific data structure for a given data set depends on several factors, such as the memory budget, the sparsity of the data, and data access patterns. In general, there is no single optimal sparse data structure, but a set of several candidates with individual strengths and drawbacks. One solution to this problem are hybrid data structures which locally adapt themselves to the sparsity. However, they typically suffer from increased traversal overhead which limits their utility in many applications. This paper presents JiTTree, a novel sparse hybrid volume data structure that uses just-in-time compilation to overcome these problems. By combining multiple sparse data structures and reducing traversal overhead we leverage their individual advantages. We demonstrate that hybrid data structures adapt well to a large range of data sets. They are especially superior to other sparse data structures for data sets that locally vary in sparsity. Possible optimization criteria are memory, performance and a combination thereof. Through just-in-time (JIT) compilation, JiTTree reduces the traversal overhead of the resulting optimal data structure. As a result, our hybrid volume data structure enables efficient computations on the GPU, while being superior in terms of memory usage when compared to non-hybrid data structures.
NASA Astrophysics Data System (ADS)
Lai, Wencong; Khan, Abdul A.
2018-04-01
A computationally efficient hybrid finite-volume/finite-difference method is proposed for the numerical solution of Saint-Venant equations in one-dimensional open channel flows. The method adopts a mass-conservative finite volume discretization for the continuity equation and a semi-implicit finite difference discretization for the dynamic-wave momentum equation. The spatial discretization of the convective flux term in the momentum equation employs an upwind scheme and the water-surface gradient term is discretized using three different schemes. The performance of the numerical method is investigated in terms of efficiency and accuracy using various examples, including steady flow over a bump, dam-break flow over wet and dry downstream channels, wetting and drying in a parabolic bowl, and dam-break floods in laboratory physical models. Numerical solutions from the hybrid method are compared with solutions from a finite volume method along with analytic solutions or experimental measurements. Comparisons demonstrates that the hybrid method is efficient, accurate, and robust in modeling various flow scenarios, including subcritical, supercritical, and transcritical flows. In this method, the QUICK scheme for the surface slope discretization is more accurate and less diffusive than the center difference and the weighted average schemes.
On the use of reverse Brownian motion to accelerate hybrid simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakarji, Joseph; Tartakovsky, Daniel M., E-mail: tartakovsky@stanford.edu
Multiscale and multiphysics simulations are two rapidly developing fields of scientific computing. Efficient coupling of continuum (deterministic or stochastic) constitutive solvers with their discrete (stochastic, particle-based) counterparts is a common challenge in both kinds of simulations. We focus on interfacial, tightly coupled simulations of diffusion that combine continuum and particle-based solvers. The latter employs the reverse Brownian motion (rBm), a Monte Carlo approach that allows one to enforce inhomogeneous Dirichlet, Neumann, or Robin boundary conditions and is trivially parallelizable. We discuss numerical approaches for improving the accuracy of rBm in the presence of inhomogeneous Neumann boundary conditions and alternative strategiesmore » for coupling the rBm solver with its continuum counterpart. Numerical experiments are used to investigate the convergence, stability, and computational efficiency of the proposed hybrid algorithm.« less
Enabling smart personalized healthcare: a hybrid mobile-cloud approach for ECG telemonitoring.
Wang, Xiaoliang; Gui, Qiong; Liu, Bingwei; Jin, Zhanpeng; Chen, Yu
2014-05-01
The severe challenges of the skyrocketing healthcare expenditure and the fast aging population highlight the needs for innovative solutions supporting more accurate, affordable, flexible, and personalized medical diagnosis and treatment. Recent advances of mobile technologies have made mobile devices a promising tool to manage patients' own health status through services like telemedicine. However, the inherent limitations of mobile devices make them less effective in computation- or data-intensive tasks such as medical monitoring. In this study, we propose a new hybrid mobile-cloud computational solution to enable more effective personalized medical monitoring. To demonstrate the efficacy and efficiency of the proposed approach, we present a case study of mobile-cloud based electrocardiograph monitoring and analysis and develop a mobile-cloud prototype. The experimental results show that the proposed approach can significantly enhance the conventional mobile-based medical monitoring in terms of diagnostic accuracy, execution efficiency, and energy efficiency, and holds the potential in addressing future large-scale data analysis in personalized healthcare.
Hybrid discrete ordinates and characteristics method for solving the linear Boltzmann equation
NASA Astrophysics Data System (ADS)
Yi, Ce
With the ability of computer hardware and software increasing rapidly, deterministic methods to solve the linear Boltzmann equation (LBE) have attracted some attention for computational applications in both the nuclear engineering and medical physics fields. Among various deterministic methods, the discrete ordinates method (SN) and the method of characteristics (MOC) are two of the most widely used methods. The SN method is the traditional approach to solve the LBE for its stability and efficiency. While the MOC has some advantages in treating complicated geometries. However, in 3-D problems requiring a dense discretization grid in phase space (i.e., a large number of spatial meshes, directions, or energy groups), both methods could suffer from the need for large amounts of memory and computation time. In our study, we developed a new hybrid algorithm by combing the two methods into one code, TITAN. The hybrid approach is specifically designed for application to problems containing low scattering regions. A new serial 3-D time-independent transport code has been developed. Under the hybrid approach, the preferred method can be applied in different regions (blocks) within the same problem model. Since the characteristics method is numerically more efficient in low scattering media, the hybrid approach uses a block-oriented characteristics solver in low scattering regions, and a block-oriented SN solver in the remainder of the physical model. In the TITAN code, a physical problem model is divided into a number of coarse meshes (blocks) in Cartesian geometry. Either the characteristics solver or the SN solver can be chosen to solve the LBE within a coarse mesh. A coarse mesh can be filled with fine meshes or characteristic rays depending on the solver assigned to the coarse mesh. Furthermore, with its object-oriented programming paradigm and layered code structure, TITAN allows different individual spatial meshing schemes and angular quadrature sets for each coarse mesh. Two quadrature types (level-symmetric and Legendre-Chebyshev quadrature) along with the ordinate splitting techniques (rectangular splitting and PN-TN splitting) are implemented. In the S N solver, we apply a memory-efficient 'front-line' style paradigm to handle the fine mesh interface fluxes. In the characteristics solver, we have developed a novel 'backward' ray-tracing approach, in which a bi-linear interpolation procedure is used on the incoming boundaries of a coarse mesh. A CPU-efficient scattering kernel is shared in both solvers within the source iteration scheme. Angular and spatial projection techniques are developed to transfer the angular fluxes on the interfaces of coarse meshes with different discretization grids. The performance of the hybrid algorithm is tested in a number of benchmark problems in both nuclear engineering and medical physics fields. Among them are the Kobayashi benchmark problems and a computational tomography (CT) device model. We also developed an extra sweep procedure with the fictitious quadrature technique to calculate angular fluxes along directions of interest. The technique is applied in a single photon emission computed tomography (SPECT) phantom model to simulate the SPECT projection images. The accuracy and efficiency of the TITAN code are demonstrated in these benchmarks along with its scalability. A modified version of the characteristics solver is integrated in the PENTRAN code and tested within the parallel engine of PENTRAN. The limitations on the hybrid algorithm are also studied.
Zhang, Hong; Abhyankar, Shrirang; Constantinescu, Emil; ...
2017-01-24
Sensitivity analysis is an important tool for describing power system dynamic behavior in response to parameter variations. It is a central component in preventive and corrective control applications. The existing approaches for sensitivity calculations, namely, finite-difference and forward sensitivity analysis, require a computational effort that increases linearly with the number of sensitivity parameters. In this paper, we investigate, implement, and test a discrete adjoint sensitivity approach whose computational effort is effectively independent of the number of sensitivity parameters. The proposed approach is highly efficient for calculating sensitivities of larger systems and is consistent, within machine precision, with the function whosemore » sensitivity we are seeking. This is an essential feature for use in optimization applications. Moreover, our approach includes a consistent treatment of systems with switching, such as dc exciters, by deriving and implementing the adjoint jump conditions that arise from state-dependent and time-dependent switchings. The accuracy and the computational efficiency of the proposed approach are demonstrated in comparison with the forward sensitivity analysis approach. In conclusion, this paper focuses primarily on the power system dynamics, but the approach is general and can be applied to hybrid dynamical systems in a broader range of fields.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hong; Abhyankar, Shrirang; Constantinescu, Emil
Sensitivity analysis is an important tool for describing power system dynamic behavior in response to parameter variations. It is a central component in preventive and corrective control applications. The existing approaches for sensitivity calculations, namely, finite-difference and forward sensitivity analysis, require a computational effort that increases linearly with the number of sensitivity parameters. In this paper, we investigate, implement, and test a discrete adjoint sensitivity approach whose computational effort is effectively independent of the number of sensitivity parameters. The proposed approach is highly efficient for calculating sensitivities of larger systems and is consistent, within machine precision, with the function whosemore » sensitivity we are seeking. This is an essential feature for use in optimization applications. Moreover, our approach includes a consistent treatment of systems with switching, such as dc exciters, by deriving and implementing the adjoint jump conditions that arise from state-dependent and time-dependent switchings. The accuracy and the computational efficiency of the proposed approach are demonstrated in comparison with the forward sensitivity analysis approach. In conclusion, this paper focuses primarily on the power system dynamics, but the approach is general and can be applied to hybrid dynamical systems in a broader range of fields.« less
NASA Technical Reports Server (NTRS)
Nguyen, D. T.; Watson, Willie R. (Technical Monitor)
2005-01-01
The overall objectives of this research work are to formulate and validate efficient parallel algorithms, and to efficiently design/implement computer software for solving large-scale acoustic problems, arised from the unified frameworks of the finite element procedures. The adopted parallel Finite Element (FE) Domain Decomposition (DD) procedures should fully take advantages of multiple processing capabilities offered by most modern high performance computing platforms for efficient parallel computation. To achieve this objective. the formulation needs to integrate efficient sparse (and dense) assembly techniques, hybrid (or mixed) direct and iterative equation solvers, proper pre-conditioned strategies, unrolling strategies, and effective processors' communicating schemes. Finally, the numerical performance of the developed parallel finite element procedures will be evaluated by solving series of structural, and acoustic (symmetrical and un-symmetrical) problems (in different computing platforms). Comparisons with existing "commercialized" and/or "public domain" software are also included, whenever possible.
Accelerating Climate and Weather Simulations through Hybrid Computing
NASA Technical Reports Server (NTRS)
Zhou, Shujia; Cruz, Carlos; Duffy, Daniel; Tucker, Robert; Purcell, Mark
2011-01-01
Unconventional multi- and many-core processors (e.g. IBM (R) Cell B.E.(TM) and NVIDIA (R) GPU) have emerged as effective accelerators in trial climate and weather simulations. Yet these climate and weather models typically run on parallel computers with conventional processors (e.g. Intel, AMD, and IBM) using Message Passing Interface. To address challenges involved in efficiently and easily connecting accelerators to parallel computers, we investigated using IBM's Dynamic Application Virtualization (TM) (IBM DAV) software in a prototype hybrid computing system with representative climate and weather model components. The hybrid system comprises two Intel blades and two IBM QS22 Cell B.E. blades, connected with both InfiniBand(R) (IB) and 1-Gigabit Ethernet. The system significantly accelerates a solar radiation model component by offloading compute-intensive calculations to the Cell blades. Systematic tests show that IBM DAV can seamlessly offload compute-intensive calculations from Intel blades to Cell B.E. blades in a scalable, load-balanced manner. However, noticeable communication overhead was observed, mainly due to IP over the IB protocol. Full utilization of IB Sockets Direct Protocol and the lower latency production version of IBM DAV will reduce this overhead.
Sevink, G J A; Schmid, F; Kawakatsu, T; Milano, G
2017-02-22
We have extended an existing hybrid MD-SCF simulation technique that employs a coarsening step to enhance the computational efficiency of evaluating non-bonded particle interactions. This technique is conceptually equivalent to the single chain in mean-field (SCMF) method in polymer physics, in the sense that non-bonded interactions are derived from the non-ideal chemical potential in self-consistent field (SCF) theory, after a particle-to-field projection. In contrast to SCMF, however, MD-SCF evolves particle coordinates by the usual Newton's equation of motion. Since collisions are seriously affected by the softening of non-bonded interactions that originates from their evaluation at the coarser continuum level, we have devised a way to reinsert the effect of collisions on the structural evolution. Merging MD-SCF with multi-particle collision dynamics (MPCD), we mimic particle collisions at the level of computational cells and at the same time properly account for the momentum transfer that is important for a realistic system evolution. The resulting hybrid MD-SCF/MPCD method was validated for a particular coarse-grained model of phospholipids in aqueous solution, against reference full-particle simulations and the original MD-SCF model. We additionally implemented and tested an alternative and more isotropic finite difference gradient. Our results show that efficiency is improved by merging MD-SCF with MPCD, as properly accounting for hydrodynamic interactions considerably speeds up the phase separation dynamics, with negligible additional computational costs compared to efficient MD-SCF. This new method enables realistic simulations of large-scale systems that are needed to investigate the applications of self-assembled structures of lipids in nanotechnologies.
A Two-Stage Procedure Toward the Efficient Implementation of PANS and Other Hybrid Turbulence Models
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.; Girimaji, Sharath S.
2004-01-01
The main objective of this article is to introduce and to show the implementation of a novel two-stage procedure to efficiently estimate the level of scale resolution possible for a given flow on a given grid for Partial Averaged Navier-Stokes (PANS) and other hybrid models. It has been found that the prescribed scale resolution can play a major role in obtaining accurate flow solutions. The first step is to solve the unsteady or steady Reynolds Averaged Navier-Stokes (URANS/RANS) equations. From this preprocessing step, the turbulence length-scale field is obtained. This is then used to compute the characteristic length-scale ratio between the turbulence scale and the grid spacing. Based on this ratio, we can assess the finest scale resolution that a given grid for a given flow can support. Along with other additional criteria, we are able to analytically identify the appropriate hybrid solver resolution for different regions of the flow. This procedure removes the grid dependency issue that affects the results produced by different hybrid procedures in solving unsteady flows. The formulation, implementation methodology, and validation example are presented. We implemented this capability in a production Computational Fluid Dynamics (CFD) code, PAB3D, for the simulation of unsteady flows.
NASA Technical Reports Server (NTRS)
Banks, H. T.; Ito, K.
1991-01-01
A hybrid method for computing the feedback gains in linear quadratic regulator problem is proposed. The method, which combines use of a Chandrasekhar type system with an iteration of the Newton-Kleinman form with variable acceleration parameter Smith schemes, is formulated to efficiently compute directly the feedback gains rather than solutions of an associated Riccati equation. The hybrid method is particularly appropriate when used with large dimensional systems such as those arising in approximating infinite-dimensional (distributed parameter) control systems (e.g., those governed by delay-differential and partial differential equations). Computational advantages of the proposed algorithm over the standard eigenvector (Potter, Laub-Schur) based techniques are discussed, and numerical evidence of the efficacy of these ideas is presented.
A numerical algorithm for optimal feedback gains in high dimensional LQR problems
NASA Technical Reports Server (NTRS)
Banks, H. T.; Ito, K.
1986-01-01
A hybrid method for computing the feedback gains in linear quadratic regulator problems is proposed. The method, which combines the use of a Chandrasekhar type system with an iteration of the Newton-Kleinman form with variable acceleration parameter Smith schemes, is formulated so as to efficiently compute directly the feedback gains rather than solutions of an associated Riccati equation. The hybrid method is particularly appropriate when used with large dimensional systems such as those arising in approximating infinite dimensional (distributed parameter) control systems (e.g., those governed by delay-differential and partial differential equations). Computational advantage of the proposed algorithm over the standard eigenvector (Potter, Laub-Schur) based techniques are discussed and numerical evidence of the efficacy of our ideas presented.
2011-12-01
REMD while reproducing the energy landscape of explicit solvent simulations . ’ INTRODUCTION Molecular dynamics (MD) simulations of proteins can pro...Mongan, J.; McCammon, J. A. Accelerated molecular dynamics : a promising and efficient simulation method for biomolecules. J. Chem. Phys. 2004, 120 (24...Chemical Theory and Computation ARTICLE (8) Abraham,M. J.; Gready, J. E. Ensuringmixing efficiency of replica- exchange molecular dynamics simulations . J
Computational modeling of brain tumors: discrete, continuum or hybrid?
NASA Astrophysics Data System (ADS)
Wang, Zhihui; Deisboeck, Thomas S.
In spite of all efforts, patients diagnosed with highly malignant brain tumors (gliomas), continue to face a grim prognosis. Achieving significant therapeutic advances will also require a more detailed quantitative understanding of the dynamic interactions among tumor cells, and between these cells and their biological microenvironment. Data-driven computational brain tumor models have the potential to provide experimental tumor biologists with such quantitative and cost-efficient tools to generate and test hypotheses on tumor progression, and to infer fundamental operating principles governing bidirectional signal propagation in multicellular cancer systems. This review highlights the modeling objectives of and challenges with developing such in silico brain tumor models by outlining two distinct computational approaches: discrete and continuum, each with representative examples. Future directions of this integrative computational neuro-oncology field, such as hybrid multiscale multiresolution modeling are discussed.
Computational modeling of brain tumors: discrete, continuum or hybrid?
NASA Astrophysics Data System (ADS)
Wang, Zhihui; Deisboeck, Thomas S.
2008-04-01
In spite of all efforts, patients diagnosed with highly malignant brain tumors (gliomas), continue to face a grim prognosis. Achieving significant therapeutic advances will also require a more detailed quantitative understanding of the dynamic interactions among tumor cells, and between these cells and their biological microenvironment. Data-driven computational brain tumor models have the potential to provide experimental tumor biologists with such quantitative and cost-efficient tools to generate and test hypotheses on tumor progression, and to infer fundamental operating principles governing bidirectional signal propagation in multicellular cancer systems. This review highlights the modeling objectives of and challenges with developing such in silicobrain tumor models by outlining two distinct computational approaches: discrete and continuum, each with representative examples. Future directions of this integrative computational neuro-oncology field, such as hybrid multiscale multiresolution modeling are discussed.
Huang, Qiuhua; Vittal, Vijay
2018-05-09
Conventional electromagnetic transient (EMT) and phasor-domain hybrid simulation approaches presently exist for trans-mission system level studies. Their simulation efficiency is generally constrained by the EMT simulation. With an increasing number of distributed energy resources and non-conventional loads being installed in distribution systems, it is imperative to extend the hybrid simulation application to include distribution systems and integrated transmission and distribution systems. Meanwhile, it is equally important to improve the simulation efficiency as the modeling scope and complexity of the detailed system in the EMT simulation increases. To meet both requirements, this paper introduces an advanced EMT and phasor-domain hybrid simulationmore » approach. This approach has two main features: 1) a comprehensive phasor-domain modeling framework which supports positive-sequence, three-sequence, three-phase and mixed three-sequence/three-phase representations and 2) a robust and flexible simulation mode switching scheme. The developed scheme enables simulation switching from hybrid simulation mode back to pure phasor-domain dynamic simulation mode to achieve significantly improved simulation efficiency. The proposed method has been tested on integrated transmission and distribution systems. In conclusion, the results show that with the developed simulation switching feature, the total computational time is significantly reduced compared to running the hybrid simulation for the whole simulation period, while maintaining good simulation accuracy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Qiuhua; Vittal, Vijay
Conventional electromagnetic transient (EMT) and phasor-domain hybrid simulation approaches presently exist for trans-mission system level studies. Their simulation efficiency is generally constrained by the EMT simulation. With an increasing number of distributed energy resources and non-conventional loads being installed in distribution systems, it is imperative to extend the hybrid simulation application to include distribution systems and integrated transmission and distribution systems. Meanwhile, it is equally important to improve the simulation efficiency as the modeling scope and complexity of the detailed system in the EMT simulation increases. To meet both requirements, this paper introduces an advanced EMT and phasor-domain hybrid simulationmore » approach. This approach has two main features: 1) a comprehensive phasor-domain modeling framework which supports positive-sequence, three-sequence, three-phase and mixed three-sequence/three-phase representations and 2) a robust and flexible simulation mode switching scheme. The developed scheme enables simulation switching from hybrid simulation mode back to pure phasor-domain dynamic simulation mode to achieve significantly improved simulation efficiency. The proposed method has been tested on integrated transmission and distribution systems. In conclusion, the results show that with the developed simulation switching feature, the total computational time is significantly reduced compared to running the hybrid simulation for the whole simulation period, while maintaining good simulation accuracy.« less
Results of a 24-inch Hybrid Motor Performance Uncertainty Analysis
NASA Technical Reports Server (NTRS)
Sims, Joseph D.; Coleman, Hugh W.
1998-01-01
The subscale (11 and 24-inch) hybrid motors at the Marshall Space Flight Center (MSFC) have been used as versatile and cost effective testbeds for developing new technology. Comparisons between motor configuration, ignition systems, feed systems, fuel formulations, and nozzle materials have been carried out without detailed consideration as to haw "good" the motor performance data were. For the 250,000 lb/thrust motor developed by the Hybrid Propulsion Demonstration Program consortium, this shortcoming is particularly risky because motor performance will likely be used as put of a set of downselect criteria to choose between competing ignition and feed systems under development. This analysis directly addresses that shortcoming by applying uncertainty analysis techniques to the experimental determination of the characteristic velocity, theoretical characteristic velocity, and characteristic velocity efficiency for a 24-inch motor firing. With the adoption of fuel-lined headends, flow restriction, and aft mixing chambers, state of the an 24-inch hybrid motors have become very efficient However, impossibly high combustion efficiencies (some computed as high as 108%) have been measured in some tests with 11-inch motors. This analysis has given new insight into explaining how these efficiencies were measured to be so high, and into which experimental measurements contribute the most to the overall uncertainty.
Meyer, Frans J C; Davidson, David B; Jakobus, Ulrich; Stuchly, Maria A
2003-02-01
A hybrid finite-element method (FEM)/method of moments (MoM) technique is employed for specific absorption rate (SAR) calculations in a human phantom in the near field of a typical group special mobile (GSM) base-station antenna. The MoM is used to model the metallic surfaces and wires of the base-station antenna, and the FEM is used to model the heterogeneous human phantom. The advantages of each of these frequency domain techniques are, thus, exploited, leading to a highly efficient and robust numerical method for addressing this type of bioelectromagnetic problem. The basic mathematical formulation of the hybrid technique is presented. This is followed by a discussion of important implementation details-in particular, the linear algebra routines for sparse, complex FEM matrices combined with dense MoM matrices. The implementation is validated by comparing results to MoM (surface equivalence principle implementation) and finite-difference time-domain (FDTD) solutions of human exposure problems. A comparison of the computational efficiency of the different techniques is presented. The FEM/MoM implementation is then used for whole-body and critical-organ SAR calculations in a phantom at different positions in the near field of a base-station antenna. This problem cannot, in general, be solved using the MoM or FDTD due to computational limitations. This paper shows that the specific hybrid FEM/MoM implementation is an efficient numerical tool for accurate assessment of human exposure in the near field of base-station antennas.
NASA Astrophysics Data System (ADS)
Hajarolasvadi, Setare; Elbanna, Ahmed E.
2017-11-01
The finite difference (FD) and the spectral boundary integral (SBI) methods have been used extensively to model spontaneously-propagating shear cracks in a variety of engineering and geophysical applications. In this paper, we propose a new modelling approach in which these two methods are combined through consistent exchange of boundary tractions and displacements. Benefiting from the flexibility of FD and the efficiency of SBI methods, the proposed hybrid scheme will solve a wide range of problems in a computationally efficient way. We demonstrate the validity of the approach using two examples for dynamic rupture propagation: one in the presence of a low-velocity layer and the other in which off-fault plasticity is permitted. We discuss possible potential uses of the hybrid scheme in earthquake cycle simulations as well as an exact absorbing boundary condition.
Ding, Xuemei; Bucholc, Magda; Wang, Haiying; Glass, David H; Wang, Hui; Clarke, Dave H; Bjourson, Anthony John; Dowey, Le Roy C; O'Kane, Maurice; Prasad, Girijesh; Maguire, Liam; Wong-Lin, KongFatt
2018-06-27
There is currently a lack of an efficient, objective and systemic approach towards the classification of Alzheimer's disease (AD), due to its complex etiology and pathogenesis. As AD is inherently dynamic, it is also not clear how the relationships among AD indicators vary over time. To address these issues, we propose a hybrid computational approach for AD classification and evaluate it on the heterogeneous longitudinal AIBL dataset. Specifically, using clinical dementia rating as an index of AD severity, the most important indicators (mini-mental state examination, logical memory recall, grey matter and cerebrospinal volumes from MRI and active voxels from PiB-PET brain scans, ApoE, and age) can be automatically identified from parallel data mining algorithms. In this work, Bayesian network modelling across different time points is used to identify and visualize time-varying relationships among the significant features, and importantly, in an efficient way using only coarse-grained data. Crucially, our approach suggests key data features and their appropriate combinations that are relevant for AD severity classification with high accuracy. Overall, our study provides insights into AD developments and demonstrates the potential of our approach in supporting efficient AD diagnosis.
Solving Fuzzy Optimization Problem Using Hybrid Ls-Sa Method
NASA Astrophysics Data System (ADS)
Vasant, Pandian
2011-06-01
Fuzzy optimization problem has been one of the most and prominent topics inside the broad area of computational intelligent. It's especially relevant in the filed of fuzzy non-linear programming. It's application as well as practical realization can been seen in all the real world problems. In this paper a large scale non-linear fuzzy programming problem has been solved by hybrid optimization techniques of Line Search (LS), Simulated Annealing (SA) and Pattern Search (PS). As industrial production planning problem with cubic objective function, 8 decision variables and 29 constraints has been solved successfully using LS-SA-PS hybrid optimization techniques. The computational results for the objective function respect to vagueness factor and level of satisfaction has been provided in the form of 2D and 3D plots. The outcome is very promising and strongly suggests that the hybrid LS-SA-PS algorithm is very efficient and productive in solving the large scale non-linear fuzzy programming problem.
Hybrid Skyshine Calculations for Complex Neutron and Gamma-Ray Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shultis, J. Kenneth
2000-10-15
A two-step hybrid method is described for computationally efficient estimation of neutron and gamma-ray skyshine doses far from a shielded source. First, the energy and angular dependence of radiation escaping into the atmosphere from a source containment is determined by a detailed transport model such as MCNP. Then, an effective point source with this energy and angular dependence is used in the integral line-beam method to transport the radiation through the atmosphere up to 2500 m from the source. An example spent-fuel storage cask is analyzed with this hybrid method and compared to detailed MCNP skyshine calculations.
NASA Astrophysics Data System (ADS)
Mancuso, Peter Timothy
Fixed-wing unmanned aerial vehicles (UAVs) that offer vertical takeoff and landing (VTOL) and forward flight capability suffer from sub-par performance in both flight modes. Achieving the next generation of efficient hybrid aircraft requires innovations in: (i) power management, (ii) efficient structures, and (iii) control methodologies. Existing hybrid UAVs generally utilize one of three transitioning mechanisms: an external power mechanism to tilt the rotor-propulsion pod, separate propulsion units and rotors during hover and forward flight, or tilt body craft (smaller scale). Thus, hybrid concepts require more energy compared to dedicated fixed-wing or rotorcraft UAVs. Moreover, design trade-offs to reinforce the wing structure (typically to accommodate the propulsion systems and enable hover, i.e. tilt-rotor concepts) adversely impacts the aerodynamics, controllability and efficiency of the aircraft in both hover and forward flight modes. The goal of this research is to develop more efficient VTOL/ hover and forward flight UAVs. In doing so, the transition sequence, transition mechanism, and actuator performance are heavily considered. A design and control methodology was implemented to address these issues through a series of computer simulations and prototype benchtop tests to verify the proposed solution. Finally, preliminary field testing with a first-generation prototype was conducted. The methods used in this research offer guidelines and a new dual-arm rotor UAV concept to designing more efficient hybrid UAVs in both hover and forward flight.
A Hybrid Approach for Efficient Modeling of Medium-Frequency Propagation in Coal Mines
Brocker, Donovan E.; Sieber, Peter E.; Waynert, Joseph A.; Li, Jingcheng; Werner, Pingjuan L.; Werner, Douglas H.
2015-01-01
An efficient procedure for modeling medium frequency (MF) communications in coal mines is introduced. In particular, a hybrid approach is formulated and demonstrated utilizing ideal transmission line equations to model MF propagation in combination with full-wave sections used for accurate simulation of local antenna-line coupling and other near-field effects. This work confirms that the hybrid method accurately models signal propagation from a source to a load for various system geometries and material compositions, while significantly reducing computation time. With such dramatic improvement to solution times, it becomes feasible to perform large-scale optimizations with the primary motivation of improving communications in coal mines both for daily operations and emergency response. Furthermore, it is demonstrated that the hybrid approach is suitable for modeling and optimizing large communication networks in coal mines that may otherwise be intractable to simulate using traditional full-wave techniques such as moment methods or finite-element analysis. PMID:26478686
NASA Astrophysics Data System (ADS)
Wang, Jinting; Lu, Liqiao; Zhu, Fei
2018-01-01
Finite element (FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations (RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy, of numerical integrations in solving FE numerical substructure in RTHSs. First, sparse matrix storage schemes are adopted to decrease the computational time of FE numerical substructure. In this way, the task execution time (TET) decreases such that the scale of the numerical substructure model increases. Subsequently, several commonly used explicit numerical integration algorithms, including the central difference method (CDM), the Newmark explicit method, the Chang method and the Gui-λ method, are comprehensively compared to evaluate their computational time in solving FE numerical substructure. CDM is better than the other explicit integration algorithms when the damping matrix is diagonal, while the Gui-λ (λ = 4) method is advantageous when the damping matrix is non-diagonal. Finally, the effect of time delay on the computational accuracy of RTHSs is investigated by simulating structure-foundation systems. Simulation results show that the influences of time delay on the displacement response become obvious with the mass ratio increasing, and delay compensation methods may reduce the relative error of the displacement peak value to less than 5% even under the large time-step and large time delay.
Modeling bioluminescent photon transport in tissue based on Radiosity-diffusion model
NASA Astrophysics Data System (ADS)
Sun, Li; Wang, Pu; Tian, Jie; Zhang, Bo; Han, Dong; Yang, Xin
2010-03-01
Bioluminescence tomography (BLT) is one of the most important non-invasive optical molecular imaging modalities. The model for the bioluminescent photon propagation plays a significant role in the bioluminescence tomography study. Due to the high computational efficiency, diffusion approximation (DA) is generally applied in the bioluminescence tomography. But the diffusion equation is valid only in highly scattering and weakly absorbing regions and fails in non-scattering or low-scattering tissues, such as a cyst in the breast, the cerebrospinal fluid (CSF) layer of the brain and synovial fluid layer in the joints. A hybrid Radiosity-diffusion model is proposed for dealing with the non-scattering regions within diffusing domains in this paper. This hybrid method incorporates a priori information of the geometry of non-scattering regions, which can be acquired by magnetic resonance imaging (MRI) or x-ray computed tomography (CT). Then the model is implemented using a finite element method (FEM) to ensure the high computational efficiency. Finally, we demonstrate that the method is comparable with Mont Carlo (MC) method which is regarded as a 'gold standard' for photon transportation simulation.
Combustion Processes in Hybrid Rocket Engines
NASA Technical Reports Server (NTRS)
Venkateswaran,S.; Merkle, C. L.
1996-01-01
In recent years, there has been a resurgence of interest in the development of hybrid rocket engines for advanced launch vehicle applications. Hybrid propulsion systems use a solid fuel such as hydroxyl-terminated polybutadiene (HTPB) along with a gaseous/liquid oxidizer. The performance of hybrid combustors depends on the convective and radiative heat fluxes to the fuel surface, the rate of pyrolysis in the solid phase, and the turbulent combustion processes in the gaseous phases. These processes in combination specify the regression rates of the fuel surface and thereby the utilization efficiency of the fuel. In this paper, we employ computational fluid dynamics (CFD) techniques in order to gain a quantitative understanding of the physical trends in hybrid rocket combustors. The computational modeling is tailored to ongoing experiments at Penn State that employ a two dimensional slab burner configuration. The coordinated computational/experimental effort enables model validation while providing an understanding of the experimental observations. Computations to date have included the full length geometry with and with the aft nozzle section as well as shorter length domains for extensive parametric characterization. HTPB is sed as the fuel with 1,3 butadiene being taken as the gaseous product of the pyrolysis. Pure gaseous oxygen is taken as the oxidizer. The fuel regression rate is specified using an Arrhenius rate reaction, which the fuel surface temperature is given by an energy balance involving gas-phase convection and radiation as well as thermal conduction in the solid-phase. For the gas-phase combustion, a two step global reaction is used. The standard kappa - epsilon model is used for turbulence closure. Radiation is presently treated using a simple diffusion approximation which is valid for large optical path lengths, representative of radiation from soot particles. Computational results are obtained to determine the trends in the fuel burning or regression rates as a function of the head-end oxidizer mass flux, G=rho(e)U(e), and the chamber pressure. Furthermore, computation of the full slab burner configuration has also been obtained for various stages of the burn. Comparisons with available experimental data from small scale tests conducted by General Dynamics-Thiokol-Rocketdyne suggest reasonable agreement in the predicted regression rates. Future work will include: (1) a model for soot generation in the flame for more quantitative radiative transfer modelling, (2) a parametric study of combustion efficiency, and (3) transient calculations to help determine the possible mechanisms responsible for combustion instability in hybrid rocket motors.
NASA Astrophysics Data System (ADS)
Decraene, Carolina; Dijckmans, Arne; Reynders, Edwin P. B.
2018-05-01
A method is developed for computing the mean and variance of the diffuse field sound transmission loss of finite-sized layered wall and floor systems that consist of solid, fluid and/or poroelastic layers. This is achieved by coupling a transfer matrix model of the wall or floor to statistical energy analysis subsystem models of the adjacent room volumes. The modal behavior of the wall is approximately accounted for by projecting the wall displacement onto a set of sinusoidal lateral basis functions. This hybrid modal transfer matrix-statistical energy analysis method is validated on multiple wall systems: a thin steel plate, a polymethyl methacrylate panel, a thick brick wall, a sandwich panel, a double-leaf wall with poro-elastic material in the cavity, and a double glazing. The predictions are compared with experimental data and with results obtained using alternative prediction methods such as the transfer matrix method with spatial windowing, the hybrid wave based-transfer matrix method, and the hybrid finite element-statistical energy analysis method. These comparisons confirm the prediction accuracy of the proposed method and the computational efficiency against the conventional hybrid finite element-statistical energy analysis method.
Redundancy management for efficient fault recovery in NASA's distributed computing system
NASA Technical Reports Server (NTRS)
Malek, Miroslaw; Pandya, Mihir; Yau, Kitty
1991-01-01
The management of redundancy in computer systems was studied and guidelines were provided for the development of NASA's fault-tolerant distributed systems. Fault recovery and reconfiguration mechanisms were examined. A theoretical foundation was laid for redundancy management by efficient reconfiguration methods and algorithmic diversity. Algorithms were developed to optimize the resources for embedding of computational graphs of tasks in the system architecture and reconfiguration of these tasks after a failure has occurred. The computational structure represented by a path and the complete binary tree was considered and the mesh and hypercube architectures were targeted for their embeddings. The innovative concept of Hybrid Algorithm Technique was introduced. This new technique provides a mechanism for obtaining fault tolerance while exhibiting improved performance.
Ren, Qiang; Nagar, Jogender; Kang, Lei; Bian, Yusheng; Werner, Ping; Werner, Douglas H
2017-05-18
A highly efficient numerical approach for simulating the wideband optical response of nano-architectures comprised of Drude-Critical Points (DCP) media (e.g., gold and silver) is proposed and validated through comparing with commercial computational software. The kernel of this algorithm is the subdomain level discontinuous Galerkin time domain (DGTD) method, which can be viewed as a hybrid of the spectral-element time-domain method (SETD) and the finite-element time-domain (FETD) method. An hp-refinement technique is applied to decrease the Degrees-of-Freedom (DoFs) and computational requirements. The collocated E-J scheme facilitates solving the auxiliary equations by converting the inversions of matrices to simpler vector manipulations. A new hybrid time stepping approach, which couples the Runge-Kutta and Newmark methods, is proposed to solve the temporal auxiliary differential equations (ADEs) with a high degree of efficiency. The advantages of this new approach, in terms of computational resource overhead and accuracy, are validated through comparison with well-known commercial software for three diverse cases, which cover both near-field and far-field properties with plane wave and lumped port sources. The presented work provides the missing link between DCP dispersive models and FETD and/or SETD based algorithms. It is a competitive candidate for numerically studying the wideband plasmonic properties of DCP media.
Efficient Irregular Wavefront Propagation Algorithms on Hybrid CPU-GPU Machines
Teodoro, George; Pan, Tony; Kurc, Tahsin; Kong, Jun; Cooper, Lee; Saltz, Joel
2013-01-01
We address the problem of efficient execution of a computation pattern, referred to here as the irregular wavefront propagation pattern (IWPP), on hybrid systems with multiple CPUs and GPUs. The IWPP is common in several image processing operations. In the IWPP, data elements in the wavefront propagate waves to their neighboring elements on a grid if a propagation condition is satisfied. Elements receiving the propagated waves become part of the wavefront. This pattern results in irregular data accesses and computations. We develop and evaluate strategies for efficient computation and propagation of wavefronts using a multi-level queue structure. This queue structure improves the utilization of fast memories in a GPU and reduces synchronization overheads. We also develop a tile-based parallelization strategy to support execution on multiple CPUs and GPUs. We evaluate our approaches on a state-of-the-art GPU accelerated machine (equipped with 3 GPUs and 2 multicore CPUs) using the IWPP implementations of two widely used image processing operations: morphological reconstruction and euclidean distance transform. Our results show significant performance improvements on GPUs. The use of multiple CPUs and GPUs cooperatively attains speedups of 50× and 85× with respect to single core CPU executions for morphological reconstruction and euclidean distance transform, respectively. PMID:23908562
Accelerating Climate Simulations Through Hybrid Computing
NASA Technical Reports Server (NTRS)
Zhou, Shujia; Sinno, Scott; Cruz, Carlos; Purcell, Mark
2009-01-01
Unconventional multi-core processors (e.g., IBM Cell B/E and NYIDIDA GPU) have emerged as accelerators in climate simulation. However, climate models typically run on parallel computers with conventional processors (e.g., Intel and AMD) using MPI. Connecting accelerators to this architecture efficiently and easily becomes a critical issue. When using MPI for connection, we identified two challenges: (1) identical MPI implementation is required in both systems, and; (2) existing MPI code must be modified to accommodate the accelerators. In response, we have extended and deployed IBM Dynamic Application Virtualization (DAV) in a hybrid computing prototype system (one blade with two Intel quad-core processors, two IBM QS22 Cell blades, connected with Infiniband), allowing for seamlessly offloading compute-intensive functions to remote, heterogeneous accelerators in a scalable, load-balanced manner. Currently, a climate solar radiation model running with multiple MPI processes has been offloaded to multiple Cell blades with approx.10% network overhead.
Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions.
Salis, Howard; Kaznessis, Yiannis
2005-02-01
The dynamical solution of a well-mixed, nonlinear stochastic chemical kinetic system, described by the Master equation, may be exactly computed using the stochastic simulation algorithm. However, because the computational cost scales with the number of reaction occurrences, systems with one or more "fast" reactions become costly to simulate. This paper describes a hybrid stochastic method that partitions the system into subsets of fast and slow reactions, approximates the fast reactions as a continuous Markov process, using a chemical Langevin equation, and accurately describes the slow dynamics using the integral form of the "Next Reaction" variant of the stochastic simulation algorithm. The key innovation of this method is its mechanism of efficiently monitoring the occurrences of slow, discrete events while simultaneously simulating the dynamics of a continuous, stochastic or deterministic process. In addition, by introducing an approximation in which multiple slow reactions may occur within a time step of the numerical integration of the chemical Langevin equation, the hybrid stochastic method performs much faster with only a marginal decrease in accuracy. Multiple examples, including a biological pulse generator and a large-scale system benchmark, are simulated using the exact and proposed hybrid methods as well as, for comparison, a previous hybrid stochastic method. Probability distributions of the solutions are compared and the weak errors of the first two moments are computed. In general, these hybrid methods may be applied to the simulation of the dynamics of a system described by stochastic differential, ordinary differential, and Master equations.
Probabilistic Analysis of Solid Oxide Fuel Cell Based Hybrid Gas Turbine System
NASA Technical Reports Server (NTRS)
Gorla, Rama S. R.; Pai, Shantaram S.; Rusick, Jeffrey J.
2003-01-01
The emergence of fuel cell systems and hybrid fuel cell systems requires the evolution of analysis strategies for evaluating thermodynamic performance. A gas turbine thermodynamic cycle integrated with a fuel cell was computationally simulated and probabilistically evaluated in view of the several uncertainties in the thermodynamic performance parameters. Cumulative distribution functions and sensitivity factors were computed for the overall thermal efficiency and net specific power output due to the uncertainties in the thermodynamic random variables. These results can be used to quickly identify the most critical design variables in order to optimize the design and make it cost effective. The analysis leads to the selection of criteria for gas turbine performance.
Brandenburg, Jan Gerit; Caldeweyher, Eike; Grimme, Stefan
2016-06-21
We extend the recently introduced PBEh-3c global hybrid density functional [S. Grimme et al., J. Chem. Phys., 2015, 143, 054107] by a screened Fock exchange variant based on the Henderson-Janesko-Scuseria exchange hole model. While the excellent performance of the global hybrid is maintained for small covalently bound molecules, its performance for computed condensed phase mass densities is further improved. Most importantly, a speed up of 30 to 50% can be achieved and especially for small orbital energy gap cases, the method is numerically much more robust. The latter point is important for many applications, e.g., for metal-organic frameworks, organic semiconductors, or protein structures. This enables an accurate density functional based electronic structure calculation of a full DNA helix structure on a single core desktop computer which is presented as an example in addition to comprehensive benchmark results.
NASA Astrophysics Data System (ADS)
Yang, Sheng-Chun; Lu, Zhong-Yuan; Qian, Hu-Jun; Wang, Yong-Lei; Han, Jie-Ping
2017-11-01
In this work, we upgraded the electrostatic interaction method of CU-ENUF (Yang, et al., 2016) which first applied CUNFFT (nonequispaced Fourier transforms based on CUDA) to the reciprocal-space electrostatic computation and made the computation of electrostatic interaction done thoroughly in GPU. The upgraded edition of CU-ENUF runs concurrently in a hybrid parallel way that enables the computation parallelizing on multiple computer nodes firstly, then further on the installed GPU in each computer. By this parallel strategy, the size of simulation system will be never restricted to the throughput of a single CPU or GPU. The most critical technical problem is how to parallelize a CUNFFT in the parallel strategy, which is conquered effectively by deep-seated research of basic principles and some algorithm skills. Furthermore, the upgraded method is capable of computing electrostatic interactions for both the atomistic molecular dynamics (MD) and the dissipative particle dynamics (DPD). Finally, the benchmarks conducted for validation and performance indicate that the upgraded method is able to not only present a good precision when setting suitable parameters, but also give an efficient way to compute electrostatic interactions for huge simulation systems. Program Files doi:http://dx.doi.org/10.17632/zncf24fhpv.1 Licensing provisions: GNU General Public License 3 (GPL) Programming language: C, C++, and CUDA C Supplementary material: The program is designed for effective electrostatic interactions of large-scale simulation systems, which runs on particular computers equipped with NVIDIA GPUs. It has been tested on (a) single computer node with Intel(R) Core(TM) i7-3770@ 3.40 GHz (CPU) and GTX 980 Ti (GPU), and (b) MPI parallel computer nodes with the same configurations. Nature of problem: For molecular dynamics simulation, the electrostatic interaction is the most time-consuming computation because of its long-range feature and slow convergence in simulation space, which approximately take up most of the total simulation time. Although the parallel method CU-ENUF (Yang et al., 2016) based on GPU has achieved a qualitative leap compared with previous methods in electrostatic interactions computation, the computation capability is limited to the throughput capacity of a single GPU for super-scale simulation system. Therefore, we should look for an effective method to handle the calculation of electrostatic interactions efficiently for a simulation system with super-scale size. Solution method: We constructed a hybrid parallel architecture, in which CPU and GPU are combined to accelerate the electrostatic computation effectively. Firstly, the simulation system is divided into many subtasks via domain-decomposition method. Then MPI (Message Passing Interface) is used to implement the CPU-parallel computation with each computer node corresponding to a particular subtask, and furthermore each subtask in one computer node will be executed in GPU in parallel efficiently. In this hybrid parallel method, the most critical technical problem is how to parallelize a CUNFFT (nonequispaced fast Fourier transform based on CUDA) in the parallel strategy, which is conquered effectively by deep-seated research of basic principles and some algorithm skills. Restrictions: The HP-ENUF is mainly oriented to super-scale system simulations, in which the performance superiority is shown adequately. However, for a small simulation system containing less than 106 particles, the mode of multiple computer nodes has no apparent efficiency advantage or even lower efficiency due to the serious network delay among computer nodes, than the mode of single computer node. References: (1) S.-C. Yang, H.-J. Qian, Z.-Y. Lu, Appl. Comput. Harmon. Anal. 2016, http://dx.doi.org/10.1016/j.acha.2016.04.009. (2) S.-C. Yang, Y.-L. Wang, G.-S. Jiao, H.-J. Qian, Z.-Y. Lu, J. Comput. Chem. 37 (2016) 378. (3) S.-C. Yang, Y.-L. Zhu, H.-J. Qian, Z.-Y. Lu, Appl. Chem. Res. Chin. Univ., 2017, http://dx.doi.org/10.1007/s40242-016-6354-5. (4) Y.-L. Zhu, H. Liu, Z.-W. Li, H.-J. Qian, G. Milano, Z.-Y. Lu, J. Comput. Chem. 34 (2013) 2197.
Computation of the sound generated by isotropic turbulence
NASA Technical Reports Server (NTRS)
Sarkar, S.; Hussaini, M. Y.
1993-01-01
The acoustic radiation from isotropic turbulence is computed numerically. A hybrid direct numerical simulation approach which combines direct numerical simulation (DNS) of the turbulent flow with the Lighthill acoustic analogy is utilized. It is demonstrated that the hybrid DNS method is a feasible approach to the computation of sound generated by turbulent flows. The acoustic efficiency in the simulation of isotropic turbulence appears to be substantially less than that in subsonic jet experiments. The dominant frequency of the computed acoustic pressure is found to be somewhat larger than the dominant frequency of the energy-containing scales of motion. The acoustic power in the simulations is proportional to epsilon (M(sub t))(exp 5) where epsilon is the turbulent dissipation rate and M(sub t) is the turbulent Mach number. This is in agreement with the analytical result of Proudman (1952), but the constant of proportionality is smaller than the analytical result. Two different methods of computing the acoustic power from the DNS data bases yielded consistent results.
Computational Modeling of Liquid and Gaseous Control Valves
NASA Technical Reports Server (NTRS)
Daines, Russell; Ahuja, Vineet; Hosangadi, Ashvin; Shipman, Jeremy; Moore, Arden; Sulyma, Peter
2005-01-01
In this paper computational modeling efforts undertaken at NASA Stennis Space Center in support of rocket engine component testing are discussed. Such analyses include structurally complex cryogenic liquid valves and gas valves operating at high pressures and flow rates. Basic modeling and initial successes are documented, and other issues that make valve modeling at SSC somewhat unique are also addressed. These include transient behavior, valve stall, and the determination of flow patterns in LOX valves. Hexahedral structured grids are used for valves that can be simplifies through the use of axisymmetric approximation. Hybrid unstructured methodology is used for structurally complex valves that have disparate length scales and complex flow paths that include strong swirl, local recirculation zones/secondary flow effects. Hexahedral (structured), unstructured, and hybrid meshes are compared for accuracy and computational efficiency. Accuracy is determined using verification and validation techniques.
Thermoelectrics as elements of hybrid-electric vehicle thermal energy systems
NASA Astrophysics Data System (ADS)
Headings, Leon; Washington, Gregory; Jaworski, Christopher M.
2008-03-01
Despite vast technological improvements, the traditional internal combustion powered vehicle still achieves only 25- 30% efficiency, with the remainder lost primarily as heat. While the load leveling offered by hybrid-electric vehicle technology helps to improve this overall efficiency, part of the efficiency gains are achieved by making new systems such as regenerative braking viable. In a similar fashion, thermoelectric (TE) energy recovery has long been considered for traditional vehicles with mixed results, but little has been done to consider thermoelectrics in the framework of the unique energy systems of hybrid vehicles. Systems that may not have been viable or even possible with traditional vehicles may offer improvements to system efficiency as well as emissions, vehicle durability, passenger comfort, and cost. This research describes a simulation developed for evaluating and optimizing thermoelectric energy recovery systems and results for four different system configurations. Two novel system configurations are presented which offer the potential for additional benefits such as emissions reduction that will soon be quantified. In addition, a test setup is presented which was constructed for the testing and validation of various thermoelectric recovery systems. Actual test performance was near the expected theoretical performance and supported the conclusions reached from the computer simulations.
Guo, Kai; Zhang, Yong-Liang; Qian, Cheng; Fung, Kin-Hung
2018-04-30
In this work, we demonstrate computationally that electric dipole-quadrupole hybridization (EDQH) could be utilized to enhance plasmonic SHG efficiency. To this end, we construct T-shaped plasmonic heterodimers consisting of a short and a long gold nanorod with finite element method simulation. By controlling the strength of capacitive coupling between two gold nanorods, we explore the effect of EDQH evolution on the SHG process, including the SHG efficiency enhancement, corresponding near-field distribution, and far-field radiation pattern. Simulation results demonstrate that EDQH could enhance the SHG efficiency by a factor >100 in comparison with that achieved by an isolated gold nanorod. Additionally, the far-field pattern of the SHG could be adjusted beyond the well-known quadrupolar distribution and confirms that EDQH plays an important role in the SHG process.
Using hybrid implicit Monte Carlo diffusion to simulate gray radiation hydrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cleveland, Mathew A., E-mail: cleveland7@llnl.gov; Gentile, Nick
This work describes how to couple a hybrid Implicit Monte Carlo Diffusion (HIMCD) method with a Lagrangian hydrodynamics code to evaluate the coupled radiation hydrodynamics equations. This HIMCD method dynamically applies Implicit Monte Carlo Diffusion (IMD) [1] to regions of a problem that are opaque and diffusive while applying standard Implicit Monte Carlo (IMC) [2] to regions where the diffusion approximation is invalid. We show that this method significantly improves the computational efficiency as compared to a standard IMC/Hydrodynamics solver, when optically thick diffusive material is present, while maintaining accuracy. Two test cases are used to demonstrate the accuracy andmore » performance of HIMCD as compared to IMC and IMD. The first is the Lowrie semi-analytic diffusive shock [3]. The second is a simple test case where the source radiation streams through optically thin material and heats a thick diffusive region of material causing it to rapidly expand. We found that HIMCD proves to be accurate, robust, and computationally efficient for these test problems.« less
A multiply-add engine with monolithically integrated 3D memristor crossbar/CMOS hybrid circuit.
Chakrabarti, B; Lastras-Montaño, M A; Adam, G; Prezioso, M; Hoskins, B; Payvand, M; Madhavan, A; Ghofrani, A; Theogarajan, L; Cheng, K-T; Strukov, D B
2017-02-14
Silicon (Si) based complementary metal-oxide semiconductor (CMOS) technology has been the driving force of the information-technology revolution. However, scaling of CMOS technology as per Moore's law has reached a serious bottleneck. Among the emerging technologies memristive devices can be promising for both memory as well as computing applications. Hybrid CMOS/memristor circuits with CMOL (CMOS + "Molecular") architecture have been proposed to combine the extremely high density of the memristive devices with the robustness of CMOS technology, leading to terabit-scale memory and extremely efficient computing paradigm. In this work, we demonstrate a hybrid 3D CMOL circuit with 2 layers of memristive crossbars monolithically integrated on a pre-fabricated CMOS substrate. The integrated crossbars can be fully operated through the underlying CMOS circuitry. The memristive devices in both layers exhibit analog switching behavior with controlled tunability and stable multi-level operation. We perform dot-product operations with the 2D and 3D memristive crossbars to demonstrate the applicability of such 3D CMOL hybrid circuits as a multiply-add engine. To the best of our knowledge this is the first demonstration of a functional 3D CMOL hybrid circuit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Jong-Won; Hirao, Kimihiko, E-mail: hirao@riken.jp
Since the advent of hybrid functional in 1993, it has become a main quantum chemical tool for the calculation of energies and properties of molecular systems. Following the introduction of long-range corrected hybrid scheme for density functional theory a decade later, the applicability of the hybrid functional has been further amplified due to the resulting increased performance on orbital energy, excitation energy, non-linear optical property, barrier height, and so on. Nevertheless, the high cost associated with the evaluation of Hartree-Fock (HF) exchange integrals remains a bottleneck for the broader and more active applications of hybrid functionals to large molecular andmore » periodic systems. Here, we propose a very simple yet efficient method for the computation of long-range corrected hybrid scheme. It uses a modified two-Gaussian attenuating operator instead of the error function for the long-range HF exchange integral. As a result, the two-Gaussian HF operator, which mimics the shape of the error function operator, reduces computational time dramatically (e.g., about 14 times acceleration in C diamond calculation using periodic boundary condition) and enables lower scaling with system size, while maintaining the improved features of the long-range corrected density functional theory.« less
A multiply-add engine with monolithically integrated 3D memristor crossbar/CMOS hybrid circuit
Chakrabarti, B.; Lastras-Montaño, M. A.; Adam, G.; Prezioso, M.; Hoskins, B.; Cheng, K.-T.; Strukov, D. B.
2017-01-01
Silicon (Si) based complementary metal-oxide semiconductor (CMOS) technology has been the driving force of the information-technology revolution. However, scaling of CMOS technology as per Moore’s law has reached a serious bottleneck. Among the emerging technologies memristive devices can be promising for both memory as well as computing applications. Hybrid CMOS/memristor circuits with CMOL (CMOS + “Molecular”) architecture have been proposed to combine the extremely high density of the memristive devices with the robustness of CMOS technology, leading to terabit-scale memory and extremely efficient computing paradigm. In this work, we demonstrate a hybrid 3D CMOL circuit with 2 layers of memristive crossbars monolithically integrated on a pre-fabricated CMOS substrate. The integrated crossbars can be fully operated through the underlying CMOS circuitry. The memristive devices in both layers exhibit analog switching behavior with controlled tunability and stable multi-level operation. We perform dot-product operations with the 2D and 3D memristive crossbars to demonstrate the applicability of such 3D CMOL hybrid circuits as a multiply-add engine. To the best of our knowledge this is the first demonstration of a functional 3D CMOL hybrid circuit. PMID:28195239
Si photonics technology for future optical interconnection
NASA Astrophysics Data System (ADS)
Zheng, Xuezhe; Krishnamoorthy, Ashok V.
2011-12-01
Scaling of computing systems require ultra-efficient interconnects with large bandwidth density. Silicon photonics offers a disruptive solution with advantages in reach, energy efficiency and bandwidth density. We review our progress in developing building blocks for ultra-efficient WDM silicon photonic links. Employing microsolder based hybrid integration with low parasitics and high density, we optimize photonic devices on SOI platforms and VLSI circuits on more advanced bulk CMOS technology nodes independently. Progressively, we successfully demonstrated single channel hybrid silicon photonic transceivers at 5 Gbps and 10 Gbps, and 80 Gbps arrayed WDM silicon photonic transceiver using reverse biased depletion ring modulators and Ge waveguide photo detectors. Record-high energy efficiency of less than 100fJ/bit and 385 fJ/bit were achieved for the hybrid integrated transmitter and receiver, respectively. Waveguide grating based optical proximity couplers were developed with low loss and large optical bandwidth to enable multi-layer intra/inter-chip optical interconnects. Thermal engineering of WDM devices by selective substrate removal, together with WDM link using synthetic wavelength comb, we significantly improved the device tuning efficiency and reduced the tuning range. Using these innovative techniques, two orders of magnitude tuning power reduction was achieved. And tuning cost of only a few 10s of fJ/bit is expected for high data rate WDM silicon photonic links.
Thermoelectric Power Generation System for Future Hybrid Vehicles Using Hot Exhaust Gas
NASA Astrophysics Data System (ADS)
Kim, Sun-Kook; Won, Byeong-Cheol; Rhi, Seok-Ho; Kim, Shi-Ho; Yoo, Jeong-Ho; Jang, Ju-Chan
2011-05-01
The present experimental and computational study investigates a new exhaust gas waste heat recovery system for hybrid vehicles, using a thermoelectric module (TEM) and heat pipes to produce electric power. It proposes a new thermoelectric generation (TEG) system, working with heat pipes to produce electricity from a limited hot surface area. The current TEG system is directly connected to the exhaust pipe, and the amount of electricity generated by the TEMs is directly proportional to their heated area. Current exhaust pipes fail to offer a sufficiently large hot surface area for the high-efficiency waste heat recovery required. To overcome this, a new TEG system has been designed to have an enlarged hot surface area by the addition of ten heat pipes, which act as highly efficient heat transfer devices and can transmit the heat to many TEMs. As designed, this new waste heat recovery system produces a maximum 350 W when the hot exhaust gas heats the evaporator surface of the heat pipe to 170°C; this promises great possibilities for application of this technology in future energy-efficient hybrid vehicles.
NASA Astrophysics Data System (ADS)
Cai, Xiaohui; Liu, Yang; Ren, Zhiming
2018-06-01
Reverse-time migration (RTM) is a powerful tool for imaging geologically complex structures such as steep-dip and subsalt. However, its implementation is quite computationally expensive. Recently, as a low-cost solution, the graphic processing unit (GPU) was introduced to improve the efficiency of RTM. In the paper, we develop three ameliorative strategies to implement RTM on GPU card. First, given the high accuracy and efficiency of the adaptive optimal finite-difference (FD) method based on least squares (LS) on central processing unit (CPU), we study the optimal LS-based FD method on GPU. Second, we develop the CPU-based hybrid absorbing boundary condition (ABC) to the GPU-based one by addressing two issues of the former when introduced to GPU card: time-consuming and chaotic threads. Third, for large-scale data, the combinatorial strategy for optimal checkpointing and efficient boundary storage is introduced for the trade-off between memory and recomputation. To save the time of communication between host and disk, the portable operating system interface (POSIX) thread is utilized to create the other CPU core at the checkpoints. Applications of the three strategies on GPU with the compute unified device architecture (CUDA) programming language in RTM demonstrate their efficiency and validity.
Hybrid Grid Techniques for Propulsion Applications
NASA Technical Reports Server (NTRS)
Koomullil, Roy P.; Soni, Bharat K.; Thornburg, Hugh J.
1996-01-01
During the past decade, computational simulation of fluid flow for propulsion activities has progressed significantly, and many notable successes have been reported in the literature. However, the generation of a high quality mesh for such problems has often been reported as a pacing item. Hence, much effort has been expended to speed this portion of the simulation process. Several approaches have evolved for grid generation. Two of the most common are structured multi-block, and unstructured based procedures. Structured grids tend to be computationally efficient, and have high aspect ratio cells necessary for efficently resolving viscous layers. Structured multi-block grids may or may not exhibit grid line continuity across the block interface. This relaxation of the continuity constraint at the interface is intended to ease the grid generation process, which is still time consuming. Flow solvers supporting non-contiguous interfaces require specialized interpolation procedures which may not ensure conservation at the interface. Unstructured or generalized indexing data structures offer greater flexibility, but require explicit connectivity information and are not easy to generate for three dimensional configurations. In addition, unstructured mesh based schemes tend to be less efficient and it is difficult to resolve viscous layers. Recently hybrid or generalized element solution and grid generation techniques have been developed with the objective of combining the attractive features of both structured and unstructured techniques. In the present work, recently developed procedures for hybrid grid generation and flow simulation are critically evaluated, and compared to existing structured and unstructured procedures in terms of accuracy and computational requirements.
NASA Astrophysics Data System (ADS)
Sansone, Giuseppe; Ferretti, Andrea; Maschio, Lorenzo
2017-09-01
Within the semiclassical Boltzmann transport theory in the constant relaxation-time approximation, we perform an ab initio study of the transport properties of selected systems, including crystalline solids and nanostructures. A local (Gaussian) basis set is adopted and exploited to analytically evaluate band velocities as well as to access full and range-separated hybrid functionals (such as B3LYP, PBE0, or HSE06) at a moderate computational cost. As a consequence of the analytical derivative, our approach is computationally efficient and does not suffer from problems related to band crossings. We investigate and compare the performance of a variety of hybrid functionals in evaluating Boltzmann conductivity. Demonstrative examples include silicon and aluminum bulk crystals as well as two thermoelectric materials (CoSb3, Bi2Te3). We observe that hybrid functionals other than providing more realistic bandgaps—as expected—lead to larger bandwidths and hence allow for a better estimate of transport properties, also in metallic systems. As a nanostructure prototype, we also investigate conductivity in boron-nitride (BN) substituted graphene, in which nanoribbons (nanoroads) alternate with BN ones.
Optimizing a spectral element for modeling PZT-induced Lamb wave propagation in thin plates
NASA Astrophysics Data System (ADS)
Ha, Sungwon; Chang, Fu-Kuo
2010-01-01
Use of surface-mounted piezoelectric actuators to generate acoustic ultrasound has been demonstrated to be a key component of built-in nondestructive detection evaluation (NDE) techniques, which can automatically inspect and interrogate damage in hard-to-access areas in real time without disassembly of the structural parts. However, piezoelectric actuators create complex waves, which propagate through the structure. Having the capability to model piezoelectric actuator-induced wave propagation and understanding its physics are essential to developing advanced algorithms for the built-in NDE techniques. Therefore, the objective of this investigation was to develop an efficient hybrid spectral element for modeling piezoelectric actuator-induced high-frequency wave propagation in thin plates. With the hybrid element we take advantage of both a high-order spectral element in the in-plane direction and a linear finite element in the thickness direction in order to efficiently analyze Lamb wave propagation in thin plates. The hybrid spectral element out-performs other elements in terms of leading to significantly faster computation and smaller memory requirements. Use of the hybrid spectral element is proven to be an efficient technique for modeling PZT-induced (PZT: lead zirconate titanate) wave propagation in thin plates. The element enables fundamental understanding of PZT-induced wave propagation.
2014-10-02
intervals (Neil, Tailor, Marquez, Fenton , & Hear, 2007). This is cumbersome, error prone and usually inaccurate. Even though a universal framework...Science. Neil, M., Tailor, M., Marquez, D., Fenton , N., & Hear. (2007). Inference in Bayesian networks using dynamic discretisation. Statistics
Nguyen, Tuan-Anh; Nakib, Amir; Nguyen, Huy-Nam
2016-06-01
The Non-local means denoising filter has been established as gold standard for image denoising problem in general and particularly in medical imaging due to its efficiency. However, its computation time limited its applications in real world application, especially in medical imaging. In this paper, a distributed version on parallel hybrid architecture is proposed to solve the computation time problem and a new method to compute the filters' coefficients is also proposed, where we focused on the implementation and the enhancement of filters' parameters via taking the neighborhood of the current voxel more accurately into account. In terms of implementation, our key contribution consists in reducing the number of shared memory accesses. The different tests of the proposed method were performed on the brain-web database for different levels of noise. Performances and the sensitivity were quantified in terms of speedup, peak signal to noise ratio, execution time, the number of floating point operations. The obtained results demonstrate the efficiency of the proposed method. Moreover, the implementation is compared to that of other techniques, recently published in the literature. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Seed robustness of oriented relative fuzzy connectedness: core computation and its applications
NASA Astrophysics Data System (ADS)
Tavares, Anderson C. M.; Bejar, Hans H. C.; Miranda, Paulo A. V.
2017-02-01
In this work, we present a formal definition and an efficient algorithm to compute the cores of Oriented Relative Fuzzy Connectedness (ORFC), a recent seed-based segmentation technique. The core is a region where the seed can be moved without altering the segmentation, an important aspect for robust techniques and reduction of user effort. We show how ORFC cores can be used to build a powerful hybrid image segmentation approach. We also provide some new theoretical relations between ORFC and Oriented Image Foresting Transform (OIFT), as well as their cores. Experimental results among several methods show that the hybrid approach conserves high accuracy, avoids the shrinking problem and provides robustness to seed placement inside the desired object due to the cores properties.
Hybrid glowworm swarm optimization for task scheduling in the cloud environment
NASA Astrophysics Data System (ADS)
Zhou, Jing; Dong, Shoubin
2018-06-01
In recent years many heuristic algorithms have been proposed to solve task scheduling problems in the cloud environment owing to their optimization capability. This article proposes a hybrid glowworm swarm optimization (HGSO) based on glowworm swarm optimization (GSO), which uses a technique of evolutionary computation, a strategy of quantum behaviour based on the principle of neighbourhood, offspring production and random walk, to achieve more efficient scheduling with reasonable scheduling costs. The proposed HGSO reduces the redundant computation and the dependence on the initialization of GSO, accelerates the convergence and more easily escapes from local optima. The conducted experiments and statistical analysis showed that in most cases the proposed HGSO algorithm outperformed previous heuristic algorithms to deal with independent tasks.
NASA Astrophysics Data System (ADS)
Saksena, S.; Merwade, V.; Singhofen, P.
2017-12-01
There is an increasing global trend towards developing large scale flood models that account for spatial heterogeneity at watershed scales to drive the future flood risk planning. Integrated surface water-groundwater modeling procedures can elucidate all the hydrologic processes taking part during a flood event to provide accurate flood outputs. Even though the advantages of using integrated modeling are widely acknowledged, the complexity of integrated process representation, computation time and number of input parameters required have deterred its application to flood inundation mapping, especially for large watersheds. This study presents a faster approach for creating watershed scale flood models using a hybrid design that breaks down the watershed into multiple regions of variable spatial resolution by prioritizing higher order streams. The methodology involves creating a hybrid model for the Upper Wabash River Basin in Indiana using Interconnected Channel and Pond Routing (ICPR) and comparing the performance with a fully-integrated 2D hydrodynamic model. The hybrid approach involves simplification procedures such as 1D channel-2D floodplain coupling; hydrologic basin (HUC-12) integration with 2D groundwater for rainfall-runoff routing; and varying spatial resolution of 2D overland flow based on stream order. The results for a 50-year return period storm event show that hybrid model (NSE=0.87) performance is similar to the 2D integrated model (NSE=0.88) but the computational time is reduced to half. The results suggest that significant computational efficiency can be obtained while maintaining model accuracy for large-scale flood models by using hybrid approaches for model creation.
Application of an efficient hybrid scheme for aeroelastic analysis of advanced propellers
NASA Technical Reports Server (NTRS)
Srivastava, R.; Sankar, N. L.; Reddy, T. S. R.; Huff, D. L.
1989-01-01
An efficient 3-D hybrid scheme is applied for solving Euler equations to analyze advanced propellers. The scheme treats the spanwise direction semi-explicitly and the other two directions implicitly, without affecting the accuracy, as compared to a fully implicit scheme. This leads to a reduction in computer time and memory requirement. The calculated power coefficients for two advanced propellers, SR3 and SR7L, and various advanced ratios showed good correlation with experiment. Spanwise distribution of elemental power coefficient and steady pressure coefficient differences also showed good agreement with experiment. A study of the effect of structural flexibility on the performance of the advanced propellers showed that structural deformation due to centrifugal and aero loading should be included for better correlation.
Sarpeshkar, R
2014-03-28
We analyse the pros and cons of analog versus digital computation in living cells. Our analysis is based on fundamental laws of noise in gene and protein expression, which set limits on the energy, time, space, molecular count and part-count resources needed to compute at a given level of precision. We conclude that analog computation is significantly more efficient in its use of resources than deterministic digital computation even at relatively high levels of precision in the cell. Based on this analysis, we conclude that synthetic biology must use analog, collective analog, probabilistic and hybrid analog-digital computational approaches; otherwise, even relatively simple synthetic computations in cells such as addition will exceed energy and molecular-count budgets. We present schematics for efficiently representing analog DNA-protein computation in cells. Analog electronic flow in subthreshold transistors and analog molecular flux in chemical reactions obey Boltzmann exponential laws of thermodynamics and are described by astoundingly similar logarithmic electrochemical potentials. Therefore, cytomorphic circuits can help to map circuit designs between electronic and biochemical domains. We review recent work that uses positive-feedback linearization circuits to architect wide-dynamic-range logarithmic analog computation in Escherichia coli using three transcription factors, nearly two orders of magnitude more efficient in parts than prior digital implementations.
Sarpeshkar, R.
2014-01-01
We analyse the pros and cons of analog versus digital computation in living cells. Our analysis is based on fundamental laws of noise in gene and protein expression, which set limits on the energy, time, space, molecular count and part-count resources needed to compute at a given level of precision. We conclude that analog computation is significantly more efficient in its use of resources than deterministic digital computation even at relatively high levels of precision in the cell. Based on this analysis, we conclude that synthetic biology must use analog, collective analog, probabilistic and hybrid analog–digital computational approaches; otherwise, even relatively simple synthetic computations in cells such as addition will exceed energy and molecular-count budgets. We present schematics for efficiently representing analog DNA–protein computation in cells. Analog electronic flow in subthreshold transistors and analog molecular flux in chemical reactions obey Boltzmann exponential laws of thermodynamics and are described by astoundingly similar logarithmic electrochemical potentials. Therefore, cytomorphic circuits can help to map circuit designs between electronic and biochemical domains. We review recent work that uses positive-feedback linearization circuits to architect wide-dynamic-range logarithmic analog computation in Escherichia coli using three transcription factors, nearly two orders of magnitude more efficient in parts than prior digital implementations. PMID:24567476
Hybrid quantum computing with ancillas
NASA Astrophysics Data System (ADS)
Proctor, Timothy J.; Kendon, Viv
2016-10-01
In the quest to build a practical quantum computer, it is important to use efficient schemes for enacting the elementary quantum operations from which quantum computer programs are constructed. The opposing requirements of well-protected quantum data and fast quantum operations must be balanced to maintain the integrity of the quantum information throughout the computation. One important approach to quantum operations is to use an extra quantum system - an ancilla - to interact with the quantum data register. Ancillas can mediate interactions between separated quantum registers, and by using fresh ancillas for each quantum operation, data integrity can be preserved for longer. This review provides an overview of the basic concepts of the gate model quantum computer architecture, including the different possible forms of information encodings - from base two up to continuous variables - and a more detailed description of how the main types of ancilla-mediated quantum operations provide efficient quantum gates.
Word aligned bitmap compression method, data structure, and apparatus
Wu, Kesheng; Shoshani, Arie; Otoo, Ekow
2004-12-14
The Word-Aligned Hybrid (WAH) bitmap compression method and data structure is a relatively efficient method for searching and performing logical, counting, and pattern location operations upon large datasets. The technique is comprised of a data structure and methods that are optimized for computational efficiency by using the WAH compression method, which typically takes advantage of the target computing system's native word length. WAH is particularly apropos to infrequently varying databases, including those found in the on-line analytical processing (OLAP) industry, due to the increased computational efficiency of the WAH compressed bitmap index. Some commercial database products already include some version of a bitmap index, which could possibly be replaced by the WAH bitmap compression techniques for potentially increased operation speed, as well as increased efficiencies in constructing compressed bitmaps. Combined together, this technique may be particularly useful for real-time business intelligence. Additional WAH applications may include scientific modeling, such as climate and combustion simulations, to minimize search time for analysis and subsequent data visualization.
Jiang, Jingfeng; Hall, Timothy J
2011-04-01
A hybrid approach that inherits both the robustness of the regularized motion tracking approach and the efficiency of the predictive search approach is reported. The basic idea is to use regularized speckle tracking to obtain high-quality seeds in an explorative search that can be used in the subsequent intelligent predictive search. The performance of the hybrid speckle-tracking algorithm was compared with three published speckle-tracking methods using in vivo breast lesion data. We found that the hybrid algorithm provided higher displacement quality metric values, lower root mean squared errors compared with a locally smoothed displacement field, and higher improvement ratios compared with the classic block-matching algorithm. On the basis of these comparisons, we concluded that the hybrid method can further enhance the accuracy of speckle tracking compared with its real-time counterparts, at the expense of slightly higher computational demands. © 2011 IEEE
Hybrid Parallelism for Volume Rendering on Large-, Multi-, and Many-Core Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howison, Mark; Bethel, E. Wes; Childs, Hank
2012-01-01
With the computing industry trending towards multi- and many-core processors, we study how a standard visualization algorithm, ray-casting volume rendering, can benefit from a hybrid parallelism approach. Hybrid parallelism provides the best of both worlds: using distributed-memory parallelism across a large numbers of nodes increases available FLOPs and memory, while exploiting shared-memory parallelism among the cores within each node ensures that each node performs its portion of the larger calculation as efficiently as possible. We demonstrate results from weak and strong scaling studies, at levels of concurrency ranging up to 216,000, and with datasets as large as 12.2 trillion cells.more » The greatest benefit from hybrid parallelism lies in the communication portion of the algorithm, the dominant cost at higher levels of concurrency. We show that reducing the number of participants with a hybrid approach significantly improves performance.« less
Hybrid model for simulation of plasma jet injection in tokamak
NASA Astrophysics Data System (ADS)
Galkin, Sergei A.; Bogatu, I. N.
2016-10-01
Hybrid kinetic model of plasma treats the ions as kinetic particles and the electrons as charge neutralizing massless fluid. The model is essentially applicable when most of the energy is concentrated in the ions rather than in the electrons, i.e. it is well suited for the high-density hyper-velocity C60 plasma jet. The hybrid model separates the slower ion time scale from the faster electron time scale, which becomes disregardable. That is why hybrid codes consistently outperform the traditional PIC codes in computational efficiency, still resolving kinetic ions effects. We discuss 2D hybrid model and code with exact energy conservation numerical algorithm and present some results of its application to simulation of C60 plasma jet penetration through tokamak-like magnetic barrier. We also examine the 3D model/code extension and its possible applications to tokamak and ionospheric plasmas. The work is supported in part by US DOE DE-SC0015776 Grant.
Hybrid stochastic and deterministic simulations of calcium blips.
Rüdiger, S; Shuai, J W; Huisinga, W; Nagaiah, C; Warnecke, G; Parker, I; Falcke, M
2007-09-15
Intracellular calcium release is a prime example for the role of stochastic effects in cellular systems. Recent models consist of deterministic reaction-diffusion equations coupled to stochastic transitions of calcium channels. The resulting dynamics is of multiple time and spatial scales, which complicates far-reaching computer simulations. In this article, we introduce a novel hybrid scheme that is especially tailored to accurately trace events with essential stochastic variations, while deterministic concentration variables are efficiently and accurately traced at the same time. We use finite elements to efficiently resolve the extreme spatial gradients of concentration variables close to a channel. We describe the algorithmic approach and we demonstrate its efficiency compared to conventional methods. Our single-channel model matches experimental data and results in intriguing dynamics if calcium is used as charge carrier. Random openings of the channel accumulate in bursts of calcium blips that may be central for the understanding of cellular calcium dynamics.
Hybrid stochastic simulation of reaction-diffusion systems with slow and fast dynamics.
Strehl, Robert; Ilie, Silvana
2015-12-21
In this paper, we present a novel hybrid method to simulate discrete stochastic reaction-diffusion models arising in biochemical signaling pathways. We study moderately stiff systems, for which we can partition each reaction or diffusion channel into either a slow or fast subset, based on its propensity. Numerical approaches missing this distinction are often limited with respect to computational run time or approximation quality. We design an approximate scheme that remedies these pitfalls by using a new blending strategy of the well-established inhomogeneous stochastic simulation algorithm and the tau-leaping simulation method. The advantages of our hybrid simulation algorithm are demonstrated on three benchmarking systems, with special focus on approximation accuracy and efficiency.
N-S/DSMC hybrid simulation of hypersonic flow over blunt body including wakes
NASA Astrophysics Data System (ADS)
Li, Zhonghua; Li, Zhihui; Li, Haiyan; Yang, Yanguang; Jiang, Xinyu
2014-12-01
A hybrid N-S/DSMC method is presented and applied to solve the three-dimensional hypersonic transitional flows by employing the MPC (modular Particle-Continuum) technique based on the N-S and the DSMC method. A sub-relax technique is adopted to deal with information transfer between the N-S and the DSMC. The hypersonic flows over a 70-deg spherically blunted cone under different Kn numbers are simulated using the CFD, DSMC and hybrid N-S/DSMC method. The present computations are found in good agreement with DSMC and experimental results. The present method provides an efficient way to predict the hypersonic aerodynamics in near-continuum transitional flow regime.
A three-dimensional structured/unstructured hybrid Navier-Stokes method for turbine blade rows
NASA Technical Reports Server (NTRS)
Tsung, F.-L.; Loellbach, J.; Kwon, O.; Hah, C.
1994-01-01
A three-dimensional viscous structured/unstructured hybrid scheme has been developed for numerical computation of high Reynolds number turbomachinery flows. The procedure allows an efficient structured solver to be employed in the densely clustered, high aspect-ratio grid around the viscous regions near solid surfaces, while employing an unstructured solver elsewhere in the flow domain to add flexibility in mesh generation. Test results for an inviscid flow over an external transonic wing and a Navier-Stokes flow for an internal annular cascade are presented.
Set-theoretic estimation of hybrid system configurations.
Benazera, Emmanuel; Travé-Massuyès, Louise
2009-10-01
Hybrid systems serve as a powerful modeling paradigm for representing complex continuous controlled systems that exhibit discrete switches in their dynamics. The system and the models of the system are nondeterministic due to operation in uncertain environment. Bayesian belief update approaches to stochastic hybrid system state estimation face a blow up in the number of state estimates. Therefore, most popular techniques try to maintain an approximation of the true belief state by either sampling or maintaining a limited number of trajectories. These limitations can be avoided by using bounded intervals to represent the state uncertainty. This alternative leads to splitting the continuous state space into a finite set of possibly overlapping geometrical regions that together with the system modes form configurations of the hybrid system. As a consequence, the true system state can be captured by a finite number of hybrid configurations. A set of dedicated algorithms that can efficiently compute these configurations is detailed. Results are presented on two systems of the hybrid system literature.
Song, Jong-Won; Hirao, Kimihiko
2015-10-14
Since the advent of hybrid functional in 1993, it has become a main quantum chemical tool for the calculation of energies and properties of molecular systems. Following the introduction of long-range corrected hybrid scheme for density functional theory a decade later, the applicability of the hybrid functional has been further amplified due to the resulting increased performance on orbital energy, excitation energy, non-linear optical property, barrier height, and so on. Nevertheless, the high cost associated with the evaluation of Hartree-Fock (HF) exchange integrals remains a bottleneck for the broader and more active applications of hybrid functionals to large molecular and periodic systems. Here, we propose a very simple yet efficient method for the computation of long-range corrected hybrid scheme. It uses a modified two-Gaussian attenuating operator instead of the error function for the long-range HF exchange integral. As a result, the two-Gaussian HF operator, which mimics the shape of the error function operator, reduces computational time dramatically (e.g., about 14 times acceleration in C diamond calculation using periodic boundary condition) and enables lower scaling with system size, while maintaining the improved features of the long-range corrected density functional theory.
Alimonti, Luca; Atalla, Noureddine; Berry, Alain; Sgard, Franck
2014-05-01
Modeling complex vibroacoustic systems including poroelastic materials using finite element based methods can be unfeasible for practical applications. For this reason, analytical approaches such as the transfer matrix method are often preferred to obtain a quick estimation of the vibroacoustic parameters. However, the strong assumptions inherent within the transfer matrix method lead to a lack of accuracy in the description of the geometry of the system. As a result, the transfer matrix method is inherently limited to the high frequency range. Nowadays, hybrid substructuring procedures have become quite popular. Indeed, different modeling techniques are typically sought to describe complex vibroacoustic systems over the widest possible frequency range. As a result, the flexibility and accuracy of the finite element method and the efficiency of the transfer matrix method could be coupled in a hybrid technique to obtain a reduction of the computational burden. In this work, a hybrid methodology is proposed. The performances of the method in predicting the vibroacoutic indicators of flat structures with attached homogeneous acoustic treatments are assessed. The results prove that, under certain conditions, the hybrid model allows for a reduction of the computational effort while preserving enough accuracy with respect to the full finite element solution.
On the Likely Utility of Hybrid Weights Optimized for Variances in Hybrid Error Covariance Models
NASA Astrophysics Data System (ADS)
Satterfield, E.; Hodyss, D.; Kuhl, D.; Bishop, C. H.
2017-12-01
Because of imperfections in ensemble data assimilation schemes, one cannot assume that the ensemble covariance is equal to the true error covariance of a forecast. Previous work demonstrated how information about the distribution of true error variances given an ensemble sample variance can be revealed from an archive of (observation-minus-forecast, ensemble-variance) data pairs. Here, we derive a simple and intuitively compelling formula to obtain the mean of this distribution of true error variances given an ensemble sample variance from (observation-minus-forecast, ensemble-variance) data pairs produced by a single run of a data assimilation system. This formula takes the form of a Hybrid weighted average of the climatological forecast error variance and the ensemble sample variance. Here, we test the extent to which these readily obtainable weights can be used to rapidly optimize the covariance weights used in Hybrid data assimilation systems that employ weighted averages of static covariance models and flow-dependent ensemble based covariance models. Univariate data assimilation and multi-variate cycling ensemble data assimilation are considered. In both cases, it is found that our computationally efficient formula gives Hybrid weights that closely approximate the optimal weights found through the simple but computationally expensive process of testing every plausible combination of weights.
Lin, Zhixiong; Riniker, Sereina; van Gunsteren, Wilfred F
2013-03-12
Atomistic molecular dynamics simulations of peptides or proteins in aqueous solution are still limited to the multi-nanosecond time scale and multi-nanometer range by computational cost. Combining atomic solutes with a supramolecular solvent model in hybrid fine-grained/coarse-grained (FG/CG) simulations allows atomic detail in the region of interest while being computationally more efficient. We used enveloping distribution sampling (EDS) to calculate the free enthalpy differences between different helical conformations, i.e., α-, π-, and 310-helices, of an atomic level FG alanine deca-peptide solvated in a supramolecular CG water solvent. The free enthalpy differences obtained show that by replacing the FG solvent by the CG solvent, the π-helix is destabilized with respect to the α-helix by about 2.5 kJ mol(-1), and the 310-helix is stabilized with respect to the α-helix by about 9 kJ mol(-1). In addition, the dynamics of the peptide becomes faster. By introducing a FG water layer of 0.8 nm around the peptide, both thermodynamic and dynamic properties are recovered, while the hybrid FG/CG simulations are still four times more efficient than the atomistic simulations, even when the cutoff radius for the nonbonded interactions is increased from 1.4 to 2.0 nm. Hence, the hybrid FG/CG model, which yields an appropriate balance between reduced accuracy and enhanced computational speed, is very suitable for molecular dynamics simulation investigations of biomolecules.
NASA Astrophysics Data System (ADS)
Shahamatnia, Ehsan; Dorotovič, Ivan; Fonseca, Jose M.; Ribeiro, Rita A.
2016-03-01
Developing specialized software tools is essential to support studies of solar activity evolution. With new space missions such as Solar Dynamics Observatory (SDO), solar images are being produced in unprecedented volumes. To capitalize on that huge data availability, the scientific community needs a new generation of software tools for automatic and efficient data processing. In this paper a prototype of a modular framework for solar feature detection, characterization, and tracking is presented. To develop an efficient system capable of automatic solar feature tracking and measuring, a hybrid approach combining specialized image processing, evolutionary optimization, and soft computing algorithms is being followed. The specialized hybrid algorithm for tracking solar features allows automatic feature tracking while gathering characterization details about the tracked features. The hybrid algorithm takes advantages of the snake model, a specialized image processing algorithm widely used in applications such as boundary delineation, image segmentation, and object tracking. Further, it exploits the flexibility and efficiency of Particle Swarm Optimization (PSO), a stochastic population based optimization algorithm. PSO has been used successfully in a wide range of applications including combinatorial optimization, control, clustering, robotics, scheduling, and image processing and video analysis applications. The proposed tool, denoted PSO-Snake model, was already successfully tested in other works for tracking sunspots and coronal bright points. In this work, we discuss the application of the PSO-Snake algorithm for calculating the sidereal rotational angular velocity of the solar corona. To validate the results we compare them with published manual results performed by an expert.
A hybrid architecture for the implementation of the Athena neural net model
NASA Technical Reports Server (NTRS)
Koutsougeras, C.; Papachristou, C.
1989-01-01
The implementation of an earlier introduced neural net model for pattern classification is considered. Data flow principles are employed in the development of a machine that efficiently implements the model and can be useful for real time classification tasks. Further enhancement with optical computing structures is also considered.
Hybrid stochastic simulations of intracellular reaction-diffusion systems.
Kalantzis, Georgios
2009-06-01
With the observation that stochasticity is important in biological systems, chemical kinetics have begun to receive wider interest. While the use of Monte Carlo discrete event simulations most accurately capture the variability of molecular species, they become computationally costly for complex reaction-diffusion systems with large populations of molecules. On the other hand, continuous time models are computationally efficient but they fail to capture any variability in the molecular species. In this study a hybrid stochastic approach is introduced for simulating reaction-diffusion systems. We developed an adaptive partitioning strategy in which processes with high frequency are simulated with deterministic rate-based equations, and those with low frequency using the exact stochastic algorithm of Gillespie. Therefore the stochastic behavior of cellular pathways is preserved while being able to apply it to large populations of molecules. We describe our method and demonstrate its accuracy and efficiency compared with the Gillespie algorithm for two different systems. First, a model of intracellular viral kinetics with two steady states and second, a compartmental model of the postsynaptic spine head for studying the dynamics of Ca+2 and NMDA receptors.
Hybrid Artificial Root Foraging Optimizer Based Multilevel Threshold for Image Segmentation
Liu, Yang; Liu, Junfei
2016-01-01
This paper proposes a new plant-inspired optimization algorithm for multilevel threshold image segmentation, namely, hybrid artificial root foraging optimizer (HARFO), which essentially mimics the iterative root foraging behaviors. In this algorithm the new growth operators of branching, regrowing, and shrinkage are initially designed to optimize continuous space search by combining root-to-root communication and coevolution mechanism. With the auxin-regulated scheme, various root growth operators are guided systematically. With root-to-root communication, individuals exchange information in different efficient topologies, which essentially improve the exploration ability. With coevolution mechanism, the hierarchical spatial population driven by evolutionary pressure of multiple subpopulations is structured, which ensure that the diversity of root population is well maintained. The comparative results on a suit of benchmarks show the superiority of the proposed algorithm. Finally, the proposed HARFO algorithm is applied to handle the complex image segmentation problem based on multilevel threshold. Computational results of this approach on a set of tested images show the outperformance of the proposed algorithm in terms of optimization accuracy computation efficiency. PMID:27725826
Hybrid Artificial Root Foraging Optimizer Based Multilevel Threshold for Image Segmentation.
Liu, Yang; Liu, Junfei; Tian, Liwei; Ma, Lianbo
2016-01-01
This paper proposes a new plant-inspired optimization algorithm for multilevel threshold image segmentation, namely, hybrid artificial root foraging optimizer (HARFO), which essentially mimics the iterative root foraging behaviors. In this algorithm the new growth operators of branching, regrowing, and shrinkage are initially designed to optimize continuous space search by combining root-to-root communication and coevolution mechanism. With the auxin-regulated scheme, various root growth operators are guided systematically. With root-to-root communication, individuals exchange information in different efficient topologies, which essentially improve the exploration ability. With coevolution mechanism, the hierarchical spatial population driven by evolutionary pressure of multiple subpopulations is structured, which ensure that the diversity of root population is well maintained. The comparative results on a suit of benchmarks show the superiority of the proposed algorithm. Finally, the proposed HARFO algorithm is applied to handle the complex image segmentation problem based on multilevel threshold. Computational results of this approach on a set of tested images show the outperformance of the proposed algorithm in terms of optimization accuracy computation efficiency.
Multiple-time-stepping generalized hybrid Monte Carlo methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Escribano, Bruno, E-mail: bescribano@bcamath.org; Akhmatskaya, Elena; IKERBASQUE, Basque Foundation for Science, E-48013 Bilbao
2015-01-01
Performance of the generalized shadow hybrid Monte Carlo (GSHMC) method [1], which proved to be superior in sampling efficiency over its predecessors [2–4], molecular dynamics and hybrid Monte Carlo, can be further improved by combining it with multi-time-stepping (MTS) and mollification of slow forces. We demonstrate that the comparatively simple modifications of the method not only lead to better performance of GSHMC itself but also allow for beating the best performed methods, which use the similar force splitting schemes. In addition we show that the same ideas can be successfully applied to the conventional generalized hybrid Monte Carlo method (GHMC).more » The resulting methods, MTS-GHMC and MTS-GSHMC, provide accurate reproduction of thermodynamic and dynamical properties, exact temperature control during simulation and computational robustness and efficiency. MTS-GHMC uses a generalized momentum update to achieve weak stochastic stabilization to the molecular dynamics (MD) integrator. MTS-GSHMC adds the use of a shadow (modified) Hamiltonian to filter the MD trajectories in the HMC scheme. We introduce a new shadow Hamiltonian formulation adapted to force-splitting methods. The use of such Hamiltonians improves the acceptance rate of trajectories and has a strong impact on the sampling efficiency of the method. Both methods were implemented in the open-source MD package ProtoMol and were tested on a water and a protein systems. Results were compared to those obtained using a Langevin Molly (LM) method [5] on the same systems. The test results demonstrate the superiority of the new methods over LM in terms of stability, accuracy and sampling efficiency. This suggests that putting the MTS approach in the framework of hybrid Monte Carlo and using the natural stochasticity offered by the generalized hybrid Monte Carlo lead to improving stability of MTS and allow for achieving larger step sizes in the simulation of complex systems.« less
Hybrid Method for Power Control Simulation of a Single Fluid Plasma Thruster
NASA Astrophysics Data System (ADS)
Jaisankar, S.; Sheshadri, T. S.
2018-05-01
Propulsive plasma flow through a cylindrical-conical diverging thruster is simulated by a power controlled hybrid method to obtain the basic flow, thermodynamic and electromagnetic variables. Simulation is based on a single fluid model with electromagnetics being described by the equations of potential Poisson, Maxwell and the Ohm's law while the compressible fluid dynamics by the Navier Stokes in cylindrical form. The proposed method solved the electromagnetics and fluid dynamics separately, both to segregate the two prominent scales for an efficient computation and for the delivery of voltage controlled rated power. The magnetic transport is solved for steady state while fluid dynamics is allowed to evolve in time along with an electromagnetic source using schemes based on generalized finite difference discretization. The multistep methodology with power control is employed for simulating fully ionized propulsive flow of argon plasma through the thruster. Numerical solution shows convergence of every part of the solver including grid stability causing the multistep hybrid method to converge for a rated power delivery. Simulation results are reasonably in agreement with the reported physics of plasma flow in the thruster thus indicating the potential utility of this hybrid computational framework, especially when single fluid approximation of plasma is relevant.
Mumtaz, Sidra; Khan, Laiq; Ahmed, Saghir; Bader, Rabiah
2017-01-01
This paper focuses on the indirect adaptive tracking control of renewable energy sources in a grid-connected hybrid power system. The renewable energy systems have low efficiency and intermittent nature due to unpredictable meteorological conditions. The domestic load and the conventional charging stations behave in an uncertain manner. To operate the renewable energy sources efficiently for harvesting maximum power, instantaneous nonlinear dynamics should be captured online. A Chebyshev-wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control paradigm is proposed for variable speed wind turbine-permanent synchronous generator (VSWT-PMSG). A Hermite-wavelet incorporated NeuroFuzzy indirect adaptive MPPT control strategy for photovoltaic (PV) system to extract maximum power and indirect adaptive tracking control scheme for Solid Oxide Fuel Cell (SOFC) is developed. A comprehensive simulation test-bed for a grid-connected hybrid power system is developed in Matlab/Simulink. The robustness of the suggested indirect adaptive control paradigms are evaluated through simulation results in a grid-connected hybrid power system test-bed by comparison with conventional and intelligent control techniques. The simulation results validate the effectiveness of the proposed control paradigms.
Khan, Laiq; Ahmed, Saghir; Bader, Rabiah
2017-01-01
This paper focuses on the indirect adaptive tracking control of renewable energy sources in a grid-connected hybrid power system. The renewable energy systems have low efficiency and intermittent nature due to unpredictable meteorological conditions. The domestic load and the conventional charging stations behave in an uncertain manner. To operate the renewable energy sources efficiently for harvesting maximum power, instantaneous nonlinear dynamics should be captured online. A Chebyshev-wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control paradigm is proposed for variable speed wind turbine-permanent synchronous generator (VSWT-PMSG). A Hermite-wavelet incorporated NeuroFuzzy indirect adaptive MPPT control strategy for photovoltaic (PV) system to extract maximum power and indirect adaptive tracking control scheme for Solid Oxide Fuel Cell (SOFC) is developed. A comprehensive simulation test-bed for a grid-connected hybrid power system is developed in Matlab/Simulink. The robustness of the suggested indirect adaptive control paradigms are evaluated through simulation results in a grid-connected hybrid power system test-bed by comparison with conventional and intelligent control techniques. The simulation results validate the effectiveness of the proposed control paradigms. PMID:28877191
Lentz, Levi C.; Kolpak, Alexie M.
2017-04-28
The performance of bulk organic and hybrid organic-inorganic heterojunction photovoltaics is often limited by high carrier recombination arising from strongly bound excitons and low carrier mobility. Structuring materials to minimize the length scales required for exciton separation and carrier collection is therefore a promising approach for improving efficiency. In this work, first-principles computations are employed to design and characterize a new class of photovoltaic materials composed of layered transition metal phosphates (TMPs) covalently bound to organic absorber molecules to form nanostructured superlattices. Using a combination of transition metal substitution and organic functionalization, the electronic structure of these materials is systematicallymore » tuned to design a new hybrid photovoltaic material predicted to exhibit very low recombination due to the presence of a local electric field and spatially isolated, high mobility, two-dimensional electron and hole conducting channels. Furthermore, this material is predicted to have a large open-circuit voltage of 1.7 V. Here, this work suggests that hybrid TMPs constitute an interesting class of materials for further investigation in the search for achieving high efficiency, high power, and low cost photo Zirconium phosphate was chosen, in part, due to previous experiment voltaics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lentz, Levi C.; Kolpak, Alexie M.
The performance of bulk organic and hybrid organic-inorganic heterojunction photovoltaics is often limited by high carrier recombination arising from strongly bound excitons and low carrier mobility. Structuring materials to minimize the length scales required for exciton separation and carrier collection is therefore a promising approach for improving efficiency. In this work, first-principles computations are employed to design and characterize a new class of photovoltaic materials composed of layered transition metal phosphates (TMPs) covalently bound to organic absorber molecules to form nanostructured superlattices. Using a combination of transition metal substitution and organic functionalization, the electronic structure of these materials is systematicallymore » tuned to design a new hybrid photovoltaic material predicted to exhibit very low recombination due to the presence of a local electric field and spatially isolated, high mobility, two-dimensional electron and hole conducting channels. Furthermore, this material is predicted to have a large open-circuit voltage of 1.7 V. Here, this work suggests that hybrid TMPs constitute an interesting class of materials for further investigation in the search for achieving high efficiency, high power, and low cost photo Zirconium phosphate was chosen, in part, due to previous experiment voltaics.« less
Hybrid stochastic simulation of reaction-diffusion systems with slow and fast dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strehl, Robert; Ilie, Silvana, E-mail: silvana@ryerson.ca
2015-12-21
In this paper, we present a novel hybrid method to simulate discrete stochastic reaction-diffusion models arising in biochemical signaling pathways. We study moderately stiff systems, for which we can partition each reaction or diffusion channel into either a slow or fast subset, based on its propensity. Numerical approaches missing this distinction are often limited with respect to computational run time or approximation quality. We design an approximate scheme that remedies these pitfalls by using a new blending strategy of the well-established inhomogeneous stochastic simulation algorithm and the tau-leaping simulation method. The advantages of our hybrid simulation algorithm are demonstrated onmore » three benchmarking systems, with special focus on approximation accuracy and efficiency.« less
Extension of a hybrid particle-continuum method for a mixture of chemical species
NASA Astrophysics Data System (ADS)
Verhoff, Ashley M.; Boyd, Iain D.
2012-11-01
Due to the physical accuracy and numerical efficiency achieved by analyzing transitional, hypersonic flow fields with hybrid particle-continuum methods, this paper describes a Modular Particle-Continuum (MPC) method and its extension to include multiple chemical species. Considerations that are specific to a hybrid approach for simulating gas mixtures are addressed, including a discussion of the Chapman-Enskog velocity distribution function (VDF) for near-equilibrium flows, and consistent viscosity models for the individual CFD and DSMC modules of the MPC method. Representative results for a hypersonic blunt-body flow are then presented, where the flow field properties, surface properties, and computational performance are compared for simulations employing full CFD, full DSMC, and the MPC method.
Development of seismic tomography software for hybrid supercomputers
NASA Astrophysics Data System (ADS)
Nikitin, Alexandr; Serdyukov, Alexandr; Duchkov, Anton
2015-04-01
Seismic tomography is a technique used for computing velocity model of geologic structure from first arrival travel times of seismic waves. The technique is used in processing of regional and global seismic data, in seismic exploration for prospecting and exploration of mineral and hydrocarbon deposits, and in seismic engineering for monitoring the condition of engineering structures and the surrounding host medium. As a consequence of development of seismic monitoring systems and increasing volume of seismic data, there is a growing need for new, more effective computational algorithms for use in seismic tomography applications with improved performance, accuracy and resolution. To achieve this goal, it is necessary to use modern high performance computing systems, such as supercomputers with hybrid architecture that use not only CPUs, but also accelerators and co-processors for computation. The goal of this research is the development of parallel seismic tomography algorithms and software package for such systems, to be used in processing of large volumes of seismic data (hundreds of gigabytes and more). These algorithms and software package will be optimized for the most common computing devices used in modern hybrid supercomputers, such as Intel Xeon CPUs, NVIDIA Tesla accelerators and Intel Xeon Phi co-processors. In this work, the following general scheme of seismic tomography is utilized. Using the eikonal equation solver, arrival times of seismic waves are computed based on assumed velocity model of geologic structure being analyzed. In order to solve the linearized inverse problem, tomographic matrix is computed that connects model adjustments with travel time residuals, and the resulting system of linear equations is regularized and solved to adjust the model. The effectiveness of parallel implementations of existing algorithms on target architectures is considered. During the first stage of this work, algorithms were developed for execution on supercomputers using multicore CPUs only, with preliminary performance tests showing good parallel efficiency on large numerical grids. Porting of the algorithms to hybrid supercomputers is currently ongoing.
A systematic review of hybrid brain-computer interfaces: Taxonomy and usability perspectives
Lee, Yushin; Yun, Myung Hwan
2017-01-01
A new Brain-Computer Interface (BCI) technique, which is called a hybrid BCI, has recently been proposed to address the limitations of conventional single BCI system. Although some hybrid BCI studies have shown promising results, the field of hybrid BCI is still in its infancy and there is much to be done. Especially, since the hybrid BCI systems are so complicated and complex, it is difficult to understand the constituent and role of a hybrid BCI system at a glance. Also, the complicated and complex systems make it difficult to evaluate the usability of the systems. We systematically reviewed and analyzed the current state-of-the-art hybrid BCI studies, and proposed a systematic taxonomy for classifying the types of hybrid BCIs with multiple taxonomic criteria. After reviewing 74 journal articles, hybrid BCIs could be categorized with respect to 1) the source of brain signals, 2) the characteristics of the brain signal, and 3) the characteristics of operation in each system. In addition, we exhaustively reviewed recent literature on usability of BCIs. To identify the key evaluation dimensions of usability, we focused on task and measurement characteristics of BCI usability. We classified and summarized 31 BCI usability journal articles according to task characteristics (type and description of task) and measurement characteristics (subjective and objective measures). Afterwards, we proposed usability dimensions for BCI and hybrid BCI systems according to three core-constructs: Satisfaction, effectiveness, and efficiency with recommendations for further research. This paper can help BCI researchers, even those who are new to the field, can easily understand the complex structure of the hybrid systems at a glance. Recommendations for future research can also be helpful in establishing research directions and gaining insight in how to solve ergonomics and HCI design issues surrounding BCI and hybrid BCI systems by usability evaluation. PMID:28453547
A systematic review of hybrid brain-computer interfaces: Taxonomy and usability perspectives.
Choi, Inchul; Rhiu, Ilsun; Lee, Yushin; Yun, Myung Hwan; Nam, Chang S
2017-01-01
A new Brain-Computer Interface (BCI) technique, which is called a hybrid BCI, has recently been proposed to address the limitations of conventional single BCI system. Although some hybrid BCI studies have shown promising results, the field of hybrid BCI is still in its infancy and there is much to be done. Especially, since the hybrid BCI systems are so complicated and complex, it is difficult to understand the constituent and role of a hybrid BCI system at a glance. Also, the complicated and complex systems make it difficult to evaluate the usability of the systems. We systematically reviewed and analyzed the current state-of-the-art hybrid BCI studies, and proposed a systematic taxonomy for classifying the types of hybrid BCIs with multiple taxonomic criteria. After reviewing 74 journal articles, hybrid BCIs could be categorized with respect to 1) the source of brain signals, 2) the characteristics of the brain signal, and 3) the characteristics of operation in each system. In addition, we exhaustively reviewed recent literature on usability of BCIs. To identify the key evaluation dimensions of usability, we focused on task and measurement characteristics of BCI usability. We classified and summarized 31 BCI usability journal articles according to task characteristics (type and description of task) and measurement characteristics (subjective and objective measures). Afterwards, we proposed usability dimensions for BCI and hybrid BCI systems according to three core-constructs: Satisfaction, effectiveness, and efficiency with recommendations for further research. This paper can help BCI researchers, even those who are new to the field, can easily understand the complex structure of the hybrid systems at a glance. Recommendations for future research can also be helpful in establishing research directions and gaining insight in how to solve ergonomics and HCI design issues surrounding BCI and hybrid BCI systems by usability evaluation.
NASA Technical Reports Server (NTRS)
Platt, M. E.; Lewis, E. E.; Boehm, F.
1991-01-01
A Monte Carlo Fortran computer program was developed that uses two variance reduction techniques for computing system reliability applicable to solving very large highly reliable fault-tolerant systems. The program is consistent with the hybrid automated reliability predictor (HARP) code which employs behavioral decomposition and complex fault-error handling models. This new capability is called MC-HARP which efficiently solves reliability models with non-constant failures rates (Weibull). Common mode failure modeling is also a specialty.
NASA Astrophysics Data System (ADS)
Lee, Hosik; Ohno, Takahisa
2013-03-01
For better efficiency as photocatalysts, N-doping for visible light reactivity has been intensively studied in Lamellar niobic and titanic solid acids (HNb3O8, H2Ti4O9), and its microscopic structures have been debated in this decade. We calculate the layered solid acids' structures and bandgaps. Bandgap reduction by carbon nitride adsorption in interlayer space is observed computationally. It originates from localized nitrogen states which form delocalized top-valence states by hybridizing with the host oxygen states and can contribute to photo-current.
Fast Construction of Near Parsimonious Hybridization Networks for Multiple Phylogenetic Trees.
Mirzaei, Sajad; Wu, Yufeng
2016-01-01
Hybridization networks represent plausible evolutionary histories of species that are affected by reticulate evolutionary processes. An established computational problem on hybridization networks is constructing the most parsimonious hybridization network such that each of the given phylogenetic trees (called gene trees) is "displayed" in the network. There have been several previous approaches, including an exact method and several heuristics, for this NP-hard problem. However, the exact method is only applicable to a limited range of data, and heuristic methods can be less accurate and also slow sometimes. In this paper, we develop a new algorithm for constructing near parsimonious networks for multiple binary gene trees. This method is more efficient for large numbers of gene trees than previous heuristics. This new method also produces more parsimonious results on many simulated datasets as well as a real biological dataset than a previous method. We also show that our method produces topologically more accurate networks for many datasets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Jianwei; Remsing, Richard C.; Zhang, Yubo
2016-06-13
One atom or molecule binds to another through various types of bond, the strengths of which range from several meV to several eV. Although some computational methods can provide accurate descriptions of all bond types, those methods are not efficient enough for many studies (for example, large systems, ab initio molecular dynamics and high-throughput searches for functional materials). Here, we show that the recently developed non-empirical strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation (meta-GGA) within the density functional theory framework predicts accurate geometries and energies of diversely bonded molecules and materials (including covalent, metallic, ionic, hydrogen and vanmore » der Waals bonds). This represents a significant improvement at comparable efficiency over its predecessors, the GGAs that currently dominate materials computation. Often, SCAN matches or improves on the accuracy of a computationally expensive hybrid functional, at almost-GGA cost. SCAN is therefore expected to have a broad impact on chemistry and materials science.« less
Sun, Jianwei; Remsing, Richard C; Zhang, Yubo; Sun, Zhaoru; Ruzsinszky, Adrienn; Peng, Haowei; Yang, Zenghui; Paul, Arpita; Waghmare, Umesh; Wu, Xifan; Klein, Michael L; Perdew, John P
2016-09-01
One atom or molecule binds to another through various types of bond, the strengths of which range from several meV to several eV. Although some computational methods can provide accurate descriptions of all bond types, those methods are not efficient enough for many studies (for example, large systems, ab initio molecular dynamics and high-throughput searches for functional materials). Here, we show that the recently developed non-empirical strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation (meta-GGA) within the density functional theory framework predicts accurate geometries and energies of diversely bonded molecules and materials (including covalent, metallic, ionic, hydrogen and van der Waals bonds). This represents a significant improvement at comparable efficiency over its predecessors, the GGAs that currently dominate materials computation. Often, SCAN matches or improves on the accuracy of a computationally expensive hybrid functional, at almost-GGA cost. SCAN is therefore expected to have a broad impact on chemistry and materials science.
Scattering properties of electromagnetic waves from metal object in the lower terahertz region
NASA Astrophysics Data System (ADS)
Chen, Gang; Dang, H. X.; Hu, T. Y.; Su, Xiang; Lv, R. C.; Li, Hao; Tan, X. M.; Cui, T. J.
2018-01-01
An efficient hybrid algorithm is proposed to analyze the electromagnetic scattering properties of metal objects in the lower terahertz (THz) frequency. The metal object can be viewed as perfectly electrical conducting object with a slightly rough surface in the lower THz region. Hence the THz scattered field from metal object can be divided into coherent and incoherent parts. The physical optics and truncated-wedge incremental-length diffraction coefficients methods are combined to compute the coherent part; while the small perturbation method is used for the incoherent part. With the MonteCarlo method, the radar cross section of the rough metal surface is computed by the multilevel fast multipole algorithm and the proposed hybrid algorithm, respectively. The numerical results show that the proposed algorithm has good accuracy to simulate the scattering properties rapidly in the lower THz region.
2015 Army Science Planning and Strategy Meeting Series: Outcomes and Conclusions
2017-12-21
modeling and nanoscale characterization tools to enable efficient design of hybridized manufacturing ; realtime, multiscale computational capability...to enable predictive analytics for expeditionary on-demand manufacturing • Discovery of design principles to enable programming advanced genetic...goals, significant research is needed to mature the fundamental materials science, processing and manufacturing sciences, design methodologies, data
Hybrid Computation at Louisiana State University.
ERIC Educational Resources Information Center
Corripio, Armando B.
Hybrid computation facilities have been in operation at Louisiana State University since the spring of 1969. In part, they consist of an Electronics Associates, Inc. (EAI) Model 680 analog computer, an EAI Model 693 interface, and a Xerox Data Systems (XDS) Sigma 5 digital computer. The hybrid laboratory is used in a course on hybrid computation…
Hybrid Fourier pseudospectral/discontinuous Galerkin time-domain method for wave propagation
NASA Astrophysics Data System (ADS)
Pagán Muñoz, Raúl; Hornikx, Maarten
2017-11-01
The Fourier Pseudospectral time-domain (Fourier PSTD) method was shown to be an efficient way of modelling acoustic propagation problems as described by the linearized Euler equations (LEE), but is limited to real-valued frequency independent boundary conditions and predominantly staircase-like boundary shapes. This paper presents a hybrid approach to solve the LEE, coupling Fourier PSTD with a nodal Discontinuous Galerkin (DG) method. DG exhibits almost no restrictions with respect to geometrical complexity or boundary conditions. The aim of this novel method is to allow the computation of complex geometries and to be a step towards the implementation of frequency dependent boundary conditions by using the benefits of DG at the boundaries, while keeping the efficient Fourier PSTD in the bulk of the domain. The hybridization approach is based on conformal meshes to avoid spatial interpolation of the DG solutions when transferring values from DG to Fourier PSTD, while the data transfer from Fourier PSTD to DG is done utilizing spectral interpolation of the Fourier PSTD solutions. The accuracy of the hybrid approach is presented for one- and two-dimensional acoustic problems and the main sources of error are investigated. It is concluded that the hybrid methodology does not introduce significant errors compared to the Fourier PSTD stand-alone solver. An example of a cylinder scattering problem is presented and accurate results have been obtained when using the proposed approach. Finally, no instabilities were found during long-time calculation using the current hybrid methodology on a two-dimensional domain.
NASA Astrophysics Data System (ADS)
Ariyarit, Atthaphon; Sugiura, Masahiko; Tanabe, Yasutada; Kanazaki, Masahiro
2018-06-01
A multi-fidelity optimization technique by an efficient global optimization process using a hybrid surrogate model is investigated for solving real-world design problems. The model constructs the local deviation using the kriging method and the global model using a radial basis function. The expected improvement is computed to decide additional samples that can improve the model. The approach was first investigated by solving mathematical test problems. The results were compared with optimization results from an ordinary kriging method and a co-kriging method, and the proposed method produced the best solution. The proposed method was also applied to aerodynamic design optimization of helicopter blades to obtain the maximum blade efficiency. The optimal shape obtained by the proposed method achieved performance almost equivalent to that obtained using the high-fidelity, evaluation-based single-fidelity optimization. Comparing all three methods, the proposed method required the lowest total number of high-fidelity evaluation runs to obtain a converged solution.
Air traffic surveillance and control using hybrid estimation and protocol-based conflict resolution
NASA Astrophysics Data System (ADS)
Hwang, Inseok
The continued growth of air travel and recent advances in new technologies for navigation, surveillance, and communication have led to proposals by the Federal Aviation Administration (FAA) to provide reliable and efficient tools to aid Air Traffic Control (ATC) in performing their tasks. In this dissertation, we address four problems frequently encountered in air traffic surveillance and control; multiple target tracking and identity management, conflict detection, conflict resolution, and safety verification. We develop a set of algorithms and tools to aid ATC; These algorithms have the provable properties of safety, computational efficiency, and convergence. Firstly, we develop a multiple-maneuvering-target tracking and identity management algorithm which can keep track of maneuvering aircraft in noisy environments and of their identities. Secondly, we propose a hybrid probabilistic conflict detection algorithm between multiple aircraft which uses flight mode estimates as well as aircraft current state estimates. Our algorithm is based on hybrid models of aircraft, which incorporate both continuous dynamics and discrete mode switching. Thirdly, we develop an algorithm for multiple (greater than two) aircraft conflict avoidance that is based on a closed-form analytic solution and thus provides guarantees of safety. Finally, we consider the problem of safety verification of control laws for safety critical systems, with application to air traffic control systems. We approach safety verification through reachability analysis, which is a computationally expensive problem. We develop an over-approximate method for reachable set computation using polytopic approximation methods and dynamic optimization. These algorithms may be used either in a fully autonomous way, or as supporting tools to increase controllers' situational awareness and to reduce their work load.
Effect of nonlinearity in hybrid kinetic Monte Carlo-continuum models.
Balter, Ariel; Lin, Guang; Tartakovsky, Alexandre M
2012-01-01
Recently there has been interest in developing efficient ways to model heterogeneous surface reactions with hybrid computational models that couple a kinetic Monte Carlo (KMC) model for a surface to a finite-difference model for bulk diffusion in a continuous domain. We consider two representative problems that validate a hybrid method and show that this method captures the combined effects of nonlinearity and stochasticity. We first validate a simple deposition-dissolution model with a linear rate showing that the KMC-continuum hybrid agrees with both a fully deterministic model and its analytical solution. We then study a deposition-dissolution model including competitive adsorption, which leads to a nonlinear rate, and show that in this case the KMC-continuum hybrid and fully deterministic simulations do not agree. However, we are able to identify the difference as a natural result of the stochasticity coming from the KMC surface process. Because KMC captures inherent fluctuations, we consider it to be more realistic than a purely deterministic model. Therefore, we consider the KMC-continuum hybrid to be more representative of a real system.
Effect of Nonlinearity in Hybrid Kinetic Monte Carlo-Continuum Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balter, Ariel I.; Lin, Guang; Tartakovsky, Alexandre M.
2012-04-23
Recently there has been interest in developing efficient ways to model heterogeneous surface reactions with hybrid computational models that couple a KMC model for a surface to a finite difference model for bulk diffusion in a continuous domain. We consider two representative problems that validate a hybrid method and also show that this method captures the combined effects of nonlinearity and stochasticity. We first validate a simple deposition/dissolution model with a linear rate showing that the KMC-continuum hybrid agrees with both a fully deterministic model and its analytical solution. We then study a deposition/dissolution model including competitive adsorption, which leadsmore » to a nonlinear rate, and show that, in this case, the KMC-continuum hybrid and fully deterministic simulations do not agree. However, we are able to identify the difference as a natural result of the stochasticity coming from the KMC surface process. Because KMC captures inherent fluctuations, we consider it to be more realistic than a purely deterministic model. Therefore, we consider the KMC-continuum hybrid to be more representative of a real system.« less
A decision support model for investment on P2P lending platform.
Zeng, Xiangxiang; Liu, Li; Leung, Stephen; Du, Jiangze; Wang, Xun; Li, Tao
2017-01-01
Peer-to-peer (P2P) lending, as a novel economic lending model, has triggered new challenges on making effective investment decisions. In a P2P lending platform, one lender can invest N loans and a loan may be accepted by M investors, thus forming a bipartite graph. Basing on the bipartite graph model, we built an iteration computation model to evaluate the unknown loans. To validate the proposed model, we perform extensive experiments on real-world data from the largest American P2P lending marketplace-Prosper. By comparing our experimental results with those obtained by Bayes and Logistic Regression, we show that our computation model can help borrowers select good loans and help lenders make good investment decisions. Experimental results also show that the Logistic classification model is a good complement to our iterative computation model, which motivates us to integrate the two classification models. The experimental results of the hybrid classification model demonstrate that the logistic classification model and our iteration computation model are complementary to each other. We conclude that the hybrid model (i.e., the integration of iterative computation model and Logistic classification model) is more efficient and stable than the individual model alone.
A decision support model for investment on P2P lending platform
Liu, Li; Leung, Stephen; Du, Jiangze; Wang, Xun; Li, Tao
2017-01-01
Peer-to-peer (P2P) lending, as a novel economic lending model, has triggered new challenges on making effective investment decisions. In a P2P lending platform, one lender can invest N loans and a loan may be accepted by M investors, thus forming a bipartite graph. Basing on the bipartite graph model, we built an iteration computation model to evaluate the unknown loans. To validate the proposed model, we perform extensive experiments on real-world data from the largest American P2P lending marketplace—Prosper. By comparing our experimental results with those obtained by Bayes and Logistic Regression, we show that our computation model can help borrowers select good loans and help lenders make good investment decisions. Experimental results also show that the Logistic classification model is a good complement to our iterative computation model, which motivates us to integrate the two classification models. The experimental results of the hybrid classification model demonstrate that the logistic classification model and our iteration computation model are complementary to each other. We conclude that the hybrid model (i.e., the integration of iterative computation model and Logistic classification model) is more efficient and stable than the individual model alone. PMID:28877234
Fast MPEG-CDVS Encoder With GPU-CPU Hybrid Computing
NASA Astrophysics Data System (ADS)
Duan, Ling-Yu; Sun, Wei; Zhang, Xinfeng; Wang, Shiqi; Chen, Jie; Yin, Jianxiong; See, Simon; Huang, Tiejun; Kot, Alex C.; Gao, Wen
2018-05-01
The compact descriptors for visual search (CDVS) standard from ISO/IEC moving pictures experts group (MPEG) has succeeded in enabling the interoperability for efficient and effective image retrieval by standardizing the bitstream syntax of compact feature descriptors. However, the intensive computation of CDVS encoder unfortunately hinders its widely deployment in industry for large-scale visual search. In this paper, we revisit the merits of low complexity design of CDVS core techniques and present a very fast CDVS encoder by leveraging the massive parallel execution resources of GPU. We elegantly shift the computation-intensive and parallel-friendly modules to the state-of-the-arts GPU platforms, in which the thread block allocation and the memory access are jointly optimized to eliminate performance loss. In addition, those operations with heavy data dependence are allocated to CPU to resolve the extra but non-necessary computation burden for GPU. Furthermore, we have demonstrated the proposed fast CDVS encoder can work well with those convolution neural network approaches which has harmoniously leveraged the advantages of GPU platforms, and yielded significant performance improvements. Comprehensive experimental results over benchmarks are evaluated, which has shown that the fast CDVS encoder using GPU-CPU hybrid computing is promising for scalable visual search.
Constant-pH Molecular Dynamics Simulations for Large Biomolecular Systems
Radak, Brian K.; Chipot, Christophe; Suh, Donghyuk; ...
2017-11-07
We report that an increasingly important endeavor is to develop computational strategies that enable molecular dynamics (MD) simulations of biomolecular systems with spontaneous changes in protonation states under conditions of constant pH. The present work describes our efforts to implement the powerful constant-pH MD simulation method, based on a hybrid nonequilibrium MD/Monte Carlo (neMD/MC) technique within the highly scalable program NAMD. The constant-pH hybrid neMD/MC method has several appealing features; it samples the correct semigrand canonical ensemble rigorously, the computational cost increases linearly with the number of titratable sites, and it is applicable to explicit solvent simulations. The present implementationmore » of the constant-pH hybrid neMD/MC in NAMD is designed to handle a wide range of biomolecular systems with no constraints on the choice of force field. Furthermore, the sampling efficiency can be adaptively improved on-the-fly by adjusting algorithmic parameters during the simulation. Finally, illustrative examples emphasizing medium- and large-scale applications on next-generation supercomputing architectures are provided.« less
NASA Astrophysics Data System (ADS)
Gutzwiller, David; Gontier, Mathieu; Demeulenaere, Alain
2014-11-01
Multi-Block structured solvers hold many advantages over their unstructured counterparts, such as a smaller memory footprint and efficient serial performance. Historically, multi-block structured solvers have not been easily adapted for use in a High Performance Computing (HPC) environment, and the recent trend towards hybrid GPU/CPU architectures has further complicated the situation. This paper will elaborate on developments and innovations applied to the NUMECA FINE/Turbo solver that have allowed near-linear scalability with real-world problems on over 250 hybrid GPU/GPU cluster nodes. Discussion will focus on the implementation of virtual partitioning and load balancing algorithms using a novel meta-block concept. This implementation is transparent to the user, allowing all pre- and post-processing steps to be performed using a simple, unpartitioned grid topology. Additional discussion will elaborate on developments that have improved parallel performance, including fully parallel I/O with the ADIOS API and the GPU porting of the computationally heavy CPUBooster convergence acceleration module. Head of HPC and Release Management, Numeca International.
Constant-pH Molecular Dynamics Simulations for Large Biomolecular Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radak, Brian K.; Chipot, Christophe; Suh, Donghyuk
We report that an increasingly important endeavor is to develop computational strategies that enable molecular dynamics (MD) simulations of biomolecular systems with spontaneous changes in protonation states under conditions of constant pH. The present work describes our efforts to implement the powerful constant-pH MD simulation method, based on a hybrid nonequilibrium MD/Monte Carlo (neMD/MC) technique within the highly scalable program NAMD. The constant-pH hybrid neMD/MC method has several appealing features; it samples the correct semigrand canonical ensemble rigorously, the computational cost increases linearly with the number of titratable sites, and it is applicable to explicit solvent simulations. The present implementationmore » of the constant-pH hybrid neMD/MC in NAMD is designed to handle a wide range of biomolecular systems with no constraints on the choice of force field. Furthermore, the sampling efficiency can be adaptively improved on-the-fly by adjusting algorithmic parameters during the simulation. Finally, illustrative examples emphasizing medium- and large-scale applications on next-generation supercomputing architectures are provided.« less
Hybrid 3D printing: a game-changer in personalized cardiac medicine?
Kurup, Harikrishnan K N; Samuel, Bennett P; Vettukattil, Joseph J
2015-12-01
Three-dimensional (3D) printing in congenital heart disease has the potential to increase procedural efficiency and patient safety by improving interventional and surgical planning and reducing radiation exposure. Cardiac magnetic resonance imaging and computed tomography are usually the source datasets to derive 3D printing. More recently, 3D echocardiography has been demonstrated to derive 3D-printed models. The integration of multiple imaging modalities for hybrid 3D printing has also been shown to create accurate printed heart models, which may prove to be beneficial for interventional cardiologists, cardiothoracic surgeons, and as an educational tool. Further advancements in the integration of different imaging modalities into a single platform for hybrid 3D printing and virtual 3D models will drive the future of personalized cardiac medicine.
Deciphering Molecular Mechanisms of Interface Buildup and Stability in Porous Si/Eumelanin Hybrids
Pinna, Elisa; Melis, Claudio; Antidormi, Aleandro; Cardia, Roberto; Sechi, Elisa; Cappellini, Giancarlo; Colombo, Luciano
2017-01-01
Porous Si/eumelanin hybrids are a novel class of organic–inorganic hybrid materials that hold considerable promise for photovoltaic applications. Current progress toward device setup is, however, hindered by photocurrent stability issues, which require a detailed understanding of the mechanisms underlying the buildup and consolidation of the eumelanin–silicon interface. Herein we report an integrated experimental and computational study aimed at probing interface stability via surface modification and eumelanin manipulation, and at modeling the organic–inorganic interface via formation of a 5,6-dihydroxyindole (DHI) tetramer and its adhesion to silicon. The results indicated that mild silicon oxidation increases photocurrent stability via enhancement of the DHI–surface interaction, and that higher oxidation states in DHI oligomers create more favorable conditions for the efficient adhesion of growing eumelanin. PMID:28753933
A multiobjective hybrid genetic algorithm for the capacitated multipoint network design problem.
Lo, C C; Chang, W H
2000-01-01
The capacitated multipoint network design problem (CMNDP) is NP-complete. In this paper, a hybrid genetic algorithm for CMNDP is proposed. The multiobjective hybrid genetic algorithm (MOHGA) differs from other genetic algorithms (GAs) mainly in its selection procedure. The concept of subpopulation is used in MOHGA. Four subpopulations are generated according to the elitism reservation strategy, the shifting Prufer vector, the stochastic universal sampling, and the complete random method, respectively. Mixing these four subpopulations produces the next generation population. The MOHGA can effectively search the feasible solution space due to population diversity. The MOHGA has been applied to CMNDP. By examining computational and analytical results, we notice that the MOHGA can find most nondominated solutions and is much more effective and efficient than other multiobjective GAs.
Accelerating k-NN Algorithm with Hybrid MPI and OpenSHMEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Jian; Hamidouche, Khaled; Zheng, Jie
2015-08-05
Machine Learning algorithms are benefiting from the continuous improvement of programming models, including MPI, MapReduce and PGAS. k-Nearest Neighbors (k-NN) algorithm is a widely used machine learning algorithm, applied to supervised learning tasks such as classification. Several parallel implementations of k-NN have been proposed in the literature and practice. However, on high-performance computing systems with high-speed interconnects, it is important to further accelerate existing designs of the k-NN algorithm through taking advantage of scalable programming models. To improve the performance of k-NN on large-scale environment with InfiniBand network, this paper proposes several alternative hybrid MPI+OpenSHMEM designs and performs a systemicmore » evaluation and analysis on typical workloads. The hybrid designs leverage the one-sided memory access to better overlap communication with computation than the existing pure MPI design, and propose better schemes for efficient buffer management. The implementation based on k-NN program from MaTEx with MVAPICH2-X (Unified MPI+PGAS Communication Runtime over InfiniBand) shows up to 9.0% time reduction for training KDD Cup 2010 workload over 512 cores, and 27.6% time reduction for small workload with balanced communication and computation. Experiments of running with varied number of cores show that our design can maintain good scalability.« less
Hardware simulation of fuel cell/gas turbine hybrids
NASA Astrophysics Data System (ADS)
Smith, Thomas Paul
Hybrid solid oxide fuel cell/gas turbine (SOFC/GT) systems offer high efficiency power generation, but face numerous integration and operability challenges. This dissertation addresses the application of hardware-in-the-loop simulation (HILS) to explore the performance of a solid oxide fuel cell stack and gas turbine when combined into a hybrid system. Specifically, this project entailed developing and demonstrating a methodology for coupling a numerical SOFC subsystem model with a gas turbine that has been modified with supplemental process flow and control paths to mimic a hybrid system. This HILS approach was implemented with the U.S. Department of Energy Hybrid Performance Project (HyPer) located at the National Energy Technology Laboratory. By utilizing HILS the facility provides a cost effective and capable platform for characterizing the response of hybrid systems to dynamic variations in operating conditions. HILS of a hybrid system was accomplished by first interfacing a numerical model with operating gas turbine hardware. The real-time SOFC stack model responds to operating turbine flow conditions in order to predict the level of thermal effluent from the SOFC stack. This simulated level of heating then dynamically sets the turbine's "firing" rate to reflect the stack output heat rate. Second, a high-speed computer system with data acquisition capabilities was integrated with the existing controls and sensors of the turbine facility. In the future, this will allow for the utilization of high-fidelity fuel cell models that infer cell performance parameters while still computing the simulation in real-time. Once the integration of the numeric and the hardware simulation components was completed, HILS experiments were conducted to evaluate hybrid system performance. The testing identified non-intuitive transient responses arising from the large thermal capacitance of the stack that are inherent to hybrid systems. Furthermore, the tests demonstrated the capabilities of HILS as a research tool for investigating the dynamic behavior of SOFC/GT hybrid power generation systems.
An automated procedure for developing hybrid computer simulations of turbofan engines
NASA Technical Reports Server (NTRS)
Szuch, J. R.; Krosel, S. M.
1980-01-01
A systematic, computer-aided, self-documenting methodology for developing hybrid computer simulations of turbofan engines is presented. The methodology makes use of a host program that can run on a large digital computer and a machine-dependent target (hybrid) program. The host program performs all of the calculations and date manipulations needed to transform user-supplied engine design information to a form suitable for the hybrid computer. The host program also trims the self contained engine model to match specified design point information. A test case is described and comparisons between hybrid simulation and specified engine performance data are presented.
FMLRC: Hybrid long read error correction using an FM-index.
Wang, Jeremy R; Holt, James; McMillan, Leonard; Jones, Corbin D
2018-02-09
Long read sequencing is changing the landscape of genomic research, especially de novo assembly. Despite the high error rate inherent to long read technologies, increased read lengths dramatically improve the continuity and accuracy of genome assemblies. However, the cost and throughput of these technologies limits their application to complex genomes. One solution is to decrease the cost and time to assemble novel genomes by leveraging "hybrid" assemblies that use long reads for scaffolding and short reads for accuracy. We describe a novel method leveraging a multi-string Burrows-Wheeler Transform with auxiliary FM-index to correct errors in long read sequences using a set of complementary short reads. We demonstrate that our method efficiently produces significantly more high quality corrected sequence than existing hybrid error-correction methods. We also show that our method produces more contiguous assemblies, in many cases, than existing state-of-the-art hybrid and long-read only de novo assembly methods. Our method accurately corrects long read sequence data using complementary short reads. We demonstrate higher total throughput of corrected long reads and a corresponding increase in contiguity of the resulting de novo assemblies. Improved throughput and computational efficiency than existing methods will help better economically utilize emerging long read sequencing technologies.
NASA Astrophysics Data System (ADS)
Schwörer, Magnus; Breitenfeld, Benedikt; Tröster, Philipp; Bauer, Sebastian; Lorenzen, Konstantin; Tavan, Paul; Mathias, Gerald
2013-06-01
Hybrid molecular dynamics (MD) simulations, in which the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 103-105 molecules, pose a challenge. A corresponding computational approach should guarantee energy conservation, exclude artificial distortions of the electron density at the interface between the DFT and PMM fragments, and should treat the long-range electrostatic interactions within the hybrid simulation system in a linearly scaling fashion. Here we describe a corresponding Hamiltonian DFT/(P)MM implementation, which accounts for inducible atomic dipoles of a PMM environment in a joint DFT/PMM self-consistency iteration. The long-range parts of the electrostatics are treated by hierarchically nested fast multipole expansions up to a maximum distance dictated by the minimum image convention of toroidal boundary conditions and, beyond that distance, by a reaction field approach such that the computation scales linearly with the number of PMM atoms. Short-range over-polarization artifacts are excluded by using Gaussian inducible dipoles throughout the system and Gaussian partial charges in the PMM region close to the DFT fragment. The Hamiltonian character, the stability, and efficiency of the implementation are investigated by hybrid DFT/PMM-MD simulations treating one molecule of the water dimer and of bulk water by DFT and the respective remainder by PMM.
NASA Astrophysics Data System (ADS)
Bansal, Shonak; Singh, Arun Kumar; Gupta, Neena
2017-02-01
In real-life, multi-objective engineering design problems are very tough and time consuming optimization problems due to their high degree of nonlinearities, complexities and inhomogeneity. Nature-inspired based multi-objective optimization algorithms are now becoming popular for solving multi-objective engineering design problems. This paper proposes original multi-objective Bat algorithm (MOBA) and its extended form, namely, novel parallel hybrid multi-objective Bat algorithm (PHMOBA) to generate shortest length Golomb ruler called optimal Golomb ruler (OGR) sequences at a reasonable computation time. The OGRs found their application in optical wavelength division multiplexing (WDM) systems as channel-allocation algorithm to reduce the four-wave mixing (FWM) crosstalk. The performances of both the proposed algorithms to generate OGRs as optical WDM channel-allocation is compared with other existing classical computing and nature-inspired algorithms, including extended quadratic congruence (EQC), search algorithm (SA), genetic algorithms (GAs), biogeography based optimization (BBO) and big bang-big crunch (BB-BC) optimization algorithms. Simulations conclude that the proposed parallel hybrid multi-objective Bat algorithm works efficiently as compared to original multi-objective Bat algorithm and other existing algorithms to generate OGRs for optical WDM systems. The algorithm PHMOBA to generate OGRs, has higher convergence and success rate than original MOBA. The efficiency improvement of proposed PHMOBA to generate OGRs up to 20-marks, in terms of ruler length and total optical channel bandwidth (TBW) is 100 %, whereas for original MOBA is 85 %. Finally the implications for further research are also discussed.
Loan, Nazir A; Parah, Shabir A; Sheikh, Javaid A; Akhoon, Jahangir A; Bhat, Ghulam M
2017-09-01
A high capacity and semi-reversible data hiding scheme based on Pixel Repetition Method (PRM) and hybrid edge detection for scalable medical images has been proposed in this paper. PRM has been used to scale up the small sized image (seed image) and hybrid edge detection ensures that no important edge information is missed. The scaled up version of seed image has been divided into 2×2 non overlapping blocks. In each block there is one seed pixel whose status decides the number of bits to be embedded in the remaining three pixels of that block. The Electronic Patient Record (EPR)/data have been embedded by using Least Significant and Intermediate Significant Bit Substitution (ISBS). The RC4 encryption has been used to add an additional security layer for embedded EPR/data. The proposed scheme has been tested for various medical and general images and compared with some state of art techniques in the field. The experimental results reveal that the proposed scheme besides being semi-reversible and computationally efficient is capable of handling high payload and as such can be used effectively for electronic healthcare applications. Copyright © 2017. Published by Elsevier Inc.
Oryspayev, Dossay; Aktulga, Hasan Metin; Sosonkina, Masha; ...
2015-07-14
In this article, sparse matrix vector multiply (SpMVM) is an important kernel that frequently arises in high performance computing applications. Due to its low arithmetic intensity, several approaches have been proposed in literature to improve its scalability and efficiency in large scale computations. In this paper, our target systems are high end multi-core architectures and we use messaging passing interface + open multiprocessing hybrid programming model for parallelism. We analyze the performance of recently proposed implementation of the distributed symmetric SpMVM, originally developed for large sparse symmetric matrices arising in ab initio nuclear structure calculations. We also study important featuresmore » of this implementation and compare with previously reported implementations that do not exploit underlying symmetry. Our SpMVM implementations leverage the hybrid paradigm to efficiently overlap expensive communications with computations. Our main comparison criterion is the "CPU core hours" metric, which is the main measure of resource usage on supercomputers. We analyze the effects of topology-aware mapping heuristic using simplified network load model. Furthermore, we have tested the different SpMVM implementations on two large clusters with 3D Torus and Dragonfly topology. Our results show that the distributed SpMVM implementation that exploits matrix symmetry and hides communication yields the best value for the "CPU core hours" metric and significantly reduces data movement overheads.« less
A network of spiking neurons for computing sparse representations in an energy efficient way
Hu, Tao; Genkin, Alexander; Chklovskii, Dmitri B.
2013-01-01
Computing sparse redundant representations is an important problem both in applied mathematics and neuroscience. In many applications, this problem must be solved in an energy efficient way. Here, we propose a hybrid distributed algorithm (HDA), which solves this problem on a network of simple nodes communicating via low-bandwidth channels. HDA nodes perform both gradient-descent-like steps on analog internal variables and coordinate-descent-like steps via quantized external variables communicated to each other. Interestingly, such operation is equivalent to a network of integrate-and-fire neurons, suggesting that HDA may serve as a model of neural computation. We compare the numerical performance of HDA with existing algorithms and show that in the asymptotic regime the representation error of HDA decays with time, t, as 1/t. We show that HDA is stable against time-varying noise, specifically, the representation error decays as 1/t for Gaussian white noise. PMID:22920853
A network of spiking neurons for computing sparse representations in an energy-efficient way.
Hu, Tao; Genkin, Alexander; Chklovskii, Dmitri B
2012-11-01
Computing sparse redundant representations is an important problem in both applied mathematics and neuroscience. In many applications, this problem must be solved in an energy-efficient way. Here, we propose a hybrid distributed algorithm (HDA), which solves this problem on a network of simple nodes communicating by low-bandwidth channels. HDA nodes perform both gradient-descent-like steps on analog internal variables and coordinate-descent-like steps via quantized external variables communicated to each other. Interestingly, the operation is equivalent to a network of integrate-and-fire neurons, suggesting that HDA may serve as a model of neural computation. We show that the numerical performance of HDA is on par with existing algorithms. In the asymptotic regime, the representation error of HDA decays with time, t, as 1/t. HDA is stable against time-varying noise; specifically, the representation error decays as 1/√t for gaussian white noise.
PRESAGE: PRivacy-preserving gEnetic testing via SoftwAre Guard Extension.
Chen, Feng; Wang, Chenghong; Dai, Wenrui; Jiang, Xiaoqian; Mohammed, Noman; Al Aziz, Md Momin; Sadat, Md Nazmus; Sahinalp, Cenk; Lauter, Kristin; Wang, Shuang
2017-07-26
Advances in DNA sequencing technologies have prompted a wide range of genomic applications to improve healthcare and facilitate biomedical research. However, privacy and security concerns have emerged as a challenge for utilizing cloud computing to handle sensitive genomic data. We present one of the first implementations of Software Guard Extension (SGX) based securely outsourced genetic testing framework, which leverages multiple cryptographic protocols and minimal perfect hash scheme to enable efficient and secure data storage and computation outsourcing. We compared the performance of the proposed PRESAGE framework with the state-of-the-art homomorphic encryption scheme, as well as the plaintext implementation. The experimental results demonstrated significant performance over the homomorphic encryption methods and a small computational overhead in comparison to plaintext implementation. The proposed PRESAGE provides an alternative solution for secure and efficient genomic data outsourcing in an untrusted cloud by using a hybrid framework that combines secure hardware and multiple crypto protocols.
A nonlinear relaxation/quasi-Newton algorithm for the compressible Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Edwards, Jack R.; Mcrae, D. S.
1992-01-01
A highly efficient implicit method for the computation of steady, two-dimensional compressible Navier-Stokes flowfields is presented. The discretization of the governing equations is hybrid in nature, with flux-vector splitting utilized in the streamwise direction and central differences with flux-limited artificial dissipation used for the transverse fluxes. Line Jacobi relaxation is used to provide a suitable initial guess for a new nonlinear iteration strategy based on line Gauss-Seidel sweeps. The applicability of quasi-Newton methods as convergence accelerators for this and other line relaxation algorithms is discussed, and efficient implementations of such techniques are presented. Convergence histories and comparisons with experimental data are presented for supersonic flow over a flat plate and for several high-speed compression corner interactions. Results indicate a marked improvement in computational efficiency over more conventional upwind relaxation strategies, particularly for flowfields containing large pockets of streamwise subsonic flow.
An Optimization Framework for Dynamic Hybrid Energy Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenbo Du; Humberto E Garcia; Christiaan J.J. Paredis
A computational framework for the efficient analysis and optimization of dynamic hybrid energy systems (HES) is developed. A microgrid system with multiple inputs and multiple outputs (MIMO) is modeled using the Modelica language in the Dymola environment. The optimization loop is implemented in MATLAB, with the FMI Toolbox serving as the interface between the computational platforms. Two characteristic optimization problems are selected to demonstrate the methodology and gain insight into the system performance. The first is an unconstrained optimization problem that optimizes the dynamic properties of the battery, reactor and generator to minimize variability in the HES. The second problemmore » takes operating and capital costs into consideration by imposing linear and nonlinear constraints on the design variables. The preliminary optimization results obtained in this study provide an essential step towards the development of a comprehensive framework for designing HES.« less
Whalen, Katie L; Chang, Kevin M; Spies, M Ashley
2011-05-16
Existing techniques which attempt to predict the affinity of protein-ligand interactions have demonstrated a direct relationship between computational cost and prediction accuracy. We present here the first application of a hybrid ensemble docking and steered molecular dynamics scheme (with a minimized computational cost), which achieves a binding affinity rank-ordering of ligands with a Spearman correlation coefficient of 0.79 and an RMS error of 0.7 kcal/mol. The scheme, termed Flexible Enzyme Receptor Method by Steered Molecular Dynamics (FERM-SMD), is applied to an in-house collection of 17 validated ligands of glutamate racemase. The resulting improved accuracy in affinity prediction allows elucidation of the key structural components of a heretofore unreported glutamate racemase inhibitor (K(i) = 9 µM), a promising new lead in the development of antibacterial therapeutics.
Hypersonic simulations using open-source CFD and DSMC solvers
NASA Astrophysics Data System (ADS)
Casseau, V.; Scanlon, T. J.; John, B.; Emerson, D. R.; Brown, R. E.
2016-11-01
Hypersonic hybrid hydrodynamic-molecular gas flow solvers are required to satisfy the two essential requirements of any high-speed reacting code, these being physical accuracy and computational efficiency. The James Weir Fluids Laboratory at the University of Strathclyde is currently developing an open-source hybrid code which will eventually reconcile the direct simulation Monte-Carlo method, making use of the OpenFOAM application called dsmcFoam, and the newly coded open-source two-temperature computational fluid dynamics solver named hy2Foam. In conjunction with employing the CVDV chemistry-vibration model in hy2Foam, novel use is made of the QK rates in a CFD solver. In this paper, further testing is performed, in particular with the CFD solver, to ensure its efficacy before considering more advanced test cases. The hy2Foam and dsmcFoam codes have shown to compare reasonably well, thus providing a useful basis for other codes to compare against.
The Ordered Clustered Travelling Salesman Problem: A Hybrid Genetic Algorithm
Ahmed, Zakir Hussain
2014-01-01
The ordered clustered travelling salesman problem is a variation of the usual travelling salesman problem in which a set of vertices (except the starting vertex) of the network is divided into some prespecified clusters. The objective is to find the least cost Hamiltonian tour in which vertices of any cluster are visited contiguously and the clusters are visited in the prespecified order. The problem is NP-hard, and it arises in practical transportation and sequencing problems. This paper develops a hybrid genetic algorithm using sequential constructive crossover, 2-opt search, and a local search for obtaining heuristic solution to the problem. The efficiency of the algorithm has been examined against two existing algorithms for some asymmetric and symmetric TSPLIB instances of various sizes. The computational results show that the proposed algorithm is very effective in terms of solution quality and computational time. Finally, we present solution to some more symmetric TSPLIB instances. PMID:24701148
Van de Velde, Stijn; Macken, Lieve; Vanneste, Koen; Goossens, Martine; Vanschoenbeek, Jan; Aertgeerts, Bert; Vanopstal, Klaar; Vander Stichele, Robert; Buysschaert, Joost
2015-10-09
The construction of EBMPracticeNet, a national electronic point-of-care information platform in Belgium, began in 2011 to optimize quality of care by promoting evidence-based decision making. The project involved, among other tasks, the translation of 940 EBM Guidelines of Duodecim Medical Publications from English into Dutch and French. Considering the scale of the translation process, it was decided to make use of computer-aided translation performed by certificated translators with limited expertise in medical translation. Our consortium used a hybrid approach, involving a human translator supported by a translation memory (using SDL Trados Studio), terminology recognition (using SDL MultiTerm terminology databases) from medical terminology databases, and support from online machine translation. This resulted in a validated translation memory, which is now in use for the translation of new and updated guidelines. The objective of this experiment was to evaluate the performance of the hybrid human and computer-assisted approach in comparison with translation unsupported by translation memory and terminology recognition. A comparison was also made with the translation efficiency of an expert medical translator. We conducted a pilot study in which two sets of 30 new and 30 updated guidelines were randomized to one of three groups. Comparable guidelines were translated (1) by certificated junior translators without medical specialization using the hybrid method, (2) by an experienced medical translator without this support, and (3) by the same junior translators without the support of the validated translation memory. A medical proofreader who was blinded for the translation procedure, evaluated the translated guidelines for acceptability and adequacy. Translation speed was measured by recording translation and post-editing time. The human translation edit rate was calculated as a metric to evaluate the quality of the translation. A further evaluation was made of translation acceptability and adequacy. The average number of words per guideline was 1195 and the mean total translation time was 100.2 minutes/1000 words. No meaningful differences were found in the translation speed for new guidelines. The translation of updated guidelines was 59 minutes/1000 words faster (95% CI 2-115; P=.044) in the computer-aided group. Revisions due to terminology accounted for one third of the overall revisions by the medical proofreader. Use of the hybrid human and computer-aided translation by a non-expert translator makes the translation of updates of clinical practice guidelines faster and cheaper because of the benefits of translation memory. For the translation of new guidelines, there was no apparent benefit in comparison with the efficiency of translation unsupported by translation memory (whether by an expert or non-expert translator).
2015-01-01
Background The construction of EBMPracticeNet, a national electronic point-of-care information platform in Belgium, began in 2011 to optimize quality of care by promoting evidence-based decision making. The project involved, among other tasks, the translation of 940 EBM Guidelines of Duodecim Medical Publications from English into Dutch and French. Considering the scale of the translation process, it was decided to make use of computer-aided translation performed by certificated translators with limited expertise in medical translation. Our consortium used a hybrid approach, involving a human translator supported by a translation memory (using SDL Trados Studio), terminology recognition (using SDL MultiTerm terminology databases) from medical terminology databases, and support from online machine translation. This resulted in a validated translation memory, which is now in use for the translation of new and updated guidelines. Objective The objective of this experiment was to evaluate the performance of the hybrid human and computer-assisted approach in comparison with translation unsupported by translation memory and terminology recognition. A comparison was also made with the translation efficiency of an expert medical translator. Methods We conducted a pilot study in which two sets of 30 new and 30 updated guidelines were randomized to one of three groups. Comparable guidelines were translated (1) by certificated junior translators without medical specialization using the hybrid method, (2) by an experienced medical translator without this support, and (3) by the same junior translators without the support of the validated translation memory. A medical proofreader who was blinded for the translation procedure, evaluated the translated guidelines for acceptability and adequacy. Translation speed was measured by recording translation and post-editing time. The human translation edit rate was calculated as a metric to evaluate the quality of the translation. A further evaluation was made of translation acceptability and adequacy. Results The average number of words per guideline was 1195 and the mean total translation time was 100.2 minutes/1000 words. No meaningful differences were found in the translation speed for new guidelines. The translation of updated guidelines was 59 minutes/1000 words faster (95% CI 2-115; P=.044) in the computer-aided group. Revisions due to terminology accounted for one third of the overall revisions by the medical proofreader. Conclusions Use of the hybrid human and computer-aided translation by a non-expert translator makes the translation of updates of clinical practice guidelines faster and cheaper because of the benefits of translation memory. For the translation of new guidelines, there was no apparent benefit in comparison with the efficiency of translation unsupported by translation memory (whether by an expert or non-expert translator). PMID:26453372
Computationally Efficient Multiconfigurational Reactive Molecular Dynamics
Yamashita, Takefumi; Peng, Yuxing; Knight, Chris; Voth, Gregory A.
2012-01-01
It is a computationally demanding task to explicitly simulate the electronic degrees of freedom in a system to observe the chemical transformations of interest, while at the same time sampling the time and length scales required to converge statistical properties and thus reduce artifacts due to initial conditions, finite-size effects, and limited sampling. One solution that significantly reduces the computational expense consists of molecular models in which effective interactions between particles govern the dynamics of the system. If the interaction potentials in these models are developed to reproduce calculated properties from electronic structure calculations and/or ab initio molecular dynamics simulations, then one can calculate accurate properties at a fraction of the computational cost. Multiconfigurational algorithms model the system as a linear combination of several chemical bonding topologies to simulate chemical reactions, also sometimes referred to as “multistate”. These algorithms typically utilize energy and force calculations already found in popular molecular dynamics software packages, thus facilitating their implementation without significant changes to the structure of the code. However, the evaluation of energies and forces for several bonding topologies per simulation step can lead to poor computational efficiency if redundancy is not efficiently removed, particularly with respect to the calculation of long-ranged Coulombic interactions. This paper presents accurate approximations (effective long-range interaction and resulting hybrid methods) and multiple-program parallelization strategies for the efficient calculation of electrostatic interactions in reactive molecular simulations. PMID:25100924
NASA transmission research and its probable effects on helicopter transmission design
NASA Technical Reports Server (NTRS)
Zaretsky, E. V.; Coy, J. J.; Townsend, D. P.
1983-01-01
Transmissions studied for application to helicopters in addition to the more conventional geared transmissions include hybrid (traction/gear), bearingless planetary, and split torque transmissions. Research is being performed to establish the validity of analysis and computer codes developed to predict the performance, efficiency, life, and reliability of these transmissions. Results of this research should provide the transmission designer with analytical tools to design for minimum weight and noise with maximum life and efficiency. In addition, the advantages and limitations of drive systems as well as the more conventional systems will be defined.
NASA transmission research and its probable effects on helicopter transmission design
NASA Technical Reports Server (NTRS)
Zaretsky, E. V.; Coy, J. J.; Townsend, D. P.
1984-01-01
Transmissions studied for application to helicopters in addition to the more conventional geared transmissions include hybrid (traction/gear), bearingless planetary, and split torque transmissions. Research is being performed to establish the validity of analysis and computer codes developed to predict the performance, efficiency, life, and reliability of these transmissions. Results of this research should provide the transmission designer with analytical tools to design for minimum weight and noise with maximum life and efficiency. In addition, the advantages and limitations of drive systems as well as the more conventional systems will be defined.
Cloud Computing for radiologists.
Kharat, Amit T; Safvi, Amjad; Thind, Ss; Singh, Amarjit
2012-07-01
Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future.
Cloud Computing for radiologists
Kharat, Amit T; Safvi, Amjad; Thind, SS; Singh, Amarjit
2012-01-01
Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future. PMID:23599560
Region Templates: Data Representation and Management for High-Throughput Image Analysis
Pan, Tony; Kurc, Tahsin; Kong, Jun; Cooper, Lee; Klasky, Scott; Saltz, Joel
2015-01-01
We introduce a region template abstraction and framework for the efficient storage, management and processing of common data types in analysis of large datasets of high resolution images on clusters of hybrid computing nodes. The region template abstraction provides a generic container template for common data structures, such as points, arrays, regions, and object sets, within a spatial and temporal bounding box. It allows for different data management strategies and I/O implementations, while providing a homogeneous, unified interface to applications for data storage and retrieval. A region template application is represented as a hierarchical dataflow in which each computing stage may be represented as another dataflow of finer-grain tasks. The execution of the application is coordinated by a runtime system that implements optimizations for hybrid machines, including performance-aware scheduling for maximizing the utilization of computing devices and techniques to reduce the impact of data transfers between CPUs and GPUs. An experimental evaluation on a state-of-the-art hybrid cluster using a microscopy imaging application shows that the abstraction adds negligible overhead (about 3%) and achieves good scalability and high data transfer rates. Optimizations in a high speed disk based storage implementation of the abstraction to support asynchronous data transfers and computation result in an application performance gain of about 1.13×. Finally, a processing rate of 11,730 4K×4K tiles per minute was achieved for the microscopy imaging application on a cluster with 100 nodes (300 GPUs and 1,200 CPU cores). This computation rate enables studies with very large datasets. PMID:26139953
3D Higher Order Modeling in the BEM/FEM Hybrid Formulation
NASA Technical Reports Server (NTRS)
Fink, P. W.; Wilton, D. R.
2000-01-01
Higher order divergence- and curl-conforming bases have been shown to provide significant benefits, in both convergence rate and accuracy, in the 2D hybrid finite element/boundary element formulation (P. Fink and D. Wilton, National Radio Science Meeting, Boulder, CO, Jan. 2000). A critical issue in achieving the potential for accuracy of the approach is the accurate evaluation of all matrix elements. These involve products of high order polynomials and, in some instances, singular Green's functions. In the 2D formulation, the use of a generalized Gaussian quadrature method was found to greatly facilitate the computation and to improve the accuracy of the boundary integral equation self-terms. In this paper, a 3D, hybrid electric field formulation employing higher order bases and higher order elements is presented. The improvements in convergence rate and accuracy, compared to those resulting from lower order modeling, are established. Techniques developed to facilitate the computation of the boundary integral self-terms are also shown to improve the accuracy of these terms. Finally, simple preconditioning techniques are used in conjunction with iterative solution procedures to solve the resulting linear system efficiently. In order to handle the boundary integral singularities in the 3D formulation, the parent element- either a triangle or rectangle-is subdivided into a set of sub-triangles with a common vertex at the singularity. The contribution to the integral from each of the sub-triangles is computed using the Duffy transformation to remove the singularity. This method is shown to greatly facilitate t'pe self-term computation when the bases are of higher order. In addition, the sub-triangles can be further divided to achieve near arbitrary accuracy in the self-term computation. An efficient method for subdividing the parent element is presented. The accuracy obtained using higher order bases is compared to that obtained using lower order bases when the number of unknowns is approximately equal. Also, convergence rates obtained using higher order bases are compared to those obtained with lower order bases for selected sample
A hybrid short read mapping accelerator
2013-01-01
Background The rapid growth of short read datasets poses a new challenge to the short read mapping problem in terms of sensitivity and execution speed. Existing methods often use a restrictive error model for computing the alignments to improve speed, whereas more flexible error models are generally too slow for large-scale applications. A number of short read mapping software tools have been proposed. However, designs based on hardware are relatively rare. Field programmable gate arrays (FPGAs) have been successfully used in a number of specific application areas, such as the DSP and communications domains due to their outstanding parallel data processing capabilities, making them a competitive platform to solve problems that are “inherently parallel”. Results We present a hybrid system for short read mapping utilizing both FPGA-based hardware and CPU-based software. The computation intensive alignment and the seed generation operations are mapped onto an FPGA. We present a computationally efficient, parallel block-wise alignment structure (Align Core) to approximate the conventional dynamic programming algorithm. The performance is compared to the multi-threaded CPU-based GASSST and BWA software implementations. For single-end alignment, our hybrid system achieves faster processing speed than GASSST (with a similar sensitivity) and BWA (with a higher sensitivity); for pair-end alignment, our design achieves a slightly worse sensitivity than that of BWA but has a higher processing speed. Conclusions This paper shows that our hybrid system can effectively accelerate the mapping of short reads to a reference genome based on the seed-and-extend approach. The performance comparison to the GASSST and BWA software implementations under different conditions shows that our hybrid design achieves a high degree of sensitivity and requires less overall execution time with only modest FPGA resource utilization. Our hybrid system design also shows that the performance bottleneck for the short read mapping problem can be changed from the alignment stage to the seed generation stage, which provides an additional requirement for the future development of short read aligners. PMID:23441908
Samant, Asawari; Ogunnaike, Babatunde A; Vlachos, Dionisios G
2007-05-24
The fundamental role that intrinsic stochasticity plays in cellular functions has been shown via numerous computational and experimental studies. In the face of such evidence, it is important that intracellular networks are simulated with stochastic algorithms that can capture molecular fluctuations. However, separation of time scales and disparity in species population, two common features of intracellular networks, make stochastic simulation of such networks computationally prohibitive. While recent work has addressed each of these challenges separately, a generic algorithm that can simultaneously tackle disparity in time scales and population scales in stochastic systems is currently lacking. In this paper, we propose the hybrid, multiscale Monte Carlo (HyMSMC) method that fills in this void. The proposed HyMSMC method blends stochastic singular perturbation concepts, to deal with potential stiffness, with a hybrid of exact and coarse-grained stochastic algorithms, to cope with separation in population sizes. In addition, we introduce the computational singular perturbation (CSP) method as a means of systematically partitioning fast and slow networks and computing relaxation times for convergence. We also propose a new criteria of convergence of fast networks to stochastic low-dimensional manifolds, which further accelerates the algorithm. We use several prototype and biological examples, including a gene expression model displaying bistability, to demonstrate the efficiency, accuracy and applicability of the HyMSMC method. Bistable models serve as stringent tests for the success of multiscale MC methods and illustrate limitations of some literature methods.
Chen, Yunjie; Roux, Benoît
2014-09-21
Hybrid schemes combining the strength of molecular dynamics (MD) and Metropolis Monte Carlo (MC) offer a promising avenue to improve the sampling efficiency of computer simulations of complex systems. A number of recently proposed hybrid methods consider new configurations generated by driving the system via a non-equilibrium MD (neMD) trajectory, which are subsequently treated as putative candidates for Metropolis MC acceptance or rejection. To obey microscopic detailed balance, it is necessary to alter the momentum of the system at the beginning and/or the end of the neMD trajectory. This strict rule then guarantees that the random walk in configurational space generated by such hybrid neMD-MC algorithm will yield the proper equilibrium Boltzmann distribution. While a number of different constructs are possible, the most commonly used prescription has been to simply reverse the momenta of all the particles at the end of the neMD trajectory ("one-end momentum reversal"). Surprisingly, it is shown here that the choice of momentum reversal prescription can have a considerable effect on the rate of convergence of the hybrid neMD-MC algorithm, with the simple one-end momentum reversal encountering particularly acute problems. In these neMD-MC simulations, different regions of configurational space end up being essentially isolated from one another due to a very small transition rate between regions. In the worst-case scenario, it is almost as if the configurational space does not constitute a single communicating class that can be sampled efficiently by the algorithm, and extremely long neMD-MC simulations are needed to obtain proper equilibrium probability distributions. To address this issue, a novel momentum reversal prescription, symmetrized with respect to both the beginning and the end of the neMD trajectory ("symmetric two-ends momentum reversal"), is introduced. Illustrative simulations demonstrate that the hybrid neMD-MC algorithm robustly yields a correct equilibrium probability distribution with this prescription.
NASA Astrophysics Data System (ADS)
Chen, Yunjie; Roux, Benoît
2014-09-01
Hybrid schemes combining the strength of molecular dynamics (MD) and Metropolis Monte Carlo (MC) offer a promising avenue to improve the sampling efficiency of computer simulations of complex systems. A number of recently proposed hybrid methods consider new configurations generated by driving the system via a non-equilibrium MD (neMD) trajectory, which are subsequently treated as putative candidates for Metropolis MC acceptance or rejection. To obey microscopic detailed balance, it is necessary to alter the momentum of the system at the beginning and/or the end of the neMD trajectory. This strict rule then guarantees that the random walk in configurational space generated by such hybrid neMD-MC algorithm will yield the proper equilibrium Boltzmann distribution. While a number of different constructs are possible, the most commonly used prescription has been to simply reverse the momenta of all the particles at the end of the neMD trajectory ("one-end momentum reversal"). Surprisingly, it is shown here that the choice of momentum reversal prescription can have a considerable effect on the rate of convergence of the hybrid neMD-MC algorithm, with the simple one-end momentum reversal encountering particularly acute problems. In these neMD-MC simulations, different regions of configurational space end up being essentially isolated from one another due to a very small transition rate between regions. In the worst-case scenario, it is almost as if the configurational space does not constitute a single communicating class that can be sampled efficiently by the algorithm, and extremely long neMD-MC simulations are needed to obtain proper equilibrium probability distributions. To address this issue, a novel momentum reversal prescription, symmetrized with respect to both the beginning and the end of the neMD trajectory ("symmetric two-ends momentum reversal"), is introduced. Illustrative simulations demonstrate that the hybrid neMD-MC algorithm robustly yields a correct equilibrium probability distribution with this prescription.
A Hybrid MPI/OpenMP Approach for Parallel Groundwater Model Calibration on Multicore Computers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Guoping; D'Azevedo, Ed F; Zhang, Fan
2010-01-01
Groundwater model calibration is becoming increasingly computationally time intensive. We describe a hybrid MPI/OpenMP approach to exploit two levels of parallelism in software and hardware to reduce calibration time on multicore computers with minimal parallelization effort. At first, HydroGeoChem 5.0 (HGC5) is parallelized using OpenMP for a uranium transport model with over a hundred species involving nearly a hundred reactions, and a field scale coupled flow and transport model. In the first application, a single parallelizable loop is identified to consume over 97% of the total computational time. With a few lines of OpenMP compiler directives inserted into the code,more » the computational time reduces about ten times on a compute node with 16 cores. The performance is further improved by selectively parallelizing a few more loops. For the field scale application, parallelizable loops in 15 of the 174 subroutines in HGC5 are identified to take more than 99% of the execution time. By adding the preconditioned conjugate gradient solver and BICGSTAB, and using a coloring scheme to separate the elements, nodes, and boundary sides, the subroutines for finite element assembly, soil property update, and boundary condition application are parallelized, resulting in a speedup of about 10 on a 16-core compute node. The Levenberg-Marquardt (LM) algorithm is added into HGC5 with the Jacobian calculation and lambda search parallelized using MPI. With this hybrid approach, compute nodes at the number of adjustable parameters (when the forward difference is used for Jacobian approximation), or twice that number (if the center difference is used), are used to reduce the calibration time from days and weeks to a few hours for the two applications. This approach can be extended to global optimization scheme and Monte Carol analysis where thousands of compute nodes can be efficiently utilized.« less
Towards a 'siliconeural computer': technological successes and challenges.
Hughes, Mark A; Shipston, Mike J; Murray, Alan F
2015-07-28
Electronic signals govern the function of both nervous systems and computers, albeit in different ways. As such, hybridizing both systems to create an iono-electric brain-computer interface is a realistic goal; and one that promises exciting advances in both heterotic computing and neuroprosthetics capable of circumventing devastating neuropathology. 'Neural networks' were, in the 1980s, viewed naively as a potential panacea for all computational problems that did not fit well with conventional computing. The field bifurcated during the 1990s into a highly successful and much more realistic machine learning community and an equally pragmatic, biologically oriented 'neuromorphic computing' community. Algorithms found in nature that use the non-synchronous, spiking nature of neuronal signals have been found to be (i) implementable efficiently in silicon and (ii) computationally useful. As a result, interest has grown in techniques that could create mixed 'siliconeural' computers. Here, we discuss potential approaches and focus on one particular platform using parylene-patterned silicon dioxide.
One-dimensional hybrid model of plasma-solid interaction in argon plasma at higher pressures
NASA Astrophysics Data System (ADS)
Jelínek, P.; Hrach, R.
2007-04-01
One of problems important in the present plasma science is the surface treatment of materials at higher pressures, including the atmospheric pressure plasma. The theoretical analysis of processes in such plasmas is difficult, because the theories derived for collisionless or slightly collisional plasma lose their validity at medium and high pressures, therefore the methods of computational physics are being widely used. There are two basic ways, how to model the physical processes taking place during the interaction of plasma with immersed solids. The first technique is the particle approach, the second one is called the fluid modelling. Both these approaches have their limitations-small efficiency of particle modelling and limited accuracy of fluid models. In computer modelling is endeavoured to use advantages by combination of these two approaches, this combination is named hybrid modelling. In our work one-dimensional hybrid model of plasma-solid interaction has been developed for an electropositive plasma at higher pressures. We have used hybrid model for this problem only as the test for our next applications, e.g. pulsed discharge, RF discharge, etc. The hybrid model consists of a combined molecular dynamics-Monte Carlo model for fast electrons and fluid model for slow electrons and positive argon ions. The latter model also contains Poisson's equation, to obtain a self-consistent electric field distribution. The derived results include the spatial distributions of electric potential, concentrations and fluxes of individual charged species near the substrate for various pressures and for various probe voltage bias.
Fast-SG: an alignment-free algorithm for hybrid assembly.
Di Genova, Alex; Ruz, Gonzalo A; Sagot, Marie-France; Maass, Alejandro
2018-05-01
Long-read sequencing technologies are the ultimate solution for genome repeats, allowing near reference-level reconstructions of large genomes. However, long-read de novo assembly pipelines are computationally intense and require a considerable amount of coverage, thereby hindering their broad application to the assembly of large genomes. Alternatively, hybrid assembly methods that combine short- and long-read sequencing technologies can reduce the time and cost required to produce de novo assemblies of large genomes. Here, we propose a new method, called Fast-SG, that uses a new ultrafast alignment-free algorithm specifically designed for constructing a scaffolding graph using light-weight data structures. Fast-SG can construct the graph from either short or long reads. This allows the reuse of efficient algorithms designed for short-read data and permits the definition of novel modular hybrid assembly pipelines. Using comprehensive standard datasets and benchmarks, we show how Fast-SG outperforms the state-of-the-art short-read aligners when building the scaffoldinggraph and can be used to extract linking information from either raw or error-corrected long reads. We also show how a hybrid assembly approach using Fast-SG with shallow long-read coverage (5X) and moderate computational resources can produce long-range and accurate reconstructions of the genomes of Arabidopsis thaliana (Ler-0) and human (NA12878). Fast-SG opens a door to achieve accurate hybrid long-range reconstructions of large genomes with low effort, high portability, and low cost.
Screening mechanisms in hybrid metric-Palatini gravity
NASA Astrophysics Data System (ADS)
Santos, Marcelo Vargas dos; Alcaniz, Jailson S.; Mota, David F.; Capozziello, Salvatore
2018-05-01
We investigate the efficiency of screening mechanisms in the hybrid metric-Palatini gravity. The value of the field is computed around spherical bodies embedded in a background of constant density. We find a thin shell condition for the field depending on the background field value. To quantify how the thin shell effect is relevant, we analyze how it behaves in the neighborhood of different astrophysical objects (planets, moons, or stars). We find that the condition is very well satisfied except only for some peculiar objects. Furthermore we establish bounds on the model using data from Solar System experiments such as the spectral deviation measured by the Cassini mission and the stability of the Earth-Moon system, which gives the best constraint to date on f (R ) theories. These bounds contribute to fix the range of viable hybrid gravity models.
An efficient hybrid method for stochastic reaction-diffusion biochemical systems with delay
NASA Astrophysics Data System (ADS)
Sayyidmousavi, Alireza; Ilie, Silvana
2017-12-01
Many chemical reactions, such as gene transcription and translation in living cells, need a certain time to finish once they are initiated. Simulating stochastic models of reaction-diffusion systems with delay can be computationally expensive. In the present paper, a novel hybrid algorithm is proposed to accelerate the stochastic simulation of delayed reaction-diffusion systems. The delayed reactions may be of consuming or non-consuming delay type. The algorithm is designed for moderately stiff systems in which the events can be partitioned into slow and fast subsets according to their propensities. The proposed algorithm is applied to three benchmark problems and the results are compared with those of the delayed Inhomogeneous Stochastic Simulation Algorithm. The numerical results show that the new hybrid algorithm achieves considerable speed-up in the run time and very good accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Yunfeng, E-mail: yfcai@math.pku.edu.cn; Department of Computer Science, University of California, Davis 95616; Bai, Zhaojun, E-mail: bai@cs.ucdavis.edu
2013-12-15
The iterative diagonalization of a sequence of large ill-conditioned generalized eigenvalue problems is a computational bottleneck in quantum mechanical methods employing a nonorthogonal basis for ab initio electronic structure calculations. We propose a hybrid preconditioning scheme to effectively combine global and locally accelerated preconditioners for rapid iterative diagonalization of such eigenvalue problems. In partition-of-unity finite-element (PUFE) pseudopotential density-functional calculations, employing a nonorthogonal basis, we show that the hybrid preconditioned block steepest descent method is a cost-effective eigensolver, outperforming current state-of-the-art global preconditioning schemes, and comparably efficient for the ill-conditioned generalized eigenvalue problems produced by PUFE as the locally optimal blockmore » preconditioned conjugate-gradient method for the well-conditioned standard eigenvalue problems produced by planewave methods.« less
Flow Simulation of N3-X Hybrid Wing-Body Configuration
NASA Technical Reports Server (NTRS)
Kim, Hyoungjin; Liou, Meng-Sing
2013-01-01
System studies show that a N3-X hybrid wing-body aircraft with a turboelectric distributed propulsion system using a mail-slot inlet/nozzle nacelle can meet the environmental and performance goals for N+3 generation transports (three generations beyond the current air transport technology level) set by NASA s Subsonic Fixed Wing Project. In this study, a Navier-Stokes flow simulation of N3-X on hybrid unstructured meshes was conducted, including the mail-slot propulsor. The geometry of the mail-slot propulsor was generated by a CAD (Computer-Aided Design)-free shape parameterization. A body force approach was used for a more realistic and efficient simulation of the turning and loss effects of the fan blades and the inlet-fan interactions. Flow simulation results of the N3-X demonstrates the validity of the present approach.
An efficient numerical model for multicomponent compressible flow in fractured porous media
NASA Astrophysics Data System (ADS)
Zidane, Ali; Firoozabadi, Abbas
2014-12-01
An efficient and accurate numerical model for multicomponent compressible single-phase flow in fractured media is presented. The discrete-fracture approach is used to model the fractures where the fracture entities are described explicitly in the computational domain. We use the concept of cross flow equilibrium in the fractures. This will allow large matrix elements in the neighborhood of the fractures and considerable speed up of the algorithm. We use an implicit finite volume (FV) scheme to solve the species mass balance equation in the fractures. This step avoids the use of Courant-Freidricks-Levy (CFL) condition and contributes to significant speed up of the code. The hybrid mixed finite element method (MFE) is used to solve for the velocity in both the matrix and the fractures coupled with the discontinuous Galerkin (DG) method to solve the species transport equations in the matrix. Four numerical examples are presented to demonstrate the robustness and efficiency of the proposed model. We show that the combination of the fracture cross-flow equilibrium and the implicit composition calculation in the fractures increase the computational speed 20-130 times in 2D. In 3D, one may expect even a higher computational efficiency.
Abdullahi, Mohammed; Ngadi, Md Asri
2016-01-01
Cloud computing has attracted significant attention from research community because of rapid migration rate of Information Technology services to its domain. Advances in virtualization technology has made cloud computing very popular as a result of easier deployment of application services. Tasks are submitted to cloud datacenters to be processed on pay as you go fashion. Task scheduling is one the significant research challenges in cloud computing environment. The current formulation of task scheduling problems has been shown to be NP-complete, hence finding the exact solution especially for large problem sizes is intractable. The heterogeneous and dynamic feature of cloud resources makes optimum task scheduling non-trivial. Therefore, efficient task scheduling algorithms are required for optimum resource utilization. Symbiotic Organisms Search (SOS) has been shown to perform competitively with Particle Swarm Optimization (PSO). The aim of this study is to optimize task scheduling in cloud computing environment based on a proposed Simulated Annealing (SA) based SOS (SASOS) in order to improve the convergence rate and quality of solution of SOS. The SOS algorithm has a strong global exploration capability and uses fewer parameters. The systematic reasoning ability of SA is employed to find better solutions on local solution regions, hence, adding exploration ability to SOS. Also, a fitness function is proposed which takes into account the utilization level of virtual machines (VMs) which reduced makespan and degree of imbalance among VMs. CloudSim toolkit was used to evaluate the efficiency of the proposed method using both synthetic and standard workload. Results of simulation showed that hybrid SOS performs better than SOS in terms of convergence speed, response time, degree of imbalance, and makespan.
Abdullahi, Mohammed; Ngadi, Md Asri
2016-01-01
Cloud computing has attracted significant attention from research community because of rapid migration rate of Information Technology services to its domain. Advances in virtualization technology has made cloud computing very popular as a result of easier deployment of application services. Tasks are submitted to cloud datacenters to be processed on pay as you go fashion. Task scheduling is one the significant research challenges in cloud computing environment. The current formulation of task scheduling problems has been shown to be NP-complete, hence finding the exact solution especially for large problem sizes is intractable. The heterogeneous and dynamic feature of cloud resources makes optimum task scheduling non-trivial. Therefore, efficient task scheduling algorithms are required for optimum resource utilization. Symbiotic Organisms Search (SOS) has been shown to perform competitively with Particle Swarm Optimization (PSO). The aim of this study is to optimize task scheduling in cloud computing environment based on a proposed Simulated Annealing (SA) based SOS (SASOS) in order to improve the convergence rate and quality of solution of SOS. The SOS algorithm has a strong global exploration capability and uses fewer parameters. The systematic reasoning ability of SA is employed to find better solutions on local solution regions, hence, adding exploration ability to SOS. Also, a fitness function is proposed which takes into account the utilization level of virtual machines (VMs) which reduced makespan and degree of imbalance among VMs. CloudSim toolkit was used to evaluate the efficiency of the proposed method using both synthetic and standard workload. Results of simulation showed that hybrid SOS performs better than SOS in terms of convergence speed, response time, degree of imbalance, and makespan. PMID:27348127
Efficient Development of High Fidelity Structured Volume Grids for Hypersonic Flow Simulations
NASA Technical Reports Server (NTRS)
Alter, Stephen J.
2003-01-01
A new technique for the control of grid line spacing and intersection angles of a structured volume grid, using elliptic partial differential equations (PDEs) is presented. Existing structured grid generation algorithms make use of source term hybridization to provide control of grid lines, imposing orthogonality implicitly at the boundary and explicitly on the interior of the domain. A bridging function between the two types of grid line control is typically used to blend the different orthogonality formulations. It is shown that utilizing such a bridging function with source term hybridization can result in the excessive use of computational resources and diminishes robustness. A new approach, Anisotropic Lagrange Based Trans-Finite Interpolation (ALBTFI), is offered as a replacement to source term hybridization. The ALBTFI technique captures the essence of the desired grid controls while improving the convergence rate of the elliptic PDEs when compared with source term hybridization. Grid generation on a blunt cone and a Shuttle Orbiter is used to demonstrate and assess the ALBTFI technique, which is shown to be as much as 50% faster, more robust, and produces higher quality grids than source term hybridization.
NASA Astrophysics Data System (ADS)
Fahimi, Farzad; Yaseen, Zaher Mundher; El-shafie, Ahmed
2017-05-01
Since the middle of the twentieth century, artificial intelligence (AI) models have been used widely in engineering and science problems. Water resource variable modeling and prediction are the most challenging issues in water engineering. Artificial neural network (ANN) is a common approach used to tackle this problem by using viable and efficient models. Numerous ANN models have been successfully developed to achieve more accurate results. In the current review, different ANN models in water resource applications and hydrological variable predictions are reviewed and outlined. In addition, recent hybrid models and their structures, input preprocessing, and optimization techniques are discussed and the results are compared with similar previous studies. Moreover, to achieve a comprehensive view of the literature, many articles that applied ANN models together with other techniques are included. Consequently, coupling procedure, model evaluation, and performance comparison of hybrid models with conventional ANN models are assessed, as well as, taxonomy and hybrid ANN models structures. Finally, current challenges and recommendations for future researches are indicated and new hybrid approaches are proposed.
A simplified computational fluid-dynamic approach to the oxidizer injector design in hybrid rockets
NASA Astrophysics Data System (ADS)
Di Martino, Giuseppe D.; Malgieri, Paolo; Carmicino, Carmine; Savino, Raffaele
2016-12-01
Fuel regression rate in hybrid rockets is non-negligibly affected by the oxidizer injection pattern. In this paper a simplified computational approach developed in an attempt to optimize the oxidizer injector design is discussed. Numerical simulations of the thermo-fluid-dynamic field in a hybrid rocket are carried out, with a commercial solver, to investigate into several injection configurations with the aim of increasing the fuel regression rate and minimizing the consumption unevenness, but still favoring the establishment of flow recirculation at the motor head end, which is generated with an axial nozzle injector and has been demonstrated to promote combustion stability, and both larger efficiency and regression rate. All the computations have been performed on the configuration of a lab-scale hybrid rocket motor available at the propulsion laboratory of the University of Naples with typical operating conditions. After a preliminary comparison between the two baseline limiting cases of an axial subsonic nozzle injector and a uniform injection through the prechamber, a parametric analysis has been carried out by varying the oxidizer jet flow divergence angle, as well as the grain port diameter and the oxidizer mass flux to study the effect of the flow divergence on heat transfer distribution over the fuel surface. Some experimental firing test data are presented, and, under the hypothesis that fuel regression rate and surface heat flux are proportional, the measured fuel consumption axial profiles are compared with the predicted surface heat flux showing fairly good agreement, which allowed validating the employed design approach. Finally an optimized injector design is proposed.
A tandem mirror plasma source for a hybrid plume plasma propulsion concept
NASA Technical Reports Server (NTRS)
Yang, T. F.; Miller, R. H.; Wenzel, K. W.; Krueger, W. A.; Chang, F. R.
1985-01-01
This paper describes a tandem mirror magnetic plasma confinement device to be considered as a hot plasma source for the hybrid plume rocket concept. The hot plasma from this device is injected into an exhaust duct, which will interact with an annular layer of hypersonic neutral gas. Such a device can be used to study the dynamics of the hybrid plume and to experimentally verify the numerical predictions obtained with computer codes. The basic system design is also geared toward being lightweight and compact, as well as having high power density (i.e., several kW/sq cm) at the exhaust. This feature is aimed toward the feasibility of 'space testing'. The plasma is heated by microwaves. A 50 percent heating efficiency can be obtained by using two half-circle antennas. The preliminary Monte Carlo modeling of test particles result reported here indicates that interaction does take place in the exhaust duct. Neutrals gain energy from the ion, which confirms the hybrid plume concept.
A hybrid method for synthetic aperture ladar phase-error compensation
NASA Astrophysics Data System (ADS)
Hua, Zhili; Li, Hongping; Gu, Yongjian
2009-07-01
As a high resolution imaging sensor, synthetic aperture ladar data contain phase-error whose source include uncompensated platform motion and atmospheric turbulence distortion errors. Two previously devised methods, rank one phase-error estimation algorithm and iterative blind deconvolution are reexamined, of which a hybrid method that can recover both the images and PSF's without any a priori information on the PSF is built to speed up the convergence rate by the consideration in the choice of initialization. To be integrated into spotlight mode SAL imaging model respectively, three methods all can effectively reduce the phase-error distortion. For each approach, signal to noise ratio, root mean square error and CPU time are computed, from which we can see the convergence rate of the hybrid method can be improved because a more efficient initialization set of blind deconvolution. Moreover, by making a further discussion of the hybrid method, the weight distribution of ROPE and IBD is found to be an important factor that affects the final result of the whole compensation process.
Hybrid deterministic/stochastic simulation of complex biochemical systems.
Lecca, Paola; Bagagiolo, Fabio; Scarpa, Marina
2017-11-21
In a biological cell, cellular functions and the genetic regulatory apparatus are implemented and controlled by complex networks of chemical reactions involving genes, proteins, and enzymes. Accurate computational models are indispensable means for understanding the mechanisms behind the evolution of a complex system, not always explored with wet lab experiments. To serve their purpose, computational models, however, should be able to describe and simulate the complexity of a biological system in many of its aspects. Moreover, it should be implemented by efficient algorithms requiring the shortest possible execution time, to avoid enlarging excessively the time elapsing between data analysis and any subsequent experiment. Besides the features of their topological structure, the complexity of biological networks also refers to their dynamics, that is often non-linear and stiff. The stiffness is due to the presence of molecular species whose abundance fluctuates by many orders of magnitude. A fully stochastic simulation of a stiff system is computationally time-expensive. On the other hand, continuous models are less costly, but they fail to capture the stochastic behaviour of small populations of molecular species. We introduce a new efficient hybrid stochastic-deterministic computational model and the software tool MoBioS (MOlecular Biology Simulator) implementing it. The mathematical model of MoBioS uses continuous differential equations to describe the deterministic reactions and a Gillespie-like algorithm to describe the stochastic ones. Unlike the majority of current hybrid methods, the MoBioS algorithm divides the reactions' set into fast reactions, moderate reactions, and slow reactions and implements a hysteresis switching between the stochastic model and the deterministic model. Fast reactions are approximated as continuous-deterministic processes and modelled by deterministic rate equations. Moderate reactions are those whose reaction waiting time is greater than the fast reaction waiting time but smaller than the slow reaction waiting time. A moderate reaction is approximated as a stochastic (deterministic) process if it was classified as a stochastic (deterministic) process at the time at which it crosses the threshold of low (high) waiting time. A Gillespie First Reaction Method is implemented to select and execute the slow reactions. The performances of MoBios were tested on a typical example of hybrid dynamics: that is the DNA transcription regulation. The simulated dynamic profile of the reagents' abundance and the estimate of the error introduced by the fully deterministic approach were used to evaluate the consistency of the computational model and that of the software tool.
Katouda, Michio; Naruse, Akira; Hirano, Yukihiko; Nakajima, Takahito
2016-11-15
A new parallel algorithm and its implementation for the RI-MP2 energy calculation utilizing peta-flop-class many-core supercomputers are presented. Some improvements from the previous algorithm (J. Chem. Theory Comput. 2013, 9, 5373) have been performed: (1) a dual-level hierarchical parallelization scheme that enables the use of more than 10,000 Message Passing Interface (MPI) processes and (2) a new data communication scheme that reduces network communication overhead. A multi-node and multi-GPU implementation of the present algorithm is presented for calculations on a central processing unit (CPU)/graphics processing unit (GPU) hybrid supercomputer. Benchmark results of the new algorithm and its implementation using the K computer (CPU clustering system) and TSUBAME 2.5 (CPU/GPU hybrid system) demonstrate high efficiency. The peak performance of 3.1 PFLOPS is attained using 80,199 nodes of the K computer. The peak performance of the multi-node and multi-GPU implementation is 514 TFLOPS using 1349 nodes and 4047 GPUs of TSUBAME 2.5. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Procacci, Piero
2016-06-27
We present a new release (6.0β) of the ORAC program [Marsili et al. J. Comput. Chem. 2010, 31, 1106-1116] with a hybrid OpenMP/MPI (open multiprocessing message passing interface) multilevel parallelism tailored for generalized ensemble (GE) and fast switching double annihilation (FS-DAM) nonequilibrium technology aimed at evaluating the binding free energy in drug-receptor system on high performance computing platforms. The production of the GE or FS-DAM trajectories is handled using a weak scaling parallel approach on the MPI level only, while a strong scaling force decomposition scheme is implemented for intranode computations with shared memory access at the OpenMP level. The efficiency, simplicity, and inherent parallel nature of the ORAC implementation of the FS-DAM algorithm, project the code as a possible effective tool for a second generation high throughput virtual screening in drug discovery and design. The code, along with documentation, testing, and ancillary tools, is distributed under the provisions of the General Public License and can be freely downloaded at www.chim.unifi.it/orac .
NASA Technical Reports Server (NTRS)
Szuch, J. R.; Krosel, S. M.; Bruton, W. M.
1982-01-01
A systematic, computer-aided, self-documenting methodology for developing hybrid computer simulations of turbofan engines is presented. The methodology that is pesented makes use of a host program that can run on a large digital computer and a machine-dependent target (hybrid) program. The host program performs all the calculations and data manipulations that are needed to transform user-supplied engine design information to a form suitable for the hybrid computer. The host program also trims the self-contained engine model to match specified design-point information. Part I contains a general discussion of the methodology, describes a test case, and presents comparisons between hybrid simulation and specified engine performance data. Part II, a companion document, contains documentation, in the form of computer printouts, for the test case.
Fast MPEG-CDVS Encoder With GPU-CPU Hybrid Computing.
Duan, Ling-Yu; Sun, Wei; Zhang, Xinfeng; Wang, Shiqi; Chen, Jie; Yin, Jianxiong; See, Simon; Huang, Tiejun; Kot, Alex C; Gao, Wen
2018-05-01
The compact descriptors for visual search (CDVS) standard from ISO/IEC moving pictures experts group has succeeded in enabling the interoperability for efficient and effective image retrieval by standardizing the bitstream syntax of compact feature descriptors. However, the intensive computation of a CDVS encoder unfortunately hinders its widely deployment in industry for large-scale visual search. In this paper, we revisit the merits of low complexity design of CDVS core techniques and present a very fast CDVS encoder by leveraging the massive parallel execution resources of graphics processing unit (GPU). We elegantly shift the computation-intensive and parallel-friendly modules to the state-of-the-arts GPU platforms, in which the thread block allocation as well as the memory access mechanism are jointly optimized to eliminate performance loss. In addition, those operations with heavy data dependence are allocated to CPU for resolving the extra but non-necessary computation burden for GPU. Furthermore, we have demonstrated the proposed fast CDVS encoder can work well with those convolution neural network approaches which enables to leverage the advantages of GPU platforms harmoniously, and yield significant performance improvements. Comprehensive experimental results over benchmarks are evaluated, which has shown that the fast CDVS encoder using GPU-CPU hybrid computing is promising for scalable visual search.
Efficient hybrid metrology for focus, CD, and overlay
NASA Astrophysics Data System (ADS)
Tel, W. T.; Segers, B.; Anunciado, R.; Zhang, Y.; Wong, P.; Hasan, T.; Prentice, C.
2017-03-01
In the advent of multiple patterning techniques in semiconductor industry, metrology has progressively become a burden. With multiple patterning techniques such as Litho-Etch-Litho-Etch and Sidewall Assisted Double Patterning, the number of processing step have increased significantly and therefore, so as the amount of metrology steps needed for both control and yield monitoring. The amount of metrology needed is increasing in each and every node as more layers needed multiple patterning steps, and more patterning steps per layer. In addition to this, there is that need for guided defect inspection, which in itself requires substantially denser focus, overlay, and CD metrology as before. Metrology efficiency will therefore be cruicial to the next semiconductor nodes. ASML's emulated wafer concept offers a highly efficient method for hybrid metrology for focus, CD, and overlay. In this concept metrology is combined with scanner's sensor data in order to predict the on-product performance. The principle underlying the method is to isolate and estimate individual root-causes which are then combined to compute the on-product performance. The goal is to use all the information available to avoid ever increasing amounts of metrology.
Hybrid cloud and cluster computing paradigms for life science applications
2010-01-01
Background Clouds and MapReduce have shown themselves to be a broadly useful approach to scientific computing especially for parallel data intensive applications. However they have limited applicability to some areas such as data mining because MapReduce has poor performance on problems with an iterative structure present in the linear algebra that underlies much data analysis. Such problems can be run efficiently on clusters using MPI leading to a hybrid cloud and cluster environment. This motivates the design and implementation of an open source Iterative MapReduce system Twister. Results Comparisons of Amazon, Azure, and traditional Linux and Windows environments on common applications have shown encouraging performance and usability comparisons in several important non iterative cases. These are linked to MPI applications for final stages of the data analysis. Further we have released the open source Twister Iterative MapReduce and benchmarked it against basic MapReduce (Hadoop) and MPI in information retrieval and life sciences applications. Conclusions The hybrid cloud (MapReduce) and cluster (MPI) approach offers an attractive production environment while Twister promises a uniform programming environment for many Life Sciences applications. Methods We used commercial clouds Amazon and Azure and the NSF resource FutureGrid to perform detailed comparisons and evaluations of different approaches to data intensive computing. Several applications were developed in MPI, MapReduce and Twister in these different environments. PMID:21210982
Hybrid cloud and cluster computing paradigms for life science applications.
Qiu, Judy; Ekanayake, Jaliya; Gunarathne, Thilina; Choi, Jong Youl; Bae, Seung-Hee; Li, Hui; Zhang, Bingjing; Wu, Tak-Lon; Ruan, Yang; Ekanayake, Saliya; Hughes, Adam; Fox, Geoffrey
2010-12-21
Clouds and MapReduce have shown themselves to be a broadly useful approach to scientific computing especially for parallel data intensive applications. However they have limited applicability to some areas such as data mining because MapReduce has poor performance on problems with an iterative structure present in the linear algebra that underlies much data analysis. Such problems can be run efficiently on clusters using MPI leading to a hybrid cloud and cluster environment. This motivates the design and implementation of an open source Iterative MapReduce system Twister. Comparisons of Amazon, Azure, and traditional Linux and Windows environments on common applications have shown encouraging performance and usability comparisons in several important non iterative cases. These are linked to MPI applications for final stages of the data analysis. Further we have released the open source Twister Iterative MapReduce and benchmarked it against basic MapReduce (Hadoop) and MPI in information retrieval and life sciences applications. The hybrid cloud (MapReduce) and cluster (MPI) approach offers an attractive production environment while Twister promises a uniform programming environment for many Life Sciences applications. We used commercial clouds Amazon and Azure and the NSF resource FutureGrid to perform detailed comparisons and evaluations of different approaches to data intensive computing. Several applications were developed in MPI, MapReduce and Twister in these different environments.
A review of hybrid implicit explicit finite difference time domain method
NASA Astrophysics Data System (ADS)
Chen, Juan
2018-06-01
The finite-difference time-domain (FDTD) method has been extensively used to simulate varieties of electromagnetic interaction problems. However, because of its Courant-Friedrich-Levy (CFL) condition, the maximum time step size of this method is limited by the minimum size of cell used in the computational domain. So the FDTD method is inefficient to simulate the electromagnetic problems which have very fine structures. To deal with this problem, the Hybrid Implicit Explicit (HIE)-FDTD method is developed. The HIE-FDTD method uses the hybrid implicit explicit difference in the direction with fine structures to avoid the confinement of the fine spatial mesh on the time step size. So this method has much higher computational efficiency than the FDTD method, and is extremely useful for the problems which have fine structures in one direction. In this paper, the basic formulations, time stability condition and dispersion error of the HIE-FDTD method are presented. The implementations of several boundary conditions, including the connect boundary, absorbing boundary and periodic boundary are described, then some applications and important developments of this method are provided. The goal of this paper is to provide an historical overview and future prospects of the HIE-FDTD method.
Marcek, Dusan; Durisova, Maria
2016-01-01
This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process. PMID:26977450
Falat, Lukas; Marcek, Dusan; Durisova, Maria
2016-01-01
This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process.
Chen, Yong; Liu, Yulun; Ning, Jing; Cormier, Janice; Chu, Haitao
2014-01-01
Systematic reviews of diagnostic tests often involve a mixture of case-control and cohort studies. The standard methods for evaluating diagnostic accuracy only focus on sensitivity and specificity and ignore the information on disease prevalence contained in cohort studies. Consequently, such methods cannot provide estimates of measures related to disease prevalence, such as population averaged or overall positive and negative predictive values, which reflect the clinical utility of a diagnostic test. In this paper, we propose a hybrid approach that jointly models the disease prevalence along with the diagnostic test sensitivity and specificity in cohort studies, and the sensitivity and specificity in case-control studies. In order to overcome the potential computational difficulties in the standard full likelihood inference of the proposed hybrid model, we propose an alternative inference procedure based on the composite likelihood. Such composite likelihood based inference does not suffer computational problems and maintains high relative efficiency. In addition, it is more robust to model mis-specifications compared to the standard full likelihood inference. We apply our approach to a review of the performance of contemporary diagnostic imaging modalities for detecting metastases in patients with melanoma. PMID:25897179
Real-time simulation of the TF30-P-3 turbofan engine using a hybrid computer
NASA Technical Reports Server (NTRS)
Szuch, J. R.; Bruton, W. M.
1974-01-01
A real-time, hybrid-computer simulation of the TF30-P-3 turbofan engine was developed. The simulation was primarily analog in nature but used the digital portion of the hybrid computer to perform bivariate function generation associated with the performance of the engine's rotating components. FORTRAN listings and analog patching diagrams are provided. The hybrid simulation was controlled by a digital computer programmed to simulate the engine's standard hydromechanical control. Both steady-state and dynamic data obtained from the digitally controlled engine simulation are presented. Hybrid simulation data are compared with data obtained from a digital simulation provided by the engine manufacturer. The comparisons indicate that the real-time hybrid simulation adequately matches the baseline digital simulation.
NASA Astrophysics Data System (ADS)
Ying, Jinyong; Xie, Dexuan
2015-10-01
The Poisson-Boltzmann equation (PBE) is one widely-used implicit solvent continuum model for calculating electrostatics of ionic solvated biomolecule. In this paper, a new finite element and finite difference hybrid method is presented to solve PBE efficiently based on a special seven-overlapped box partition with one central box containing the solute region and surrounded by six neighboring boxes. In particular, an efficient finite element solver is applied to the central box while a fast preconditioned conjugate gradient method using a multigrid V-cycle preconditioning is constructed for solving a system of finite difference equations defined on a uniform mesh of each neighboring box. Moreover, the PBE domain, the box partition, and an interface fitted tetrahedral mesh of the central box can be generated adaptively for a given PQR file of a biomolecule. This new hybrid PBE solver is programmed in C, Fortran, and Python as a software tool for predicting electrostatics of a biomolecule in a symmetric 1:1 ionic solvent. Numerical results on two test models with analytical solutions and 12 proteins validate this new software tool, and demonstrate its high performance in terms of CPU time and memory usage.
NASA Astrophysics Data System (ADS)
McIntyre, N.; Keir, G.
2014-12-01
Water supply systems typically encompass components of both natural systems (e.g. catchment runoff, aquifer interception) and engineered systems (e.g. process equipment, water storages and transfers). Many physical processes of varying spatial and temporal scales are contained within these hybrid systems models. The need to aggregate and simplify system components has been recognised for reasons of parsimony and comprehensibility; and the use of probabilistic methods for modelling water-related risks also prompts the need to seek computationally efficient up-scaled conceptualisations. How to manage the up-scaling errors in such hybrid systems models has not been well-explored, compared to research in the hydrological process domain. Particular challenges include the non-linearity introduced by decision thresholds and non-linear relations between water use, water quality, and discharge strategies. Using a case study of a mining region, we explore the nature of up-scaling errors in water use, water quality and discharge, and we illustrate an approach to identification of a scale-adjusted model including an error model. Ways forward for efficient modelling of such complex, hybrid systems are discussed, including interactions with human, energy and carbon systems models.
Fast methods to numerically integrate the Reynolds equation for gas fluid films
NASA Technical Reports Server (NTRS)
Dimofte, Florin
1992-01-01
The alternating direction implicit (ADI) method is adopted, modified, and applied to the Reynolds equation for thin, gas fluid films. An efficient code is developed to predict both the steady-state and dynamic performance of an aerodynamic journal bearing. An alternative approach is shown for hybrid journal gas bearings by using Liebmann's iterative solution (LIS) for elliptic partial differential equations. The results are compared with known design criteria from experimental data. The developed methods show good accuracy and very short computer running time in comparison with methods based on an inverting of a matrix. The computer codes need a small amount of memory and can be run on either personal computers or on mainframe systems.
An improved data transfer and storage technique for hybrid computation
NASA Technical Reports Server (NTRS)
Hansing, A. M.
1972-01-01
Improved technique was developed for transferring and storing data at faster than real time speeds on hybrid computer. Predominant advantage is combined use of electronic relays, track and store units, and analog-to-digital and digital-to-analog conversion units of hybrid computer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zunger, Alex; Kazmerski, Lawrence L.; Dalpian, Gustavo M.
The material class of hybrid organic-inorganic perovskites (AMX3) has risen rapidly from a virtually unknown material in photovoltaic applications a short 8-years ago into 20-23% efficient thin-film solar cell devices. As promising as this class of materials is, however, there are limitations associated with its poor long-term stability, non-optimal band gap, and the presence of toxic Pb atom on the metalloid site. An Edisonian laboratory exploration (i.e., growth + characterization) via trial-and-error processes of all other candidate materials, is unpractical. Our approach uses high speed computational design and discovery to screen the ‘best of class” candidates based upon optimal functionalities.
On the Large-Scaling Issues of Cloud-based Applications for Earth Science Dat
NASA Astrophysics Data System (ADS)
Hua, H.
2016-12-01
Next generation science data systems are needed to address the incoming flood of data from new missions such as NASA's SWOT and NISAR where its SAR data volumes and data throughput rates are order of magnitude larger than present day missions. Existing missions, such as OCO-2, may also require high turn-around time for processing different science scenarios where on-premise and even traditional HPC computing environments may not meet the high processing needs. Additionally, traditional means of procuring hardware on-premise are already limited due to facilities capacity constraints for these new missions. Experiences have shown that to embrace efficient cloud computing approaches for large-scale science data systems requires more than just moving existing code to cloud environments. At large cloud scales, we need to deal with scaling and cost issues. We present our experiences on deploying multiple instances of our hybrid-cloud computing science data system (HySDS) to support large-scale processing of Earth Science data products. We will explore optimization approaches to getting best performance out of hybrid-cloud computing as well as common issues that will arise when dealing with large-scale computing. Novel approaches were utilized to do processing on Amazon's spot market, which can potentially offer 75%-90% costs savings but with an unpredictable computing environment based on market forces.
Riccio, Angela; Holz, Elisa Mira; Aricò, Pietro; Leotta, Francesco; Aloise, Fabio; Desideri, Lorenzo; Rimondini, Matteo; Kübler, Andrea; Mattia, Donatella; Cincotti, Febo
2015-03-01
To evaluate the impact of a hybrid control on usability of a P300-based brain-computer interface (BCI) system that was designed to control an assistive technology software and was integrated with an electromyographic channel for error correction. Proof-of-principle study with a convenience sample. Neurologic rehabilitation hospital. Participants (N=11) in this pilot study included healthy (n=8) and severely motor impaired (n=3) persons. The 3 people with severe motor disability were identified as potential candidates to benefit from the proposed hybrid BCI system for communication and environmental interaction. To eventually investigate the improvement in usability, we compared 2 modalities of BCI system control: a P300-based and a hybrid P300 electromyographic-based mode of control. System usability was evaluated according to the following outcome measures within 3 domains: (1) effectiveness (overall system accuracy and P300-based BCI accuracy); (2) efficiency (throughput time and users' workload); and (3) satisfaction (users' satisfaction). We also considered the information transfer rate and time for selection. Findings obtained in healthy participants were in favor of a higher usability of the hybrid control as compared with the nonhybrid. A similar trend was indicated by the observational results gathered from each of the 3 potential end-users. The proposed hybrid BCI control modality could provide end-users with severe motor disability with an option to exploit some residual muscular activity, which could not be fully reliable for properly controlling an assistive technology device. The findings reported in this pilot study encourage the implementation of a clinical trial involving a large cohort of end-users. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Predictive simulation of bidirectional Glenn shunt using a hybrid blood vessel model.
Li, Hao; Leow, Wee Kheng; Chiu, Ing-Sh
2009-01-01
This paper proposes a method for performing predictive simulation of cardiac surgery. It applies a hybrid approach to model the deformation of blood vessels. The hybrid blood vessel model consists of a reference Cosserat rod and a surface mesh. The reference Cosserat rod models the blood vessel's global bending, stretching, twisting and shearing in a physically correct manner, and the surface mesh models the surface details of the blood vessel. In this way, the deformation of blood vessels can be computed efficiently and accurately. Our predictive simulation system can produce complex surgical results given a small amount of user inputs. It allows the surgeon to easily explore various surgical options and evaluate them. Tests of the system using bidirectional Glenn shunt (BDG) as an application example show that the results produc by the system are similar to real surgical results.
Mixed-Timescale Per-Group Hybrid Precoding for Multiuser Massive MIMO Systems
NASA Astrophysics Data System (ADS)
Teng, Yinglei; Wei, Min; Liu, An; Lau, Vincent; Zhang, Yong
2018-05-01
Considering the expensive radio frequency (RF) chain, huge training overhead and feedback burden issues in massive MIMO, in this letter, we propose a mixed-timescale per-group hybrid precoding (MPHP) scheme under an adaptive partially-connected RF precoding structure (PRPS), where the RF precoder is implemented using an adaptive connection network (ACN) and M analog phase shifters (APSs), where M is the number of antennas at the base station (BS). Exploiting the mixed-time stage channel state information (CSI) structure, the joint-design of ACN and APSs is formulated as a statistical signal-to-leakage-and-noise ratio (SSLNR) maximization problem, and a heuristic group RF precoding (GRFP) algorithm is proposed to provide a near-optimal solution. Simulation results show that the proposed design advances at better energy efficiency (EE) and lower hardware cost, CSI signaling overhead and computational complexity than the conventional hybrid precoding (HP) schemes.
High speed corner and gap-seal computations using an LU-SGS scheme
NASA Technical Reports Server (NTRS)
Coirier, William J.
1989-01-01
The hybrid Lower-Upper Symmetric Gauss-Seidel (LU-SGS) algorithm was added to a widely used series of 2D/3D Euler/Navier-Stokes solvers and was demonstrated for a particular class of high-speed flows. A limited study was conducted to compare the hybrid LU-SGS for approximate Newton iteration and diagonalized Beam-Warming (DBW) schemes on a work and convergence history basis. The hybrid LU-SGS algorithm is more efficient and easier to implement than the DBW scheme originally present in the code for the cases considered. The code was validated for the hypersonic flow through two mutually perpendicular flat plates and then used to investigate the flow field in and around a simplified scramjet module gap seal configuration. Due to the similarities, the gap seal flow was compared to hypersonic corner flow at the same freestream conditions and Reynolds number.
NASA Astrophysics Data System (ADS)
Leung, E. M. W.; Bailey, R. E.; Michels, P. H.
1989-03-01
The hybrid pulse power transformer (HPPT) is a unique concept utilizing the ultrafast superconducting-to-normal transition process of a superconductor. When used in the form of a hybrid transformer current-zero switch (HTCS), this creates an approach in which the large, high-power, high-current opening switch in a conventional railgun system can be eliminated. This represents an innovative application of superconductivity to pulsed power conditioning required for the Strategic Defense Initiative (SDI). The authors explain the working principles of a 100-KJ unit capable of switching up to 500 kA at a frequency of 0.5 Hz and with a system efficiency of greater than 90 percent. Circuit analysis using a computer code called SPICE PLUS was used to verify the HTCS concept. This concept can be scaled up to applications in the several mega-ampere levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Guoping; D'Azevedo, Ed F; Zhang, Fan
2010-01-01
Calibration of groundwater models involves hundreds to thousands of forward solutions, each of which may solve many transient coupled nonlinear partial differential equations, resulting in a computationally intensive problem. We describe a hybrid MPI/OpenMP approach to exploit two levels of parallelisms in software and hardware to reduce calibration time on multi-core computers. HydroGeoChem 5.0 (HGC5) is parallelized using OpenMP for direct solutions for a reactive transport model application, and a field-scale coupled flow and transport model application. In the reactive transport model, a single parallelizable loop is identified to account for over 97% of the total computational time using GPROF.more » Addition of a few lines of OpenMP compiler directives to the loop yields a speedup of about 10 on a 16-core compute node. For the field-scale model, parallelizable loops in 14 of 174 HGC5 subroutines that require 99% of the execution time are identified. As these loops are parallelized incrementally, the scalability is found to be limited by a loop where Cray PAT detects over 90% cache missing rates. With this loop rewritten, similar speedup as the first application is achieved. The OpenMP-parallelized code can be run efficiently on multiple workstations in a network or multiple compute nodes on a cluster as slaves using parallel PEST to speedup model calibration. To run calibration on clusters as a single task, the Levenberg Marquardt algorithm is added to HGC5 with the Jacobian calculation and lambda search parallelized using MPI. With this hybrid approach, 100 200 compute cores are used to reduce the calibration time from weeks to a few hours for these two applications. This approach is applicable to most of the existing groundwater model codes for many applications.« less
Scaling vectors of attoJoule per bit modulators
NASA Astrophysics Data System (ADS)
Sorger, Volker J.; Amin, Rubab; Khurgin, Jacob B.; Ma, Zhizhen; Dalir, Hamed; Khan, Sikandar
2018-01-01
Electro-optic modulation performs the conversion between the electrical and optical domain with applications in data communication for optical interconnects, but also for novel optical computing algorithms such as providing nonlinearity at the output stage of optical perceptrons in neuromorphic analog optical computing. While resembling an optical transistor, the weak light-matter-interaction makes modulators 105 times larger compared to their electronic counterparts. Since the clock frequency for photonics on-chip has a power-overhead sweet-spot around tens of GHz, ultrafast modulation may only be required in long-distance communication, not for short on-chip links. Hence, the search is open for power-efficient on-chip modulators beyond the solutions offered by foundries to date. Here, we show scaling vectors towards atto-Joule per bit efficient modulators on-chip as well as some experimental demonstrations of novel plasmonic modulators with sub-fJ/bit efficiencies. Our parametric study of placing different actively modulated materials into plasmonic versus photonic optical modes shows that 2D materials overcompensate their miniscule modal overlap by their unity-high index change. Furthermore, we reveal that the metal used in plasmonic-based modulators not only serves as an electrical contact, but also enables low electrical series resistances leading to near-ideal capacitors. We then discuss the first experimental demonstration of a photon-plasmon-hybrid graphene-based electro-absorption modulator on silicon. The device shows a sub-1 V steep switching enabled by near-ideal electrostatics delivering a high 0.05 dB V-1 μm-1 performance requiring only 110 aJ/bit. Improving on this demonstration, we discuss a plasmonic slot-based graphene modulator design, where the polarization of the plasmonic mode aligns with graphene’s in-plane dimension; where a push-pull dual-gating scheme enables 2 dB V-1 μm-1 efficient modulation allowing the device to be just 770 nm short for 3 dB small signal modulation. Lastly, comparing the switching energy of transistors to modulators shows that modulators based on emerging materials and plasmonic-silicon hybrid integration perform on-par relative to their electronic counter parts. This in turn allows for a device-enabled two orders-of-magnitude improvement of electrical-optical co-integrated network-on-chips over electronic-only architectures. The latter opens technological opportunities in cognitive computing, dynamic data-driven applications systems, and optical analog computer engines including neuromorphic photonic computing.
Xu, Weizhe; Tan, Furui; Liu, Xiansheng; Zhang, Weifeng; Qu, Shengchun; Wang, Zhijie; Wang, Zhanguo
2017-12-01
Constructing a highly efficient bulk-heterojunction is of critical importance to the hybrid organic/inorganic solar cells. Here in this work, we introduce a novel hybrid architecture containing P3HT nanowire and CdSe nanotetrapod as bicontinuous charge channels for holes and electrons, respectively. Compared to the traditionally applied P3HT molecules, the well crystallized P3HT nanowires qualify an enhanced light absorption at the long wavelength as well as strengthened charge carrier transport in the hybrid active layer. Accordingly, based on efficient dissociation of photogenerated excitons, the interpercolation of these two nano-building blocks allows a photovoltaic conversion efficiency of 1.7% in the hybrid solar cell, up to 42% enhancement compared to the reference solar cell with traditional P3HT molecules as electron donor. Our work provides a promising hybrid structure for efficient organic/inorganic bulk-heterojunction solar cells.
A Joint Method of Envelope Inversion Combined with Hybrid-domain Full Waveform Inversion
NASA Astrophysics Data System (ADS)
CUI, C.; Hou, W.
2017-12-01
Full waveform inversion (FWI) aims to construct high-precision subsurface models by fully using the information in seismic records, including amplitude, travel time, phase and so on. However, high non-linearity and the absence of low frequency information in seismic data lead to the well-known cycle skipping problem and make inversion easily fall into local minima. In addition, those 3D inversion methods that are based on acoustic approximation ignore the elastic effects in real seismic field, and make inversion harder. As a result, the accuracy of final inversion results highly relies on the quality of initial model. In order to improve stability and quality of inversion results, multi-scale inversion that reconstructs subsurface model from low to high frequency are applied. But, the absence of very low frequencies (< 3Hz) in field data is still bottleneck in the FWI. By extracting ultra low-frequency data from field data, envelope inversion is able to recover low wavenumber model with a demodulation operator (envelope operator), though the low frequency data does not really exist in field data. To improve the efficiency and viability of the inversion, in this study, we proposed a joint method of envelope inversion combined with hybrid-domain FWI. First, we developed 3D elastic envelope inversion, and the misfit function and the corresponding gradient operator were derived. Then we performed hybrid-domain FWI with envelope inversion result as initial model which provides low wavenumber component of model. Here, forward modeling is implemented in the time domain and inversion in the frequency domain. To accelerate the inversion, we adopt CPU/GPU heterogeneous computing techniques. There were two levels of parallelism. In the first level, the inversion tasks are decomposed and assigned to each computation node by shot number. In the second level, GPU multithreaded programming is used for the computation tasks in each node, including forward modeling, envelope extraction, DFT (discrete Fourier transform) calculation and gradients calculation. Numerical tests demonstrated that the combined envelope inversion + hybrid-domain FWI could obtain much faithful and accurate result than conventional hybrid-domain FWI. The CPU/GPU heterogeneous parallel computation could improve the performance speed.
Tempest - Efficient Computation of Atmospheric Flows Using High-Order Local Discretization Methods
NASA Astrophysics Data System (ADS)
Ullrich, P. A.; Guerra, J. E.
2014-12-01
The Tempest Framework composes several compact numerical methods to easily facilitate intercomparison of atmospheric flow calculations on the sphere and in rectangular domains. This framework includes the implementations of Spectral Elements, Discontinuous Galerkin, Flux Reconstruction, and Hybrid Finite Element methods with the goal of achieving optimal accuracy in the solution of atmospheric problems. Several advantages of this approach are discussed such as: improved pressure gradient calculation, numerical stability by vertical/horizontal splitting, arbitrary order of accuracy, etc. The local numerical discretization allows for high performance parallel computation and efficient inclusion of parameterizations. These techniques are used in conjunction with a non-conformal, locally refined, cubed-sphere grid for global simulations and standard Cartesian grids for simulations at the mesoscale. A complete implementation of the methods described is demonstrated in a non-hydrostatic setting.
Leveraging the Cloud for Robust and Efficient Lunar Image Processing
NASA Technical Reports Server (NTRS)
Chang, George; Malhotra, Shan; Wolgast, Paul
2011-01-01
The Lunar Mapping and Modeling Project (LMMP) is tasked to aggregate lunar data, from the Apollo era to the latest instruments on the LRO spacecraft, into a central repository accessible by scientists and the general public. A critical function of this task is to provide users with the best solution for browsing the vast amounts of imagery available. The image files LMMP manages range from a few gigabytes to hundreds of gigabytes in size with new data arriving every day. Despite this ever-increasing amount of data, LMMP must make the data readily available in a timely manner for users to view and analyze. This is accomplished by tiling large images into smaller images using Hadoop, a distributed computing software platform implementation of the MapReduce framework, running on a small cluster of machines locally. Additionally, the software is implemented to use Amazon's Elastic Compute Cloud (EC2) facility. We also developed a hybrid solution to serve images to users by leveraging cloud storage using Amazon's Simple Storage Service (S3) for public data while keeping private information on our own data servers. By using Cloud Computing, we improve upon our local solution by reducing the need to manage our own hardware and computing infrastructure, thereby reducing costs. Further, by using a hybrid of local and cloud storage, we are able to provide data to our users more efficiently and securely. 12 This paper examines the use of a distributed approach with Hadoop to tile images, an approach that provides significant improvements in image processing time, from hours to minutes. This paper describes the constraints imposed on the solution and the resulting techniques developed for the hybrid solution of a customized Hadoop infrastructure over local and cloud resources in managing this ever-growing data set. It examines the performance trade-offs of using the more plentiful resources of the cloud, such as those provided by S3, against the bandwidth limitations such use encounters with remote resources. As part of this discussion this paper will outline some of the technologies employed, the reasons for their selection, the resulting performance metrics and the direction the project is headed based upon the demonstrated capabilities thus far.
Electronic Structure at Electrode/Electrolyte Interfaces in Magnesium based Batteries
NASA Astrophysics Data System (ADS)
Balachandran, Janakiraman; Siegel, Donald
2015-03-01
Magnesium is a promising multivalent element for use in next generation electrochemical energy storage systems. However, a wide range of challenges such as low coulombic efficiency, low/varying capacity and cyclability need to be resolved in order to realize Mg based batteries. Many of these issues can be related to interfacial phenomena between the Mg anode and common electrolytes. Ab-initio based computational models of these interfaces can provide insights on the interfacial interactions that can be difficult to probe experimentally. In this work we present ab-initio computations of common electrolyte solvents (THF, DME) in contact with two model electrode surfaces namely -- (i) an ``SEI-free'' electrode based on Mg metal and, (ii) a ``passivated'' electrode consisting of MgO. We perform GW calculations to predict the reorganization of the molecular orbitals (HOMO/LUMO) upon contact with the these surfaces and their alignment with respect to the Fermi energy of the electrodes. These computations are in turn compared with more efficient GGA (PBE) & Hybrid (HSE) functional calculations. The results obtained from these computations enable us to qualitatively describe the stability of these solvent molecules at electrode-electrolyte interfaces
Adaptive CFD schemes for aerospace propulsion
NASA Astrophysics Data System (ADS)
Ferrero, A.; Larocca, F.
2017-05-01
The flow fields which can be observed inside several components of aerospace propulsion systems are characterised by the presence of very localised phenomena (boundary layers, shock waves,...) which can deeply influence the performances of the system. In order to accurately evaluate these effects by means of Computational Fluid Dynamics (CFD) simulations, it is necessary to locally refine the computational mesh. In this way the degrees of freedom related to the discretisation are focused in the most interesting regions and the computational cost of the simulation remains acceptable. In the present work, a discontinuous Galerkin (DG) discretisation is used to numerically solve the equations which describe the flow field. The local nature of the DG reconstruction makes it possible to efficiently exploit several adaptive schemes in which the size of the elements (h-adaptivity) and the order of reconstruction (p-adaptivity) are locally changed. After a review of the main adaptation criteria, some examples related to compressible flows in turbomachinery are presented. An hybrid hp-adaptive algorithm is also proposed and compared with a standard h-adaptive scheme in terms of computational efficiency.
Hybrid Monte Carlo/Deterministic Methods for Accelerating Active Interrogation Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peplow, Douglas E.; Miller, Thomas Martin; Patton, Bruce W
2013-01-01
The potential for smuggling special nuclear material (SNM) into the United States is a major concern to homeland security, so federal agencies are investigating a variety of preventive measures, including detection and interdiction of SNM during transport. One approach for SNM detection, called active interrogation, uses a radiation source, such as a beam of neutrons or photons, to scan cargo containers and detect the products of induced fissions. In realistic cargo transport scenarios, the process of inducing and detecting fissions in SNM is difficult due to the presence of various and potentially thick materials between the radiation source and themore » SNM, and the practical limitations on radiation source strength and detection capabilities. Therefore, computer simulations are being used, along with experimental measurements, in efforts to design effective active interrogation detection systems. The computer simulations mostly consist of simulating radiation transport from the source to the detector region(s). Although the Monte Carlo method is predominantly used for these simulations, difficulties persist related to calculating statistically meaningful detector responses in practical computing times, thereby limiting their usefulness for design and evaluation of practical active interrogation systems. In previous work, the benefits of hybrid methods that use the results of approximate deterministic transport calculations to accelerate high-fidelity Monte Carlo simulations have been demonstrated for source-detector type problems. In this work, the hybrid methods are applied and evaluated for three example active interrogation problems. Additionally, a new approach is presented that uses multiple goal-based importance functions depending on a particle s relevance to the ultimate goal of the simulation. Results from the examples demonstrate that the application of hybrid methods to active interrogation problems dramatically increases their calculational efficiency.« less
NASA Astrophysics Data System (ADS)
Yang, X.; Scheibe, T. D.; Chen, X.; Hammond, G. E.; Song, X.
2015-12-01
The zone in which river water and groundwater mix plays an important role in natural ecosystems as it regulates the mixing of nutrients that control biogeochemical transformations. Subsurface heterogeneity leads to local hotspots of microbial activity that are important to system function yet difficult to resolve computationally. To address this challenge, we are testing a hybrid multiscale approach that couples models at two distinct scales, based on field research at the U. S. Department of Energy's Hanford Site. The region of interest is a 400 x 400 x 20 m macroscale domain that intersects the aquifer and the river and contains a contaminant plume. However, biogeochemical activity is high in a thin zone (mud layer, <1 m thick) immediately adjacent to the river. This microscale domain is highly heterogeneous and requires fine spatial resolution to adequately represent the effects of local mixing on reactions. It is not computationally feasible to resolve the full macroscale domain at the fine resolution needed in the mud layer, and the reaction network needed in the mud layer is much more complex than that needed in the rest of the macroscale domain. Hence, a hybrid multiscale approach is used to efficiently and accurately predict flow and reactive transport at both scales. In our simulations, models at both scales are simulated using the PFLOTRAN code. Multiple microscale simulations in dynamically defined sub-domains (fine resolution, complex reaction network) are executed and coupled with a macroscale simulation over the entire domain (coarse resolution, simpler reaction network). The objectives of the research include: 1) comparing accuracy and computing cost of the hybrid multiscale simulation with a single-scale simulation; 2) identifying hot spots of microbial activity; and 3) defining macroscopic quantities such as fluxes, residence times and effective reaction rates.
Integration of nanoscale memristor synapses in neuromorphic computing architectures
NASA Astrophysics Data System (ADS)
Indiveri, Giacomo; Linares-Barranco, Bernabé; Legenstein, Robert; Deligeorgis, George; Prodromakis, Themistoklis
2013-09-01
Conventional neuro-computing architectures and artificial neural networks have often been developed with no or loose connections to neuroscience. As a consequence, they have largely ignored key features of biological neural processing systems, such as their extremely low-power consumption features or their ability to carry out robust and efficient computation using massively parallel arrays of limited precision, highly variable, and unreliable components. Recent developments in nano-technologies are making available extremely compact and low power, but also variable and unreliable solid-state devices that can potentially extend the offerings of availing CMOS technologies. In particular, memristors are regarded as a promising solution for modeling key features of biological synapses due to their nanoscale dimensions, their capacity to store multiple bits of information per element and the low energy required to write distinct states. In this paper, we first review the neuro- and neuromorphic computing approaches that can best exploit the properties of memristor and scale devices, and then propose a novel hybrid memristor-CMOS neuromorphic circuit which represents a radical departure from conventional neuro-computing approaches, as it uses memristors to directly emulate the biophysics and temporal dynamics of real synapses. We point out the differences between the use of memristors in conventional neuro-computing architectures and the hybrid memristor-CMOS circuit proposed, and argue how this circuit represents an ideal building block for implementing brain-inspired probabilistic computing paradigms that are robust to variability and fault tolerant by design.
A new hybrid numerical scheme for simulating fault ruptures with near-fault bulk inhomogeneities
NASA Astrophysics Data System (ADS)
Hajarolasvadi, S.; Elbanna, A. E.
2017-12-01
The Finite Difference (FD) and Boundary Integral (BI) Method have been extensively used to model spontaneously propagating shear cracks, which can serve as a useful idealization of natural earthquakes. While FD suffers from artificial dispersion and numerical dissipation and has a large computational cost as it requires the discretization of the whole volume of interest, it can be applied to a wider range of problems including ones with bulk nonlinearities and heterogeneities. On the other hand, in the BI method, the numerical consideration is confined to the crack path only, with the elastodynamic response of the bulk expressed in terms of integral relations between displacement discontinuities and tractions along the crack. Therefore, this method - its spectral boundary integral (SBI) formulation in particular - is much faster and more computationally efficient than other bulk methods such as FD. However, its application is restricted to linear elastic bulk and planar faults. This work proposes a novel hybrid numerical scheme that combines FD and the SBI to enable treating fault zone nonlinearities and heterogeneities with unprecedented resolution and in a more computationally efficient way. The main idea of the method is to enclose the inhomgeneities in a virtual strip that is introduced for computational purposes only. This strip is then discretized using a volume-based numerical method, chosen here to be the finite difference method while the virtual boundaries of the strip are handled using the SBI formulation that represents the two elastic half spaces outside the strip. Modeling the elastodynamic response in these two halfspaces needs to be carried out by an Independent Spectral Formulation before joining them to the strip with the appropriate boundary conditions. Dirichlet and Neumann boundary conditions are imposed on the strip and the two half-spaces, respectively, at each time step to propagate the solution forward. We demonstrate the validity of the approach using two examples for dynamic rupture propagation: one in the presence of a low velocity layer and the other in which off-fault plasticity is permitted. This approach is more computationally efficient than pure FD and expands the range of applications of SBI beyond the current state of the art.
Molecular dynamics simulations in hybrid particle-continuum schemes: Pitfalls and caveats
NASA Astrophysics Data System (ADS)
Stalter, S.; Yelash, L.; Emamy, N.; Statt, A.; Hanke, M.; Lukáčová-Medvid'ová, M.; Virnau, P.
2018-03-01
Heterogeneous multiscale methods (HMM) combine molecular accuracy of particle-based simulations with the computational efficiency of continuum descriptions to model flow in soft matter liquids. In these schemes, molecular simulations typically pose a computational bottleneck, which we investigate in detail in this study. We find that it is preferable to simulate many small systems as opposed to a few large systems, and that a choice of a simple isokinetic thermostat is typically sufficient while thermostats such as Lowe-Andersen allow for simulations at elevated viscosity. We discuss suitable choices for time steps and finite-size effects which arise in the limit of very small simulation boxes. We also argue that if colloidal systems are considered as opposed to atomistic systems, the gap between microscopic and macroscopic simulations regarding time and length scales is significantly smaller. We propose a novel reduced-order technique for the coupling to the macroscopic solver, which allows us to approximate a non-linear stress-strain relation efficiently and thus further reduce computational effort of microscopic simulations.
Combined multi-spectrum and orthogonal Laplacianfaces for fast CB-XLCT imaging with single-view data
NASA Astrophysics Data System (ADS)
Zhang, Haibo; Geng, Guohua; Chen, Yanrong; Qu, Xuan; Zhao, Fengjun; Hou, Yuqing; Yi, Huangjian; He, Xiaowei
2017-12-01
Cone-beam X-ray luminescence computed tomography (CB-XLCT) is an attractive hybrid imaging modality, which has the potential of monitoring the metabolic processes of nanophosphors-based drugs in vivo. Single-view data reconstruction as a key issue of CB-XLCT imaging promotes the effective study of dynamic XLCT imaging. However, it suffers from serious ill-posedness in the inverse problem. In this paper, a multi-spectrum strategy is adopted to relieve the ill-posedness of reconstruction. The strategy is based on the third-order simplified spherical harmonic approximation model. Then, an orthogonal Laplacianfaces-based method is proposed to reduce the large computational burden without degrading the imaging quality. Both simulated data and in vivo experimental data were used to evaluate the efficiency and robustness of the proposed method. The results are satisfactory in terms of both location and quantitative recovering with computational efficiency, indicating that the proposed method is practical and promising for single-view CB-XLCT imaging.
Rodríguez, Manuel; Magdaleno, Eduardo; Pérez, Fernando; García, Cristhian
2017-03-28
Non-equispaced Fast Fourier transform (NFFT) is a very important algorithm in several technological and scientific areas such as synthetic aperture radar, computational photography, medical imaging, telecommunications, seismic analysis and so on. However, its computation complexity is high. In this paper, we describe an efficient NFFT implementation with a hardware coprocessor using an All-Programmable System-on-Chip (APSoC). This is a hybrid device that employs an Advanced RISC Machine (ARM) as Processing System with Programmable Logic for high-performance digital signal processing through parallelism and pipeline techniques. The algorithm has been coded in C language with pragma directives to optimize the architecture of the system. We have used the very novel Software Develop System-on-Chip (SDSoC) evelopment tool that simplifies the interface and partitioning between hardware and software. This provides shorter development cycles and iterative improvements by exploring several architectures of the global system. The computational results shows that hardware acceleration significantly outperformed the software based implementation.
Rodríguez, Manuel; Magdaleno, Eduardo; Pérez, Fernando; García, Cristhian
2017-01-01
Non-equispaced Fast Fourier transform (NFFT) is a very important algorithm in several technological and scientific areas such as synthetic aperture radar, computational photography, medical imaging, telecommunications, seismic analysis and so on. However, its computation complexity is high. In this paper, we describe an efficient NFFT implementation with a hardware coprocessor using an All-Programmable System-on-Chip (APSoC). This is a hybrid device that employs an Advanced RISC Machine (ARM) as Processing System with Programmable Logic for high-performance digital signal processing through parallelism and pipeline techniques. The algorithm has been coded in C language with pragma directives to optimize the architecture of the system. We have used the very novel Software Develop System-on-Chip (SDSoC) evelopment tool that simplifies the interface and partitioning between hardware and software. This provides shorter development cycles and iterative improvements by exploring several architectures of the global system. The computational results shows that hardware acceleration significantly outperformed the software based implementation. PMID:28350358
Teodoro, George; Kurc, Tahsin; Andrade, Guilherme; Kong, Jun; Ferreira, Renato; Saltz, Joel
2015-01-01
We carry out a comparative performance study of multi-core CPUs, GPUs and Intel Xeon Phi (Many Integrated Core-MIC) with a microscopy image analysis application. We experimentally evaluate the performance of computing devices on core operations of the application. We correlate the observed performance with the characteristics of computing devices and data access patterns, computation complexities, and parallelization forms of the operations. The results show a significant variability in the performance of operations with respect to the device used. The performances of operations with regular data access are comparable or sometimes better on a MIC than that on a GPU. GPUs are more efficient than MICs for operations that access data irregularly, because of the lower bandwidth of the MIC for random data accesses. We propose new performance-aware scheduling strategies that consider variabilities in operation speedups. Our scheduling strategies significantly improve application performance compared to classic strategies in hybrid configurations. PMID:28239253
Bioinspired decision architectures containing host and microbiome processing units.
Heyde, K C; Gallagher, P W; Ruder, W C
2016-09-27
Biomimetic robots have been used to explore and explain natural phenomena ranging from the coordination of ants to the locomotion of lizards. Here, we developed a series of decision architectures inspired by the information exchange between a host organism and its microbiome. We first modeled the biochemical exchanges of a population of synthetically engineered E. coli. We then built a physical, differential drive robot that contained an integrated, onboard computer vision system. A relay was established between the simulated population of cells and the robot's microcontroller. By placing the robot within a target-containing a two-dimensional arena, we explored how different aspects of the simulated cells and the robot's microcontroller could be integrated to form hybrid decision architectures. We found that distinct decision architectures allow for us to develop models of computation with specific strengths such as runtime efficiency or minimal memory allocation. Taken together, our hybrid decision architectures provide a new strategy for developing bioinspired control systems that integrate both living and nonliving components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Han; Sharma, Diksha; Badano, Aldo, E-mail: aldo.badano@fda.hhs.gov
2014-12-15
Purpose: Monte Carlo simulations play a vital role in the understanding of the fundamental limitations, design, and optimization of existing and emerging medical imaging systems. Efforts in this area have resulted in the development of a wide variety of open-source software packages. One such package, hybridMANTIS, uses a novel hybrid concept to model indirect scintillator detectors by balancing the computational load using dual CPU and graphics processing unit (GPU) processors, obtaining computational efficiency with reasonable accuracy. In this work, the authors describe two open-source visualization interfaces, webMANTIS and visualMANTIS to facilitate the setup of computational experiments via hybridMANTIS. Methods: Themore » visualization tools visualMANTIS and webMANTIS enable the user to control simulation properties through a user interface. In the case of webMANTIS, control via a web browser allows access through mobile devices such as smartphones or tablets. webMANTIS acts as a server back-end and communicates with an NVIDIA GPU computing cluster that can support multiuser environments where users can execute different experiments in parallel. Results: The output consists of point response and pulse-height spectrum, and optical transport statistics generated by hybridMANTIS. The users can download the output images and statistics through a zip file for future reference. In addition, webMANTIS provides a visualization window that displays a few selected optical photon path as they get transported through the detector columns and allows the user to trace the history of the optical photons. Conclusions: The visualization tools visualMANTIS and webMANTIS provide features such as on the fly generation of pulse-height spectra and response functions for microcolumnar x-ray imagers while allowing users to save simulation parameters and results from prior experiments. The graphical interfaces simplify the simulation setup and allow the user to go directly from specifying input parameters to receiving visual feedback for the model predictions.« less
NASA Astrophysics Data System (ADS)
Sharma, Diksha; Badal, Andreu; Badano, Aldo
2012-04-01
The computational modeling of medical imaging systems often requires obtaining a large number of simulated images with low statistical uncertainty which translates into prohibitive computing times. We describe a novel hybrid approach for Monte Carlo simulations that maximizes utilization of CPUs and GPUs in modern workstations. We apply the method to the modeling of indirect x-ray detectors using a new and improved version of the code \\scriptsize{{MANTIS}}, an open source software tool used for the Monte Carlo simulations of indirect x-ray imagers. We first describe a GPU implementation of the physics and geometry models in fast\\scriptsize{{DETECT}}2 (the optical transport model) and a serial CPU version of the same code. We discuss its new features like on-the-fly column geometry and columnar crosstalk in relation to the \\scriptsize{{MANTIS}} code, and point out areas where our model provides more flexibility for the modeling of realistic columnar structures in large area detectors. Second, we modify \\scriptsize{{PENELOPE}} (the open source software package that handles the x-ray and electron transport in \\scriptsize{{MANTIS}}) to allow direct output of location and energy deposited during x-ray and electron interactions occurring within the scintillator. This information is then handled by optical transport routines in fast\\scriptsize{{DETECT}}2. A load balancer dynamically allocates optical transport showers to the GPU and CPU computing cores. Our hybrid\\scriptsize{{MANTIS}} approach achieves a significant speed-up factor of 627 when compared to \\scriptsize{{MANTIS}} and of 35 when compared to the same code running only in a CPU instead of a GPU. Using hybrid\\scriptsize{{MANTIS}}, we successfully hide hours of optical transport time by running it in parallel with the x-ray and electron transport, thus shifting the computational bottleneck from optical to x-ray transport. The new code requires much less memory than \\scriptsize{{MANTIS}} and, as a result, allows us to efficiently simulate large area detectors.
Using a hybrid neuron in physiologically inspired models of the basal ganglia.
Thibeault, Corey M; Srinivasa, Narayan
2013-01-01
Our current understanding of the basal ganglia (BG) has facilitated the creation of computational models that have contributed novel theories, explored new functional anatomy and demonstrated results complementing physiological experiments. However, the utility of these models extends beyond these applications. Particularly in neuromorphic engineering, where the basal ganglia's role in computation is important for applications such as power efficient autonomous agents and model-based control strategies. The neurons used in existing computational models of the BG, however, are not amenable for many low-power hardware implementations. Motivated by a need for more hardware accessible networks, we replicate four published models of the BG, spanning single neuron and small networks, replacing the more computationally expensive neuron models with an Izhikevich hybrid neuron. This begins with a network modeling action-selection, where the basal activity levels and the ability to appropriately select the most salient input is reproduced. A Parkinson's disease model is then explored under normal conditions, Parkinsonian conditions and during subthalamic nucleus deep brain stimulation (DBS). The resulting network is capable of replicating the loss of thalamic relay capabilities in the Parkinsonian state and its return under DBS. This is also demonstrated using a network capable of action-selection. Finally, a study of correlation transfer under different patterns of Parkinsonian activity is presented. These networks successfully captured the significant results of the originals studies. This not only creates a foundation for neuromorphic hardware implementations but may also support the development of large-scale biophysical models. The former potentially providing a way of improving the efficacy of DBS and the latter allowing for the efficient simulation of larger more comprehensive networks.
NASA Astrophysics Data System (ADS)
Bonakdari, Hossein; Zaji, Amir Hossein
2018-03-01
In many hydraulic structures, side weirs have a critical role. Accurately predicting the discharge coefficient is one of the most important stages in the side weir design process. In the present paper, a new high efficient side weir is investigated. To simulate the discharge coefficient of these side weirs, three novel soft computing methods are used. The process includes modeling the discharge coefficient with the hybrid Adaptive Neuro-Fuzzy Interface System (ANFIS) and three optimization algorithms, namely Differential Evaluation (ANFIS-DE), Genetic Algorithm (ANFIS-GA) and Particle Swarm Optimization (ANFIS-PSO). In addition, sensitivity analysis is done to find the most efficient input variables for modeling the discharge coefficient of these types of side weirs. According to the results, the ANFIS method has higher performance when using simpler input variables. In addition, the ANFIS-DE with RMSE of 0.077 has higher performance than the ANFIS-GA and ANFIS-PSO methods with RMSE of 0.079 and 0.096, respectively.
Speculation and replication in temperature accelerated dynamics
Zamora, Richard J.; Perez, Danny; Voter, Arthur F.
2018-02-12
Accelerated Molecular Dynamics (AMD) is a class of MD-based algorithms for the long-time scale simulation of atomistic systems that are characterized by rare-event transitions. Temperature-Accelerated Dynamics (TAD), a traditional AMD approach, hastens state-to-state transitions by performing MD at an elevated temperature. Recently, Speculatively-Parallel TAD (SpecTAD) was introduced, allowing the TAD procedure to exploit parallel computing systems by concurrently executing in a dynamically generated list of speculative future states. Although speculation can be very powerful, it is not always the most efficient use of parallel resources. In this paper, we compare the performance of speculative parallelism with a replica-based technique, similarmore » to the Parallel Replica Dynamics method. A hybrid SpecTAD approach is also presented, in which each speculation process is further accelerated by a local set of replicas. Finally and overall, this work motivates the use of hybrid parallelism whenever possible, as some combination of speculation and replication is typically most efficient.« less
NASA Astrophysics Data System (ADS)
Mirabi, Mohammad; Fatemi Ghomi, S. M. T.; Jolai, F.
2014-04-01
Flow-shop scheduling problem (FSP) deals with the scheduling of a set of n jobs that visit a set of m machines in the same order. As the FSP is NP-hard, there is no efficient algorithm to reach the optimal solution of the problem. To minimize the holding, delay and setup costs of large permutation flow-shop scheduling problems with sequence-dependent setup times on each machine, this paper develops a novel hybrid genetic algorithm (HGA) with three genetic operators. Proposed HGA applies a modified approach to generate a pool of initial solutions, and also uses an improved heuristic called the iterated swap procedure to improve the initial solutions. We consider the make-to-order production approach that some sequences between jobs are assumed as tabu based on maximum allowable setup cost. In addition, the results are compared to some recently developed heuristics and computational experimental results show that the proposed HGA performs very competitively with respect to accuracy and efficiency of solution.
Speculation and replication in temperature accelerated dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zamora, Richard J.; Perez, Danny; Voter, Arthur F.
Accelerated Molecular Dynamics (AMD) is a class of MD-based algorithms for the long-time scale simulation of atomistic systems that are characterized by rare-event transitions. Temperature-Accelerated Dynamics (TAD), a traditional AMD approach, hastens state-to-state transitions by performing MD at an elevated temperature. Recently, Speculatively-Parallel TAD (SpecTAD) was introduced, allowing the TAD procedure to exploit parallel computing systems by concurrently executing in a dynamically generated list of speculative future states. Although speculation can be very powerful, it is not always the most efficient use of parallel resources. In this paper, we compare the performance of speculative parallelism with a replica-based technique, similarmore » to the Parallel Replica Dynamics method. A hybrid SpecTAD approach is also presented, in which each speculation process is further accelerated by a local set of replicas. Finally and overall, this work motivates the use of hybrid parallelism whenever possible, as some combination of speculation and replication is typically most efficient.« less
Optimizing the Performance of Reactive Molecular Dynamics Simulations for Multi-core Architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aktulga, Hasan Metin; Coffman, Paul; Shan, Tzu-Ray
2015-12-01
Hybrid parallelism allows high performance computing applications to better leverage the increasing on-node parallelism of modern supercomputers. In this paper, we present a hybrid parallel implementation of the widely used LAMMPS/ReaxC package, where the construction of bonded and nonbonded lists and evaluation of complex ReaxFF interactions are implemented efficiently using OpenMP parallelism. Additionally, the performance of the QEq charge equilibration scheme is examined and a dual-solver is implemented. We present the performance of the resulting ReaxC-OMP package on a state-of-the-art multi-core architecture Mira, an IBM BlueGene/Q supercomputer. For system sizes ranging from 32 thousand to 16.6 million particles, speedups inmore » the range of 1.5-4.5x are observed using the new ReaxC-OMP software. Sustained performance improvements have been observed for up to 262,144 cores (1,048,576 processes) of Mira with a weak scaling efficiency of 91.5% in larger simulations containing 16.6 million particles.« less
A hybrid, coupled approach for modeling charged fluids from the nano to the mesoscale
Cheung, James; Frischknecht, Amalie L.; Perego, Mauro; ...
2017-07-20
Here, we develop and demonstrate a new, hybrid simulation approach for charged fluids, which combines the accuracy of the nonlocal, classical density functional theory (cDFT) with the efficiency of the Poisson–Nernst–Planck (PNP) equations. The approach is motivated by the fact that the more accurate description of the physics in the cDFT model is required only near the charged surfaces, while away from these regions the PNP equations provide an acceptable representation of the ionic system. We formulate the hybrid approach in two stages. The first stage defines a coupled hybrid model in which the PNP and cDFT equations act independentlymore » on two overlapping domains, subject to suitable interface coupling conditions. At the second stage we apply the principles of the alternating Schwarz method to the hybrid model by using the interface conditions to define the appropriate boundary conditions and volume constraints exchanged between the PNP and the cDFT subdomains. Numerical examples with two representative examples of ionic systems demonstrate the numerical properties of the method and its potential to reduce the computational cost of a full cDFT calculation, while retaining the accuracy of the latter near the charged surfaces.« less
A hybrid, coupled approach for modeling charged fluids from the nano to the mesoscale
NASA Astrophysics Data System (ADS)
Cheung, James; Frischknecht, Amalie L.; Perego, Mauro; Bochev, Pavel
2017-11-01
We develop and demonstrate a new, hybrid simulation approach for charged fluids, which combines the accuracy of the nonlocal, classical density functional theory (cDFT) with the efficiency of the Poisson-Nernst-Planck (PNP) equations. The approach is motivated by the fact that the more accurate description of the physics in the cDFT model is required only near the charged surfaces, while away from these regions the PNP equations provide an acceptable representation of the ionic system. We formulate the hybrid approach in two stages. The first stage defines a coupled hybrid model in which the PNP and cDFT equations act independently on two overlapping domains, subject to suitable interface coupling conditions. At the second stage we apply the principles of the alternating Schwarz method to the hybrid model by using the interface conditions to define the appropriate boundary conditions and volume constraints exchanged between the PNP and the cDFT subdomains. Numerical examples with two representative examples of ionic systems demonstrate the numerical properties of the method and its potential to reduce the computational cost of a full cDFT calculation, while retaining the accuracy of the latter near the charged surfaces.
A hybrid, coupled approach for modeling charged fluids from the nano to the mesoscale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, James; Frischknecht, Amalie L.; Perego, Mauro
Here, we develop and demonstrate a new, hybrid simulation approach for charged fluids, which combines the accuracy of the nonlocal, classical density functional theory (cDFT) with the efficiency of the Poisson–Nernst–Planck (PNP) equations. The approach is motivated by the fact that the more accurate description of the physics in the cDFT model is required only near the charged surfaces, while away from these regions the PNP equations provide an acceptable representation of the ionic system. We formulate the hybrid approach in two stages. The first stage defines a coupled hybrid model in which the PNP and cDFT equations act independentlymore » on two overlapping domains, subject to suitable interface coupling conditions. At the second stage we apply the principles of the alternating Schwarz method to the hybrid model by using the interface conditions to define the appropriate boundary conditions and volume constraints exchanged between the PNP and the cDFT subdomains. Numerical examples with two representative examples of ionic systems demonstrate the numerical properties of the method and its potential to reduce the computational cost of a full cDFT calculation, while retaining the accuracy of the latter near the charged surfaces.« less
Checkpointing for a hybrid computing node
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cher, Chen-Yong
2016-03-08
According to an aspect, a method for checkpointing in a hybrid computing node includes executing a task in a processing accelerator of the hybrid computing node. A checkpoint is created in a local memory of the processing accelerator. The checkpoint includes state data to restart execution of the task in the processing accelerator upon a restart operation. Execution of the task is resumed in the processing accelerator after creating the checkpoint. The state data of the checkpoint are transferred from the processing accelerator to a main processor of the hybrid computing node while the processing accelerator is executing the task.
Hybrid annealing: Coupling a quantum simulator to a classical computer
NASA Astrophysics Data System (ADS)
Graß, Tobias; Lewenstein, Maciej
2017-05-01
Finding the global minimum in a rugged potential landscape is a computationally hard task, often equivalent to relevant optimization problems. Annealing strategies, either classical or quantum, explore the configuration space by evolving the system under the influence of thermal or quantum fluctuations. The thermal annealing dynamics can rapidly freeze the system into a low-energy configuration, and it can be simulated well on a classical computer, but it easily gets stuck in local minima. Quantum annealing, on the other hand, can be guaranteed to find the true ground state and can be implemented in modern quantum simulators; however, quantum adiabatic schemes become prohibitively slow in the presence of quasidegeneracies. Here, we propose a strategy which combines ideas from simulated annealing and quantum annealing. In such a hybrid algorithm, the outcome of a quantum simulator is processed on a classical device. While the quantum simulator explores the configuration space by repeatedly applying quantum fluctuations and performing projective measurements, the classical computer evaluates each configuration and enforces a lowering of the energy. We have simulated this algorithm for small instances of the random energy model, showing that it potentially outperforms both simulated thermal annealing and adiabatic quantum annealing. It becomes most efficient for problems involving many quasidegenerate ground states.
A shared position/force control methodology for teleoperation
NASA Technical Reports Server (NTRS)
Lee, Jin S.
1987-01-01
A flexible and computationally efficient shared position/force control concept and its implementation in the Robot Control C Library (RCCL) are presented form the point of teleoperation. This methodology enables certain degrees of freedom to be position-controlled through real time manual inputs and the remaining degrees of freedom to be force-controlled by computer. Functionally, it is a hybrid control scheme in that certain degrees of freedom are designated to be under position control, and the remaining degrees of freedom to be under force control. However, the methodology is also a shared control scheme because some degrees of freedom can be put under manual control and the other degrees of freedom put under computer control. Unlike other hybrid control schemes, which process position and force commands independently, this scheme provides a force control loop built on top of a position control inner loop. This feature minimizes the computational burden and increases disturbance rejection. A simple implementation is achieved partly because the joint control servos that are part of most robots can be used to provide the position control inner loop. Along with this control scheme, several menus were implemented for the convenience of the user. The implemented control scheme was successfully demonstrated for the tasks of hinged-panel opening and peg-in-hole insertion.
NASA Astrophysics Data System (ADS)
Harmon, Frederick G.
2005-11-01
Parallel hybrid-electric propulsion systems would be beneficial for small unmanned aerial vehicles (UAVs) used for military, homeland security, and disaster-monitoring missions. The benefits, due to the hybrid and electric-only modes, include increased time-on-station and greater range as compared to electric-powered UAVs and stealth modes not available with gasoline-powered UAVs. This dissertation contributes to the research fields of small unmanned aerial vehicles, hybrid-electric propulsion system control, and intelligent control. A conceptual design of a small UAV with a parallel hybrid-electric propulsion system is provided. The UAV is intended for intelligence, surveillance, and reconnaissance (ISR) missions. A conceptual design reveals the trade-offs that must be considered to take advantage of the hybrid-electric propulsion system. The resulting hybrid-electric propulsion system is a two-point design that includes an engine primarily sized for cruise speed and an electric motor and battery pack that are primarily sized for a slower endurance speed. The electric motor provides additional power for take-off, climbing, and acceleration and also serves as a generator during charge-sustaining operation or regeneration. The intelligent control of the hybrid-electric propulsion system is based on an instantaneous optimization algorithm that generates a hyper-plane from the nonlinear efficiency maps for the internal combustion engine, electric motor, and lithium-ion battery pack. The hyper-plane incorporates charge-depletion and charge-sustaining strategies. The optimization algorithm is flexible and allows the operator/user to assign relative importance between the use of gasoline, electricity, and recharging depending on the intended mission. A MATLAB/Simulink model was developed to test the control algorithms. The Cerebellar Model Arithmetic Computer (CMAC) associative memory neural network is applied to the control of the UAVs parallel hybrid-electric propulsion system. The CMAC neural network approximates the hyper-plane generated from the instantaneous optimization algorithm and produces torque commands for the internal combustion engine and electric motor. The CMAC neural network controller saves on the required memory as compared to a large look-up table by two orders of magnitude. The CMAC controller also prevents the need to compute a hyper-plane or complex logic every time step.
Problems Related to Parallelization of CFD Algorithms on GPU, Multi-GPU and Hybrid Architectures
NASA Astrophysics Data System (ADS)
Biazewicz, Marek; Kurowski, Krzysztof; Ludwiczak, Bogdan; Napieraia, Krystyna
2010-09-01
Computational Fluid Dynamics (CFD) is one of the branches of fluid mechanics, which uses numerical methods and algorithms to solve and analyze fluid flows. CFD is used in various domains, such as oil and gas reservoir uncertainty analysis, aerodynamic body shapes optimization (e.g. planes, cars, ships, sport helmets, skis), natural phenomena analysis, numerical simulation for weather forecasting or realistic visualizations. CFD problem is very complex and needs a lot of computational power to obtain the results in a reasonable time. We have implemented a parallel application for two-dimensional CFD simulation with a free surface approximation (MAC method) using new hardware architectures, in particular multi-GPU and hybrid computing environments. For this purpose we decided to use NVIDIA graphic cards with CUDA environment due to its simplicity of programming and good computations performance. We used finite difference discretization of Navier-Stokes equations, where fluid is propagated over an Eulerian Grid. In this model, the behavior of the fluid inside the cell depends only on the properties of local, surrounding cells, therefore it is well suited for the GPU-based architecture. In this paper we demonstrate how to use efficiently the computing power of GPUs for CFD. Additionally, we present some best practices to help users analyze and improve the performance of CFD applications executed on GPU. Finally, we discuss various challenges around the multi-GPU implementation on the example of matrix multiplication.
Hybrid Aircraft for Heavy Lift / High Speed Strategic Mobility
2011-04-01
Those advancements that reduce onboard power requirements are beneficial, whether high efficiency lighting or computing, innovative cargo management ...of operations projected to become more common in the 2035 time frame. This paper proposes that the US military procure a new class of vehicle to...first attempt to fly a HA was made by Alberto Santos-Dumont, a Brazilian living in France and a pioneer in the controlled flight of airships. In 1905
Pernice, W H; Payne, F P; Gallagher, D F
2007-09-03
We present a novel numerical scheme for the simulation of the field enhancement by metal nano-particles in the time domain. The algorithm is based on a combination of the finite-difference time-domain method and the pseudo-spectral time-domain method for dispersive materials. The hybrid solver leads to an efficient subgridding algorithm that does not suffer from spurious field spikes as do FDTD schemes. Simulation of the field enhancement by gold particles shows the expected exponential field profile. The enhancement factors are computed for single particles and particle arrays. Due to the geometry conforming mesh the algorithm is stable for long integration times and thus suitable for the simulation of resonance phenomena in coupled nano-particle structures.
NASA Technical Reports Server (NTRS)
Coakley, T. J.; Hsieh, T.
1985-01-01
Numerical simulation of steady and unsteady transonic diffuser flows using two different computer codes are discussed and compared with experimental data. The codes solve the Reynolds-averaged, compressible, Navier-Stokes equations using various turbulence models. One of the codes has been applied extensively to diffuser flows and uses the hybrid method of MacCormack. This code is relatively inefficient numerically. The second code, which was developed more recently, is fully implicit and is relatively efficient numerically. Simulations of steady flows using the implicit code are shown to be in good agreement with simulations using the hybrid code. Both simulations are in good agreement with experimental results. Simulations of unsteady flows using the two codes are in good qualitative agreement with each other, although the quantitative agreement is not as good as in the steady flow cases. The implicit code is shown to be eight times faster than the hybrid code for unsteady flow calculations and up to 32 times faster for steady flow calculations. Results of calculations using alternative turbulence models are also discussed.
Kim, Kang-Pil; Hwang, Dae-Kue; Woo, Sung-Ho; Kim, Dae-Hwan
2018-09-01
The Ag nanowire (NW) + Au nanoparticle (NP)-embedded TiO2 photoelectrodes were adopted for conventional planar TiO2-based Sb2S3 hybrid solar cells to improve the cell efficiency. Compared to conventional planar TiO2-based Sb2S3 hybrid solar cells, the Ag NW + Au NP/TiO2-based Sb2S3 hybrid solar cells exhibited an improvement of approximately 40% in the cell efficiency due to the significant increase in both Jsc and Voc. These enhanced Jsc and Voc were attributed to the increased surface area, charge-collection efficiency, and light absorption by embedding the Ag NWs + Au NPs composite. The Ag NW + Au NP/TiO2-based Sb2S3 hybrid solar cells showed the highest efficiency of 2.17%, demonstrating that the Ag NW + Au NP-embedded TiO2 photoelectrode was a suitable photoelectrode structure to improve the power conversion efficiency in the Sb2S3 hybrid solar cells.
Tavčar, Gregor; Katrašnik, Tomaž
2014-01-01
The parallel straight channel PEM fuel cell model presented in this paper extends the innovative hybrid 3D analytic-numerical (HAN) approach previously published by the authors with capabilities to address ternary diffusion systems and counter-flow configurations. The model's core principle is modelling species transport by obtaining a 2D analytic solution for species concentration distribution in the plane perpendicular to the cannel gas-flow and coupling consecutive 2D solutions by means of a 1D numerical pipe-flow model. Electrochemical and other nonlinear phenomena are coupled to the species transport by a routine that uses derivative approximation with prediction-iteration. The latter is also the core of the counter-flow computation algorithm. A HAN model of a laboratory test fuel cell is presented and evaluated against a professional 3D CFD simulation tool showing very good agreement between results of the presented model and those of the CFD simulation. Furthermore, high accuracy results are achieved at moderate computational times, which is owed to the semi-analytic nature and to the efficient computational coupling of electrochemical kinetics and species transport.
Hybrid Donor-Dot Devices made using Top-down Ion Implantation for Quantum Computing
NASA Astrophysics Data System (ADS)
Bielejec, Edward; Bishop, Nathan; Carroll, Malcolm
2012-02-01
We present progress towards fabricating hybrid donor -- quantum dots (QD) for quantum computing. These devices will exploit the long coherence time of the donor system and the surface state manipulation associated with a QD. Fabrication requires detection of single ions implanted with 10's of nanometer precision. We show in this talk, 100% detection efficiency for single ions using a single ion Geiger mode avalanche (SIGMA) detector integrated into a Si MOS QD process flow. The NanoImplanter (nI) a focused ion beam system is used for precision top-down placement of the implanted ion. This machine has a 10 nm resolution combined with a mass velocity filter, allowing for the use of multi-species liquid metal ion sources (LMIS) to implant P and Sb ions, and a fast blanking and chopping system for single ion implants. The combination of the nI and integration of the SIGMA with the MOS QD process flow establishes a path to fabricate hybrid single donor-dot devices. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Hybrid CFD/CAA Modeling for Liftoff Acoustic Predictions
NASA Technical Reports Server (NTRS)
Strutzenberg, Louise L.; Liever, Peter A.
2011-01-01
This paper presents development efforts at the NASA Marshall Space flight Center to establish a hybrid Computational Fluid Dynamics and Computational Aero-Acoustics (CFD/CAA) simulation system for launch vehicle liftoff acoustics environment analysis. Acoustic prediction engineering tools based on empirical jet acoustic strength and directivity models or scaled historical measurements are of limited value in efforts to proactively design and optimize launch vehicles and launch facility configurations for liftoff acoustics. CFD based modeling approaches are now able to capture the important details of vehicle specific plume flow environment, identifY the noise generation sources, and allow assessment of the influence of launch pad geometric details and sound mitigation measures such as water injection. However, CFD methodologies are numerically too dissipative to accurately capture the propagation of the acoustic waves in the large CFD models. The hybrid CFD/CAA approach combines the high-fidelity CFD analysis capable of identifYing the acoustic sources with a fast and efficient Boundary Element Method (BEM) that accurately propagates the acoustic field from the source locations. The BEM approach was chosen for its ability to properly account for reflections and scattering of acoustic waves from launch pad structures. The paper will present an overview of the technology components of the CFD/CAA framework and discuss plans for demonstration and validation against test data.
The load shedding advisor: An example of a crisis-response expert system
NASA Technical Reports Server (NTRS)
Bollinger, Terry B.; Lightner, Eric; Laverty, John; Ambrose, Edward
1987-01-01
A Prolog-based prototype expert system is described that was implemented by the Network Operations Branch of the NASA Goddard Space Flight Center. The purpose of the prototype was to test whether a small, inexpensive computer system could be used to host a load shedding advisor, a system which would monitor major physical environment parameters in a computer facility, then recommend appropriate operator reponses whenever a serious condition was detected. The resulting prototype performed significantly to efficiency gains achieved by replacing a purely rule-based design methodology with a hybrid approach that combined procedural, entity-relationship, and rule-based methods.
Group normalization for genomic data.
Ghandi, Mahmoud; Beer, Michael A
2012-01-01
Data normalization is a crucial preliminary step in analyzing genomic datasets. The goal of normalization is to remove global variation to make readings across different experiments comparable. In addition, most genomic loci have non-uniform sensitivity to any given assay because of variation in local sequence properties. In microarray experiments, this non-uniform sensitivity is due to different DNA hybridization and cross-hybridization efficiencies, known as the probe effect. In this paper we introduce a new scheme, called Group Normalization (GN), to remove both global and local biases in one integrated step, whereby we determine the normalized probe signal by finding a set of reference probes with similar responses. Compared to conventional normalization methods such as Quantile normalization and physically motivated probe effect models, our proposed method is general in the sense that it does not require the assumption that the underlying signal distribution be identical for the treatment and control, and is flexible enough to correct for nonlinear and higher order probe effects. The Group Normalization algorithm is computationally efficient and easy to implement. We also describe a variant of the Group Normalization algorithm, called Cross Normalization, which efficiently amplifies biologically relevant differences between any two genomic datasets.
Group Normalization for Genomic Data
Ghandi, Mahmoud; Beer, Michael A.
2012-01-01
Data normalization is a crucial preliminary step in analyzing genomic datasets. The goal of normalization is to remove global variation to make readings across different experiments comparable. In addition, most genomic loci have non-uniform sensitivity to any given assay because of variation in local sequence properties. In microarray experiments, this non-uniform sensitivity is due to different DNA hybridization and cross-hybridization efficiencies, known as the probe effect. In this paper we introduce a new scheme, called Group Normalization (GN), to remove both global and local biases in one integrated step, whereby we determine the normalized probe signal by finding a set of reference probes with similar responses. Compared to conventional normalization methods such as Quantile normalization and physically motivated probe effect models, our proposed method is general in the sense that it does not require the assumption that the underlying signal distribution be identical for the treatment and control, and is flexible enough to correct for nonlinear and higher order probe effects. The Group Normalization algorithm is computationally efficient and easy to implement. We also describe a variant of the Group Normalization algorithm, called Cross Normalization, which efficiently amplifies biologically relevant differences between any two genomic datasets. PMID:22912661
Hybrid computer technique yields random signal probability distributions
NASA Technical Reports Server (NTRS)
Cameron, W. D.
1965-01-01
Hybrid computer determines the probability distributions of instantaneous and peak amplitudes of random signals. This combined digital and analog computer system reduces the errors and delays of manual data analysis.
NASA Technical Reports Server (NTRS)
1979-01-01
A description and listing is presented of two computer programs: Hybrid Vehicle Design Program (HYVELD) and Hybrid Vehicle Simulation Program (HYVEC). Both of the programs are modifications and extensions of similar programs developed as part of the Electric and Hybrid Vehicle System Research and Development Project.
Accelerating Large Scale Image Analyses on Parallel, CPU-GPU Equipped Systems
Teodoro, George; Kurc, Tahsin M.; Pan, Tony; Cooper, Lee A.D.; Kong, Jun; Widener, Patrick; Saltz, Joel H.
2014-01-01
The past decade has witnessed a major paradigm shift in high performance computing with the introduction of accelerators as general purpose processors. These computing devices make available very high parallel computing power at low cost and power consumption, transforming current high performance platforms into heterogeneous CPU-GPU equipped systems. Although the theoretical performance achieved by these hybrid systems is impressive, taking practical advantage of this computing power remains a very challenging problem. Most applications are still deployed to either GPU or CPU, leaving the other resource under- or un-utilized. In this paper, we propose, implement, and evaluate a performance aware scheduling technique along with optimizations to make efficient collaborative use of CPUs and GPUs on a parallel system. In the context of feature computations in large scale image analysis applications, our evaluations show that intelligently co-scheduling CPUs and GPUs can significantly improve performance over GPU-only or multi-core CPU-only approaches. PMID:25419545
Data mining in soft computing framework: a survey.
Mitra, S; Pal, S K; Mitra, P
2002-01-01
The present article provides a survey of the available literature on data mining using soft computing. A categorization has been provided based on the different soft computing tools and their hybridizations used, the data mining function implemented, and the preference criterion selected by the model. The utility of the different soft computing methodologies is highlighted. Generally fuzzy sets are suitable for handling the issues related to understandability of patterns, incomplete/noisy data, mixed media information and human interaction, and can provide approximate solutions faster. Neural networks are nonparametric, robust, and exhibit good learning and generalization capabilities in data-rich environments. Genetic algorithms provide efficient search algorithms to select a model, from mixed media data, based on some preference criterion/objective function. Rough sets are suitable for handling different types of uncertainty in data. Some challenges to data mining and the application of soft computing methodologies are indicated. An extensive bibliography is also included.
NASA Astrophysics Data System (ADS)
Mozaffari, Ahmad; Vajedi, Mahyar; Azad, Nasser L.
2015-06-01
The main proposition of the current investigation is to develop a computational intelligence-based framework which can be used for the real-time estimation of optimum battery state-of-charge (SOC) trajectory in plug-in hybrid electric vehicles (PHEVs). The estimated SOC trajectory can be then employed for an intelligent power management to significantly improve the fuel economy of the vehicle. The devised intelligent SOC trajectory builder takes advantage of the upcoming route information preview to achieve the lowest possible total cost of electricity and fossil fuel. To reduce the complexity of real-time optimization, the authors propose an immune system-based clustering approach which allows categorizing the route information into a predefined number of segments. The intelligent real-time optimizer is also inspired on the basis of interactions in biological immune systems, and is called artificial immune algorithm (AIA). The objective function of the optimizer is derived from a computationally efficient artificial neural network (ANN) which is trained by a database obtained from a high-fidelity model of the vehicle built in the Autonomie software. The simulation results demonstrate that the integration of immune inspired clustering tool, AIA and ANN, will result in a powerful framework which can generate a near global optimum SOC trajectory for the baseline vehicle, that is, the Toyota Prius PHEV. The outcomes of the current investigation prove that by taking advantage of intelligent approaches, it is possible to design a computationally efficient and powerful SOC trajectory builder for the intelligent power management of PHEVs.
Scalable hybrid computation with spikes.
Sarpeshkar, Rahul; O'Halloran, Micah
2002-09-01
We outline a hybrid analog-digital scheme for computing with three important features that enable it to scale to systems of large complexity: First, like digital computation, which uses several one-bit precise logical units to collectively compute a precise answer to a computation, the hybrid scheme uses several moderate-precision analog units to collectively compute a precise answer to a computation. Second, frequent discrete signal restoration of the analog information prevents analog noise and offset from degrading the computation. And, third, a state machine enables complex computations to be created using a sequence of elementary computations. A natural choice for implementing this hybrid scheme is one based on spikes because spike-count codes are digital, while spike-time codes are analog. We illustrate how spikes afford easy ways to implement all three components of scalable hybrid computation. First, as an important example of distributed analog computation, we show how spikes can create a distributed modular representation of an analog number by implementing digital carry interactions between spiking analog neurons. Second, we show how signal restoration may be performed by recursive spike-count quantization of spike-time codes. And, third, we use spikes from an analog dynamical system to trigger state transitions in a digital dynamical system, which reconfigures the analog dynamical system using a binary control vector; such feedback interactions between analog and digital dynamical systems create a hybrid state machine (HSM). The HSM extends and expands the concept of a digital finite-state-machine to the hybrid domain. We present experimental data from a two-neuron HSM on a chip that implements error-correcting analog-to-digital conversion with the concurrent use of spike-time and spike-count codes. We also present experimental data from silicon circuits that implement HSM-based pattern recognition using spike-time synchrony. We outline how HSMs may be used to perform learning, vector quantization, spike pattern recognition and generation, and how they may be reconfigured.
A hybrid framework for quantifying the influence of data in hydrological model calibration
NASA Astrophysics Data System (ADS)
Wright, David P.; Thyer, Mark; Westra, Seth; McInerney, David
2018-06-01
Influence diagnostics aim to identify a small number of influential data points that have a disproportionate impact on the model parameters and/or predictions. The key issues with current influence diagnostic techniques are that the regression-theory approaches do not provide hydrologically relevant influence metrics, while the case-deletion approaches are computationally expensive to calculate. The main objective of this study is to introduce a new two-stage hybrid framework that overcomes these challenges, by delivering hydrologically relevant influence metrics in a computationally efficient manner. Stage one uses computationally efficient regression-theory influence diagnostics to identify the most influential points based on Cook's distance. Stage two then uses case-deletion influence diagnostics to quantify the influence of points using hydrologically relevant metrics. To illustrate the application of the hybrid framework, we conducted three experiments on 11 hydro-climatologically diverse Australian catchments using the GR4J hydrological model. The first experiment investigated how many data points from stage one need to be retained in order to reliably identify those points that have the hightest influence on hydrologically relevant metrics. We found that a choice of 30-50 is suitable for hydrological applications similar to those explored in this study (30 points identified the most influential data 98% of the time and reduced the required recalibrations by 99% for a 10 year calibration period). The second experiment found little evidence of a change in the magnitude of influence with increasing calibration period length from 1, 2, 5 to 10 years. Even for 10 years the impact of influential points can still be high (>30% influence on maximum predicted flows). The third experiment compared the standard least squares (SLS) objective function with the weighted least squares (WLS) objective function on a 10 year calibration period. In two out of three flow metrics there was evidence that SLS, with the assumption of homoscedastic residual error, identified data points with higher influence (largest changes of 40%, 10%, and 44% for the maximum, mean, and low flows, respectively) than WLS, with the assumption of heteroscedastic residual errors (largest changes of 26%, 6%, and 6% for the maximum, mean, and low flows, respectively). The hybrid framework complements existing model diagnostic tools and can be applied to a wide range of hydrological modelling scenarios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luszczek, Piotr R; Tomov, Stanimire Z; Dongarra, Jack J
We present an efficient and scalable programming model for the development of linear algebra in heterogeneous multi-coprocessor environments. The model incorporates some of the current best design and implementation practices for the heterogeneous acceleration of dense linear algebra (DLA). Examples are given as the basis for solving linear systems' algorithms - the LU, QR, and Cholesky factorizations. To generate the extreme level of parallelism needed for the efficient use of coprocessors, algorithms of interest are redesigned and then split into well-chosen computational tasks. The tasks execution is scheduled over the computational components of a hybrid system of multi-core CPUs andmore » coprocessors using a light-weight runtime system. The use of lightweight runtime systems keeps scheduling overhead low, while enabling the expression of parallelism through otherwise sequential code. This simplifies the development efforts and allows the exploration of the unique strengths of the various hardware components.« less
Ibrahim, Ahmad M.; Wilson, Paul P.H.; Sawan, Mohamed E.; ...
2015-06-30
The CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques dramatically increase the efficiency of neutronics modeling, but their use in the accurate design analysis of very large and geometrically complex nuclear systems has been limited by the large number of processors and memory requirements for their preliminary deterministic calculations and final Monte Carlo calculation. Three mesh adaptivity algorithms were developed to reduce the memory requirements of CADIS and FW-CADIS without sacrificing their efficiency improvement. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as muchmore » geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility. Using these algorithms resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation and, additionally, increased the efficiency of the Monte Carlo simulation by a factor of at least 3.4. The three algorithms enabled this difficult calculation to be accurately solved using an FW-CADIS simulation on a regular computer cluster, eliminating the need for a world-class super computer.« less
NASA Astrophysics Data System (ADS)
Ferhatoglu, Erhan; Cigeroglu, Ender; Özgüven, H. Nevzat
2018-07-01
In this paper, a new modal superposition method based on a hybrid mode shape concept is developed for the determination of steady state vibration response of nonlinear structures. The method is developed specifically for systems having nonlinearities where the stiffness of the system may take different limiting values. Stiffness variation of these nonlinear systems enables one to define different linear systems corresponding to each value of the limiting equivalent stiffness. Moreover, the response of the nonlinear system is bounded by the confinement of these linear systems. In this study, a modal superposition method utilizing novel hybrid mode shapes which are defined as linear combinations of the modal vectors of the limiting linear systems is proposed to determine periodic response of nonlinear systems. In this method the response of the nonlinear system is written in terms of hybrid modes instead of the modes of the underlying linear system. This provides decrease of the number of modes that should be retained for an accurate solution, which in turn reduces the number of nonlinear equations to be solved. In this way, computational time for response calculation is directly curtailed. In the solution, the equations of motion are converted to a set of nonlinear algebraic equations by using describing function approach, and the numerical solution is obtained by using Newton's method with arc-length continuation. The method developed is applied on two different systems: a lumped parameter model and a finite element model. Several case studies are performed and the accuracy and computational efficiency of the proposed modal superposition method with hybrid mode shapes are compared with those of the classical modal superposition method which utilizes the mode shapes of the underlying linear system.
ERIC Educational Resources Information Center
Mitchell, Eugene E., Ed.
In certain boundary layer or natural convection work, where a similarity transformation is valid, the equations can be reduced to a set of nonlinear ordinary differential equations. They are therefore well-suited to a fast solution on an analog/hybrid computer. This paper illustrates such usage of the analog/hybrid computer by a set of…
Clinical evaluation of BrainTree, a motor imagery hybrid BCI speller
NASA Astrophysics Data System (ADS)
Perdikis, S.; Leeb, R.; Williamson, J.; Ramsay, A.; Tavella, M.; Desideri, L.; Hoogerwerf, E.-J.; Al-Khodairy, A.; Murray-Smith, R.; Millán, J. d. R.
2014-06-01
Objective. While brain-computer interfaces (BCIs) for communication have reached considerable technical maturity, there is still a great need for state-of-the-art evaluation by the end-users outside laboratory environments. To achieve this primary objective, it is necessary to augment a BCI with a series of components that allow end-users to type text effectively. Approach. This work presents the clinical evaluation of a motor imagery (MI) BCI text-speller, called BrainTree, by six severely disabled end-users and ten able-bodied users. Additionally, we define a generic model of code-based BCI applications, which serves as an analytical tool for evaluation and design. Main results. We show that all users achieved remarkable usability and efficiency outcomes in spelling. Furthermore, our model-based analysis highlights the added value of human-computer interaction techniques and hybrid BCI error-handling mechanisms, and reveals the effects of BCI performances on usability and efficiency in code-based applications. Significance. This study demonstrates the usability potential of code-based MI spellers, with BrainTree being the first to be evaluated by a substantial number of end-users, establishing them as a viable, competitive alternative to other popular BCI spellers. Another major outcome of our model-based analysis is the derivation of a 80% minimum command accuracy requirement for successful code-based application control, revising upwards previous estimates attempted in the literature.
Clinical evaluation of BrainTree, a motor imagery hybrid BCI speller.
Perdikis, S; Leeb, R; Williamson, J; Ramsay, A; Tavella, M; Desideri, L; Hoogerwerf, E-J; Al-Khodairy, A; Murray-Smith, R; Millán, J D R
2014-06-01
While brain-computer interfaces (BCIs) for communication have reached considerable technical maturity, there is still a great need for state-of-the-art evaluation by the end-users outside laboratory environments. To achieve this primary objective, it is necessary to augment a BCI with a series of components that allow end-users to type text effectively. This work presents the clinical evaluation of a motor imagery (MI) BCI text-speller, called BrainTree, by six severely disabled end-users and ten able-bodied users. Additionally, we define a generic model of code-based BCI applications, which serves as an analytical tool for evaluation and design. We show that all users achieved remarkable usability and efficiency outcomes in spelling. Furthermore, our model-based analysis highlights the added value of human-computer interaction techniques and hybrid BCI error-handling mechanisms, and reveals the effects of BCI performances on usability and efficiency in code-based applications. This study demonstrates the usability potential of code-based MI spellers, with BrainTree being the first to be evaluated by a substantial number of end-users, establishing them as a viable, competitive alternative to other popular BCI spellers. Another major outcome of our model-based analysis is the derivation of a 80% minimum command accuracy requirement for successful code-based application control, revising upwards previous estimates attempted in the literature.
Hybrid cars now, fuel cell cars later.
Demirdöven, Nurettin; Deutch, John
2004-08-13
We compare the energy efficiency of hybrid and fuel cell vehicles as well as conventional internal combustion engines. Our analysis indicates that fuel cell vehicles using hydrogen from fossil fuels offer no significant energy efficiency advantage over hybrid vehicles operating in an urban drive cycle. We conclude that priority should be placed on hybrid vehicles by industry and government.
Hybrid Cars Now, Fuel Cell Cars Later
NASA Astrophysics Data System (ADS)
Demirdöven, Nurettin; Deutch, John
2004-08-01
We compare the energy efficiency of hybrid and fuel cell vehicles as well as conventional internal combustion engines. Our analysis indicates that fuel cell vehicles using hydrogen from fossil fuels offer no significant energy efficiency advantage over hybrid vehicles operating in an urban drive cycle. We conclude that priority should be placed on hybrid vehicles by industry and government.
Efficient parameter estimation in longitudinal data analysis using a hybrid GEE method.
Leung, Denis H Y; Wang, You-Gan; Zhu, Min
2009-07-01
The method of generalized estimating equations (GEEs) provides consistent estimates of the regression parameters in a marginal regression model for longitudinal data, even when the working correlation model is misspecified (Liang and Zeger, 1986). However, the efficiency of a GEE estimate can be seriously affected by the choice of the working correlation model. This study addresses this problem by proposing a hybrid method that combines multiple GEEs based on different working correlation models, using the empirical likelihood method (Qin and Lawless, 1994). Analyses show that this hybrid method is more efficient than a GEE using a misspecified working correlation model. Furthermore, if one of the working correlation structures correctly models the within-subject correlations, then this hybrid method provides the most efficient parameter estimates. In simulations, the hybrid method's finite-sample performance is superior to a GEE under any of the commonly used working correlation models and is almost fully efficient in all scenarios studied. The hybrid method is illustrated using data from a longitudinal study of the respiratory infection rates in 275 Indonesian children.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimojo, Fuyuki; Hattori, Shinnosuke; Department of Physics, Kumamoto University, Kumamoto 860-8555
We introduce an extension of the divide-and-conquer (DC) algorithmic paradigm called divide-conquer-recombine (DCR) to perform large quantum molecular dynamics (QMD) simulations on massively parallel supercomputers, in which interatomic forces are computed quantum mechanically in the framework of density functional theory (DFT). In DCR, the DC phase constructs globally informed, overlapping local-domain solutions, which in the recombine phase are synthesized into a global solution encompassing large spatiotemporal scales. For the DC phase, we design a lean divide-and-conquer (LDC) DFT algorithm, which significantly reduces the prefactor of the O(N) computational cost for N electrons by applying a density-adaptive boundary condition at themore » peripheries of the DC domains. Our globally scalable and locally efficient solver is based on a hybrid real-reciprocal space approach that combines: (1) a highly scalable real-space multigrid to represent the global charge density; and (2) a numerically efficient plane-wave basis for local electronic wave functions and charge density within each domain. Hybrid space-band decomposition is used to implement the LDC-DFT algorithm on parallel computers. A benchmark test on an IBM Blue Gene/Q computer exhibits an isogranular parallel efficiency of 0.984 on 786 432 cores for a 50.3 × 10{sup 6}-atom SiC system. As a test of production runs, LDC-DFT-based QMD simulation involving 16 661 atoms is performed on the Blue Gene/Q to study on-demand production of hydrogen gas from water using LiAl alloy particles. As an example of the recombine phase, LDC-DFT electronic structures are used as a basis set to describe global photoexcitation dynamics with nonadiabatic QMD (NAQMD) and kinetic Monte Carlo (KMC) methods. The NAQMD simulations are based on the linear response time-dependent density functional theory to describe electronic excited states and a surface-hopping approach to describe transitions between the excited states. A series of techniques are employed for efficiently calculating the long-range exact exchange correction and excited-state forces. The NAQMD trajectories are analyzed to extract the rates of various excitonic processes, which are then used in KMC simulation to study the dynamics of the global exciton flow network. This has allowed the study of large-scale photoexcitation dynamics in 6400-atom amorphous molecular solid, reaching the experimental time scales.« less
Dynamics and Control of Flexible Space Vehicles
NASA Technical Reports Server (NTRS)
Likins, P. W.
1970-01-01
The purpose of this report is twofold: (1) to survey the established analytic procedures for the simulation of controlled flexible space vehicles, and (2) to develop in detail methods that employ a combination of discrete and distributed ("modal") coordinates, i.e., the hybrid-coordinate methods. Analytic procedures are described in three categories: (1) discrete-coordinate methods, (2) hybrid-coordinate methods, and (3) vehicle normal-coordinate methods. Each of these approaches is described and analyzed for its advantages and disadvantages, and each is found to have an area of applicability. The hybrid-coordinate method combines the efficiency of the vehicle normal-coordinate method with the versatility of the discrete-coordinate method, and appears to have the widest range of practical application. The results in this report have practical utility in two areas: (1) complex digital computer simulation of flexible space vehicles of arbitrary configuration subject to realistic control laws, and (2) preliminary control system design based on transfer functions for linearized models of dynamics and control laws.
Optimal Shape Design of Mail-Slot Nacelle on N3-X Hybrid Wing-Body Configuration
NASA Technical Reports Server (NTRS)
Kim, Hyoungjin; Liou, Meng-Sing
2013-01-01
System studies show that a N3-X hybrid wing-body aircraft with a turboelectric distributed propulsion system using a mail-slot inlet/nozzle nacelle can meet the environmental and performance goals for N+3 generation transports (three generations beyond the current air transport technology level) set by NASA's Subsonic Fixed Wing Project. In this study, a Navier-Stokes flow simulation of N3-X on hybrid unstructured meshes was conducted, including the mail-slot propulsor. The geometry of the mail-slot propulsor was generated by a CAD (Computer-Aided Design)-free shape parameterization. A novel body force model generation approach was suggested for a more realistic and efficient simulation of the flow turning, pressure rise and loss effects of the fan blades and the inlet-fan interactions. Flow simulation results of the N3-X demonstrates the validity of the present approach. An optimal Shape design of the mail-slot nacelle surface was conducted to reduce strength of shock waves and flow separations on the cowl surface.
An evolution based biosensor receptor DNA sequence generation algorithm.
Kim, Eungyeong; Lee, Malrey; Gatton, Thomas M; Lee, Jaewan; Zang, Yupeng
2010-01-01
A biosensor is composed of a bioreceptor, an associated recognition molecule, and a signal transducer that can selectively detect target substances for analysis. DNA based biosensors utilize receptor molecules that allow hybridization with the target analyte. However, most DNA biosensor research uses oligonucleotides as the target analytes and does not address the potential problems of real samples. The identification of recognition molecules suitable for real target analyte samples is an important step towards further development of DNA biosensors. This study examines the characteristics of DNA used as bioreceptors and proposes a hybrid evolution-based DNA sequence generating algorithm, based on DNA computing, to identify suitable DNA bioreceptor recognition molecules for stable hybridization with real target substances. The Traveling Salesman Problem (TSP) approach is applied in the proposed algorithm to evaluate the safety and fitness of the generated DNA sequences. This approach improves efficiency and stability for enhanced and variable-length DNA sequence generation and allows extension to generation of variable-length DNA sequences with diverse receptor recognition requirements.
Jennane, Rachid; Aufort, Gabriel; Benhamou, Claude Laurent; Ceylan, Murat; Ozbay, Yüksel; Ucan, Osman Nuri
2012-04-01
Curve and surface thinning are widely-used skeletonization techniques for modeling objects in three dimensions. In the case of disordered porous media analysis, however, neither is really efficient since the internal geometry of the object is usually composed of both rod and plate shapes. This paper presents an alternative to compute a hybrid shape-dependent skeleton and its application to porous media. The resulting skeleton combines 2D surfaces and 1D curves to represent respectively the plate-shaped and rod-shaped parts of the object. For this purpose, a new technique based on neural networks is proposed: cascade combinations of complex wavelet transform (CWT) and complex-valued artificial neural network (CVANN). The ability of the skeleton to characterize hybrid shaped porous media is demonstrated on a trabecular bone sample. Results show that the proposed method achieves high accuracy rates about 99.78%-99.97%. Especially, CWT (2nd level)-CVANN structure converges to optimum results as high accuracy rate-minimum time consumption.
Large-Scale Computation of Nuclear Magnetic Resonance Shifts for Paramagnetic Solids Using CP2K.
Mondal, Arobendo; Gaultois, Michael W; Pell, Andrew J; Iannuzzi, Marcella; Grey, Clare P; Hutter, Jürg; Kaupp, Martin
2018-01-09
Large-scale computations of nuclear magnetic resonance (NMR) shifts for extended paramagnetic solids (pNMR) are reported using the highly efficient Gaussian-augmented plane-wave implementation of the CP2K code. Combining hyperfine couplings obtained with hybrid functionals with g-tensors and orbital shieldings computed using gradient-corrected functionals, contact, pseudocontact, and orbital-shift contributions to pNMR shifts are accessible. Due to the efficient and highly parallel performance of CP2K, a wide variety of materials with large unit cells can be studied with extended Gaussian basis sets. Validation of various approaches for the different contributions to pNMR shifts is done first for molecules in a large supercell in comparison with typical quantum-chemical codes. This is then extended to a detailed study of g-tensors for extended solid transition-metal fluorides and for a series of complex lithium vanadium phosphates. Finally, lithium pNMR shifts are computed for Li 3 V 2 (PO 4 ) 3 , for which detailed experimental data are available. This has allowed an in-depth study of different approaches (e.g., full periodic versus incremental cluster computations of g-tensors and different functionals and basis sets for hyperfine computations) as well as a thorough analysis of the different contributions to the pNMR shifts. This study paves the way for a more-widespread computational treatment of NMR shifts for paramagnetic materials.
A Metascalable Computing Framework for Large Spatiotemporal-Scale Atomistic Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nomura, K; Seymour, R; Wang, W
2009-02-17
A metascalable (or 'design once, scale on new architectures') parallel computing framework has been developed for large spatiotemporal-scale atomistic simulations of materials based on spatiotemporal data locality principles, which is expected to scale on emerging multipetaflops architectures. The framework consists of: (1) an embedded divide-and-conquer (EDC) algorithmic framework based on spatial locality to design linear-scaling algorithms for high complexity problems; (2) a space-time-ensemble parallel (STEP) approach based on temporal locality to predict long-time dynamics, while introducing multiple parallelization axes; and (3) a tunable hierarchical cellular decomposition (HCD) parallelization framework to map these O(N) algorithms onto a multicore cluster based onmore » hybrid implementation combining message passing and critical section-free multithreading. The EDC-STEP-HCD framework exposes maximal concurrency and data locality, thereby achieving: (1) inter-node parallel efficiency well over 0.95 for 218 billion-atom molecular-dynamics and 1.68 trillion electronic-degrees-of-freedom quantum-mechanical simulations on 212,992 IBM BlueGene/L processors (superscalability); (2) high intra-node, multithreading parallel efficiency (nanoscalability); and (3) nearly perfect time/ensemble parallel efficiency (eon-scalability). The spatiotemporal scale covered by MD simulation on a sustained petaflops computer per day (i.e. petaflops {center_dot} day of computing) is estimated as NT = 2.14 (e.g. N = 2.14 million atoms for T = 1 microseconds).« less
NASA Technical Reports Server (NTRS)
Chen, Y. S.
1986-01-01
In this report, a numerical method for solving the equations of motion of three-dimensional incompressible flows in nonorthogonal body-fitted coordinate (BFC) systems has been developed. The equations of motion are transformed to a generalized curvilinear coordinate system from which the transformed equations are discretized using finite difference approximations in the transformed domain. The hybrid scheme is used to approximate the convection terms in the governing equations. Solutions of the finite difference equations are obtained iteratively by using a pressure-velocity correction algorithm (SIMPLE-C). Numerical examples of two- and three-dimensional, laminar and turbulent flow problems are employed to evaluate the accuracy and efficiency of the present computer code. The user's guide and computer program listing of the present code are also included.
Blade Assessment for Ice Impact (BLASIM). User's manual, version 1.0
NASA Technical Reports Server (NTRS)
Reddy, E. S.; Abumeri, G. H.
1993-01-01
The Blade Assessment Ice Impact (BLASIM) computer code can analyze solid, hollow, composite, and super hybrid blades. The solid blade is made up of a single material where hollow, composite, and super hybrid blades are constructed with prescribed composite layup. The properties of a composite blade can be specified by inputting one of two options: (1) individual ply properties, or (2) fiber/matrix combinations. When the second option is selected, BLASIM utilizes ICAN (Integrated Composite ANalyzer) to generate the temperature/moisture dependent ply properties of the composite blade. Two types of geometry input can be given: airfoil coordinates or NASTRAN type finite element model. These features increase the flexibility of the program. The user's manual provides sample cases to facilitate efficient use of the code while gaining familiarity.
Hidri, Lotfi; Gharbi, Anis; Louly, Mohamed Aly
2014-01-01
We focus on the two-center hybrid flow shop scheduling problem with identical parallel machines and removal times. The job removal time is the required duration to remove it from a machine after its processing. The objective is to minimize the maximum completion time (makespan). A heuristic and a lower bound are proposed for this NP-Hard problem. These procedures are based on the optimal solution of the parallel machine scheduling problem with release dates and delivery times. The heuristic is composed of two phases. The first one is a constructive phase in which an initial feasible solution is provided, while the second phase is an improvement one. Intensive computational experiments have been conducted to confirm the good performance of the proposed procedures.
Efficient Bounding Schemes for the Two-Center Hybrid Flow Shop Scheduling Problem with Removal Times
2014-01-01
We focus on the two-center hybrid flow shop scheduling problem with identical parallel machines and removal times. The job removal time is the required duration to remove it from a machine after its processing. The objective is to minimize the maximum completion time (makespan). A heuristic and a lower bound are proposed for this NP-Hard problem. These procedures are based on the optimal solution of the parallel machine scheduling problem with release dates and delivery times. The heuristic is composed of two phases. The first one is a constructive phase in which an initial feasible solution is provided, while the second phase is an improvement one. Intensive computational experiments have been conducted to confirm the good performance of the proposed procedures. PMID:25610911
NASA Astrophysics Data System (ADS)
Wang, Li; Li, Feng; Xing, Jian
2017-10-01
In this paper, a hybrid artificial bee colony (ABC) algorithm and pattern search (PS) method is proposed and applied for recovery of particle size distribution (PSD) from spectral extinction data. To be more useful and practical, size distribution function is modelled as the general Johnson's ? function that can overcome the difficulty of not knowing the exact type beforehand encountered in many real circumstances. The proposed hybrid algorithm is evaluated through simulated examples involving unimodal, bimodal and trimodal PSDs with different widths and mean particle diameters. For comparison, all examples are additionally validated by the single ABC algorithm. In addition, the performance of the proposed algorithm is further tested by actual extinction measurements with real standard polystyrene samples immersed in water. Simulation and experimental results illustrate that the hybrid algorithm can be used as an effective technique to retrieve the PSDs with high reliability and accuracy. Compared with the single ABC algorithm, our proposed algorithm can produce more accurate and robust inversion results while taking almost comparative CPU time over ABC algorithm alone. The superiority of ABC and PS hybridization strategy in terms of reaching a better balance of estimation accuracy and computation effort increases its potentials as an excellent inversion technique for reliable and efficient actual measurement of PSD.
NASA Astrophysics Data System (ADS)
Plata, Jose J.; Nath, Pinku; Usanmaz, Demet; Carrete, Jesús; Toher, Cormac; de Jong, Maarten; Asta, Mark; Fornari, Marco; Nardelli, Marco Buongiorno; Curtarolo, Stefano
2017-10-01
One of the most accurate approaches for calculating lattice thermal conductivity, , is solving the Boltzmann transport equation starting from third-order anharmonic force constants. In addition to the underlying approximations of ab-initio parameterization, two main challenges are associated with this path: high computational costs and lack of automation in the frameworks using this methodology, which affect the discovery rate of novel materials with ad-hoc properties. Here, the Automatic Anharmonic Phonon Library (AAPL) is presented. It efficiently computes interatomic force constants by making effective use of crystal symmetry analysis, it solves the Boltzmann transport equation to obtain , and allows a fully integrated operation with minimum user intervention, a rational addition to the current high-throughput accelerated materials development framework AFLOW. An "experiment vs. theory" study of the approach is shown, comparing accuracy and speed with respect to other available packages, and for materials characterized by strong electron localization and correlation. Combining AAPL with the pseudo-hybrid functional ACBN0 is possible to improve accuracy without increasing computational requirements.
A Hybrid Shared-Memory Parallel Max-Tree Algorithm for Extreme Dynamic-Range Images.
Moschini, Ugo; Meijster, Arnold; Wilkinson, Michael H F
2018-03-01
Max-trees, or component trees, are graph structures that represent the connected components of an image in a hierarchical way. Nowadays, many application fields rely on images with high-dynamic range or floating point values. Efficient sequential algorithms exist to build trees and compute attributes for images of any bit depth. However, we show that the current parallel algorithms perform poorly already with integers at bit depths higher than 16 bits per pixel. We propose a parallel method combining the two worlds of flooding and merging max-tree algorithms. First, a pilot max-tree of a quantized version of the image is built in parallel using a flooding method. Later, this structure is used in a parallel leaf-to-root approach to compute efficiently the final max-tree and to drive the merging of the sub-trees computed by the threads. We present an analysis of the performance both on simulated and actual 2D images and 3D volumes. Execution times are about better than the fastest sequential algorithm and speed-up goes up to on 64 threads.
NASA Technical Reports Server (NTRS)
Yamauchi, G.; Johnson, W.
1984-01-01
A computationally efficient body analysis designed to couple with a comprehensive helicopter analysis is developed in order to calculate the body-induced aerodynamic effects on rotor performance and loads. A modified slender body theory is used as the body model. With the objective of demonstrating the accuracy, efficiency, and application of the method, the analysis at this stage is restricted to axisymmetric bodies at zero angle of attack. By comparing with results from an exact analysis for simple body shapes, it is found that the modified slender body theory provides an accurate potential flow solution for moderately thick bodies, with only a 10%-20% increase in computational effort over that of an isolated rotor analysis. The computational ease of this method provides a means for routine assessment of body-induced effects on a rotor. Results are given for several configurations that typify those being used in the Ames 40- by 80-Foot Wind Tunnel and in the rotor-body aerodynamic interference tests being conducted at Ames. A rotor-hybrid airship configuration is also analyzed.
PHoToNs–A parallel heterogeneous and threads oriented code for cosmological N-body simulation
NASA Astrophysics Data System (ADS)
Wang, Qiao; Cao, Zong-Yan; Gao, Liang; Chi, Xue-Bin; Meng, Chen; Wang, Jie; Wang, Long
2018-06-01
We introduce a new code for cosmological simulations, PHoToNs, which incorporates features for performing massive cosmological simulations on heterogeneous high performance computer (HPC) systems and threads oriented programming. PHoToNs adopts a hybrid scheme to compute gravitational force, with the conventional Particle-Mesh (PM) algorithm to compute the long-range force, the Tree algorithm to compute the short range force and the direct summation Particle-Particle (PP) algorithm to compute gravity from very close particles. A self-similar space filling a Peano-Hilbert curve is used to decompose the computing domain. Threads programming is advantageously used to more flexibly manage the domain communication, PM calculation and synchronization, as well as Dual Tree Traversal on the CPU+MIC platform. PHoToNs scales well and efficiency of the PP kernel achieves 68.6% of peak performance on MIC and 74.4% on CPU platforms. We also test the accuracy of the code against the much used Gadget-2 in the community and found excellent agreement.
Digital simulation of hybrid loop operation in RFI backgrounds.
NASA Technical Reports Server (NTRS)
Ziemer, R. E.; Nelson, D. R.
1972-01-01
A digital computer model for Monte-Carlo simulation of an imperfect second-order hybrid phase-locked loop (PLL) operating in radio-frequency interference (RFI) and Gaussian noise backgrounds has been developed. Characterization of hybrid loop performance in terms of cycle slipping statistics and phase error variance, through computer simulation, indicates that the hybrid loop has desirable performance characteristics in RFI backgrounds over the conventional PLL or the costas loop.
An effective and secure key-management scheme for hierarchical access control in E-medicine system.
Odelu, Vanga; Das, Ashok Kumar; Goswami, Adrijit
2013-04-01
Recently several hierarchical access control schemes are proposed in the literature to provide security of e-medicine systems. However, most of them are either insecure against 'man-in-the-middle attack' or they require high storage and computational overheads. Wu and Chen proposed a key management method to solve dynamic access control problems in a user hierarchy based on hybrid cryptosystem. Though their scheme improves computational efficiency over Nikooghadam et al.'s approach, it suffers from large storage space for public parameters in public domain and computational inefficiency due to costly elliptic curve point multiplication. Recently, Nikooghadam and Zakerolhosseini showed that Wu-Chen's scheme is vulnerable to man-in-the-middle attack. In order to remedy this security weakness in Wu-Chen's scheme, they proposed a secure scheme which is again based on ECC (elliptic curve cryptography) and efficient one-way hash function. However, their scheme incurs huge computational cost for providing verification of public information in the public domain as their scheme uses ECC digital signature which is costly when compared to symmetric-key cryptosystem. In this paper, we propose an effective access control scheme in user hierarchy which is only based on symmetric-key cryptosystem and efficient one-way hash function. We show that our scheme reduces significantly the storage space for both public and private domains, and computational complexity when compared to Wu-Chen's scheme, Nikooghadam-Zakerolhosseini's scheme, and other related schemes. Through the informal and formal security analysis, we further show that our scheme is secure against different attacks and also man-in-the-middle attack. Moreover, dynamic access control problems in our scheme are also solved efficiently compared to other related schemes, making our scheme is much suitable for practical applications of e-medicine systems.
A method for exploring implicit concept relatedness in biomedical knowledge network.
Bai, Tian; Gong, Leiguang; Wang, Ye; Wang, Yan; Kulikowski, Casimir A; Huang, Lan
2016-07-19
Biomedical information and knowledge, structural and non-structural, stored in different repositories can be semantically connected to form a hybrid knowledge network. How to compute relatedness between concepts and discover valuable but implicit information or knowledge from it effectively and efficiently is of paramount importance for precision medicine, and a major challenge facing the biomedical research community. In this study, a hybrid biomedical knowledge network is constructed by linking concepts across multiple biomedical ontologies as well as non-structural biomedical knowledge sources. To discover implicit relatedness between concepts in ontologies for which potentially valuable relationships (implicit knowledge) may exist, we developed a Multi-Ontology Relatedness Model (MORM) within the knowledge network, for which a relatedness network (RN) is defined and computed across multiple ontologies using a formal inference mechanism of set-theoretic operations. Semantic constraints are designed and implemented to prune the search space of the relatedness network. Experiments to test examples of several biomedical applications have been carried out, and the evaluation of the results showed an encouraging potential of the proposed approach to biomedical knowledge discovery.
High-Fidelity Computational Aerodynamics of Multi-Rotor Unmanned Aerial Vehicles
NASA Technical Reports Server (NTRS)
Ventura Diaz, Patricia; Yoon, Seokkwan
2018-01-01
High-fidelity Computational Fluid Dynamics (CFD) simulations have been carried out for several multi-rotor Unmanned Aerial Vehicles (UAVs). Three vehicles have been studied: the classic quadcopter DJI Phantom 3, an unconventional quadcopter specialized for forward flight, the SUI Endurance, and an innovative concept for Urban Air Mobility (UAM), the Elytron 4S UAV. The three-dimensional unsteady Navier-Stokes equations are solved on overset grids using high-order accurate schemes, dual-time stepping, and a hybrid turbulence model. The DJI Phantom 3 is simulated with different rotors and with both a simplified airframe and the real airframe including landing gear and a camera. The effects of weather are studied for the DJI Phantom 3 quadcopter in hover. The SUI En- durance original design is compared in forward flight to a new configuration conceived by the authors, the hybrid configuration, which gives a large improvement in forward thrust. The Elytron 4S UAV is simulated in helicopter mode and in airplane mode. Understanding the complex flows in multi-rotor vehicles will help design quieter, safer, and more efficient future drones and UAM vehicles.
Zhou, Xiuze; Lin, Fan; Yang, Lvqing; Nie, Jing; Tan, Qian; Zeng, Wenhua; Zhang, Nian
2016-01-01
With the continuous expansion of the cloud computing platform scale and rapid growth of users and applications, how to efficiently use system resources to improve the overall performance of cloud computing has become a crucial issue. To address this issue, this paper proposes a method that uses an analytic hierarchy process group decision (AHPGD) to evaluate the load state of server nodes. Training was carried out by using a hybrid hierarchical genetic algorithm (HHGA) for optimizing a radial basis function neural network (RBFNN). The AHPGD makes the aggregative indicator of virtual machines in cloud, and become input parameters of predicted RBFNN. Also, this paper proposes a new dynamic load balancing scheduling algorithm combined with a weighted round-robin algorithm, which uses the predictive periodical load value of nodes based on AHPPGD and RBFNN optimized by HHGA, then calculates the corresponding weight values of nodes and makes constant updates. Meanwhile, it keeps the advantages and avoids the shortcomings of static weighted round-robin algorithm.
Efficient 3D porous microstructure reconstruction via Gaussian random field and hybrid optimization.
Jiang, Z; Chen, W; Burkhart, C
2013-11-01
Obtaining an accurate three-dimensional (3D) structure of a porous microstructure is important for assessing the material properties based on finite element analysis. Whereas directly obtaining 3D images of the microstructure is impractical under many circumstances, two sets of methods have been developed in literature to generate (reconstruct) 3D microstructure from its 2D images: one characterizes the microstructure based on certain statistical descriptors, typically two-point correlation function and cluster correlation function, and then performs an optimization process to build a 3D structure that matches those statistical descriptors; the other method models the microstructure using stochastic models like a Gaussian random field and generates a 3D structure directly from the function. The former obtains a relatively accurate 3D microstructure, but computationally the optimization process can be very intensive, especially for problems with large image size; the latter generates a 3D microstructure quickly but sacrifices the accuracy due to issues in numerical implementations. A hybrid optimization approach of modelling the 3D porous microstructure of random isotropic two-phase materials is proposed in this paper, which combines the two sets of methods and hence maintains the accuracy of the correlation-based method with improved efficiency. The proposed technique is verified for 3D reconstructions based on silica polymer composite images with different volume fractions. A comparison of the reconstructed microstructures and the optimization histories for both the original correlation-based method and our hybrid approach demonstrates the improved efficiency of the approach. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
Plane-Wave DFT Methods for Chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bylaska, Eric J.
A detailed description of modern plane-wave DFT methods and software (contained in the NWChem package) are described that allow for both geometry optimization and ab initio molecular dynamics simulations. Significant emphasis is placed on aspects of these methods that are of interest to computational chemists and useful for simulating chemistry, including techniques for calculating charged systems, exact exchange (i.e. hybrid DFT methods), and highly efficient AIMD/MM methods. Sample applications on the structure of the goethite+water interface and the hydrolysis of nitroaromatic molecules are described.
Zhang, Heng; Feng, Yuanxiang; Chen, Shuming
2016-10-03
Light-emitting diodes based on organic (OLEDs) and colloidal quantum dot (QLEDs) are widely considered as next-generation display technologies because of their attractive advantages such as self-emitting and flexible form factor. The OLEDs exhibit relatively high efficiency, but their color saturation is quite poor compared with that of QLEDs. In contrast, the QLEDs show very pure color emission, but their efficiency is lower than that of OLEDs currently. To combine the advantages and compensate for the weaknesses of each other, we propose a hybrid tandem structure which integrates both OLED and QLED in a single device architecture. With ZnMgO/Al/HATCN interconnecting layer, hybrid tandem LEDs are successfully fabricated. The demonstrated hybrid tandem devices feature high efficiency and high color saturation simultaneously; for example, the devices exhibit maximum current efficiency and external quantum efficiency of 96.28 cd/A and 25.90%, respectively. Meanwhile, the full width at half-maximum of the emission spectra is remarkably reduced from 68 to 44 nm. With the proposed hybrid tandem structure, the color gamut of the displays can be effectively increased from 81% to 100% NTSC. The results indicate that the advantages of different LED technologies can be combined in a hybrid tandem structure.
The hierarchical expert tuning of PID controllers using tools of soft computing.
Karray, F; Gueaieb, W; Al-Sharhan, S
2002-01-01
We present soft computing-based results pertaining to the hierarchical tuning process of PID controllers located within the control loop of a class of nonlinear systems. The results are compared with PID controllers implemented either in a stand alone scheme or as a part of conventional gain scheduling structure. This work is motivated by the increasing need in the industry to design highly reliable and efficient controllers for dealing with regulation and tracking capabilities of complex processes characterized by nonlinearities and possibly time varying parameters. The soft computing-based controllers proposed are hybrid in nature in that they integrate within a well-defined hierarchical structure the benefits of hard algorithmic controllers with those having supervisory capabilities. The controllers proposed also have the distinct features of learning and auto-tuning without the need for tedious and computationally extensive online systems identification schemes.
Design of hat-stiffened composite panels loaded in axial compression
NASA Astrophysics Data System (ADS)
Paul, T. K.; Sinha, P. K.
An integrated step-by-step analysis procedure for the design of axially compressed stiffened composite panels is outlined. The analysis makes use of the effective width concept. A computer code, BUSTCOP, is developed incorporating various aspects of buckling such as skin buckling, stiffener crippling and column buckling. Other salient features of the computer code include capabilities for generation of data based on micromechanics theories and hygrothermal analysis, and for prediction of strength failure. Parametric studies carried out on a hat-stiffened structural element indicate that, for all practical purposes, composite panels exhibit higher structural efficiency. Some hybrid laminates with outer layers made of aluminum alloy also show great promise for flight vehicle structural applications.
ICF target 2D modeling using Monte Carlo SNB electron thermal transport in DRACO
NASA Astrophysics Data System (ADS)
Chenhall, Jeffrey; Cao, Duc; Moses, Gregory
2016-10-01
The iSNB (implicit Schurtz Nicolai Busquet multigroup diffusion electron thermal transport method is adapted into a Monte Carlo (MC) transport method to better model angular and long mean free path non-local effects. The MC model was first implemented in the 1D LILAC code to verify consistency with the iSNB model. Implementation of the MC SNB model in the 2D DRACO code enables higher fidelity non-local thermal transport modeling in 2D implosions such as polar drive experiments on NIF. The final step is to optimize the MC model by hybridizing it with a MC version of the iSNB diffusion method. The hybrid method will combine the efficiency of a diffusion method in intermediate mean free path regions with the accuracy of a transport method in long mean free path regions allowing for improved computational efficiency while maintaining accuracy. Work to date on the method will be presented. This work was supported by Sandia National Laboratories and the Univ. of Rochester Laboratory for Laser Energetics.
Towards maximizing the haze effect of electrodes for high efficiency hybrid tandem solar cell
NASA Astrophysics Data System (ADS)
Vincent, Premkumar; Song, Dong-Seok; Kwon, Hyeok Bin; Kim, Do-Kyung; Jung, Ji-Hoon; Kwon, Jin-Hyuk; Choe, Eunji; Kim, Young-Rae; Kim, Hyeok; Bae, Jin-Hyuk
2018-02-01
In this study, we executed optical simulations to compute the optimum power conversion efficiency (PCE) of a-Si:H/organic photovoltaic (OPV) hybrid tandem solar cell. The maximum ideal short circuit current density (Jsc,max) of the tandem solar cell is initially obtained by optimizing the thickness of the active layer of the OPV subcell for varying thickness of the a-Si:H bottom subcell. To investigate the effect of Haze parameter on the ideal short-circuit current density (Jsc,ideal) of the solar cells, we have varied the haze ratio for the TCO electrode of the a-Si:H subcell in the tandem structure. The haze ratio was obtained for various root mean square (RMS) roughness of the TCO of the front cell. The effect of haze ratio on the Jsc,ideal on the tandem structured solar cell was studied, and the highest Jsc,ideal was obtained at a haze of 55.5% when the thickness of the OPV subcell was 150 nm and that of the a-Si:H subcell was 500 nm.
Efficiently passing messages in distributed spiking neural network simulation.
Thibeault, Corey M; Minkovich, Kirill; O'Brien, Michael J; Harris, Frederick C; Srinivasa, Narayan
2013-01-01
Efficiently passing spiking messages in a neural model is an important aspect of high-performance simulation. As the scale of networks has increased so has the size of the computing systems required to simulate them. In addition, the information exchange of these resources has become more of an impediment to performance. In this paper we explore spike message passing using different mechanisms provided by the Message Passing Interface (MPI). A specific implementation, MVAPICH, designed for high-performance clusters with Infiniband hardware is employed. The focus is on providing information about these mechanisms for users of commodity high-performance spiking simulators. In addition, a novel hybrid method for spike exchange was implemented and benchmarked.
Universal blind quantum computation for hybrid system
NASA Astrophysics Data System (ADS)
Huang, He-Liang; Bao, Wan-Su; Li, Tan; Li, Feng-Guang; Fu, Xiang-Qun; Zhang, Shuo; Zhang, Hai-Long; Wang, Xiang
2017-08-01
As progress on the development of building quantum computer continues to advance, first-generation practical quantum computers will be available for ordinary users in the cloud style similar to IBM's Quantum Experience nowadays. Clients can remotely access the quantum servers using some simple devices. In such a situation, it is of prime importance to keep the security of the client's information. Blind quantum computation protocols enable a client with limited quantum technology to delegate her quantum computation to a quantum server without leaking any privacy. To date, blind quantum computation has been considered only for an individual quantum system. However, practical universal quantum computer is likely to be a hybrid system. Here, we take the first step to construct a framework of blind quantum computation for the hybrid system, which provides a more feasible way for scalable blind quantum computation.
Dunn, Katherine E; Trefzer, Martin A; Johnson, Steven; Tyrrell, Andy M
2016-08-01
Molecular computation with DNA has great potential for low power, highly parallel information processing in a biological or biochemical context. However, significant challenges remain for the field of DNA computation. New technology is needed to allow multiplexed label-free readout and to enable regulation of molecular state without addition of new DNA strands. These capabilities could be provided by hybrid bioelectronic systems in which biomolecular computing is integrated with conventional electronics through immobilization of DNA machines on the surface of electronic circuitry. Here we present a quantitative experimental analysis of a surface-immobilized OR gate made from DNA and driven by strand displacement. The purpose of our work is to examine the performance of a simple representative surface-immobilized DNA logic machine, to provide valuable information for future work on hybrid bioelectronic systems involving DNA devices. We used a quartz crystal microbalance to examine a DNA monolayer containing approximately 5×10(11)gatescm(-2), with an inter-gate separation of approximately 14nm, and we found that the ensemble of gates took approximately 6min to switch. The gates could be switched repeatedly, but the switching efficiency was significantly degraded on the second and subsequent cycles when the binding site for the input was near to the surface. Otherwise, the switching efficiency could be 80% or better, and the power dissipated by the ensemble of gates during switching was approximately 0.1nWcm(-2), which is orders of magnitude less than the power dissipated during switching of an equivalent array of transistors. We propose an architecture for hybrid DNA-electronic systems in which information can be stored and processed, either in series or in parallel, by a combination of molecular machines and conventional electronics. In this architecture, information can flow freely and in both directions between the solution-phase and the underlying electronics via surface-immobilized DNA machines that provide the interface between the molecular and electronic domains. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Hybrid ODE/SSA methods and the cell cycle model
NASA Astrophysics Data System (ADS)
Wang, S.; Chen, M.; Cao, Y.
2017-07-01
Stochastic effect in cellular systems has been an important topic in systems biology. Stochastic modeling and simulation methods are important tools to study stochastic effect. Given the low efficiency of stochastic simulation algorithms, the hybrid method, which combines an ordinary differential equation (ODE) system with a stochastic chemically reacting system, shows its unique advantages in the modeling and simulation of biochemical systems. The efficiency of hybrid method is usually limited by reactions in the stochastic subsystem, which are modeled and simulated using Gillespie's framework and frequently interrupt the integration of the ODE subsystem. In this paper we develop an efficient implementation approach for the hybrid method coupled with traditional ODE solvers. We also compare the efficiency of hybrid methods with three widely used ODE solvers RADAU5, DASSL, and DLSODAR. Numerical experiments with three biochemical models are presented. A detailed discussion is presented for the performances of three ODE solvers.
Modeling and design of a high efficiency hybrid heat pump clothes dryer
DOE Office of Scientific and Technical Information (OSTI.GOV)
TeGrotenhuis, Ward; Butterfield, Andrew; Caldwell, Dustin
Computational modeling is used to design a hybrid heat pump clothes dryer capable of saving 50% of the energy used by residential clothes dryers with comparable drying times. The model represents the various stages of a drying cycle from warm-up through constant drying rate and falling drying rate phases and finishing with a cooldown phase. The model is fit to data acquired from a U.S. commercial standard vented electric dryer, and when a hybrid heat pump system is added, the energy factor increases from 3.0 lbs/kWh to 5.7-6.0 lbs/kWh, depending on the increase in blower motor power. The hybrid heatmore » pump system is designed from off-the-shelf components and includes a recuperative heat exchanger, an electric element, and an R-134a vapor compression heat pump. Parametric studies of element power and heating element use show a trade-off between energy savings and cycle time. Results show a step-change in energy savings from heat pump dryers currently marketed in the U.S. based on performance represented by Enery Star from standardized DOE testing.« less
More efficient evolutionary strategies for model calibration with watershed model for demonstration
NASA Astrophysics Data System (ADS)
Baggett, J. S.; Skahill, B. E.
2008-12-01
Evolutionary strategies allow automatic calibration of more complex models than traditional gradient based approaches, but they are more computationally intensive. We present several efficiency enhancements for evolution strategies, many of which are not new, but when combined have been shown to dramatically decrease the number of model runs required for calibration of synthetic problems. To reduce the number of expensive model runs we employ a surrogate objective function for an adaptively determined fraction of the population at each generation (Kern et al., 2006). We demonstrate improvements to the adaptive ranking strategy that increase its efficiency while sacrificing little reliability and further reduce the number of model runs required in densely sampled parts of parameter space. Furthermore, we include a gradient individual in each generation that is usually not selected when the search is in a global phase or when the derivatives are poorly approximated, but when selected near a smooth local minimum can dramatically increase convergence speed (Tahk et al., 2007). Finally, the selection of the gradient individual is used to adapt the size of the population near local minima. We show, by incorporating these enhancements into the Covariance Matrix Adaption Evolution Strategy (CMAES; Hansen, 2006), that their synergetic effect is greater than their individual parts. This hybrid evolutionary strategy exploits smooth structure when it is present but degrades to an ordinary evolutionary strategy, at worst, if smoothness is not present. Calibration of 2D-3D synthetic models with the modified CMAES requires approximately 10%-25% of the model runs of ordinary CMAES. Preliminary demonstration of this hybrid strategy will be shown for watershed model calibration problems. Hansen, N. (2006). The CMA Evolution Strategy: A Comparing Review. In J.A. Lozano, P. Larrañga, I. Inza and E. Bengoetxea (Eds.). Towards a new evolutionary computation. Advances in estimation of distribution algorithms. pp. 75-102, Springer Kern, S., N. Hansen and P. Koumoutsakos (2006). Local Meta-Models for Optimization Using Evolution Strategies. In Ninth International Conference on Parallel Problem Solving from Nature PPSN IX, Proceedings, pp.939-948, Berlin: Springer. Tahk, M., Woo, H., and Park. M, (2007). A hybrid optimization of evolutionary and gradient search. Engineering Optimization, (39), 87-104.
USDA-ARS?s Scientific Manuscript database
Drought tolerant (DT) maize (Zea mays L.) hybrids have potential to increase yield under drought conditions. However, little information is known about the physiological determinations of yield in DT hybrids. Our objective was to assess radiation use efficiency (RUE), biomass production, and yield ...
Zhang, Xike; Zhang, Qiuwen; Zhang, Gui; Nie, Zhiping; Gui, Zifan; Que, Huafei
2018-01-01
Daily land surface temperature (LST) forecasting is of great significance for application in climate-related, agricultural, eco-environmental, or industrial studies. Hybrid data-driven prediction models using Ensemble Empirical Mode Composition (EEMD) coupled with Machine Learning (ML) algorithms are useful for achieving these purposes because they can reduce the difficulty of modeling, require less history data, are easy to develop, and are less complex than physical models. In this article, a computationally simple, less data-intensive, fast and efficient novel hybrid data-driven model called the EEMD Long Short-Term Memory (LSTM) neural network, namely EEMD-LSTM, is proposed to reduce the difficulty of modeling and to improve prediction accuracy. The daily LST data series from the Mapoling and Zhijiang stations in the Dongting Lake basin, central south China, from 1 January 2014 to 31 December 2016 is used as a case study. The EEMD is firstly employed to decompose the original daily LST data series into many Intrinsic Mode Functions (IMFs) and a single residue item. Then, the Partial Autocorrelation Function (PACF) is used to obtain the number of input data sample points for LSTM models. Next, the LSTM models are constructed to predict the decompositions. All the predicted results of the decompositions are aggregated as the final daily LST. Finally, the prediction performance of the hybrid EEMD-LSTM model is assessed in terms of the Mean Square Error (MSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE), Pearson Correlation Coefficient (CC) and Nash-Sutcliffe Coefficient of Efficiency (NSCE). To validate the hybrid data-driven model, the hybrid EEMD-LSTM model is compared with the Recurrent Neural Network (RNN), LSTM and Empirical Mode Decomposition (EMD) coupled with RNN, EMD-LSTM and EEMD-RNN models, and their comparison results demonstrate that the hybrid EEMD-LSTM model performs better than the other five models. The scatterplots of the predicted results of the six models versus the original daily LST data series show that the hybrid EEMD-LSTM model is superior to the other five models. It is concluded that the proposed hybrid EEMD-LSTM model in this study is a suitable tool for temperature forecasting. PMID:29883381
Zhang, Xike; Zhang, Qiuwen; Zhang, Gui; Nie, Zhiping; Gui, Zifan; Que, Huafei
2018-05-21
Daily land surface temperature (LST) forecasting is of great significance for application in climate-related, agricultural, eco-environmental, or industrial studies. Hybrid data-driven prediction models using Ensemble Empirical Mode Composition (EEMD) coupled with Machine Learning (ML) algorithms are useful for achieving these purposes because they can reduce the difficulty of modeling, require less history data, are easy to develop, and are less complex than physical models. In this article, a computationally simple, less data-intensive, fast and efficient novel hybrid data-driven model called the EEMD Long Short-Term Memory (LSTM) neural network, namely EEMD-LSTM, is proposed to reduce the difficulty of modeling and to improve prediction accuracy. The daily LST data series from the Mapoling and Zhijaing stations in the Dongting Lake basin, central south China, from 1 January 2014 to 31 December 2016 is used as a case study. The EEMD is firstly employed to decompose the original daily LST data series into many Intrinsic Mode Functions (IMFs) and a single residue item. Then, the Partial Autocorrelation Function (PACF) is used to obtain the number of input data sample points for LSTM models. Next, the LSTM models are constructed to predict the decompositions. All the predicted results of the decompositions are aggregated as the final daily LST. Finally, the prediction performance of the hybrid EEMD-LSTM model is assessed in terms of the Mean Square Error (MSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE), Pearson Correlation Coefficient (CC) and Nash-Sutcliffe Coefficient of Efficiency (NSCE). To validate the hybrid data-driven model, the hybrid EEMD-LSTM model is compared with the Recurrent Neural Network (RNN), LSTM and Empirical Mode Decomposition (EMD) coupled with RNN, EMD-LSTM and EEMD-RNN models, and their comparison results demonstrate that the hybrid EEMD-LSTM model performs better than the other five models. The scatterplots of the predicted results of the six models versus the original daily LST data series show that the hybrid EEMD-LSTM model is superior to the other five models. It is concluded that the proposed hybrid EEMD-LSTM model in this study is a suitable tool for temperature forecasting.
High-throughput Analysis of Large Microscopy Image Datasets on CPU-GPU Cluster Platforms
Teodoro, George; Pan, Tony; Kurc, Tahsin M.; Kong, Jun; Cooper, Lee A. D.; Podhorszki, Norbert; Klasky, Scott; Saltz, Joel H.
2014-01-01
Analysis of large pathology image datasets offers significant opportunities for the investigation of disease morphology, but the resource requirements of analysis pipelines limit the scale of such studies. Motivated by a brain cancer study, we propose and evaluate a parallel image analysis application pipeline for high throughput computation of large datasets of high resolution pathology tissue images on distributed CPU-GPU platforms. To achieve efficient execution on these hybrid systems, we have built runtime support that allows us to express the cancer image analysis application as a hierarchical data processing pipeline. The application is implemented as a coarse-grain pipeline of stages, where each stage may be further partitioned into another pipeline of fine-grain operations. The fine-grain operations are efficiently managed and scheduled for computation on CPUs and GPUs using performance aware scheduling techniques along with several optimizations, including architecture aware process placement, data locality conscious task assignment, data prefetching, and asynchronous data copy. These optimizations are employed to maximize the utilization of the aggregate computing power of CPUs and GPUs and minimize data copy overheads. Our experimental evaluation shows that the cooperative use of CPUs and GPUs achieves significant improvements on top of GPU-only versions (up to 1.6×) and that the execution of the application as a set of fine-grain operations provides more opportunities for runtime optimizations and attains better performance than coarser-grain, monolithic implementations used in other works. An implementation of the cancer image analysis pipeline using the runtime support was able to process an image dataset consisting of 36,848 4Kx4K-pixel image tiles (about 1.8TB uncompressed) in less than 4 minutes (150 tiles/second) on 100 nodes of a state-of-the-art hybrid cluster system. PMID:25419546
A hybrid modelling approach for predicting ground vibration from trains
NASA Astrophysics Data System (ADS)
Triepaischajonsak, N.; Thompson, D. J.
2015-01-01
The prediction of ground vibration from trains presents a number of difficulties. The ground is effectively an infinite medium, often with a layered structure and with properties that may vary greatly from one location to another. The vibration from a passing train forms a transient event, which limits the usefulness of steady-state frequency domain models. Moreover, there is often a need to consider vehicle/track interaction in more detail than is commonly used in frequency domain models, such as the 2.5D approach, while maintaining the computational efficiency of the latter. However, full time-domain approaches involve large computation times, particularly where three-dimensional ground models are required. Here, a hybrid modelling approach is introduced. The vehicle/track interaction is calculated in the time domain in order to be able t account directly for effects such as the discrete sleeper spacing. Forces acting on the ground are extracted from this first model and used in a second model to predict the ground response at arbitrary locations. In the present case the second model is a layered ground model operating in the frequency domain. Validation of the approach is provided by comparison with an existing frequency domain model. The hybrid model is then used to study the sleeper-passing effect, which is shown to be less significant than excitation due to track unevenness in all the cases considered.
Manyscale Computing for Sensor Processing in Support of Space Situational Awareness
NASA Astrophysics Data System (ADS)
Schmalz, M.; Chapman, W.; Hayden, E.; Sahni, S.; Ranka, S.
2014-09-01
Increasing image and signal data burden associated with sensor data processing in support of space situational awareness implies continuing computational throughput growth beyond the petascale regime. In addition to growing applications data burden and diversity, the breadth, diversity and scalability of high performance computing architectures and their various organizations challenge the development of a single, unifying, practicable model of parallel computation. Therefore, models for scalable parallel processing have exploited architectural and structural idiosyncrasies, yielding potential misapplications when legacy programs are ported among such architectures. In response to this challenge, we have developed a concise, efficient computational paradigm and software called Manyscale Computing to facilitate efficient mapping of annotated application codes to heterogeneous parallel architectures. Our theory, algorithms, software, and experimental results support partitioning and scheduling of application codes for envisioned parallel architectures, in terms of work atoms that are mapped (for example) to threads or thread blocks on computational hardware. Because of the rigor, completeness, conciseness, and layered design of our manyscale approach, application-to-architecture mapping is feasible and scalable for architectures at petascales, exascales, and above. Further, our methodology is simple, relying primarily on a small set of primitive mapping operations and support routines that are readily implemented on modern parallel processors such as graphics processing units (GPUs) and hybrid multi-processors (HMPs). In this paper, we overview the opportunities and challenges of manyscale computing for image and signal processing in support of space situational awareness applications. We discuss applications in terms of a layered hardware architecture (laboratory > supercomputer > rack > processor > component hierarchy). Demonstration applications include performance analysis and results in terms of execution time as well as storage, power, and energy consumption for bus-connected and/or networked architectures. The feasibility of the manyscale paradigm is demonstrated by addressing four principal challenges: (1) architectural/structural diversity, parallelism, and locality, (2) masking of I/O and memory latencies, (3) scalability of design as well as implementation, and (4) efficient representation/expression of parallel applications. Examples will demonstrate how manyscale computing helps solve these challenges efficiently on real-world computing systems.
NASA Astrophysics Data System (ADS)
Roy, Soumen; Sengupta, Anand S.; Thakor, Nilay
2017-05-01
Astrophysical compact binary systems consisting of neutron stars and black holes are an important class of gravitational wave (GW) sources for advanced LIGO detectors. Accurate theoretical waveform models from the inspiral, merger, and ringdown phases of such systems are used to filter detector data under the template-based matched-filtering paradigm. An efficient grid over the parameter space at a fixed minimal match has a direct impact on the overall time taken by these searches. We present a new hybrid geometric-random template placement algorithm for signals described by parameters of two masses and one spin magnitude. Such template banks could potentially be used in GW searches from binary neutron stars and neutron star-black hole systems. The template placement is robust and is able to automatically accommodate curvature and boundary effects with no fine-tuning. We also compare these banks against vanilla stochastic template banks and show that while both are equally efficient in the fitting-factor sense, the bank sizes are ˜25 % larger in the stochastic method. Further, we show that the generation of the proposed hybrid banks can be sped up by nearly an order of magnitude over the stochastic bank. Generic issues related to optimal implementation are discussed in detail. These improvements are expected to directly reduce the computational cost of gravitational wave searches.
NASA Astrophysics Data System (ADS)
Tavakkoli-Moghaddam, Reza; Alinaghian, Mehdi; Salamat-Bakhsh, Alireza; Norouzi, Narges
2012-05-01
A vehicle routing problem is a significant problem that has attracted great attention from researchers in recent years. The main objectives of the vehicle routing problem are to minimize the traveled distance, total traveling time, number of vehicles and cost function of transportation. Reducing these variables leads to decreasing the total cost and increasing the driver's satisfaction level. On the other hand, this satisfaction, which will decrease by increasing the service time, is considered as an important logistic problem for a company. The stochastic time dominated by a probability variable leads to variation of the service time, while it is ignored in classical routing problems. This paper investigates the problem of the increasing service time by using the stochastic time for each tour such that the total traveling time of the vehicles is limited to a specific limit based on a defined probability. Since exact solutions of the vehicle routing problem that belong to the category of NP-hard problems are not practical in a large scale, a hybrid algorithm based on simulated annealing with genetic operators was proposed to obtain an efficient solution with reasonable computational cost and time. Finally, for some small cases, the related results of the proposed algorithm were compared with results obtained by the Lingo 8 software. The obtained results indicate the efficiency of the proposed hybrid simulated annealing algorithm.
An Energy-Aware Hybrid ARQ Scheme with Multi-ACKs for Data Sensing Wireless Sensor Networks.
Zhang, Jinhuan; Long, Jun
2017-06-12
Wireless sensor networks (WSNs) are one of the important supporting technologies of edge computing. In WSNs, reliable communications are essential for most applications due to the unreliability of wireless links. In addition, network lifetime is also an important performance metric and needs to be considered in many WSN studies. In the paper, an energy-aware hybrid Automatic Repeat-reQuest protocol (ARQ) scheme is proposed to ensure energy efficiency under the guarantee of network transmission reliability. In the scheme, the source node sends data packets continuously with the correct window size and it does not need to wait for the acknowledgement (ACK) confirmation for each data packet. When the destination receives K data packets, it will return multiple copies of one ACK for confirmation to avoid ACK packet loss. The energy consumption of each node in flat circle network applying the proposed scheme is statistical analyzed and the cases under which it is more energy efficiency than the original scheme is discussed. Moreover, how to select parameters of the scheme is addressed to extend the network lifetime under the constraint of the network reliability. In addition, the energy efficiency of the proposed schemes is evaluated. Simulation results are presented to demonstrate that a node energy consumption reduction could be gained and the network lifetime is prolonged.
Analysis of hybrid electric/thermofluidic inputs for wet shape memory alloy actuators
NASA Astrophysics Data System (ADS)
Flemming, Leslie; Mascaro, Stephen
2013-01-01
A wet shape memory alloy (SMA) actuator is characterized by an SMA wire embedded within a compliant fluid-filled tube. Heating and cooling of the SMA wire produces a linear contraction and extension of the wire. Thermal energy can be transferred to and from the wire using combinations of resistive heating and free/forced convection. This paper analyzes the speed and efficiency of a simulated wet SMA actuator using a variety of control strategies involving different combinations of electrical and thermofluidic inputs. A computational fluid dynamics (CFD) model is used in conjunction with a temperature-strain model of the SMA wire to simulate the thermal response of the wire and compute strains, contraction/extension times and efficiency. The simulations produce cycle rates of up to 5 Hz for electrical heating and fluidic cooling, and up to 2 Hz for fluidic heating and cooling. The simulated results demonstrate efficiencies up to 0.5% for electric heating and up to 0.2% for fluidic heating. Using both electric and fluidic inputs concurrently improves the speed and efficiency of the actuator and allows for the actuator to remain contracted without continually delivering energy to the actuator, because of the thermal capacitance of the hot fluid. The characterized speeds and efficiencies are key requirements for implementing broader research efforts involving the intelligent control of electric and thermofluidic networks to optimize the speed and efficiency of wet actuator arrays.
NASA Technical Reports Server (NTRS)
Tamma, Kumar K.; Railkar, Sudhir B.
1988-01-01
This paper describes new and recent advances in the development of a hybrid transfinite element computational methodology for applicability to conduction/convection/radiation heat transfer problems. The transfinite element methodology, while retaining the modeling versatility of contemporary finite element formulations, is based on application of transform techniques in conjunction with classical Galerkin schemes and is a hybrid approach. The purpose of this paper is to provide a viable hybrid computational methodology for applicability to general transient thermal analysis. Highlights and features of the methodology are described and developed via generalized formulations and applications to several test problems. The proposed transfinite element methodology successfully provides a viable computational approach and numerical test problems validate the proposed developments for conduction/convection/radiation thermal analysis.
NASA Astrophysics Data System (ADS)
Son, Youn-Suk; Kim, Ki-Joon; Kim, Ji-Yong; Kim, Jo-Chun
2010-12-01
We applied a hybrid technique to assess the decomposition characteristics of ethylbenzene and toluene that annexed the catalyst technique with existing electron beam (EB) technology. The removal efficiency of ethylbenzene in the EB-catalyst hybrid turned out to be 30% greater than that of EB-only treatment. We concluded that ethylbenzene was decomposed more easily than toluene by EB irradiation. We compared the independent effects of the EB-catalyst hybrid and catalyst-only methods, and observed that the efficiency of the EB-catalyst hybrid demonstrated approximately 6% improvement for decomposing toluene and 20% improvement for decomposing ethylbenzene. The G-values for ethylbenzene increased with initial concentration and reactor type: for example, the G-values by reactor type at 2800 ppmC were 7.5-10.9 (EB-only) and 12.9-25.7 (EB-catalyst hybrid). We also observed a significant decrease in by-products as well as in the removal efficiencies associated with the EB-catalyst hybrid technique.
Lewis hybrid computing system, users manual
NASA Technical Reports Server (NTRS)
Bruton, W. M.; Cwynar, D. S.
1979-01-01
The Lewis Research Center's Hybrid Simulation Lab contains a collection of analog, digital, and hybrid (combined analog and digital) computing equipment suitable for the dynamic simulation and analysis of complex systems. This report is intended as a guide to users of these computing systems. The report describes the available equipment' and outlines procedures for its use. Particular is given to the operation of the PACER 100 digital processor. System software to accomplish the usual digital tasks such as compiling, editing, etc. and Lewis-developed special purpose software are described.
Real-time simulation of an automotive gas turbine using the hybrid computer
NASA Technical Reports Server (NTRS)
Costakis, W.; Merrill, W. C.
1984-01-01
A hybrid computer simulation of an Advanced Automotive Gas Turbine Powertrain System is reported. The system consists of a gas turbine engine, an automotive drivetrain with four speed automatic transmission, and a control system. Generally, dynamic performance is simulated on the analog portion of the hybrid computer while most of the steady state performance characteristics are calculated to run faster than real time and makes this simulation a useful tool for a variety of analytical studies.
Hybrid Organic/Inorganic Nanocomposites for Photovoltaic Cells
Liu, Ruchuan
2014-01-01
Inorganic/organic hybrid solar cells have attracted a lot of interest due to their potential in combining the advantages of both components. To understand the key issues in association with photoinduced charge separation/transportation processes and to improve overall power conversion efficiency, various combinations with nanostructures of hybrid systems have been investigated. Here, we briefly review the structures of hybrid nanocomposites studied so far, and attempt to associate the power conversion efficiency with these nanostructures. Subsequently, we are then able to summarize the factors for optimizing the performance of inorganic/organic hybrid solar cells. PMID:28788591
NASA Astrophysics Data System (ADS)
Dettmer, J.; Quijano, J. E.; Dosso, S. E.; Holland, C. W.; Mandolesi, E.
2016-12-01
Geophysical seabed properties are important for the detection and classification of unexploded ordnance. However, current surveying methods such as vertical seismic profiling, coring, or inversion are of limited use when surveying large areas with high spatial sampling density. We consider surveys based on a source and receiver array towed by an autonomous vehicle which produce large volumes of seabed reflectivity data that contain unprecedented and detailed seabed information. The data are analyzed with a particle filter, which requires efficient reflection-coefficient computation, efficient inversion algorithms and efficient use of computer resources. The filter quantifies information content of multiple sequential data sets by considering results from previous data along the survey track to inform the importance sampling at the current point. Challenges arise from environmental changes along the track where the number of sediment layers and their properties change. This is addressed by a trans-dimensional model in the filter which allows layering complexity to change along a track. Efficiency is improved by likelihood tempering of various particle subsets and including exchange moves (parallel tempering). The filter is implemented on a hybrid computer that combines central processing units (CPUs) and graphics processing units (GPUs) to exploit three levels of parallelism: (1) fine-grained parallel computation of spherical reflection coefficients with a GPU implementation of Levin integration; (2) updating particles by concurrent CPU processes which exchange information using automatic load balancing (coarse grained parallelism); (3) overlapping CPU-GPU communication (a major bottleneck) with GPU computation by staggering CPU access to the multiple GPUs. The algorithm is applied to spherical reflection coefficients for data sets along a 14-km track on the Malta Plateau, Mediterranean Sea. We demonstrate substantial efficiency gains over previous methods. [This research was supported in part by the U.S. Dept of Defense, thought the Strategic Environmental Research and Development Program (SERDP).
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This is a Spanish-language brochure about hybrid and plug-in electric vehicles, which use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.
NASA Astrophysics Data System (ADS)
Evtikhiev, N. N.; Esepkina, N. A.; Dolgii, V. A.; Lavrov, A. P.; Khotyanov, B. M.; Chernokozhin, V. V.; Shestak, S. A.
1995-10-01
An optoelectronic processor in the form of a hybrid microcircuit is described. An analysis is made of the feasibility of developing a new class of optoelectronic processors which are hybrid microcircuits and can operate both as self-contained specialised computers and also as functional components of computing systems.
Methodologies for extracting kinetic constants for multiphase reacting flow simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, S.L.; Lottes, S.A.; Golchert, B.
1997-03-01
Flows in industrial reactors often involve complex reactions of many species. A computational fluid dynamics (CFD) computer code, ICRKFLO, was developed to simulate multiphase, multi-species reacting flows. The ICRKFLO uses a hybrid technique to calculate species concentration and reaction for a large number of species in a reacting flow. This technique includes a hydrodynamic and reacting flow simulation with a small but sufficient number of lumped reactions to compute flow field properties followed by a calculation of local reaction kinetics and transport of many subspecies (order of 10 to 100). Kinetic rate constants of the numerous subspecies chemical reactions aremore » difficult to determine. A methodology has been developed to extract kinetic constants from experimental data efficiently. A flow simulation of a fluid catalytic cracking (FCC) riser was successfully used to demonstrate this methodology.« less
Emulation of complex open quantum systems using superconducting qubits
NASA Astrophysics Data System (ADS)
Mostame, Sarah; Huh, Joonsuk; Kreisbeck, Christoph; Kerman, Andrew J.; Fujita, Takatoshi; Eisfeld, Alexander; Aspuru-Guzik, Alán
2017-02-01
With quantum computers being out of reach for now, quantum simulators are alternative devices for efficient and accurate simulation of problems that are challenging to tackle using conventional computers. Quantum simulators are classified into analog and digital, with the possibility of constructing "hybrid" simulators by combining both techniques. Here we focus on analog quantum simulators of open quantum systems and address the limit that they can beat classical computers. In particular, as an example, we discuss simulation of the chlorosome light-harvesting antenna from green sulfur bacteria with over 250 phonon modes coupled to each electronic state. Furthermore, we propose physical setups that can be used to reproduce the quantum dynamics of a standard and multiple-mode Holstein model. The proposed scheme is based on currently available technology of superconducting circuits consist of flux qubits and quantum oscillators.
Hybrid morphology dependence of CdTe:CdSe bulk-heterojunction solar cells
2014-01-01
A nanocrystal thin-film solar cell operating on an exciton splitting pattern requires a highly efficient separation of electron-hole pairs and transportation of separated charges. A hybrid bulk-heterojunction (HBH) nanostructure providing a large contact area and interpenetrated charge channels is favorable to an inorganic nanocrystal solar cell with high performance. For this freshly appeared structure, here in this work, we have firstly explored the influence of hybrid morphology on the photovoltaic performance of CdTe:CdSe bulk-heterojunction solar cells with variation in CdSe nanoparticle morphology. Quantum dot (QD) or nanotetrapod (NT)-shaped CdSe nanocrystals have been employed together with CdTe NTs to construct different hybrid structures. The solar cells with the two different hybrid active layers show obvious difference in photovoltaic performance. The hybrid structure with densely packed and continuously interpenetrated two phases generates superior morphological and electrical properties for more efficient inorganic bulk-heterojunction solar cells, which could be readily realized in the NTs:QDs hybrid. This proved strategy is applicable and promising in designing other highly efficient inorganic hybrid solar cells. PMID:25386107
Hybrid morphology dependence of CdTe:CdSe bulk-heterojunction solar cells.
Tan, Furui; Qu, Shengchun; Zhang, Weifeng; Wang, Zhanguo
2014-01-01
A nanocrystal thin-film solar cell operating on an exciton splitting pattern requires a highly efficient separation of electron-hole pairs and transportation of separated charges. A hybrid bulk-heterojunction (HBH) nanostructure providing a large contact area and interpenetrated charge channels is favorable to an inorganic nanocrystal solar cell with high performance. For this freshly appeared structure, here in this work, we have firstly explored the influence of hybrid morphology on the photovoltaic performance of CdTe:CdSe bulk-heterojunction solar cells with variation in CdSe nanoparticle morphology. Quantum dot (QD) or nanotetrapod (NT)-shaped CdSe nanocrystals have been employed together with CdTe NTs to construct different hybrid structures. The solar cells with the two different hybrid active layers show obvious difference in photovoltaic performance. The hybrid structure with densely packed and continuously interpenetrated two phases generates superior morphological and electrical properties for more efficient inorganic bulk-heterojunction solar cells, which could be readily realized in the NTs:QDs hybrid. This proved strategy is applicable and promising in designing other highly efficient inorganic hybrid solar cells.
Automating NEURON Simulation Deployment in Cloud Resources.
Stockton, David B; Santamaria, Fidel
2017-01-01
Simulations in neuroscience are performed on local servers or High Performance Computing (HPC) facilities. Recently, cloud computing has emerged as a potential computational platform for neuroscience simulation. In this paper we compare and contrast HPC and cloud resources for scientific computation, then report how we deployed NEURON, a widely used simulator of neuronal activity, in three clouds: Chameleon Cloud, a hybrid private academic cloud for cloud technology research based on the OpenStack software; Rackspace, a public commercial cloud, also based on OpenStack; and Amazon Elastic Cloud Computing, based on Amazon's proprietary software. We describe the manual procedures and how to automate cloud operations. We describe extending our simulation automation software called NeuroManager (Stockton and Santamaria, Frontiers in Neuroinformatics, 2015), so that the user is capable of recruiting private cloud, public cloud, HPC, and local servers simultaneously with a simple common interface. We conclude by performing several studies in which we examine speedup, efficiency, total session time, and cost for sets of simulations of a published NEURON model.
Automating NEURON Simulation Deployment in Cloud Resources
Santamaria, Fidel
2016-01-01
Simulations in neuroscience are performed on local servers or High Performance Computing (HPC) facilities. Recently, cloud computing has emerged as a potential computational platform for neuroscience simulation. In this paper we compare and contrast HPC and cloud resources for scientific computation, then report how we deployed NEURON, a widely used simulator of neuronal activity, in three clouds: Chameleon Cloud, a hybrid private academic cloud for cloud technology research based on the Open-Stack software; Rackspace, a public commercial cloud, also based on OpenStack; and Amazon Elastic Cloud Computing, based on Amazon’s proprietary software. We describe the manual procedures and how to automate cloud operations. We describe extending our simulation automation software called NeuroManager (Stockton and Santamaria, Frontiers in Neuroinformatics, 2015), so that the user is capable of recruiting private cloud, public cloud, HPC, and local servers simultaneously with a simple common interface. We conclude by performing several studies in which we examine speedup, efficiency, total session time, and cost for sets of simulations of a published NEURON model. PMID:27655341
Computer considerations for real time simulation of a generalized rotor model
NASA Technical Reports Server (NTRS)
Howe, R. M.; Fogarty, L. E.
1977-01-01
Scaled equations were developed to meet requirements for real time computer simulation of the rotor system research aircraft. These equations form the basis for consideration of both digital and hybrid mechanization for real time simulation. For all digital simulation estimates of the required speed in terms of equivalent operations per second are developed based on the complexity of the equations and the required intergration frame rates. For both conventional hybrid simulation and hybrid simulation using time-shared analog elements the amount of required equipment is estimated along with a consideration of the dynamic errors. Conventional hybrid mechanization using analog simulation of those rotor equations which involve rotor-spin frequencies (this consititutes the bulk of the equations) requires too much analog equipment. Hybrid simulation using time-sharing techniques for the analog elements appears possible with a reasonable amount of analog equipment. All-digital simulation with affordable general-purpose computers is not possible because of speed limitations, but specially configured digital computers do have the required speed and consitute the recommended approach.
NASA Astrophysics Data System (ADS)
Ge, Liang; Sotiropoulos, Fotis
2007-08-01
A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g. the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [A. Gilmanov, F. Sotiropoulos, A hybrid cartesian/immersed boundary method for simulating flows with 3d, geometrically complex, moving bodies, Journal of Computational Physics 207 (2005) 457-492.]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow through a mechanical, bileaflet heart valve mounted in a model straight aorta with an anatomical-like triple sinus.
Liu, Yong-Kuo; Chao, Nan; Xia, Hong; Peng, Min-Jun; Ayodeji, Abiodun
2018-05-17
This paper presents an improved and efficient virtual reality-based adaptive dose assessment method (VRBAM) applicable to the cutting and dismantling tasks in nuclear facility decommissioning. The method combines the modeling strength of virtual reality with the flexibility of adaptive technology. The initial geometry is designed with the three-dimensional computer-aided design tools, and a hybrid model composed of cuboids and a point-cloud is generated automatically according to the virtual model of the object. In order to improve the efficiency of dose calculation while retaining accuracy, the hybrid model is converted to a weighted point-cloud model, and the point kernels are generated by adaptively simplifying the weighted point-cloud model according to the detector position, an approach that is suitable for arbitrary geometries. The dose rates are calculated with the Point-Kernel method. To account for radiation scattering effects, buildup factors are calculated with the Geometric-Progression formula in the fitting function. The geometric modeling capability of VRBAM was verified by simulating basic geometries, which included a convex surface, a concave surface, a flat surface and their combination. The simulation results show that the VRBAM is more flexible and superior to other approaches in modeling complex geometries. In this paper, the computation time and dose rate results obtained from the proposed method were also compared with those obtained using the MCNP code and an earlier virtual reality-based method (VRBM) developed by the same authors. © 2018 IOP Publishing Ltd.
Development of hybrid 3-D hydrological modeling for the NCAR Community Earth System Model (CESM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Xubin; Troch, Peter; Pelletier, Jon
2015-11-15
This is the Final Report of our four-year (3-year plus one-year no cost extension) collaborative project between the University of Arizona (UA) and the National Center for Atmospheric Research (NCAR). The overall objective of our project is to develop and evaluate the first hybrid 3-D hydrological model with a horizontal grid spacing of 1 km for the NCAR Community Earth System Model (CESM). We have made substantial progress in model development and evaluation, computational efficiencies and software engineering, and data development and evaluation, as discussed in Sections 2-4. Section 5 presents our success in data dissemination, while Section 6 discussesmore » the scientific impacts of our work. Section 7 discusses education and mentoring success of our project, while Section 8 lists our relevant DOE services. All peer-reviewed papers that acknowledged this project are listed in Section 9. Highlights of our achievements include: • We have finished 20 papers (most published already) on model development and evaluation, computational efficiencies and software engineering, and data development and evaluation • The global datasets developed under this project have been permanently archived and publicly available • Some of our research results have already been implemented in WRF and CLM • Patrick Broxton and Michael Brunke have received their Ph.D. • PI Zeng has served on DOE proposal review panels and DOE lab scientific focus area (SFA) review panels« less
NASA Astrophysics Data System (ADS)
Wei, Xiaohui; Li, Weishan; Tian, Hailong; Li, Hongliang; Xu, Haixiao; Xu, Tianfu
2015-07-01
The numerical simulation of multiphase flow and reactive transport in the porous media on complex subsurface problem is a computationally intensive application. To meet the increasingly computational requirements, this paper presents a parallel computing method and architecture. Derived from TOUGHREACT that is a well-established code for simulating subsurface multi-phase flow and reactive transport problems, we developed a high performance computing THC-MP based on massive parallel computer, which extends greatly on the computational capability for the original code. The domain decomposition method was applied to the coupled numerical computing procedure in the THC-MP. We designed the distributed data structure, implemented the data initialization and exchange between the computing nodes and the core solving module using the hybrid parallel iterative and direct solver. Numerical accuracy of the THC-MP was verified through a CO2 injection-induced reactive transport problem by comparing the results obtained from the parallel computing and sequential computing (original code). Execution efficiency and code scalability were examined through field scale carbon sequestration applications on the multicore cluster. The results demonstrate successfully the enhanced performance using the THC-MP on parallel computing facilities.
NASA Astrophysics Data System (ADS)
Hsiao, Ming-Chih; Su, Ling-Huey
2018-02-01
This research addresses the problem of scheduling hybrid machine types, in which one type is a two-machine flowshop and another type is a single machine. A job is either processed on the two-machine flowshop or on the single machine. The objective is to determine a production schedule for all jobs so as to minimize the makespan. The problem is NP-hard since the two parallel machines problem was proved to be NP-hard. Simulated annealing algorithms are developed to solve the problem optimally. A mixed integer programming (MIP) is developed and used to evaluate the performance for two SAs. Computational experiments demonstrate the efficiency of the simulated annealing algorithms, the quality of the simulated annealing algorithms will also be reported.
Two-component hybrid time-dependent density functional theory within the Tamm-Dancoff approximation.
Kühn, Michael; Weigend, Florian
2015-01-21
We report the implementation of a two-component variant of time-dependent density functional theory (TDDFT) for hybrid functionals that accounts for spin-orbit effects within the Tamm-Dancoff approximation (TDA) for closed-shell systems. The influence of the admixture of Hartree-Fock exchange on excitation energies is investigated for several atoms and diatomic molecules by comparison to numbers for pure density functionals obtained previously [M. Kühn and F. Weigend, J. Chem. Theory Comput. 9, 5341 (2013)]. It is further related to changes upon switching to the local density approximation or using the full TDDFT formalism instead of TDA. Efficiency is demonstrated for a comparably large system, Ir(ppy)3 (61 atoms, 1501 basis functions, lowest 10 excited states), which is a prototype molecule for organic light-emitting diodes, due to its "spin-forbidden" triplet-singlet transition.
GTKDynamo: a PyMOL plug-in for QC/MM hybrid potential simulations
Bachega, José Fernando R.; Timmers, Luís Fernando S.M.; Assirati, Lucas; Bachega, Leonardo R.; Field, Martin J.; Wymore, Troy
2014-01-01
Hybrid quantum chemical (QC)/molecular mechanical (MM) potentials are very powerful tools for molecular simulation. They are especially useful for studying processes in condensed phase systems, such as chemical reactions, that involve a relatively localized change in electronic structure and where the surrounding environment contributes to these changes but can be represented with more computationally efficient functional forms. Despite their utility, however, these potentials are not always straightforward to apply since the extent of significant electronic structure changes occurring in the condensed phase process may not be intuitively obvious. To facilitate their use we have developed an open-source graphical plug-in, GTKDynamo, that links the PyMOL visualization program and the pDynamo QC/MM simulation library. This article describes the implementation of GTKDynamo and its capabilities and illustrates its application to QC/MM simulations. PMID:24137667
No Photon Left Behind: Advanced Optics at ARPA-E for Buildings and Solar Energy
NASA Astrophysics Data System (ADS)
Branz, Howard M.
2015-04-01
Key technology challenges in building efficiency and solar energy utilization require transformational optics, plasmonics and photonics technologies. We describe advanced optical technologies funded by the Advanced Research Projects Agency - Energy. Buildings technologies include a passive daytime photonic cooler, infra-red computer vision mapping for energy audit, and dual-band electrochromic windows based on plasmonic absorption. Solar technologies include novel hybrid energy converters that combine high-efficiency photovoltaics with concentrating solar thermal collection and storage. Because the marginal cost of thermal energy storage is low, these systems enable generation of inexpensive and dispatchable solar energy that can be deployed when the sun doesn't shine. The solar technologies under development include nanoparticle plasmonic spectrum splitting, Rugate filter interference structures and photovoltaic cells that can operate efficiently at over 400° C.
Park, Kwang-Tae; Kim, Han-Jung; Park, Min-Joon; Jeong, Jun-Ho; Lee, Jihye; Choi, Dae-Geun; Lee, Jung-Ho; Choi, Jun-Hyuk
2015-01-01
In recent years, inorganic/organic hybrid solar cell concept has received growing attention for alternative energy solution because of the potential for facile and low-cost fabrication and high efficiency. Here, we report highly efficient hybrid solar cells based on silicon nanowires (SiNWs) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) using transfer-imprinted metal mesh front electrodes. Such a structure increases the optical absorption and shortens the carrier transport distance, thus, it greatly increases the charge carrier collection efficiency. Compared with hybrid cells formed using indium tin oxide (ITO) electrodes, we find an increase in power conversion efficiency from 5.95% to 13.2%, which is attributed to improvements in both the electrical and optical properties of the Au mesh electrode. Our fabrication strategy for metal mesh electrode is suitable for the large-scale fabrication of flexible transparent electrodes, paving the way towards low-cost, high-efficiency, flexible solar cells. PMID:26174964
Time-variant random interval natural frequency analysis of structures
NASA Astrophysics Data System (ADS)
Wu, Binhua; Wu, Di; Gao, Wei; Song, Chongmin
2018-02-01
This paper presents a new robust method namely, unified interval Chebyshev-based random perturbation method, to tackle hybrid random interval structural natural frequency problem. In the proposed approach, random perturbation method is implemented to furnish the statistical features (i.e., mean and standard deviation) and Chebyshev surrogate model strategy is incorporated to formulate the statistical information of natural frequency with regards to the interval inputs. The comprehensive analysis framework combines the superiority of both methods in a way that computational cost is dramatically reduced. This presented method is thus capable of investigating the day-to-day based time-variant natural frequency of structures accurately and efficiently under concrete intrinsic creep effect with probabilistic and interval uncertain variables. The extreme bounds of the mean and standard deviation of natural frequency are captured through the embedded optimization strategy within the analysis procedure. Three particularly motivated numerical examples with progressive relationship in perspective of both structure type and uncertainty variables are demonstrated to justify the computational applicability, accuracy and efficiency of the proposed method.
Efficient construction of exchange and correlation potentials by inverting the Kohn-Sham equations.
Kananenka, Alexei A; Kohut, Sviataslau V; Gaiduk, Alex P; Ryabinkin, Ilya G; Staroverov, Viktor N
2013-08-21
Given a set of canonical Kohn-Sham orbitals, orbital energies, and an external potential for a many-electron system, one can invert the Kohn-Sham equations in a single step to obtain the corresponding exchange-correlation potential, vXC(r). For orbitals and orbital energies that are solutions of the Kohn-Sham equations with a multiplicative vXC(r) this procedure recovers vXC(r) (in the basis set limit), but for eigenfunctions of a non-multiplicative one-electron operator it produces an orbital-averaged potential. In particular, substitution of Hartree-Fock orbitals and eigenvalues into the Kohn-Sham inversion formula is a fast way to compute the Slater potential. In the same way, we efficiently construct orbital-averaged exchange and correlation potentials for hybrid and kinetic-energy-density-dependent functionals. We also show how the Kohn-Sham inversion approach can be used to compute functional derivatives of explicit density functionals and to approximate functional derivatives of orbital-dependent functionals.
Extreme-Scale Stochastic Particle Tracing for Uncertain Unsteady Flow Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Hanqi; He, Wenbin; Seo, Sangmin
2016-11-13
We present an efficient and scalable solution to estimate uncertain transport behaviors using stochastic flow maps (SFM,) for visualizing and analyzing uncertain unsteady flows. SFM computation is extremely expensive because it requires many Monte Carlo runs to trace densely seeded particles in the flow. We alleviate the computational cost by decoupling the time dependencies in SFMs so that we can process adjacent time steps independently and then compose them together for longer time periods. Adaptive refinement is also used to reduce the number of runs for each location. We then parallelize over tasks—packets of particles in our design—to achieve highmore » efficiency in MPI/thread hybrid programming. Such a task model also enables CPU/GPU coprocessing. We show the scalability on two supercomputers, Mira (up to 1M Blue Gene/Q cores) and Titan (up to 128K Opteron cores and 8K GPUs), that can trace billions of particles in seconds.« less
Cooley, R.L.; Hill, M.C.
1992-01-01
Three methods of solving nonlinear least-squares problems were compared for robustness and efficiency using a series of hypothetical and field problems. A modified Gauss-Newton/full Newton hybrid method (MGN/FN) and an analogous method for which part of the Hessian matrix was replaced by a quasi-Newton approximation (MGN/QN) solved some of the problems with appreciably fewer iterations than required using only a modified Gauss-Newton (MGN) method. In these problems, model nonlinearity and a large variance for the observed data apparently caused MGN to converge more slowly than MGN/FN or MGN/QN after the sum of squared errors had almost stabilized. Other problems were solved as efficiently with MGN as with MGN/FN or MGN/QN. Because MGN/FN can require significantly more computer time per iteration and more computer storage for transient problems, it is less attractive for a general purpose algorithm than MGN/QN.
Report on Hybrid Rocket Cold Flow Experiments
NASA Technical Reports Server (NTRS)
Haapanen, Siina
2004-01-01
The discovery of paraffin based fuels has lead to renewed interest in hybrid rocket research. Experiments have shown that they burn 3-5 times faster than conventional hybrid fuels. High thrust level that would have required a multi-port design in the past can now be achieved with a single-port motor. While tests performed in Stanford and NASA Ames have demonstrated the paraffin hybrids to be a promising technology, one of the major challenges has been the relatively low efficiency. The c* efficiency has ranged between 80% and 90% in experiments conducted at the Ames Hybrid Combustion Facility (HCF). The test motor in these experiments had a 45 inch long fuel grain with the initial port diameter ranging between 3 and 5_inches. The c* efficiency is defined as the ratio of measured and theoretical characteristic velocities and is related to how completely the fuel and oxidizer are converted to combustion products. A low efficiency means that the reactants burn incompletely, and the reaction does not release the maximum possible amount of energy.
Adaptive hybrid simulations for multiscale stochastic reaction networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hepp, Benjamin; Gupta, Ankit; Khammash, Mustafa
2015-01-21
The probability distribution describing the state of a Stochastic Reaction Network (SRN) evolves according to the Chemical Master Equation (CME). It is common to estimate its solution using Monte Carlo methods such as the Stochastic Simulation Algorithm (SSA). In many cases, these simulations can take an impractical amount of computational time. Therefore, many methods have been developed that approximate sample paths of the underlying stochastic process and estimate the solution of the CME. A prominent class of these methods include hybrid methods that partition the set of species and the set of reactions into discrete and continuous subsets. Such amore » partition separates the dynamics into a discrete and a continuous part. Simulating such a stochastic process can be computationally much easier than simulating the exact discrete stochastic process with SSA. Moreover, the quasi-stationary assumption to approximate the dynamics of fast subnetworks can be applied for certain classes of networks. However, as the dynamics of a SRN evolves, these partitions may have to be adapted during the simulation. We develop a hybrid method that approximates the solution of a CME by automatically partitioning the reactions and species sets into discrete and continuous components and applying the quasi-stationary assumption on identifiable fast subnetworks. Our method does not require any user intervention and it adapts to exploit the changing timescale separation between reactions and/or changing magnitudes of copy-numbers of constituent species. We demonstrate the efficiency of the proposed method by considering examples from systems biology and showing that very good approximations to the exact probability distributions can be achieved in significantly less computational time. This is especially the case for systems with oscillatory dynamics, where the system dynamics change considerably throughout the time-period of interest.« less
Adaptive hybrid simulations for multiscale stochastic reaction networks.
Hepp, Benjamin; Gupta, Ankit; Khammash, Mustafa
2015-01-21
The probability distribution describing the state of a Stochastic Reaction Network (SRN) evolves according to the Chemical Master Equation (CME). It is common to estimate its solution using Monte Carlo methods such as the Stochastic Simulation Algorithm (SSA). In many cases, these simulations can take an impractical amount of computational time. Therefore, many methods have been developed that approximate sample paths of the underlying stochastic process and estimate the solution of the CME. A prominent class of these methods include hybrid methods that partition the set of species and the set of reactions into discrete and continuous subsets. Such a partition separates the dynamics into a discrete and a continuous part. Simulating such a stochastic process can be computationally much easier than simulating the exact discrete stochastic process with SSA. Moreover, the quasi-stationary assumption to approximate the dynamics of fast subnetworks can be applied for certain classes of networks. However, as the dynamics of a SRN evolves, these partitions may have to be adapted during the simulation. We develop a hybrid method that approximates the solution of a CME by automatically partitioning the reactions and species sets into discrete and continuous components and applying the quasi-stationary assumption on identifiable fast subnetworks. Our method does not require any user intervention and it adapts to exploit the changing timescale separation between reactions and/or changing magnitudes of copy-numbers of constituent species. We demonstrate the efficiency of the proposed method by considering examples from systems biology and showing that very good approximations to the exact probability distributions can be achieved in significantly less computational time. This is especially the case for systems with oscillatory dynamics, where the system dynamics change considerably throughout the time-period of interest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Y M; Bush, K; Han, B
Purpose: Accurate and fast dose calculation is a prerequisite of precision radiation therapy in modern photon and particle therapy. While Monte Carlo (MC) dose calculation provides high dosimetric accuracy, the drastically increased computational time hinders its routine use. Deterministic dose calculation methods are fast, but problematic in the presence of tissue density inhomogeneity. We leverage the useful features of deterministic methods and MC to develop a hybrid dose calculation platform with autonomous utilization of MC and deterministic calculation depending on the local geometry, for optimal accuracy and speed. Methods: Our platform utilizes a Geant4 based “localized Monte Carlo” (LMC) methodmore » that isolates MC dose calculations only to volumes that have potential for dosimetric inaccuracy. In our approach, additional structures are created encompassing heterogeneous volumes. Deterministic methods calculate dose and energy fluence up to the volume surfaces, where the energy fluence distribution is sampled into discrete histories and transported using MC. Histories exiting the volume are converted back into energy fluence, and transported deterministically. By matching boundary conditions at both interfaces, deterministic dose calculation account for dose perturbations “downstream” of localized heterogeneities. Hybrid dose calculation was performed for water and anthropomorphic phantoms. Results: We achieved <1% agreement between deterministic and MC calculations in the water benchmark for photon and proton beams, and dose differences of 2%–15% could be observed in heterogeneous phantoms. The saving in computational time (a factor ∼4–7 compared to a full Monte Carlo dose calculation) was found to be approximately proportional to the volume of the heterogeneous region. Conclusion: Our hybrid dose calculation approach takes advantage of the computational efficiency of deterministic method and accuracy of MC, providing a practical tool for high performance dose calculation in modern RT. The approach is generalizable to all modalities where heterogeneities play a large role, notably particle therapy.« less
Wang, Tao; Ansai, Toshihiro; Lee, Seung-Woo
2017-01-15
ZSM-5 zeolite-loaded poly(dimethylsiloxane) (PDMS) hybrid thin films were demonstrated for efficient thin-film microextraction (TFME) coupled with gas chromatography-mass spectrometry for analyzing organic volatiles in water. The extraction efficiency for a series of aliphatic alcohols and two aromatic compounds was significantly improved owing to the presence of ZSM-5 zeolites. The extraction efficiency of the hybrid films was increased in proportion to the content of ZSM-5 in the PDMS film, with 20wt% of ZSM-5 showing the best results. The 20wt% ZSM-5/PDMS hybrid film exhibited higher volatile organic content extraction compared with the single-component PDMS film or PDMS hybrid films containing other types of zeolite (e.g., SAPO-34). Limits of detection and limits of quantitation for individual analytes were in the range of 0.0034-0.049ppb and of 0.010-0.15 ppb, respectively. The effects of experimental parameters such as extraction time and temperature were optimized, and the molecular dispersion of the zeolites in/on the hybrid film matrix was confirmed with scanning electron microscopy and atomic force microscopy. Furthermore, the optimized hybrid film was preliminarily tested for the analysis of organic volatiles contained in commercially available soft drinks. Copyright © 2016 Elsevier B.V. All rights reserved.
Fuzzy control based engine sizing optimization for a fuel cell/battery hybrid mini-bus
NASA Astrophysics Data System (ADS)
Kim, Minjin; Sohn, Young-Jun; Lee, Won-Yong; Kim, Chang-Soo
The fuel cell/battery hybrid vehicle has been focused for the alternative engine of the existing internal-combustion engine due to the following advantages of the fuel cell and the battery. Firstly, the fuel cell is highly efficient and eco-friendly. Secondly, the battery has the fast response for the changeable power demand. However, the competitive efficiency of the hybrid fuel cell vehicle is necessary to successfully alternate the conventional vehicles with the fuel cell hybrid vehicle. The most relevant factor which affects the overall efficiency of the hybrid fuel cell vehicle is the relative engine sizing between the fuel cell and the battery. Therefore the design method to optimize the engine sizing of the fuel cell hybrid vehicle has been proposed. The target system is the fuel cell/battery hybrid mini-bus and its power distribution is controlled based on the fuzzy logic. The optimal engine sizes are determined based on the simulator developed in this paper. The simulator includes the several models for the fuel cell, the battery, and the major balance of plants. After the engine sizing, the system efficiency and the stability of the power distribution are verified based on the well-known driving schedule. Consequently, the optimally designed mini-bus shows good performance.
Tertiary structure-based analysis of microRNA–target interactions
Gan, Hin Hark; Gunsalus, Kristin C.
2013-01-01
Current computational analysis of microRNA interactions is based largely on primary and secondary structure analysis. Computationally efficient tertiary structure-based methods are needed to enable more realistic modeling of the molecular interactions underlying miRNA-mediated translational repression. We incorporate algorithms for predicting duplex RNA structures, ionic strength effects, duplex entropy and free energy, and docking of duplex–Argonaute protein complexes into a pipeline to model and predict miRNA–target duplex binding energies. To ensure modeling accuracy and computational efficiency, we use an all-atom description of RNA and a continuum description of ionic interactions using the Poisson–Boltzmann equation. Our method predicts the conformations of two constructs of Caenorhabditis elegans let-7 miRNA–target duplexes to an accuracy of ∼3.8 Å root mean square distance of their NMR structures. We also show that the computed duplex formation enthalpies, entropies, and free energies for eight miRNA–target duplexes agree with titration calorimetry data. Analysis of duplex–Argonaute docking shows that structural distortions arising from single-base-pair mismatches in the seed region influence the activity of the complex by destabilizing both duplex hybridization and its association with Argonaute. Collectively, these results demonstrate that tertiary structure-based modeling of miRNA interactions can reveal structural mechanisms not accessible with current secondary structure-based methods. PMID:23417009
NASA Astrophysics Data System (ADS)
Mo, Shaoxing; Lu, Dan; Shi, Xiaoqing; Zhang, Guannan; Ye, Ming; Wu, Jianfeng; Wu, Jichun
2017-12-01
Global sensitivity analysis (GSA) and uncertainty quantification (UQ) for groundwater modeling are challenging because of the model complexity and significant computational requirements. To reduce the massive computational cost, a cheap-to-evaluate surrogate model is usually constructed to approximate and replace the expensive groundwater models in the GSA and UQ. Constructing an accurate surrogate requires actual model simulations on a number of parameter samples. Thus, a robust experimental design strategy is desired to locate informative samples so as to reduce the computational cost in surrogate construction and consequently to improve the efficiency in the GSA and UQ. In this study, we develop a Taylor expansion-based adaptive design (TEAD) that aims to build an accurate global surrogate model with a small training sample size. TEAD defines a novel hybrid score function to search informative samples, and a robust stopping criterion to terminate the sample search that guarantees the resulted approximation errors satisfy the desired accuracy. The good performance of TEAD in building global surrogate models is demonstrated in seven analytical functions with different dimensionality and complexity in comparison to two widely used experimental design methods. The application of the TEAD-based surrogate method in two groundwater models shows that the TEAD design can effectively improve the computational efficiency of GSA and UQ for groundwater modeling.
TSOS and TSOS-FK hybrid methods for modelling the propagation of seismic waves
NASA Astrophysics Data System (ADS)
Ma, Jian; Yang, Dinghui; Tong, Ping; Ma, Xiao
2018-05-01
We develop a new time-space optimized symplectic (TSOS) method for numerically solving elastic wave equations in heterogeneous isotropic media. We use the phase-preserving symplectic partitioned Runge-Kutta method to evaluate the time derivatives and optimized explicit finite-difference (FD) schemes to discretize the space derivatives. We introduce the averaged medium scheme into the TSOS method to further increase its capability of dealing with heterogeneous media and match the boundary-modified scheme for implementing free-surface boundary conditions and the auxiliary differential equation complex frequency-shifted perfectly matched layer (ADE CFS-PML) non-reflecting boundaries with the TSOS method. A comparison of the TSOS method with analytical solutions and standard FD schemes indicates that the waveform generated by the TSOS method is more similar to the analytic solution and has a smaller error than other FD methods, which illustrates the efficiency and accuracy of the TSOS method. Subsequently, we focus on the calculation of synthetic seismograms for teleseismic P- or S-waves entering and propagating in the local heterogeneous region of interest. To improve the computational efficiency, we successfully combine the TSOS method with the frequency-wavenumber (FK) method and apply the ADE CFS-PML to absorb the scattered waves caused by the regional heterogeneity. The TSOS-FK hybrid method is benchmarked against semi-analytical solutions provided by the FK method for a 1-D layered model. Several numerical experiments, including a vertical cross-section of the Chinese capital area crustal model, illustrate that the TSOS-FK hybrid method works well for modelling waves propagating in complex heterogeneous media and remains stable for long-time computation. These numerical examples also show that the TSOS-FK method can tackle the converted and scattered waves of the teleseismic plane waves caused by local heterogeneity. Thus, the TSOS and TSOS-FK methods proposed in this study present an essential tool for the joint inversion of local, regional, and teleseismic waveform data.
Zhang, Dongdong; Cai, Minghan; Zhang, Yunge; Zhang, Deqiang; Duan, Lian
2015-12-30
Single-emitting layer hybrid white organic light-emitting diodes (SEL-hybrid-WOLEDs) usually suffer from low efficiency, significant roll-off, and poor color stability, attributed to the incomplete energy transfer from the triplet states of the blue fluorophores to the phosphors. Here, we demonstrate highly efficient SEL-hybrid-WOLEDs with low roll-off and good color-stability utilizing blue thermally activated delayed fluorescence (TADF) materials as the host emitters. The triplet states of the blue TADF host emitter can be up-converted into its singlet states, and then the energy is transferred to the complementary phosphors through the long-range Förster energy transfer, enhancing the energy transfer from the host to the dopant. Simplified SEL-hybrid-WOLEDs achieve the highest forward-viewing external quantum efficiency (EQE) of 20.8% and power efficiency of 51.2 lm/W with CIE coordinates of (0.398, 0.456) at a luminance of 500 cd/m(2). The device EQE only slightly drops to 19.6% at a practical luminance of 1000 cd/m(2) with a power efficiency of 38.7 lm/W. Furthermore, the spectra of the device are rather stable with the raising voltage. The reason can be assigned to the enhanced Förster energy transfer, wide charge recombination zone, as well as the bipolar charge transporting ability of the host emitter. We believe that our work may shed light on the future development of highly efficient SEL-hybrid-WOLEDs with simultaneous low roll-off and good color stability.
Hybrid vs Adaptive Ensemble Kalman Filtering for Storm Surge Forecasting
NASA Astrophysics Data System (ADS)
Altaf, M. U.; Raboudi, N.; Gharamti, M. E.; Dawson, C.; McCabe, M. F.; Hoteit, I.
2014-12-01
Recent storm surge events due to Hurricanes in the Gulf of Mexico have motivated the efforts to accurately forecast water levels. Toward this goal, a parallel architecture has been implemented based on a high resolution storm surge model, ADCIRC. However the accuracy of the model notably depends on the quality and the recentness of the input data (mainly winds and bathymetry), model parameters (e.g. wind and bottom drag coefficients), and the resolution of the model grid. Given all these uncertainties in the system, the challenge is to build an efficient prediction system capable of providing accurate forecasts enough ahead of time for the authorities to evacuate the areas at risk. We have developed an ensemble-based data assimilation system to frequently assimilate available data into the ADCIRC model in order to improve the accuracy of the model. In this contribution we study and analyze the performances of different ensemble Kalman filter methodologies for efficient short-range storm surge forecasting, the aim being to produce the most accurate forecasts at the lowest possible computing time. Using Hurricane Ike meteorological data to force the ADCIRC model over a domain including the Gulf of Mexico coastline, we implement and compare the forecasts of the standard EnKF, the hybrid EnKF and an adaptive EnKF. The last two schemes have been introduced as efficient tools for enhancing the behavior of the EnKF when implemented with small ensembles by exploiting information from a static background covariance matrix. Covariance inflation and localization are implemented in all these filters. Our results suggest that both the hybrid and the adaptive approach provide significantly better forecasts than those resulting from the standard EnKF, even when implemented with much smaller ensembles.
Progress Toward an Efficient and General CFD Tool for Propulsion Design/Analysis
NASA Technical Reports Server (NTRS)
Cox, C. F.; Cinnella, P.; Westmoreland, S.
1996-01-01
The simulation of propulsive flows inherently involves chemical activity. Recent years have seen substantial strides made in the development of numerical schemes for reacting flowfields, in particular those involving finite-rate chemistry. However, finite-rate calculations are computationally intensive and require knowledge of the actual kinetics, which are not always known with sufficient accuracy. Alternatively, flow simulations based on the assumption of local chemical equilibrium are capable of obtaining physically reasonable results at far less computational cost. The present study summarizes the development of efficient numerical techniques for the simulation of flows in local chemical equilibrium, whereby a 'Black Box' chemical equilibrium solver is coupled to the usual gasdynamic equations. The generalization of the methods enables the modelling of any arbitrary mixture of thermally perfect gases, including air, combustion mixtures and plasmas. As demonstration of the potential of the methodologies, several solutions, involving reacting and perfect gas flows, will be presented. Included is a preliminary simulation of the SSME startup transient. Future enhancements to the proposed techniques will be discussed, including more efficient finite-rate and hybrid (partial equilibrium) schemes. The algorithms that have been developed and are being optimized provide for an efficient and general tool for the design and analysis of propulsion systems.
Natural gas applications for hybrid vehicles. Final report, October 1992-July 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bentley, J.M.
1993-08-01
Hybrid vehicle technology holds the potential for improved efficiency and emissions compared with internal combustion (IC) engines and improved range and refueling convenience over electric vehicles. This study evaluated the potential for using natural gas as a hybrid vehicle fuel. Potential regulatory and market drivers were evaluated for hybrids generally and natural gas hybrids in specific. Heat engine options and other configuration issues were investigated to determine efficiency, emissions or other benefits of light- and heavy-duty hybrids. Several hybrid vehicle configurations were evaluated to determine the specific packaging attributes of natural gas in a hybrid configuration. Generally, conventional IC enginesmore » appear adequate for most emissions-sensitive hybrid applications with no great advantage being gained from using turbines or other more advanced heat engines. The largest technology barrier to a near-term hybrid is the weight of available or near-term batteries. Smaller, light-duty hybrid vehicles will be more sensitive to this weight handicap than larger vehicles such as the urban transit bus.« less
Plans for wind energy system simulation
NASA Technical Reports Server (NTRS)
Dreier, M. E.
1978-01-01
A digital computer code and a special purpose hybrid computer, were introduced. The digital computer program, the Root Perturbation Method or RPM, is an implementation of the classic floquet procedure which circumvents numerical problems associated with the extraction of Floquet roots. The hybrid computer, the Wind Energy System Time domain simulator (WEST), yields real time loads and deformation information essential to design and system stability investigations.
NASA Astrophysics Data System (ADS)
Glushkov, E. V.; Glushkova, N. V.; Evdokimov, A. A.
2018-01-01
Numerical simulation of traveling wave excitation, propagation, and diffraction in structures with local inhomogeneities (obstacles) is computationally expensive due to the need for mesh-based approximation of extended domains with the rigorous account for the radiation conditions at infinity. Therefore, hybrid numerical-analytic approaches are being developed based on the conjugation of a numerical solution in a local vicinity of the obstacle and/or source with an explicit analytic representation in the remaining semi-infinite external domain. However, in standard finite-element software, such a coupling with the external field, moreover, in the case of multimode expansion, is generally not provided. This work proposes a hybrid computational scheme that allows realization of such a conjugation using a standard software. The latter is used to construct a set of numerical solutions used as the basis for the sought solution in the local internal domain. The unknown expansion coefficients on this basis and on normal modes in the semi-infinite external domain are then determined from the conditions of displacement and stress continuity at the boundary between the two domains. We describe the implementation of this approach in the scalar and vector cases. To evaluate the reliability of the results and the efficiency of the algorithm, we compare it with a semianalytic solution to the problem of traveling wave diffraction by a horizontal obstacle, as well as with a finite-element solution obtained for a limited domain artificially restricted using absorbing boundaries. As an example, we consider the incidence of a fundamental antisymmetric Lamb wave onto surface and partially submerged elastic obstacles. It is noted that the proposed hybrid scheme can also be used to determine the eigenfrequencies and eigenforms of resonance scattering, as well as the characteristics of traveling waves in embedded waveguides.
Jacquemin, Denis; Moore, Barry; Planchat, Aurélien; Adamo, Carlo; Autschbach, Jochen
2014-04-08
Using a set of 40 conjugated molecules, we assess the performance of an "optimally tuned" range-separated hybrid functional in reproducing the experimental 0-0 energies. The selected protocol accounts for the impact of solvation using a corrected linear-response continuum approach and vibrational corrections through calculations of the zero-point energies of both ground and excited-states and provides basis set converged data thanks to the systematic use of diffuse-containing atomic basis sets at all computational steps. It turns out that an optimally tuned long-range corrected hybrid form of the Perdew-Burke-Ernzerhof functional, LC-PBE*, delivers both the smallest mean absolute error (0.20 eV) and standard deviation (0.15 eV) of all tested approaches, while the obtained correlation (0.93) is large but remains slightly smaller than its M06-2X counterpart (0.95). In addition, the efficiency of two other recently developed exchange-correlation functionals, namely SOGGA11-X and ωB97X-D, has been determined in order to allow more complete comparisons with previously published data.
Bichutskiy, Vadim Y.; Colman, Richard; Brachmann, Rainer K.; Lathrop, Richard H.
2006-01-01
Complex problems in life science research give rise to multidisciplinary collaboration, and hence, to the need for heterogeneous database integration. The tumor suppressor p53 is mutated in close to 50% of human cancers, and a small drug-like molecule with the ability to restore native function to cancerous p53 mutants is a long-held medical goal of cancer treatment. The Cancer Research DataBase (CRDB) was designed in support of a project to find such small molecules. As a cancer informatics project, the CRDB involved small molecule data, computational docking results, functional assays, and protein structure data. As an example of the hybrid strategy for data integration, it combined the mediation and data warehousing approaches. This paper uses the CRDB to illustrate the hybrid strategy as a viable approach to heterogeneous data integration in biomedicine, and provides a design method for those considering similar systems. More efficient data sharing implies increased productivity, and, hopefully, improved chances of success in cancer research. (Code and database schemas are freely downloadable, http://www.igb.uci.edu/research/research.html.) PMID:19458771
A Hybrid Memetic Framework for Coverage Optimization in Wireless Sensor Networks.
Chen, Chia-Pang; Mukhopadhyay, Subhas Chandra; Chuang, Cheng-Long; Lin, Tzu-Shiang; Liao, Min-Sheng; Wang, Yung-Chung; Jiang, Joe-Air
2015-10-01
One of the critical concerns in wireless sensor networks (WSNs) is the continuous maintenance of sensing coverage. Many particular applications, such as battlefield intrusion detection and object tracking, require a full-coverage at any time, which is typically resolved by adding redundant sensor nodes. With abundant energy, previous studies suggested that the network lifetime can be maximized while maintaining full coverage through organizing sensor nodes into a maximum number of disjoint sets and alternately turning them on. Since the power of sensor nodes is unevenly consumed over time, and early failure of sensor nodes leads to coverage loss, WSNs require dynamic coverage maintenance. Thus, the task of permanently sustaining full coverage is particularly formulated as a hybrid of disjoint set covers and dynamic-coverage-maintenance problems, and both have been proven to be nondeterministic polynomial-complete. In this paper, a hybrid memetic framework for coverage optimization (Hy-MFCO) is presented to cope with the hybrid problem using two major components: 1) a memetic algorithm (MA)-based scheduling strategy and 2) a heuristic recursive algorithm (HRA). First, the MA-based scheduling strategy adopts a dynamic chromosome structure to create disjoint sets, and then the HRA is utilized to compensate the loss of coverage by awaking some of the hibernated nodes in local regions when a disjoint set fails to maintain full coverage. The results obtained from real-world experiments using a WSN test-bed and computer simulations indicate that the proposed Hy-MFCO is able to maximize sensing coverage while achieving energy efficiency at the same time. Moreover, the results also show that the Hy-MFCO significantly outperforms the existing methods with respect to coverage preservation and energy efficiency.
A Structural Model Decomposition Framework for Hybrid Systems Diagnosis
NASA Technical Reports Server (NTRS)
Daigle, Matthew; Bregon, Anibal; Roychoudhury, Indranil
2015-01-01
Nowadays, a large number of practical systems in aerospace and industrial environments are best represented as hybrid systems that consist of discrete modes of behavior, each defined by a set of continuous dynamics. These hybrid dynamics make the on-line fault diagnosis task very challenging. In this work, we present a new modeling and diagnosis framework for hybrid systems. Models are composed from sets of user-defined components using a compositional modeling approach. Submodels for residual generation are then generated for a given mode, and reconfigured efficiently when the mode changes. Efficient reconfiguration is established by exploiting causality information within the hybrid system models. The submodels can then be used for fault diagnosis based on residual generation and analysis. We demonstrate the efficient causality reassignment, submodel reconfiguration, and residual generation for fault diagnosis using an electrical circuit case study.
Intercomparison of Multiscale Modeling Approaches in Simulating Subsurface Flow and Transport
NASA Astrophysics Data System (ADS)
Yang, X.; Mehmani, Y.; Barajas-Solano, D. A.; Song, H. S.; Balhoff, M.; Tartakovsky, A. M.; Scheibe, T. D.
2016-12-01
Hybrid multiscale simulations that couple models across scales are critical to advance predictions of the larger system behavior using understanding of fundamental processes. In the current study, three hybrid multiscale methods are intercompared: multiscale loose-coupling method, multiscale finite volume (MsFV) method and multiscale mortar method. The loose-coupling method enables a parallel workflow structure based on the Swift scripting environment that manages the complex process of executing coupled micro- and macro-scale models without being intrusive to the at-scale simulators. The MsFV method applies microscale and macroscale models over overlapping subdomains of the modeling domain and enforces continuity of concentration and transport fluxes between models via restriction and prolongation operators. The mortar method is a non-overlapping domain decomposition approach capable of coupling all permutations of pore- and continuum-scale models with each other. In doing so, Lagrange multipliers are used at interfaces shared between the subdomains so as to establish continuity of species/fluid mass flux. Subdomain computations can be performed either concurrently or non-concurrently depending on the algorithm used. All the above methods have been proven to be accurate and efficient in studying flow and transport in porous media. However, there has not been any field-scale applications and benchmarking among various hybrid multiscale approaches. To address this challenge, we apply all three hybrid multiscale methods to simulate water flow and transport in a conceptualized 2D modeling domain of the hyporheic zone, where strong interactions between groundwater and surface water exist across multiple scales. In all three multiscale methods, fine-scale simulations are applied to a thin layer of riverbed alluvial sediments while the macroscopic simulations are used for the larger subsurface aquifer domain. Different numerical coupling methods are then applied between scales and inter-compared. Comparisons are drawn in terms of velocity distributions, solute transport behavior, algorithm-induced numerical error and computing cost. The intercomparison work provides support for confidence in a variety of hybrid multiscale methods and motivates further development and applications.
Adaptive Meshing Techniques for Viscous Flow Calculations on Mixed Element Unstructured Meshes
NASA Technical Reports Server (NTRS)
Mavriplis, D. J.
1997-01-01
An adaptive refinement strategy based on hierarchical element subdivision is formulated and implemented for meshes containing arbitrary mixtures of tetrahendra, hexahendra, prisms and pyramids. Special attention is given to keeping memory overheads as low as possible. This procedure is coupled with an algebraic multigrid flow solver which operates on mixed-element meshes. Inviscid flows as well as viscous flows are computed an adaptively refined tetrahedral, hexahedral, and hybrid meshes. The efficiency of the method is demonstrated by generating an adapted hexahedral mesh containing 3 million vertices on a relatively inexpensive workstation.
Three state-of-the-art individual electric and hybrid vehicle test reports, volume 2
NASA Technical Reports Server (NTRS)
1978-01-01
Procedures used in determining the energy efficiency and economy of a gasoline-electric hybrid taxi, an electric passenger car, and an electric van are described. Tabular and graphic data show results of driving cycle and constant speed tests, energy distribution to various components, efficiency of the components, and, for the hybrid vehicle, the emissions.
Fault Tolerant Real-Time Networks
2007-05-30
Alberto Sangiovanni-Vincentelli, editors Hybrid Systems: Computation and Control. Fourth International Workshop (HSCC, Rome, Italy, March 2001...average dwell time by solving optimization problems. In Ashish Tiwari and Joao P. Hespanha, editors, Hybrid Systems: Computation and Control (HSCC 06
A New Formulation for Hybrid LES-RANS Computations
NASA Technical Reports Server (NTRS)
Woodruff, Stephen L.
2013-01-01
Ideally, a hybrid LES-RANS computation would employ LES only where necessary to make up for the failure of the RANS model to provide sufficient accuracy or to provide time-dependent information. Current approaches are fairly restrictive in the placement of LES and RANS regions; an LES-RANS transition in a boundary layer, for example, yields an unphysical log-layer shift. A hybrid computation is formulated here to allow greater control over the placement of LES and RANS regions and the transitions between them. The concept of model invariance is introduced, which provides a basis for interpreting hybrid results within an LES-RANS transition zone. Consequences of imposing model invariance include the addition of terms to the governing equations that compensate for unphysical gradients created as the model changes between RANS and LES. Computational results illustrate the increased accuracy of the approach and its insensitivity to the location of the transition and to the blending function employed.
Patch forest: a hybrid framework of random forest and patch-based segmentation
NASA Astrophysics Data System (ADS)
Xie, Zhongliu; Gillies, Duncan
2016-03-01
The development of an accurate, robust and fast segmentation algorithm has long been a research focus in medical computer vision. State-of-the-art practices often involve non-rigidly registering a target image with a set of training atlases for label propagation over the target space to perform segmentation, a.k.a. multi-atlas label propagation (MALP). In recent years, the patch-based segmentation (PBS) framework has gained wide attention due to its advantage of relaxing the strict voxel-to-voxel correspondence to a series of pair-wise patch comparisons for contextual pattern matching. Despite a high accuracy reported in many scenarios, computational efficiency has consistently been a major obstacle for both approaches. Inspired by recent work on random forest, in this paper we propose a patch forest approach, which by equipping the conventional PBS with a fast patch search engine, is able to boost segmentation speed significantly while retaining an equal level of accuracy. In addition, a fast forest training mechanism is also proposed, with the use of a dynamic grid framework to efficiently approximate data compactness computation and a 3D integral image technique for fast box feature retrieval.
Agile Multi-Scale Decompositions for Automatic Image Registration
NASA Technical Reports Server (NTRS)
Murphy, James M.; Leija, Omar Navarro; Le Moigne, Jacqueline
2016-01-01
In recent works, the first and third authors developed an automatic image registration algorithm based on a multiscale hybrid image decomposition with anisotropic shearlets and isotropic wavelets. This prototype showed strong performance, improving robustness over registration with wavelets alone. However, this method imposed a strict hierarchy on the order in which shearlet and wavelet features were used in the registration process, and also involved an unintegrated mixture of MATLAB and C code. In this paper, we introduce a more agile model for generating features, in which a flexible and user-guided mix of shearlet and wavelet features are computed. Compared to the previous prototype, this method introduces a flexibility to the order in which shearlet and wavelet features are used in the registration process. Moreover, the present algorithm is now fully coded in C, making it more efficient and portable than the MATLAB and C prototype. We demonstrate the versatility and computational efficiency of this approach by performing registration experiments with the fully-integrated C algorithm. In particular, meaningful timing studies can now be performed, to give a concrete analysis of the computational costs of the flexible feature extraction. Examples of synthetically warped and real multi-modal images are analyzed.
NASA Astrophysics Data System (ADS)
Chapoutier, Nicolas; Mollier, François; Nolin, Guillaume; Culioli, Matthieu; Mace, Jean-Reynald
2017-09-01
In the context of the rising of Monte Carlo transport calculations for any kind of application, AREVA recently improved its suite of engineering tools in order to produce efficient Monte Carlo workflow. Monte Carlo codes, such as MCNP or TRIPOLI, are recognized as reference codes to deal with a large range of radiation transport problems. However the inherent drawbacks of theses codes - laboring input file creation and long computation time - contrast with the maturity of the treatment of the physical phenomena. The goals of the recent AREVA developments were to reach similar efficiency as other mature engineering sciences such as finite elements analyses (e.g. structural or fluid dynamics). Among the main objectives, the creation of a graphical user interface offering CAD tools for geometry creation and other graphical features dedicated to the radiation field (source definition, tally definition) has been reached. The computations times are drastically reduced compared to few years ago thanks to the use of massive parallel runs, and above all, the implementation of hybrid variance reduction technics. From now engineering teams are capable to deliver much more prompt support to any nuclear projects dealing with reactors or fuel cycle facilities from conceptual phase to decommissioning.
NASA Astrophysics Data System (ADS)
Lee, Song Eun; Lee, Ho Won; Baek, Hyun Jung; Yun, Tae Jun; Yun, Geum Jae; Kim, Woo Young; Kim, Young Kwan
2016-10-01
Hybrid white organic light-emitting diodes (WOLEDs) were fabricated by applying triplet harvesting (TH) using a green thermally activated delayed fluorescence (TADF) emitter. The triplet exciton of the green TADF emitter can be upconverted to its singlet state. The TH involved energy transfer of triplet exciton from a blue fluorescent emitter to a green TADF and red phosphorescent emitters, where they can decay radiatively. In addition, the triplet exciton of the green TADF emitter was energy transferred to its singlet state for a reverse intersystem crossing by green emission. Enhanced hybrid WOLEDs were demonstrated using an efficient green TADF emitter combined with red phosphorescent and blue fluorescent emitters. Hybrid WOLEDs were fabricated with various hole-electron recombination zones as changing blue emitting layer thicknesses. Among these, hybrid WOLEDs showed a maximum external quantum efficiency of 11.23%, luminous efficiency of 29.20 cd/A, and a power efficiency of 26.21 lm/W. Moreover, the WOLED exhibited electroluminescence spectra with Commission International de L'Éclairage chromaticity of (0.38, 0.36) at 1000 cd/m2 and a color rendering index of 82 at a practical brightness of 20,000 cd/m2.
Draguta, Sergiu; Christians, Jeffrey A.; Morozov, Yurii V.; ...
2018-01-01
Hybrid perovskites represent a potential paradigm shift for the creation of low-cost solar cells. Current power conversion efficiencies (PCEs) exceed 22%. However, despite this, record PCEs are still far from their theoretical Shockley–Queisser limit of 31%. To increase these PCE values, there is a pressing need to understand, quantify and microscopically model charge recombination processes in full working devices. Here, we present a complete microscopic account of charge recombination processes in high efficiency (18–19% PCE) hybrid perovskite (mixed cation and methylammonium lead iodide) solar cells. We employ diffraction-limited optical measurements along with relevant kinetic modeling to establish, for the firstmore » time, local photoluminescence quantum yields, trap densities, trapping efficiencies, charge extraction efficiencies, quasi-Fermi-level splitting, and effective PCE estimates. Correlations between these spatially resolved parameters, in turn, allow us to conclude that intrinsic electron traps in the perovskite active layers limit the performance of these state-of-the-art hybrid perovskite solar cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draguta, Sergiu; Christians, Jeffrey A.; Morozov, Yurii V.
Hybrid perovskites represent a potential paradigm shift for the creation of low-cost solar cells. Current power conversion efficiencies (PCEs) exceed 22%. However, despite this, record PCEs are still far from their theoretical Shockley–Queisser limit of 31%. To increase these PCE values, there is a pressing need to understand, quantify and microscopically model charge recombination processes in full working devices. Here, we present a complete microscopic account of charge recombination processes in high efficiency (18–19% PCE) hybrid perovskite (mixed cation and methylammonium lead iodide) solar cells. We employ diffraction-limited optical measurements along with relevant kinetic modeling to establish, for the firstmore » time, local photoluminescence quantum yields, trap densities, trapping efficiencies, charge extraction efficiencies, quasi-Fermi-level splitting, and effective PCE estimates. Correlations between these spatially resolved parameters, in turn, allow us to conclude that intrinsic electron traps in the perovskite active layers limit the performance of these state-of-the-art hybrid perovskite solar cells.« less
General fuel cell hybrid synergies and hybrid system testing status
NASA Astrophysics Data System (ADS)
Winkler, Wolfgang; Nehter, Pedro; Williams, Mark C.; Tucker, David; Gemmen, Randy
FCT hybrid power systems offer the highest efficiency and the cleanest emissions of all fossil fuelled power. The engineering for the highest possible efficiency at lowest cost and weight depends on general system architecture issues and the performance of the components. Presented in this paper are system studies which provide direction for the most efficient path toward achieving the most beneficial result for this technology. Ultimately, fuel cell-turbine (FCT) hybrid systems applicable to integrated gasification combined cycle power systems will form the basis for reaching the goals for advanced coal-based power generation. The FCT hybrid power island will also be important for the FutureGen plant and will provide new options for carbon dioxide capture and sequestration as well as power and hydrogen generation. The system studies presented in this paper provide insight to current technology 'benchmarks' versus expected benefits from hybrid applications. Discussion is also presented on the effects of different balance of plant arrangements and approaches. Finally, we discuss the status of US DOE is sponsored projects that are looking to help understand the unique requirements for these systems. One of these projects, Hyper, will provide information on FCT dynamics and will help identify technical needs and opportunities for cycle advancement. The methods studied show promise for effective control of a hybrid system without the direct intervention of isolation valves or check valves in the main pressure loop of the system, which introduce substantial pressure losses, allowing for realization of the full potential efficiency of the hybrid system.
Chips of Hope: Neuro-Electronic Hybrids for Brain Repair
NASA Astrophysics Data System (ADS)
Ben-Jacob, Eshel
2010-03-01
The field of Neuro-Electronic Hybrids kicked off 30 years ago when researchers in the US first tweaked the technology of recording and stimulation of networks of live neurons grown in a Petri dish and interfaced with a computer via an array of electrodes. Since then, many researchers have searched for ways to imprint in neural networks new ``memories" without erasing old ones. I will describe our new generation of Neuro-Electronic Hybrids and how we succeeded to turn them into the first learning Neurochips - memory and information processing chips made of live neurons. To imprint multiple memories in our new chip we used chemical stimulation at specific locations that were selected by analyzing the networks activity in real time according to our new information encoding principle. Currently we develop new-generation of neuro chips using special carbon nano tubes (CNT). These electrodes enable to engineer the networks topology and efficient electrical interfacing with the neurons. This advance bears the promise to pave the way for building a new experimental platform for testing new drugs and developing new methods for neural networks repair and regeneration. Looking into the future, the development brings us a step closer towards the dream of Brain Repair by implementable Neuro-Electronic hybrid chips.
NASA Astrophysics Data System (ADS)
Eichinger, M.; Tavan, P.; Hutter, J.; Parrinello, M.
1999-06-01
We present a hybrid method for molecular dynamics simulations of solutes in complex solvents as represented, for example, by substrates within enzymes. The method combines a quantum mechanical (QM) description of the solute with a molecular mechanics (MM) approach for the solvent. The QM fragment of a simulation system is treated by ab initio density functional theory (DFT) based on plane-wave expansions. Long-range Coulomb interactions within the MM fragment and between the QM and the MM fragment are treated by a computationally efficient fast multipole method. For the description of covalent bonds between the two fragments, we introduce the scaled position link atom method (SPLAM), which removes the shortcomings of related procedures. The various aspects of the hybrid method are scrutinized through test calculations on liquid water, the water dimer, ethane and a small molecule related to the retinal Schiff base. In particular, the extent to which vibrational spectra obtained by DFT for the solute can be spoiled by the lower quality force field of the solvent is checked, including cases in which the two fragments are covalently joined. The results demonstrate that our QM/MM hybrid method is especially well suited for the vibrational analysis of molecules in condensed phase.
Development of Simulation Methods in the Gibbs Ensemble to Predict Polymer-Solvent Phase Equilibria
NASA Astrophysics Data System (ADS)
Gartner, Thomas; Epps, Thomas; Jayaraman, Arthi
Solvent vapor annealing (SVA) of polymer thin films is a promising method for post-deposition polymer film morphology control. The large number of important parameters relevant to SVA (polymer, solvent, and substrate chemistries, incoming film condition, annealing and solvent evaporation conditions) makes systematic experimental study of SVA a time-consuming endeavor, motivating the application of simulation and theory to the SVA system to provide both mechanistic insight and scans of this wide parameter space. However, to rigorously treat the phase equilibrium between polymer film and solvent vapor while still probing the dynamics of SVA, new simulation methods must be developed. In this presentation, we compare two methods to study polymer-solvent phase equilibrium-Gibbs Ensemble Molecular Dynamics (GEMD) and Hybrid Monte Carlo/Molecular Dynamics (Hybrid MC/MD). Liquid-vapor equilibrium results are presented for the Lennard Jones fluid and for coarse-grained polymer-solvent systems relevant to SVA. We found that the Hybrid MC/MD method is more stable and consistent than GEMD, but GEMD has significant advantages in computational efficiency. We propose that Hybrid MC/MD simulations be used for unfamiliar systems in certain choice conditions, followed by much faster GEMD simulations to map out the remainder of the phase window.
Cloud access to interoperable IVOA-compliant VOSpace storage
NASA Astrophysics Data System (ADS)
Bertocco, S.; Dowler, P.; Gaudet, S.; Major, B.; Pasian, F.; Taffoni, G.
2018-07-01
Handling, processing and archiving the huge amount of data produced by the new generation of experiments and instruments in Astronomy and Astrophysics are among the more exciting challenges to address in designing the future data management infrastructures and computing services. We investigated the feasibility of a data management and computation infrastructure, available world-wide, with the aim of merging the FAIR data management provided by IVOA standards with the efficiency and reliability of a cloud approach. Our work involved the Canadian Advanced Network for Astronomy Research (CANFAR) infrastructure and the European EGI federated cloud (EFC). We designed and deployed a pilot data management and computation infrastructure that provides IVOA-compliant VOSpace storage resources and wide access to interoperable federated clouds. In this paper, we detail the main user requirements covered, the technical choices and the implemented solutions and we describe the resulting Hybrid cloud Worldwide infrastructure, its benefits and limitations.
Optomechanical study and optimization of cantilever plate dynamics
NASA Astrophysics Data System (ADS)
Furlong, Cosme; Pryputniewicz, Ryszard J.
1995-06-01
Optimum dynamic characteristics of an aluminum cantilever plate containing holes of different sizes and located at arbitrary positions on the plate are studied computationally and experimentally. The objective function of this optimization is the minimization/maximization of the natural frequencies of the plate in terms of such design variable s as the sizes and locations of the holes. The optimization process is performed using the finite element method and mathematical programming techniques in order to obtain the natural frequencies and the optimum conditions of the plate, respectively. The modal behavior of the resultant optimal plate layout is studied experimentally through the use of holographic interferometry techniques. Comparisons of the computational and experimental results show that good agreement between theory and test is obtained. The comparisons also show that the combined, or hybrid use of experimental and computational techniques complement each other and prove to be a very efficient tool for performing optimization studies of mechanical components.
NASA Technical Reports Server (NTRS)
Mclain, A. G.; Rao, C. S. R.
1976-01-01
A hybrid chemical kinetic computer program was assembled which provides a rapid solution to problems involving flowing or static, chemically reacting, gas mixtures. The computer program uses existing subroutines for problem setup, initialization, and preliminary calculations and incorporates a stiff ordinary differential equation solution technique. A number of check cases were recomputed with the hybrid program and the results were almost identical to those previously obtained. The computational time saving was demonstrated with a propane-oxygen-argon shock tube combustion problem involving 31 chemical species and 64 reactions. Information is presented to enable potential users to prepare an input data deck for the calculation of a problem.
Tortorella, Sara; Talamo, Maurizio Mastropasqua; Cardone, Antonio; Pastore, Mariachiara; De Angelis, Filippo
2016-02-24
A systematic computational investigation on the optical properties of a group of novel benzofulvene derivatives (Martinelli 2014 Org. Lett. 16 3424-7), proposed as possible donor materials in small molecule organic photovoltaic (smOPV) devices, is presented. A benchmark evaluation against experimental results on the accuracy of different exchange and correlation functionals and semi-empirical methods in predicting both reliable ground state equilibrium geometries and electronic absorption spectra is carried out. The benchmark of the geometry optimization level indicated that the best agreement with x-ray data is achieved by using the B3LYP functional. Concerning the optical gap prediction, we found that, among the employed functionals, MPW1K provides the most accurate excitation energies over the entire set of benzofulvenes. Similarly reliable results were also obtained for range-separated hybrid functionals (CAM-B3LYP and wB97XD) and for global hybrid methods incorporating a large amount of non-local exchange (M06-2X and M06-HF). Density functional theory (DFT) hybrids with a moderate (about 20-30%) extent of Hartree-Fock exchange (HFexc) (PBE0, B3LYP and M06) were also found to deliver HOMO-LUMO energy gaps which compare well with the experimental absorption maxima, thus representing a valuable alternative for a prompt and predictive estimation of the optical gap. The possibility of using completely semi-empirical approaches (AM1/ZINDO) is also discussed.
Hybrid simplified spherical harmonics with diffusion equation for light propagation in tissues.
Chen, Xueli; Sun, Fangfang; Yang, Defu; Ren, Shenghan; Zhang, Qian; Liang, Jimin
2015-08-21
Aiming at the limitations of the simplified spherical harmonics approximation (SPN) and diffusion equation (DE) in describing the light propagation in tissues, a hybrid simplified spherical harmonics with diffusion equation (HSDE) based diffuse light transport model is proposed. In the HSDE model, the living body is first segmented into several major organs, and then the organs are divided into high scattering tissues and other tissues. DE and SPN are employed to describe the light propagation in these two kinds of tissues respectively, which are finally coupled using the established boundary coupling condition. The HSDE model makes full use of the advantages of SPN and DE, and abandons their disadvantages, so that it can provide a perfect balance between accuracy and computation time. Using the finite element method, the HSDE is solved for light flux density map on body surface. The accuracy and efficiency of the HSDE are validated with both regular geometries and digital mouse model based simulations. Corresponding results reveal that a comparable accuracy and much less computation time are achieved compared with the SPN model as well as a much better accuracy compared with the DE one.
Numerical Methods of Computational Electromagnetics for Complex Inhomogeneous Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Wei
Understanding electromagnetic phenomena is the key in many scientific investigation and engineering designs such as solar cell designs, studying biological ion channels for diseases, and creating clean fusion energies, among other things. The objectives of the project are to develop high order numerical methods to simulate evanescent electromagnetic waves occurring in plasmon solar cells and biological ion-channels, where local field enhancement within random media in the former and long range electrostatic interactions in the latter are of major challenges for accurate and efficient numerical computations. We have accomplished these objectives by developing high order numerical methods for solving Maxwell equationsmore » such as high order finite element basis for discontinuous Galerkin methods, well-conditioned Nedelec edge element method, divergence free finite element basis for MHD, and fast integral equation methods for layered media. These methods can be used to model the complex local field enhancement in plasmon solar cells. On the other hand, to treat long range electrostatic interaction in ion channels, we have developed image charge based method for a hybrid model in combining atomistic electrostatics and continuum Poisson-Boltzmann electrostatics. Such a hybrid model will speed up the molecular dynamics simulation of transport in biological ion-channels.« less
GALAXY: A new hybrid MOEA for the optimal design of Water Distribution Systems
NASA Astrophysics Data System (ADS)
Wang, Q.; Savić, D. A.; Kapelan, Z.
2017-03-01
A new hybrid optimizer, called genetically adaptive leaping algorithm for approximation and diversity (GALAXY), is proposed for dealing with the discrete, combinatorial, multiobjective design of Water Distribution Systems (WDSs), which is NP-hard and computationally intensive. The merit of GALAXY is its ability to alleviate to a great extent the parameterization issue and the high computational overhead. It follows the generational framework of Multiobjective Evolutionary Algorithms (MOEAs) and includes six search operators and several important strategies. These operators are selected based on their leaping ability in the objective space from the global and local search perspectives. These strategies steer the optimization and balance the exploration and exploitation aspects simultaneously. A highlighted feature of GALAXY lies in the fact that it eliminates majority of parameters, thus being robust and easy-to-use. The comparative studies between GALAXY and three representative MOEAs on five benchmark WDS design problems confirm its competitiveness. GALAXY can identify better converged and distributed boundary solutions efficiently and consistently, indicating a much more balanced capability between the global and local search. Moreover, its advantages over other MOEAs become more substantial as the complexity of the design problem increases.
NASA Astrophysics Data System (ADS)
Imperiale, Alexandre; Chatillon, Sylvain; Darmon, Michel; Leymarie, Nicolas; Demaldent, Edouard
2018-04-01
The high frequency models gathered in the CIVA software allow fast computations and provide satisfactory quantitative predictions in a wide range of situations. However, the domain of validity of these models is limited since they do not accurately predict the ultrasound response in configurations involving subwavelength complex phenomena. In addition, when modelling backwall breaking defects inspection, an important challenge remains to capture the propagation of the creeping waves that are generated at the critical angle. Hybrid models combining numerical and asymptotic methods have already been shown to be an effective strategy to overcome these limitations in 2D [1]. However, 3D simulations remain a crucial issue for industrial applications because of the computational cost of the numerical solver. A dedicated three dimensional high order finite element model combined with a domain decomposition method has been recently proposed to tackle 3D limitations [2]. In this communication, we will focus on the specific case of planar backwall breaking defects, with an adapted coupling strategy in order to efficiently model the propagation of creeping waves. Numerical and experimental validations will be proposed on various configurations.
Swarm satellite mission scheduling & planning using Hybrid Dynamic Mutation Genetic Algorithm
NASA Astrophysics Data System (ADS)
Zheng, Zixuan; Guo, Jian; Gill, Eberhard
2017-08-01
Space missions have traditionally been controlled by operators from a mission control center. Given the increasing number of satellites for some space missions, generating a command list for multiple satellites can be time-consuming and inefficient. Developing multi-satellite, onboard mission scheduling & planning techniques is, therefore, a key research field for future space mission operations. In this paper, an improved Genetic Algorithm (GA) using a new mutation strategy is proposed as a mission scheduling algorithm. This new mutation strategy, called Hybrid Dynamic Mutation (HDM), combines the advantages of both dynamic mutation strategy and adaptive mutation strategy, overcoming weaknesses such as early convergence and long computing time, which helps standard GA to be more efficient and accurate in dealing with complex missions. HDM-GA shows excellent performance in solving both unconstrained and constrained test functions. The experiments of using HDM-GA to simulate a multi-satellite, mission scheduling problem demonstrates that both the computation time and success rate mission requirements can be met. The results of a comparative test between HDM-GA and three other mutation strategies also show that HDM has outstanding performance in terms of speed and reliability.
The Propagation and Scattering of EM Waves in Electrically Large Ducts
NASA Astrophysics Data System (ADS)
Khan, Saeed Mahmood
The electromagnetic scattering from large arbitrarily shaped ducts with complex termination is studied here by a hybrid technique. The propagation of electromagnetic waves in the duct is analyzed in terms of an approximate modal solution. A finite difference technique is employed for computing the reflection characteristics of the complex terminations. Both solutions are combined using the unimoment method. The analysis here is carried out for monostatic RCS and considers only fields backscattered from inside the cavity. Rim-diffraction has been left out. The procedure offers such advantages as in that it is not necessary to find complicated Green's functions, which may not be readily available, when compared with the integral equation method. Hybridization performed by combining an approximate modal technique with a finite difference one makes the scheme numerically efficient. From a computational EM point of view, it brings together a whole spectrum of techniques associated with high frequency modal analysis, Fourier Methods, Radar Cross Section and Scattering, finite difference solution and the Unimoment Method. The practical application of this technique may range from the study of RCS scattered from jet inlets of radar evasive aircraft to submarine communication waveguides.
Hybrid setup for micro- and nano-computed tomography in the hard X-ray range
NASA Astrophysics Data System (ADS)
Fella, Christian; Balles, Andreas; Hanke, Randolf; Last, Arndt; Zabler, Simon
2017-12-01
With increasing miniaturization in industry and medical technology, non-destructive testing techniques are an area of ever-increasing importance. In this framework, X-ray microscopy offers an efficient tool for the analysis, understanding, and quality assurance of microscopic samples, in particular as it allows reconstructing three-dimensional data sets of the whole sample's volume via computed tomography (CT). The following article describes a compact X-ray microscope in the hard X-ray regime around 9 keV, based on a highly brilliant liquid-metal-jet source. In comparison to commercially available instruments, it is a hybrid that works in two different modes. The first one is a micro-CT mode without optics, which uses a high-resolution detector to allow scans of samples in the millimeter range with a resolution of 1 μm. The second mode is a microscope, which contains an X-ray optical element to magnify the sample and allows resolving 150 nm features. Changing between the modes is possible without moving the sample. Thus, the instrument represents an important step towards establishing high-resolution laboratory-based multi-mode X-ray microscopy as a standard investigation method.
Accuracy and Transferability of Ab Initio Electronic Band Structure Calculations for Doped BiFeO3
NASA Astrophysics Data System (ADS)
Gebhardt, Julian; Rappe, Andrew M.
2017-11-01
BiFeO3 is a multiferroic material and, therefore, highly interesting with respect to future oxide electronics. In order to realize such devices, pn junctions need to be fabricated, which are currently impeded by the lack of successful p-type doping in this material. In order to guide the numerous research efforts in this field, we recently finished a comprehensive computational study, investigating the influence of many dopants onto the electronic structure of BiFeO3. In order to allow for this large scale ab initio study, the computational setup had to be accurate and efficient. Here we discuss the details of this assessment, showing that standard density-functional theory (DFT) yields good structural properties. The obtained electronic structure, however, suffers from well-known shortcomings. By comparing the conventional DFT results for alkali and alkaline-earth metal doping with more accurate hybrid-DFT calculations, we show that, in this case, the problems of standard DFT go beyond a simple systematic error. Conventional DFT shows bad transferability and the more reliable hybrid-DFT has to be chosen for a qualitatively correct prediction of doping induced changes in the electronic structure of BiFeO3.
Beaser, Eric; Schwartz, Jennifer K; Bell, Caleb B; Solomon, Edward I
2011-09-26
A Genetic Algorithm (GA) is a stochastic optimization technique based on the mechanisms of biological evolution. These algorithms have been successfully applied in many fields to solve a variety of complex nonlinear problems. While they have been used with some success in chemical problems such as fitting spectroscopic and kinetic data, many have avoided their use due to the unconstrained nature of the fitting process. In engineering, this problem is now being addressed through incorporation of adaptive penalty functions, but their transfer to other fields has been slow. This study updates the Nanakorrn Adaptive Penalty function theory, expanding its validity beyond maximization problems to minimization as well. The expanded theory, using a hybrid genetic algorithm with an adaptive penalty function, was applied to analyze variable temperature variable field magnetic circular dichroism (VTVH MCD) spectroscopic data collected on exchange coupled Fe(II)Fe(II) enzyme active sites. The data obtained are described by a complex nonlinear multimodal solution space with at least 6 to 13 interdependent variables and are costly to search efficiently. The use of the hybrid GA is shown to improve the probability of detecting the global optimum. It also provides large gains in computational and user efficiency. This method allows a full search of a multimodal solution space, greatly improving the quality and confidence in the final solution obtained, and can be applied to other complex systems such as fitting of other spectroscopic or kinetics data.
Liu, Li; Chen, Weiping; Nie, Min; Zhang, Fengjuan; Wang, Yu; He, Ailing; Wang, Xiaonan; Yan, Gen
2016-11-01
To handle the emergence of the regional healthcare ecosystem, physicians and surgeons in various departments and healthcare institutions must process medical images securely, conveniently, and efficiently, and must integrate them with electronic medical records (EMRs). In this manuscript, we propose a software as a service (SaaS) cloud called the iMAGE cloud. A three-layer hybrid cloud was created to provide medical image processing services in the smart city of Wuxi, China, in April 2015. In the first step, medical images and EMR data were received and integrated via the hybrid regional healthcare network. Then, traditional and advanced image processing functions were proposed and computed in a unified manner in the high-performance cloud units. Finally, the image processing results were delivered to regional users using the virtual desktop infrastructure (VDI) technology. Security infrastructure was also taken into consideration. Integrated information query and many advanced medical image processing functions-such as coronary extraction, pulmonary reconstruction, vascular extraction, intelligent detection of pulmonary nodules, image fusion, and 3D printing-were available to local physicians and surgeons in various departments and healthcare institutions. Implementation results indicate that the iMAGE cloud can provide convenient, efficient, compatible, and secure medical image processing services in regional healthcare networks. The iMAGE cloud has been proven to be valuable in applications in the regional healthcare system, and it could have a promising future in the healthcare system worldwide.
NASA Astrophysics Data System (ADS)
Henao, Nilson; Kelouwani, Sousso; Agbossou, Kodjo; Dubé, Yves
2012-12-01
This paper investigates the Proton Exchange Membrane Fuel Cell (PEMFC) Cold Startup problem within the specific context of the Plugin Hybrid Electric Vehicles (PHEV). A global strategy which aims at providing an efficient method to minimize the energy consumption during the startup of a PEMFC is proposed. The overall control system is based on a supervisory architecture in which the Energy Management System (EMS) plays the role of the power flow supervisor. The EMS estimates in advance, the time to start the fuel cell (FC) based upon the battery energy usage during the trip. Given this estimation and the amount of additional energy required, the fuel cell temperature management strategy computes the most appropriate time to start heating the stack in order to reduce heat loss through the natural convection. As the cell temperature rises, the PEMFC is started and the reaction heat is used as a self-heating power source to further increase the stack temperature. A time optimal self-heating approach based on the Pontryagin minimum principle is proposed and tested. The experimental results have shown that the proposed approach is efficient and can be implemented in real-time on FC-PHEVs.
Hybrid-Wing-Body Vehicle Composite Fuselage Analysis and Case Study
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivek
2014-01-01
Recent progress in the structural analysis of a Hybrid Wing-Body (HWB) fuselage concept is presented with the objective of structural weight reduction under a set of critical design loads. This pressurized efficient HWB fuselage design is presently being investigated by the NASA Environmentally Responsible Aviation (ERA) project in collaboration with the Boeing Company, Huntington Beach. The Pultruded Rod-Stiffened Efficient Unitized Structure (PRSEUS) composite concept, developed at the Boeing Company, is approximately modeled for an analytical study and finite element analysis. Stiffened plate linear theories are employed for a parametric case study. Maximum deflection and stress levels are obtained with appropriate assumptions for a set of feasible stiffened panel configurations. An analytical parametric case study is presented to examine the effects of discrete stiffener spacing and skin thickness on structural weight, deflection and stress. A finite-element model (FEM) of an integrated fuselage section with bulkhead is developed for an independent assessment. Stress analysis and scenario based case studies are conducted for design improvement. The FEM model specific weight of the improved fuselage concept is computed and compared to previous studies, in order to assess the relative weight/strength advantages of this advanced composite airframe technology
Local electric dipole moments for periodic systems via density functional theory embedding.
Luber, Sandra
2014-12-21
We describe a novel approach for the calculation of local electric dipole moments for periodic systems. Since the position operator is ill-defined in periodic systems, maximally localized Wannier functions based on the Berry-phase approach are usually employed for the evaluation of local contributions to the total electric dipole moment of the system. We propose an alternative approach: within a subsystem-density functional theory based embedding scheme, subset electric dipole moments are derived without any additional localization procedure, both for hybrid and non-hybrid exchange-correlation functionals. This opens the way to a computationally efficient evaluation of local electric dipole moments in (molecular) periodic systems as well as their rigorous splitting into atomic electric dipole moments. As examples, Infrared spectra of liquid ethylene carbonate and dimethyl carbonate are presented, which are commonly employed as solvents in Lithium ion batteries.
Character feature integration of Chinese calligraphy and font
NASA Astrophysics Data System (ADS)
Shi, Cao; Xiao, Jianguo; Jia, Wenhua; Xu, Canhui
2013-01-01
A framework is proposed in this paper to effectively generate a new hybrid character type by means of integrating local contour feature of Chinese calligraphy with structural feature of font in computer system. To explore traditional art manifestation of calligraphy, multi-directional spatial filter is applied for local contour feature extraction. Then the contour of character image is divided into sub-images. The sub-images in the identical position from various characters are estimated by Gaussian distribution. According to its probability distribution, the dilation operator and erosion operator are designed to adjust the boundary of font image. And then new Chinese character images are generated which possess both contour feature of artistical calligraphy and elaborate structural feature of font. Experimental results demonstrate the new characters are visually acceptable, and the proposed framework is an effective and efficient strategy to automatically generate the new hybrid character of calligraphy and font.
Remote creation of hybrid entanglement between particle-like and wave-like optical qubits
NASA Astrophysics Data System (ADS)
Morin, Olivier; Huang, Kun; Liu, Jianli; Le Jeannic, Hanna; Fabre, Claude; Laurat, Julien
2014-07-01
The wave-particle duality of light has led to two different encodings for optical quantum information processing. Several approaches have emerged based either on particle-like discrete-variable states (that is, finite-dimensional quantum systems) or on wave-like continuous-variable states (that is, infinite-dimensional systems). Here, we demonstrate the generation of entanglement between optical qubits of these different types, located at distant places and connected by a lossy channel. Such hybrid entanglement, which is a key resource for a variety of recently proposed schemes, including quantum cryptography and computing, enables information to be converted from one Hilbert space to the other via teleportation and therefore the connection of remote quantum processors based upon different encodings. Beyond its fundamental significance for the exploration of entanglement and its possible instantiations, our optical circuit holds promise for implementations of heterogeneous network, where discrete- and continuous-variable operations and techniques can be efficiently combined.
Zhao, Weizhao; Li, Xiping; Chen, Hairong; Manns, Fabrice
2012-01-01
Medical Imaging is a key training component in Biomedical Engineering programs. Medical imaging education is interdisciplinary training, involving physics, mathematics, chemistry, electrical engineering, computer engineering, and applications in biology and medicine. Seeking an efficient teaching method for instructors and an effective learning environment for students has long been a goal for medical imaging education. By the support of NSF grants, we developed the medical imaging teaching software (MITS) and associated dynamic assessment tracking system (DATS). The MITS/DATS system has been applied to junior and senior medical imaging classes through a hybrid teaching model. The results show that student's learning gain improved, particularly in concept understanding and simulation project completion. The results also indicate disparities in subjective perception between junior and senior classes. Three institutions are collaborating to expand the courseware system and plan to apply it to different class settings.
NASA Technical Reports Server (NTRS)
Jin, Jian-Ming; Volakis, John L.; Collins, Jeffery D.
1991-01-01
A review of a hybrid finite element-boundary integral formulation for scattering and radiation by two- and three-dimensional composite structures is presented. In contrast to other hybrid techniques involving the finite element method, the proposed one is in principle exact and can be implemented using a low O(N) storage. This is of particular importance for large scale applications and is a characteristic of the boundary chosen to terminate the finite element mesh, usually as close to the structure as possible. A certain class of these boundaries lead to convolutional boundary integrals which can be evaluated via the fast Fourier transform (FFT) without a need to generate a matrix; thus, retaining the O(N) storage requirement. The paper begins with a general description of the method. A number of two- and three-dimensional applications are then given, including numerical computations which demonstrate the method's accuracy, efficiency, and capability.
A Hybrid Genetic Programming Algorithm for Automated Design of Dispatching Rules.
Nguyen, Su; Mei, Yi; Xue, Bing; Zhang, Mengjie
2018-06-04
Designing effective dispatching rules for production systems is a difficult and timeconsuming task if it is done manually. In the last decade, the growth of computing power, advanced machine learning, and optimisation techniques has made the automated design of dispatching rules possible and automatically discovered rules are competitive or outperform existing rules developed by researchers. Genetic programming is one of the most popular approaches to discovering dispatching rules in the literature, especially for complex production systems. However, the large heuristic search space may restrict genetic programming from finding near optimal dispatching rules. This paper develops a new hybrid genetic programming algorithm for dynamic job shop scheduling based on a new representation, a new local search heuristic, and efficient fitness evaluators. Experiments show that the new method is effective regarding the quality of evolved rules. Moreover, evolved rules are also significantly smaller and contain more relevant attributes.
Jade: using on-demand cloud analysis to give scientists back their flow
NASA Astrophysics Data System (ADS)
Robinson, N.; Tomlinson, J.; Hilson, A. J.; Arribas, A.; Powell, T.
2017-12-01
The UK's Met Office generates 400 TB weather and climate data every day by running physical models on its Top 20 supercomputer. As data volumes explode, there is a danger that analysis workflows become dominated by watching progress bars, and not thinking about science. We have been researching how we can use distributed computing to allow analysts to process these large volumes of high velocity data in a way that's easy, effective and cheap.Our prototype analysis stack, Jade, tries to encapsulate this. Functionality includes: An under-the-hood Dask engine which parallelises and distributes computations, without the need to retrain analysts Hybrid compute clusters (AWS, Alibaba, and local compute) comprising many thousands of cores Clusters which autoscale up/down in response to calculation load using Kubernetes, and balances the cluster across providers based on the current price of compute Lazy data access from cloud storage via containerised OpenDAP This technology stack allows us to perform calculations many orders of magnitude faster than is possible on local workstations. It is also possible to outperform dedicated local compute clusters, as cloud compute can, in principle, scale to much larger scales. The use of ephemeral compute resources also makes this implementation cost efficient.
Efficient engineering of marker-free synthetic allotetraploids of Saccharomyces.
Alexander, William G; Peris, David; Pfannenstiel, Brandon T; Opulente, Dana A; Kuang, Meihua; Hittinger, Chris Todd
2016-04-01
Saccharomyces interspecies hybrids are critical biocatalysts in the fermented beverage industry, including in the production of lager beers, Belgian ales, ciders, and cold-fermented wines. Current methods for making synthetic interspecies hybrids are cumbersome and/or require genome modifications. We have developed a simple, robust, and efficient method for generating allotetraploid strains of prototrophic Saccharomyces without sporulation or nuclear genome manipulation. S. cerevisiae×S. eubayanus, S. cerevisiae×S. kudriavzevii, and S. cerevisiae×S. uvarum designer hybrid strains were created as synthetic lager, Belgian, and cider strains, respectively. The ploidy and hybrid nature of the strains were confirmed using flow cytometry and PCR-RFLP analysis, respectively. This method provides an efficient means for producing novel synthetic hybrids for beverage and biofuel production, as well as for constructing tetraploids to be used for basic research in evolutionary genetics and genome stability. Copyright © 2015 Elsevier Inc. All rights reserved.
Nonequilibrium hypersonic flows simulations with asymptotic-preserving Monte Carlo methods
NASA Astrophysics Data System (ADS)
Ren, Wei; Liu, Hong; Jin, Shi
2014-12-01
In the rarefied gas dynamics, the DSMC method is one of the most popular numerical tools. It performs satisfactorily in simulating hypersonic flows surrounding re-entry vehicles and micro-/nano- flows. However, the computational cost is expensive, especially when Kn → 0. Even for flows in the near-continuum regime, pure DSMC simulations require a number of computational efforts for most cases. Albeit several DSMC/NS hybrid methods are proposed to deal with this, those methods still suffer from the boundary treatment, which may cause nonphysical solutions. Filbet and Jin [1] proposed a framework of new numerical methods of Boltzmann equation, called asymptotic preserving schemes, whose computational costs are affordable as Kn → 0. Recently, Ren et al. [2] realized the AP schemes with Monte Carlo methods (AP-DSMC), which have better performance than counterpart methods. In this paper, AP-DSMC is applied in simulating nonequilibrium hypersonic flows. Several numerical results are computed and analyzed to study the efficiency and capability of capturing complicated flow characteristics.
NASA Astrophysics Data System (ADS)
Blum, Volker
This talk describes recent advances of a general, efficient, accurate all-electron electronic theory approach based on numeric atom-centered orbitals; emphasis is placed on developments related to materials for energy conversion and their discovery. For total energies and electron band structures, we show that the overall accuracy is on par with the best benchmark quality codes for materials, but scalable to large system sizes (1,000s of atoms) and amenable to both periodic and non-periodic simulations. A recent localized resolution-of-identity approach for the Coulomb operator enables O (N) hybrid functional based descriptions of the electronic structure of non-periodic and periodic systems, shown for supercell sizes up to 1,000 atoms; the same approach yields accurate results for many-body perturbation theory as well. For molecular systems, we also show how many-body perturbation theory for charged and neutral quasiparticle excitation energies can be efficiently yet accurately applied using basis sets of computationally manageable size. Finally, the talk highlights applications to the electronic structure of hybrid organic-inorganic perovskite materials, as well as to graphene-based substrates for possible future transition metal compound based electrocatalyst materials. All methods described here are part of the FHI-aims code. VB gratefully acknowledges contributions by numerous collaborators at Duke University, Fritz Haber Institute Berlin, TU Munich, USTC Hefei, Aalto University, and many others around the globe.
Hybrid rocket engine, theoretical model and experiment
NASA Astrophysics Data System (ADS)
Chelaru, Teodor-Viorel; Mingireanu, Florin
2011-06-01
The purpose of this paper is to build a theoretical model for the hybrid rocket engine/motor and to validate it using experimental results. The work approaches the main problems of the hybrid motor: the scalability, the stability/controllability of the operating parameters and the increasing of the solid fuel regression rate. At first, we focus on theoretical models for hybrid rocket motor and compare the results with already available experimental data from various research groups. A primary computation model is presented together with results from a numerical algorithm based on a computational model. We present theoretical predictions for several commercial hybrid rocket motors, having different scales and compare them with experimental measurements of those hybrid rocket motors. Next the paper focuses on tribrid rocket motor concept, which by supplementary liquid fuel injection can improve the thrust controllability. A complementary computation model is also presented to estimate regression rate increase of solid fuel doped with oxidizer. Finally, the stability of the hybrid rocket motor is investigated using Liapunov theory. Stability coefficients obtained are dependent on burning parameters while the stability and command matrixes are identified. The paper presents thoroughly the input data of the model, which ensures the reproducibility of the numerical results by independent researchers.
Ibrahim, Mohammed E A; Wahab, M Farooq; Lucy, Charles A
2014-04-11
Hydrophilic interaction liquid chromatography (HILIC) is a fast growing separation technique for hydrophilic and polar analytes. In this work, we combine the unique selectivity of carbon surfaces with the high efficiency of core-shell silica. First, 5 μm core-shell silica is electrostatically coated with 105 nm cationic latex bearing quaternary ammonium groups. Then 50 nm anionic carbon nanoparticles are anchored onto the surface of the latex coated core-shell silica particles to produce a hybrid carbon-silica phase. The hybrid phase shows different selectivity than ten previously classified HILIC column chemistries and 36 stationary phases. The hybrid HILIC phase has shape selectivity for positional isomeric pairs (phthalic/isophthalic and 1-naphthoic/2-naphthoic acids). Fast and high efficiency HILIC separations of biologically important carboxylates, phenols and pharmaceuticals are reported with efficiencies up to 85,000 plates m(-1). Reduced plate height of 1.9 (95,000 plates m(-1)) can be achieved. The hybrid phase is stable for at least 3 months of usage and storage under typical HILIC eluents. Copyright © 2014 Elsevier B.V. All rights reserved.
Transition state-finding strategies for use with the growing string method.
Goodrow, Anthony; Bell, Alexis T; Head-Gordon, Martin
2009-06-28
Efficient identification of transition states is important for understanding reaction mechanisms. Most transition state search algorithms require long computational times and a good estimate of the transition state structure in order to converge, particularly for complex reaction systems. The growing string method (GSM) [B. Peters et al., J. Chem. Phys. 120, 7877 (2004)] does not require an initial guess of the transition state; however, the calculation is still computationally intensive due to repeated calls to the quantum mechanics code. Recent modifications to the GSM [A. Goodrow et al., J. Chem. Phys. 129, 174109 (2008)] have reduced the total computational time for converging to a transition state by a factor of 2 to 3. In this work, three transition state-finding strategies have been developed to complement the speedup of the modified-GSM: (1) a hybrid strategy, (2) an energy-weighted strategy, and (3) a substring strategy. The hybrid strategy initiates the string calculation at a low level of theory (HF/STO-3G), which is then refined at a higher level of theory (B3LYP/6-31G(*)). The energy-weighted strategy spaces points along the reaction pathway based on the energy at those points, leading to a higher density of points where the energy is highest and finer resolution of the transition state. The substring strategy is similar to the hybrid strategy, but only a portion of the low-level string is refined using a higher level of theory. These three strategies have been used with the modified-GSM and are compared in three reactions: alanine dipeptide isomerization, H-abstraction in methanol oxidation on VO(x)/SiO(2) catalysts, and C-H bond activation in the oxidative carbonylation of toluene to p-toluic acid on Rh(CO)(2)(TFA)(3) catalysts. In each of these examples, the substring strategy was proved most effective by obtaining a better estimate of the transition state structure and reducing the total computational time by a factor of 2 to 3 compared to the modified-GSM. The applicability of the substring strategy has been extended to three additional examples: cyclopropane rearrangement to propylene, isomerization of methylcyclopropane to four different stereoisomers, and the bimolecular Diels-Alder condensation of 1,3-butadiene and ethylene to cyclohexene. Thus, the substring strategy used in combination with the modified-GSM has been demonstrated to be an efficient transition state-finding strategy for a wide range of types of reactions.
Efficiency in nonequilibrium molecular dynamics Monte Carlo simulations
Radak, Brian K.; Roux, Benoît
2016-10-07
Hybrid algorithms combining nonequilibrium molecular dynamics and Monte Carlo (neMD/MC) offer a powerful avenue for improving the sampling efficiency of computer simulations of complex systems. These neMD/MC algorithms are also increasingly finding use in applications where conventional approaches are impractical, such as constant-pH simulations with explicit solvent. However, selecting an optimal nonequilibrium protocol for maximum efficiency often represents a non-trivial challenge. This work evaluates the efficiency of a broad class of neMD/MC algorithms and protocols within the theoretical framework of linear response theory. The approximations are validated against constant pH-MD simulations and shown to provide accurate predictions of neMD/MC performance.more » An assessment of a large set of protocols confirms (both theoretically and empirically) that a linear work protocol gives the best neMD/MC performance. Lastly, a well-defined criterion for optimizing the time parameters of the protocol is proposed and demonstrated with an adaptive algorithm that improves the performance on-the-fly with minimal cost.« less
Design Optimization of Hybrid FRP/RC Bridge
NASA Astrophysics Data System (ADS)
Papapetrou, Vasileios S.; Tamijani, Ali Y.; Brown, Jeff; Kim, Daewon
2018-04-01
The hybrid bridge consists of a Reinforced Concrete (RC) slab supported by U-shaped Fiber Reinforced Polymer (FRP) girders. Previous studies on similar hybrid bridges constructed in the United States and Europe seem to substantiate these hybrid designs for lightweight, high strength, and durable highway bridge construction. In the current study, computational and optimization analyses were carried out to investigate six composite material systems consisting of E-glass and carbon fibers. Optimization constraints are determined by stress, deflection and manufacturing requirements. Finite Element Analysis (FEA) and optimization software were utilized, and a framework was developed to run the complete analyses in an automated fashion. Prior to that, FEA validation of previous studies on similar U-shaped FRP girders that were constructed in Poland and Texas is presented. A finer optimization analysis is performed for the case of the Texas hybrid bridge. The optimization outcome of the hybrid FRP/RC bridge shows the appropriate composite material selection and cross-section geometry that satisfies all the applicable Limit States (LS) and, at the same time, results in the lightest design. Critical limit states show that shear stress criteria determine the optimum design for bridge spans less than 15.24 m and deflection criteria controls for longer spans. Increased side wall thickness can reduce maximum observed shear stresses, but leads to a high weight penalty. A taller cross-section and a thicker girder base can efficiently lower the observed deflections and normal stresses. Finally, substantial weight savings can be achieved by the optimization framework if base and side-wall thickness are treated as independent variables.
A hybrid finite element - statistical energy analysis approach to robust sound transmission modeling
NASA Astrophysics Data System (ADS)
Reynders, Edwin; Langley, Robin S.; Dijckmans, Arne; Vermeir, Gerrit
2014-09-01
When considering the sound transmission through a wall in between two rooms, in an important part of the audio frequency range, the local response of the rooms is highly sensitive to uncertainty in spatial variations in geometry, material properties and boundary conditions, which have a wave scattering effect, while the local response of the wall is rather insensitive to such uncertainty. For this mid-frequency range, a computationally efficient modeling strategy is adopted that accounts for this uncertainty. The partitioning wall is modeled deterministically, e.g. with finite elements. The rooms are modeled in a very efficient, nonparametric stochastic way, as in statistical energy analysis. All components are coupled by means of a rigorous power balance. This hybrid strategy is extended so that the mean and variance of the sound transmission loss can be computed as well as the transition frequency that loosely marks the boundary between low- and high-frequency behavior of a vibro-acoustic component. The method is first validated in a simulation study, and then applied for predicting the airborne sound insulation of a series of partition walls of increasing complexity: a thin plastic plate, a wall consisting of gypsum blocks, a thicker masonry wall and a double glazing. It is found that the uncertainty caused by random scattering is important except at very high frequencies, where the modal overlap of the rooms is very high. The results are compared with laboratory measurements, and both are found to agree within the prediction uncertainty in the considered frequency range.
Development and application of QM/MM methods to study the solvation effects and surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dibya, Pooja Arora
2010-01-01
Quantum mechanical (QM) calculations have the advantage of attaining high-level accuracy, however QM calculations become computationally inefficient as the size of the system grows. Solving complex molecular problems on large systems and ensembles by using quantum mechanics still poses a challenge in terms of the computational cost. Methods that are based on classical mechanics are an inexpensive alternative, but they lack accuracy. A good trade off between accuracy and efficiency is achieved by combining QM methods with molecular mechanics (MM) methods to use the robustness of the QM methods in terms of accuracy and the MM methods to minimize themore » computational cost. Two types of QM combined with MM (QM/MM) methods are the main focus of the present dissertation: the application and development of QM/MM methods for solvation studies and reactions on the Si(100) surface. The solvation studies were performed using a discreet solvation model that is largely based on first principles called the effective fragment potential method (EFP). The main idea of combining the EFP method with quantum mechanics is to accurately treat the solute-solvent and solvent-solvent interactions, such as electrostatic, polarization, dispersion and charge transfer, that are important in correctly calculating solvent effects on systems of interest. A second QM/MM method called SIMOMM (surface integrated molecular orbital molecular mechanics) is a hybrid QM/MM embedded cluster model that mimics the real surface.3 This method was employed to calculate the potential energy surfaces for reactions of atomic O on the Si(100) surface. The hybrid QM/MM method is a computationally inexpensive approach for studying reactions on larger surfaces in a reasonably accurate and efficient manner. This thesis is comprised of four chapters: Chapter 1 describes the general overview and motivation of the dissertation and gives a broad background of the computational methods that have been employed in this work. Chapter 2 illustrates the methodology of the interface of the EFP method with the configuration interaction with single excitations (CIS) method to study solvent effects in excited states. Chapter 3 discusses the study of the adiabatic electron affinity of the hydroxyl radical in aqueous solution and in micro-solvated clusters using a QM/EFP method. Chapter 4 describes the study of etching and diffusion of oxygen atom on a reconstructed Si(100)-2 x 1 surface using a hybrid QM/MM embedded cluster model (SIMOMM). Chapter 4 elucidates the application of the EFP method towards the understanding of the aqueous ionization potential of Na atom. Finally, a general conclusion of this dissertation work and prospective future direction are presented in Chapter 6.« less
A hybrid multi-objective evolutionary algorithm for wind-turbine blade optimization
NASA Astrophysics Data System (ADS)
Sessarego, M.; Dixon, K. R.; Rival, D. E.; Wood, D. H.
2015-08-01
A concurrent-hybrid non-dominated sorting genetic algorithm (hybrid NSGA-II) has been developed and applied to the simultaneous optimization of the annual energy production, flapwise root-bending moment and mass of the NREL 5 MW wind-turbine blade. By hybridizing a multi-objective evolutionary algorithm (MOEA) with gradient-based local search, it is believed that the optimal set of blade designs could be achieved in lower computational cost than for a conventional MOEA. To measure the convergence between the hybrid and non-hybrid NSGA-II on a wind-turbine blade optimization problem, a computationally intensive case was performed using the non-hybrid NSGA-II. From this particular case, a three-dimensional surface representing the optimal trade-off between the annual energy production, flapwise root-bending moment and blade mass was achieved. The inclusion of local gradients in the blade optimization, however, shows no improvement in the convergence for this three-objective problem.
INHYD: Computer code for intraply hybrid composite design. A users manual
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Sinclair, J. H.
1983-01-01
A computer program (INHYD) was developed for intraply hybrid composite design. A users manual for INHYD is presented. In INHYD embodies several composite micromechanics theories, intraply hybrid composite theories, and an integrated hygrothermomechanical theory. The INHYD can be run in both interactive and batch modes. It has considerable flexibility and capability, which the user can exercise through several options. These options are demonstrated through appropriate INHYD runs in the manual.
NASA Astrophysics Data System (ADS)
Hinuma, Yoyo; Kumagai, Yu; Tanaka, Isao; Oba, Fumiyasu
2017-02-01
The band alignment of prototypical semiconductors and insulators is investigated using first-principles calculations. A dielectric-dependent hybrid functional, where the nonlocal Fock exchange mixing is set at the reciprocal of the static electronic dielectric constant and the exchange correlation is otherwise treated as in the Perdew-Burke-Ernzerhof (PBE0) hybrid functional, is used as well as the Heyd-Scuseria-Ernzerhof (HSE06) hybrid and PBE semilocal functionals. In addition, these hybrid functionals are applied non-self-consistently to accelerate calculations. The systems considered include C and Si in the diamond structure, BN, AlP, AlAs, AlSb, GaP, GaAs, InP, ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe in the zinc-blende structure, MgO in the rocksalt structure, and GaN and ZnO in the wurtzite structure. Surface band positions with respect to the vacuum level, i.e., ionization potentials and electron affinities, and band offsets at selected zinc-blende heterointerfaces are evaluated as well as band gaps. The non-self-consistent approach speeds up hybrid functional calculations by an order of magnitude, while it is shown using HSE06 that the resultant band gaps and surface band positions are similar to the self-consistent results. The dielectric-dependent hybrid functional improves the band gaps and surface band positions of wide-gap systems over HSE06. The interfacial band offsets are predicted with a similar degree of precision. Overall, the performance of the dielectric-dependent hybrid functional is comparable to the G W0 approximation based on many-body perturbation theory in the prediction of band gaps and alignments for most systems. The present results demonstrate that the dielectric-dependent hybrid functional, particularly when applied non-self-consistently, is promising for applications to systematic calculations or high-throughput screening that demand both computational efficiency and sufficient accuracy.
NASA Astrophysics Data System (ADS)
Hwang, Kyo Min; Lee, Song Eun; Lee, Sungkyu; Yoo, Han Kyu; Baek, Hyun Jung; Kim, Young Kwan; Kim, Jwajin; Yoon, Seung Soo
2016-08-01
In this study, we fabricated hybrid white organic light-emitting diodes (WOLEDs) based on triplet harvesting with a simple structure. All the hole transporting material and host in the emitting layer (EML) of devices utilized the same material N,N'-di-1-naphthalenyl-N,N'-diphenyl [1,1':4',1″:4″,1‴-quaterphenyl]-4,4‴-diamine (4P-NPD), which is known to be blue fluorescent material. Simple hybrid WOLEDs were fabricated with blue fluorescent, green and red phosphorescent materials. We investigated the effect of triplet harvesting (TH) by an exciton generation zone on simple hybrid WOLEDs. The simple hybrid WOLEDs characteristically had a dominant hole mobility, so an exciton generation zone was expected in the EML. Additionally, the optimal the thickness of the hole transporting layer and electron transporting layer was fabricated a simple hybrid WOLEDs. The simple hybrid WOLED exhibits a maximum luminous efficiency of 29.3 cd/A and a maximum external quantum efficiency of 11.2%. The Commission Internationale de l'Éclairage (International Commission on Illumination) coordinates were (0.45, 0.43) at about 10,000 cd/m2.
Non-preconditioned conjugate gradient on cell and FPGA based hybrid supercomputer nodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubois, David H; Dubois, Andrew J; Boorman, Thomas M
2009-01-01
This work presents a detailed implementation of a double precision, non-preconditioned, Conjugate Gradient algorithm on a Roadrunner heterogeneous supercomputer node. These nodes utilize the Cell Broadband Engine Architecture{sup TM} in conjunction with x86 Opteron{sup TM} processors from AMD. We implement a common Conjugate Gradient algorithm, on a variety of systems, to compare and contrast performance. Implementation results are presented for the Roadrunner hybrid supercomputer, SRC Computers, Inc. MAPStation SRC-6 FPGA enhanced hybrid supercomputer, and AMD Opteron only. In all hybrid implementations wall clock time is measured, including all transfer overhead and compute timings.
Non-preconditioned conjugate gradient on cell and FPCA-based hybrid supercomputer nodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubois, David H; Dubois, Andrew J; Boorman, Thomas M
2009-03-10
This work presents a detailed implementation of a double precision, Non-Preconditioned, Conjugate Gradient algorithm on a Roadrunner heterogeneous supercomputer node. These nodes utilize the Cell Broadband Engine Architecture{trademark} in conjunction with x86 Opteron{trademark} processors from AMD. We implement a common Conjugate Gradient algorithm, on a variety of systems, to compare and contrast performance. Implementation results are presented for the Roadrunner hybrid supercomputer, SRC Computers, Inc. MAPStation SRC-6 FPGA enhanced hybrid supercomputer, and AMD Opteron only. In all hybrid implementations wall clock time is measured, including all transfer overhead and compute timings.
Multiscale Hy3S: hybrid stochastic simulation for supercomputers.
Salis, Howard; Sotiropoulos, Vassilios; Kaznessis, Yiannis N
2006-02-24
Stochastic simulation has become a useful tool to both study natural biological systems and design new synthetic ones. By capturing the intrinsic molecular fluctuations of "small" systems, these simulations produce a more accurate picture of single cell dynamics, including interesting phenomena missed by deterministic methods, such as noise-induced oscillations and transitions between stable states. However, the computational cost of the original stochastic simulation algorithm can be high, motivating the use of hybrid stochastic methods. Hybrid stochastic methods partition the system into multiple subsets and describe each subset as a different representation, such as a jump Markov, Poisson, continuous Markov, or deterministic process. By applying valid approximations and self-consistently merging disparate descriptions, a method can be considerably faster, while retaining accuracy. In this paper, we describe Hy3S, a collection of multiscale simulation programs. Building on our previous work on developing novel hybrid stochastic algorithms, we have created the Hy3S software package to enable scientists and engineers to both study and design extremely large well-mixed biological systems with many thousands of reactions and chemical species. We have added adaptive stochastic numerical integrators to permit the robust simulation of dynamically stiff biological systems. In addition, Hy3S has many useful features, including embarrassingly parallelized simulations with MPI; special discrete events, such as transcriptional and translation elongation and cell division; mid-simulation perturbations in both the number of molecules of species and reaction kinetic parameters; combinatorial variation of both initial conditions and kinetic parameters to enable sensitivity analysis; use of NetCDF optimized binary format to quickly read and write large datasets; and a simple graphical user interface, written in Matlab, to help users create biological systems and analyze data. We demonstrate the accuracy and efficiency of Hy3S with examples, including a large-scale system benchmark and a complex bistable biochemical network with positive feedback. The software itself is open-sourced under the GPL license and is modular, allowing users to modify it for their own purposes. Hy3S is a powerful suite of simulation programs for simulating the stochastic dynamics of networks of biochemical reactions. Its first public version enables computational biologists to more efficiently investigate the dynamics of realistic biological systems.
An algorithmic framework for multiobjective optimization.
Ganesan, T; Elamvazuthi, I; Shaari, Ku Zilati Ku; Vasant, P
2013-01-01
Multiobjective (MO) optimization is an emerging field which is increasingly being encountered in many fields globally. Various metaheuristic techniques such as differential evolution (DE), genetic algorithm (GA), gravitational search algorithm (GSA), and particle swarm optimization (PSO) have been used in conjunction with scalarization techniques such as weighted sum approach and the normal-boundary intersection (NBI) method to solve MO problems. Nevertheless, many challenges still arise especially when dealing with problems with multiple objectives (especially in cases more than two). In addition, problems with extensive computational overhead emerge when dealing with hybrid algorithms. This paper discusses these issues by proposing an alternative framework that utilizes algorithmic concepts related to the problem structure for generating efficient and effective algorithms. This paper proposes a framework to generate new high-performance algorithms with minimal computational overhead for MO optimization.
An Algorithmic Framework for Multiobjective Optimization
Ganesan, T.; Elamvazuthi, I.; Shaari, Ku Zilati Ku; Vasant, P.
2013-01-01
Multiobjective (MO) optimization is an emerging field which is increasingly being encountered in many fields globally. Various metaheuristic techniques such as differential evolution (DE), genetic algorithm (GA), gravitational search algorithm (GSA), and particle swarm optimization (PSO) have been used in conjunction with scalarization techniques such as weighted sum approach and the normal-boundary intersection (NBI) method to solve MO problems. Nevertheless, many challenges still arise especially when dealing with problems with multiple objectives (especially in cases more than two). In addition, problems with extensive computational overhead emerge when dealing with hybrid algorithms. This paper discusses these issues by proposing an alternative framework that utilizes algorithmic concepts related to the problem structure for generating efficient and effective algorithms. This paper proposes a framework to generate new high-performance algorithms with minimal computational overhead for MO optimization. PMID:24470795
2HOT: An Improved Parallel Hashed Oct-Tree N-Body Algorithm for Cosmological Simulation
Warren, Michael S.
2014-01-01
We report on improvements made over the past two decades to our adaptive treecode N-body method (HOT). A mathematical and computational approach to the cosmological N-body problem is described, with performance and scalability measured up to 256k (2 18 ) processors. We present error analysis and scientific application results from a series of more than ten 69 billion (4096 3 ) particle cosmological simulations, accounting for 4×10 20 floating point operations. These results include the first simulations using the new constraints on the standard model of cosmology from the Planck satellite. Our simulations set a new standard for accuracy andmore » scientific throughput, while meeting or exceeding the computational efficiency of the latest generation of hybrid TreePM N-body methods.« less
Survivable algorithms and redundancy management in NASA's distributed computing systems
NASA Technical Reports Server (NTRS)
Malek, Miroslaw
1992-01-01
The design of survivable algorithms requires a solid foundation for executing them. While hardware techniques for fault-tolerant computing are relatively well understood, fault-tolerant operating systems, as well as fault-tolerant applications (survivable algorithms), are, by contrast, little understood, and much more work in this field is required. We outline some of our work that contributes to the foundation of ultrareliable operating systems and fault-tolerant algorithm design. We introduce our consensus-based framework for fault-tolerant system design. This is followed by a description of a hierarchical partitioning method for efficient consensus. A scheduler for redundancy management is introduced, and application-specific fault tolerance is described. We give an overview of our hybrid algorithm technique, which is an alternative to the formal approach given.
Zhang, Wei; Ding, Dong-Sheng; Dong, Ming-Xin; Shi, Shuai; Wang, Kai; Liu, Shi-Long; Li, Yan; Zhou, Zhi-Yuan; Shi, Bao-Sen; Guo, Guang-Can
2016-11-14
Entanglement in multiple degrees of freedom has many benefits over entanglement in a single one. The former enables quantum communication with higher channel capacity and more efficient quantum information processing and is compatible with diverse quantum networks. Establishing multi-degree-of-freedom entangled memories is not only vital for high-capacity quantum communication and computing, but also promising for enhanced violations of nonlocality in quantum systems. However, there have been yet no reports of the experimental realization of multi-degree-of-freedom entangled memories. Here we experimentally established hyper- and hybrid entanglement in multiple degrees of freedom, including path (K-vector) and orbital angular momentum, between two separated atomic ensembles by using quantum storage. The results are promising for achieving quantum communication and computing with many degrees of freedom.
NASA Technical Reports Server (NTRS)
Buttgenbach, Thomas H.
1993-01-01
The hybrid antenna discussed here is defined as a dielectric lens-antenna as a special case of an extended hemi-spherical dielectric lens that is operated in the diffraction limited regime. It is a modified version of the planar antenna on a lens scheme developed by Rutledge. The dielectric lens-antenna is fed by a planar-structure antenna, which is mounted on the flat side of the dielectric lens-antenna using it as a substrate, and the combination is termed a hybrid antenna. Beam pattern and aperture efficiency measurements were made at millimeter and submillimeter wavelengths as a function of extension of the hemi- spherical lens and different lens sizes. An optimum extension distance is found experimentally and numerically for which excellent beam patterns and simultaneously high aperture efficiencies can be achieved. At 115 GHz the aperture efficiency was measured to be (76 4 +/- 6) % for a diffraction limited beam with sidelobes below -17 dB. Results of a single hybrid antenna with an integrated Superconductor-Insulator-Superconductor (SIS) detector and a broad-band matching structure at submillimeter wavelengths are presented. The hybrid antenna is diffraction limited, space efficient in an array due to its high aperture efficiency, and is easily mass produced, thus being well suited for focal plane heterodyne receiver arrays.
Hybrid Spreading Mechanisms and T Cell Activation Shape the Dynamics of HIV-1 Infection
Zhang, Changwang; Zhou, Shi; Groppelli, Elisabetta; Pellegrino, Pierre; Williams, Ian; Borrow, Persephone; Chain, Benjamin M.; Jolly, Clare
2015-01-01
HIV-1 can disseminate between susceptible cells by two mechanisms: cell-free infection following fluid-phase diffusion of virions and by highly-efficient direct cell-to-cell transmission at immune cell contacts. The contribution of this hybrid spreading mechanism, which is also a characteristic of some important computer worm outbreaks, to HIV-1 progression in vivo remains unknown. Here we present a new mathematical model that explicitly incorporates the ability of HIV-1 to use hybrid spreading mechanisms and evaluate the consequences for HIV-1 pathogenenesis. The model captures the major phases of the HIV-1 infection course of a cohort of treatment naive patients and also accurately predicts the results of the Short Pulse Anti-Retroviral Therapy at Seroconversion (SPARTAC) trial. Using this model we find that hybrid spreading is critical to seed and establish infection, and that cell-to-cell spread and increased CD4+ T cell activation are important for HIV-1 progression. Notably, the model predicts that cell-to-cell spread becomes increasingly effective as infection progresses and thus may present a considerable treatment barrier. Deriving predictions of various treatments’ influence on HIV-1 progression highlights the importance of earlier intervention and suggests that treatments effectively targeting cell-to-cell HIV-1 spread can delay progression to AIDS. This study suggests that hybrid spreading is a fundamental feature of HIV infection, and provides the mathematical framework incorporating this feature with which to evaluate future therapeutic strategies. PMID:25837979
Solution processable inverted structure ZnO-organic hybrid heterojuction white LEDs
NASA Astrophysics Data System (ADS)
Bano, N.; Hussain, I.; Soomro, M. Y.; EL-Naggar, A. M.; Albassam, A. A.
2018-05-01
Improving luminance efficiency and colour purity are the most important challenges for zinc oxide (ZnO)-organic hybrid heterojunction light emitting diodes (LEDs), affecting their large area applications. If ZnO-organic hybrid heterojunction white LEDs are fabricated by a hydrothermal method, it is difficult to obtain pure and stable blue emission from PFO due to the presence of an undesirable green emission. In this paper, we present an inverted-structure ZnO-organic hybrid heterojunction LED to avoid green emission from PFO, which mainly originates during device processing. With this configuration, each ZnO nanorod (NR) forms a discrete p-n junction; therefore, large-area white LEDs can be designed without compromising the junction area. The configuration used for this novel structure is glass/ZnO NRs/PFO/PEDOT:PSS/L-ITO, which enables the development of efficient, large-area and low-cost hybrid heterojunction LEDs. Inverted-structure ZnO-organic hybrid heterojunction white LEDs offer several improvements in terms of brightness, size, colour, external quantum efficiency and a wider applicability as compared to normal architecture LEDs.
NASA Technical Reports Server (NTRS)
Reddy, C. J.; Deshpande, M. D.; Cockrell, C. R.; Beck, F. B.
2004-01-01
The hybrid Finite Element Method(FEM)/Method of Moments(MoM) technique has become popular over the last few years due to its flexibility to handle arbitrarily shaped objects with complex materials. One of the disadvantages of this technique, however, is the computational cost involved in obtaining solutions over a frequency range as computations are repeated for each frequency. In this paper, the application of Model Based Parameter Estimation (MBPE) method[1] with the hybrid FEM/MoM technique is presented for fast computation of frequency response of cavity-backed apertures[2,3]. In MBPE, the electric field is expanded in a rational function of two polynomials. The coefficients of the rational function are obtained using the frequency-derivatives of the integro-differential equation formed by the hybrid FEM/MoM technique. Using the rational function approximation, the electric field is calculated at different frequencies from which the frequency response is obtained.
HYDES: A generalized hybrid computer program for studying turbojet or turbofan engine dynamics
NASA Technical Reports Server (NTRS)
Szuch, J. R.
1974-01-01
This report describes HYDES, a hybrid computer program capable of simulating one-spool turbojet, two-spool turbojet, or two-spool turbofan engine dynamics. HYDES is also capable of simulating two- or three-stream turbofans with or without mixing of the exhaust streams. The program is intended to reduce the time required for implementing dynamic engine simulations. HYDES was developed for running on the Lewis Research Center's Electronic Associates (EAI) 690 Hybrid Computing System and satisfies the 16384-word core-size and hybrid-interface limits of that machine. The program could be modified for running on other computing systems. The use of HYDES to simulate a single-spool turbojet and a two-spool, two-stream turbofan engine is demonstrated. The form of the required input data is shown and samples of output listings (teletype) and transient plots (x-y plotter) are provided. HYDES is shown to be capable of performing both steady-state design and off-design analyses and transient analyses.
Li, Jun-qing; Pan, Quan-ke; Mao, Kun
2014-01-01
A hybrid algorithm which combines particle swarm optimization (PSO) and iterated local search (ILS) is proposed for solving the hybrid flowshop scheduling (HFS) problem with preventive maintenance (PM) activities. In the proposed algorithm, different crossover operators and mutation operators are investigated. In addition, an efficient multiple insert mutation operator is developed for enhancing the searching ability of the algorithm. Furthermore, an ILS-based local search procedure is embedded in the algorithm to improve the exploitation ability of the proposed algorithm. The detailed experimental parameter for the canonical PSO is tuning. The proposed algorithm is tested on the variation of 77 Carlier and Néron's benchmark problems. Detailed comparisons with the present efficient algorithms, including hGA, ILS, PSO, and IG, verify the efficiency and effectiveness of the proposed algorithm. PMID:24883414
Lamination residual stresses in hybrid composites, part 1
NASA Technical Reports Server (NTRS)
Daniel, I. M.; Liber, T.
1976-01-01
An experimental investigation was conducted to study lamination residual stresses for various material and loading parameters. The effects of hybridization on residual stresses and residual properties after thermal cycling under load were determined in angle-ply graphite/Kevlar/epoxy and graphite/S-glass/epoxy laminates. Residual strains in the graphite plies are not appreciably affected by the type and number of hybridizing plies. Computed residual stresses at room temperature in the S-glass plies reach values up to seventy-five percent of the transverse strength of the material. Computed residual stresses in the graphite plies exceed the static strength by approximately ten percent. In the case of Kevlar plies, computed residual stresses far exceed the static strength indicating possible early failure of these plies. Static testing of the hybrids above indicates that failure is governed by the ultimate strain of the graphite plies. In thermally cycled hybrids, in general, residual moduli were somewhat lower and residual strengths were higher than initial values.
A heuristic approach using multiple criteria for environmentally benign 3PLs selection
NASA Astrophysics Data System (ADS)
Kongar, Elif
2005-11-01
Maintaining competitiveness in an environment where price and quality differences between competing products are disappearing depends on the company's ability to reduce costs and supply time. Timely responses to rapidly changing market conditions require an efficient Supply Chain Management (SCM). Outsourcing logistics to third-party logistics service providers (3PLs) is one commonly used way of increasing the efficiency of logistics operations, while creating a more "core competency focused" business environment. However, this alone may not be sufficient. Due to recent environmental regulations and growing public awareness regarding environmental issues, 3PLs need to be not only efficient but also environmentally benign to maintain companies' competitiveness. Even though an efficient and environmentally benign combination of 3PLs can theoretically be obtained using exhaustive search algorithms, heuristics approaches to the selection process may be superior in terms of the computational complexity. In this paper, a hybrid approach that combines a multiple criteria Genetic Algorithm (GA) with Linear Physical Weighting Algorithm (LPPW) to be used in efficient and environmentally benign 3PLs is proposed. A numerical example is also provided to illustrate the method and the analyses.
Efficient Generation of Long-Lived Triplet Excitons in 2D Hybrid Perovskite.
Younts, Robert; Duan, Hsin-Sheng; Gautam, Bhoj; Saparov, Bayrammurad; Liu, Jie; Mongin, Cedric; Castellano, Felix N; Mitzi, David B; Gundogdu, Kenan
2017-03-01
Triplet excitons form in quasi-2D hybrid inorganic-organic perovskites and diffuse over 100 nm before radiating with >11% photoluminescence quantum efficiency (PLQE) at low temperatures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Hybrid Task Graph Scheduler for High Performance Image Processing Workflows.
Blattner, Timothy; Keyrouz, Walid; Bhattacharyya, Shuvra S; Halem, Milton; Brady, Mary
2017-12-01
Designing applications for scalability is key to improving their performance in hybrid and cluster computing. Scheduling code to utilize parallelism is difficult, particularly when dealing with data dependencies, memory management, data motion, and processor occupancy. The Hybrid Task Graph Scheduler (HTGS) improves programmer productivity when implementing hybrid workflows for multi-core and multi-GPU systems. The Hybrid Task Graph Scheduler (HTGS) is an abstract execution model, framework, and API that increases programmer productivity when implementing hybrid workflows for such systems. HTGS manages dependencies between tasks, represents CPU and GPU memories independently, overlaps computations with disk I/O and memory transfers, keeps multiple GPUs occupied, and uses all available compute resources. Through these abstractions, data motion and memory are explicit; this makes data locality decisions more accessible. To demonstrate the HTGS application program interface (API), we present implementations of two example algorithms: (1) a matrix multiplication that shows how easily task graphs can be used; and (2) a hybrid implementation of microscopy image stitching that reduces code size by ≈ 43% compared to a manually coded hybrid workflow implementation and showcases the minimal overhead of task graphs in HTGS. Both of the HTGS-based implementations show good performance. In image stitching the HTGS implementation achieves similar performance to the hybrid workflow implementation. Matrix multiplication with HTGS achieves 1.3× and 1.8× speedup over the multi-threaded OpenBLAS library for 16k × 16k and 32k × 32k size matrices, respectively.
AMITIS: A 3D GPU-Based Hybrid-PIC Model for Space and Plasma Physics
NASA Astrophysics Data System (ADS)
Fatemi, Shahab; Poppe, Andrew R.; Delory, Gregory T.; Farrell, William M.
2017-05-01
We have developed, for the first time, an advanced modeling infrastructure in space simulations (AMITIS) with an embedded three-dimensional self-consistent grid-based hybrid model of plasma (kinetic ions and fluid electrons) that runs entirely on graphics processing units (GPUs). The model uses NVIDIA GPUs and their associated parallel computing platform, CUDA, developed for general purpose processing on GPUs. The model uses a single CPU-GPU pair, where the CPU transfers data between the system and GPU memory, executes CUDA kernels, and writes simulation outputs on the disk. All computations, including moving particles, calculating macroscopic properties of particles on a grid, and solving hybrid model equations are processed on a single GPU. We explain various computing kernels within AMITIS and compare their performance with an already existing well-tested hybrid model of plasma that runs in parallel using multi-CPU platforms. We show that AMITIS runs ∼10 times faster than the parallel CPU-based hybrid model. We also introduce an implicit solver for computation of Faraday’s Equation, resulting in an explicit-implicit scheme for the hybrid model equation. We show that the proposed scheme is stable and accurate. We examine the AMITIS energy conservation and show that the energy is conserved with an error < 0.2% after 500,000 timesteps, even when a very low number of particles per cell is used.
Yu, Yun; Degnan, James H.; Nakhleh, Luay
2012-01-01
Gene tree topologies have proven a powerful data source for various tasks, including species tree inference and species delimitation. Consequently, methods for computing probabilities of gene trees within species trees have been developed and widely used in probabilistic inference frameworks. All these methods assume an underlying multispecies coalescent model. However, when reticulate evolutionary events such as hybridization occur, these methods are inadequate, as they do not account for such events. Methods that account for both hybridization and deep coalescence in computing the probability of a gene tree topology currently exist for very limited cases. However, no such methods exist for general cases, owing primarily to the fact that it is currently unknown how to compute the probability of a gene tree topology within the branches of a phylogenetic network. Here we present a novel method for computing the probability of gene tree topologies on phylogenetic networks and demonstrate its application to the inference of hybridization in the presence of incomplete lineage sorting. We reanalyze a Saccharomyces species data set for which multiple analyses had converged on a species tree candidate. Using our method, though, we show that an evolutionary hypothesis involving hybridization in this group has better support than one of strict divergence. A similar reanalysis on a group of three Drosophila species shows that the data is consistent with hybridization. Further, using extensive simulation studies, we demonstrate the power of gene tree topologies at obtaining accurate estimates of branch lengths and hybridization probabilities of a given phylogenetic network. Finally, we discuss identifiability issues with detecting hybridization, particularly in cases that involve extinction or incomplete sampling of taxa. PMID:22536161
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petroccia, H; O'Reilly, S; Bolch, W
Purpose: Radiation-induced cancer effects are well-documented following radiotherapy. Further investigation is needed to more accurately determine a dose-response relationship for late radiation effects. Recent dosimetry studies tend to use representative patients (Taylor 2009) or anthropomorphic phantoms (Wirth 2008) for estimating organ mean doses. In this study, we compare hybrid computational phantoms to patient-specific voxel phantoms to test the accuracy of University of Florida Hybrid Phantom Library (UFHP Library) for historical dose reconstructions. Methods: A cohort of 10 patients with CT images was used to reproduce the data that was collected historically for Hodgkin's lymphoma patients (i.e. caliper measurements and photographs).more » Four types of phantoms were generated to show a range of refinement from reference hybrid-computational phantom to patient-specific phantoms. Each patient is matched to a reference phantom from the UFHP Library based on height and weight. The reference phantom is refined in the anterior/posterior direction to create a ‘caliper-scaled phantom’. A photograph is simulated using a surface rendering from segmented CT images. Further refinement in the lateral direction is performed using ratios from a simulated-photograph to create a ‘photograph and caliper-scaled phantom’; breast size and position is visually adjusted. Patient-specific hybrid phantoms, with matched organ volumes, are generated and show the capabilities of the UF Hybrid Phantom Library. Reference, caliper-scaled, photograph and caliper-scaled, and patient-specific hybrid phantoms are compared with patient-specific voxel phantoms to determine the accuracy of the study. Results: Progression from reference phantom to patient specific hybrid shows good agreement with the patient specific voxel phantoms. Each stage of refinement shows an overall trend of improvement in dose accuracy within the study, which suggests that computational phantoms can show improved accuracy in historical dose estimates. Conclusion: Computational hybrid phantoms show promise for improved accuracy within retrospective studies when CTs and other x-ray images are not available.« less
Mo, Shaoxing; Lu, Dan; Shi, Xiaoqing; ...
2017-12-27
Global sensitivity analysis (GSA) and uncertainty quantification (UQ) for groundwater modeling are challenging because of the model complexity and significant computational requirements. To reduce the massive computational cost, a cheap-to-evaluate surrogate model is usually constructed to approximate and replace the expensive groundwater models in the GSA and UQ. Constructing an accurate surrogate requires actual model simulations on a number of parameter samples. Thus, a robust experimental design strategy is desired to locate informative samples so as to reduce the computational cost in surrogate construction and consequently to improve the efficiency in the GSA and UQ. In this study, we developmore » a Taylor expansion-based adaptive design (TEAD) that aims to build an accurate global surrogate model with a small training sample size. TEAD defines a novel hybrid score function to search informative samples, and a robust stopping criterion to terminate the sample search that guarantees the resulted approximation errors satisfy the desired accuracy. The good performance of TEAD in building global surrogate models is demonstrated in seven analytical functions with different dimensionality and complexity in comparison to two widely used experimental design methods. The application of the TEAD-based surrogate method in two groundwater models shows that the TEAD design can effectively improve the computational efficiency of GSA and UQ for groundwater modeling.« less
Tangprasertchai, Narin S; Zhang, Xiaojun; Ding, Yuan; Tham, Kenneth; Rohs, Remo; Haworth, Ian S; Qin, Peter Z
2015-01-01
The technique of site-directed spin labeling (SDSL) provides unique information on biomolecules by monitoring the behavior of a stable radical tag (i.e., spin label) using electron paramagnetic resonance (EPR) spectroscopy. In this chapter, we describe an approach in which SDSL is integrated with computational modeling to map conformations of nucleic acids. This approach builds upon a SDSL tool kit previously developed and validated, which includes three components: (i) a nucleotide-independent nitroxide probe, designated as R5, which can be efficiently attached at defined sites within arbitrary nucleic acid sequences; (ii) inter-R5 distances in the nanometer range, measured via pulsed EPR; and (iii) an efficient program, called NASNOX, that computes inter-R5 distances on given nucleic acid structures. Following a general framework of data mining, our approach uses multiple sets of measured inter-R5 distances to retrieve "correct" all-atom models from a large ensemble of models. The pool of models can be generated independently without relying on the inter-R5 distances, thus allowing a large degree of flexibility in integrating the SDSL-measured distances with a modeling approach best suited for the specific system under investigation. As such, the integrative experimental/computational approach described here represents a hybrid method for determining all-atom models based on experimentally-derived distance measurements. © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mo, Shaoxing; Lu, Dan; Shi, Xiaoqing
Global sensitivity analysis (GSA) and uncertainty quantification (UQ) for groundwater modeling are challenging because of the model complexity and significant computational requirements. To reduce the massive computational cost, a cheap-to-evaluate surrogate model is usually constructed to approximate and replace the expensive groundwater models in the GSA and UQ. Constructing an accurate surrogate requires actual model simulations on a number of parameter samples. Thus, a robust experimental design strategy is desired to locate informative samples so as to reduce the computational cost in surrogate construction and consequently to improve the efficiency in the GSA and UQ. In this study, we developmore » a Taylor expansion-based adaptive design (TEAD) that aims to build an accurate global surrogate model with a small training sample size. TEAD defines a novel hybrid score function to search informative samples, and a robust stopping criterion to terminate the sample search that guarantees the resulted approximation errors satisfy the desired accuracy. The good performance of TEAD in building global surrogate models is demonstrated in seven analytical functions with different dimensionality and complexity in comparison to two widely used experimental design methods. The application of the TEAD-based surrogate method in two groundwater models shows that the TEAD design can effectively improve the computational efficiency of GSA and UQ for groundwater modeling.« less
Kearns, F L; Hudson, P S; Boresch, S; Woodcock, H L
2016-01-01
Enzyme activity is inherently linked to free energies of transition states, ligand binding, protonation/deprotonation, etc.; these free energies, and thus enzyme function, can be affected by residue mutations, allosterically induced conformational changes, and much more. Therefore, being able to predict free energies associated with enzymatic processes is critical to understanding and predicting their function. Free energy simulation (FES) has historically been a computational challenge as it requires both the accurate description of inter- and intramolecular interactions and adequate sampling of all relevant conformational degrees of freedom. The hybrid quantum mechanical molecular mechanical (QM/MM) framework is the current tool of choice when accurate computations of macromolecular systems are essential. Unfortunately, robust and efficient approaches that employ the high levels of computational theory needed to accurately describe many reactive processes (ie, ab initio, DFT), while also including explicit solvation effects and accounting for extensive conformational sampling are essentially nonexistent. In this chapter, we will give a brief overview of two recently developed methods that mitigate several major challenges associated with QM/MM FES: the QM non-Boltzmann Bennett's acceptance ratio method and the QM nonequilibrium work method. We will also describe usage of these methods to calculate free energies associated with (1) relative properties and (2) along reaction paths, using simple test cases with relevance to enzymes examples. © 2016 Elsevier Inc. All rights reserved.
Tangprasertchai, Narin S.; Zhang, Xiaojun; Ding, Yuan; Tham, Kenneth; Rohs, Remo; Haworth, Ian S.; Qin, Peter Z.
2015-01-01
The technique of site-directed spin labeling (SDSL) provides unique information on biomolecules by monitoring the behavior of a stable radical tag (i.e., spin label) using electron paramagnetic resonance (EPR) spectroscopy. In this chapter, we describe an approach in which SDSL is integrated with computational modeling to map conformations of nucleic acids. This approach builds upon a SDSL tool kit previously developed and validated, which includes three components: (i) a nucleotide-independent nitroxide probe, designated as R5, which can be efficiently attached at defined sites within arbitrary nucleic acid sequences; (ii) inter-R5 distances in the nanometer range, measured via pulsed EPR; and (iii) an efficient program, called NASNOX, that computes inter-R5 distances on given nucleic acid structures. Following a general framework of data mining, our approach uses multiple sets of measured inter-R5 distances to retrieve “correct” all-atom models from a large ensemble of models. The pool of models can be generated independently without relying on the inter-R5 distances, thus allowing a large degree of flexibility in integrating the SDSL-measured distances with a modeling approach best suited for the specific system under investigation. As such, the integrative experimental/computational approach described here represents a hybrid method for determining all-atom models based on experimentally-derived distance measurements. PMID:26477260
Hybrid computer optimization of systems with random parameters
NASA Technical Reports Server (NTRS)
White, R. C., Jr.
1972-01-01
A hybrid computer Monte Carlo technique for the simulation and optimization of systems with random parameters is presented. The method is applied to the simultaneous optimization of the means and variances of two parameters in the radar-homing missile problem treated by McGhee and Levine.
ERIC Educational Resources Information Center
Brunner, David James
2009-01-01
Organizing refers to methods of distributing physical and symbolic tasks among multiple agents in order to achieve goals. My dissertation investigates the dynamics of organizing in hybrid information processing systems that incorporate both humans and computers. To explain the behavior of these hybrid systems, I develop and partially test a theory…
Computation and brain processes, with special reference to neuroendocrine systems.
Toni, Roberto; Spaletta, Giulia; Casa, Claudia Della; Ravera, Simone; Sandri, Giorgio
2007-01-01
The development of neural networks and brain automata has made neuroscientists aware that the performance limits of these brain-like devices lies, at least in part, in their computational power. The computational basis of a. standard cybernetic design, in fact, refers to that of a discrete and finite state machine or Turing Machine (TM). In contrast, it has been suggested that a number of human cerebral activites, from feedback controls up to mental processes, rely on a mixing of both finitary, digital-like and infinitary, continuous-like procedures. Therefore, the central nervous system (CNS) of man would exploit a form of computation going beyond that of a TM. This "non conventional" computation has been called hybrid computation. Some basic structures for hybrid brain computation are believed to be the brain computational maps, in which both Turing-like (digital) computation and continuous (analog) forms of calculus might occur. The cerebral cortex and brain stem appears primary candidate for this processing. However, also neuroendocrine structures like the hypothalamus are believed to exhibit hybrid computional processes, and might give rise to computational maps. Current theories on neural activity, including wiring and volume transmission, neuronal group selection and dynamic evolving models of brain automata, bring fuel to the existence of natural hybrid computation, stressing a cooperation between discrete and continuous forms of communication in the CNS. In addition, the recent advent of neuromorphic chips, like those to restore activity in damaged retina and visual cortex, suggests that assumption of a discrete-continuum polarity in designing biocompatible neural circuitries is crucial for their ensuing performance. In these bionic structures, in fact, a correspondence exists between the original anatomical architecture and synthetic wiring of the chip, resulting in a correspondence between natural and cybernetic neural activity. Thus, chip "form" provides a continuum essential to chip "function". We conclude that it is reasonable to predict the existence of hybrid computational processes in the course of many human, brain integrating activities, urging development of cybernetic approaches based on this modelling for adequate reproduction of a variety of cerebral performances.
Cannibalism in single-batch hybrid catfish production ponds
USDA-ARS?s Scientific Manuscript database
Hybrid catfish are more efficiently harvested by seining than are Channel Catfish. Due to that, and their faster growth, hybrids are typically produced in “single-batch” production systems, either in intensively-aerated commercial ponds or in split-pond systems. In either production system, hybrids...
Influence of electrical and hybrid heating on bread quality during baking.
Chhanwal, N; Ezhilarasi, P N; Indrani, D; Anandharamakrishnan, C
2015-07-01
Energy efficiency and product quality are the key factors for any food processing industry. The aim of the study was to develop energy and time efficient baking process. The hybrid heating (Infrared + Electrical) oven was designed and fabricated using two infrared lamps and electric heating coils. The developed oven can be operated in serial or combined heating modes. The standardized baking conditions were 18 min at 220°C to produce the bread from hybrid heating oven. Effect of baking with hybrid heating mode (H-1 and H-2, hybrid oven) on the quality characteristics of bread as against conventional heating mode (C-1, pilot scale oven; C-2, hybrid oven) was studied. The results showed that breads baked in hybrid heating mode (H-2) had higher moisture content (28.87%), higher volume (670 cm(3)), lower crumb firmness value (374.6 g), and overall quality score (67.0) comparable to conventional baking process (68.5). Moreover, bread baked in hybrid heating mode showed 28% reduction in baking time.
Hybrid parallel computing architecture for multiview phase shifting
NASA Astrophysics Data System (ADS)
Zhong, Kai; Li, Zhongwei; Zhou, Xiaohui; Shi, Yusheng; Wang, Congjun
2014-11-01
The multiview phase-shifting method shows its powerful capability in achieving high resolution three-dimensional (3-D) shape measurement. Unfortunately, this ability results in very high computation costs and 3-D computations have to be processed offline. To realize real-time 3-D shape measurement, a hybrid parallel computing architecture is proposed for multiview phase shifting. In this architecture, the central processing unit can co-operate with the graphic processing unit (GPU) to achieve hybrid parallel computing. The high computation cost procedures, including lens distortion rectification, phase computation, correspondence, and 3-D reconstruction, are implemented in GPU, and a three-layer kernel function model is designed to simultaneously realize coarse-grained and fine-grained paralleling computing. Experimental results verify that the developed system can perform 50 fps (frame per second) real-time 3-D measurement with 260 K 3-D points per frame. A speedup of up to 180 times is obtained for the performance of the proposed technique using a NVIDIA GT560Ti graphics card rather than a sequential C in a 3.4 GHZ Inter Core i7 3770.
Hybrid Upwinding for Two-Phase Flow in Heterogeneous Porous Media with Buoyancy and Capillarity
NASA Astrophysics Data System (ADS)
Hamon, F. P.; Mallison, B.; Tchelepi, H.
2016-12-01
In subsurface flow simulation, efficient discretization schemes for the partial differential equations governing multiphase flow and transport are critical. For highly heterogeneous porous media, the temporal discretization of choice is often the unconditionally stable fully implicit (backward-Euler) method. In this scheme, the simultaneous update of all the degrees of freedom requires solving large algebraic nonlinear systems at each time step using Newton's method. This is computationally expensive, especially in the presence of strong capillary effects driven by abrupt changes in porosity and permeability between different rock types. Therefore, discretization schemes that reduce the simulation cost by improving the nonlinear convergence rate are highly desirable. To speed up nonlinear convergence, we present an efficient fully implicit finite-volume scheme for immiscible two-phase flow in the presence of strong capillary forces. In this scheme, the discrete viscous, buoyancy, and capillary spatial terms are evaluated separately based on physical considerations. We build on previous work on Implicit Hybrid Upwinding (IHU) by using the upstream saturations with respect to the total velocity to compute the relative permeabilities in the viscous term, and by determining the directionality of the buoyancy term based on the phase density differences. The capillary numerical flux is decomposed into a rock- and geometry-dependent transmissibility factor, a nonlinear capillary diffusion coefficient, and an approximation of the saturation gradient. Combining the viscous, buoyancy, and capillary terms, we obtain a numerical flux that is consistent, bounded, differentiable, and monotone for homogeneous one-dimensional flow. The proposed scheme also accounts for spatially discontinuous capillary pressure functions. Specifically, at the interface between two rock types, the numerical scheme accurately honors the entry pressure condition by solving a local nonlinear problem to compute the numerical flux. Heterogeneous numerical tests demonstrate that this extended IHU scheme is non-oscillatory and convergent upon refinement. They also illustrate the superior accuracy and nonlinear convergence rate of the IHU scheme compared with the standard phase-based upstream weighting approach.
NASA Astrophysics Data System (ADS)
Liu, Xiong; Cheng, Yuming; Li, Xuefeng; Dong, Jinfeng
2018-05-01
In this work, we developed a new type of photo-catalysts composed of the urchin-like cupric oxide (CuO) microparticle and polyvinylidene fluoride (PVDF) hybrid composites by the convenient organic-inorganic hybrid strategy, which show high-efficiency and conveniently recyclable for dye degradation including methylene blue (MB), Congo red (CR), and malachite green (MG) by visible light irradiation. The micro-structural characteristics of urchin-like CuO microparticles are crucial and dominant over the photo-degrading efficiency of hybrid catalyst because of their highly exposed {0 0 2} facet and larger specific surface area. Simultaneously, the intrinsic porous framework of PVDF membrane not only remains the excellent photo-catalytic activity of urchin-like CuO microparticles but also facilitates the enrichment of dyes on the membrane, and thereby synergistically contributing to the photo-catalytic efficiency. The microstructures of both urchin-like CuO microparticles and hybrid catalysts are systematically characterized by various techniques including scanning electron microscopy (SEM), transmission electron microscope (TEM), high-resolution transmission electron microscope (HRTEM), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and nitrogen adsorption/desorption isotherms, which evidently support the mentioned mechanism.
Caustic Singularities Of High-Gain, Dual-Shaped Reflectors
NASA Technical Reports Server (NTRS)
Galindo, Victor; Veruttipong, Thavath W.; Imbriale, William A.; Rengarajan, Sambiam
1991-01-01
Report presents study of some sources of error in analysis, by geometric theory of diffraction (GTD), of performance of high-gain, dual-shaped antenna reflector. Study probes into underlying analytic causes of singularity, with view toward devising and testing practical methods to avoid problems caused by singularity. Hybrid physical optics (PO) approach used to study near-field spillover or noise-temperature characteristics of high-gain relector antenna efficiently and accurately. Report illustrates this approach and underlying principles by presenting numerical results, for both offset and symmetrical reflector systems, computed by GTD, PO, and PO/GO methods.
Algorithms for classification of astronomical object spectra
NASA Astrophysics Data System (ADS)
Wasiewicz, P.; Szuppe, J.; Hryniewicz, K.
2015-09-01
Obtaining interesting celestial objects from tens of thousands or even millions of recorded optical-ultraviolet spectra depends not only on the data quality but also on the accuracy of spectra decomposition. Additionally rapidly growing data volumes demands higher computing power and/or more efficient algorithms implementations. In this paper we speed up the process of substracting iron transitions and fitting Gaussian functions to emission peaks utilising C++ and OpenCL methods together with the NOSQL database. In this paper we implemented typical astronomical methods of detecting peaks in comparison to our previous hybrid methods implemented with CUDA.
Viscous fingering and channeling in chemical enhanced oil recovery
NASA Astrophysics Data System (ADS)
Daripa, Prabir; Dutta, Sourav
2017-11-01
We have developed a hybrid numerical method based on discontinuous finite element method and modified method of characteristics to compute the multiphase multicomponent fluid flow in porous media in the context of chemical enhanced oil recovery. We use this method to study the effect of various chemical components on the viscous fingering and channeling in rectilinear and radial flow configurations. We will also discuss about the efficiency of various flooding schemes based on these understandings. Time permitting, we will discuss about the effect of variable injection rates in these practical setting. U.S. National Science Foundation Grant DMS-1522782.
Complementary Reliability-Based Decodings of Binary Linear Block Codes
NASA Technical Reports Server (NTRS)
Fossorier, Marc P. C.; Lin, Shu
1997-01-01
This correspondence presents a hybrid reliability-based decoding algorithm which combines the reprocessing method based on the most reliable basis and a generalized Chase-type algebraic decoder based on the least reliable positions. It is shown that reprocessing with a simple additional algebraic decoding effort achieves significant coding gain. For long codes, the order of reprocessing required to achieve asymptotic optimum error performance is reduced by approximately 1/3. This significantly reduces the computational complexity, especially for long codes. Also, a more efficient criterion for stopping the decoding process is derived based on the knowledge of the algebraic decoding solution.
NASA Technical Reports Server (NTRS)
Macrossan, M. N.
1995-01-01
The direct simulation Monte Carlo (DSMC) method is the established technique for the simulation of rarefied gas flows. In some flows of engineering interest, such as occur for aero-braking spacecraft in the upper atmosphere, DSMC can become prohibitively expensive in CPU time because some regions of the flow, particularly on the windward side of blunt bodies, become collision dominated. As an alternative to using a hybrid DSMC and continuum gas solver (Euler or Navier-Stokes solver) this work is aimed at making the particle simulation method efficient in the high density regions of the flow. A high density, infinite collision rate limit of DSMC, the Equilibrium Particle Simulation method (EPSM) was proposed some 15 years ago. EPSM is developed here for the flow of a gas consisting of many different species of molecules and is shown to be computationally efficient (compared to DSMC) for high collision rate flows. It thus offers great potential as part of a hybrid DSMC/EPSM code which could handle flows in the transition regime between rarefied gas flows and fully continuum flows. As a first step towards this goal a pure EPSM code is described. The next step of combining DSMC and EPSM is not attempted here but should be straightforward. EPSM and DSMC are applied to Taylor-Couette flow with Kn = 0.02 and 0.0133 and S(omega) = 3). Toroidal vortices develop for both methods but some differences are found, as might be expected for the given flow conditions. EPSM appears to be less sensitive to the sequence of random numbers used in the simulation than is DSMC and may also be more dissipative. The question of the origin and the magnitude of the dissipation in EPSM is addressed. It is suggested that this analysis is also relevant to DSMC when the usual accuracy requirements on the cell size and decoupling time step are relaxed in the interests of computational efficiency.
Gao, Ke; Zhu, Zonglong; Xu, Bo; Jo, Sae Byeok; Kan, Yuanyuan; Peng, Xiaobin; Jen, Alex K-Y
2017-12-01
Employing a layer of bulk-heterojunction (BHJ) organic semiconductors on top of perovskite to further extend its photoresponse is considered as a simple and promising way to enhance the efficiency of perovskite-based solar cells, instead of using tandem devices or near infrared (NIR)-absorbing Sn-containing perovskites. However, the progress made from this approach is quite limited because very few such hybrid solar cells can simultaneously show high short-circuit current (J SC ) and fill factor (FF). To find an appropriate NIR-absorbing BHJ is essential for highly efficient, organic, photovoltaics (OPV)/perovskite hybrid solar cells. The materials involved in the BHJ layer not only need to have broad photoresponse to increase J SC , but also possess suitable energy levels and high mobility to afford high V OC and FF. In this work, a new porphyrin is synthesized and blended with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) to function as an efficient BHJ for OPV/perovskite hybrid solar cells. The extended photoresponse, well-matched energy levels, and high hole mobility from optimized BHJ morphology afford a very high power conversion efficiency (PCE) (19.02%) with high V oc , J SC , and FF achieved simultaneously. This is the highest value reported so far for such hybrid devices, which demonstrates the feasibility of further improving the efficiency of perovskite devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yates, Christian A; Flegg, Mark B
2015-05-06
Spatial reaction-diffusion models have been employed to describe many emergent phenomena in biological systems. The modelling technique most commonly adopted in the literature implements systems of partial differential equations (PDEs), which assumes there are sufficient densities of particles that a continuum approximation is valid. However, owing to recent advances in computational power, the simulation and therefore postulation, of computationally intensive individual-based models has become a popular way to investigate the effects of noise in reaction-diffusion systems in which regions of low copy numbers exist. The specific stochastic models with which we shall be concerned in this manuscript are referred to as 'compartment-based' or 'on-lattice'. These models are characterized by a discretization of the computational domain into a grid/lattice of 'compartments'. Within each compartment, particles are assumed to be well mixed and are permitted to react with other particles within their compartment or to transfer between neighbouring compartments. Stochastic models provide accuracy, but at the cost of significant computational resources. For models that have regions of both low and high concentrations, it is often desirable, for reasons of efficiency, to employ coupled multi-scale modelling paradigms. In this work, we develop two hybrid algorithms in which a PDE in one region of the domain is coupled to a compartment-based model in the other. Rather than attempting to balance average fluxes, our algorithms answer a more fundamental question: 'how are individual particles transported between the vastly different model descriptions?' First, we present an algorithm derived by carefully redefining the continuous PDE concentration as a probability distribution. While this first algorithm shows very strong convergence to analytical solutions of test problems, it can be cumbersome to simulate. Our second algorithm is a simplified and more efficient implementation of the first, it is derived in the continuum limit over the PDE region alone. We test our hybrid methods for functionality and accuracy in a variety of different scenarios by comparing the averaged simulations with analytical solutions of PDEs for mean concentrations. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Copeland, Alex
2012-06-01
Alex Copeland on "Assembly of large metagenome data sets using a Convey HC-1 hybrid core computer" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.
for the game. Subsequent duels , flown with single armed escorts, calculated reduction in losses and damage states. For the study, hybrid computer...6) a duel between a ground weapon, armed escort, and formation of lift aircraft. (Author)
A Hybrid Computer Simulation to Generate the DNA Distribution of a Cell Population.
ERIC Educational Resources Information Center
Griebling, John L.; Adams, William S.
1981-01-01
Described is a method of simulating the formation of a DNA distribution, on which statistical results and experimentally measured parameters from DNA distribution and percent-labeled mitosis studies are combined. An EAI-680 and DECSystem-10 Hybrid Computer configuration are used. (Author/CS)
Copeland, Alex [DOE JGI
2017-12-09
Alex Copeland on "Assembly of large metagenome data sets using a Convey HC-1 hybrid core computer" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.
ERIC Educational Resources Information Center
Zilka, Gila
2017-01-01
The viewing and browsing habits of Israeli children age 8-12 are the subject of this study. The participants did not have a computer at home and were given either a desktop or hybrid computer for home use. Television viewing and internet surfing habits were described, examining whether the children did so with their parents, family members, and…