Sample records for computed cross sections

  1. A computer program for analyzing channel geometry

    USGS Publications Warehouse

    Regan, R.S.; Schaffranek, R.W.

    1985-01-01

    The Channel Geometry Analysis Program (CGAP) provides the capability to process, analyze, and format cross-sectional data for input to flow/transport simulation models or other computational programs. CGAP allows for a variety of cross-sectional data input formats through use of variable format specification. The program accepts data from various computer media and provides for modification of machine-stored parameter values. CGAP has been devised to provide a rapid and efficient means of computing and analyzing the physical properties of an open-channel reach defined by a sequence of cross sections. CGAP 's 16 options provide a wide range of methods by which to analyze and depict a channel reach and its individual cross-sectional properties. The primary function of the program is to compute the area, width, wetted perimeter, and hydraulic radius of cross sections at successive increments of water surface elevation (stage) from data that consist of coordinate pairs of cross-channel distances and land surface or channel bottom elevations. Longitudinal rates-of-change of cross-sectional properties are also computed, as are the mean properties of a channel reach. Output products include tabular lists of cross-sectional area, channel width, wetted perimeter, hydraulic radius, average depth, and cross-sectional symmetry computed as functions of stage; plots of cross sections; plots of cross-sectional area and (or) channel width as functions of stage; tabular lists of cross-sectional area and channel width computed as functions of stage for subdivisions of a cross section; plots of cross sections in isometric projection; and plots of cross-sectional area at a fixed stage as a function of longitudinal distance along an open-channel reach. A Command Procedure Language program and Job Control Language procedure exist to facilitate program execution on the U.S. Geological Survey Prime and Amdahl computer systems respectively. (Lantz-PTT)

  2. Development of a locally mass flux conservative computer code for calculating 3-D viscous flow in turbomachines

    NASA Technical Reports Server (NTRS)

    Walitt, L.

    1982-01-01

    The VANS successive approximation numerical method was extended to the computation of three dimensional, viscous, transonic flows in turbomachines. A cross-sectional computer code, which conserves mass flux at each point of the cross-sectional surface of computation was developed. In the VANS numerical method, the cross-sectional computation follows a blade-to-blade calculation. Numerical calculations were made for an axial annular turbine cascade and a transonic, centrifugal impeller with splitter vanes. The subsonic turbine cascade computation was generated in blade-to-blade surface to evaluate the accuracy of the blade-to-blade mode of marching. Calculated blade pressures at the hub, mid, and tip radii of the cascade agreed with corresponding measurements. The transonic impeller computation was conducted to test the newly developed locally mass flux conservative cross-sectional computer code. Both blade-to-blade and cross sectional modes of calculation were implemented for this problem. A triplet point shock structure was computed in the inducer region of the impeller. In addition, time-averaged shroud static pressures generally agreed with measured shroud pressures. It is concluded that the blade-to-blade computation produces a useful engineering flow field in regions of subsonic relative flow; and cross-sectional computation, with a locally mass flux conservative continuity equation, is required to compute the shock waves in regions of supersonic relative flow.

  3. Bridge-scour analysis using the water surface profile (WSPRO) model

    USGS Publications Warehouse

    Mueller, David S.; ,

    1993-01-01

    A program was developed to extract hydraulic information required for bridge-scour computations, from the Water-Surface Profile computation model (WSPRO). The program is written in compiled BASIC and is menu driven. Using only ground points, the program can compute average ground elevation, cross-sectional area below a specified datum, or create a Drawing Exchange Format (DXF) fie of cross section. Using both ground points ad hydraulic information form the equal-conveyance tubes computed by WSPRO, the program can compute hydraulic parameters at a user-specified station or in a user-specified subsection of the cross section. The program can identify the maximum velocity in a cross section and the velocity and depth at a user-specified station. The program also can identify the maximum velocity in the cross section and the average velocity, average depth, average ground elevation, width perpendicular to the flow, cross-sectional area of flow, and discharge in a subsection of the cross section. This program does not include any help or suggestions as to what data should be extracted; therefore, the used must understand the scour equations and associated variables to the able to extract the proper information from the WSPRO output.

  4. An Examination of How a Cross-Section of Academics Use Computer Technology when Writing Academic Papers.

    ERIC Educational Resources Information Center

    Wood, Eileen; Willoughby, Teena; Specht, Jacqueline; Porter, Lisa

    2002-01-01

    Describes a study conducted at two Canadian universities that surveyed a cross-section of 361 faculty, graduate, and undergraduate students to assess computer availability, experience, attitudes toward computers, and use of computers while engaged in academic writing. Compares advantages and disadvantages of writing on a computer versus written,…

  5. Bistatic radar cross section of a perfectly conducting rhombus-shaped flat plate

    NASA Astrophysics Data System (ADS)

    Fenn, Alan J.

    1990-05-01

    The bistatic radar cross section of a perfectly conducting flat plate that has a rhombus shape (equilateral parallelogram) is investigated. The Ohio State University electromagnetic surface patch code (ESP version 4) is used to compute the theoretical bistatic radar cross section of a 35- x 27-in rhombus plate at 1.3 GHz over the bistatic angles 15 deg to 142 deg. The ESP-4 computer code is a method of moments FORTRAN-77 program which can analyze general configurations of plates and wires. This code has been installed and modified at Lincoln Laboratory on a SUN 3 computer network. Details of the code modifications are described. Comparisons of the method of moments simulations and measurements of the rhombus plate are made. It is shown that the ESP-4 computer code provides a high degree of accuracy in the calculation of copolarized and cross-polarized bistatic radar cross section patterns.

  6. Lidar cross-sections of soot fractal aggregates: Assessment of equivalent-sphere models

    NASA Astrophysics Data System (ADS)

    Ceolato, Romain; Gaudfrin, Florian; Pujol, Olivier; Riviere, Nicolas; Berg, Matthew J.; Sorensen, Christopher M.

    2018-06-01

    This work assesses the ability of equivalent-sphere models to reproduce the optical properties of soot aggregates relevant for lidar remote sensing, i.e. the backscattering and extinction cross sections. Lidar cross-sections are computed with a spectral discrete dipole approximation model over the visible-to-infrared (400-5000 nm) spectrum and compared with equivalent-sphere approximations. It is shown that the equivalent-sphere approximation, applied to fractal aggregates, has a limited ability to calculate such cross-sections well. The approximation should thus be used with caution for the computation of broadband lidar cross-sections, especially backscattering, at small and intermediate wavelengths (e.g. UV to visible).

  7. Subtraction method of computing QCD jet cross sections at NNLO accuracy

    NASA Astrophysics Data System (ADS)

    Trócsányi, Zoltán; Somogyi, Gábor

    2008-10-01

    We present a general subtraction method for computing radiative corrections to QCD jet cross sections at next-to-next-to-leading order accuracy. The steps needed to set up this subtraction scheme are the same as those used in next-to-leading order computations. However, all steps need non-trivial modifications, which we implement such that that those can be defined at any order in perturbation theory. We give a status report of the implementation of the method to computing jet cross sections in electron-positron annihilation at the next-to-next-to-leading order accuracy.

  8. Sex- and age-related differences in mid-thigh composition and muscle quality determined by computed tomography in middle-aged and elderly Japanese.

    PubMed

    Kasai, Takehiro; Ishiguro, Naoki; Matsui, Yasumoto; Harada, Atsushi; Takemura, Marie; Yuki, Atsumu; Kato, Yuki; Otsuka, Rei; Ando, Fujiko; Shimokata, Hiroshi

    2015-06-01

    Sex- and age-related differences in mid-thigh composition and muscle quality remain unclear. The present study aimed to clarify these differences using computed tomography in middle-aged and elderly Japanese. A total of 2310 participants (age 40-89 years), who were randomly selected from the local residents, underwent computed tomography examination of the right mid-thigh. Thigh circumference and cross-sectional areas of the thigh, muscle, quadriceps, non-quadriceps, fat, and bone were measured. Knee extension strength and muscle quality index (knee extension strength/quadriceps cross-sectional area) were also assessed. Sex- and age-related differences in these indices were analyzed. The thigh cross-sectional area in men and women decreased by 0.6% and 0.5%/year, respectively, because of a decrease in muscle cross-sectional area (men 75.2%, women 40.6%), fat cross-sectional area (men 24.4%, women 59.6%) and bone cross-sectional area (men 0.5%, women -0.2%). Muscle cross-sectional area in men and women decreased by 0.6% and 0.4%/year, respectively, because of a decrease in quadriceps cross-sectional area (men 65.6%, women 81.6%) and non-quadriceps cross-sectional area (men 34.4%, women 18.4%). Muscle quality in men and women decreased by 0.4% and 0.3%/year, respectively. Thigh cross-sectional area decreased with age mainly because of a decrease in muscle cross-sectional area in men and fat cross-sectional area in women. The rate of decrease in muscle cross-sectional area was 1.5-fold higher in men than in women. Muscle cross-sectional area decreased with age mainly because of a decrease in quadriceps cross-sectional area, especially in women. Decrease in muscle quality with age was similar in both sexes. © 2014 Japan Geriatrics Society.

  9. Three-dimensional object surface identification

    NASA Astrophysics Data System (ADS)

    Celenk, Mehmet

    1995-03-01

    This paper describes a computationally efficient matching method for inspecting 3D objects using their serial cross sections. Object regions of interest in cross-sectional binary images of successive slices are aligned with those of the models. Cross-sectional differences between the object and the models are measured in the direction of the gradient of the cross section boundary. This is repeated in all the cross-sectional images. The model with minimum average cross-sectional difference is selected as the best match to the given object (i.e., no defect). The method is tested using various computer generated surfaces and matching results are presented. It is also demonstrated using Symult S-2010 16-node system that the method is suitable for parallel implementation in massage passing processors with the maximum attainable speedup (close to 16 for S-2010).

  10. A CUMULATIVE MIGRATION METHOD FOR COMPUTING RIGOROUS TRANSPORT CROSS SECTIONS AND DIFFUSION COEFFICIENTS FOR LWR LATTICES WITH MONTE CARLO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhaoyuan Liu; Kord Smith; Benoit Forget

    2016-05-01

    A new method for computing homogenized assembly neutron transport cross sections and dif- fusion coefficients that is both rigorous and computationally efficient is proposed in this paper. In the limit of a homogeneous hydrogen slab, the new method is equivalent to the long-used, and only-recently-published CASMO transport method. The rigorous method is used to demonstrate the sources of inaccuracy in the commonly applied “out-scatter” transport correction. It is also demonstrated that the newly developed method is directly applicable to lattice calculations per- formed by Monte Carlo and is capable of computing rigorous homogenized transport cross sections for arbitrarily heterogeneous lattices.more » Comparisons of several common transport cross section ap- proximations are presented for a simple problem of infinite medium hydrogen. The new method has also been applied in computing 2-group diffusion data for an actual PWR lattice from BEAVRS benchmark.« less

  11. A boundary integral method for numerical computation of radar cross section of 3D targets using hybrid BEM/FEM with edge elements

    NASA Astrophysics Data System (ADS)

    Dodig, H.

    2017-11-01

    This contribution presents the boundary integral formulation for numerical computation of time-harmonic radar cross section for 3D targets. Method relies on hybrid edge element BEM/FEM to compute near field edge element coefficients that are associated with near electric and magnetic fields at the boundary of the computational domain. Special boundary integral formulation is presented that computes radar cross section directly from these edge element coefficients. Consequently, there is no need for near-to-far field transformation (NTFFT) which is common step in RCS computations. By the end of the paper it is demonstrated that the formulation yields accurate results for canonical models such as spheres, cubes, cones and pyramids. Method has demonstrated accuracy even in the case of dielectrically coated PEC sphere at interior resonance frequency which is common problem for computational electromagnetic codes.

  12. An Equivalent cross-section Framework for improving computational efficiency in Distributed Hydrologic Modelling

    NASA Astrophysics Data System (ADS)

    Khan, Urooj; Tuteja, Narendra; Ajami, Hoori; Sharma, Ashish

    2014-05-01

    While the potential uses and benefits of distributed catchment simulation models is undeniable, their practical usage is often hindered by the computational resources they demand. To reduce the computational time/effort in distributed hydrological modelling, a new approach of modelling over an equivalent cross-section is investigated where topographical and physiographic properties of first-order sub-basins are aggregated to constitute modelling elements. To formulate an equivalent cross-section, a homogenization test is conducted to assess the loss in accuracy when averaging topographic and physiographic variables, i.e. length, slope, soil depth and soil type. The homogenization test indicates that the accuracy lost in weighting the soil type is greatest, therefore it needs to be weighted in a systematic manner to formulate equivalent cross-sections. If the soil type remains the same within the sub-basin, a single equivalent cross-section is formulated for the entire sub-basin. If the soil type follows a specific pattern, i.e. different soil types near the centre of the river, middle of hillslope and ridge line, three equivalent cross-sections (left bank, right bank and head water) are required. If the soil types are complex and do not follow any specific pattern, multiple equivalent cross-sections are required based on the number of soil types. The equivalent cross-sections are formulated for a series of first order sub-basins by implementing different weighting methods of topographic and physiographic variables of landforms within the entire or part of a hillslope. The formulated equivalent cross-sections are then simulated using a 2-dimensional, Richards' equation based distributed hydrological model. The simulated fluxes are multiplied by the weighted area of each equivalent cross-section to calculate the total fluxes from the sub-basins. The simulated fluxes include horizontal flow, transpiration, soil evaporation, deep drainage and soil moisture. To assess the accuracy of equivalent cross-section approach, the sub-basins are also divided into equally spaced multiple hillslope cross-sections. These cross-sections are simulated in a fully distributed settings using the 2-dimensional, Richards' equation based distributed hydrological model. The simulated fluxes are multiplied by the contributing area of each cross-section to get total fluxes from each sub-basin referred as reference fluxes. The equivalent cross-section approach is investigated for seven first order sub-basins of the McLaughlin catchment of the Snowy River, NSW, Australia, and evaluated in Wagga-Wagga experimental catchment. Our results show that the simulated fluxes using an equivalent cross-section approach are very close to the reference fluxes whereas computational time is reduced of the order of ~4 to ~22 times in comparison to the fully distributed settings. The transpiration and soil evaporation are the dominant fluxes and constitute ~85% of actual rainfall. Overall, the accuracy achieved in dominant fluxes is higher than the other fluxes. The simulated soil moistures from equivalent cross-section approach are compared with the in-situ soil moisture observations in the Wagga-Wagga experimental catchment in NSW, and results found to be consistent. Our results illustrate that the equivalent cross-section approach reduces the computational time significantly while maintaining the same order of accuracy in predicting the hydrological fluxes. As a result, this approach provides a great potential for implementation of distributed hydrological models at regional scales.

  13. AMPX: a modular code system for generating coupled multigroup neutron-gamma libraries from ENDF/B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, N.M.; Lucius, J.L.; Petrie, L.M.

    1976-03-01

    AMPX is a modular system for producing coupled multigroup neutron-gamma cross section sets. Basic neutron and gamma cross-section data for AMPX are obtained from ENDF/B libraries. Most commonly used operations required to generate and collapse multigroup cross-section sets are provided in the system. AMPX is flexibly dimensioned; neutron group structures, and gamma group structures, and expansion orders to represent anisotropic processes are all arbitrary and limited only by available computer core and budget. The basic processes provided will (1) generate multigroup neutron cross sections; (2) generate multigroup gamma cross sections; (3) generate gamma yields for gamma-producing neutron interactions; (4) combinemore » neutron cross sections, gamma cross sections, and gamma yields into final ''coupled sets''; (5) perform one-dimensional discrete ordinates transport or diffusion theory calculations for neutrons and gammas and, on option, collapse the cross sections to a broad-group structure, using the one-dimensional results as weighting functions; (6) plot cross sections, on option, to facilitate the ''evaluation'' of a particular multigroup set of data; (7) update and maintain multigroup cross section libraries in such a manner as to make it not only easy to combine new data with previously processed data but also to do it in a single pass on the computer; and (8) output multigroup cross sections in convenient formats for other codes. (auth)« less

  14. Hartree-Fock calculation of the differential photoionization cross sections of small Li clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galitskiy, S. A.; Artemyev, A. N.; Jänkälä, K.

    2015-01-21

    Cross sections and angular distribution parameters for the single-photon ionization of all electron orbitals of Li{sub 2−8} are systematically computed in a broad interval of the photoelectron kinetic energies for the energetically most stable geometry of each cluster. Calculations of the partial photoelectron continuum waves in clusters are carried out by the single center method within the Hartree-Fock approximation. We study photoionization cross sections per one electron and analyze in some details general trends in the photoionization of inner and outer shells with respect to the size and geometry of a cluster. The present differential cross sections computed for Li{submore » 2} are in a good agreement with the available theoretical data, whereas those computed for Li{sub 3−8} clusters can be considered as theoretical predictions.« less

  15. Charge Exchange of Highly Charged Ne and Mg Ions with H and He

    NASA Astrophysics Data System (ADS)

    Lyons, D.; Cumbee, R. S.; Stancil, P. C.

    2017-10-01

    Cross sections for single electron capture (SEC), or charge exchange (CX), in collisions of Ne(8-10)+ and Mg(8-12)+ with H and He, are computed using an approximate multichannel Landau-Zener (MCLZ) formalism. Final-state-resolved cross sections for the principal (n), orbital angular momentum (ℓ), and where appropriate, total spin angular momentum (S) quantum numbers are explicitly computed, except for the incident bare ions Ne10+ and Mg12+. In the latter two cases, n{\\ell }-resolution is obtained from analytical ℓ-distribution functions applied to n-resolved MCLZ cross sections. In all cases, the cross sections are computed over the collision energy range 1 meV/u to 50 keV/u with LZ parameters estimated from atomic energies obtained from experiment, theory, or, in the case of high-lying Rydberg levels, estimated with a quantum defect approach. Errors in the energy differences in the adiabatic potentials at the avoided crossing distances give the largest contribution to the uncertainties in the cross sections, which are expected to increase with decreasing cross section magnitude. The energy differences are deduced here with the Olson-Salop-Tauljberg radial coupling model. Proper selection of an ℓ-distribution function for bare ion collisions introduces another level of uncertainty into the results. Comparison is made to existing experimental or theoretical results when available, but such data are absent for most considered collision systems. The n{\\ell }S-resolved SEC cross sections are used in an optically thin cascade simulation to predict X-ray spectra and line ratios that will aid in modeling the X-ray emission in environments where CX is an important mechanism. Details on a MCLZ computational package, Stueckelberg, are also provided.

  16. A computational study on the influence of insect wing geometry on bee flight mechanics

    PubMed Central

    Feaster, Jeffrey; Bayandor, Javid

    2017-01-01

    ABSTRACT Two-dimensional computational fluid dynamics (CFD) is applied to better understand the effects of wing cross-sectional morphology on flow field and force production. This study investigates the influence of wing cross-section on insect scale flapping flight performance, for the first time, using a morphologically representative model of a bee (Bombus pensylvanicus) wing. The bee wing cross-section was determined using a micro-computed tomography scanner. The results of the bee wing are compared with flat and elliptical cross-sections, representative of those used in modern literature, to determine the impact of profile variation on aerodynamic performance. The flow field surrounding each cross-section and the resulting forces are resolved using CFD for a flight speed range of 1 to 5 m/s. A significant variation in vortex formation is found when comparing the ellipse and flat plate with the true bee wing. During the upstroke, the bee and approximate wing cross-sections have a much shorter wake structure than the flat plate or ellipse. During the downstroke, the flat plate and elliptical cross-sections generate a single leading edge vortex, while the approximate and bee wings generate numerous, smaller structures that are shed throughout the stroke. Comparing the instantaneous aerodynamic forces on the wing, the ellipse and flat plate sections deviate progressively with velocity from the true bee wing. Based on the present findings, a simplified cross-section of an insect wing can misrepresent the flow field and force production. We present the first aerodynamic study using a true insect wing cross-section and show that the wing corrugation increases the leading edge vortex formation frequency for a given set of kinematics. PMID:29061734

  17. A computational study on the influence of insect wing geometry on bee flight mechanics.

    PubMed

    Feaster, Jeffrey; Battaglia, Francine; Bayandor, Javid

    2017-12-15

    Two-dimensional computational fluid dynamics (CFD) is applied to better understand the effects of wing cross-sectional morphology on flow field and force production. This study investigates the influence of wing cross-section on insect scale flapping flight performance, for the first time, using a morphologically representative model of a bee ( Bombus pensylvanicus ) wing. The bee wing cross-section was determined using a micro-computed tomography scanner. The results of the bee wing are compared with flat and elliptical cross-sections, representative of those used in modern literature, to determine the impact of profile variation on aerodynamic performance. The flow field surrounding each cross-section and the resulting forces are resolved using CFD for a flight speed range of 1 to 5 m/s. A significant variation in vortex formation is found when comparing the ellipse and flat plate with the true bee wing. During the upstroke, the bee and approximate wing cross-sections have a much shorter wake structure than the flat plate or ellipse. During the downstroke, the flat plate and elliptical cross-sections generate a single leading edge vortex, while the approximate and bee wings generate numerous, smaller structures that are shed throughout the stroke. Comparing the instantaneous aerodynamic forces on the wing, the ellipse and flat plate sections deviate progressively with velocity from the true bee wing. Based on the present findings, a simplified cross-section of an insect wing can misrepresent the flow field and force production. We present the first aerodynamic study using a true insect wing cross-section and show that the wing corrugation increases the leading edge vortex formation frequency for a given set of kinematics. © 2017. Published by The Company of Biologists Ltd.

  18. Computational study of duct and pipe flows using the method of pseudocompressibility

    NASA Technical Reports Server (NTRS)

    Williams, Robert W.

    1991-01-01

    A viscous, three-dimensional, incompressible, Navier-Stokes Computational Fluid Dynamics code employing pseudocompressibility is used for the prediction of laminar primary and secondary flows in two 90-degree bends of constant cross section. Under study are a square cross section duct bend with 2.3 radius ratio and a round cross section pipe bend with 2.8 radius ratio. Sensitivity of predicted primary and secondary flow to inlet boundary conditions, grid resolution, and code convergence is investigated. Contour and velocity versus spanwise coordinate plots comparing prediction to experimental data flow components are shown at several streamwise stations before, within, and after the duct and pipe bends. Discussion includes secondary flow physics, computational method, computational requirements, grid dependence, and convergence rates.

  19. Computer program for parameterization of nucleus-nucleus electromagnetic dissociation cross sections

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Townsend, Lawrence W.; Badavi, Forooz F.

    1988-01-01

    A computer subroutine parameterization of electromagnetic dissociation cross sections for nucleus-nucleus collisions is presented that is suitable for implementation in a heavy ion transport code. The only inputs required are the projectile kinetic energy and the projectile and target charge and mass numbers.

  20. XSECT: A computer code for generating fuselage cross sections - user's manual

    NASA Technical Reports Server (NTRS)

    Ames, K. R.

    1982-01-01

    A computer code, XSECT, has been developed to generate fuselage cross sections from a given area distribution and wing definition. The cross sections are generated to match the wing definition while conforming to the area requirement. An iterative procedure is used to generate each cross section. Fuselage area balancing may be included in this procedure if desired. The code is intended as an aid for engineers who must first design a wing under certain aerodynamic constraints and then design a fuselage for the wing such that the contraints remain satisfied. This report contains the information necessary for accessing and executing the code, which is written in FORTRAN to execute on the Cyber 170 series computers (NOS operating system) and produces graphical output for a Tektronix 4014 CRT. The LRC graphics software is used in combination with the interface between this software and the PLOT 10 software.

  1. Theoretical estimates of supernova-neutrino cross sections for the stable even-even lead isotopes: Charged-current reactions

    NASA Astrophysics Data System (ADS)

    Almosly, W.; Carlsson, B. G.; Suhonen, J.; Toivanen, J.; Ydrefors, E.

    2016-10-01

    A detailed study of the charged-current supernova electron neutrino and electron antineutrino scattering off the stable even-mass lead isotopes A =204 , 206, and 208 is reported in this work. The proton-neutron quasiparticle random-phase approximation (pnQRPA) is adopted to construct the nuclear final and initial states. Three different Skyrme interactions are tested for their isospin and spin-isospin properties and then applied to produce (anti)neutrino-nucleus scattering cross sections for (anti)neutrino energies below 80 MeV. Realistic estimates of the nuclear responses to supernova (anti)neutrinos are computed by folding the computed cross sections with a two-parameter Fermi-Dirac distribution of the electron (anti)neutrino energies. The computed cross sections are compared with earlier calculations and the analyses are extended to take into account the effects coming from the neutrino oscillations.

  2. Covariance Matrix of a Double-Differential Doppler-Broadened Elastic Scattering Cross Section

    NASA Astrophysics Data System (ADS)

    Arbanas, G.; Becker, B.; Dagan, R.; Dunn, M. E.; Larson, N. M.; Leal, L. C.; Williams, M. L.

    2012-05-01

    Legendre moments of a double-differential Doppler-broadened elastic neutron scattering cross section on 238U are computed near the 6.67 eV resonance at temperature T = 103 K up to angular order 14. A covariance matrix of these Legendre moments is computed as a functional of the covariance matrix of the elastic scattering cross section. A variance of double-differential Doppler-broadened elastic scattering cross section is computed from the covariance of Legendre moments. Notice: This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  3. Positron collisions with acetylene calculated using the R-matrix with pseudo-states method

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Galiatsatos, Pavlos G.; Tennyson, Jonathan

    2011-10-01

    Eigenphase sums, total cross sections and differential cross sections are calculated for low-energy collisions of positrons with C2H2. The calculations demonstrate that the use of appropriate pseudo-state expansions very significantly improves the representation of this process giving both realistic eigenphases and cross sections. Differential cross sections are strongly forward peaked in agreement with the measurements. These calculations are computationally very demanding; even with improved procedures for matrix diagonalization, fully converged calculations are too expensive with current computer resources. Nonetheless, the calculations show clear evidence for the formation of a virtual state but no indication that acetylene actually binds a positron at its equilibrium geometry.

  4. Study of elastic and inelastic cross sections by positron impact on inert gases

    NASA Astrophysics Data System (ADS)

    Singh, Suvam; Naghma, Rahla; Kaur, Jaspreet; Antony, Bobby

    2018-04-01

    In this article, a modified computational method recently introduced is used for the calculation of total, positronium (Ps) formation and ionization cross sections including direct and total ionization cross sections for positron scattering from noble gases. The incident positron is assumed to have energies over a wide range from 5 eV to 5 keV. The positron-atom interaction potential is developed under an optical potential framework and the computations of cross sections for each process are performed by introducing appropriate absorption thresholds. The calculated results obtained by employing this modified approach are found to be in reasonably good agreement with most of the existing data.

  5. Comparison of RCS prediction techniques, computations and measurements

    NASA Astrophysics Data System (ADS)

    Brand, M. G. E.; Vanewijk, L. J.; Klinker, F.; Schippers, H.

    1992-07-01

    Three calculation methods to predict radar cross sections (RCS) of three dimensional objects are evaluated by computing the radar cross sections of a generic wing inlet configuration. The following methods are applied: a three dimensional high frequency method, a three dimensional boundary element method, and a two dimensional finite difference time domain method. The results of the computations are compared with the data of measurements.

  6. Scattering Cross Section of Sound Waves by the Modal Element Method

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Kreider, Kevin L.

    1994-01-01

    #he modal element method has been employed to determine the scattered field from a plane acoustic wave impinging on a two dimensional body. In the modal element method, the scattering body is represented by finite elements, which are coupled to an eigenfunction expansion representing the acoustic pressure in the infinite computational domain surrounding the body. The present paper extends the previous work by developing the algorithm necessary to calculate the acoustics scattering cross section by the modal element method. The scattering cross section is the acoustical equivalent to the Radar Cross Section (RCS) in electromagnetic theory. Since the scattering cross section is evaluated at infinite distance from the body, an asymptotic approximation is used in conjunction with the standard modal element method. For validation, the scattering cross section of the rigid circular cylinder is computed for the frequency range 0.1 is less than or equal to ka is less than or equal to 100. Results show excellent agreement with the analytic solution.

  7. Computing the cross sections of nuclear reactions with nuclear clusters emission for proton energies between 30 MeV and 2.6 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korovin, Yu. A.; Maksimushkina, A. V., E-mail: AVMaksimushkina@mephi.ru; Frolova, T. A.

    2016-12-15

    The cross sections of nuclear reactions involving emission of clusters of light nuclei in proton collisions with a heavy-metal target are computed for incident-proton energies between 30 MeV and 2.6 GeV. The calculation relies on the ALICE/ASH and CASCADE/INPE computer codes. The parameters determining the pre-equilibrium cluster emission are varied in the computation.

  8. Vibrational-rotational deexcitation of HF in collision with He

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bieniek, R.J.

    State-to-state cross sections are reported for vibrational-rotational transitions for HF in collisions with He, at collisional energies of 0.5 and 1.0 eV. These were computed within the infinite-order sudden (IOS) approximation using adiabatic, distorted-wave techniques. Values are tabulated for the vibrational-rotational deexcitation sequences (v, j) ..-->.. (v--1, 0), with v = 1, 2, 3, 4 and j = 0 -- 40. These quenching cross sections can be used in conjunction with IOS factorization formulas to compute VRT cross sections for final rotational states other than j/sub f/ = 0. In addition to IOS results, vibrational quenching cross sections were computedmore » using the much more simple breathing-sphere technique. The breathing-sphere results compare favorably to the more accurate IOS results, particularly as to energy dependence. This suggests a simple method of utilizing known quenching cross sections to predict values for different vibrational levels and/or collisional energies.« less

  9. IMS - MS Data Extractor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-10-20

    An automated drift time extraction and computed associated collision cross section software tool for small molecule analysis with ion mobility spectrometry-mass spectrometry (IMS-MS). The software automatically extracts drift times and computes associated collision cross sections for small molecules analyzed using ion mobility spectrometry-mass spectrometry (IMS-MS) based on a target list of expected ions provided by the user.

  10. Modeling of molecular nitrogen collisions and dissociation processes for direct simulation Monte Carlo.

    PubMed

    Parsons, Neal; Levin, Deborah A; van Duin, Adri C T; Zhu, Tong

    2014-12-21

    The Direct Simulation Monte Carlo (DSMC) method typically used for simulating hypersonic Earth re-entry flows requires accurate total collision cross sections and reaction probabilities. However, total cross sections are often determined from extrapolations of relatively low-temperature viscosity data, so their reliability is unknown for the high temperatures observed in hypersonic flows. Existing DSMC reaction models accurately reproduce experimental equilibrium reaction rates, but the applicability of these rates to the strong thermal nonequilibrium observed in hypersonic shocks is unknown. For hypersonic flows, these modeling issues are particularly relevant for nitrogen, the dominant species of air. To rectify this deficiency, the Molecular Dynamics/Quasi-Classical Trajectories (MD/QCT) method is used to accurately compute collision and reaction cross sections for the N2(Σg+1)-N2(Σg+1) collision pair for conditions expected in hypersonic shocks using a new potential energy surface developed using a ReaxFF fit to recent advanced ab initio calculations. The MD/QCT-computed reaction probabilities were found to exhibit better physical behavior and predict less dissociation than the baseline total collision energy reaction model for strong nonequilibrium conditions expected in a shock. The MD/QCT reaction model compared well with computed equilibrium reaction rates and shock-tube data. In addition, the MD/QCT-computed total cross sections were found to agree well with established variable hard sphere total cross sections.

  11. Computing discharge using the index velocity method

    USGS Publications Warehouse

    Levesque, Victor A.; Oberg, Kevin A.

    2012-01-01

    Application of the index velocity method for computing continuous records of discharge has become increasingly common, especially since the introduction of low-cost acoustic Doppler velocity meters (ADVMs) in 1997. Presently (2011), the index velocity method is being used to compute discharge records for approximately 470 gaging stations operated and maintained by the U.S. Geological Survey. The purpose of this report is to document and describe techniques for computing discharge records using the index velocity method. Computing discharge using the index velocity method differs from the traditional stage-discharge method by separating velocity and area into two ratings—the index velocity rating and the stage-area rating. The outputs from each of these ratings, mean channel velocity (V) and cross-sectional area (A), are then multiplied together to compute a discharge. For the index velocity method, V is a function of such parameters as streamwise velocity, stage, cross-stream velocity, and velocity head, and A is a function of stage and cross-section shape. The index velocity method can be used at locations where stage-discharge methods are used, but it is especially appropriate when more than one specific discharge can be measured for a specific stage. After the ADVM is selected, installed, and configured, the stage-area rating and the index velocity rating must be developed. A standard cross section is identified and surveyed in order to develop the stage-area rating. The standard cross section should be surveyed every year for the first 3 years of operation and thereafter at a lesser frequency, depending on the susceptibility of the cross section to change. Periodic measurements of discharge are used to calibrate and validate the index rating for the range of conditions experienced at the gaging station. Data from discharge measurements, ADVMs, and stage sensors are compiled for index-rating analysis. Index ratings are developed by means of regression techniques in which the mean cross-sectional velocity for the standard section is related to the measured index velocity. Most ratings are simple-linear regressions, but more complex ratings may be necessary in some cases. Once the rating is established, validation measurements should be made periodically. Over time, validation measurements may provide additional definition to the rating or result in the creation of a new rating. The computation of discharge is the last step in the index velocity method, and in some ways it is the most straight-forward step. This step differs little from the steps used to compute discharge records for stage-discharge gaging stations. The ratings are entered into database software used for records computation, and continuous records of discharge are computed.

  12. Reactivity effects in VVER-1000 of the third unit of the kalinin nuclear power plant at physical start-up. Computations in ShIPR intellectual code system with library of two-group cross sections generated by UNK code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zizin, M. N.; Zimin, V. G.; Zizina, S. N., E-mail: zizin@adis.vver.kiae.ru

    2010-12-15

    The ShIPR intellectual code system for mathematical simulation of nuclear reactors includes a set of computing modules implementing the preparation of macro cross sections on the basis of the two-group library of neutron-physics cross sections obtained for the SKETCH-N nodal code. This library is created by using the UNK code for 3D diffusion computation of first VVER-1000 fuel loadings. Computation of neutron fields in the ShIPR system is performed using the DP3 code in the two-group diffusion approximation in 3D triangular geometry. The efficiency of all groups of control rods for the first fuel loading of the third unit ofmore » the Kalinin Nuclear Power Plant is computed. The temperature, barometric, and density effects of reactivity as well as the reactivity coefficient due to the concentration of boric acid in the reactor were computed additionally. Results of computations are compared with the experiment.« less

  13. Reactivity effects in VVER-1000 of the third unit of the kalinin nuclear power plant at physical start-up. Computations in ShIPR intellectual code system with library of two-group cross sections generated by UNK code

    NASA Astrophysics Data System (ADS)

    Zizin, M. N.; Zimin, V. G.; Zizina, S. N.; Kryakvin, L. V.; Pitilimov, V. A.; Tereshonok, V. A.

    2010-12-01

    The ShIPR intellectual code system for mathematical simulation of nuclear reactors includes a set of computing modules implementing the preparation of macro cross sections on the basis of the two-group library of neutron-physics cross sections obtained for the SKETCH-N nodal code. This library is created by using the UNK code for 3D diffusion computation of first VVER-1000 fuel loadings. Computation of neutron fields in the ShIPR system is performed using the DP3 code in the two-group diffusion approximation in 3D triangular geometry. The efficiency of all groups of control rods for the first fuel loading of the third unit of the Kalinin Nuclear Power Plant is computed. The temperature, barometric, and density effects of reactivity as well as the reactivity coefficient due to the concentration of boric acid in the reactor were computed additionally. Results of computations are compared with the experiment.

  14. Intrinsic acoustical cross sections in the multiple scattering by a pair of rigid cylindrical particles in 2D

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2017-08-01

    The multiple scattering effects occurring between two scatterers are described based upon the multipole expansion formalism as well as the addition theorem of cylindrical wave functions. An original approach is presented in which an effective incident acoustic field on a particular object, which includes both the primary and re-scattered waves from the other particle is determined first, and then used with the scattered field to derive closed-form analytical expressions for the inherent (i.e. intrinsic) cross-sections based on the far-field scattering. This method does not introduce any approximation in the calculation of the intrinsic cross-sections since the procedure is reduced to the one-body problem. The mathematical expressions for the intrinsic cross-sections are formulated in partial-wave series expansions (PWSEs) in cylindrical coordinates involving the angle of incidence, the addition theorem for the cylindrical wave functions, and the expansion coefficients of the scatterers. Numerical examples illustrate the analysis for two rigid circular cylindrical cross-sections with different radii immersed in a non-viscous fluid. Computations for the dimensionless extrinsic and intrinsic extinction cross-section factors are evaluated with particular emphasis on varying the angle of incidence, the interparticle distance, as well as the sizes of the particles. A symmetric behavior is observed for the dimensionless extrinsic extinction cross-section, while asymmetry arises for the intrinsic extinction cross-section of each particle with respect to the angle of incidence. The present analysis provides a complete analytical and computational method for the prediction of the intrinsic (local) scattering, absorption and extinction cross-sections in the multiple acoustic scatterings of plane progressive waves of arbitrary incidence by a pair of scatterers. The results and computational analyses can be used as a priori information for future applications to guide the direct or inverse characterization of multiple scattering systems in acoustically-engineered metamaterials, cloaking devices, particle dynamics, levitation, manipulation and handling, and other areas.

  15. Nuclear-Recoil Differential Cross Sections for the Two Photon Double Ionization of Helium

    NASA Astrophysics Data System (ADS)

    Abdel Naby, Shahin; Ciappina, M. F.; Lee, T. G.; Pindzola, M. S.; Colgan, J.

    2013-05-01

    In support of the reaction microscope measurements at the free-electron laser facility at Hamburg (FLASH), we use the time-dependent close-coupling method (TDCC) to calculate fully differential nuclear-recoil cross sections for the two-photon double ionization of He at photon energy of 44 eV. The total cross section for the double ionization is in good agreement with previous calculations. The nuclear-recoil distribution is in good agreement with the experimental measurements. In contrast to the single-photon double ionization, maximum nuclear recoil triple differential cross section is obtained at small nuclear momenta. This work was supported in part by grants from NSF and US DoE. Computational work was carried out at NERSC in Oakland, California and the National Institute for Computational Sciences in Knoxville, Tennessee.

  16. Cooling of Gas Turbines. 6 - Computed Temperature Distribution through Cross Section of Water-Cooled Turbine Blade

    DTIC Science & Technology

    1947-05-01

    AERONAUTICS Figure 7. - Cross section of water-cooleä turbine blade showing location and size of seven coolant...Power Plants.~ Jet and~ Turbine ($) [SECTION. Turbines (I3) [CROSS DEFERENCES. Turbine blades - Thermal measurements (95350); Turbine blades ...section of water-cooled turbine blade FORG’N. TITLE: v.. ’V, ORIGINATING AGENCY. TRANSLATION. National Advisory Committee for Aeronautics

  17. Low-energy positron scattering by pyrimidine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbosa, Alessandra Souza; Pastega, Diego F.; Bettega, Márcio H. F., E-mail: bettega@fisica.ufpr.br

    2015-12-28

    This work reports elastic integral and differential cross sections for positron collisions with pyrimidine, for energies up to 20 eV. The cross sections were computed with the Schwinger multichannel method in the static plus polarization approximation. We also employed the Born closure procedure to account for the long range potential due to the permanent dipole moment of the molecule. Our results are compared with the experimental total cross section of Zecca et al. [J. Phys. B 43, 215204 (2010)], the experimental grand-total, quasi-elastic integral and differential cross section of Palihawadana et al. [Phys. Rev. A 88, 12717 (2013)]. We alsomore » compare our results with theoretical integral and differential cross sections obtained by Sanz et al. [Phys. Rev. A 88, 62704 (2013)] with the R-matrix and the independent atom model with screening-corrected additivity rule methods, and with the results computed by Franz and Gianturco [Phys. Rev. A 88, 042711 (2013)] using model correlation-polarization potentials. The agreement between the theory and the experiment is encouraging.« less

  18. On-the-fly Doppler broadening of unresolved resonance region cross sections

    DOE PAGES

    Walsh, Jonathan A.; Forget, Benoit; Smith, Kord S.; ...

    2017-07-29

    In this paper, two methods for computing temperature-dependent unresolved resonance region cross sections on-the-fly within continuous-energy Monte Carlo neutron transport simulations are presented. The first method calculates Doppler broadened cross sections directly from zero-temperature average resonance parameters. In a simulation, at each event that requires cross section values, a realization of unresolved resonance parameters is generated about the desired energy and temperature-dependent single-level Breit-Wigner resonance cross sections are computed directly via the analytical Ψ-x Doppler integrals. The second method relies on the generation of equiprobable cross section magnitude bands on an energy-temperature mesh. Within a simulation, the bands are sampledmore » and interpolated in energy and temperature to obtain cross section values on-the-fly. Both of the methods, as well as their underlying calculation procedures, are verified numerically in extensive code-to-code comparisons. Energy-dependent pointwise cross sections calculated with the newly-implemented procedures are shown to be in excellent agreement with those calculated by a widely-used nuclear data processing code. Relative differences at or below 0.1% are observed. Integral criticality benchmark results computed with the proposed methods are shown to reproduce those computed with a state-of-the-art processed nuclear data library very well. In simulations of fast spectrum systems which are highly-sensitive to the representation of cross section data in the unresolved region, k-eigenvalue and neutron flux spectra differences of <10 pcm and <1.0% are observed, respectively. The direct method is demonstrated to be well-suited to the calculation of reference solutions — against which results obtained with a discretized representation may be assessed — as a result of its treatment of the energy, temperature, and cross section magnitude variables as continuous. Also, because there is no pre-processed data to store (only temperature-independent average resonance parameters) the direct method is very memory-efficient. Typically, only a few kB of memory are needed to store all required unresolved region data for a single nuclide. However, depending on the details of a particular simulation, performing URR cross section calculations on-the-fly can significantly increase simulation times. Alternatively, the method of interpolating equiprobable probability bands is demonstrated to produce results that are as accurate as the direct reference solutions, to within arbitrary precision, with high computational efficiency in terms of memory requirements and simulation time. Analyses of a fast spectrum system show that interpolation on a coarse energy-temperature mesh can be used to reproduce reference k-eigenvalue results obtained with cross sections calculated continuously in energy and directly at an exact temperature to within <10 pcm. Probability band data on a mesh encompassing the range of temperatures relevant to reactor analysis usually require around 100 kB of memory per nuclide. Finally, relative to the case in which probability table data generated at a single, desired temperature are used, minor increases in simulation times are observed when probability band interpolation is employed.« less

  19. A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the doubly unresolved subtraction terms

    NASA Astrophysics Data System (ADS)

    Somogyi, Gábor

    2013-04-01

    We finish the definition of a subtraction scheme for computing NNLO corrections to QCD jet cross sections. In particular, we perform the integration of the soft-type contributions to the doubly unresolved counterterms via the method of Mellin-Barnes representations. With these final ingredients in place, the definition of the scheme is complete and the computation of fully differential rates for electron-positron annihilation into two and three jets at NNLO accuracy becomes feasible.

  20. Calculation of total electron excitation cross-sections and partial electron ionization cross-sections for the elements. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Green, T. J.

    1973-01-01

    Computer programs were used to calculate the total electron excitation cross-section for atoms and the partial ionization cross-section. The approximations to the scattering amplitude used are as follows: (1) Born, Bethe, and Modified Bethe for non-exchange excitation; (2) Ochkur for exchange excitation; and (3) Coulomb-Born of non-exchange ionization. The amplitudes are related to the differential cross-sections which are integrated to give the total excitation (or partial ionization) cross-section for the collision. The atomic wave functions used are Hartree-Fock-Slater functions for bound states and the coulomb wave function for the continuum. The programs are presented and the results are examined.

  1. Electron impact scattering study of hypohalous acids HOX (X = F, Cl, Br, I)

    NASA Astrophysics Data System (ADS)

    Yadav, Hitesh; Bhutadia, Harshad; Prajapati, Dinesh; Desai, Hardik; Vinodkumar, Minaxi; Vinodkumar, P. C.

    2018-05-01

    In this article we aim to report total cross sections (TCS) QT, total elastic cross sections (Qel), total inelastic cross sections (Qinel) i.e. (total ionizations cross sections (Qion)+total electronic excitation cross sections (Qexc)) from threshold of the target to 5000 eV energy range. We have used a well-defined theoretical methodology Spherical Complex Optical Potential (SCOP) to compute QT, Qel and Qinel and Complex Scattering Potential - ionization contribution (CSP - ic) method to report the (Qion). The cross-sectional data reported here for the Hypohalous Acids is for the first time and the present data can become a guideline for the experimentalist to study these targets.

  2. Neutron radiation damage studies in the structural materials of a 500 MWe fast breeder reactor using DPA cross-sections from ENDF / B-VII.1

    NASA Astrophysics Data System (ADS)

    Saha, Uttiyoarnab; Devan, K.; Bachchan, Abhitab; Pandikumar, G.; Ganesan, S.

    2018-04-01

    The radiation damage in the structural materials of a 500 MWe Indian prototype fast breeder reactor (PFBR) is re-assessed by computing the neutron displacement per atom (dpa) cross-sections from the recent nuclear data library evaluated by the USA, ENDF / B-VII.1, wherein revisions were taken place in the new evaluations of basic nuclear data because of using the state-of-the-art neutron cross-section experiments, nuclear model-based predictions and modern data evaluation techniques. An indigenous computer code, computation of radiation damage (CRaD), is developed at our centre to compute primary-knock-on atom (PKA) spectra and displacement cross-sections of materials both in point-wise and any chosen group structure from the evaluated nuclear data libraries. The new radiation damage model, athermal recombination-corrected displacement per atom (arc-dpa), developed based on molecular dynamics simulations is also incorporated in our study. This work is the result of our earlier initiatives to overcome some of the limitations experienced while using codes like RECOIL, SPECTER and NJOY 2016, to estimate radiation damage. Agreement of CRaD results with other codes and ASTM standard for Fe dpa cross-section is found good. The present estimate of total dpa in D-9 steel of PFBR necessitates renormalisation of experimental correlations of dpa and radiation damage to ensure consistency of damage prediction with ENDF / B-VII.1 library.

  3. M shell X-ray production cross sections and fluorescence yields for the elements with 71 <= Z <= 92 using 5.96 keV photons

    NASA Astrophysics Data System (ADS)

    Puri, S.; Mehta, D.; Chand, B.; Singh, Nirmal; Mangal, P. C.; Trehan, P. N.

    1993-03-01

    Total M X-ray production (XRP) cross sections for ten elements in the atomic number region 71 ≤ Z ≤ 92 were measured at 5.96 keV incident photon energy. The average M shell fluorescence yields < overlineωM> have also been computed using the present measured cross section values and the theoretical M shell photoionisation cross sections. The results are compared with theoretical values.

  4. Py4CAtS - Python tools for line-by-line modelling of infrared atmospheric radiative transfer

    NASA Astrophysics Data System (ADS)

    Schreier, Franz; García, Sebastián Gimeno

    2013-05-01

    Py4CAtS — Python scripts for Computational ATmospheric Spectroscopy is a Python re-implementation of the Fortran infrared radiative transfer code GARLIC, where compute-intensive code sections utilize the Numeric/Scientific Python modules for highly optimized array-processing. The individual steps of an infrared or microwave radiative transfer computation are implemented in separate scripts to extract lines of relevant molecules in the spectral range of interest, to compute line-by-line cross sections for given pressure(s) and temperature(s), to combine cross sections to absorption coefficients and optical depths, and to integrate along the line-of-sight to transmission and radiance/intensity. The basic design of the package, numerical and computational aspects relevant for optimization, and a sketch of the typical workflow are presented.

  5. Numeric Computation of the Radar Cross Section of In-flight Projectiles

    DTIC Science & Technology

    2016-11-01

    SUBJECT TERMS computational electromagnetics , radar signature, ballistic trajectory, radar cross section, RCS 16. SECURITY CLASSIFICATION OF: 17...under the generic category of rockets, artillery, and mortar (RAM). The electromagnetic (EM) modeling team at the US Army Research Laboratory (ARL) is...ARL-TR-5145. 5. Balanis C. Advanced engineering electromagnetics . New York (NY): Wiley; 1989. 6. Ruck G, Barrick DE, Stuart WD, Krichbaum CK

  6. The Crossing Number of Graphs: Theory and Computation

    NASA Astrophysics Data System (ADS)

    Mutzel, Petra

    This survey concentrates on selected theoretical and computational aspects of the crossing number of graphs. Starting with its introduction by Turán, we will discuss known results for complete and complete bipartite graphs. Then we will focus on some historical confusion on the crossing number that has been brought up by Pach and Tóth as well as Székely. A connection to computational geometry is made in the section on the geometric version, namely the rectilinear crossing number. We will also mention some applications of the crossing number to geometrical problems. This review ends with recent results on approximation and exact computations.

  7. Computer codes for checking, plotting and processing of neutron cross-section covariance data and their application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sartori, E.; Roussin, R.W.

    This paper presents a brief review of computer codes concerned with checking, plotting, processing and using of covariances of neutron cross-section data. It concentrates on those available from the computer code information centers of the United States and the OECD/Nuclear Energy Agency. Emphasis will be placed also on codes using covariances for specific applications such as uncertainty analysis, data adjustment and data consistency analysis. Recent evaluations contain neutron cross section covariance information for all isotopes of major importance for technological applications of nuclear energy. It is therefore important that the available software tools needed for taking advantage of this informationmore » are widely known as hey permit the determination of better safety margins and allow the optimization of more economic, I designs of nuclear energy systems.« less

  8. Analysis of the effectiveness of various cross-sections in large-span post-tensioned ceilings

    NASA Astrophysics Data System (ADS)

    Bednarz, K.

    2018-03-01

    The correct construction of large span, slim post-tensioned concrete slabs is conditioned by an appropriate cross-section selection. It is generally accepted that the thinnest slab can be constructed using the full cross-section as the largest compression stress storage. However, completely different cross-sections may help to overcome large spans. The paper presents the results of the computational analysis of several types of cross-sections (full, with internal relieving inserts and ribbed) in the application to a post-tensioned slab with a span of 15.0m. Based on the results presented, appropriate conclusions were drawn.

  9. Flood boundaries and water-surface profile for the computed 100-year flood, Swift Creek at Afton, Wyoming, 1986

    USGS Publications Warehouse

    Rankl, James G.; Wallace, Joe C.

    1989-01-01

    Flood flows on Swift Creek near Afton, Wyoming, were analyzed. Peak discharge with an average recurrence interval of 100 years was computed and used to determine the flood boundaries and water surface profile in the study reach. The study was done in cooperation with Lincoln County and the Town of Afton to determine the extent of flooding in the Town of Afton from a 100-year flood on Swift Creek. The reach of Swift Creek considered in the analysis extends upstream from the culvert at Allred County Road No. 12-135 to the US Geological Survey streamflow-gaging station located in the Bridger National Forest , a distance of 3.2 miles. Boundaries of the 100-year flood are delineated on a map using the computed elevation of the flood at each cross section, survey data, and a 1983 aerial photograph. The computed water surface elevation for the 100-year flood was plotted at each cross section, then the lateral extent of the flood was transferred to the flood map. Boundaries between cross sections were sketched using information taken from the aerial photograph. Areas that are inundated, but not part of the active flow, are designated on the cross sections. (Lantz-PTT)

  10. Relativistic, correlation, and polarization effects in two-photon photoionization of Xe

    NASA Astrophysics Data System (ADS)

    Lagutin, B. M.; Petrov, I. D.; Sukhorukov, V. L.; Demekhin, Ph. V.; Knie, A.; Ehresmann, A.

    2017-06-01

    Two-photon ionization of xenon was investigated theoretically for exciting-photon energies from 6.7 to 11.5 eV, which results in the ionization of Xe between 5 p1 /2 (13.43 eV) and 5 s (23.40 eV) thresholds. We describe the extension of a previously developed computational technique for the inclusion of relativistic effects to calculate energies of intermediate resonance state and cross sections for two-photon ionization. Reasonable consistency of cross sections calculated in length and velocity form was obtained only after considering many-electron correlations. Agreement between calculated and measured resonance energies is found when core polarization was additionally included in the calculations. The presently computed two-photon photoionization cross sections of Xe are compared with Ar cross sections in our previous work. Photoelectron angular distribution parameters calculated here indicate that intermediated resonances strongly influence photoelectron angular distribution of Xe.

  11. Average Cross-Sectional Area of DebriSat Fragments Using Volumetrically Constructed 3D Representations

    NASA Technical Reports Server (NTRS)

    Scruggs, T.; Moraguez, M.; Patankar, K.; Fitz-Coy, N.; Liou, J.-C.; Sorge, M.; Huynh, T.

    2016-01-01

    Debris fragments from the hypervelocity impact testing of DebriSat are being collected and characterized for use in updating existing satellite breakup models. One of the key parameters utilized in these models is the ballistic coefficient of the fragment which is directly related to its area-to-mass ratio. However, since the attitude of fragments varies during their orbital lifetime, it is customary to use the average cross-sectional area in the calculation of the area-to-mass ratio. The average cross-sectional area is defined as the average of the projected surface areas perpendicular to the direction of motion and has been shown to be equal to one-fourth of the total surface area of a convex object. Unfortunately, numerous fragments obtained from the DebriSat experiment show significant concavity (i.e., shadowing) and thus we have explored alternate methods for computing the average cross-sectional area of the fragments. An imaging system based on the volumetric reconstruction of a 3D object from multiple 2D photographs of the object was developed for use in determining the size characteristic (i.e., characteristics length) of the DebriSat fragments. For each fragment, the imaging system generates N number of images from varied azimuth and elevation angles and processes them using a space-carving algorithm to construct a 3D point cloud of the fragment. This paper describes two approaches for calculating the average cross-sectional area of debris fragments based on the 3D imager. Approach A utilizes the constructed 3D object to generate equally distributed cross-sectional area projections and then averages them to determine the average cross-sectional area. Approach B utilizes a weighted average of the area of the 2D photographs to directly compute the average cross-sectional area. A comparison of the accuracy and computational needs of each approach is described as well as preliminary results of an analysis to determine the "optimal" number of images needed for the 3D imager to accurately measure the average cross sectional area of objects with known dimensions.

  12. Free molecular collision cross section calculation methods for nanoparticles and complex ions with energy accommodation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larriba, Carlos, E-mail: clarriba@umn.edu; Hogan, Christopher J.

    2013-10-15

    The structures of nanoparticles, macromolecules, and molecular clusters in gas phase environments are often studied via measurement of collision cross sections. To directly compare structure models to measurements, it is hence necessary to have computational techniques available to calculate the collision cross sections of structural models under conditions matching measurements. However, presently available collision cross section methods contain the underlying assumption that collision between gas molecules and structures are completely elastic (gas molecule translational energy conserving) and specular, while experimental evidence suggests that in the most commonly used background gases for measurements, air and molecular nitrogen, gas molecule reemission ismore » largely inelastic (with exchange of energy between vibrational, rotational, and translational modes) and should be treated as diffuse in computations with fixed structural models. In this work, we describe computational techniques to predict the free molecular collision cross sections for fixed structural models of gas phase entities where inelastic and non-specular gas molecule reemission rules can be invoked, and the long range ion-induced dipole (polarization) potential between gas molecules and a charged entity can be considered. Specifically, two calculation procedures are described detail: a diffuse hard sphere scattering (DHSS) method, in which structures are modeled as hard spheres and collision cross sections are calculated for rectilinear trajectories of gas molecules, and a diffuse trajectory method (DTM), in which the assumption of rectilinear trajectories is relaxed and the ion-induced dipole potential is considered. Collision cross section calculations using the DHSS and DTM methods are performed on spheres, models of quasifractal aggregates of varying fractal dimension, and fullerene like structures. Techniques to accelerate DTM calculations by assessing the contribution of grazing gas molecule collisions (gas molecules with altered trajectories by the potential interaction) without tracking grazing trajectories are further discussed. The presented calculation techniques should enable more accurate collision cross section predictions under experimentally relevant conditions than pre-existing approaches, and should enhance the ability of collision cross section measurement schemes to discern the structures of gas phase entities.« less

  13. Creating normograms of dural sinuses in healthy persons using computer-assisted detection for analysis and comparison of cross-section dural sinuses in the brain.

    PubMed

    Anconina, Reut; Zur, Dinah; Kesler, Anat; Lublinsky, Svetlana; Toledano, Ronen; Novack, Victor; Benkobich, Elya; Novoa, Rosa; Novic, Evelyne Farkash; Shelef, Ilan

    2017-06-01

    Dural sinuses vary in size and shape in many pathological conditions with abnormal intracranial pressure. Size and shape normograms of dural brain sinuses are not available. The creation of such normograms may enable computer-assisted comparison to pathologic exams and facilitate diagnoses. The purpose of this study was to quantitatively evaluate normal magnetic resonance venography (MRV) studies in order to create normograms of dural sinuses using a computerized algorithm for vessel cross-sectional analysis. This was a retrospective analysis of MRV studies of 30 healthy persons. Data were analyzed using a specially developed Matlab algorithm for vessel cross-sectional analysis. The cross-sectional area and shape measurements were evaluated to create normograms. Mean cross-sectional size was 53.27±13.31 for the right transverse sinus (TS), 46.87+12.57 for the left TS (p=0.089) and 36.65+12.38 for the superior sagittal sinus. Normograms were created. The distribution of cross-sectional areas along the vessels showed distinct patterns and a parallel course for the median, 25th, 50th and 75th percentiles. In conclusion, using a novel computerized method for vessel cross-sectional analysis we were able to quantitatively characterize dural sinuses of healthy persons and create normograms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Photodissociation of CS from Excited Rovibrational Levels

    NASA Astrophysics Data System (ADS)

    Pattillo, R. J.; Cieszewski, R.; Stancil, P. C.; Forrey, R. C.; Babb, J. F.; McCann, J. F.; McLaughlin, B. M.

    2018-05-01

    Accurate photodissociation cross sections have been computed for transitions from the X 1Σ+ ground electronic state of CS to six low-lying excited electronic states. New ab initio potential curves and transition dipole moment functions have been obtained for these computations using the multi-reference configuration interaction approach with the Davidson correction (MRCI+Q) and aug-cc-pV6Z basis sets. State-resolved cross sections have been computed for transitions from nearly the full range of rovibrational levels of the X 1Σ+ state and for photon wavelengths ranging from 500 Å to threshold. Destruction of CS via predissociation in highly excited electronic states originating from the rovibrational ground state is found to be unimportant. Photodissociation cross sections are presented for temperatures in the range between 1000 and 10,000 K, where a Boltzmann distribution of initial rovibrational levels is assumed. Applications of the current computations to various astrophysical environments are briefly discussed focusing on photodissociation rates due to the standard interstellar and blackbody radiation fields.

  15. Application of Computer Axial Tomography (CAT) to measuring crop canopy geometry. [corn and soybeans

    NASA Technical Reports Server (NTRS)

    Bauer, M. E.; Vanderbilt, V. C. (Principal Investigator); Kilgore, R. W.

    1981-01-01

    The feasibility of using the principles of computer axial topography (CAT) to quantify the structure of crop canopies was investigated because six variables are needed to describe the position-orientation with time of a small piece of canopy foliage. Several cross sections were cut through the foliage of healthy, green corn and soybean canopies in the dent and full pod development stages, respectively. A photograph of each cross section representing the intersection of a plane with the foliage was enlarged and the air-foliage boundaries delineated by the plane were digitized. A computer program was written and used to reconstruct the cross section of the canopy. The approach used in applying optical computer axial tomography to measuring crop canopy geometry shows promise of being able to provide needed geometric information for input data to canopy reflectance models. The difficulty of using the CAT scanner to measure large canopies of crops like corn is discussed and a solution is proposed involving the measurement of plants one at a time.

  16. Computation of discharge using the index-velocity method in tidally affected areas

    USGS Publications Warehouse

    Ruhl, Catherine A.; Simpson, Michael R.

    2005-01-01

    Computation of a discharge time-series in a tidally affected area is a two-step process. First, the cross-sectional area is computed on the basis of measured water levels and the mean cross-sectional velocity is computed on the basis of the measured index velocity. Then discharge is calculated as the product of the area and mean velocity. Daily mean discharge is computed as the daily average of the low-pass filtered discharge. The Sacramento-San Joaquin River Delta and San Francisco Bay, California, is an area that is strongly influenced by the tides, and therefore is used as an example of how this methodology is used.

  17. NNLO corrections to top pair production at hadron colliders: the quark-gluon reaction

    NASA Astrophysics Data System (ADS)

    Czakon, Michal; Mitov, Alexander

    2013-01-01

    We compute the next-to-next-to-leading order QCD correction to the total inclusive top pair production cross-section in the reaction qgto toverline{t}+X . We find moderate {O} (1%) correction to central values at both Tevatron and LHC. The scale variation of the cross-section remains unchanged at the Tevatron and is significantly reduced at the LHC. We find that recently introduced approximation based on the high-energy limit of the top pair cross-section significantly deviates from the exact result. The results derived in the present work are included in version 1.4 of the program Top++. Work towards computing the reaction ggto toverline{t}+X is ongoing.

  18. Backscattering and extinction cross sections of two swimbladdered fishes at the lowest resonance, as modeled by the boundary-element method

    NASA Astrophysics Data System (ADS)

    Foote, Kenneth G.; Francis, David T. I.

    2003-04-01

    The boundary-element method has been applied to backscattering and extinction of sound by swimbladdered fish at the lowest, breathing-mode resonance. Corresponding cross sections have been computed for specimens of two representative kinds of swimbladder-bearing fish, namely physostomes and physoclists, which, respectively, possess and lack an external duct. The respective fishes are herring (Clupea harengus) and pollack (Pollachius pollachius), for which swimbladder morphometric data are available. The depth dependences of the cross sections are computed over the range 0-500 m. Comparisons are made with measurements and other modeled results for a number of species. [Work supported by ONR.

  19. Computer program for thin-wire structures in a homogeneous conducting medium

    NASA Technical Reports Server (NTRS)

    Richmond, J. H.

    1974-01-01

    A computer program is presented for thin-wire antennas and scatters in a homogeneous conducting medium. The anaylsis is performed in the real or complex frequency domain. The program handles insulated and bare wires with finite conductivity and lumped loads. The output data includes the current distribution, impedance, radiation efficiency, gain, absorption cross section, scattering cross section, echo area and the polarization scattering matrix. The program uses sinusoidal bases and Galerkin's method.

  20. Flow in curved ducts of varying cross-section

    NASA Astrophysics Data System (ADS)

    Sotiropoulos, F.; Patel, V. C.

    1992-07-01

    Two numerical methods for solving the incompressible Navier-Stokes equations are compared with each other by applying them to calculate laminar and turbulent flows through curved ducts of regular cross-section. Detailed comparisons, between the computed solutions and experimental data, are carried out in order to validate the two methods and to identify their relative merits and disadvantages. Based on the conclusions of this comparative study a numerical method is developed for simulating viscous flows through curved ducts of varying cross-sections. The proposed method is capable of simulating the near-wall turbulence using fine computational meshes across the sublayer in conjunction with a two-layer k-epsilon model. Numerical solutions are obtained for: (1) a straight transition duct geometry, and (2) a hydroturbine draft-tube configuration at model scale Reynolds number for various inlet swirl intensities. The report also provides a detailed literature survey that summarizes all the experimental and computational work in the area of duct flows.

  1. [Computation of the cross-sectional area of the cable in the power circuit of the X-ray machine].

    PubMed

    Meng, Xin-min; Feng, Da-yu

    2007-01-01

    The source impedance of the power circuit in the x-ray machine is analyzed in the paper and based on the voltage drop generated by the impedance, the cross-sectional area of the cable is calculated. In the end, the cross-sectional areas of the cables, corresponding to their respective distances between the transformers and the switchboards are given.

  2. Exchange and Inelastic OH(+) + H Collisions on the Doublet and Quartet Electronic States.

    PubMed

    Bulut, Niyazi; Lique, François; Roncero, Octavio

    2015-12-17

    The exchange and inelastic state-to-state cross sections for the OH(+) + H collisions are computed from wave packet calculations using the doublet and quartet ground electronic potential energy surface (PES) correlating to the open shell reactants, for collision energies in the range of 1 meV to 0.7 eV. The doublet PES presents a deep insertion well, of ≈6 eV, but the exchange reaction has a rather low probability, showing that the mechanism is not statistical. This well is also responsible of a rather high rotational energy transfer, which makes the rigid-rotor approach overestimate the cross section for low Δj transitions and for high collisonal energies. The quartet PES, with a much shallower well, also presents a low exchange reaction cross section, but the inelastic state-to-state cross sections are very well reproduced by rigid-rotor calculations. When the electronic partition is used to obtain the total state-to-state cross section, the contribution of the doublet state becomes small, and the resulting total cross sections become close to those obtained for the quartet state. Thus, the total (quartet and doublet) cross sections for this open shell system can be reproduced rather satisfactorily by those obtained with the rigid-rotor approximation on the quartet state. Finally, we compare the new OH(+)-H cross sections with OH(+)-He ones recently computed. We found significant differences, especially for transitions with large Δj showing that specific OH(+)-H calculations had to be performed to accurately analyze the OH(+) emission from interstellar molecular clouds.

  3. Deducing the form factors for shear used in the calculus of the displacements based on strain energy methods. Mathematical approach for currently used shapes

    NASA Astrophysics Data System (ADS)

    Constantinescu, E.; Oanta, E.; Panait, C.

    2017-08-01

    The paper presents an initial study concerning the form factors for shear, for a rectangular and for a circular cross section, being used an analytical method and a numerical study. The numerical study considers a division of the cross section in small areas and uses the power of the definitions in order to compute the according integrals. The accurate values of the form factors are increasing the accuracy of the displacements computed by the use of the strain energy methods. The knowledge resulted from this study will be used for several directions of development: calculus of the form factors for a ring-type cross section of variable ratio of the inner and outer diameters, calculus of the geometrical characteristics of an inclined circular segment and, using a Bool algebra that operates with geometrical shapes, for an inclined circular ring segment. These shapes may be used to analytically define the geometrical model of a complex composite section, i.e. a ship hull cross section. The according calculus relations are also useful for the development of customized design commands in CAD commercial applications. The paper is a result of the long run development of original computer based instruments in engineering of the authors.

  4. Computer program for the analysis of the cross flow in a radial inflow turbine scroll

    NASA Technical Reports Server (NTRS)

    Hamed, A.; Abdallah, S.; Tabakoff, W.

    1977-01-01

    A computer program was used to solve the governing of the potential flow in the cross sectional planes of a radial inflow turbine scroll. A list of the main program, the subroutines, and typical output example are included.

  5. Analysis of the cross flow in a radial inflow turbine scroll

    NASA Technical Reports Server (NTRS)

    Hamed, A.; Abdallah, S.; Tabakoff, W.

    1977-01-01

    Equations of motion were derived, and a computational procedure is presented, for determining the nonviscous flow characteristics in the cross-sectional planes of a curved channel due to continuous mass discharge or mass addition. An analysis was applied to the radial inflow turbine scroll to study the effects of scroll geometry and the through flow velocity profile on the flow behavior. The computed flow velocity component in the scroll cross-sectional plane, together with the through flow velocity profile which can be determined in a separate analysis, provide a complete description of the three dimensional flow in the scroll.

  6. WinXSPRO, a channel cross section analyzer, User's Manual, Version 3.0

    Treesearch

    Thomas Hardy; Palavi Panja; Dean Mathias

    2005-01-01

    WinXSPRO is an interactive Windows software package designed to analyze stream channel cross section data for geometric, hydraulic, and sediment transport parameters. WinXSPRO was specifically developed for use in high-gradient streams (gradient > 0.01) and supports four alternative resistance equations for computing boundary roughness and resistance to flow. Cross...

  7. Validation of MCNP6 Version 1.0 with the ENDF/B-VII.1 Cross Section Library for Plutonium Metals, Oxides, and Solutions on the High Performance Computing Platform Moonlight

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, Bryan Scott; Gough, Sean T.

    This report documents a validation of the MCNP6 Version 1.0 computer code on the high performance computing platform Moonlight, for operations at Los Alamos National Laboratory (LANL) that involve plutonium metals, oxides, and solutions. The validation is conducted using the ENDF/B-VII.1 continuous energy group cross section library at room temperature. The results are for use by nuclear criticality safety personnel in performing analysis and evaluation of various facility activities involving plutonium materials.

  8. Higgs-differential cross section at NNLO in dimensional regularisation

    DOE PAGES

    Dulat, Falko; Lionetti, Simone; Mistlberger, Bernhard; ...

    2017-07-05

    We present an analytic computation of the Higgs production cross section in the gluon fusion channel, which is differential in the components of the Higgs momentum and inclusive in the associated partonic radiation through NNLO in perturbative QCD. Our computation includes the necessary higher order terms in the dimensional regulator beyond the finite part that are required for renormalisation and collinear factorisation at N 3LO. We outline in detail the computational methods which we employ. We present numerical predictions for realistic final state observables, specifically distributions for the decay products of the Higgs boson in the γγ decay channel.

  9. Ti:sapphire - A theoretical assessment for its spectroscopy

    NASA Astrophysics Data System (ADS)

    Da Silva, A.; Boschetto, D.; Rax, J. M.; Chériaux, G.

    2017-03-01

    This article tries to theoretically compute the stimulated emission cross-sections when we know the oscillator strength of a broad material class (dielectric crystals hosting metal-transition impurity atoms). We apply the present approach to Ti:sapphire and check it by computing some emission cross-section curves for both π and σ polarizations. We also set a relationship between oscillator strength and radiative lifetime. Such an approach will allow future parametric studies for Ti:sapphire spectroscopic properties.

  10. Acceleration of color computer-generated hologram from three-dimensional scenes with texture and depth information

    NASA Astrophysics Data System (ADS)

    Shimobaba, Tomoyoshi; Kakue, Takashi; Ito, Tomoyoshi

    2014-06-01

    We propose acceleration of color computer-generated holograms (CGHs) from three-dimensional (3D) scenes that are expressed as texture (RGB) and depth (D) images. These images are obtained by 3D graphics libraries and RGB-D cameras: for example, OpenGL and Kinect, respectively. We can regard them as two-dimensional (2D) cross-sectional images along the depth direction. The generation of CGHs from the 2D cross-sectional images requires multiple diffraction calculations. If we use convolution-based diffraction such as the angular spectrum method, the diffraction calculation takes a long time and requires large memory usage because the convolution diffraction calculation requires the expansion of the 2D cross-sectional images to avoid the wraparound noise. In this paper, we first describe the acceleration of the diffraction calculation using "Band-limited double-step Fresnel diffraction," which does not require the expansion. Next, we describe color CGH acceleration using color space conversion. In general, color CGHs are generated on RGB color space; however, we need to repeat the same calculation for each color component, so that the computational burden of the color CGH generation increases three-fold, compared with monochrome CGH generation. We can reduce the computational burden by using YCbCr color space because the 2D cross-sectional images on YCbCr color space can be down-sampled without the impairing of the image quality.

  11. Photon scattering cross sections of H2 and He measured with synchrotron radiation

    NASA Technical Reports Server (NTRS)

    Ice, G. E.

    1977-01-01

    Total (elastic + inelastic) differential photon scattering cross sections have been measured for H2 gas and He, using an X-ray beam. Absolute measured cross sections agree with theory within the probable errors. Relative cross sections (normalized to theory at large S) agree to better than one percent with theoretical values calculated from wave functions that include the effect of electron-electron Coulomb correlation, but the data deviate significantly from theoretical independent-particle (e.g., Hartree-Fock) results. The ratios of measured absolute He cross sections to those of H2, at any given S, also agree to better than one percent with theoretical He-to-H2 cross-section ratios computed from correlated wave functions. It appears that photon scattering constitutes a very promising tool for probing electron correlation in light atoms and molecules.

  12. Advanced nodal neutron diffusion method with space-dependent cross sections: ILLICO-VX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajic, H.L.; Ougouag, A.M.

    1987-01-01

    Advanced transverse integrated nodal methods for neutron diffusion developed since the 1970s require that node- or assembly-homogenized cross sections be known. The underlying structural heterogeneity can be accurately accounted for in homogenization procedures by the use of heterogeneity or discontinuity factors. Other (milder) types of heterogeneity, burnup-induced or due to thermal-hydraulic feedback, can be resolved by explicitly accounting for the spatial variations of material properties. This can be done during the nodal computations via nonlinear iterations. The new method has been implemented in the code ILLICO-VX (ILLICO variable cross-section method). Numerous numerical tests were performed. As expected, the convergence ratemore » of ILLICO-VX is lower than that of ILLICO, requiring approx. 30% more outer iterations per k/sub eff/ computation. The methodology has also been implemented as the NOMAD-VX option of the NOMAD, multicycle, multigroup, two- and three-dimensional nodal diffusion depletion code. The burnup-induced heterogeneities (space dependence of cross sections) are calculated during the burnup steps.« less

  13. Scattering characteristics of relativistically moving concentrically layered spheres

    NASA Astrophysics Data System (ADS)

    Garner, Timothy J.; Lakhtakia, Akhlesh; Breakall, James K.; Bohren, Craig F.

    2018-02-01

    The energy extinction cross section of a concentrically layered sphere varies with velocity as the Doppler shift moves the spectral content of the incident signal in the sphere's co-moving inertial reference frame toward or away from resonances of the sphere. Computations for hollow gold nanospheres show that the energy extinction cross section is high when the Doppler shift moves the incident signal's spectral content in the co-moving frame near the wavelength of the sphere's localized surface plasmon resonance. The energy extinction cross section of a three-layer sphere consisting of an olivine-silicate core surrounded by a porous and a magnetite layer, which is used to explain extinction caused by interstellar dust, also depends strongly on velocity. For this sphere, computations show that the energy extinction cross section is high when the Doppler shift moves the spectral content of the incident signal near either of olivine-silicate's two localized surface phonon resonances at 9.7 μm and 18 μm.

  14. Analysis of reaction cross-section production in neutron induced fission reactions on uranium isotope using computer code COMPLET.

    PubMed

    Asres, Yihunie Hibstie; Mathuthu, Manny; Birhane, Marelgn Derso

    2018-04-22

    This study provides current evidence about cross-section production processes in the theoretical and experimental results of neutron induced reaction of uranium isotope on projectile energy range of 1-100 MeV in order to improve the reliability of nuclear stimulation. In such fission reactions of 235 U within nuclear reactors, much amount of energy would be released as a product that able to satisfy the needs of energy to the world wide without polluting processes as compared to other sources. The main objective of this work is to transform a related knowledge in the neutron-induced fission reactions on 235 U through describing, analyzing and interpreting the theoretical results of the cross sections obtained from computer code COMPLET by comparing with the experimental data obtained from EXFOR. The cross section value of 235 U(n,2n) 234 U, 235 U(n,3n) 233 U, 235 U(n,γ) 236 U, 235 U(n,f) are obtained using computer code COMPLET and the corresponding experimental values were browsed by EXFOR, IAEA. The theoretical results are compared with the experimental data taken from EXFOR Data Bank. Computer code COMPLET has been used for the analysis with the same set of input parameters and the graphs were plotted by the help of spreadsheet & Origin-8 software. The quantification of uncertainties stemming from both experimental data and computer code calculation plays a significant role in the final evaluated results. The calculated results for total cross sections were compared with the experimental data taken from EXFOR in the literature, and good agreement was found between the experimental and theoretical data. This comparison of the calculated data was analyzed and interpreted with tabulation and graphical descriptions, and the results were briefly discussed within the text of this research work. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. MEASUREMENTS OF THE ABSORPTION AND SCATTERING CROSS SECTIONS FOR THE INTERACTION OF SOLAR ACOUSTIC WAVES WITH SUNSPOTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Hui; Chou, Dean-Yi, E-mail: chou@phys.nthu.edu.tw

    The solar acoustic waves are modified by the interaction with sunspots. The interaction can be treated as a scattering problem: an incident wave propagating toward a sunspot is scattered by the sunspot into different modes. The absorption cross section and scattering cross section are two important parameters in the scattering problem. In this study, we use the wavefunction of the scattered wave, measured with a deconvolution method, to compute the absorption cross section σ {sub ab} and the scattering cross section σ {sub sc} for the radial order n = 0–5 for two sunspots, NOAA 11084 and NOAA 11092. Inmore » the computation of the cross sections, the random noise and dissipation in the measured acoustic power are corrected. For both σ {sub ab} and σ {sub sc}, the value of NOAA 11092 is greater than that of NOAA 11084, but their overall n dependence is similar: decreasing with n . The ratio of σ {sub ab} of NOAA 11092 to that of NOAA 11084 approximately equals the ratio of sunspot radii for all n , while the ratio of σ {sub sc} of the two sunspots is greater than the ratio of sunspot radii and increases with n . This suggests that σ {sub ab} is approximately proportional to the sunspot radius, while the dependence of σ {sub sc} on radius is faster than the linear increase.« less

  16. Higgs boson production at hadron colliders at N3LO in QCD

    NASA Astrophysics Data System (ADS)

    Mistlberger, Bernhard

    2018-05-01

    We present the Higgs boson production cross section at Hadron colliders in the gluon fusion production mode through N3LO in perturbative QCD. Specifically, we work in an effective theory where the top quark is assumed to be infinitely heavy and all other quarks are considered to be massless. Our result is the first exact formula for a partonic hadron collider cross section at N3LO in perturbative QCD. Furthermore, our result is an analytic computation of a hadron collider cross section involving elliptic integrals. We derive numerical predictions for the Higgs boson cross section at the LHC. Previously this result was approximated by an expansion of the cross section around the production threshold of the Higgs boson and we compare our findings. Finally, we study the impact of our new result on the state of the art prediction for the Higgs boson cross section at the LHC.

  17. Progress on China nuclear data processing code system

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Wu, Xiaofei; Ge, Zhigang; Li, Songyang; Wu, Haicheng; Wen, Lili; Wang, Wenming; Zhang, Huanyu

    2017-09-01

    China is developing the nuclear data processing code Ruler, which can be used for producing multi-group cross sections and related quantities from evaluated nuclear data in the ENDF format [1]. The Ruler includes modules for reconstructing cross sections in all energy range, generating Doppler-broadened cross sections for given temperature, producing effective self-shielded cross sections in unresolved energy range, calculating scattering cross sections in thermal energy range, generating group cross sections and matrices, preparing WIMS-D format data files for the reactor physics code WIMS-D [2]. Programming language of the Ruler is Fortran-90. The Ruler is tested for 32-bit computers with Windows-XP and Linux operating systems. The verification of Ruler has been performed by comparison with calculation results obtained by the NJOY99 [3] processing code. The validation of Ruler has been performed by using WIMSD5B code.

  18. Electron-induced scattering dynamics of Boron, Aluminium and Gallium trihalides in the intermediate energy domain

    NASA Astrophysics Data System (ADS)

    Verma, Pankaj; Alam, Mohammad Jane; Ahmad, Shabbir; Antony, Bobby

    2018-05-01

    This article is focused on the calculation of electron-induced ionisation and total scattering cross sections by Boron, Aluminium and Gallium trihalide molecules in the intermediate energy domain. The computational formalism, spherical complex optical potential has been employed for the study of these two scattering cross sections. The ionisation cross section has been derived from the inelastic cross section using a semi-empirical method called complex scattering potential-ionisation contribution (CSP-ic) method. We have also calculated the ionisation cross section using the BEB theory with Hartree-Fock and density functional theory (DFT- ωB97XD) orbitals so that a comparison can be made with the cross sections predicted by CSP-ic method. For this theoretical study, we have also calculated polarisability and bond length of some targets which were not found in literature using DFT/B3LYP in Gaussian 09 software.

  19. Normal cross-sectional anatomy of the bovine digit: comparison of computed tomography and limb anatomy.

    PubMed

    Raji, A R; Sardari, K; Mohammadi, H R

    2008-06-01

    The purpose of this study was to define the structures of the digits and hoof in Holstein dairy cattle by using computed tomography scan (CT scan). Transverse, sagittal and dorsoplantar CT images of two isolated cattle cadaver digits were obtained using a Siemens ARTX2 Somatom. The CT images were compared to corresponding frozen cross-sections. Relevant anatomical structures were identified and labelled at each level. The CT images provided anatomical detail of the digits and hoof in Holstein dairy cattle. Transversal images provided excellent depiction of anatomical structures when compared to corresponding frozen cross-sections. The information presented in this paper would serve as an initial reference to the evaluation of CT images of the digits and hoof in Holstein dairy cattle.

  20. Computed tomographic and cross-sectional anatomy of the normal pacu (Colossoma macroponum).

    PubMed

    Carr, Alaina; Weber, E P Scott; Murphy, Chris J; Zwingenberger, Alison

    2014-03-01

    The purpose of this study was to compare and define the normal cross-sectional gross and computed tomographic (CT) anatomy for a species of boney fish to better gain insight into the use of advanced diagnostic imaging for future clinical cases. The pacu (Colossoma macropomum) was used because of its widespread presence in the aquarium trade, its relatively large body size, and its importance in the research and aquaculture settings. Transverse 0.6-mm CT images of three cadaver fish were obtained and compared to corresponding frozen cross sections of the fish. Relevant anatomic structures were identified and labeled at each level; the Hounsfield unit density of major organs was established. The images presented good anatomic detail and provide a reference for future research and clinical investigation.

  1. Effects of instructional strategies using cross sections on the recognition of anatomical structures in correlated CT and MR images.

    PubMed

    Khalil, Mohammed K; Paas, Fred; Johnson, Tristan E; Su, Yung K; Payer, Andrew F

    2008-01-01

    This research is an effort to best utilize the interactive anatomical images for instructional purposes based on cognitive load theory. Three studies explored the differential effects of three computer-based instructional strategies that use anatomical cross-sections to enhance the interpretation of radiological images. These strategies include: (1) cross-sectional images of the head that can be superimposed on radiological images, (2) transparent highlighting of anatomical structures in radiological images, and (3) cross-sectional images of the head with radiological images presented side-by-side. Data collected included: (1) time spent on instruction and on solving test questions, (2) mental effort during instruction and test, and (3) students' performance to identify anatomical structures in radiological images. Participants were 28 freshmen medical students (15 males and 13 females) and 208 biology students (190 females and 18 males). All studies used posttest-only control group design, and the collected data were analyzed by either t test or ANOVA. In self-directed computer-based environments, the strategies that used cross sections to improve students' ability to recognize anatomic structures in radiological images showed no significant positive effects. However, when increasing the complexity of the instructional materials, cross-sectional images imposed a higher cognitive load, as indicated by higher investment of mental effort. There is not enough evidence to claim that the simultaneous combination of cross sections and radiological images has no effect on the identification of anatomical structures in radiological images for novices. Further research that control for students' learning and cognitive style is needed to reach an informative conclusion.

  2. Computed tomography and cross-sectional anatomy of the metatarsus and digits of the one-humped camel (Camelus dromedarius) and buffalo ( Bos bubalis).

    PubMed

    El-Shafey, A; Kassab, A

    2013-04-01

    The purpose of the present study was to provide a detailed computed tomography (CT) and cross-sectional anatomic reference of the normal metatarsus and digits for the camel and buffalo, as well as to compare between metatarsus and digits in these animals to outstand a basis for diagnosis of their diseases. Advantages, including depiction of detailed cross-sectional anatomy, improved contrast resolution and computer reformatting, make it a potentially valuable diagnostic technique. The hind limbs of 12 healthy adult camel and buffalo were used. Clinically relevant anatomic structures were identified and labelled at each level in the corresponding images (CT and anatomic slices). CT images were used to identify the bony and soft tissue structures of the metatarsus and digits. The knowledge of normal anatomy of the camel and buffalo metatarsus and digits would serve as initial reference to the evaluation of CT images in these species. © 2012 Blackwell Verlag GmbH.

  3. Investigations of Sediment Transportation, Middle Loup River at Dunning, Nebraska: With Application of Data from Turbulence Flume

    USGS Publications Warehouse

    Hubbell, David Wellington; Matejka, Donald Quintin

    1959-01-01

    An investigation of fluvial sediments of the Middle Loup River at Dunning, Nebr., was begun in 1946 and expanded in 1949 to provide information on sediment transportation. Construction of an artificial turbulence flume at which the total sediment discharge of the Middle Loup River at Dunning, Nebr., could be measured with suspended-sediment sampling equipment was completed in 1949. Since that time. measurements have been made at the turbulence flume and at several selected sections in a reach upstream and downstream from the flume. The Middle Loup River upstream from Dunning traverses the sandhills region of north-central Nebraska and has a drainage area of approximately 1,760 square miles. The sandhills are underlain by the Ogallala formation of Tertiary age and are mantled by loess and dune sand. The topography is characterized by northwest-trending sand dunes, which are stabilized by grass cover. The valley floor upstream from Dunning is generally about half a mile wide, is about 80 feet lower than the uplands, and is composed of sand that was mostly stream deposited. The channel is defined by low banks. Bank erosion is prevalent and is the source of most of the sediment load. The flow originates mostly from ground-water accretion and varies between about 200 and 600 cfs (cubic feet per second). Measured suspended-sediment loads vary from about 200 to 2,000 tons per day, of which about 20 percent is finer than 0.062 millimeter and 100 percent is finer than 0.50 millimeter. Total sediment discharges vary from about 500 to 3,500 tons per day, of which about 10 percent is finer than 0.062 millimeter, about 90 percent is finer than 0.50 millimeter, and about 98 percent is finer than 2.0 millimeters. The measured suspended-sediment discharge in the reach near Dunning averages about one-half of the total sediment discharge as measured at the turbulence flume. This report contains information collected during the period October 1, 1948, to September 30, 1952. The information includes sediment discharges; particle-size analyses of total load, of measured suspended sediment, and of bed material; water discharges and other hydraulic data for the turbulence flume and the selected sections. Sediment discharges have been computed with several different formulas, and insofar as possible, each computed load has been compared with data from the turbulence flume. Sediment discharges computed with the Einstein procedure did not agree well, in general, with comparable measured loads. However, a satisfactory representative cross section for the reach could not be determined with the cross sections that were selected for this investigation. If the computed cross section was narrower and deeper than a representative cross section for the reach, computed loads were high; and if the computed cross section was wider and shallower than a representative cross section for the reach, computed loads were low. Total sediment discharges computed with the modified Einstein procedure compared very well with the loads of individual size ranges and the measured total loads at the turbulence flume. Sediment discharges computed with the Straub equation averaged about twice the measured total sediment discharge at the turbulence flume. Bed-load discharges computed with the Kalinske equation were of about the right magnitude; however, high computed loads were associated with low total loads, low unmeasured loads, and low concentrations of measured suspended sediment coarser than 0.125 millimeter. Bed-load discharges computed with the Schoklitsch equation seemed somewhat high; about one-third of the computed loads were slightly higher than comparable unmeasured loads. Although, in general, high computed discharges with the Schoklitsch equation were associated with high measured total loads, high unmeasured loads, and high concentrations of measured suspended sediment coarser than 0.125 millimeter, the trend was not consistent. Bed-load discharges computed

  4. The Role of Electroweak Corrections for the Dark Matter Relic Abundance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciafaloni, Paolo; Comelli, Denis; Simone, Andrea De

    2013-10-01

    We analyze the validity of the theorems concerning the cancellation of the infrared and collinar divergences in the case of dark matter freeze-out in the early universe. In particular, we compute the electroweak logarithmic corrections of infrared origin to the annihilation cross section of a dark matter particle being the neutral component of a SU(2){sub L} multiplet. The inclusion of processes with final state W can modify significantly the cross sections computed with only virtual W exchange. Our results show that the inclusion of infrared logs is necessary for a precise computation of the dark matter relic abundance.

  5. Convergence of Legendre Expansion of Doppler-Broadened Double Differential Elastic Scattering Cross Section

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arbanas, Goran; Dunn, Michael E; Larson, Nancy M

    2012-01-01

    Convergence properties of Legendre expansion of a Doppler-broadened double-differential elastic neutron scattering cross section of {sup 238}U near the 6.67 eV resonance at temperature 10{sup 3} K are studied. A variance of Legendre expansion from a reference Monte Carlo computation is used as a measure of convergence and is computed for as many as 15 terms in the Legendre expansion. When the outgoing energy equals the incoming energy, it is found that the Legendre expansion converges very slowly. Therefore, a supplementary method of computing many higher-order terms is suggested and employed for this special case.

  6. Two-Photon Absorption Properties of Gold Fluorescent Protein: A Combined Molecular Dynamics and Quantum Chemistry Study.

    PubMed

    Şimşek, Yusuf; Brown, Alex

    2018-06-07

    Molecular dynamics (MD) simulations were carried out to obtain the conformational changes of the chromophore in the gold fluorescent protein (PDB ID: 1OXF ). To obtain two-photon absorption (TPA) cross-sections, time dependent density functional theory (TD-DFT) computations were performed for chromophore geometries sampled along the trajectory. The TD-DFT computations used the CAM-B3LYP functional and 6-31+G(d) basis set. Results showed that two dihedral angles change remarkably over the simulation time. TPA cross-sections were found to average 13.82 GM for the excitation to S 1 computed from the equilibrium geometries; however, extending the structures with a water molecule and GLU residue, which make H bonds with the chromophore molecule, increased excitation energies and TPA cross-sections significantly. Besides the effects of the surrounding residues and the dihedrals on the spectroscopic properties, some bond lengths affected the excitation energies and the TPA cross-sections significantly (up to ±25-30%), while the effects of the bond angles were smaller (±5%). Overall the present results provide insight into the effects of the conformational flexibility on TPA (with gold fluorescent protein as a specific example) and suggest that further experimental measurements of TPA for the gold fluorescent protein should be undertaken.

  7. A modal radar cross section of thin-wire targets via the singularity expansion method

    NASA Technical Reports Server (NTRS)

    Richards, M. A.; Shumpert, T. H.; Riggs, L. S.

    1992-01-01

    A modal radar cross section (RCS) of arbitrary wire scatterers is constructed in terms of SEM parameters. Numerical results are presented for both straight and L-shaped wire targets and are compared to computations performed in the frequency domain using the method of moments.

  8. Measuring cross sections using a sag tape: a generalized procedure

    Treesearch

    Gary A. Ray; Walter F. Megahan

    1979-01-01

    A procedure was developed for surveying cross sections using a sag tape with unequal end elevations. The procedure is as accurate as traditional engineer's level surveys, is faster and easier, and can be programed for a digital computer by following the flow diagram which is provided.

  9. Differential Cross Sections for Proton-Proton Elastic Scattering

    NASA Technical Reports Server (NTRS)

    Norman, Ryan B.; Dick, Frank; Norbury, John W.; Blattnig, Steve R.

    2009-01-01

    Proton-proton elastic scattering is investigated within the framework of the one pion exchange model in an attempt to model nucleon-nucleon interactions spanning the large range of energies important to cosmic ray shielding. A quantum field theoretic calculation is used to compute both differential and total cross sections. A scalar theory is then presented and compared to the one pion exchange model. The theoretical cross sections are compared to proton-proton scattering data to determine the validity of the models.

  10. A broad-group cross-section library based on ENDF/B-VII.0 for fast neutron dosimetry Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alpan, F.A.

    2011-07-01

    A new ENDF/B-VII.0-based coupled 44-neutron, 20-gamma-ray-group cross-section library was developed to investigate the latest evaluated nuclear data file (ENDF) ,in comparison to ENDF/B-VI.3 used in BUGLE-96, as well as to generate an objective-specific library. The objectives selected for this work consisted of dosimetry calculations for in-vessel and ex-vessel reactor locations, iron atom displacement calculations for reactor internals and pressure vessel, and {sup 58}Ni(n,{gamma}) calculation that is important for gas generation in the baffle plate. The new library was generated based on the contribution and point-wise cross-section-driven (CPXSD) methodology and was applied to one of the most widely used benchmarks, themore » Oak Ridge National Laboratory Pool Critical Assembly benchmark problem. In addition to the new library, BUGLE-96 and an ENDF/B-VII.0-based coupled 47-neutron, 20-gamma-ray-group cross-section library was generated and used with both SNLRML and IRDF dosimetry cross sections to compute reaction rates. All reaction rates computed by the multigroup libraries are within {+-} 20 % of measurement data and meet the U. S. Nuclear Regulatory Commission acceptance criterion for reactor vessel neutron exposure evaluations specified in Regulatory Guide 1.190. (authors)« less

  11. Parametric bicubic spline and CAD tools for complex targets shape modelling in physical optics radar cross section prediction

    NASA Astrophysics Data System (ADS)

    Delogu, A.; Furini, F.

    1991-09-01

    Increasing interest in radar cross section (RCS) reduction is placing new demands on theoretical, computation, and graphic techniques for calculating scattering properties of complex targets. In particular, computer codes capable of predicting the RCS of an entire aircraft at high frequency and of achieving RCS control with modest structural changes, are becoming of paramount importance in stealth design. A computer code, evaluating the RCS of arbitrary shaped metallic objects that are computer aided design (CAD) generated, and its validation with measurements carried out using ALENIA RCS test facilities are presented. The code, based on the physical optics method, is characterized by an efficient integration algorithm with error control, in order to contain the computer time within acceptable limits, and by an accurate parametric representation of the target surface in terms of bicubic splines.

  12. Validation of MCNP6 Version 1.0 with the ENDF/B-VII.1 Cross Section Library for Uranium Metal, Oxide, and Solution Systems on the High Performance Computing Platform Moonlight

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, Bryan Scott; MacQuigg, Michael Robert; Wysong, Andrew Russell

    In this document, the code MCNP is validated with ENDF/B-VII.1 cross section data under the purview of ANSI/ANS-8.24-2007, for use with uranium systems. MCNP is a computer code based on Monte Carlo transport methods. While MCNP has wide reading capability in nuclear transport simulation, this validation is limited to the functionality related to neutron transport and calculation of criticality parameters such as k eff.

  13. Pseudo-point transport technique: a new method for solving the Boltzmann transport equation in media with highly fluctuating cross sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakhai, B.

    A new method for solving radiation transport problems is presented. The heart of the technique is a new cross section processing procedure for the calculation of group-to-point and point-to-group cross sections sets. The method is ideally suited for problems which involve media with highly fluctuating cross sections, where the results of the traditional multigroup calculations are beclouded by the group averaging procedures employed. Extensive computational efforts, which would be required to evaluate double integrals in the multigroup treatment numerically, prohibit iteration to optimize the energy boundaries. On the other hand, use of point-to-point techniques (as in the stochastic technique) ismore » often prohibitively expensive due to the large computer storage requirement. The pseudo-point code is a hybrid of the two aforementioned methods (group-to-group and point-to-point) - hence the name pseudo-point - that reduces the computational efforts of the former and the large core requirements of the latter. The pseudo-point code generates the group-to-point or the point-to-group transfer matrices, and can be coupled with the existing transport codes to calculate pointwise energy-dependent fluxes. This approach yields much more detail than is available from the conventional energy-group treatments. Due to the speed of this code, several iterations could be performed (in affordable computing efforts) to optimize the energy boundaries and the weighting functions. The pseudo-point technique is demonstrated by solving six problems, each depicting a certain aspect of the technique. The results are presented as flux vs energy at various spatial intervals. The sensitivity of the technique to the energy grid and the savings in computational effort are clearly demonstrated.« less

  14. Efficient and Accurate Computation of Non-Negative Anisotropic Group Scattering Cross Sections for Discrete Ordinates and Monte Carlo Radiation Transport

    DTIC Science & Technology

    2002-07-01

    Date Kirk A. Mathews (Advisor) James T. Moore (Dean’s Representative) Charles J. Bridgman (Member...Adler-Adler, and Kalbach -Mann representations of the scatter cross sections that are used for some isotopes in ENDF/B-VI are not included. They are not

  15. Computational modeling of GTA (gas tungsten arc) welding with emphasis on surface tension effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zacharia, T.; David, S.A.

    1990-01-01

    A computational study of the convective heat transfer in the weld pool during gas tungsten arch (GTA) welding of Type 304 stainless steel is presented. The solution of the transport equations is based on a control volume approach which utilized directly, the integral form of the governing equations. The computational model considers buoyancy and electromagnetic and surface tension forces in the solution of convective heat transfer in the weld pool. In addition, the model treats the weld pool surface as a deformable free surface. The computational model includes weld metal vaporization and temperature dependent thermophysical properties. The results indicate thatmore » consideration of weld pool vaporization effects and temperature dependent thermophysical properties significantly influence the weld model predictions. Theoretical predictions of the weld pool surface temperature distributions and the cross-sectional weld pool size and shape wee compared with corresponding experimental measurements. Comparison of the theoretically predicted and the experimentally obtained surface temperature profiles indicated agreement with {plus minus} 8%. The predicted weld cross-section profiles were found to agree very well with actual weld cross-sections for the best theoretical models. 26 refs., 8 figs.« less

  16. HZETRN: Description of a free-space ion and nucleon transport and shielding computer program

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Badavi, Francis F.; Cucinotta, Francis A.; Shinn, Judy L.; Badhwar, Gautam D.; Silberberg, R.; Tsao, C. H.; Townsend, Lawrence W.; Tripathi, Ram K.

    1995-01-01

    The high-charge-and energy (HZE) transport computer program HZETRN is developed to address the problems of free-space radiation transport and shielding. The HZETRN program is intended specifically for the design engineer who is interested in obtaining fast and accurate dosimetric information for the design and construction of space modules and devices. The program is based on a one-dimensional space-marching formulation of the Boltzmann transport equation with a straight-ahead approximation. The effect of the long-range Coulomb force and electron interaction is treated as a continuous slowing-down process. Atomic (electronic) stopping power coefficients with energies above a few A MeV are calculated by using Bethe's theory including Bragg's rule, Ziegler's shell corrections, and effective charge. Nuclear absorption cross sections are obtained from fits to quantum calculations and total cross sections are obtained with a Ramsauer formalism. Nuclear fragmentation cross sections are calculated with a semiempirical abrasion-ablation fragmentation model. The relation of the final computer code to the Boltzmann equation is discussed in the context of simplifying assumptions. A detailed description of the flow of the computer code, input requirements, sample output, and compatibility requirements for non-VAX platforms are provided.

  17. Measurement of the inclusive jet cross section at D0 Run II (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agram, Jean-Laurent

    2004-12-17

    This work describes the measurement of inclusive jets cross section in the DØ experiment. This cross section is computed as a function of jet transverse momentum, in several rapidity intervals. This quantity is sensitive to the proton structure and is crucial for the determination of parton distribution functions (PDF), essentially for the gluon at high proton momentum fraction. The measurement presented here gives the first values obtained for Tevatron Run II for the cross section in several rapidity intervals, for an integrated luminosity of 143 pb -1. The results are in agreement, within the uncertainties, with theoretical Standard Model predictions,more » showing no evidence for new physics.« less

  18. Dissociation cross section for high energy O2-O2 collisions

    NASA Astrophysics Data System (ADS)

    Mankodi, T. K.; Bhandarkar, U. V.; Puranik, B. P.

    2018-04-01

    Collision-induced dissociation cross section database for high energy O2-O2 collisions (up to 30 eV) is generated and published using the quasiclassical trajectory method on the singlet, triplet, and quintet spin ground state O4 potential energy surfaces. At equilibrium conditions, these cross sections predict reaction rate coefficients that match those obtained experimentally. The main advantage of the cross section database based on ab initio computations is in the study of complex flows with high degree of non-equilibrium. Direct simulation Monte Carlo simulations using the reactive cross section databases are carried out for high enthalpy hypersonic oxygen flow over a cylinder at rarefied ambient conditions. A comparative study with the phenomenological total collision energy chemical model is also undertaken to point out the difference and advantage of the reported ab initio reaction model.

  19. The radar cross section of dielectric disks

    NASA Technical Reports Server (NTRS)

    Levine, D. M.

    1982-01-01

    A solution is presented for the backscatter (nonstatic) radar cross section of dielectric disks of arbitrary shape, thickness and dielectric constant. The result is obtained by employing a Kirchhoff type approximation to obtain the fields inside the disk. The internal fields induce polarization and conduction currents from which the scattered fields and the radar cross section can be computed. The solution for the radar cross section obtained in this manner is shown to agree with known results in the special cases of normal incidence, thin disks and perfect conductivity. The solution can also be written as a product of the reflection coefficient of an identically oriented slab times the physical optics solution for the backscatter cross section of a perfectly conducting disk of the same shape. This result follows directly from the Kirchhoff type approximation without additional assumptions.

  20. Cone-Beam Computed Tomography Analysis of the Nasopharyngeal Airway in Nonsyndromic Cleft Lip and Palate Subjects.

    PubMed

    Al-Fahdawi, Mahmood Abd; Farid, Mary Medhat; El-Fotouh, Mona Abou; El-Kassaby, Marwa Abdelwahab

    2017-03-01

      To assess the nasopharyngeal airway volume, cross-sectional area, and depth in previously repaired nonsyndromic unilateral cleft lip and palate versus bilateral cleft lip and palate patients compared with noncleft controls using cone-beam computed tomography with the ultimate goal of finding whether cleft lip and palate patients are more liable to nasopharyngeal airway obstruction.   A retrospective analysis comparing bilateral cleft lip and palate, unilateral cleft lip and palate, and control subjects. Significance at P ≤ .05.   Cleft Care Center and the outpatient clinic that are both affiliated with our faculty.   Cone-beam computed tomography data were selected of 58 individuals aged 9 to 12 years: 14 with bilateral cleft lip and palate and 20 with unilateral cleft lip and palate as well as 24 age- and gender-matched noncleft controls.   Volume, depth, and cross-sectional area of nasopharyngeal airway were measured.   Patients with bilateral cleft lip and palate showed significantly larger nasopharyngeal airway volume than controls and patients with unilateral cleft lip and palate (P < .001). Patients with bilateral cleft lip and palate showed significantly larger cross-sectional area than those with unilateral cleft lip and palate (P < .001) and insignificant cross-sectional area compared with controls (P > .05). Patients with bilateral cleft lip and palate showed significantly larger depth than controls and those with unilateral cleft lip and palate (P < .001). Patients with unilateral cleft lip and palate showed insignificant nasopharyngeal airway volume, cross-sectional area, and depth compared with controls (P > .05).   Unilateral and bilateral cleft lip and palate patients did not show significantly less volume, cross-sectional area, or depth of nasopharyngeal airway than controls. From the results of this study we conclude that unilateral and bilateral cleft lip and palate patients at the studied age and stage of repaired clefts are not more prone to nasopharyngeal airway obstruction than controls.

  1. Mixed Legendre moments and discrete scattering cross sections for anisotropy representation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calloo, A.; Vidal, J. F.; Le Tellier, R.

    2012-07-01

    This paper deals with the resolution of the integro-differential form of the Boltzmann transport equation for neutron transport in nuclear reactors. In multigroup theory, deterministic codes use transfer cross sections which are expanded on Legendre polynomials. This modelling leads to negative values of the transfer cross section for certain scattering angles, and hence, the multigroup scattering source term is wrongly computed. The first part compares the convergence of 'Legendre-expanded' cross sections with respect to the order used with the method of characteristics (MOC) for Pressurised Water Reactor (PWR) type cells. Furthermore, the cross section is developed using piecewise-constant functions, whichmore » better models the multigroup transfer cross section and prevents the occurrence of any negative value for it. The second part focuses on the method of solving the transport equation with the above-mentioned piecewise-constant cross sections for lattice calculations for PWR cells. This expansion thereby constitutes a 'reference' method to compare the conventional Legendre expansion to, and to determine its pertinence when applied to reactor physics calculations. (authors)« less

  2. Shell-model computed cross sections for charged-current scattering of astrophysical neutrinos off 40Ar

    NASA Astrophysics Data System (ADS)

    Kostensalo, Joel; Suhonen, Jouni; Zuber, K.

    2018-03-01

    Charged-current (anti)neutrino-40Ar cross sections for astrophysical neutrinos have been calculated. The initial and final nuclear states were calculated using the nuclear shell model. The folded solar-neutrino scattering cross section was found to be 1.78 (23 ) ×10-42cm2 , which is higher than what the previous papers have reported. The contributions from the 1- and 2- multipoles were found to be significant at supernova-neutrino energies, confirming the random-phase approximation (RPA) result of a previous study. The effects of neutrino flavor conversions in dense stellar matter (matter oscillations) were found to enhance the neutrino-scattering cross sections significantly for both the normal and inverted mass hierarchies. For the antineutrino scattering, only a small difference between the nonoscillating and inverted-hierarchy cross sections was found, while the normal-hierarchy cross section was 2-3 times larger than that of the nonoscillating cross section, depending on the adopted parametrization of the Fermi-Dirac distribution. This property of the supernova-antineutrino signal could probably be used to distinguish between the two hierarchies in megaton LAr detectors.

  3. Electron induced inelastic and ionization cross section for plasma modeling

    NASA Astrophysics Data System (ADS)

    Verma, Pankaj; Mahato, Dibyendu; Kaur, Jaspreet; Antony, Bobby

    2016-09-01

    The present paper reports electron impact total inelastic and ionization cross section for silicon, germanium, and tin tetrahalides at energies varying from ionization threshold of the target to 5000 eV. These cross section data over a wide energy domain are very essential to understand the physico-chemical processes involved in various environments such as plasma modeling, semiconductor etching, atmospheric sciences, biological sciences, and radiation physics. However, the cross section data on the above mentioned molecules are scarce. In the present article, we report the computation of total inelastic cross section using spherical complex optical potential formalism and the estimation of ionization cross section through a semi-empirical method. The present ionization cross section result obtained for SiCl4 shows excellent agreement with previous measurements, while other molecules have not yet been investigated experimentally. Present results show more consistent behaviour than previous theoretical estimates. Besides cross sections, we have also studied the correlation of maximum ionization cross section with the square root of the ratio of polarizability to ionization potential for the molecules with known polarizabilities. A linear relation is observed between these quantities. This correlation is used to obtain approximate polarizability volumes for SiBr4, SiI4, GeCl4, GeBr4, and GeI4 molecules.

  4. N(+)-N and O(+)-O interaction energies, dipole transition moments, and transport cross sections

    NASA Technical Reports Server (NTRS)

    Partridge, H.; Stallcop, J. R.

    1986-01-01

    Complete sets of ion-atom interaction energies have been computed for nitrogen and oxygen with accurate large scale structure calculations. The computed energies agree well with the accurate potential curves available from spectroscopic measurement. The state functions from the nitrogen calculations have been applied to determine the transition moment for all allowed dipole transitions. These results can be combined to compute a detailed radiation spectrum such as that required to define the highly nonequilibrium environment of aeroassisted orbital transfer vehicle (AOTV). The long-range interaction energies have been used to determine the ion-atom resonance charge exchange cross sections that are important for transport processes such as diffusion. A calculation to determine reliable transport properties for energies that include the AOTV temperature range from these computed properties is described.

  5. Calculation of Centrally Loaded Thin-Walled Columns Above the Buckling Limit

    NASA Technical Reports Server (NTRS)

    Reinitzhuber, F.

    1945-01-01

    When thin-walled columns formed from flanged sheet, such as used in airplane construction, are subjected to axial load, their behavior at failure varies according to the slenderness ratio. On long columns the axis deflects laterally while the cross section form is maintained; buckling results. The respective breaking load in the elastic range is computed by Euler's formula and for the plastic range by the Engesser- Karman formula. Its magnitude is essentially dependent upon the length. On intermediate length columns, especially where open sections are concerned, the cross section is distorted while the cross section form is preserved; twisting failure results. The buckling load in twisting is calculated according to Wagner and Kappus. On short columns the straight walls of low-bending resistance that form the column are deflected at the same time that the cross section form changes - buckling occurs without immediate failure. Then the buckling load of the total section computable from the buckling loads of the section walls is not the ultimate load; quite often, especially on thin-walled sections, it lies considerably higher and is secured by tests. Both loads, the buckling and the ultimate load are only in a small measure dependent upon length. The present report is an attempt to theoretically investigate the behavior of such short, thin-walled columns above the buckling load with the conventional calculating methods.

  6. SPECIES - EVALUATING THERMODYNAMIC PROPERTIES, TRANSPORT PROPERTIES & EQUILIBRIUM CONSTANTS OF AN 11-SPECIES AIR MODEL

    NASA Technical Reports Server (NTRS)

    Thompson, R. A.

    1994-01-01

    Accurate numerical prediction of high-temperature, chemically reacting flowfields requires a knowledge of the physical properties and reaction kinetics for the species involved in the reacting gas mixture. Assuming an 11-species air model at temperatures below 30,000 degrees Kelvin, SPECIES (Computer Codes for the Evaluation of Thermodynamic Properties, Transport Properties, and Equilibrium Constants of an 11-Species Air Model) computes values for the species thermodynamic and transport properties, diffusion coefficients and collision cross sections for any combination of the eleven species, and reaction rates for the twenty reactions normally occurring. The species represented in the model are diatomic nitrogen, diatomic oxygen, atomic nitrogen, atomic oxygen, nitric oxide, ionized nitric oxide, the free electron, ionized atomic nitrogen, ionized atomic oxygen, ionized diatomic nitrogen, and ionized diatomic oxygen. Sixteen subroutines compute the following properties for both a single species, interaction pair, or reaction, and an array of all species, pairs, or reactions: species specific heat and static enthalpy, species viscosity, species frozen thermal conductivity, diffusion coefficient, collision cross section (OMEGA 1,1), collision cross section (OMEGA 2,2), collision cross section ratio, and equilibrium constant. The program uses least squares polynomial curve-fits of the most accurate data believed available to provide the requested values more quickly than is possible with table look-up methods. The subroutines for computing transport coefficients and collision cross sections use additional code to correct for any electron pressure when working with ionic species. SPECIES was developed on a SUN 3/280 computer running the SunOS 3.5 operating system. It is written in standard FORTRAN 77 for use on any machine, and requires roughly 92K memory. The standard distribution medium for SPECIES is a 5.25 inch 360K MS-DOS format diskette. The contents of the diskettes are compressed using the PKWARE archiving tools. The utility to unarchive the files, PKUNZIP.EXE, is included. This program was last updated in 1991. SUN and SunOS are registered trademarks of Sun Microsystems, Inc.

  7. Terahertz wide aperture reflection tomography.

    PubMed

    Pearce, Jeremy; Choi, Hyeokho; Mittleman, Daniel M; White, Jeff; Zimdars, David

    2005-07-01

    We describe a powerful imaging modality for terahertz (THz) radiation, THz wide aperture reflection tomography (WART). Edge maps of an object's cross section are reconstructed from a series of time-domain reflection measurements at different viewing angles. Each measurement corresponds to a parallel line projection of the object's cross section. The filtered backprojection algorithm is applied to recover the image from the projection data. To our knowledge, this is the first demonstration of a reflection computed tomography technique using electromagnetic waves. We demonstrate the capabilities of THz WART by imaging the cross sections of two test objects.

  8. Equality between gravitational and electromagnetic absorption cross sections of extreme Reissner-Nordstroem black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira, Ednilton S.; Crispino, Luis C. B.; Higuchi, Atsushi

    2011-10-15

    The absorption cross section of Reissner-Nordstroem black holes for the gravitational field is computed numerically, taking into account the coupling of the electromagnetic and gravitational perturbations. Our results are in excellent agreement with low- and high-frequency approximations. We find equality between gravitational and electromagnetic absorption cross sections of extreme Reissner-Nordstroem black holes for all frequencies, which we explain analytically. This gives the first example of objects in general relativity in four dimensions that absorb the electromagnetic and gravitational waves in exactly the same way.

  9. Status of the R-matrix Code AMUR toward a consistent cross-section evaluation and covariance analysis for the light nuclei

    NASA Astrophysics Data System (ADS)

    Kunieda, Satoshi

    2017-09-01

    We report the status of the R-matrix code AMUR toward consistent cross-section evaluation and covariance analysis for the light-mass nuclei. The applicable limit of the code is extended by including computational capability for the charged-particle elastic scattering cross-sections and the neutron capture cross-sections as example results are shown in the main texts. A simultaneous analysis is performed on the 17O compound system including the 16O(n,tot) and 13C(α,n)16O reactions together with the 16O(n,n) and 13C(α,α) scattering cross-sections. It is found that a large theoretical background is required for each reaction process to obtain a simultaneous fit with all the experimental cross-sections we analyzed. Also, the hard-sphere radii should be assumed to be different from the channel radii. Although these are technical approaches, we could learn roles and sources of the theoretical background in the standard R-matrix.

  10. Biomimetic optimization research on wind noise reduction of an asymmetric cross-section bar.

    PubMed

    Zhang, Yingchao; Meng, Weijiang; Fan, Bing; Tang, Wenhui

    2016-01-01

    In this paper, we used the principle of biomimetics to design two-dimensional and three-dimensional bar sections, and used computational fluid dynamics software to numerically simulate and analyse the aerodynamic noise, to reduce drag and noise. We used the principle of biomimetics to design the cross-section of a bar. An owl wing shape was used for the initial design of the section geometry; then the feathered form of an owl wing, the v-shaped micro-grooves of a shark's skin, the tubercles of a humpback whale's flipper, and the stripy surface of a scallop's shell were used to inspire surface features, added to the initial section and three-dimensional shape. Through computational aeroacoustic simulations, we obtained the aerodynamic characteristics and the noise levels of the models. These biomimetic models dramatically decreased noise levels.

  11. Computer-based assistive technology device for use by children with physical disabilities: a cross-sectional study.

    PubMed

    Lidström, Helene; Almqvist, Lena; Hemmingsson, Helena

    2012-07-01

    To investigate the prevalence of children with physical disabilities who used a computer-based ATD, and to examine characteristics differences in children and youths who do or do not use computer-based ATDs, as well as, investigate differences that might influence the satisfaction of those two groups of children and youths when computers are being used for in-school and outside school activities. A cross-sectional survey about computer-based activities in and outside school (n = 287) and group comparisons. The prevalence of using computer-based ATDs was about 44 % (n = 127) of the children in this sample. These children were less satisfied with their computer use in education and outside school activities than the children who did not use an ATD. Improved coordination of the usage of computer-based ATDs in school and in the home, including service and support, could increase the opportunities for children with physical disabilities who use computer-based ATDs to perform the computer activities they want, need and are expected to do in school and outside school.

  12. Effects of Instructional Strategies Using Cross Sections on the Recognition of Anatomical Structures in Correlated CT and MR Images

    ERIC Educational Resources Information Center

    Khalil, Mohammed K.; Paas, Fred; Johnson, Tristan E.; Su, Yung K.; Payer, Andrew F.

    2008-01-01

    This research is an effort to best utilize the interactive anatomical images for instructional purposes based on cognitive load theory. Three studies explored the differential effects of three computer-based instructional strategies that use anatomical cross-sections to enhance the interpretation of radiological images. These strategies include:…

  13. extrap: Software to assist the selection of extrapolation methods for moving-boat ADCP streamflow measurements

    NASA Astrophysics Data System (ADS)

    Mueller, David S.

    2013-04-01

    Selection of the appropriate extrapolation methods for computing the discharge in the unmeasured top and bottom parts of a moving-boat acoustic Doppler current profiler (ADCP) streamflow measurement is critical to the total discharge computation. The software tool, extrap, combines normalized velocity profiles from the entire cross section and multiple transects to determine a mean profile for the measurement. The use of an exponent derived from normalized data from the entire cross section is shown to be valid for application of the power velocity distribution law in the computation of the unmeasured discharge in a cross section. Selected statistics are combined with empirically derived criteria to automatically select the appropriate extrapolation methods. A graphical user interface (GUI) provides the user tools to visually evaluate the automatically selected extrapolation methods and manually change them, as necessary. The sensitivity of the total discharge to available extrapolation methods is presented in the GUI. Use of extrap by field hydrographers has demonstrated that extrap is a more accurate and efficient method of determining the appropriate extrapolation methods compared with tools currently (2012) provided in the ADCP manufacturers' software.

  14. Total Top-Quark Pair-Production Cross Section at Hadron Colliders Through O(αS4)

    NASA Astrophysics Data System (ADS)

    Czakon, Michał; Fiedler, Paul; Mitov, Alexander

    2013-06-01

    We compute the next-to-next-to-leading order (NNLO) quantum chromodynamics (QCD) correction to the total cross section for the reaction gg→tt¯+X. Together with the partonic channels we computed previously, the result derived in this Letter completes the set of NNLO QCD corrections to the total top pair-production cross section at hadron colliders. Supplementing the fixed order results with soft-gluon resummation with next-to-next-to-leading logarithmic accuracy, we estimate that the theoretical uncertainty of this observable due to unknown higher order corrections is about 3% at the LHC and 2.2% at the Tevatron. We observe a good agreement between the standard model predictions and the available experimental measurements. The very high theoretical precision of this observable allows a new level of scrutiny in parton distribution functions and new physics searches.

  15. Total top-quark pair-production cross section at hadron colliders through O(αS(4)).

    PubMed

    Czakon, Michał; Fiedler, Paul; Mitov, Alexander

    2013-06-21

    We compute the next-to-next-to-leading order (NNLO) quantum chromodynamics (QCD) correction to the total cross section for the reaction gg → tt + X. Together with the partonic channels we computed previously, the result derived in this Letter completes the set of NNLO QCD corrections to the total top pair-production cross section at hadron colliders. Supplementing the fixed order results with soft-gluon resummation with next-to-next-to-leading logarithmic accuracy, we estimate that the theoretical uncertainty of this observable due to unknown higher order corrections is about 3% at the LHC and 2.2% at the Tevatron. We observe a good agreement between the standard model predictions and the available experimental measurements. The very high theoretical precision of this observable allows a new level of scrutiny in parton distribution functions and new physics searches.

  16. Evaluation of the relationship between mandibular third molar and mandibular canal by different algorithms of cone-beam computed tomography.

    PubMed

    Mehdizadeh, Mojdeh; Ahmadi, Navid; Jamshidi, Mahsa

    2014-11-01

    Exact location of the inferior alveolar nerve (IAN) bundle is very important. The aim of this study is to evaluate the relationship between the mandibular third molar and the mandibular canal by cone-beam computed tomography. This was a cross-sectional study with convenience sampling. 94 mandibular CBCTs performed with CSANEX 3D machine (Soredex, Finland) and 3D system chosen. Vertical and horizontal relationship between the mandibular canal and the third molar depicted by 3D, panoramic reformat view of CBCT and cross-sectional view. Cross-sectional view was our gold standard and other view evaluated by it. There were significant differences between the vertical and horizontal relation of nerve and tooth in all views (p < 0.001). The results showed differences in the position of the inferior alveolar nerve with different views of CBCT, so CBCT images are not quite reliable and have possibility of error.

  17. Detection and interpretation of ocean roughness variations across the Gulf Stream inferred from radar cross section observations

    NASA Technical Reports Server (NTRS)

    Weissman, D. E.; Thompson, T. W.

    1977-01-01

    Radar cross section data shows that the Gulf Stream has a higher cross section per unit area (interpreted here as a greater roughness) than the water on the continental shelf. A steep gradient in cross section was often seen at the expected location of the western boundary. There were also longer-scale (10-20 km) gradual fluctuations within the stream of significant magnitude. These roughness variations are correlated with the surface shear stress that the local wind imposes on the sea. Using the available surface-truth information concerning the wind speed and direction, an assumed Gulf Stream velocity profile, and high-resolution ocean-surface temperature data obtained by the VHRR onboard a NOAA-NESS polar-orbiting satellite, the present study demonstrates that the computed surface stress variation bears a striking resemblance to the measured radar cross-section variations.

  18. Elastic and transport cross sections for inert gases in a hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Krstic, Predrag

    2005-05-01

    Accurate elastic differential and integral scattering and transport cross sections have been computed using a fully quantum-mechanical approach for hydrogen ions (H^+, D^+ and T^+) colliding with Neon, Krypton and Xenon, in the center of mass energy range 0.1 to 200 eV. The momentum transfer and viscosity cross sections have been extended to higher keV collision energies using a classical, three-body scattering method. The results were compared with previously calculated values for Argon and Helium, as well as with simple analytical models. The cross sections, tabulated and available through the world wide web (www-cfadc.phy.ornl.gov) are of significance in fusion plasma modeling, gaseous electronics and other plasma applications.

  19. Preferential reduction of quadriceps over respiratory muscle strength and bulk after lung transplantation for cystic fibrosis.

    PubMed

    Pinet, C; Scillia, P; Cassart, M; Lamotte, M; Knoop, C; Mélot, C; Estenne, M

    2004-09-01

    In the absence of complications, recipients of lung transplants for cystic fibrosis have normal pulmonary function but the impact of the procedure on the strength and bulk of respiratory and limb muscles has not been studied. Twelve stable patients who had undergone lung transplantation for cystic fibrosis 48 months earlier (range 8-95) and 12 normal subjects matched for age, height, and sex were studied. The following parameters were measured: standard lung function, peak oxygen uptake by cycle ergometry, diaphragm surface area by computed tomographic (CT) scanning, diaphragm and abdominal muscle thickness by ultrasonography, twitch transdiaphragmatic and gastric pressures, quadriceps isokinetic strength, and quadriceps cross section by CT scanning, and lean body mass. Diaphragm mass was computed from diaphragm surface area and thickness. Twitch transdiaphragmatic and gastric pressures, diaphragm mass, and abdominal muscle thickness were similar in the two groups but quadriceps strength and cross section were decreased by nearly 30% in the patients. Patients had preserved quadriceps strength per unit cross section but reduced quadriceps cross section per unit lean body mass. The cumulative dose of corticosteroids was an independent predictor of quadriceps atrophy. Peak oxygen uptake showed positive correlations with quadriceps strength and cross section in the two groups, but peak oxygen uptake per unit quadriceps strength or cross section was reduced in the patient group. The diaphragm and abdominal muscles have preserved strength and bulk in patients transplanted for cystic fibrosis but the quadriceps is weak due to muscle atrophy. This atrophy is caused in part by corticosteroid therapy and correlates with the reduction in exercise capacity.

  20. Evidence for color fluctuations in hadrons from coherent nuclear diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frankfurt, L.; Miller, G.A.; Strikman, M.

    A QCD-based treatment of projectile size fluctuations is used to compute inelastic diffractive cross sections [sigma][sub diff] for coherent hadron-nuclear processes. We find that fluctuations near the average size give the major contribution to the cross section with [lt] few % contribution from small size configurations. The computed values of [sigma][sub diff] are consistent with the limited available data. The importance of coherent diffraction studies for a wide range of projectiles for high energy Fermilab fixed target experiments is emphasized. The implications of these significant color fluctuations for relativistic heavy ion collisions are discussed.

  1. Study of reactive collisions between electrons and molecular cations using multichannel quantum defect theory: Application to HD{sup +} and BeH{sup +}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pop, N., E-mail: nicolina.pop@upt.ro; Ilie, S.; Motapon, O.

    2014-11-24

    The present work is aimed at performing the computation of cross sections and Maxwell rate coefficients in the framework of the stepwise version of the Multichannel Quantum Defect Theory (MQDT). Cross sections and rate coefficients suitable for the modelling of the kinetics of HD{sup +} and BeH{sup +} in fusion plasmas and in the stellar atmospheres are presented and discussed. A very good agreement is found between our results for rotational transitions for HD{sup +} and other computations, as well as with experiment.

  2. Water-surface profile and flood boundaries for the computed 100-year flood, lower Salt River, Lincoln County, Wyoming

    USGS Publications Warehouse

    Miller, Kirk A.; Mason, John P.

    2000-01-01

    The water-surface profile and flood boundaries for the computed 100-year flood were determined for a part of the lower Salt River in Lincoln County, Wyoming. Channel cross-section data were provided by Lincoln County. Cross-section data for bridges and other structures were collected and compiled by the U.S. Geological Survey. Roughness coefficients ranged from 0.034 to 0.100. The 100-year flood was computed using standard methods, ranged from 5,170 to 4,120 cubic feet per second through the study reach, and was adjusted proportional to contributing drainage area. Water-surface elevations were determined by the standard step-backwater method. Flood boundaries were plotted on digital basemaps.

  3. Broadband computation of the scattering coefficients of infinite arbitrary cylinders.

    PubMed

    Blanchard, Cédric; Guizal, Brahim; Felbacq, Didier

    2012-07-01

    We employ a time-domain method to compute the near field on a contour enclosing infinitely long cylinders of arbitrary cross section and constitution. We therefore recover the cylindrical Hankel coefficients of the expansion of the field outside the circumscribed circle of the structure. The recovered coefficients enable the wideband analysis of complex systems, e.g., the determination of the radar cross section becomes straightforward. The prescription for constructing such a numerical tool is provided in great detail. The method is validated by computing the scattering coefficients for a homogeneous circular cylinder illuminated by a plane wave, a problem for which an analytical solution exists. Finally, some radiation properties of an optical antenna are examined by employing the proposed technique.

  4. MORPH-I (Ver 1.0) a software package for the analysis of scanning electron micrograph (binary formatted) images for the assessment of the fractal dimension of enclosed pore surfaces

    USGS Publications Warehouse

    Mossotti, Victor G.; Eldeeb, A. Raouf; Oscarson, Robert

    1998-01-01

    MORPH-I is a set of C-language computer programs for the IBM PC and compatible minicomputers. The programs in MORPH-I are used for the fractal analysis of scanning electron microscope and electron microprobe images of pore profiles exposed in cross-section. The program isolates and traces the cross-sectional profiles of exposed pores and computes the Richardson fractal dimension for each pore. Other programs in the set provide for image calibration, display, and statistical analysis of the computed dimensions for highly complex porous materials. Requirements: IBM PC or compatible; minimum 640 K RAM; mathcoprocessor; SVGA graphics board providing mode 103 display.

  5. Uncertainty Quantification Techniques of SCALE/TSUNAMI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rearden, Bradley T; Mueller, Don

    2011-01-01

    The Standardized Computer Analysis for Licensing Evaluation (SCALE) code system developed at Oak Ridge National Laboratory (ORNL) includes Tools for Sensitivity and Uncertainty Analysis Methodology Implementation (TSUNAMI). The TSUNAMI code suite can quantify the predicted change in system responses, such as k{sub eff}, reactivity differences, or ratios of fluxes or reaction rates, due to changes in the energy-dependent, nuclide-reaction-specific cross-section data. Where uncertainties in the neutron cross-section data are available, the sensitivity of the system to the cross-section data can be applied to propagate the uncertainties in the cross-section data to an uncertainty in the system response. Uncertainty quantification ismore » useful for identifying potential sources of computational biases and highlighting parameters important to code validation. Traditional validation techniques often examine one or more average physical parameters to characterize a system and identify applicable benchmark experiments. However, with TSUNAMI correlation coefficients are developed by propagating the uncertainties in neutron cross-section data to uncertainties in the computed responses for experiments and safety applications through sensitivity coefficients. The bias in the experiments, as a function of their correlation coefficient with the intended application, is extrapolated to predict the bias and bias uncertainty in the application through trending analysis or generalized linear least squares techniques, often referred to as 'data adjustment.' Even with advanced tools to identify benchmark experiments, analysts occasionally find that the application models include some feature or material for which adequately similar benchmark experiments do not exist to support validation. For example, a criticality safety analyst may want to take credit for the presence of fission products in spent nuclear fuel. In such cases, analysts sometimes rely on 'expert judgment' to select an additional administrative margin to account for gap in the validation data or to conclude that the impact on the calculated bias and bias uncertainty is negligible. As a result of advances in computer programs and the evolution of cross-section covariance data, analysts can use the sensitivity and uncertainty analysis tools in the TSUNAMI codes to estimate the potential impact on the application-specific bias and bias uncertainty resulting from nuclides not represented in available benchmark experiments. This paper presents the application of methods described in a companion paper.« less

  6. Extrinsic extinction cross-section in the multiple acoustic scattering by fluid particles

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2017-04-01

    Cross-sections (and their related energy efficiency factors) are physical parameters used in the quantitative analysis of different phenomena arising from the interaction of waves with a particle (or multiple particles). Earlier works with the acoustic scattering theory considered such quadratic (i.e., nonlinear) quantities for a single scatterer, although a few extended the formalism for a pair of scatterers but were limited to the scattering cross-section only. Therefore, the standard formalism applied to viscous particles is not suitable for the complete description of the cross-sections and energy balance of the multiple-particle system because both absorption and extinction phenomena arise during the multiple scattering process. Based upon the law of the conservation of energy, this work provides a complete comprehensive analysis for the extrinsic scattering, absorption, and extinction cross-sections (i.e., in the far-field) of a pair of viscous scatterers of arbitrary shape, immersed in a nonviscous isotropic fluid. A law of acoustic extinction taking into consideration interparticle effects in wave propagation is established, which constitutes a generalized form of the optical theorem in multiple scattering. Analytical expressions for the scattering, absorption, and extinction cross-sections are derived for plane progressive waves with arbitrary incidence. The mathematical expressions are formulated in partial-wave series expansions in cylindrical coordinates involving the angle of incidence, the addition theorem for the cylindrical wave functions, and the expansion coefficients of the scatterers. The analysis shows that the multiple scattering cross-section depends upon the expansion coefficients of both scatterers in addition to an interference factor that depends on the interparticle distance. However, the extinction cross-section depends on the expansion coefficients of the scatterer located in a particular system of coordinates, in addition to the interference term. Numerical examples illustrate the analysis for two viscous fluid circular cylindrical cross-sections immersed in a non-viscous fluid. Computations for the (non-dimensional) scattering, absorption, and extinction cross-section factors are performed with particular emphasis on varying the angle of incidence, the interparticle distance, and the sizes, and the physical properties of the particles. A symmetric behavior is observed for the dimensionless multiple scattering cross-section, while asymmetries arise for both the dimensionless absorption and extinction cross-sections with respect to the angle of incidence. The present analysis provides a complete analytical and computational method for the prediction of cross-section and energy efficiency factors in multiple acoustic scattering of plane waves of arbitrary incidence by a pair of scatterers. The results can be used as a priori information in the direct or inverse characterization of multiple scattering systems such as acoustically engineered fluid metamaterials with reconfigurable periodicities, cloaking devices, liquid crystals, and other applications.

  7. Are Heavy Users of Computer Games and Social Media More Computer Literate?

    ERIC Educational Resources Information Center

    Appel, Markus

    2012-01-01

    Adolescents spend a substantial part of their leisure time with playing games and using social media such as Facebook. The present paper examines the link between adolescents' computer and Internet activities and computer literacy (defined as the ability to work with a computer efficiently). A cross-sectional study with N = 200 adolescents, aged…

  8. Differential Higgs production at N3LO beyond threshold

    NASA Astrophysics Data System (ADS)

    Dulat, Falko; Mistlberger, Bernhard; Pelloni, Andrea

    2018-01-01

    We present several key steps towards the computation of differential Higgs boson cross sections at N3LO in perturbative QCD. Specifically, we work in the framework of Higgs-differential cross sections that allows to compute precise predictions for realistic LHC observables. We demonstrate how to perform an expansion of the analytic N3LO coefficient functions around the production threshold of the Higgs boson. Our framework allows us to compute to arbitrarily high order in the threshold expansion and we explicitly obtain the first two expansion coefficients in analytic form. Furthermore, we assess the phenomenological viability of threshold expansions for differential distributions. We find that while a few terms in the threshold expansion are sufficient to approximate the exact rapidity distribution well, transverse momentum distributions require a signficantly higher number of terms in the expansion to be adequately described. We find that to improve state of the art predictions for the rapidity distribution beyond NNLO even more sub-leading terms in the threshold expansion than presented in this article are required. In addition, we report on an interesting obstacle for the computation of N3LO corrections with LHAPDF parton distribution functions and our solution. We provide files containing the analytic expressions for the partonic cross sections as supplementary material attached to this paper.

  9. Differential Higgs production at N 3LO beyond threshold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dulat, Falko; Mistlberger, Bernhard; Pelloni, Andrea

    We present several key steps towards the computation of differential Higgs boson cross sections at N 3LO in perturbative QCD. Specifically, we work in the framework of Higgs-differential cross sections that allows to compute precise predictions for realistic LHC observables. We demonstrate how to perform an expansion of the analytic N 3LO coefficient functions around the production threshold of the Higgs boson. Our framework allows us to compute to arbitrarily high order in the threshold expansion and we explicitly obtain the first two expansion coefficients in analytic form. Furthermore, we assess the phenomenological viability of threshold expansions for differential distributions.more » We find that while a few terms in the threshold expansion are sufficient to approximate the exact rapidity distribution well, transverse momentum distributions require a signficantly higher number of terms in the expansion to be adequately described. We find that to improve state of the art predictions for the rapidity distribution beyond NNLO even more sub-leading terms in the threshold expansion than presented in this article are required. In addition, we report on an interesting obstacle for the computation of N 3LO corrections with LHAPDF parton distribution functions and our solution. We provide files containing the analytic expressions for the partonic cross sections as supplementary material attached to this paper.« less

  10. Differential Higgs production at N 3LO beyond threshold

    DOE PAGES

    Dulat, Falko; Mistlberger, Bernhard; Pelloni, Andrea

    2018-01-29

    We present several key steps towards the computation of differential Higgs boson cross sections at N 3LO in perturbative QCD. Specifically, we work in the framework of Higgs-differential cross sections that allows to compute precise predictions for realistic LHC observables. We demonstrate how to perform an expansion of the analytic N 3LO coefficient functions around the production threshold of the Higgs boson. Our framework allows us to compute to arbitrarily high order in the threshold expansion and we explicitly obtain the first two expansion coefficients in analytic form. Furthermore, we assess the phenomenological viability of threshold expansions for differential distributions.more » We find that while a few terms in the threshold expansion are sufficient to approximate the exact rapidity distribution well, transverse momentum distributions require a signficantly higher number of terms in the expansion to be adequately described. We find that to improve state of the art predictions for the rapidity distribution beyond NNLO even more sub-leading terms in the threshold expansion than presented in this article are required. In addition, we report on an interesting obstacle for the computation of N 3LO corrections with LHAPDF parton distribution functions and our solution. We provide files containing the analytic expressions for the partonic cross sections as supplementary material attached to this paper.« less

  11. Morphology of Mesiobuccal Root Canals of Maxillary First Molars: a comparison of CBCT scanning and Cross-sectioning.

    PubMed

    Lyra, Carina Maria; Delai, Débora; Pereira, Keila Cristina Rausch; Pereira, Guy Martins; Pasternak Júnior, Bráulio; Oliveira, César Augusto Pereira

    2015-10-01

    The aim of this study was to evaluate the mesiobuccal root of maxillary first molars, according to the root canal configuration, prevalence and location of isthmuses at 3 and 6 mm from the apex, comparing cone-beam computed tomography (CBCT) analysis and cross sectioning of roots by thirds. Images of the mesiobuccal root of 100 maxillary first molars were acquired by CBCT and then roots were cross-sectioned into two parts, starting at 3 mm from the apex. Data were recorded and analyzed according to Weine's classification for root canal configuration, and Hsu and Kim's classification for isthmuses. In the analysis of CBCT images, 8 root canals were classified as type I, 57 as type II, 35 as type III. In the cross-sectioning technique, 19 root canals were classified as type I, 60 as type II, 20 as type III and 1 as type IV. The classification of isthmuses was predominantly type I in both CBCT and cross-sectioning evaluations for sections at 3 mm from the apex, while for sections at 6 mm from the apex, the classification of isthmuses was predominantly types V and II in CBCT and cross-sectioning evaluations, respectively. The cross-sectioning technique showed better results in detection of the internal morphology of root canals than CBCT scanning.

  12. References and benchmarks for pore-scale flow simulated using micro-CT images of porous media and digital rocks

    NASA Astrophysics Data System (ADS)

    Saxena, Nishank; Hofmann, Ronny; Alpak, Faruk O.; Berg, Steffen; Dietderich, Jesse; Agarwal, Umang; Tandon, Kunj; Hunter, Sander; Freeman, Justin; Wilson, Ove Bjorn

    2017-11-01

    We generate a novel reference dataset to quantify the impact of numerical solvers, boundary conditions, and simulation platforms. We consider a variety of microstructures ranging from idealized pipes to digital rocks. Pore throats of the digital rocks considered are large enough to be well resolved with state-of-the-art micro-computerized tomography technology. Permeability is computed using multiple numerical engines, 12 in total, including, Lattice-Boltzmann, computational fluid dynamics, voxel based, fast semi-analytical, and known empirical models. Thus, we provide a measure of uncertainty associated with flow computations of digital media. Moreover, the reference and standards dataset generated is the first of its kind and can be used to test and improve new fluid flow algorithms. We find that there is an overall good agreement between solvers for idealized cross-section shape pipes. As expected, the disagreement increases with increase in complexity of the pore space. Numerical solutions for pipes with sinusoidal variation of cross section show larger variability compared to pipes of constant cross-section shapes. We notice relatively larger variability in computed permeability of digital rocks with coefficient of variation (of up to 25%) in computed values between various solvers. Still, these differences are small given other subsurface uncertainties. The observed differences between solvers can be attributed to several causes including, differences in boundary conditions, numerical convergence criteria, and parameterization of fundamental physics equations. Solvers that perform additional meshing of irregular pore shapes require an additional step in practical workflows which involves skill and can introduce further uncertainty. Computation times for digital rocks vary from minutes to several days depending on the algorithm and available computational resources. We find that more stringent convergence criteria can improve solver accuracy but at the expense of longer computation time.

  13. Generalization of the optical theorem for an arbitrary multipole in the presence of a transparent half-space

    NASA Astrophysics Data System (ADS)

    Eremin, Yu. A.; Sveshnikov, A. G.

    2017-07-01

    The optical theorem is generalized to the case of excitation of a local inhomogeneity introduced in a transparent substrate by a multipole of arbitrary order. It is shown that, to calculate the generalized extinction cross section, it is sufficient to calculate the derivatives of the scattered field at a single point by adding a constant and a definite integral. Apart from general scientific interest, the proposed generalization makes it possible to calculate the absorption cross section by subtracting the scattering cross section from the extinction cross section. The latter fact is important, because the scattered field in the far zone contains no Sommerfeld integrals. In addition, the proposed generalization allows one to test computer modules for the case where a lossless inhomogeneity is considered.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Favorite, Jeffrey A.

    SENSMG is a tool for computing first-order sensitivities of neutron reaction rates, reaction-rate ratios, leakage, k eff, and α using the PARTISN multigroup discrete-ordinates code. SENSMG computes sensitivities to all of the transport cross sections and data (total, fission, nu, chi, and all scattering moments), two edit cross sections (absorption and capture), and the density for every isotope and energy group. It also computes sensitivities to the mass density for every material and derivatives with respect to all interface locations. The tool can be used for one-dimensional spherical (r) and two-dimensional cylindrical (r-z) geometries. The tool can be used formore » fixed-source and eigenvalue problems. The tool implements Generalized Perturbation Theory (GPT) as discussed by Williams and Stacey. Section II of this report describes the theory behind adjoint-based sensitivities, gives the equations that SENSMG solves, and defines the sensitivities that are output. Section III describes the user interface, including the input file and command line options. Section IV describes the output. Section V gives some notes about the coding that may be of interest. Section VI discusses verification, which is ongoing. Section VII lists needs and ideas for future work. Appendix A lists all of the input files whose results are presented in Sec. VI.« less

  15. A study to compute integrated dpa for neutron and ion irradiation environments using SRIM-2013

    NASA Astrophysics Data System (ADS)

    Saha, Uttiyoarnab; Devan, K.; Ganesan, S.

    2018-05-01

    Displacements per atom (dpa), estimated based on the standard Norgett-Robinson-Torrens (NRT) model, is used for assessing radiation damage effects in fast reactor materials. A computer code CRaD has been indigenously developed towards establishing the infrastructure to perform improved radiation damage studies in Indian fast reactors. We propose a method for computing multigroup neutron NRT dpa cross sections based on SRIM-2013 simulations. In this method, for each neutron group, the recoil or primary knock-on atom (PKA) spectrum and its average energy are first estimated with CRaD code from ENDF/B-VII.1. This average PKA energy forms the input for SRIM simulation, wherein the recoil atom is taken as the incoming ion on the target. The NRT-dpa cross section of iron computed with "Quick" Kinchin-Pease (K-P) option of SRIM-2013 is found to agree within 10% with the standard NRT-dpa values, if damage energy from SRIM simulation is used. SRIM-2013 NRT-dpa cross sections applied to estimate the integrated dpa for Fe, Cr and Ni are in good agreement with established computer codes and data. A similar study carried out for polyatomic material, SiC, shows encouraging results. In this case, it is observed that the NRT approach with average lattice displacement energy of 25 eV coupled with the damage energies from the K-P option of SRIM-2013 gives reliable displacement cross sections and integrated dpa for various reactor spectra. The source term of neutron damage can be equivalently determined in the units of dpa by simulating self-ion bombardment. This shows that the information of primary recoils obtained from CRaD can be reliably applied to estimate the integrated dpa and damage assessment studies in accelerator-based self-ion irradiation experiments of structural materials. This study would help to advance the investigation of possible correlations between the damages induced by ions and reactor neutrons.

  16. Plans for a sensitivity analysis of bridge-scour computations

    USGS Publications Warehouse

    Dunn, David D.; Smith, Peter N.

    1993-01-01

    Plans for an analysis of the sensitivity of Level 2 bridge-scour computations are described. Cross-section data from 15 bridge sites in Texas are modified to reflect four levels of field effort ranging from no field surveys to complete surveys. Data from United States Geological Survey (USGS) topographic maps will be used to supplement incomplete field surveys. The cross sections are used to compute the water-surface profile through each bridge for several T-year recurrence-interval design discharges. The effect of determining the downstream energy grade-line slope from topographic maps is investigated by systematically varying the starting slope of each profile. The water-surface profile analyses are then used to compute potential scour resulting from each of the design discharges. The planned results will be presented in the form of exceedance-probability versus scour-depth plots with the maximum and minimum scour depths at each T-year discharge presented as error bars.

  17. Development of a cross-section based stream package for MODFLOW

    NASA Astrophysics Data System (ADS)

    Ou, G.; Chen, X.; Irmak, A.

    2012-12-01

    Accurate simulation of stream-aquifer interactions for wide rivers using the streamflow routing package in MODFLOW is very challenging. To better represent a wide river spanning over multiple model grid cells, a Cross-Section based streamflow Routing (CSR) package is developed and incorporated into MODFLOW to simulate the interaction between streams and aquifers. In the CSR package, a stream segment is represented as a four-point polygon instead of a polyline which is traditionally used in streamflow routing simulation. Each stream segment is composed of upstream and downstream cross-sections. A cross-section consists of a number of streambed points possessing coordinates, streambed thicknesses and streambed hydraulic conductivities to describe the streambed geometry and hydraulic properties. The left and right end points are used to determine the locations of the stream segments. According to the cross-section geometry and hydraulic properties, CSR calculates the new stream stage at the cross-section using the Brent's method to solve the Manning's Equation. A module is developed to automatically compute the area of the stream segment polygon on each intersected MODFLOW grid cell as the upstream and downstream stages change. The stream stage and streambed hydraulic properties of model grids are interpolated based on the streambed points. Streambed leakage is computed as a function of streambed conductance and difference between the groundwater level and stream stage. The Muskingum-Cunge flow routing scheme with variable parameters is used to simulate the streamflow as the groundwater (discharge or recharge) contributes as lateral flows. An example is used to illustrate the capabilities of the CSR package. The result shows that the CSR is applicable to describing the spatial and temporal variation in the interaction between streams and aquifers. The input data become simple due to that the internal program automatically interpolates the cross-section data to each model grid cell.

  18. A non-axisymmetric linearized supersonic wave drag analysis: Mathematical theory

    NASA Technical Reports Server (NTRS)

    Barnhart, Paul J.

    1996-01-01

    A Mathematical theory is developed to perform the calculations necessary to determine the wave drag for slender bodies of non-circular cross section. The derivations presented in this report are based on extensions to supersonic linearized small perturbation theory. A numerical scheme is presented utilizing Fourier decomposition to compute the pressure coefficient on and about a slender body of arbitrary cross section.

  19. Attitudes of Students and Faculty toward Using Computer Technology and Twitter for Online Learning and Student Engagement: A Cross-Sectional Analysis

    ERIC Educational Resources Information Center

    Ramirez, Dulce M.

    2017-01-01

    The increasing use of online pedagogy in higher education has revealed a need to analyze factors contributing to student engagement in online courses. Throughout the past decade, social media has been a growing influence in higher education. This quantitative cross-sectional study examined the attitudes of students and faculty towards computer…

  20. University Students' Subjective Knowledge of Green Computing and Pro-Environmental Behavior

    ERIC Educational Resources Information Center

    Ahmad, Tunku Badariah Tunku; Nordin, Mohamad Sahari

    2014-01-01

    This cross-sectional survey examined the structure of university students' subjective knowledge of green computing--hypothesized to be a multidimensional construct with three important dimensions--and its association with pro-environmental behavior (PEB). Using a previously validated green computing questionnaire, data were collected from 842…

  1. Review of Extraskeletal Activity on Tc-99m Methylene Diphosphonate Bone Scintigraphy and Value of Cross-Sectional and SPECT-CT Imaging Correlation.

    PubMed

    Bermo, Mohammed; Behnia, Sanaz; Fair, Joanna; Miyaoka, Robert S; Elojeimy, Saeed

    2017-07-31

    Recognizing the different mechanisms and imaging appearance of extraskeletal Tc-99m methylene diphosphonate uptake enhances the diagnostic value of bone scan interpretation. In this article, we present a pictorial review of the different mechanisms of extraskeletal Tc-99m methylene diphosphonate uptake on bone scintigraphy including neoplastic, inflammatory, ischemic, traumatic, excretory, and iatrogenic. We also illustrate through case examples the added value of correlation with cross-sectional and single photon emission computed tomography and computed tomography imaging in localizing and characterizing challenging cases of extraskeletal uptake. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. NLO cross sections in 4 dimensions without DREG

    NASA Astrophysics Data System (ADS)

    Hernández-Pinto, R. J.; Driencourt-Mangin, F.; Rodrigo, G.; Sborlini, G. F. R.

    2016-10-01

    In this review, we present a new method for computing physical cross sections at NLO accuracy in QCD without using the standard Dimensional Regularisation. The algorithm is based on the Loop-Tree Duality theorem, which allow us to obtain loop integrals as a sum of phase-space integrals; in this way, transforming loop integrals into phase-space integrals, we propose a method to merge virtual and real contributions in order to find observables at NLO in d = 4 space-time dimensions. In addition, the strategy described is used for computing the γ* → qq̅(g) process. A more detailed discussion related on this topic can be found in Ref [1].

  3. Molecular processes in a high temperature shock layer

    NASA Technical Reports Server (NTRS)

    Guberman, S. L.

    1985-01-01

    The development of techniques for the calculation of electron capture widths, electronic wave functions, cross sections and rates needed for the description of the dissociative recombination (DR) of molecular ions with electrons were described. The cross sections and rates were calculated by using harmonic oscillator wave functions for the ion and a delta function approximation for the continuum vibrational wave function in the repulsive dissociative channel. In order to obtain DR cross sections of quantitative accuracy, a computer program which solves the one dimensional nuclear motion wave equation was revised to calculate the cross sections and rates. The program and the new results are described. Included is a discussion of large windows found in the dissociative recombination cross sections from excited ion vibrational levels. These windows have not been previously reported in the literature. The magnitude of the DR cross sections for several dissociative routes are sensitive to the location of the crossing of the neutral and ion potential curves. Studies of the effects of basis set and CI wave function size on vertical excitation energies are described. Preliminary studies on N2 and O2 using large scale wave functions are also reported.

  4. Electron Stark Broadening Database for Atomic N, O, and C Lines

    NASA Technical Reports Server (NTRS)

    Liu, Yen; Yao, Winifred M.; Wray, Alan A.; Carbon, Duane F.

    2012-01-01

    A database for efficiently computing the electron Stark broadening line widths for atomic N, O, and C lines is constructed. The line width is expressed in terms of the electron number density and electronatom scattering cross sections based on the Baranger impact theory. The state-to-state cross sections are computed using the semiclassical approximation, in which the atom is treated quantum mechanically whereas the motion of the free electron follows a classical trajectory. These state-to-state cross sections are calculated based on newly compiled line lists. Each atomic line list consists of a careful merger of NIST, Vanderbilt, and TOPbase line datasets from wavelength 50 nm to 50 micrometers covering the VUV to IR spectral regions. There are over 10,000 lines in each atomic line list. The widths for each line are computed at 13 electron temperatures between 1,000 K 50,000 K. A linear least squares method using a four-term fractional power series is then employed to obtain an analytical fit for each line-width variation as a function of the electron temperature. The maximum L2 error of the analytic fits for all lines in our line lists is about 5%.

  5. Scaled plane-wave Born cross sections for atoms and molecules

    NASA Astrophysics Data System (ADS)

    Tanaka, H.; Brunger, M. J.; Campbell, L.; Kato, H.; Hoshino, M.; Rau, A. R. P.

    2016-04-01

    Integral cross sections for optically allowed electronic-state excitations of atoms and molecules by electron impact, by applying scaled plane-wave Born models, are reviewed. Over 40 years ago, Inokuti presented an influential review of charged-particle scattering, based on the theory pioneered by Bethe forty years earlier, which emphasized the importance of reliable cross-section data from low eV energies to high keV energies that are needed in many areas of radiation science with applications to astronomy, plasmas, and medicine. Yet, with a couple of possible exceptions, most computational methods in electron-atom scattering do not, in general, overlap each other's validity range in the region from threshold up to 300 eV and, in particular, in the intermediate region from 30 to 300 eV. This is even more so for electron-molecule scattering. In fact this entire energy range is of great importance and, to bridge the gap between the two regions of low and high energy, scaled plane-wave Born models were developed to provide reliable, comprehensive, and absolute integral cross sections, first for ionization by Kim and Rudd and then extended to optically allowed electronic-state excitation by Kim. These and other scaling models in a broad, general application to electron scattering from atoms and molecules, their theoretical basis, and their results for cross sections along with comparison to experimental measurements are reviewed. Where possible, these data are also compared to results from other computational approaches.

  6. Cross-sectional anatomy, computed tomography and magnetic resonance imaging of the head of common dolphin (Delphinus delphis) and striped dolphin (Stenella coeruleoalba).

    PubMed

    Alonso-Farré, J M; Gonzalo-Orden, M; Barreiro-Vázquez, J D; Barreiro-Lois, A; André, M; Morell, M; Llarena-Reino, M; Monreal-Pawlowsky, T; Degollada, E

    2015-02-01

    Computed tomography (CT) and low-field magnetic resonance imaging (MRI) were used to scan seven by-caught dolphin cadavers, belonging to two species: four common dolphins (Delphinus delphis) and three striped dolphins (Stenella coeruleoalba). CT and MRI were obtained with the animals in ventral recumbency. After the imaging procedures, six dolphins were frozen at -20°C and sliced in the same position they were examined. Not only CT and MRI scans, but also cross sections of the heads were obtained in three body planes: transverse (slices of 1 cm thickness) in three dolphins, sagittal (5 cm thickness) in two dolphins and dorsal (5 cm thickness) in two dolphins. Relevant anatomical structures were identified and labelled on each cross section, obtaining a comprehensive bi-dimensional topographical anatomy guide of the main features of the common and the striped dolphin head. Furthermore, the anatomical cross sections were compared with their corresponding CT and MRI images, allowing an imaging identification of most of the anatomical features. CT scans produced an excellent definition of the bony and air-filled structures, while MRI allowed us to successfully identify most of the soft tissue structures in the dolphin's head. This paper provides a detailed anatomical description of the head structures of common and striped dolphins and compares anatomical cross sections with CT and MRI scans, becoming a reference guide for the interpretation of imaging studies. © 2014 Blackwell Verlag GmbH.

  7. Application of continuous-wave terahertz computed tomography for the analysis of chicken bone structure

    NASA Astrophysics Data System (ADS)

    Li, Bin; Wang, Dayong; Rong, Lu; Zhai, Changchao; Wang, Yunxin; Zhao, Jie

    2018-02-01

    Terahertz (THz) radiation is able to penetrate many different types of nonpolar and nonmetallic materials without the damaging effects of x-rays. THz technology can be combined with computed tomography (CT) to form THz CT, which is an effective imaging method that is used to visualize the internal structure of a three-dimensional sample as cross-sectional images. Here, we reported an application of THz as the radiation source in CT imaging by replacing the x-rays. In this method, the sample cross section is scanned in all translation and rotation directions. Then, the projection data are reconstructed using a tomographic reconstruction algorithm. Two-dimensional (2-D) cross-sectional images of the chicken ulna were obtained through the continuous-wave (CW) THz CT system. Given by the difference of the THz absorption of different substances, the compact bone and spongy bone inside the chicken ulna are structurally distinguishable in the 2-D cross-sectional images. Using the filtered back projection algorithm, we reconstructed the projection data of the chicken ulna at different projection angle intervals and found that the artifacts and noise in the images are strikingly increased when the projection angle intervals become larger, reflected by the blurred boundary of the compact bone. The quality and fidelity of the 2-D cross-sectional images could be substantially improved by reducing the projection angle intervals. Our experimental data demonstrated a feasible application of the CW THz CT system in biological imaging.

  8. Influence of strut cross-section of stents on local hemodynamics in stented arteries

    NASA Astrophysics Data System (ADS)

    Jiang, Yongfei; Zhang, Jun; Zhao, Wanhua

    2016-05-01

    Stenting is a very effective treatment for stenotic vascular diseases, but vascular geometries altered by stent implantation may lead to flow disturbances which play an important role in the initiation and progression of restenosis, especially in the near wall in stented arterial regions. So stent designs have become one of the indispensable factors needed to be considered for reducing the flow disturbances. In this paper, the structural designs of strut cross-section are considered as an aspect of stent designs to be studied in details. Six virtual stents with different strut cross-section are designed for deployments in the same ideal arterial model. Computational fluid dynamics (CFD) methods are performed to study how the shape and the aspect ratio (AR) of strut cross-section modified the local hemodynamics in the stented segments. The results indicate that stents with different strut cross-sections have different influence on the hemodynamics. Stents with streamlined cross-sectional struts for circular arc or elliptical arc can significantly enhance wall shear stress (WSS) in the stented segments, and reduce the flow disturbances around stent struts. The performances of stents with streamlined cross-sectional struts are better than that of stents with non-streamlined cross-sectional struts for rectangle. The results also show that stents with a larger AR cross-section are more conductive to improve the blood flow. The present study provides an understanding of the flow physics in the vicinity of stent struts and indicates that the shape and AR of strut cross-section ought to be considered as important factors to minimize flow disturbance in stent designs.

  9. Site-specific Microzonation Study in Delhi Metropolitan City by 2-D Modelling of SH and P-SV Waves

    NASA Astrophysics Data System (ADS)

    Parvez, Imtiyaz A.; Vaccari, F.; Panza, G. F.

    Delhi - the capital of India lies on a severe earthquake hazard threat not only from local earthquakes but also from Himalayan events just 200-250 km apart. The seismic ground motion in a part of Delhi City is computed with a hybrid technique based on the modal summation and the finite-difference scheme for site-specific strong ground motion modelling. Complete realistic SH and #E5/E5#-SV wave seismograms are computed along two geological cross sections, (1) north-south, from Inter State Bus Terminal (ISBT) to Sewanagar and (2) east-west, from Tilak Bridge to Punjabi Bagh. Two real earthquake sources of July 15, 1720 (MMI=IX, M=7.4) and August 27, 1960 (M=6.0) have been used in modelling. The response spectra ratio (RSR), i.e. the response spectra computed from the signals synthesized along the laterally varying section and normalized by the response spectra computed from the corresponding signals, synthesized for the bedrock reference regional model, have been determined. As expected, the sedimentary cover causes an increase of the signal amplitude, particularly in the radial and transverse components. To further check the site-effects, we reversed the source location to the other side of the cross section and recomputed the site amplifications. There are only a few sites where a large amplification is invariant with respect to the two source locations considered. The RSR ranges between 5 to 10 in the frequency range from 2.8 to 3.7 Hz for the radial and transverse components of motion along the NS cross section. Along the EW cross section RSR varies between 3.5 to 7.5 in the frequency range from 3.5 to 4.1 Hz. The amplification of the vertical component is considerable at high frequency (>4 Hz.) whereas it is negligible in lower frequency range.

  10. K-shell photoabsorption and photoionization of trace elements. II. Isoelectronic sequences with electron number 12 ≤N ≤ 18

    NASA Astrophysics Data System (ADS)

    Mendoza, C.; Bautista, M. A.; Palmeri, P.; Quinet, P.; Witthoeft, M. C.; Kallman, T. R.

    2017-08-01

    Context. We are concerned with improving the diagnostic potential of the K lines and edges of elements with low cosmic abundances, namely F, Na, P, Cl, K, Sc, Ti, V, Cr, Mn, Co, Cu, and Zn, that are observed in the X-ray spectra of supernova remnants, galaxy clusters, and accreting black holes and neutron stars. Aims: Since accurate photoabsorption and photoionization cross sections are needed in their spectral models, they have been computed for isoelectronic sequences with electron number 12 ≤ N ≤ 18 using a multi-channel method. Methods: Target representations are obtained with the atomic structure code autostructure, and ground-state cross sections are computed with the Breit-Pauli R-matrix method (bprm) in intermediate coupling, including damping (radiative and Auger) effects. Results: Following the findings in our earlier work on sequences with 2 ≤ N ≤ 11, the contributions from channels associated with the 2s-hole [2s] μ target configurations and those containing 3d orbitals are studied in the Mg (N = 12) and Ar (N = 18) isoelectronic sequences. Cross sections for the latter ions are also calculated in the isolated-resonance approximation as implemented in autostructure and compared with bprm to test their accuracy. Conclusions: It is confirmed that the collisional channels associated with the [2s] μ target configurations must be taken into account owing to significant increases in the monotonic background cross section between the L and K edges. Target configurations with 3d orbitals give rise to fairly conspicuous unresolved transition arrays in the L-edge region, but to a much lesser extent in the K-edge that is our main concern; therefore, they have been neglected throughout owing to their computationally intractable channel inventory, thus allowing the computation of cross sections for all the ions with 12 ≤ N ≤ 18 in intermediate coupling with bprm. We find that the isolated-resonance approximations performs satisfactorily and will be our best choice to tackle the systems with ground configuration 3p63dm (3 ≤ m ≤ 8) in isoelectronic sequences with N> 20.

  11. Comparative evaluation of the cadaveric and computed tomographic features of the coelomic cavity in the green iguana (Iguana iguana), black and white tegu (Tupinambis merianae) and bearded dragon (Pogona vitticeps).

    PubMed

    Banzato, T; Selleri, P; Veladiano, I A; Zotti, A

    2013-12-01

    Contrast-enhanced computed tomographic studies of the coelomic cavity in four green iguanas, four black and white tegus and four bearded dragons were performed using a conventional CT scanner. Anatomical reference cross sections were obtained from four green iguana, four black and white tegu and six bearded dragon cadavers; the specimens were stored in a -20°C freezer for 24 h then sliced into 5-mm intervals. The frozen sections were cleaned with water and photographed on both sides. The individual anatomical structures were identified by means of the available literature; these were labelled first on the anatomical images and then matched to the corresponding computed tomography images. The results provide an atlas of the normal cross-sectional and computed tomographic anatomy of the coelomic cavity in the green iguana, the black and white tegu and the bearded dragon, which is useful in the interpretation of any imaging modality. © 2013 Blackwell Verlag GmbH.

  12. Fast multi-core based multimodal registration of 2D cross-sections and 3D datasets.

    PubMed

    Scharfe, Michael; Pielot, Rainer; Schreiber, Falk

    2010-01-11

    Solving bioinformatics tasks often requires extensive computational power. Recent trends in processor architecture combine multiple cores into a single chip to improve overall performance. The Cell Broadband Engine (CBE), a heterogeneous multi-core processor, provides power-efficient and cost-effective high-performance computing. One application area is image analysis and visualisation, in particular registration of 2D cross-sections into 3D image datasets. Such techniques can be used to put different image modalities into spatial correspondence, for example, 2D images of histological cuts into morphological 3D frameworks. We evaluate the CBE-driven PlayStation 3 as a high performance, cost-effective computing platform by adapting a multimodal alignment procedure to several characteristic hardware properties. The optimisations are based on partitioning, vectorisation, branch reducing and loop unrolling techniques with special attention to 32-bit multiplies and limited local storage on the computing units. We show how a typical image analysis and visualisation problem, the multimodal registration of 2D cross-sections and 3D datasets, benefits from the multi-core based implementation of the alignment algorithm. We discuss several CBE-based optimisation methods and compare our results to standard solutions. More information and the source code are available from http://cbe.ipk-gatersleben.de. The results demonstrate that the CBE processor in a PlayStation 3 accelerates computational intensive multimodal registration, which is of great importance in biological/medical image processing. The PlayStation 3 as a low cost CBE-based platform offers an efficient option to conventional hardware to solve computational problems in image processing and bioinformatics.

  13. Surface fitting three-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Dejarnette, F. R.

    1974-01-01

    The geometry of general three-dimensional bodies is generated from coordinates of points in several cross sections. Since these points may not be smooth, they are divided into segments and general conic sections are curve fit in a least-squares sense to each segment of a cross section. The conic sections are then blended in the longitudinal direction by fitting parametric cubic-spline curves through coordinate points which define the conic sections in the cross-sectional planes. Both the cross-sectional and longitudinal curves may be modified by specifying particular segments as straight lines and slopes at selected points. Slopes may be continuous or discontinuous and finite or infinite. After a satisfactory surface fit has been obtained, cards may be punched with the data necessary to form a geometry subroutine package for use in other computer programs. At any position on the body, coordinates, slopes and second partial derivatives are calculated. The method is applied to a blunted 70 deg delta wing, and it was found to generate the geometry very well.

  14. A new self-shielding method based on a detailed cross-section representation in the resolved energy domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saygin, H.; Hebert, A.

    The calculation of a dilution cross section {bar {sigma}}{sub e} is the most important step in the self-shielding formalism based on the equivalence principle. If a dilution cross section that accurately characterizes the physical situation can be calculated, it can then be used for calculating the effective resonance integrals and obtaining accurate self-shielded cross sections. A new technique for the calculation of equivalent cross sections based on the formalism of Riemann integration in the resolved energy domain is proposed. This new method is compared to the generalized Stamm`ler method, which is also based on an equivalence principle, for a two-regionmore » cylindrical cell and for a small pressurized water reactor assembly in two dimensions. The accuracy of each computing approach is obtained using reference results obtained from a fine-group slowing-down code named CESCOL. It is shown that the proposed method leads to slightly better performance than the generalized Stamm`ler approach.« less

  15. An X-Ray Analysis Database of Photoionization Cross Sections Including Variable Ionization

    NASA Technical Reports Server (NTRS)

    Wang, Ping; Cohen, David H.; MacFarlane, Joseph J.; Cassinelli, Joseph P.

    1997-01-01

    Results of research efforts in the following areas are discussed: review of the major theoretical and experimental data of subshell photoionization cross sections and ionization edges of atomic ions to assess the accuracy of the data, and to compile the most reliable of these data in our own database; detailed atomic physics calculations to complement the database for all ions of 17 cosmically abundant elements; reconciling the data from various sources and our own calculations; and fitting cross sections with functional approximations and incorporating these functions into a compact computer code.Also, efforts included adapting an ionization equilibrium code, tabulating results, and incorporating them into the overall program and testing the code (both ionization equilibrium and opacity codes) with existing observational data. The background and scientific applications of this work are discussed. Atomic physics cross section models and calculations are described. Calculation results are compared with available experimental data and other theoretical data. The functional approximations used for fitting cross sections are outlined and applications of the database are discussed.

  16. Study of improved modeling and solution procedures for nonlinear analysis. [aircraft-like structures

    NASA Technical Reports Server (NTRS)

    Kamat, M. P.

    1979-01-01

    An evaluation of the ACTION computer code on an aircraft like structure is presented. This computer program proved adequate in predicting gross response parameters in structures which undergo severe localized cross sectional deformations.

  17. Relativistic effects in ab initio electron-nucleus scattering

    NASA Astrophysics Data System (ADS)

    Rocco, Noemi; Leidemann, Winfried; Lovato, Alessandro; Orlandini, Giuseppina

    2018-05-01

    The electromagnetic responses obtained from Green's function Monte Carlo (GFMC) calculations are based on realistic treatments of nuclear interactions and currents. The main limitations of this method comes from its nonrelativistic nature and its computational cost, the latter hampering the direct evaluation of the inclusive cross sections as measured by experiments. We extend the applicability of GFMC in the quasielastic region to intermediate momentum transfers by performing the calculations in a reference frame that minimizes nucleon momenta. Additional relativistic effects in the kinematics are accounted for employing the two-fragment model. In addition, we developed a novel algorithm, based on the concept of first-kind scaling, to compute the inclusive electromagnetic cross section of 4He through an accurate and reliable interpolation of the response functions. A very good agreement is obtained between theoretical and experimental cross sections for a variety of kinematical setups. This offers a promising prospect for the data analysis of neutrino-oscillation experiments that requires an accurate description of nuclear dynamics in which relativistic effects are fully accounted for.

  18. Effects of Gear-Shape Fibre on the Transverse Mechanical Properties of Unidirectional Composites: Virtual Material Design by Computational Micromechanics

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Li, Zhiwei; Sun, Tao; Wu, Zhanjun

    2017-10-01

    This paper aims to study the effect of fibre cross-section shape on the mechanical properties of unidirectional fibre reinforced composites. First, the specific surface area of different cross-section shape is compared, and the gear-shape fibre is selected for further study, which has the largest specific surface area. The effect of gear-shape fibre with various tooth number on the transverse mechanical properties of unidirectional composites is investigated by computational micromechanics, comparing with the traditional round fibre. It is found that all the gear-shape fibre reinforced composites have higher transverse stiffness and strength than the round fibre reinforced composite, and the gear-shape fibre with fewer tooth number has greater reinforcing effect on the mechanical properties of the composite. The mechanism of this phenomenon is revealed by examine the damage initiation and evolution process of the composite, and suggestion is made on the optimal cross-section shape of the reinforcing fibre for the composites.

  19. A 100,000 Scale Factor Radar Range.

    PubMed

    Blanche, Pierre-Alexandre; Neifeld, Mark; Peyghambarian, Nasser

    2017-12-19

    The radar cross section of an object is an important electromagnetic property that is often measured in anechoic chambers. However, for very large and complex structures such as ships or sea and land clutters, this common approach is not practical. The use of computer simulations is also not viable since it would take many years of computational time to model and predict the radar characteristics of such large objects. We have now devised a new scaling technique to overcome these difficulties, and make accurate measurements of the radar cross section of large items. In this article we demonstrate that by reducing the scale of the model by a factor 100,000, and using near infrared wavelength, the radar cross section can be determined in a tabletop setup. The accuracy of the method is compared to simulations, and an example of measurement is provided on a 1 mm highly detailed model of a ship. The advantages of this scaling approach is its versatility, and the possibility to perform fast, convenient, and inexpensive measurements.

  20. Investigation of the effects of aeroelastic deformations on the radar cross section of aircraft

    NASA Astrophysics Data System (ADS)

    McKenzie, Samuel D.

    1991-12-01

    The effects of aeroelastic deformations on the radar cross section (RCS) of a T-38 trainer jet and a C-5A transport aircraft are examined and characterized. Realistic representations of structural wing deformations are obtained from a mechanical/computer aided design software package called NASTRAN. NASTRAN is used to evaluate the structural parameters of the aircraft as well as the restraints and loads associated with realistic flight conditions. Geometries for both the non-deformed and deformed airframes are obtained from the NASTRAN models and translated into RCS models. The RCS is analyzed using a numerical modeling code called the Radar Cross Section - Basic Scattering Code, version 2 which was developed at the Ohio State University and is based on the uniform geometric theory of diffraction. The code is used to analyze the effects of aeroelastic deformations on the RCS of the aircraft by comparing the computed RCS representing the deformed airframe to that of the non-deformed airframe and characterizing the differences between them.

  1. Vibrational inelastic and charge transfer processes in H++H2 system: An ab initio study

    NASA Astrophysics Data System (ADS)

    Amaran, Saieswari; Kumar, Sanjay

    2007-12-01

    State-resolved differential cross sections, total and integral cross sections, average vibrational energy transfer, and the relative probabilities are computed for the H++H2 system using the newly obtained ab initio potential energy surfaces at the full CI/cc-pVQZ level of accuracy which allow for both the direct vibrational inelastic and the charge transfer processes. The quantum dynamics is treated within the vibrational close-coupling infinite-order-sudden approximation approach using the two ab initio quasidiabatic potential energy surfaces. The computed collision attributes for both the processes are compared with the available state-to-state scattering experiments at Ec.m.=20eV. The results are in overall good agreement with most of the observed scattering features such as rainbow positions, integral cross sections, and relative vibrational energy transfers. A comparison with the earlier theoretical study carried out on the semiempirical surfaces (diatomics in molecules) is also made to illustrate the reliability of the potential energy surfaces used in the present work.

  2. Computation of Thin-Walled Prismatic Shells

    NASA Technical Reports Server (NTRS)

    Vlasov, V. Z.

    1949-01-01

    We consider a prismatic shell consisting of a finite number of narrow rectangular plates and having in the cross-section a finite number of closed contours (fig. 1(a)). We shall assume that the rectangular plates composing the shell are rigidly joined so that there is no motion of any kind of one plate relative to the others meeting at a given connecting line. The position of a point on the middle prismatic surface is considered to be defined by the coordinate z, the distance to a certain initial cross-section z = O, end the coordinate s determining its position on the contour of the cross-section.

  3. Distribution of Off-Diagonal Cross Sections in Quantum Chaotic Scattering: Exact Results and Data Comparison.

    PubMed

    Kumar, Santosh; Dietz, Barbara; Guhr, Thomas; Richter, Achim

    2017-12-15

    The recently derived distributions for the scattering-matrix elements in quantum chaotic systems are not accessible in the majority of experiments, whereas the cross sections are. We analytically compute distributions for the off-diagonal cross sections in the Heidelberg approach, which is applicable to a wide range of quantum chaotic systems. Thus, eventually, we fully solve a problem that already arose more than half a century ago in compound-nucleus scattering. We compare our results with data from microwave and compound-nucleus experiments, particularly addressing the transition from isolated resonances towards the Ericson regime of strongly overlapping ones.

  4. Evaluation of age-related changes with cross-sectional CT imaging of teeth

    NASA Astrophysics Data System (ADS)

    Fukui, Tatsumasa; Kita, Kanade; Kamemoto, Hiromasa; Nishiyama, Wataru; Yoshida, Hiroyasu; Iida, Yukihiro; Katsumata, Akitoshi; Muramatsu, Chisako; Fujita, Hiroshi

    2017-03-01

    Tooth pulp atrophy occurs with increasing age. An age estimation procedure using dental cone beam computed tomography (CBCT) imaging was developed. Clinical dental CBCT images of 60 patients (aged from 20 to 80 years) were evaluated. The ratio of the cross-sectional area of the pulp cavity to the cross-sectional area of the tooth (pulp cavity ratio) was calculated. The pulp cavity ratio in the labio-lingual plane of the mandibular anterior teeth and the mesio-distal plane of the maxillary anterior teeth was strongly correlated with the patients' age. The pulp cavity ratio of anterior teeth may be a useful parameter for estimating age.

  5. BORN CROSS SECTIONS FOR INELASTIC SCATTERING OF ELECTRONS BY HYDROGEN ATOMS. III. 5s, 5p, 5d, 5f, 5g STATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milford, S.N.; Morrissey, J.J.; Scanlon, J.H.

    1960-12-01

    Born total cross sections were computed for the strong optically allowed transitions from n = 5 to n' = 6, at incident energies between 0.2 and 1361 ev. Thirty energy values were considered for the 5s to 6p and 5g to 6h cases, and nine for the other transitions. The cross sections obtained were larger than those of comparable transitions for lower n. The Bethe (dipole) approximation was also used, and was found to give good agreement with the Born results down to relatively low energies ( approx equal 3 ev). (auth)

  6. Distribution of Off-Diagonal Cross Sections in Quantum Chaotic Scattering: Exact Results and Data Comparison

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh; Dietz, Barbara; Guhr, Thomas; Richter, Achim

    2017-12-01

    The recently derived distributions for the scattering-matrix elements in quantum chaotic systems are not accessible in the majority of experiments, whereas the cross sections are. We analytically compute distributions for the off-diagonal cross sections in the Heidelberg approach, which is applicable to a wide range of quantum chaotic systems. Thus, eventually, we fully solve a problem that already arose more than half a century ago in compound-nucleus scattering. We compare our results with data from microwave and compound-nucleus experiments, particularly addressing the transition from isolated resonances towards the Ericson regime of strongly overlapping ones.

  7. Determination of differential cross sections for electron-impact excitation of electronic states of molecular oxygen

    NASA Astrophysics Data System (ADS)

    Campbell, L.; Green, M. A.; Brunger, M. J.; Teubner, P. J.; Cartwright, D. C.

    2000-02-01

    The development and initial results of a method for the determination of differential cross sections for electron scattering by molecular oxygen are described. The method has been incorporated into an existing package of computer programs which, given spectroscopic factors, dissociation energies and an energy-loss spectrum for electron-impact excitation, determine the differential cross sections for each electronic state relative to that of the elastic peak. Enhancements of the original code were made to deal with particular aspects of electron scattering from O2, such as the overlap of vibrational levels of the ground state with transitions to excited states, and transitions to levels close to and above the dissocation energy in the Herzberg and Schumann-Runge continua. The utility of the code is specifically demonstrated for the ``6-eV states'' of O2, where we report absolute differential cross sections for their excitation by 15-eV electrons. In addition an integral cross section, derived from the differential cross section measurements, is also reported for this excitation process and compared against available theoretical results. The present differential and integral cross sections for excitation of the ``6-eV states'' of O2 are the first to be reported in the literature for electron-impact energies below 20 eV.

  8. Relativistic three-dimensional Lippmann-Schwinger cross sections for space radiation applications

    NASA Astrophysics Data System (ADS)

    Werneth, C. M.; Xu, X.; Norman, R. B.; Maung, K. M.

    2017-12-01

    Radiation transport codes require accurate nuclear cross sections to compute particle fluences inside shielding materials. The Tripathi semi-empirical reaction cross section, which includes over 60 parameters tuned to nucleon-nucleus (NA) and nucleus-nucleus (AA) data, has been used in many of the world's best-known transport codes. Although this parameterization fits well to reaction cross section data, the predictive capability of any parameterization is questionable when it is used beyond the range of the data to which it was tuned. Using uncertainty analysis, it is shown that a relativistic three-dimensional Lippmann-Schwinger (LS3D) equation model based on Multiple Scattering Theory (MST) that uses 5 parameterizations-3 fundamental parameterizations to nucleon-nucleon (NN) data and 2 nuclear charge density parameterizations-predicts NA and AA reaction cross sections as well as the Tripathi cross section parameterization for reactions in which the kinetic energy of the projectile in the laboratory frame (TLab) is greater than 220 MeV/n. The relativistic LS3D model has the additional advantage of being able to predict highly accurate total and elastic cross sections. Consequently, it is recommended that the relativistic LS3D model be used for space radiation applications in which TLab > 220MeV /n .

  9. Triple-parton scatterings in proton-nucleus collisions at high energies

    NASA Astrophysics Data System (ADS)

    d'Enterria, David; Snigirev, Alexander M.

    2018-05-01

    A generic expression to compute triple-parton scattering (TPS) cross sections in high-energy proton-nucleus (pA) collisions is derived as a function of the corresponding single-parton cross sections and an effective parameter encoding the transverse parton profile of the proton. The TPS cross sections are enhanced by a factor of about 9 A˜eq 2000 in pPb as compared to those in proton-nucleon collisions at the same center-of-mass energy. Estimates for triple charm (c\\overline{c}) and bottom (b\\overline{b}) production in pPb collisions at LHC and FCC energies are presented based on next-to-next-to-leading-order calculations for c\\overline{c} and b\\overline{b} single-parton cross sections. At √{s_{_{sc {nn}}}}= 8.8 TeV, about 10% of the pPb events have three c\\overline{c} pairs produced in separate partonic interactions. At √{s_{_{sc {nn}}}}= 63 TeV, the pPb cross sections for triple-J/ψ and triple-b\\overline{b} are O(1-10 mb). In the most energetic collisions of cosmic rays in the upper atmosphere, equivalent to √{s_{_{sc {nn}}}}≈ 400 TeV, the TPS c\\overline{c} cross section equals the total p-Air inelastic cross section.

  10. Rotational Energy Transfer of N2 Determined Using a New Ab Initio Potential Energy Surface

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Stallcop, James R.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    A new N2-N2 rigid-rotor surface has been determined using extensive Ab Initio quantum chemistry calculations together with recent experimental data for the second virial coefficient. Rotational energy transfer is studied using the new potential energy surface (PES) employing the close coupling method below 200 cm(exp -1) and coupled state approximation above that. Comparing with a previous calculation based on the PES of van der Avoird et al.,3 it is found that the new PES generally gives larger cross sections for large (delta)J transitions, but for small (delta)J transitions the cross sections are either comparable or smaller. Correlation between the differences in the cross sections and the two PES will be attempted. The computed cross sections will also be compared with available experimental data.

  11. Low-energy electron collisions with C{sub 4}H{sub 6} isomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopes, A.R.; Bettega, M.H.F.; Lima, M.A.P.

    2004-01-01

    We report integral, differential, and momentum-transfer cross sections for elastic scattering of low-energy electrons by C{sub 4}H{sub 6} isomers, namely, 1,3-butadiene, 2-butyne, and cyclobutene. We use the Schwinger multichannel method with pseudopotentials [M. H. F. Bettega, L. G. Ferreira, and M. A. P. Lima, Phys. Rev. A 47, 1111 (1993)] at the static-exchange approximation to compute the cross sections for energies from 10 to 60 eV. In particular, we discuss the isomer effect, reported by experimental studies for isomers of C{sub 3}H{sub 4} and C{sub 4}H{sub 6}. We also calculate the total ionization cross section using the binary-encounter-Bethe model formore » 2-butyne and 1,3-butadiene, and estimate the inelastic cross section for these two isomers.« less

  12. Resonance charge transfer, transport cross sections, and collision integrals for N(+)(3P)-N(4S0) and O(+)(4S0)-O(3P) interactions

    NASA Technical Reports Server (NTRS)

    Stallcop, James R.; Partridge, Harry; Levin, Eugene

    1991-01-01

    N2(+) and O2(+) potential energy curves have been constructed by combining measured data with the results from electronic structure calculations. These potential curves have been employed to determine accurate charge exchange cross sections, transport cross sections, and collision integrals for ground state N(+)-N and O(+)-O interactions. The cross sections have been calculated from a semiclassical approximation to the scattering using a computer code that fits a spline curve through the discrete potential data and incorporates the proper long-range behavior of the interactions forces. The collision integrals are tabulated for a broad range of temperatures 250-100,000 K and are intended to reduce the uncertainty in the values of the transport properties of nonequilibrium air, particularly at high temperatures.

  13. Cosmic strings and baryon decay catalysis

    NASA Technical Reports Server (NTRS)

    Gregory, Ruth; Perkins, W. B.; Davis, A.-C.; Brandenberger, R. H.

    1989-01-01

    Cosmic strings, like monopoles, can catalyze proton decay. For integer charged fermions, the cross section for catalysis is not amplified, unlike in the case of monopoles. The catalysis processes are reviewed both in the free quark and skyrmion pictures and the implications for baryogenesis are discussed. A computation of the cross section for monopole catalyzed skyrmion decay is presented using classical physics. Also discussed are some effects which can screen catalysis processes.

  14. Elastic collisions of low-energy electrons with SiY4 (Y = Cl, Br, I) molecules

    NASA Astrophysics Data System (ADS)

    Bettega, M. H. F.

    2011-11-01

    We employed the Schwinger multichannel method to compute elastic integral, differential, and momentum transfer cross sections for low-energy electron collisions with SiY4 (Y = Cl, Br, I) molecules. The calculations were carried out in the static-exchange and static-exchange plus polarization approximations for energies up to 10 eV. The elastic integral cross section for SiCl4 and SiBr4, computed in the static-exchange plus polarization approximation, shows two shape resonances belonging to the T2 and E symmetries of the Td group, and for SiI4 shows one shape resonance belonging to the E symmetry of the Td group. The present results agree well in shape with experimental total cross sections. The positions of the resonances observed in the calculated integral cross sections are also in agreement with the experimental positions. We have found the presence of a virtual state for SiCl4 and a Ramsauer-Townsend minimum for SiI4 at 0.5 eV. The present results show that the proper inclusion of polarization effects is crucial in order to correctly describe the resonance spectra of these molecules and also to identify a Ramsauer-Townsend minimum for SiI4 and a virtual state for SiCl4.

  15. Cross-sectional imaging in cancers of the head and neck: how we review and report.

    PubMed

    Tshering Vogel, Dechen Wangmo; Thoeny, Harriet C

    2016-08-03

    Cancer of the head and neck is the sixth most frequent cancer worldwide and associated with significant morbidity. The head and neck area is complex and divided into various anatomical and functional subunits. Imaging is performed by cross-sectional modalities like computed tomography, magnetic resonance imaging, ultrasound and positron emission tomography-computed tomography, usually with fluorine-18-deoxy-D-glucose. Therefore, knowledge of the cross-sectional anatomy is very important. This article seeks to give an overview of the various cross-sectional imaging modalities used in the evaluation of head and neck cancers. It briefly describes the anatomy of the extracranial head and neck and the role of imaging as well as the imaging appearance of tumours and their extension to lymph nodes, bone and surrounding tissue. The advantages and disadvantages as well as basic requirements of the various modalities are described along with ways of optimizing imaging quality. A general guideline for prescription of the various modalities is given. Pitfalls are many and varied and can be due to anatomical variation, due to pathology which can be misinterpreted and technical due to peculiarities of the various imaging modalities. Knowledge of these pitfalls can help to avoid misinterpretation. The important points to be mentioned while reporting are also enumerated.

  16. Sand-storage changes in the Colorado River downstream from the Paria and Little Colorado rivers, April 1994 to August 1995

    USGS Publications Warehouse

    Graf, Julia B.; Marlow, Jonathan E.; Rigas, Patricia D.; Jansen, Samuel M.D.

    1997-01-01

    Sixty-six cross sections on the Colorado River in 11-kilometer reachesdownstream from the Paria and Little Colorado Rivers were monitoredfrom June 1992 to August 1995 to provide data to evaluate the effectof releases from Glen Canyon Dam on channel-sand storage and fordevelopment of multidimensional flow and sediment-transport models.Most of the network of monumented cross sections was established andfirst measured JuneSeptember 1992. Data collected from June 1992through February 1994 were published in a previous report. Crosssections downstream from the Paria River were remeasured six timesbetween April 1994 and August 1995. Most sections downstream from theLittle Colorado River were remeasured four times in the same timeperiod. Each measurement consisted of 10 passes across the section,and data presented are the mean section and the standard deviationfrom the mean. Measured depths were converted to bed elevations usingwater-surface elevations measured or estimated for each reach. A linemarked at regular intervals was strung across the river between thesection end points and used to provide horizontal-position control. AWilcoxon rank-sum test was applied to the data, and bed-elevationdifferences between successive measurements that were statisticallysignificant at the 5-percent significance level were identified andused to compute the difference in cross-sectional area frommeasurement to measurement. Changes in sand storage computed forselected cross sections are presented. Changes in area at most of theselected cross sections during the period presented in this reportwere smaller than those measured during the period covered bythe previous report. The largest changes over the monitoring periodpresented in this report were measured at section p22 (+115 squaremeters) downstream from the Paria River and at sections lb1 (+209square meters) and lc2 (156 square meters) downstream from theLittle Colorado River. This report presents selected data from themeasurements made from April 1994 through August 1995 in graphicalform and describes the electronic form of the entire data set.

  17. Television Viewing, Computer Use, Obesity, And Adiposity In US Preschool Children

    USDA-ARS?s Scientific Manuscript database

    We tested whether three sedentary activities were associated with obesity and adiposity in U.S. preschool children: 1) watching >2 hours/day of TV/videos, 2) computer use, and 3) >2 hours/day of media use (TV/videos and computer use). We conducted a cross-sectional study using nationally representat...

  18. DEBRIS: a computer program for analyzing channel cross sections

    Treesearch

    Patrick Deenihan; Thomas E. Lisle

    1988-01-01

    DEBRIS is a menu-driven, interactive computer program written in FORTRAN 77 for recording and plotting survey data and for computing hydraulic variables and depths of scour and fill. It was developed for use with the USDA Forest Service's Data General computer system, with the AOS/VS operation system. By using menus, the operator does not need to know any...

  19. DEBRIS: A computer program for analyzing channel cross sections

    Treesearch

    Patrick Deenihan; Thomas E. Lisle

    1988-01-01

    DEBRIS is a menu-driven, interactive computer program written in FORTRAN 77 for recording and platting survey data and for computing hydraulic variables and depths of scour and fill. It was developed for use with the USDA Forest Service's Data General computer system, with the AOS/VS operating system. By using menus, the operator does not need to know any...

  20. Correction of the near threshold behavior of electron collisional excitation cross-sections in the plane-wave Born approximation

    NASA Astrophysics Data System (ADS)

    Kilcrease, D. P.; Brookes, S.

    2013-12-01

    The modeling of NLTE plasmas requires the solution of population rate equations to determine the populations of the various atomic levels relevant to a particular problem. The equations require many cross sections for excitation, de-excitation, ionization and recombination. A simple and computational fast way to calculate electron collisional excitation cross-sections for ions is by using the plane-wave Born approximation. This is essentially a high-energy approximation and the cross section suffers from the unphysical problem of going to zero near threshold. Various remedies for this problem have been employed with varying degrees of success. We present a correction procedure for the Born cross-sections that employs the Elwert-Sommerfeld factor to correct for the use of plane waves instead of Coulomb waves in an attempt to produce a cross-section similar to that from using the more time consuming Coulomb Born approximation. We compare this new approximation with other, often employed correction procedures. We also look at some further modifications to our Born Elwert procedure and its combination with Y.K. Kim's correction of the Coulomb Born approximation for singly charged ions that more accurately approximate convergent close coupling calculations.

  1. Production cross sections of cosmic antiprotons in the light of new data from the NA61 and LHCb experiments

    NASA Astrophysics Data System (ADS)

    Korsmeier, Michael; Donato, Fiorenza; Di Mauro, Mattia

    2018-05-01

    The cosmic-ray flux of antiprotons is measured with high precision by the space-borne particle spectrometers AMS-02. Its interpretation requires a correct description of the dominant production process for antiprotons in our Galaxy, namely, the interaction of cosmic-ray proton and helium with the interstellar medium. In light of new cross section measurements by the NA61 experiment of p +p →p ¯+X and the first ever measurement of p +He →p ¯+X by the LHCb experiment, we update the parametrization of proton-proton and proton-nucleon cross sections. We find that the LHCb p He data constrain a shape for the cross section at high energies and show for the first time how well the rescaling from the p p channel applies to a helium target. By using p p , p He and p C data we estimate the uncertainty on the Lorentz invariant cross section for p +He →p ¯+X . We use these new cross sections to compute the source term for all the production channels, considering also nuclei heavier than He both in cosmic rays and the interstellar medium. The uncertainties on the total source term are up to ±20 % and slightly increase below antiproton energies of 5 GeV. This uncertainty is dominated by the p +p →p ¯+X cross section, which translates into all channels since we derive them using the p p cross sections. The cross sections to calculate the source spectra from all relevant cosmic-ray isotopes are provided in Supplemental Material. We finally quantify the necessity of new data on antiproton production cross sections, and pin down the kinematic parameter space which should be covered by future data.

  2. Theoretical investigation of rotationally inelastic collisions of CH(X2Π) with hydrogen atoms

    NASA Astrophysics Data System (ADS)

    Dagdigian, Paul J.

    2017-06-01

    We report calculations of state-to-state cross sections for collision-induced rotational transitions of CH(X2Π) with atomic hydrogen. These calculations employed the four adiabatic potential energy surfaces correlating CH(X2Π) + H(2S), computed in this work through the multi-reference configuration interaction method [MRCISD + Q(Davidson)]. Because of the presence of deep wells on three of the potential energy surfaces, the scattering calculations were carried out using the quantum statistical method of Manolopoulos and co-workers [Chem. Phys. Lett. 343, 356 (2001)]. The computed cross sections included contributions from only direct scattering since the CH2 collision complex is expected to decay predominantly to C + H2. Rotationally energy transfer rate constants were computed for this system since these are required for astrophysical modeling.

  3. Experimental analysis of bidirectional reflectance distribution function cross section conversion term in direction cosine space.

    PubMed

    Butler, Samuel D; Nauyoks, Stephen E; Marciniak, Michael A

    2015-06-01

    Of the many classes of bidirectional reflectance distribution function (BRDF) models, two popular classes of models are the microfacet model and the linear systems diffraction model. The microfacet model has the benefit of speed and simplicity, as it uses geometric optics approximations, while linear systems theory uses a diffraction approach to compute the BRDF, at the expense of greater computational complexity. In this Letter, nongrazing BRDF measurements of rough and polished surface-reflecting materials at multiple incident angles are scaled by the microfacet cross section conversion term, but in the linear systems direction cosine space, resulting in great alignment of BRDF data at various incident angles in this space. This results in a predictive BRDF model for surface-reflecting materials at nongrazing angles, while avoiding some of the computational complexities in the linear systems diffraction model.

  4. Automated Cross-Sectional Measurement Method of Intracranial Dural Venous Sinuses.

    PubMed

    Lublinsky, S; Friedman, A; Kesler, A; Zur, D; Anconina, R; Shelef, I

    2016-03-01

    MRV is an important blood vessel imaging and diagnostic tool for the evaluation of stenosis, occlusions, or aneurysms. However, an accurate image-processing tool for vessel comparison is unavailable. The purpose of this study was to develop and test an automated technique for vessel cross-sectional analysis. An algorithm for vessel cross-sectional analysis was developed that included 7 main steps: 1) image registration, 2) masking, 3) segmentation, 4) skeletonization, 5) cross-sectional planes, 6) clustering, and 7) cross-sectional analysis. Phantom models were used to validate the technique. The method was also tested on a control subject and a patient with idiopathic intracranial hypertension (4 large sinuses tested: right and left transverse sinuses, superior sagittal sinus, and straight sinus). The cross-sectional area and shape measurements were evaluated before and after lumbar puncture in patients with idiopathic intracranial hypertension. The vessel-analysis algorithm had a high degree of stability with <3% of cross-sections manually corrected. All investigated principal cranial blood sinuses had a significant cross-sectional area increase after lumbar puncture (P ≤ .05). The average triangularity of the transverse sinuses was increased, and the mean circularity of the sinuses was decreased by 6% ± 12% after lumbar puncture. Comparison of phantom and real data showed that all computed errors were <1 voxel unit, which confirmed that the method provided a very accurate solution. In this article, we present a novel automated imaging method for cross-sectional vessels analysis. The method can provide an efficient quantitative detection of abnormalities in the dural sinuses. © 2016 by American Journal of Neuroradiology.

  5. Double photoionization of Be-like (Be-F5+) ions

    NASA Astrophysics Data System (ADS)

    Abdel Naby, Shahin; Pindzola, Michael; Colgan, James

    2015-04-01

    The time-dependent close-coupling method is used to study the single photon double ionization of Be-like (Be - F5+) ions. Energy and angle differential cross sections are calculated to fully investigate the correlated motion of the two photoelectrons. Symmetric and antisymmetric amplitudes are presented along the isoelectronic sequence for different energy sharing of the emitted electrons. Our total double photoionization cross sections are in good agreement with available theoretical results and experimental measurements along the Be-like ions. This work was supported in part by grants from NSF and US DoE. Computational work was carried out at NERSC in Oakland, California and the National Institute for Computational Sciences in Knoxville, Tennessee.

  6. Automated event generation for loop-induced processes

    DOE PAGES

    Hirschi, Valentin; Mattelaer, Olivier

    2015-10-22

    We present the first fully automated implementation of cross-section computation and event generation for loop-induced processes. This work is integrated in the MadGraph5_aMC@NLO framework. We describe the optimisations implemented at the level of the matrix element evaluation, phase space integration and event generation allowing for the simulation of large multiplicity loop-induced processes. Along with some selected differential observables, we illustrate our results with a table showing inclusive cross-sections for all loop-induced hadronic scattering processes with up to three final states in the SM as well as for some relevant 2 → 4 processes. Furthermore, many of these are computed heremore » for the first time.« less

  7. Analytic integration of real-virtual counterterms in NNLO jet cross sections I

    NASA Astrophysics Data System (ADS)

    Aglietti, Ugo; Del Duca, Vittorio; Duhr, Claude; Somogyi, Gábor; Trócsányi, Zoltán

    2008-09-01

    We present analytic evaluations of some integrals needed to give explicitly the integrated real-virtual counterterms, based on a recently proposed subtraction scheme for next-to-next-to-leading order (NNLO) jet cross sections. After an algebraic reduction of the integrals, integration-by-parts identities are used for the reduction to master integrals and for the computation of the master integrals themselves by means of differential equations. The results are written in terms of one- and two-dimensional harmonic polylogarithms, once an extension of the standard basis is made. We expect that the techniques described here will be useful in computing other integrals emerging in calculations in perturbative quantum field theories.

  8. Hadron Cancer Therapy: Role of Nuclear Reactions

    DOE R&D Accomplishments Database

    Chadwick, M. B.

    2000-06-20

    Recently it has become feasible to calculate energy deposition and particle transport in the body by proton and neutron radiotherapy beams, using Monte Carlo transport methods. A number of advances have made this possible, including dramatic increases in computer speeds, a better understanding of the microscopic nuclear reaction cross sections, and the development of methods to model the characteristics of the radiation emerging from the accelerator treatment unit. This paper describes the nuclear reaction mechanisms involved, and how the cross sections have been evaluated from theory and experiment, for use in computer simulations of radiation therapy. The simulations will allow the dose delivered to a tumor to be optimized, whilst minimizing the dos given to nearby organs at risk.

  9. Contribution of inner shell Compton ionization to the X-ray fluorescence line intensity

    NASA Astrophysics Data System (ADS)

    Fernández, Jorge E.; Scot, Viviana; Di Giulio, Eugenio

    2016-10-01

    The Compton effect is a potential ionization mechanism of atoms. It produces vacancies in inner shells that are filled with the same mechanism of atomic relaxation as the one following photo-absorption. This contribution to X-ray fluorescence emission is frequently neglected because the total Compton cross-section is apparently much lower than the photoelectric one at useful X-ray energies. However, a more careful analysis suggests that is necessary to consider single shell cross sections (instead of total cross sections) as a function of energy. In this article these Compton cross sections are computed for the shells K, L1-L3 and M1-M5 in the framework of the impulse approximation. By comparing the Compton and the photoelectric cross-section for each shell it is then possible to determine the extent of the Compton correction to the intensity of the corresponding characteristic lines. It is shown that for the K shell the correction becomes relevant for excitation energies which are too high to be influent in X-ray spectrometry. In contrast, for L and M shells the Compton contribution is relevant for medium-Z elements and medium energies. To illustrate the different grades of relevance of the correction, for each ionized shell, the energies for which the Compton contribution reaches the extent levels of 1, 5, 10, 20, 50 and 100% of the photoelectric one are determined for all the elements with Z = 11-92. For practical applications it is provided a simple formula and fitting coefficients to compute average correction levels for the shells considered.

  10. Slender body theory programmed for bodies with arbitrary cross section. [including fuselages

    NASA Technical Reports Server (NTRS)

    Werner, J.; Krenkel, A. R.

    1978-01-01

    A computer program developed for determining the subsonic pressure, force, and moment coefficients for a fuselage-type body using slender body theory is described. The program is suitable for determining the angle of attack and sideslipping characteristics of such bodies in the linear range where viscous effects are not predominant. Procedures developed which are capable of treating cross sections with corners or regions of large curvature are outlined.

  11. Fast multi-core based multimodal registration of 2D cross-sections and 3D datasets

    PubMed Central

    2010-01-01

    Background Solving bioinformatics tasks often requires extensive computational power. Recent trends in processor architecture combine multiple cores into a single chip to improve overall performance. The Cell Broadband Engine (CBE), a heterogeneous multi-core processor, provides power-efficient and cost-effective high-performance computing. One application area is image analysis and visualisation, in particular registration of 2D cross-sections into 3D image datasets. Such techniques can be used to put different image modalities into spatial correspondence, for example, 2D images of histological cuts into morphological 3D frameworks. Results We evaluate the CBE-driven PlayStation 3 as a high performance, cost-effective computing platform by adapting a multimodal alignment procedure to several characteristic hardware properties. The optimisations are based on partitioning, vectorisation, branch reducing and loop unrolling techniques with special attention to 32-bit multiplies and limited local storage on the computing units. We show how a typical image analysis and visualisation problem, the multimodal registration of 2D cross-sections and 3D datasets, benefits from the multi-core based implementation of the alignment algorithm. We discuss several CBE-based optimisation methods and compare our results to standard solutions. More information and the source code are available from http://cbe.ipk-gatersleben.de. Conclusions The results demonstrate that the CBE processor in a PlayStation 3 accelerates computational intensive multimodal registration, which is of great importance in biological/medical image processing. The PlayStation 3 as a low cost CBE-based platform offers an efficient option to conventional hardware to solve computational problems in image processing and bioinformatics. PMID:20064262

  12. A scaling law for accretion zone sizes

    NASA Technical Reports Server (NTRS)

    Greenzweig, Yuval; Lissauer, Jack J.

    1987-01-01

    Current theories of runaway planetary accretion require small random velocities of the accreted particles. Two body gravitational accretion cross sections which ignore tidal perturbations of the Sun are not valid for the slow encounters which occur at low relative velocities. Wetherill and Cox have studied accretion cross sections for rocky protoplanets orbiting at 1 AU. Using analytic methods based on Hill's lunar theory, one can scale these results for protoplanets that occupy the same fraction of their Hill sphere as does a rocky body at 1 AU. Generalization to bodies of different sizes is achieved here by numerical integrations of the three-body problem. Starting at initial positions far from the accreting body, test particles are allowed to encounter the body once, and the cross section is computed. A power law is found relating the cross section to the radius of the accreting body (of fixed mass).

  13. Triple Parton Scatterings in High-Energy Proton-Proton Collisions

    NASA Astrophysics Data System (ADS)

    d'Enterria, David; Snigirev, Alexander M.

    2017-03-01

    A generic expression to compute triple parton scattering cross sections in high-energy proton-proton (p p ) collisions is presented as a function of the corresponding single parton cross sections and the transverse parton profile of the proton encoded in an effective parameter σeff,TPS . The value of σeff,TPS is closely related to the similar effective cross section that characterizes double parton scatterings, and amounts to σeff,TPS=12.5 ±4.5 mb . Estimates for triple charm (c c ¯) and bottom (b b ¯) production in p p collisions at LHC and FCC energies are presented based on next-to-next-to-leading-order perturbative calculations for single c c ¯ , b b ¯ cross sections. At √{s }≈100 TeV , about 15% of the p p collisions produce three c c ¯ pairs from three different parton-parton scatterings.

  14. Long Wave Runup in Asymmetric Bays and in Fjords With Two Separate Heads

    NASA Astrophysics Data System (ADS)

    Raz, Amir; Nicolsky, Dmitry; Rybkin, Alexei; Pelinovsky, Efim

    2018-03-01

    Modeling of tsunamis in glacial fjords prompts us to evaluate applicability of the cross-sectionally averaged nonlinear shallow water equations to model propagation and runup of long waves in asymmetrical bays and also in fjords with two heads. We utilize the Tuck-Hwang transformation, initially introduced for the plane beaches and currently generalized for bays with arbitrary cross section, to transform the nonlinear governing equations into a linear equation. The solution of the linearized equation describing the runup at the shore line is computed by taking into account the incident wave at the toe of the last sloping segment. We verify our predictions against direct numerical simulation of the 2-D shallow water equations and show that our solution is valid both for bays with an asymmetric L-shaped cross section, and for fjords with two heads—bays with a W-shaped cross section.

  15. Triple Parton Scatterings in High-Energy Proton-Proton Collisions.

    PubMed

    d'Enterria, David; Snigirev, Alexander M

    2017-03-24

    A generic expression to compute triple parton scattering cross sections in high-energy proton-proton (pp) collisions is presented as a function of the corresponding single parton cross sections and the transverse parton profile of the proton encoded in an effective parameter σ_{eff,TPS}. The value of σ_{eff,TPS} is closely related to the similar effective cross section that characterizes double parton scatterings, and amounts to σ_{eff,TPS}=12.5±4.5  mb. Estimates for triple charm (cc[over ¯]) and bottom (bb[over ¯]) production in pp collisions at LHC and FCC energies are presented based on next-to-next-to-leading-order perturbative calculations for single cc[over ¯], bb[over ¯] cross sections. At sqrt[s]≈100  TeV, about 15% of the pp collisions produce three cc[over ¯] pairs from three different parton-parton scatterings.

  16. NNLO jet cross sections by subtraction

    NASA Astrophysics Data System (ADS)

    Somogyi, G.; Bolzoni, P.; Trócsányi, Z.

    2010-08-01

    We report on the computation of a class of integrals that appear when integrating the so-called iterated singly-unresolved approximate cross section of the NNLO subtraction scheme of Refs. [G. Somogyi, Z. Trócsányi, and V. Del Duca, JHEP 06, 024 (2005), arXiv:hep-ph/0502226; G. Somogyi and Z. Trócsányi, (2006), arXiv:hep-ph/0609041; G. Somogyi, Z. Trócsányi, and V. Del Duca, JHEP 01, 070 (2007), arXiv:hep-ph/0609042; G. Somogyi and Z. Trócsányi, JHEP 01, 052 (2007), arXiv:hep-ph/0609043] over the factorised phase space of unresolved partons. The integrated approximate cross section itself can be written as the product of an insertion operator (in colour space) times the Born cross section. We give selected results for the insertion operator for processes with two and three hard partons in the final state.

  17. Photoionization of Li2

    NASA Astrophysics Data System (ADS)

    Li, Y.; Pindzola, M. S.; Ballance, C. P.; Colgan, J.

    2014-05-01

    Single and double photoionization cross sections for Li2 are calculated using a time-dependent close-coupling method. The correlation between the outer two electrons of Li2 is obtained by relaxation of the close-coupled equations in imaginary time. Propagation of the close-coupled equations in real time yields single and double photoionization cross sections for Li2. The two active electron cross sections are compared with one active electron distorted-wave and close-coupling results for both Li and Li2. This work was supported in part by grants from NSF and US DoE. Computational work was carried out at NERSC in Oakland, California, NICS in Knoxville, Tennessee, and OLCF in Oak Ridge, Tennessee.

  18. Cooling of Gas Turbines. 6; Computed Temperature Distribution Through Cross Section of Water-Cooled Turbine Blade

    NASA Technical Reports Server (NTRS)

    Livingood, John N. B.; Sams, Eldon W.

    1947-01-01

    A theoretical analysis of the cross-sectional temperature distribution of a water-cooled turbine blade was made using the relaxation method to solve the differential equation derived from the analysis. The analysis was applied to specific turbine blade and the studies icluded investigations of the accuracy of simple methods to determine the temperature distribution along the mean line of the rear part of the blade, of the possible effect of varying the perimetric distribution of the hot gas-to -metal heat transfer coefficient, and of the effect of changing the thermal conductivity of the blade metal for a constant cross sectional area blade with two quarter inch diameter coolant passages.

  19. Prediction of vortex shedding from circular and noncircular bodies in supersonic flow

    NASA Technical Reports Server (NTRS)

    Mendenhall, M. R.; Perkins, S. C., Jr.

    1984-01-01

    An engineering prediction method and associated computer code NOZVTX to predict nose vortex shedding from circular and noncircular bodies in supersonic flow at angles of attack and roll are presented. The body is represented by either a supersonic panel method for noncircular cross sections or line sources and doublets for circular cross sections, and the lee side vortex wake is modeled by discrete vortices in crossflow planes. The three-dimensional steady flow problem is reduced to a two-dimensional, unsteady, separated flow problem for solution. Comparison of measured and predicted surface pressure distributions, flow field surveys, and aerodynamic characteristics is presented for bodies with circular and noncircular cross-sectional shapes.

  20. Level II scour analysis for Bridge 23 (WEELTH00210023) on Town Highway 21, crossing Miller Run, Wheelock, Vermont

    USGS Publications Warehouse

    Flynn, Robert H.; Boehmler, Erick M.

    1997-01-01

    Contraction scour for all modelled flows was computed to be zero ft. Abutment scour ranged from 9.1 to 10.8 ft along the right abutment and from 9.8 to 12.3 ft along the left abutment. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  1. Photo-ionization cross-section of donor-related in (In,Ga)N/GaN core/shell under hydrostatic pressure and electric field effects

    NASA Astrophysics Data System (ADS)

    El Ghazi, Haddou; John Peter, A.

    2017-04-01

    Hydrogenic-like donor-impurity related self and induced polarizations, bending energy and photo-ionization cross section in spherical core/shell zinc blende (In,Ga)N/GaN are computed. Based on the variational approach and within effective-mass and one parabolic approximations, the calculations are made under finite potential barrier taking into account of the discontinuity of the effective-mass and the constant dielectric. The photo-ionization cross section is studied according to the photon incident energy considering the effects of hydrostatic pressure, applied electric field, structure's radius, impurity's position and indium composition in the core. It is obtained that the influences mentioned above lead to either blue shifts or redshifts of the resonant peak of the photo-ionization cross section spectrum. The unusual behavior related to the structure radius is discussed which is as a consequence of the finite potential confinement. We have shown that the photo-ionization cross section can be controlled with adjusting the internal and external factors. These properties can be useful for producing some device applications such as quantum dot infrared photodetectors.

  2. Absolute Total Photoionization Cross Section of C60 in the Range of 25-120 eV: Revisited

    NASA Astrophysics Data System (ADS)

    Kafle, Bhim P.; Katayanagi, Hideki; Prodhan, Md. Serajul I.; Yagi, Hajime; Huang, Chaoqun; Mitsuke, Koichiro

    2008-01-01

    The absolute total photoionization cross section σabs,I of gaseous C60 is measured in the photon energy hν range from 25 to 120 eV by photoionization mass spectrometry with synchrotron radiation. The absolute detection efficiencies of photoions in different charge states are evaluated. The present σabs,I curve is combined with the photoabsorption cross section curves of C60 at hν=3.5--26 eV in the literature, after appropriate alterations of the vapor pressure are taken into account. The oscillator strengths are computed from the composite curve to be 178.5 and 230.5 for the hν ranges from 3.5 to 40.8 eV and from 3.5 to 119 eV, respectively. These oscillator strengths agree well with those expected from the Thomas-Kuhn-Reiche sum rule and 60 times the photoabsorption cross section of a carbon atom. Moreover, the present σabs,I curve behaves similarly to the relative photoionization cross section curve reported by Reinköster et al.

  3. Computation of Temperature-Dependent Legendre Moments of a Double-Differential Elastic Cross Section

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arbanas, Goran; Dunn, Michael E; Larson, Nancy M

    2011-01-01

    A general expression for temperature-dependent Legendre moments of a double-differential elastic scattering cross section was derived by Ouisloumen and Sanchez [Nucl. Sci. Eng. 107, 189-200 (1991)]. Attempts to compute this expression are hindered by the three-fold nested integral, limiting their practical application to just the zeroth Legendre moment of an isotropic scattering. It is shown that the two innermost integrals could be evaluated analytically to all orders of Legendre moments, and for anisotropic scattering, by a recursive application of the integration by parts method. For this method to work, the anisotropic angular distribution in the center of mass is expressedmore » as an expansion in Legendre polynomials. The first several Legendre moments of elastic scattering of neutrons on U-238 are computed at T=1000 K at incoming energy 6.5 eV for isotropic scattering in the center of mass frame. Legendre moments of the anisotropic angular distribution given via Blatt-Biedenharn coefficients are computed at ~1 keV. The results are in agreement with those computed by the Monte Carlo method.« less

  4. Level II scour analysis for Bridge 63 (CHESTH00090063) on Town Highway 9, crossing the Williams River, Chester, Vermont

    USGS Publications Warehouse

    Flynn, Robert H.

    1997-01-01

    year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  5. Level II scour analysis for Bridge 43 (SPRICYBRIG0043) on Bridge Street, crossing the Black River, Springfield, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.; Medalie, Laura

    1997-01-01

    year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  6. Production of a tensor glueball in the reaction γγ → G2π0 at large momentum transfer

    NASA Astrophysics Data System (ADS)

    Kivel, N.; Vanderhaeghen, M.

    2018-06-01

    We study the production of a tensor glueball in the reaction γγ →G2π0. We compute the cross section at higher momentum transfer using the collinear factorisation approach. We find that for a value of the tensor gluon coupling of fgT ∼ 100 MeV, the cross section can be measured in the near future by the Belle II experiment.

  7. Quantum dynamics of tunneling dominated reactions at low temperatures

    NASA Astrophysics Data System (ADS)

    Hazra, Jisha; Balakrishnan, N.

    2015-05-01

    We report a quantum dynamics study of the Li + HF → LiF + H reaction at low temperatures of interest to cooling and trapping experiments. Contributions from non-zero partial waves are analyzed and results show narrow resonances in the energy dependence of the cross section that survive partial wave summation. The computations are performed using the ABC code and a simple modification of the ABC code that enables separate energy cutoffs for the reactant and product rovibrational energy levels is found to dramatically reduce the basis set size and computational expense. Results obtained using two ab initio electronic potential energy surfaces for the LiHF system show strong sensitivity to the choice of the potential. In particular, small differences in the barrier heights of the two potential surfaces are found to dramatically influence the reaction cross sections at low energies. Comparison with recent measurements of the reaction cross section (Bobbenkamp et al 2011 J. Chem. Phys. 135 204306) shows similar energy dependence in the threshold regime and an overall good agreement with experimental data compared to previous theoretical results. Also, usefulness of a recently introduced method for ultracold reactions that employ the quantum close-coupling method at short-range and the multichannel quantum defect theory at long-range, is demonstrated in accurately evaluating product state-resolved cross sections for D + H2 and H + D2 reactions.

  8. User's Guide for Mixed-Size Sediment Transport Model for Networks of One-Dimensional Open Channels

    USGS Publications Warehouse

    Bennett, James P.

    2001-01-01

    This user's guide describes a mathematical model for predicting the transport of mixed sizes of sediment by flow in networks of one-dimensional open channels. The simulation package is useful for general sediment routing problems, prediction of erosion and deposition following dam removal, and scour in channels at road embankment crossings or other artificial structures. The model treats input hydrographs as stepwise steady-state, and the flow computation algorithm automatically switches between sub- and supercritical flow as dictated by channel geometry and discharge. A variety of boundary conditions including weirs and rating curves may be applied both external and internal to the flow network. The model may be used to compute flow around islands and through multiple openings in embankments, but the network must be 'simple' in the sense that the flow directions in all channels can be specified before simulation commences. The location and shape of channel banks are user specified, and all bedelevation changes take place between these banks and above a user-specified bedrock elevation. Computation of sediment-transport emphasizes the sand-size range (0.0625-2.0 millimeter) but the user may select any desired range of particle diameters including silt and finer (<0.0625 millimeter). As part of data input, the user may set the original bed-sediment composition of any number of layers of known thickness. The model computes the time evolution of total transport and the size composition of bed- and suspended-load sand through any cross section of interest. It also tracks bed -surface elevation and size composition. The model is written in the FORTRAN programming language for implementation on personal computers using the WINDOWS operating system and, along with certain graphical output display capability, is accessed from a graphical user interface (GUI). The GUI provides a framework for selecting input files and parameters of a number of components of the sediment-transport process. There are no restrictions in the use of the model as to numbers of channels, channel junctions, cross sections per channel, or points defining the cross sections. Following completion of the simulation computations, the GUI accommodates display of longitudinal plots of either bed elevation and size composition, or of transport rate and size composition of the various components, for individual channels and selected times during the simulation period. For individual cross sections, the GUI also allows display of time series of transport rate and size composition of the various components and of bed elevation and size composition.

  9. Inelastic scattering of electrons at real metal surfaces

    NASA Astrophysics Data System (ADS)

    Ding, Z.-J.

    1997-04-01

    A theory is presented to calculate the electron inelastic scattering cross section for a moving electron near the surface region at an arbitrary takeoff angle. The theory is based on using a bulk plasmon-pole approximation to derive the numerically computable expression of the electron self-energy in the random-phase approximation for a surface system, through the use of experimental optical constants. It is shown that the wave-vector-dependent surface dielectric function satisfies the surface sum rules in this scheme. The theory provides a detailed knowledge of electron self-energy depending on the kinetic energy, distance from surface, and velocity vector of an electron moving in any metal of a known dielectric constant, accommodating the formulation to practical situation in surface electron spectroscopies. Numerical computations of the energy-loss cross section have been made for Si and Au. The contribution to the total differential scattering cross section from each component is analyzed. The depth dependence informs us in detail how the bulk excitation mode changes to a surface excitation mode with an electron approaching the surface from the interior of a medium.

  10. Radiation Transport in Random Media With Large Fluctuations

    NASA Astrophysics Data System (ADS)

    Olson, Aaron; Prinja, Anil; Franke, Brian

    2017-09-01

    Neutral particle transport in media exhibiting large and complex material property spatial variation is modeled by representing cross sections as lognormal random functions of space and generated through a nonlinear memory-less transformation of a Gaussian process with covariance uniquely determined by the covariance of the cross section. A Karhunen-Loève decomposition of the Gaussian process is implemented to effciently generate realizations of the random cross sections and Woodcock Monte Carlo used to transport particles on each realization and generate benchmark solutions for the mean and variance of the particle flux as well as probability densities of the particle reflectance and transmittance. A computationally effcient stochastic collocation method is implemented to directly compute the statistical moments such as the mean and variance, while a polynomial chaos expansion in conjunction with stochastic collocation provides a convenient surrogate model that also produces probability densities of output quantities of interest. Extensive numerical testing demonstrates that use of stochastic reduced-order modeling provides an accurate and cost-effective alternative to random sampling for particle transport in random media.

  11. Oscillating flow and heat transfer in a channel with sudden cross section change

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir; Hashim, Waqar

    1993-01-01

    We have computationally examined oscillating flow (zero mean) between two parallel plates with a sudden change in cross section. The flow was assumed to be laminar incompressible with the inflow velocity uniform over the channel cross section but varying sinusoidally with time. The cases studied cover wide ranges of Re(sub max) (from 187.5 to 2000), Va (from 1 to 10.66), the expansion ratio (1:2 and 1:4) and A(sub r) (2 and 4). Also, three different geometric cases were discussed: (1) asymmetric expansion/contraction; (2) symmetric expansion/contraction; and (3) symmetric blunt body. For these oscillating flow conditions, the fluid undergoes sudden expansion in one-half of the cycle and sudden contraction inthe other half. The instantaneous friction factor, for some ranges of Re(sub max) and Va, deviated substantially from the steady-state friction factor for the same flow parameters. A region has been identified below which the flow is laminar quasi-steady. A videotape showing computer simulations of the oscillating flow demonstrates the usefulness of the current analyses in providing information on the transient hydraulic phenomena.

  12. Applications of Ko Displacement Theory to the Deformed Shape Predictions of the Doubly-Tapered Ikhana Wing

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Richards, W. Lance; Fleischer, Van Tran

    2009-01-01

    The Ko displacement theory, formulated for weak nonuniform (slowly changing cross sections) cantilever beams, was applied to the deformed shape analysis of the doubly-tapered wings of the Ikhana unmanned aircraft. The two-line strain-sensing system (along the wingspan) was used for sensing the bending strains needed for the wing-deformed shapes (deflections and cross-sectional twist) analysis. The deflection equation for each strain-sensing line was expressed in terms of the bending strains evaluated at multiple numbers of strain-sensing stations equally spaced along the strain-sensing line. For the preflight shape analysis of the Ikhana wing, the strain data needed for input to the displacement equations for the shape analysis were obtained from the nodal-stress output of the finite-element analysis. The wing deflections and cross-sectional twist angles calculated from the displacement equations were then compared with those computed from the finite-element computer program. The Ko displacement theory formulated for weak nonlinear cantilever beams was found to be highly accurate in the deformed shape predictions of the doubly-tapered Ikhana wing.

  13. Attenuation of thermal neutrons by an imperfect single crystal

    NASA Astrophysics Data System (ADS)

    Naguib, K.; Adib, M.

    1996-06-01

    A semi-empirical formula is given which allows one to calculate the total thermal cross section of an imperfect single crystal as a function of crystal constants, temperature and neutron energy E, in the energy range between 3 meV and 10 eV. The formula also includes the contribution of the parasitic Bragg scattering to the total cross section that takes into account the crystal mosaic spread value and its orientation with respect to the neutron beam direction. A computer program (ISCANF) was developed to calculate the total attenuation of neutrons using the proposed formula. The ISCANF program was applied to investigate the neutron attenuation through a copper single crystal. The calculated values of the neutron transmission through the imperfect copper single crystal were fitted to the measured ones in the energy range 3 - 40 meV at different crystal orientations. The result of fitting shows that use of the computer program ISCANF allows one to predict the behaviour of the total cross section of an imperfect copper single crystal for the whole energy range.

  14. Measurement of the 115In(n,γ)116 m In reaction cross-section at the neutron energies of 1.12, 2.12, 3.12 and 4.12 MeV

    NASA Astrophysics Data System (ADS)

    Lawriniang, Bioletty Mary; Badwar, Sylvia; Ghosh, Reetuparna; Jyrwa, Betylda; Vansola, Vibha; Naik, Haladhara; Goswami, Ashok; Naik, Yeshwant; Datrik, Chandra Shekhar; Gupta, Amit Kumar; Singh, Vijay Pal; Pol, Sudir Shibaji; Subramanyam, Nagaraju Balabenkata; Agarwal, Arun; Singh, Pitambar

    2015-08-01

    The 115In(n,γ)116 m In reaction cross section at neutron energies of 1.12, 2.12, 3.12 and 4.12 MeV was determined by using an activation and off-line γ-ray spectrometric technique. The monoenergetic neutron energies of 1.12 - 4.12 MeV were generated from the 7Li(p,n) reaction by using proton beam with energies of 3 and 4 MeV from the folded tandem ion beam accelerator (FOTIA) at Bhabha Atomic Research Centre (BARC) and with energies of 5 and 6 MeV from the Pelletron facility at Tata Institute of Fundamental Research (TIFR), Mumbai. The 197Au(n,γ)198Au reaction cross-section was used as the neutron flux monitor.The 115In(n,γ)116 m In reaction cross section at neutron energies of 1.12, 2.12, 3.12 and 4.12 MeV was determined by using an activation and off-line γ-ray spectrometric technique. The monoenergetic neutron energies of 1.12 - 4.12 MeV were generated from the 7Li(p,n) reaction by using proton beam with energies of 3 and 4 MeV from the folded tandem ion beam accelerator (FOTIA) at Bhabha Atomic Research Centre (BARC) and with energies of 5 and 6 MeV from the Pelletron facility at Tata Institute of Fundamental Research (TIFR), Mumbai. The 197Au(n,γ)198 Au reaction cross-section was used as the neutron flux monitor. The 115In(n,γ)116 m In reaction cross-sections at neutron energies of 1.12 - 4.12 MeV were compared with the literature data and were found to be in good agreement with one set of data, but not with others. The 115In(n,γ)116 m In cross-section was also calculated theoretically by using the computer code TALYS 1.6 and was found to be slightly lower than the experimental data from the present work and the literature.)198Au reaction cross-section was used as the neutron flux monitor. The 115In(n,γ)116 m In reaction cross-sections at neutron energies of 1.12 - 4.12 MeV were compared with the literature data and were found to be in good agreement with one set of data, but not with others. The 115In(n,γ)116 m In cross-section was also calculated theoretically by using the computer code TALYS 1.6 and was found to be slightly lower than the experimental data from the present work and the literature.

  15. MEKS: A program for computation of inclusive jet cross sections at hadron colliders

    NASA Astrophysics Data System (ADS)

    Gao, Jun; Liang, Zhihua; Soper, Davison E.; Lai, Hung-Liang; Nadolsky, Pavel M.; Yuan, C.-P.

    2013-06-01

    EKS is a numerical program that predicts differential cross sections for production of single-inclusive hadronic jets and jet pairs at next-to-leading order (NLO) accuracy in a perturbative QCD calculation. We describe MEKS 1.0, an upgraded EKS program with increased numerical precision, suitable for comparisons to the latest experimental data from the Large Hadron Collider and Tevatron. The program integrates the regularized patron-level matrix elements over the kinematical phase space for production of two and three partons using the VEGAS algorithm. It stores the generated weighted events in finely binned two-dimensional histograms for fast offline analysis. A user interface allows one to customize computation of inclusive jet observables. Results of a benchmark comparison of the MEKS program and the commonly used FastNLO program are also documented. Program SummaryProgram title: MEKS 1.0 Catalogue identifier: AEOX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland. Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 9234 No. of bytes in distributed program, including test data, etc.: 51997 Distribution format: tar.gz Programming language: Fortran (main program), C (CUBA library and analysis program). Computer: All. Operating system: Any UNIX-like system. RAM: ˜300 MB Classification: 11.1. External routines: LHAPDF (https://lhapdf.hepforge.org/) Nature of problem: Computation of differential cross sections for inclusive production of single hadronic jets and jet pairs at next-to-leading order accuracy in perturbative quantum chromodynamics. Solution method: Upon subtraction of infrared singularities, the hard-scattering matrix elements are integrated over available phase space using an optimized VEGAS algorithm. Weighted events are generated and filled into a finely binned two-dimensional histogram, from which the final cross sections with typical experimental binning and cuts are computed by an independent analysis program. Monte Carlo sampling of event weights is tuned automatically to get better efficiency. Running time: Depends on details of the calculation and sought numerical accuracy. See benchmark performance in Section 4. The tests provided take approximately 27 min for the jetbin run and a few seconds for jetana.

  16. Three-rooted premolar analyzed by high-resolution and cone beam CT.

    PubMed

    Marca, Caroline; Dummer, Paul M H; Bryant, Susan; Vier-Pelisser, Fabiana Vieira; Só, Marcus Vinicius Reis; Fontanella, Vania; Dutra, Vinicius D'avila; de Figueiredo, José Antonio Poli

    2013-07-01

    The aim of this study was to analyze the variations in canal and root cross-sectional area in three-rooted maxillary premolars between high-resolution computed tomography (μCT) and cone beam computed tomography (CBCT). Sixteen extracted maxillary premolars with three distinct roots and fully formed apices were scanned using μCT and CBCT. Photoshop CS software was used to measure root and canal cross-sectional areas at the most cervical and the most apical points of each root third in images obtained using the two tomographic computed (CT) techniques, and at 30 root sections equidistant from both root ends using μCT images. Canal and root areas were compared between each method using the Student t test for paired samples and 95 % confidence intervals. Images using μCT were sharper than those obtained using CBCT. There were statistically significant differences in mean area measurements of roots and canals between the μCT and CBCT techniques (P < 0.05). Root and canal areas had similar variations in cross-sectional μCT images and became proportionally smaller in a cervical to apical direction as the cementodentinal junction was approached, from where the area then increased apically. Although variation was similar in the roots and canals under study, CBCT produced poorer image details than μCT. Although CBCT is a strong diagnosis tool, it still needs improvement to provide accuracy in details of the root canal system, especially in cases with anatomical variations, such as the three-rooted maxillary premolars.

  17. Assessing self-care and social function using a computer adaptive testing version of the pediatric evaluation of disability inventory.

    PubMed

    Coster, Wendy J; Haley, Stephen M; Ni, Pengsheng; Dumas, Helene M; Fragala-Pinkham, Maria A

    2008-04-01

    To examine score agreement, validity, precision, and response burden of a prototype computer adaptive testing (CAT) version of the self-care and social function scales of the Pediatric Evaluation of Disability Inventory compared with the full-length version of these scales. Computer simulation analysis of cross-sectional and longitudinal retrospective data; cross-sectional prospective study. Pediatric rehabilitation hospital, including inpatient acute rehabilitation, day school program, outpatient clinics; community-based day care, preschool, and children's homes. Children with disabilities (n=469) and 412 children with no disabilities (analytic sample); 38 children with disabilities and 35 children without disabilities (cross-validation sample). Not applicable. Summary scores from prototype CAT applications of each scale using 15-, 10-, and 5-item stopping rules; scores from the full-length self-care and social function scales; time (in seconds) to complete assessments and respondent ratings of burden. Scores from both computer simulations and field administration of the prototype CATs were highly consistent with scores from full-length administration (r range, .94-.99). Using computer simulation of retrospective data, discriminant validity, and sensitivity to change of the CATs closely approximated that of the full-length scales, especially when the 15- and 10-item stopping rules were applied. In the cross-validation study the time to administer both CATs was 4 minutes, compared with over 16 minutes to complete the full-length scales. Self-care and social function score estimates from CAT administration are highly comparable with those obtained from full-length scale administration, with small losses in validity and precision and substantial decreases in administration time.

  18. Production cross sections for Lee-Wick massive electromagnetic bosons and for spin-zero and spin-one W bosons at high energies.

    NASA Technical Reports Server (NTRS)

    Linsker, R.

    1972-01-01

    Production cross sections for three types of hypothetical particles are calculated in the presented paper. Several (Z, Z') cases were studied corresponding to elastic scattering off protons and neutrons (either free or embedded within a Fermi sea), coherent scattering off a nucleus, and inelastic scattering off a proton (in which case Z' denotes a nucleon resonance or hadronic system in the continuum). Detailed structure-function data are used to improve the accuracy of the inelastic scattering calculation. Results of calculations are given for beam energies between 50 and 10,000 GeV, and masses between 5 and 40 GeV for the massive Lee-Wick spin-1 boson. Cross sections were computed for resonant and semiweak processes. The production cross section of spin-zero weak intermediate bosons was found to be at least one order of magnitude smaller than for spin-1 weak bosons in nearly all regions of interest. The production cross section of spin-zero weak intermediate bosons for inelastic scattering off protons compares with that for elastic scattering in the regions of interest. In the case of massive spin-1 bosons and spin-1 weak intermediates, the main contribution to total production cross section off protons is elastic.

  19. Study of electron impact inelastic scattering of chlorine molecule (Cl2)

    NASA Astrophysics Data System (ADS)

    Yadav, Hitesh; Vinodkumar, Minaxi; Limbachiya, Chetan; Vinodkumar, P. C.

    2018-02-01

    A theoretical study is carried out for electron interactions with the chlorine molecule (Cl2) for incident energies ranging from 0.01 to 5000 eV. This wide range of energy has allowed us to investigate a variety of processes and report data on symmetric excitation energies, dissociative electron attachment (DEA), total excitation cross sections, and ionization cross section (Q ion) along with total inelastic cross sections (Q inel). The present study is important since Cl2 is a prominent gas for plasma etching and its anionic atoms are important in the etching of semiconductor wafers. In order to compute the total inelastic cross sections, we have employed the ab initio R-matrix method (0.01 to 15 eV) together with the spherical complex optical potential method (∼15 to 5000 eV). The R-matrix calculations are performed using a close coupling method, and we have used DEA estimator via Quantemol-N to calculate the DEA fragmentation and cross sections. The present study finds overall good agreement with the available experimental data. Total excitation and inelastic cross sections of e-{{{Cl}}}2 scattering for a wide energy range (0.01 to 5 keV) are reported for the first time, to the best of our knowledge.

  20. Simulation of multistatic and backscattering cross sections for airborne radar

    NASA Astrophysics Data System (ADS)

    Biggs, Albert W.

    1986-07-01

    In order to determine susceptibilities of airborne radar to electronic countermeasures and electronic counter-countermeasures simulations of multistatic and backscattering cross sections were developed as digital modules in the form of algorithms. Cross section algorithms are described for prolate (cigar shape) and oblate (disk shape) spheroids. Backscattering cross section algorithms are also described for different categories of terrain. Backscattering cross section computer programs were written for terrain categorized as vegetation, sea ice, glacial ice, geological (rocks, sand, hills, etc.), oceans, man-made structures, and water bodies. PROGRAM SIGTERRA is a file for backscattering cross section modules of terrain (TERRA) such as vegetation (AGCROP), oceans (OCEAN), Arctic sea ice (SEAICE), glacial snow (GLASNO), geological structures (GEOL), man-made structures (MAMMAD), or water bodies (WATER). AGCROP describes agricultural crops, trees or forests, prairies or grassland, and shrubs or bush cover. OCEAN has the SLAR or SAR looking downwind, upwind, and crosswind at the ocean surface. SEAICE looks at winter ice and old or polar ice. GLASNO is divided into a glacial ice and snow or snowfields. MANMAD includes buildings, houses, roads, railroad tracks, airfields and hangars, telephone and power lines, barges, trucks, trains, and automobiles. WATER has lakes, rivers, canals, and swamps. PROGRAM SIGAIR is a similar file for airborne targets such as prolate and oblate spheroids.

  1. Theoretical and experimental study on electron interactions with chlorobenzene: Shape resonances and differential cross sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbosa, Alessandra Souza; Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica; Varella, Márcio T. do N.

    2016-08-28

    In this work, we report theoretical and experimental cross sections for elastic scattering of electrons by chlorobenzene (ClB). The theoretical integral and differential cross sections (DCSs) were obtained with the Schwinger multichannel method implemented with pseudopotentials (SMCPP) and the independent atom method with screening corrected additivity rule (IAM-SCAR). The calculations with the SMCPP method were done in the static-exchange (SE) approximation, for energies above 12 eV, and in the static-exchange plus polarization approximation, for energies up to 12 eV. The calculations with the IAM-SCAR method covered energies up to 500 eV. The experimental differential cross sections were obtained in themore » high resolution electron energy loss spectrometer VG-SEELS 400, in Lisbon, for electron energies from 8.0 eV to 50 eV and angular range from 7{sup ∘} to 110{sup ∘}. From the present theoretical integral cross section (ICS) we discuss the low-energy shape-resonances present in chlorobenzene and compare our computed resonance spectra with available electron transmission spectroscopy data present in the literature. Since there is no other work in the literature reporting differential cross sections for this molecule, we compare our theoretical and experimental DCSs with experimental data available for the parent molecule benzene.« less

  2. Correction of the near threshold behavior of electron collisional excitation cross-sections in the plane-wave Born approximation

    DOE PAGES

    Kilcrease, D. P.; Brookes, S.

    2013-08-19

    The modeling of NLTE plasmas requires the solution of population rate equations to determine the populations of the various atomic levels relevant to a particular problem. The equations require many cross sections for excitation, de-excitation, ionization and recombination. Additionally, a simple and computational fast way to calculate electron collisional excitation cross-sections for ions is by using the plane-wave Born approximation. This is essentially a high-energy approximation and the cross section suffers from the unphysical problem of going to zero near threshold. Various remedies for this problem have been employed with varying degrees of success. We present a correction procedure formore » the Born cross-sections that employs the Elwert–Sommerfeld factor to correct for the use of plane waves instead of Coulomb waves in an attempt to produce a cross-section similar to that from using the more time consuming Coulomb Born approximation. We compare this new approximation with other, often employed correction procedures. Furthermore, we also look at some further modifications to our Born Elwert procedure and its combination with Y.K. Kim's correction of the Coulomb Born approximation for singly charged ions that more accurately approximate convergent close coupling calculations.« less

  3. Heat Transfer Computations of Internal Duct Flows With Combined Hydraulic and Thermal Developing Length

    NASA Technical Reports Server (NTRS)

    Wang, C. R.; Towne, C. E.; Hippensteele, S. A.; Poinsatte, P. E.

    1997-01-01

    This study investigated the Navier-Stokes computations of the surface heat transfer coefficients of a transition duct flow. A transition duct from an axisymmetric cross section to a non-axisymmetric cross section, is usually used to connect the turbine exit to the nozzle. As the gas turbine inlet temperature increases, the transition duct is subjected to the high temperature at the gas turbine exit. The transition duct flow has combined development of hydraulic and thermal entry length. The design of the transition duct required accurate surface heat transfer coefficients. The Navier-Stokes computational method could be used to predict the surface heat transfer coefficients of a transition duct flow. The Proteus three-dimensional Navier-Stokes numerical computational code was used in this study. The code was first studied for the computations of the turbulent developing flow properties within a circular duct and a square duct. The code was then used to compute the turbulent flow properties of a transition duct flow. The computational results of the surface pressure, the skin friction factor, and the surface heat transfer coefficient were described and compared with their values obtained from theoretical analyses or experiments. The comparison showed that the Navier-Stokes computation could predict approximately the surface heat transfer coefficients of a transition duct flow.

  4. Parallel programming of gradient-based iterative image reconstruction schemes for optical tomography.

    PubMed

    Hielscher, Andreas H; Bartel, Sebastian

    2004-02-01

    Optical tomography (OT) is a fast developing novel imaging modality that uses near-infrared (NIR) light to obtain cross-sectional views of optical properties inside the human body. A major challenge remains the time-consuming, computational-intensive image reconstruction problem that converts NIR transmission measurements into cross-sectional images. To increase the speed of iterative image reconstruction schemes that are commonly applied for OT, we have developed and implemented several parallel algorithms on a cluster of workstations. Static process distribution as well as dynamic load balancing schemes suitable for heterogeneous clusters and varying machine performances are introduced and tested. The resulting algorithms are shown to accelerate the reconstruction process to various degrees, substantially reducing the computation times for clinically relevant problems.

  5. The Computerized Anatomical Man (CAM) model

    NASA Technical Reports Server (NTRS)

    Billings, M. P.; Yucker, W. R.

    1973-01-01

    A computerized anatomical man (CAM) model, representing the most detailed and anatomically correct geometrical model of the human body yet prepared, has been developed for use in analyzing radiation dose distribution in man. This model of a 50-percentile standing USAF man comprises some 1100 unique geometric surfaces and some 2450 solid regions. Internal body geometry such as organs, voids, bones, and bone marrow are explicitly modeled. A computer program called CAMERA has also been developed for performing analyses with the model. Such analyses include tracing rays through the CAM geometry, placing results on magnetic tape in various forms, collapsing areal density data from ray tracing information to areal density distributions, preparing cross section views, etc. Numerous computer drawn cross sections through the CAM model are presented.

  6. The estimation of pointing angle and normalized surface scattering cross section from GEOS-3 radar altimeter measurements

    NASA Technical Reports Server (NTRS)

    Brown, G. S.; Curry, W. J.

    1977-01-01

    The statistical error of the pointing angle estimation technique is determined as a function of the effective receiver signal to noise ratio. Other sources of error are addressed and evaluated with inadequate calibration being of major concern. The impact of pointing error on the computation of normalized surface scattering cross section (sigma) from radar and the waveform attitude induced altitude bias is considered and quantitative results are presented. Pointing angle and sigma processing algorithms are presented along with some initial data. The intensive mode clean vs. clutter AGC calibration problem is analytically resolved. The use clutter AGC data in the intensive mode is confirmed as the correct calibration set for the sigma computations.

  7. Theory of time-resolved photoelectron imaging. Comparison of a density functional with a time-dependent density functional approach

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshi-ichi; Seideman, Tamar; Stener, Mauro

    2004-01-01

    Time-resolved photoelectron differential cross sections are computed within a quantum dynamical theory that combines a formally exact solution of the nuclear dynamics with density functional theory (DFT)-based approximations of the electronic dynamics. Various observables of time-resolved photoelectron imaging techniques are computed at the Kohn-Sham and at the time-dependent DFT levels. Comparison of the results serves to assess the reliability of the former method and hence its usefulness as an economic approach for time-domain photoelectron cross section calculations, that is applicable to complex polyatomic systems. Analysis of the matrix elements that contain the electronic dynamics provides insight into a previously unexplored aspect of femtosecond-resolved photoelectron imaging.

  8. A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the iterated singly-unresolved subtraction terms

    NASA Astrophysics Data System (ADS)

    Bolzoni, Paolo; Somogyi, Gábor; Trócsányi, Zoltán

    2011-01-01

    We perform the integration of all iterated singly-unresolved subtraction terms, as defined in ref. [1], over the two-particle factorized phase space. We also sum over the unresolved parton flavours. The final result can be written as a convolution (in colour space) of the Born cross section and an insertion operator. We spell out the insertion operator in terms of 24 basic integrals that are defined explicitly. We compute the coefficients of the Laurent expansion of these integrals in two different ways, with the method of Mellin-Barnes representations and sector decomposition. Finally, we present the Laurent-expansion of the full insertion operator for the specific examples of electron-positron annihilation into two and three jets.

  9. Measurements of differential and double-differential Drell–Yan cross sections in proton–proton collisions at √s = 8 TeV

    DOE PAGES

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; ...

    2015-04-09

    Measurements of the differential and double-differential Drell–Yan cross sections in the dielectron and dimuon channels are presented. They are based on proton–proton collision data at √s = 8TeV recorded with the CMS detector at the LHC and corresponding to an integrated luminosity of 19.7fb –1. The measured inclusive cross section in the Z peak region (60–120GeV), obtained from the combination of the dielectron and dimuon channels, is 1138 ± 8 (exp) ± 25 (theo) ± 30 (lumi)\\,pb, where the statistical uncertainty is negligible. The differential cross section dσ/dm in the dilepton mass range 15–2000GeV is measured and corrected to themore » full phase space. The double-differential cross section d 2σ/dmd|y| is also measured over the mass range 20 to 1500GeV and absolute dilepton rapidity from 0 to 2.4. In addition, the ratios of the normalized differential cross sections measured at √s = 7 and 8TeV are presented. These measurements are compared to the predictions of perturbative QCD at next-to-leading and next-to-next-to-leading (NNLO) orders using various sets of parton distribution functions (PDFs). The results agree with the NNLO theoretical predictions computed with FEWZ 3.1 using the CT10 NNLO and NNPDF2.1 NNLO PDFs. Furthermore, the measured double-differential cross section and ratio of normalized differential cross sections are sufficiently precise to constrain the proton PDFs.« less

  10. Level II scour analysis for Bridge 42 (BENNCYSCHL0042) on School Street, crossing Walloomsac River, Bennington, Vermont

    USGS Publications Warehouse

    Olson, Scott A.; Degnan, James R.

    1997-01-01

    Contraction scour computed for all modelled flows was 0.0 ft. Computed left abutment scour ranged from 9.4 to 10.2 ft. with the worst-case scour occurring at the 500-year discharge. Computed right abutment scour ranged from 2.7 to 5.7 ft. with the worst-case scour occurring at the incipient roadway-overtopping discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  11. Effect of partial wave parameter identification on IOS opacities and integral cross sections for rotationally inelastic collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pack, R.T

    1977-02-15

    The effect of identification of the partial wave parameter of the J/sub z/ CCS and IOS approximations as an orbital angular momentum rather than the total angular momentum is studied. Comparison with accurate close coupling calculations for Ar--N/sub 2/ and He--CO/sub 2/ collisions is made, and it is found that this identification results in a marked improvement, both quantitative and qualitative, in calculated IOS opacity functions and integral cross sections for both elastic and inelastic collisions. Use of the correct energy in the cross section formula also makes a marked improvement even though T matrices are computed with an averagemore » energy. (AIP)« less

  12. Measurement of 58Fe (p , n)58Co reaction cross-section within the proton energy range of 3.38 to 19.63 MeV

    NASA Astrophysics Data System (ADS)

    Ghosh, Reetuparna; Badwar, Sylvia; Lawriniang, Bioletty; Jyrwa, Betylda; Naik, Haldhara; Naik, Yeshwant; Suryanarayana, Saraswatula Venkata; Ganesan, Srinivasan

    2017-08-01

    The 58Fe (p , n)58Co reaction cross-section within Giant Dipole Resonance (GDR) region i.e. from 3.38 to 19.63 MeV was measured by stacked-foil activation and off-line γ-ray spectrometric technique using the BARC-TIFR Pelletron facility at Mumbai. The present data were compared with the existing literature data and found to be in good agreement. The 58Fe (p , n)58Co reaction cross-section as a function of proton energy was also theoretically calculated by using the computer code TALYS-1.8 and found to be in good agreement, which shows the validity of the TALYS-1.8 program.

  13. The use of cross-section warping functions in composite rotor blade analysis

    NASA Technical Reports Server (NTRS)

    Kosmatka, J. B.

    1992-01-01

    During the contracted period, our research was concentrated into three areas. The first was the development of an accurate and a computationally efficient method for predicting the cross-section warping functions in an arbitrary cross-section composed of isotropic and/or anisotropic materials. The second area of research was the development of a general higher-order one-dimensional theory for anisotropic beams. The third area of research was the development of an analytical model for assessing the extension-bend-twist coupling behavior of nonhomogeneous anisotropic beams with initial twist. In the remaining six chapters of this report, the three different research areas and associated sub-research areas are covered independently including separate introductions, theoretical developments, numerical results, and references.

  14. Computer-Assisted Law Instruction: Clinical Education's Bionic Sibling

    ERIC Educational Resources Information Center

    Henn, Harry G.; Platt, Robert C.

    1977-01-01

    Computer-assisted instruction (CAI), like clinical education, has considerable potential for legal training. As an initial Cornell Law School experiment, a lesson in applying different corporate statutory dividend formulations, with a cross-section of balance sheets and other financial data, was used to supplement regular class assignments.…

  15. The Human-Computer Interaction of Cross-Cultural Gaming Strategy

    ERIC Educational Resources Information Center

    Chakraborty, Joyram; Norcio, Anthony F.; Van Der Veer, Jacob J.; Andre, Charles F.; Miller, Zachary; Regelsberger, Alexander

    2015-01-01

    This article explores the cultural dimensions of the human-computer interaction that underlies gaming strategies. The article is a desktop study of existing literature and is organized into five sections. The first examines the cultural aspects of knowledge processing. The social constructs technology interaction is discussed. Following this, the…

  16. Atelectasis observed by computerized tomography after Caesarean section.

    PubMed

    Meira, M N C; Carvalho, C R R; Galizia, M S; Borges, J B; Kondo, M M; Zugaib, M; Vieira, J E

    2010-06-01

    Atelectasis after either vaginal or Caesarean delivery has not been adequately quantified. This study addresses the hypothesis that atelectasis may be worse in women who undergo Caesarean section when compared with vaginal delivery under regional anaesthesia. Twenty healthy non-smoking women submitted to a chest computed tomography (CT) 2 h after delivery in a University Hospital, who had experienced vaginal delivery (n=10) under combined spinal-epidural analgesia or a Caesarean section (n=10) under spinal anaesthesia, were evaluated. The percentage cross-sectional area of atelectasis in dependent lung regions were measured from the CT images obtained at cross-section of the xiphoid process and the top of the diaphragm. The percentage cross-sectional area of atelectasis was 3.95% in the vaginal delivery group and 14.1% in the Caesarean group (P<0.001, Mann-Whitney rank sum test). These results suggested that pulmonary atelectasis is greater after Caesarean section delivery under spinal anaesthesia than after vaginal delivery with combined spinal-epidural analgesia.

  17. Preparation of the apical part of the root canal by the Lightspeed and step-back techniques.

    PubMed

    Portenier, I; Lutz, F; Barbakow, F

    1998-03-01

    This study measured in vitro the displacement of natural canal centres in 18 human teeth before and after shaping by the step-back or Lightspeed techniques. Experimental roots (n = 9 per group), embedded in clear plastic, were cross-sectioned using a 0.1-mm-thick band saw at distances 1.25 mm, 3.25 mm and 5.25 mm from the apices. A stereo microscope was used to take 35 mm slides of the cut surfaces of the sectioned roots and canals. The slides of the uninstrumented canals were scanned into a computer and saved. Each sectioned root was then reassembled and the canals shaped by the step-back or Lightspeed technique. File size 40 and instrument size 50 were selected as the master apical file and master apical rotary for the step-back and Lightspeed groups, respectively. The 18 prepared canals were photographed, and the 35 mm slides scanned and computer stored as previously. This allowed the positions of the pre- and postinstrumented roots to be electronically superimposed for subsequent analyses. Displacements of the root canal centres before and after preparation were assessed in relation to the cross-sectional diameter of the files or instruments used. In addition, increases in cross-sectional area of the root canals after preparation were evaluated in relation to the cross-sectional area of the files or instruments used. Engine-driven nickel-titanium Lightspeed instruments caused significantly less (P < 0.001) displacement of the canal centres, so roots in the Lightspeed group remained better centred than those in the step-back group. The mean cross-sectional area after preparation in the Lightspeed group was significantly less (P < 0.001) than that recorded in the step-back group. Clinically, this implies less apical transportation and less dentine destruction with the Lightspeed technique than with the step-back technique.

  18. Correction of downwash in wind tunnels of circular and elliptic sections

    NASA Technical Reports Server (NTRS)

    Lotz, Irmgard

    1936-01-01

    The downwash velocity distribution behind the wing was determined for the free jet and for the closed tunnel of both circular and elliptic cross sections. The wing was placed at the center of the tunnel. The theory makes it possible to determine the downwash at any point in the jet. The computations were performed for points in the plane determined by the jet axis and the center-of-pressure line of the wing. The downwash proved to be proportional to the wing lift and inversely proportional to the cross-sectional area of the tunnel.

  19. Inclined Bodies of Various Cross Sections at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Jorgensen, Leland H.

    1958-01-01

    To aid in assessing effects of cross-sectional shape on body aerodynamics, the forces and moments have been measured for bodies with circular, elliptic, square, and triangular cross sections at Mach numbers 1.98 and 3.88. Results for bodies with noncircular cross sections have been compared with results for bodies of revolution having the same axial distribution of cross-sectional area (and, thus, the same equivalent fineness ratio). Comparisons have been made for bodies of fineness ratios 6 and 10 at angles of attack from 0 deg to about 20 deg and for Reynolds numbers, based on body length, of 4.0 x 10(exp 6) and 6.7 x 10(exp 6). The results of this investigation show that distinct aerodynamic advantages can be obtained by using bodies with noncircular cross sections. At certain angles of bank, bodies with elliptic, square, and triangular cross sections develop considerably greater lift and lift-drag ratios than equivalent bodies of revolution. For bodies with elliptic cross sections, lift and pitching-moment coefficients can be correlated with corresponding coefficients for equivalent circular bodies. It has been found that the ratios of lift and pitching-moment coefficients for an elliptic body to those for an equivalent circular body are practically constant with change in both angle of attack and Mach number. These lift and moment ratios are given very accurately by slender-body theory. As a result of this agreement, the method of NACA Rep. 1048 for computing forces and moments for bodies of revolution has been simply extended to bodies with elliptic cross sections. For the cases considered (elliptic bodies of fineness ratios 6 and 10 having cross-sectional axis ratios of 1.5 and 2), agreement of theory with experiment is very good. As a supplement to the force and moment results, visual studies of the flow over bodies have been made by use of the vapor-screen, sublimation, and white-lead techniques. Photographs from these studies are included in the report.

  20. New electron-energy transfer rates for vibrational excitation of O2

    NASA Astrophysics Data System (ADS)

    Jones, D. B.; Campbell, L.; Bottema, M. J.; Brunger, M. J.

    2003-09-01

    We report on our computation of electron-energy transfer rates for vibrational excitation of O2. This work was necessitated by inadequacies in the electron-impact cross section databases employed in previous studies and, in one case, an inaccurate approximate formulation to the rate equation. Both these inadequacies led to incorrect energy transfer rates being published in the literature. We also demonstrate the importance of using cross sections that encompass an energy range that is extended enough to appropriately describe the environment under investigation.

  1. Optical model calculations of 14.6A GeV silicon fragmentation cross sections

    NASA Technical Reports Server (NTRS)

    Townsend, Lawrence W.; Khan, Ferdous; Tripathi, Ram K.

    1993-01-01

    An optical potential abrasion-ablation collision model is used to calculate hadronic dissociation cross sections for a 14.6 A GeV(exp 28) Si beam fragmenting in aluminum, tin, and lead targets. The frictional-spectator-interaction (FSI) contributions are computed with two different formalisms for the energy-dependent mean free path. These estimates are compared with experimental data and with estimates obtained from semi-empirical fragmentation models commonly used in galactic cosmic ray transport studies.

  2. Photoionization and pseudopotentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, Romarly F. da; Lima, Marco A.P.; Ferreira, Luiz G.

    2003-05-01

    Transferability of norm-conserving pseudopotentials to low-energy electron-molecule scattering processes has been very successful [Bettega et al., Phys. Rev. A 47, 1111 (1993)]. In this paper we discuss the possibility of using effective potentials in calculations of valence electrons photoionization cross sections. Through atomic targets, we illustrate that pseudopotentials can be optimized to give cross sections in good agreement with all-electron calculations. The present work represents a first step towards more elaborate computer programs for photoionization of molecular targets containing heavy atoms.

  3. A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the subtraction terms I

    NASA Astrophysics Data System (ADS)

    Somogyi, Gábor; Trócsányi, Zoltán

    2008-08-01

    In previous articles we outlined a subtraction scheme for regularizing doubly-real emission and real-virtual emission in next-to-next-to-leading order (NNLO) calculations of jet cross sections in electron-positron annihilation. In order to find the NNLO correction these subtraction terms have to be integrated over the factorized unresolved phase space and combined with the two-loop corrections. In this paper we perform the integration of all one-parton unresolved subtraction terms.

  4. Design and Numerical Simulation of Radial Inflow Turbine Volute

    NASA Astrophysics Data System (ADS)

    Shah, Samip P.; Channiwala, S. A.; Kulshreshtha, D. B.; Chaudhari, Gaurang

    2014-12-01

    The volute of a radial inflow turbine has to be designed to ensure that the desired rotor inlet conditions like absolute Mach number, flow angle etc. are attained. For the reasonable performance of vaneless volute turbine care has to be taken for reduction in losses at an appropriate flow angle at the rotor inlet, in the direction of volute, whose function is to convert gas energy into kinetic energy and direct the flow towards the rotor inlet at an appropriate flow angle with reduced losses. In literature it was found that the incompressible approaches failed to provide free vortex and uniform flow at rotor inlet for compressible flow regimes. So, this paper describes a non-dimensional design procedure for a vaneless turbine volute for compressible flow regime and investigates design parameters, such as the distribution of area ratio and radius ratio as a function of azimuth angle. The nondimensional design is converted in dimensional form for three different volute cross sections. A commercial computational fluid dynamics code is used to develop numerical models of three different volute cross sections. From the numerical models, losses generation in the different volutes are identified and compared. The maximum pressure loss coefficient for Trapezoidal cross section is 0.1075, for Bezier-trapezoidal cross section is 0.0677 and for circular cross section is 0.0438 near tongue region, which suggested that the circular cross section will give a better efficiency than other types of volute cross sections.

  5. Determination of mechanical stiffness of bone by pQCT measurements: correlation with non-destructive mechanical four-point bending test data.

    PubMed

    Martin, Daniel E; Severns, Anne E; Kabo, J M J Michael

    2004-08-01

    Mechanical tests of bone provide valuable information about material and structural properties important for understanding bone pathology in both clinical and research settings, but no previous studies have produced applicable non-invasive, quantitative estimates of bending stiffness. The goal of this study was to evaluate the effectiveness of using peripheral quantitative computed tomography (pQCT) data to accurately compute the bending stiffness of bone. Normal rabbit humeri (N=8) were scanned at their mid-diaphyses using pQCT. The average bone mineral densities and the cross-sectional moments of inertia were computed from the pQCT cross-sections. Bending stiffness was determined as a function of the elastic modulus of compact bone (based on the local bone mineral density), cross-sectional moment of inertia, and simulated quasistatic strain rate. The actual bending stiffness of the bones was determined using four-point bending tests. Comparison of the bending stiffness estimated from the pQCT data and the mechanical bending stiffness revealed excellent correlation (R2=0.96). The bending stiffness from the pQCT data was on average 103% of that obtained from the four-point bending tests. The results indicate that pQCT data can be used to accurately determine the bending stiffness of normal bone. Possible applications include temporal quantification of fracture healing and risk management of osteoporosis or other bone pathologies.

  6. Just Scan It!-Weapon Reconstruction in Computed Tomography on Historical and Current Swiss Military Guns.

    PubMed

    Franckenberg, Sabine; Binder, Thomas; Bolliger, Stephan; Thali, Michael J; Ross, Steffen G

    2016-09-01

    Cross-sectional imaging, such as computed tomography, has been increasingly implemented in both historic and recent postmortem forensic investigations. It aids in determining cause and manner of death as well as in correlating injuries to possible weapons. This study illuminates the feasibility of reconstructing guns in computed tomography and gives a distinct overview of historic and recent Swiss Army guns.

  7. A simple and fast method for computing the relativistic Compton Scattering Kernel for radiative transfer

    NASA Technical Reports Server (NTRS)

    Kershaw, David S.; Prasad, Manoj K.; Beason, J. Douglas

    1986-01-01

    The Klein-Nishina differential cross section averaged over a relativistic Maxwellian electron distribution is analytically reduced to a single integral, which can then be rapidly evaluated in a variety of ways. A particularly fast method for numerically computing this single integral is presented. This is, to the authors' knowledge, the first correct computation of the Compton scattering kernel.

  8. Charge Exchange of Ne^9+ for X-ray Emission

    NASA Astrophysics Data System (ADS)

    Lyons, David

    2016-01-01

    Using the molecular-orbital close-coupling (MOCC) method, single electron capture (SEC) cross sections were computed for Ne^9+ colliding with H.Potential energies and nonadiabatic couplings were calculated and used to obtain the MOCC cross sections which are final-quantum-state-resolved including a separation of singlet and triplet states. Atomic-orbital close-coupling, classical trajectory Monte Carlo, and multichannel Landau-Zener (MCLZ) calculations are also performed. Cross sections for more complicated targets including He, H2, N2, H2O, CO, and CO2, were obtained with the MCLZ method. The SEC results are compared with experimental and other theoretical data, where available. The SEC cross sections are being used in cascade models to predict X-ray emission spectra relevant to solar systemand astrophysical environments.D. Lyons, R. S. Cumbee, P. D. Mullen, P. C. Stancil (UGA), D. R. Schultz (UNT), P. Liebermann (Wuppertal Univ.),R. Buenker (NCSU).This work was partially supported by NASA grant NNX09AC46G.

  9. Dissociative recombination of HCl+

    NASA Astrophysics Data System (ADS)

    Larson, Åsa; Fonseca dos Santos, Samantha; E. Orel, Ann

    2017-08-01

    The dissociative recombination of HCl+, including both the direct and indirect mechanisms, is studied. For the direct process, the relevant electronic states are calculated ab initio by combining electron scattering calculations to obtain resonance positions and autoionization widths with multi-reference configuration interaction calculations of the ion and Rydberg states. The cross section for the direct dissociation along electronic resonant states is computed by solution of the time-dependent Schrödinger equation. For the indirect process, an upper bound value for the cross section is obtained using a vibrational frame transformation of the elements of the scattering matrix at energies just above the ionization threshold. Vibrational excitations of the ionic core from the ground vibrational state, v = 0 , to the first three excited vibrational states, v = 1 , v = 2 , and v = 3 , are considered. Autoionization is neglected and the effect of the spin-orbit splitting of the ionic potential energy upon the indirect dissociative recombination cross section is considered. The calculated cross sections are compared to measurements.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyriakou, Ioanna; Emfietzoglou, Dimitris; Nojeh, Alireza

    A systematic study of electron-beam penetration and backscattering in multi-walled carbon nanotube (MWCNT) materials for beam energies of {approx}0.3 to 30 keV is presented based on event-by-event Monte Carlo simulation of electron trajectories using state-of-the-art scattering cross sections. The importance of different analytic approximations for computing the elastic and inelastic electron-scattering cross sections for MWCNTs is emphasized. We offer a simple parameterization for the total and differential elastic-scattering Mott cross section, using appropriate modifications to the Browning formula and the Thomas-Fermi screening parameter. A discrete-energy-loss approach to inelastic scattering based on dielectric theory is adopted using different descriptions of themore » differential cross section. The sensitivity of electron penetration and backscattering parameters to the underlying scattering models is examined. Our simulations confirm the recent experimental backscattering data on MWCNT forests and, in particular, the steep increase of the backscattering yield at sub-keV energies as well as the sidewalls escape effect at high-beam energies.« less

  11. Dissociative recombination of HCl.

    PubMed

    Larson, Åsa; Fonseca Dos Santos, Samantha; E Orel, Ann

    2017-08-28

    The dissociative recombination of HCl + , including both the direct and indirect mechanisms, is studied. For the direct process, the relevant electronic states are calculated ab initio by combining electron scattering calculations to obtain resonance positions and autoionization widths with multi-reference configuration interaction calculations of the ion and Rydberg states. The cross section for the direct dissociation along electronic resonant states is computed by solution of the time-dependent Schrödinger equation. For the indirect process, an upper bound value for the cross section is obtained using a vibrational frame transformation of the elements of the scattering matrix at energies just above the ionization threshold. Vibrational excitations of the ionic core from the ground vibrational state, v = 0, to the first three excited vibrational states, v = 1, v = 2, and  v = 3, are considered. Autoionization is neglected and the effect of the spin-orbit splitting of the ionic potential energy upon the indirect dissociative recombination cross section is considered. The calculated cross sections are compared to measurements.

  12. Molecular photoionization processes of astrophysical and aeronomical interest

    NASA Technical Reports Server (NTRS)

    Langhoff, P. W.

    1985-01-01

    An account is given of aspects of photoionization processes in molecules, with particular reference to recent theoretical and experimental studies of partial cross sections for production of specific final electronic states and of parent and fragment ions. Such cross sections help provide a basis for specifying the state of excitation of the ionized medium, are useful for estimating the kinetic energy distributions of photoejected electrons and fragment ions, provide parent-and fragment-ion yields, and clarify the possible origins of neutral fragments in highly excited rovibronic states. A descriptive account is given of photoionization phenomena, including tabulation of valence- and inner-shell potentials for some molecules of astrophysical and aeronomical interest. Cross sectional expressions are given. Various approximations currently employed in computational studies are described briefly, threshold laws and high-energy limits are indicated, and distinction is drawn between resonant and direct photoionization phenomena. Recent experimental and theoretical studies of partial photoionization cross sections in selected compounds of astrophysical and aeronomical relevance are described and discussed.

  13. A study of radar cross section measurement techniques

    NASA Technical Reports Server (NTRS)

    Mcdonald, Malcolm W.

    1986-01-01

    Past, present, and proposed future technologies for the measurement of radar cross section were studied. The purpose was to determine which method(s) could most advantageously be implemented in the large microwave anechoic chamber facility which is operated at the antenna test range site. The progression toward performing radar cross section measurements of space vehicles with which the Orbital Maneuvering Vehicle will be called upon to rendezvous and dock is a natural outgrowth of previous work conducted in recent years of developing a high accuracy range and velocity sensing radar system. The radar system was designed to support the rendezvous and docking of the Orbital Maneuvering Vehicle with various other space vehicles. The measurement of radar cross sections of space vehicles will be necessary in order to plan properly for Orbital Maneuvering Vehicle rendezvous and docking assignments. The methods which were studied include: standard far-field measurements; reflector-type compact range measurements; lens-type compact range measurement; near field/far field transformations; and computer predictive modeling. The feasibility of each approach is examined.

  14. Cross section measurements for production of positron emitters for PET imaging in carbon therapy

    NASA Astrophysics Data System (ADS)

    Salvador, S.; Colin, J.; Cussol, D.; Divay, C.; Fontbonne, J.-M.; Labalme, M.

    2017-04-01

    In light ion beam therapy, positron (β+) emitters are produced by the tissue nuclei through nuclear interactions with the beam ions. They can be used for the verification of the delivered dose using positron emission tomography by comparing the spatial distribution of the β+ emitters activity to a computer simulation taking into account the patient morphology and the treatment plan. However, the accuracy of the simulation greatly depends on the method used to generate the nuclear interactions producing these emitters. In the case of Monte Carlo (MC) simulations, the nuclear interaction models still lack the required accuracy due to insufficient experimental cross section data. This is particularly true for carbon therapy where literature data on fragmentation cross sections of a carbon beam with targets of medical interest are very scarce. Therefore, we performed at GANIL in July 2016 measurements on β+ emitter production cross sections with a carbon beam at 25, 50, and 95 MeV/nucleon on thin targets (C, N, O, and PMMA). We extracted the production cross section of C,1110, 13N, and O,1514 that are essential to constrain or develop MC nuclear fragmentation models.

  15. The role of nonlinear torsional contributions on the stability of flexural-torsional oscillations of open-cross section beams

    NASA Astrophysics Data System (ADS)

    Di Egidio, Angelo; Contento, Alessandro; Vestroni, Fabrizio

    2015-12-01

    An open-cross section thin-walled beam model, already developed by the authors, has been conveniently simplified while maintaining the capacity of accounting for the significant nonlinear warping effects. For a technical range of geometrical and mechanical characteristics of the beam, the response is characterized by the torsional curvature prevailing over the flexural ones. A Galerkin discretization is performed by using a suitable expansion of displacements based on shape functions. The attention is focused on the dynamic response of the beam to a harmonic force, applied at the free end of the cantilever beam. The excitation is directed along the symmetry axis of the beam section. The stability of the one-component oscillations has been investigated using the analytical model, showing the importance of the internal resonances due to the nonlinear warping coupling terms. Comparison with the results provided by a computational finite element model has been performed. The good agreement among the results of the analytical and the computational models confirms the effectiveness of the simplified model of a nonlinear open-cross section thin-walled beam and overall the important role of the warping and of the torsional elongation in the study of the one-component dynamic oscillations and their stability.

  16. Bathymetric survey of Carroll Creek Tributary to Lake Tuscaloosa, Tuscaloosa County, Alabama, 2010

    USGS Publications Warehouse

    Lee, K.G.; Kimbrow, D.R.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the City of Tuscaloosa, conducted a bathymetric survey of Carroll Creek, on May 12-13, 2010. Carroll Creek is one of the major tributaries to Lake Tuscaloosa and contributes about 6 percent of the surface drainage area. A 3.5-mile reach of Carroll Creek was surveyed to prepare a current bathymetric map, determine storage capacities at specified water-surface elevations, and compare current conditions to historical cross sections. Bathymetric data were collected using a high-resolution interferometric mapping system consisting of a phase-differencing bathymetric sonar, navigation and motion-sensing system, and a data acquisition computer. To assess the accuracy of the interferometric mapping system and document depths in shallow areas of the study reach, an electronic total station was used to survey 22 cross sections spaced 50 feet apart. The data were combined and processed and a Triangulated Irregular Network (TIN) and contour map were generated. Cross sections were extracted from the TIN and compared with historical cross sections. Between 2004 and 2010, the area (cross section 1) at the confluence of Carroll Creek and the main run of LakeTuscaloosa showed little to no change in capacity area. Another area (cross section 2) showed a maximum change in elevation of 4 feet and an average change of 3 feet. At the water-surface elevation of 224 feet (National Geodetic Vertical Datum of 1929), the cross-sectional area has changed by 260 square feet for a total loss of 28 percent of cross-sectional storage area. The loss of area may be attributed to sedimentation in Carroll Creek and (or) the difference in accuracy between the two surveys.

  17. Rotational quenching of H2CO by molecular hydrogen: cross-sections, rates and pressure broadening

    NASA Astrophysics Data System (ADS)

    Wiesenfeld, L.; Faure, A.

    2013-07-01

    We compute the rotational quenching rates of the first 81 rotational levels of ortho- and para-H2CO in collision with ortho- and para-H2, for a temperature range of 10-300 K. We make use of the quantum close-coupling and coupled-state scattering methods combined with the high accuracy potential energy surface of Troscompt et al. Rates are significantly different from the scaled rates of H2CO in collision with He; consequently, critical densities are notably lower. We compare a full close-coupling computation of pressure broadening cross-sections with experimental data and show that our results are compatible with the low-temperature measurements of Mengel & De Lucia, for a spin temperature of H2 around 50 K.

  18. Energy Frontier Research With ATLAS: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, John; Black, Kevin; Ahlen, Steve

    2016-06-14

    The Boston University (BU) group is playing key roles across the ATLAS experiment: in detector operations, the online trigger, the upgrade, computing, and physics analysis. Our team has been critical to the maintenance and operations of the muon system since its installation. During Run 1 we led the muon trigger group and that responsibility continues into Run 2. BU maintains and operates the ATLAS Northeast Tier 2 computing center. We are actively engaged in the analysis of ATLAS data from Run 1 and Run 2. Physics analyses we have contributed to include Standard Model measurements (W and Z cross sections,more » t\\bar{t} differential cross sections, WWW^* production), evidence for the Higgs decaying to \\tau^+\\tau^-, and searches for new phenomena (technicolor, Z' and W', vector-like quarks, dark matter).« less

  19. Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo.

    PubMed

    Xia, Jun; Chatni, Muhammad R; Maslov, Konstantin; Guo, Zijian; Wang, Kun; Anastasio, Mark; Wang, Lihong V

    2012-05-01

    We report a novel small-animal whole-body imaging system called ring-shaped confocal photoacoustic computed tomography (RC-PACT). RC-PACT is based on a confocal design of free-space ring-shaped light illumination and 512-element full-ring ultrasonic array signal detection. The free-space light illumination maximizes the light delivery efficiency, and the full-ring signal detection ensures a full two-dimensional view aperture for accurate image reconstruction. Using cylindrically focused array elements, RC-PACT can image a thin cross section with 0.10 to 0.25 mm in-plane resolutions and 1.6  s/frame acquisition time. By translating the mouse along the elevational direction, RC-PACT provides a series of cross-sectional images of the brain, liver, kidneys, and bladder.

  20. Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo

    NASA Astrophysics Data System (ADS)

    Xia, Jun; Chatni, Muhammad R.; Maslov, Konstantin; Guo, Zijian; Wang, Kun; Anastasio, Mark; Wang, Lihong V.

    2012-05-01

    We report a novel small-animal whole-body imaging system called ring-shaped confocal photoacoustic computed tomography (RC-PACT). RC-PACT is based on a confocal design of free-space ring-shaped light illumination and 512-element full-ring ultrasonic array signal detection. The free-space light illumination maximizes the light delivery efficiency, and the full-ring signal detection ensures a full two-dimensional view aperture for accurate image reconstruction. Using cylindrically focused array elements, RC-PACT can image a thin cross section with 0.10 to 0.25 mm in-plane resolutions and 1.6 s/frame acquisition time. By translating the mouse along the elevational direction, RC-PACT provides a series of cross-sectional images of the brain, liver, kidneys, and bladder.

  1. A Quantitative Study of the Relationship between Leadership Practice and Strategic Intentions to Use Cloud Computing

    ERIC Educational Resources Information Center

    Castillo, Alan F.

    2014-01-01

    The purpose of this quantitative correlational cross-sectional research study was to examine a theoretical model consisting of leadership practice, attitudes of business process outsourcing, and strategic intentions of leaders to use cloud computing and to examine the relationships between each of the variables respectively. This study…

  2. Methodology and Estimates of Scour at Selected Bridge Sites in Alaska

    USGS Publications Warehouse

    Heinrichs, Thomas A.; Kennedy, Ben W.; Langley, Dustin E.; Burrows, Robert L.

    2001-01-01

    The U.S. Geological Survey estimated scour depths at 325 bridges in Alaska as part of a cooperative agreement with the Alaska Department of Transportation and Public Facilities. The department selected these sites from approximately 806 State-owned bridges as potentially susceptible to scour during extreme floods. Pier scour and contraction scour were computed for the selected bridges by using methods recommended by the Federal Highway Administration. The U.S. Geological Survey used a four-step procedure to estimate scour: (1) Compute magnitudes of the 100- and 500-year floods. (2) Determine cross-section geometry and hydraulic properties for each bridge site. (3) Compute the water-surface profile for the 100- and 500-year floods. (4) Compute contraction and pier scour. This procedure is unique because the cross sections were developed from existing data on file to make a quantitative estimate of scour. This screening method has the advantage of providing scour depths and bed elevations for comparison with bridge-foundation elevations without the time and expense of a field survey. Four examples of bridge-scour analyses are summarized in the appendix.

  3. Level II scour analysis for Bridge 7 (WARRTH00010007) onTown Highway 1, crossing Freemans Brook, Warren, Vermont

    USGS Publications Warehouse

    Flynn, Robert H.; Burns, Ronda L.

    1997-01-01

    The computed contraction scour for all modelled flows was 0.0 feet. Abutment scour ranged from 5.3 to 8.2 ft. The worst-case abutment scour occurred at the right abutment for the incipient-overtopping discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  4. Screen time and physical violence in 10 to 16-year-old Canadian youth.

    PubMed

    Janssen, Ian; Boyce, William F; Pickett, William

    2012-04-01

    To examine the independent associations between television, computer, and video game use with physical violence in youth. The study population consisted of a representative cross-sectional sample of 9,672 Canadian youth in grades 6-10 and a 1-year longitudinal sample of 1,861 youth in grades 9-10. The number of weekly hours watching television, playing video games, and using a computer was determined. Violence was defined as engagement in ≥2 physical fights in the previous year and/or perpetration of ≥2-3 monthly episodes of physical bullying. Logistic regression was used to examine associations. In the cross-sectional sample, computer use was associated with violence independent of television and video game use. Video game use was associated with violence in girls but not boys. Television use was not associated with violence after controlling for the other screen time measures. In the longitudinal sample, video game use was a significant predictor of violence after controlling for the other screen time measures. Computer and video game use were the screen time measures most strongly related to violence in this large sample of youth.

  5. Correlation between Extraocular Muscle Size Measured by Computed Tomography and the Vertical Angle of Deviation in Thyroid Eye Disease

    PubMed Central

    Lee, Ju-Yeun; Bae, Kunho; Park, Kyung-Ah; Lyu, In Jeong; Oh, Sei Yeul

    2016-01-01

    The aim of this study was to investigate extraocular muscle (EOM) volume and cross-sectional area using computed tomography (CT), and to determine the relationship between EOM size and the vertical angle of deviation in thyroid eye disease (TED). Twenty-nine TED patients (58 orbits) with vertical strabismus were enrolled in the study. All patients underwent complete ophthalmic examination including prism, alternate cover, and Krimsky tests. Orbital CT scans were also performed on each patient. Digital image analysis was used to quantify superior rectus (SR) and inferior rectus (IR) muscle cross-sectional areas and volumes. Measurements were compared with those of controls. The correlation between muscle size and degree of vertical angle deviation was evaluated. The mean vertical angle of deviation was 26.2 ± 4.1 prism diopters. The TED group had a greater maximum cross-sectional area and EOM volume in the SR and IR than the control group (all p<0.001). Area and volume of the IR were correlated with the angle of deviation, but the SR alone did not show a significant correlation. The maximum cross-sectional area and volume of [Right IR + Left SR − Right SR − Left IR] was strongly correlated with the vertical angle of deviation (P<0.001). Quantitative CT of the orbit with evaluation of the area and volume of EOMs may be helpful in anticipating and monitoring vertical strabismus in TED patients. PMID:26820406

  6. Correlation between Extraocular Muscle Size Measured by Computed Tomography and the Vertical Angle of Deviation in Thyroid Eye Disease.

    PubMed

    Lee, Ju-Yeun; Bae, Kunho; Park, Kyung-Ah; Lyu, In Jeong; Oh, Sei Yeul

    2016-01-01

    The aim of this study was to investigate extraocular muscle (EOM) volume and cross-sectional area using computed tomography (CT), and to determine the relationship between EOM size and the vertical angle of deviation in thyroid eye disease (TED). Twenty-nine TED patients (58 orbits) with vertical strabismus were enrolled in the study. All patients underwent complete ophthalmic examination including prism, alternate cover, and Krimsky tests. Orbital CT scans were also performed on each patient. Digital image analysis was used to quantify superior rectus (SR) and inferior rectus (IR) muscle cross-sectional areas and volumes. Measurements were compared with those of controls. The correlation between muscle size and degree of vertical angle deviation was evaluated. The mean vertical angle of deviation was 26.2 ± 4.1 prism diopters. The TED group had a greater maximum cross-sectional area and EOM volume in the SR and IR than the control group (all p<0.001). Area and volume of the IR were correlated with the angle of deviation, but the SR alone did not show a significant correlation. The maximum cross-sectional area and volume of [Right IR + Left SR - Right SR - Left IR] was strongly correlated with the vertical angle of deviation (P<0.001). Quantitative CT of the orbit with evaluation of the area and volume of EOMs may be helpful in anticipating and monitoring vertical strabismus in TED patients.

  7. Complete velocity distribution in river cross-sections measured by acoustic instruments

    USGS Publications Warehouse

    Cheng, R.T.; Gartner, J.W.; ,

    2003-01-01

    To fully understand the hydraulic properties of natural rivers, velocity distribution in the river cross-section should be studied in detail. The measurement task is not straightforward because there is not an instrument that can measure the velocity distribution covering the entire cross-section. Particularly, the velocities in regions near the free surface and in the bottom boundary layer are difficult to measure, and yet the velocity properties in these regions play the most significant role in characterizing the hydraulic properties. To further characterize river hydraulics, two acoustic instruments, namely, an acoustic Doppler current profiler (ADCP), and a "BoogieDopp" (BD) were used on fixed platforms to measure the detailed velocity profiles across the river. Typically, 20 to 25 stations were used to represent a river cross-section. At each station, water velocity profiles were measured independently and/or concurrently by an ADCP and a BD. The measured velocity properties were compared and used in computation of river discharge. In a tow-tank evaluation of a BD, it has been confirmed that BD is capable of measuring water velocity at about 11 cm below the free-surface. Therefore, the surface velocity distribution across the river was extracted from the BD velocity measurements and used to compute the river discharge. These detailed velocity profiles and the composite velocity distribution were used to assess the validity of the classic theories of velocity distributions, conventional river discharge measurement methods, and for estimates of channel bottom roughness.

  8. Assessing self-care and social function using a computer adaptive testing version of the Pediatric Evaluation of Disability Inventory Accepted for Publication, Archives of Physical Medicine and Rehabilitation

    PubMed Central

    Coster, Wendy J.; Haley, Stephen M.; Ni, Pengsheng; Dumas, Helene M.; Fragala-Pinkham, Maria A.

    2009-01-01

    Objective To examine score agreement, validity, precision, and response burden of a prototype computer adaptive testing (CAT) version of the Self-Care and Social Function scales of the Pediatric Evaluation of Disability Inventory (PEDI) compared to the full-length version of these scales. Design Computer simulation analysis of cross-sectional and longitudinal retrospective data; cross-sectional prospective study. Settings Pediatric rehabilitation hospital, including inpatient acute rehabilitation, day school program, outpatient clinics; community-based day care, preschool, and children’s homes. Participants Four hundred sixty-nine children with disabilities and 412 children with no disabilities (analytic sample); 38 children with disabilities and 35 children without disabilities (cross-validation sample). Interventions Not applicable. Main Outcome Measures Summary scores from prototype CAT applications of each scale using 15-, 10-, and 5-item stopping rules; scores from the full-length Self-Care and Social Function scales; time (in seconds) to complete assessments and respondent ratings of burden. Results Scores from both computer simulations and field administration of the prototype CATs were highly consistent with scores from full-length administration (all r’s between .94 and .99). Using computer simulation of retrospective data, discriminant validity and sensitivity to change of the CATs closely approximated that of the full-length scales, especially when the 15- and 10-item stopping rules were applied. In the cross-validation study the time to administer both CATs was 4 minutes, compared to over 16 minutes to complete the full-length scales. Conclusions Self-care and Social Function score estimates from CAT administration are highly comparable to those obtained from full-length scale administration, with small losses in validity and precision and substantial decreases in administration time. PMID:18373991

  9. Structural Characterization of Unsaturated Phosphatidylcholines Using Traveling Wave Ion Mobility Spectrometry

    PubMed Central

    Kim, Hugh I.; Kim, Hyungjun; Pang, Eric S.; Ryu, Ernest K.; Beegle, Luther W.; Loo, Joseph A.; Goddard, William A.; Kanik, Isik

    2009-01-01

    A number of phosphatidylcholine (PC) cations spanning a mass range of 400 to 1000 Da are investigated using electrospray ionization mass spectrometry coupled with traveling wave ion mobility spectrometry (TWIMS). A high correlation between mass and mobility is demonstrated with saturated phosphatidylcholine cations in N2. A significant deviation from this mass-mobility correlation line is observed for the unsaturated PC cation. We found that the double bond in the acyl chain causes a 5% reduction in drift time. The drift time is reduced at a rate of ~1% for each additional double bond. Theoretical collision cross sections of PC cations exhibit good agreement with experimentally evaluated values. Collision cross sections are determined using the recently derived relationship between mobility and drift time in TWIMS stacked ring ion guide (SRIG) and compared to estimate collision cross-sections using empiric calibration method. Computational analysis was performed using the modified trajectory (TJ) method with nonspherical N2 molecules as the drift gas. The difference between estimated collision cross-sections and theoretical collision cross-sections of PC cations is related to the sensitivity of the PC cation collision cross-sections to the details of the ion-neutral interactions. The origin of the observed correlation and deviation between mass and mobility of PC cations is discussed in terms of the structural rigidity of these molecules using molecular dynamic simulations. PMID:19764704

  10. Perceived problems with computer gaming and Internet use are associated with poorer social relations in adolescence.

    PubMed

    Rasmussen, Mette; Meilstrup, Charlotte Riebeling; Bendtsen, Pernille; Pedersen, Trine Pagh; Nielsen, Line; Madsen, Katrine Rich; Holstein, Bjørn E

    2015-02-01

    Young people's engagement in electronic gaming and Internet communication have caused concerns about potential harmful effects on their social relations, but the literature is inconclusive. The aim of this paper was to examine whether perceived problems with computer gaming and Internet communication are associated with young people's social relations. Cross-sectional questionnaire survey in 13 schools in the city of Aarhus, Denmark, in 2009. Response rate 89%, n = 2,100 students in grades 5, 7, and 9. Independent variables were perceived problems related to computer gaming and Internet use, respectively. Outcomes were measures of structural (number of days/week with friends, number of friends) and functional (confidence in others, being bullied, bullying others) dimensions of student's social relations. Perception of problems related to computer gaming were associated with almost all aspects of poor social relations among boys. Among girls, an association was only seen for bullying. For both boys and girls, perceived problems related to Internet use were associated with bullying only. Although the study is cross-sectional, the findings suggest that computer gaming and Internet use may be harmful to young people's social relations.

  11. Single and Double Photoionization of Mg

    NASA Astrophysics Data System (ADS)

    Abdel-Naby, Shahin; Pindzola, M. S.; Colgan, J.

    2014-05-01

    Single and double photoionization cross sections for Mg are calculated using a time-dependent close-coupling method. The correlation between the two 3 s subshell electrons of Mg is obtained by relaxation of the close-coupled equations in imaginary time. An implicit method is used to propagate the close-coupled equations in real time to obtain single and double ionization cross sections for Mg. Energy and angle triple differential cross sections for double photoionization at equal energy sharing of E1 =E2 = 16 . 4 eV are compared with Elettra experiments and previous theoretical calculations. This work was supported in part by grants from NSF and US DoE. Computational work was carried out at NERSC in Oakland, California, NICS in Knoxville, Tennessee, and OLCF in Oak Ridge, Tennessee.

  12. H- photodetachment and radiative attachment for astrophysical applications

    NASA Astrophysics Data System (ADS)

    McLaughlin, B. M.; Stancil, P. C.; Sadeghpour, H. R.; Forrey, R. C.

    2017-06-01

    We combine R-matrix calculations, asymptotic relations, and comparison to available experimental data to construct an H- photodetachment cross section reliable over a large range of photon energies and take into account the series of auto-detaching shape and Feshbach resonances between 10.92 and 14.35 eV. The accuracy of the cross section is controlled by ensuring that it satisfies all known oscillator strength sum rules, including contributions from the resonances and single-photon double-electron photodetachment. From the resulting recommended cross section, spontaneous and stimulated radiative attachment rate coefficients are obtained. Photodetachment rates are also computed for the standard interstellar radiation field, in diffuse and dense interstellar clouds, for blackbody radiation, and for high redshift distortion photons in the recombination epoch. Implications are investigated for these astrophysical radiation fields and epochs.

  13. Elastic scattering of low-energy electrons by nitromethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopes, A. R.; D'A Sanchez, S.; Bettega, M. H. F.

    2011-06-15

    In this work, we present integral, differential, and momentum transfer cross sections for elastic scattering of low-energy electrons by nitromethane, for energies up to 10 eV. We calculated the cross sections using the Schwinger multichannel method with pseudopotentials, in the static-exchange and in the static-exchange plus polarization approximations. The computed integral cross sections show a {pi}* shape resonance at 0.70 eV in the static-exchange-polarization approximation, which is in reasonable agreement with experimental data. We also found a {sigma}* shape resonance at 4.8 eV in the static-exchange-polarization approximation, which has not been previously characterized by the experiment. We also discuss howmore » these resonances may play a role in the dissociation process of this molecule.« less

  14. Elastic scattering of low-energy electrons by C{sub 3}H{sub 4} isomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopes, A.R.; Bettega, M.H.F.

    2003-03-01

    We report integral, differential, and momentum-transfer cross sections for elastic scattering of low-energy electrons by the C{sub 3}H{sub 4} isomers allene, propyne, and cyclopropene, which belong to the D{sub 2d}, C{sub 3v}, and C{sub 2v} groups, respectively. We use the Schwinger multichannel method with pseudopotentials [Bettega et al., Phys. Rev. A 47, 1111 (1993)] at the static-exchange approximation to compute the cross sections for energies up to 40 eV. We compare our results with available experimental results and find very good agreement. Our results confirm the existence of the shape resonances in the cross sections of allene and propyne, andmore » the isomer effect, both reported by the experimental studies.« less

  15. Hydrologic data on channel adjustments, 1970 to 1975, on the Rio Grande downstream from Cochiti Dam, New Mexico before and after closure

    USGS Publications Warehouse

    Dewey, Jack D.; Roybal, F.E.; Funderburg, D.E.

    1979-01-01

    Cross-section channel profiles, sediment transport and hydrologic data have been observed and computed for a series of pre-dam and post-dam investigations from 1970 to 1975 at 37 cross sections established along a 59-mile study reach from Cochiti Dam to Isleta Diversion Dam, New Mexico. Cochiti Dam began impounding water in November 1973. Because the dam will trap virtually all of the sediment load originating upstream and water discharge will be controlled, it is expected that equilibrium values of channel width, depth, slope and sediment-transport capability in the existing main stem of the Rio Grande will change. Changes in cross sections with time and space and changes in size distribution of sediments are documented. (Woodard-USGS).

  16. An instrument for monitoring stump oedema and shrinkage in amputees.

    PubMed

    Fernie, G R; Holliday, P J; Lobb, R J

    1978-08-01

    A new system for measuring the cross-sectional area profiles of amputation stumps and whole limbs has been designed at the Amputee Research Centre. The instrument consists of a cylindrical tank supported on an elevator. The tank is raised to the height of the amputation stump and filled with water. A graph of the cross-sectional area profile of the amputation stump is generated by a mini-computer as the elevator descends. The cross-sectional area (A) is calculated from the expression: formula: (see text) where Hw = height of water in the tank He = height of the elevator Ac = a constant, related to the size of the measuring tank. This paper describes the instrument, which may find application in many other areas where there is a need to study shape.

  17. Regional curve development and selection of a reference reach in the non-urban, lowland sections of the Piedmont physiographic province, Pennsylvania and Maryland

    USGS Publications Warehouse

    White, Kirk E.

    2001-01-01

    Stream-restoration projects utilizing naturalstream designs frequently are based on the bankfull- channel characteristics of a stream reach that is accommodating streamflow and sediment transport without excessive erosion or deposition. The bankfull channel is identified by the use of field indicators and confirmed with tools such as regional curves. Channel dimensions were surveyed at six streamflow-measurement stations operated by the U.S. Geological Survey in the Gettysburg-Newark Lowlands Section and Piedmont Lowlands Section of the Piedmont Physiographic Province in Pennsylvania and Maryland. Regional curves were developed from regression analyses of the relation between drainage area and cross-sectional area, mean depth, width, and streamflow of the bankfull channel. Regional curves were used to confirm the identification of the bankfull channel at a reference reach. Stream dimensions and characteristics of the reference reach were measured for extrapolation into the design of a steam-restoration project on Bermudian Creek in Adams County, Pa.Dimensions for cross-sectional area, mean depth, width, and computed streamflow of the bankfull channel in all surveyed riffle cross sections in the reference reach were within the 95-percent confidence interval bounding the regression line representing bankfull channel geometry in the Lowland Sections of the Piedmont Physiographic Province. The average bankfull cross-sectional area, bankfull mean depth, and computed bankfull discharge for riffle cross sections in the reference reach ranged from 15.4 to 16.5 percent less than estimates determined from the lowland regional curves. Average bankfull channel width was about 2 percent greater than estimates. Cross-sectional area, mean depth, and computed streamflow corresponding to the bankfull stage at the reference reach were 31.4, 44.4, and 9.6 percent less, respectively, than estimates derived from the regional curves developed by Dunne and Leopold in 1978. Average bankfull channel width at the reference reach was 16.7 percent greater than the Dunne and Leopold estimate.The concepts of regional curves and reference reaches can be valuable tools to support efforts in stream restoration. Practitioners of stream restoration need to recognize them as such and realize their limitations. The small number of stations available for analysis is a major limiting factor in the strength of the results of this investigation. Subjective selection criteria may have unnecessarily eliminated streamflow-measurement stations that could have been included in the regional curves. A bankfull discharge with a recurrence interval within the 1- to 2-year range was used as a criteria for confirmation of the bankfull stage at each streamflow-measurement station. Many researchers accept this range for recurrence interval of the bankfull discharge; however, literature provides contradictory evidence. The use of channel-characteristics data from a reference reach without any monitoring data to document the stability of the reference reach over time is a topic of debate.

  18. Computer automation of ultrasonic testing. [inspection of ultrasonic welding

    NASA Technical Reports Server (NTRS)

    Yee, B. G. W.; Kerlin, E. E.; Gardner, A. H.; Dunmyer, D.; Wells, T. G.; Robinson, A. R.; Kunselman, J. S.; Walker, T. C.

    1974-01-01

    Report describes a prototype computer-automated ultrasonic system developed for the inspection of weldments. This system can be operated in three modes: manual, automatic, and computer-controlled. In the computer-controlled mode, the system will automatically acquire, process, analyze, store, and display ultrasonic inspection data in real-time. Flaw size (in cross-section), location (depth), and type (porosity-like or crack-like) can be automatically discerned and displayed. The results and pertinent parameters are recorded.

  19. Risk factors of non-specific neck pain and low back pain in computer-using office workers in China: a cross-sectional study

    PubMed Central

    Jing, Qinglei; Wei, Chen; Lu, Jie

    2017-01-01

    Objectives Several studies have found that inappropriate workstations are associated with musculoskeletal disorders. The present cross-sectional study aimed to identify the risk factors of non-specific neck pain (NP) and low back pain (LBP) among computer-using workers. Design Observational study with a cross-sectional sample. Setting This study surveyed 15 companies in Zhejiang province, China. Participants After excluding participants with missing variables, 417 office workers, including 163 men and 254 women, were analyzed. Outcome measures Demographic information was collected by self-report. The standard Northwick Park Neck Pain Questionnaire and Oswestry Low Back Pain Disability Index, along with other relevant questions, were used to assess the presence of potential occupational risk factors and the perceived levels of pain. Multinomial logistic regression analysis, adjusted for age, sex, body mass index, education, marital status and neck/low back injury, was performed to identify significant risk factors. Results Compared with low-level NP, the computer location (monitor not in front of the operator, but on the right or left side) was associated with ORs of 2.6 and 2.9 for medium- and high-level NP, respectively. For LBP, the computer location (monitor not in front) was associated with an OR of 3.2 for high-level pain, as compared with low-level pain, in females. Significant associations were also observed between the office temperature and LBP (OR 5.4 for high vs low), and between office work duration ≥5 years and NP in female office workers (OR 2.7 for medium vs low). Conclusions Not having the computer monitor located in front of the operator was found to be an important risk factor for NP and LBP in computer-using female workers. This information may not only enable the development of potential preventive strategies but may also provide new insights for designing appropriate workstations. PMID:28404613

  20. Positron elastic scattering from alkaline earth targets

    NASA Astrophysics Data System (ADS)

    Poveda, Luis A.; Assafrão, Denise; Mohallem, José R.

    2016-07-01

    A previously reported model potential approach [Poveda et al., Phys. Rev. A 87, 052702 (2013)] was extended to study low energy positron elastic scattering from beryllium and magnesium. The cross sections were computed for energies ranging from 10-5 eV up to well above the positronium formation threshold. The present results are in good agreement with previous reports, including the prediction of a p-wave resonance in the cross section for magnesium. The emergence of this shape resonance is connected to a trend observed in the evolution of the partial wave cross section in going from Be to Mg target. This trend lead us to speculate that a sharp d-wave resonance should be observed in positron elastic scattering from calcium. The positron-target binding energies are investigated in detail, both using the scattering information and by direct computation of the bound state energies using the model potentials. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2016-70120-y

  1. Intrinsic hybrid modes in a corrugated conical horn

    NASA Astrophysics Data System (ADS)

    Dendane, A.; Arnold, J. M.

    1988-08-01

    Computational requirements for the generation of intrinsic modes in a nonseparable waveguide geometry requiring a full vector field description with anistropic impedance boundaries were derived. Good agreement is shown between computed and measured radiation patterns in copolar and crosspolar configurations. This agreement establishes that the intrinsic mode correctly accounts for the local normal mode conversion which takes place along the horn in a conventional mode coupling scheme, at least for cone semiangles up to 15 deg. The advantage of the intrinsic mode formulation over the conventional mode-coupling theory is that, to construct a single intrinsic mode throughout the horn, only one local normal mode field is required at each cross section, whereas mode conversion from the HE11 mode would require all the HE1n modes to be known at each cross section. The intrinsic mode accounts also for fields which would appear as backward modes in coupled-mode theory. A complete coupled-mode theory solution requires the inversion of a large matrix at each cross section, whereas the intrinsic mode can be constructed explicitly using a simple Fourier-like integral; the perturbation solution of Dragone (1977) is difficult to make rigorous.

  2. Absolute electron-impact total ionization cross sections of chlorofluoromethanes

    NASA Astrophysics Data System (ADS)

    Martínez, Roberto; Sierra, Borja; Redondo, Carolina; Rayo, María N. Sánchez; Castaño, Fernando

    2004-12-01

    An experimental study is reported on the electron-impact total ionization cross sections (TICSs) of CCl4, CCl3F, CCl2F2, and CClF3 molecules. The kinetic energy of the colliding electrons was in the 10-85 eV range. TICSs were obtained as the sum of the partial ionization cross sections of all fragment ions, measured and identified in a linear double focusing time-of-flight mass spectrometer. The resulting TICS profiles—as a function of the electron-impact energy—have been compared both with those computed by ab initio and (semi)empirical methods and with the available experimental data. The computational methods used include the binary-encounter-Bethe (BEB) modified to include atoms with principal quantum numbers n⩾3, the Deutsch and Märk (DM) formalism, and the modified additivity rule (MAR). It is concluded that both modified BEB and DM methods fit the experimental TICS for (CF4), CClF3, CCl2F2, CCl3F, and CCl4 to a high accuracy, in contrast with the poor accord of the MAR method. A discussion on the factors influencing the discrepancies of the fittings is presented.

  3. Quantum Spectra and Dynamics

    NASA Astrophysics Data System (ADS)

    Arce, Julio Cesar

    1992-01-01

    This work focuses on time-dependent quantum theory and methods for the study of the spectra and dynamics of atomic and molecular systems. Specifically, we have addressed the following two problems: (i) Development of a time-dependent spectral method for the construction of spectra of simple quantum systems--This includes the calculation of eigenenergies, the construction of bound and continuum eigenfunctions, and the calculation of photo cross-sections. Computational applications include the quadrupole photoabsorption spectra and dissociation cross-sections of molecular hydrogen from various vibrational states in its ground electronic potential -energy curve. This method is seen to provide an advantageous alternative, both from the computational and conceptual point of view, to existing standard methods. (ii) Explicit time-dependent formulation of photoabsorption processes --Analytical solutions of the time-dependent Schrodinger equation are constructed and employed for the calculation of probability densities, momentum distributions, fluxes, transition rates, expectation values and correlation functions. These quantities are seen to establish the link between the dynamics and the calculated, or measured, spectra and cross-sections, and to clarify the dynamical nature of the excitation, transition and ejection processes. Numerical calculations on atomic and molecular hydrogen corroborate and complement the previous results, allowing the identification of different regimes during the photoabsorption process.

  4. Robust mode space approach for atomistic modeling of realistically large nanowire transistors

    NASA Astrophysics Data System (ADS)

    Huang, Jun Z.; Ilatikhameneh, Hesameddin; Povolotskyi, Michael; Klimeck, Gerhard

    2018-01-01

    Nanoelectronic transistors have reached 3D length scales in which the number of atoms is countable. Truly atomistic device representations are needed to capture the essential functionalities of the devices. Atomistic quantum transport simulations of realistically extended devices are, however, computationally very demanding. The widely used mode space (MS) approach can significantly reduce the numerical cost, but a good MS basis is usually very hard to obtain for atomistic full-band models. In this work, a robust and parallel algorithm is developed to optimize the MS basis for atomistic nanowires. This enables engineering-level, reliable tight binding non-equilibrium Green's function simulation of nanowire metal-oxide-semiconductor field-effect transistor (MOSFET) with a realistic cross section of 10 nm × 10 nm using a small computer cluster. This approach is applied to compare the performance of InGaAs and Si nanowire n-type MOSFETs (nMOSFETs) with various channel lengths and cross sections. Simulation results with full-band accuracy indicate that InGaAs nanowire nMOSFETs have no drive current advantage over their Si counterparts for cross sections up to about 10 nm × 10 nm.

  5. Viewing Welds By Computer Tomography

    NASA Technical Reports Server (NTRS)

    Pascua, Antonio G.; Roy, Jagatjit

    1990-01-01

    Computer tomography system used to inspect welds for root penetration. Source illuminates rotating welded part with fan-shaped beam of x rays or gamma rays. Detectors in circular array on opposite side of part intercept beam and convert it into electrical signals. Computer processes signals into image of cross section of weld. Image displayed on video monitor. System offers only nondestructive way to check penetration from outside when inner surfaces inaccessible.

  6. Computing the qg → qg cross section using the BCFW recursion and introduction to jet tomography in heavy ion collisions via MHV techniques

    NASA Astrophysics Data System (ADS)

    Rabemananajara, Tanjona R.; Horowitz, W. A.

    2017-09-01

    To make predictions for the particle physics processes, one has to compute the cross section of the specific process as this is what one can measure in a modern collider experiment such as the Large Hadron Collider (LHC) at CERN. Theoretically, it has been proven to be extremely difficult to compute scattering amplitudes using conventional methods of Feynman. Calculations with Feynman diagrams are realizations of a perturbative expansion and when doing calculations one has to set up all topologically different diagrams, for a given process up to a given order of coupling in the theory. This quickly makes the calculation of scattering amplitudes a hot mess. Fortunately, one can simplify calculations by considering the helicity amplitude for the Maximally Helicity Violating (MHV). This can be extended to the formalism of on-shell recursion, which is able to derive, in a much simpler way the expression of a high order scattering amplitude from lower orders.

  7. QCD corrections to ZZ production in gluon fusion at the LHC

    DOE PAGES

    Caola, Fabrizio; Melnikov, Kirill; Rontsch, Raoul; ...

    2015-11-23

    We compute the next-to-leading-order QCD corrections to the production of two Z-bosons in the annihilation of two gluons at the LHC. Being enhanced by a large gluon flux, these corrections provide a distinct and, potentially, the dominant part of the N 3LO QCD contributions to Z-pair production in proton collisions. The gg → ZZ annihilation is a loop-induced process that receives the dominant contribution from loops of five light quarks, that are included in our computation in the massless approximation. We find that QCD corrections increase the gg → ZZ production cross section by O(50%–100%) depending on the values ofmore » the renormalization and factorization scales used in the leading-order computation and the collider energy. Furthermore, the large corrections to the gg → ZZ channel increase the pp → ZZ cross section by about 6% to 8%, exceeding the estimated theoretical uncertainty of the recent next-to-next-to-leading-order QCD calculation.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caola, Fabrizio; Melnikov, Kirill; Rontsch, Raoul

    We compute the next-to-leading-order QCD corrections to the production of two Z-bosons in the annihilation of two gluons at the LHC. Being enhanced by a large gluon flux, these corrections provide a distinct and, potentially, the dominant part of the N 3LO QCD contributions to Z-pair production in proton collisions. The gg → ZZ annihilation is a loop-induced process that receives the dominant contribution from loops of five light quarks, that are included in our computation in the massless approximation. We find that QCD corrections increase the gg → ZZ production cross section by O(50%–100%) depending on the values ofmore » the renormalization and factorization scales used in the leading-order computation and the collider energy. Furthermore, the large corrections to the gg → ZZ channel increase the pp → ZZ cross section by about 6% to 8%, exceeding the estimated theoretical uncertainty of the recent next-to-next-to-leading-order QCD calculation.« less

  9. Level II scour analysis for Bridge 37, (BRNETH00740037) on Town Highway 74, crossing South Peacham Brook, Barnet, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Severance, Timothy

    1997-01-01

    Contraction scour for all modelled flows ranged from 15.8 to 22.5 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 6.7 to 11.1 ft. The worst-case abutment scour also occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in Tables 1 and 2. A cross-section of the scour computed at the bridge is presented in Figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  10. Photo-neutron reaction cross-sections for natMo in the bremsstrahlung end-point energies of 12-16 and 45-70 MeV

    NASA Astrophysics Data System (ADS)

    Naik, H.; Kim, G. N.; Kapote Noy, R.; Schwengner, R.; Kim, K.; Zaman, M.; Shin, S. G.; Gey, Y.; Massarczyk, R.; John, R.; Junghans, A.; Wagner, A.; Cho, M.-H.

    2016-07-01

    The natMo( γ, xn)90, 91, 99Mo reaction cross-sections were experimentally determined for the bremsstrahlung end-point energies of 12, 14, 16, 45, 50, 55, 60 and 70MeV by activation and off-line γ -ray spectrometric technique and using the 20MeV electron linac (ELBE) at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany, and the 100MeV electron linac at the Pohang Accelerator Laboratory (PAL), Pohang, Korea. The natMo( γ, xn)88, 89, 90, 91, 99Mo reaction cross-sections as a function of photon energy were also calculated using the computer code TALYS 1.6. The flux-weighted average cross-sections were obtained from the literature data and the calculated values of TALYS based on mono-energetic photons and are found to be in general agreement with the present results. The flux-weighted average experimental and theoretical cross-sections for the natMo( γ, xn)88, 89, 90, 91, 99Mo reactions increase with the bremsstrahlung end-point energy, which indicates the role of excitation energy. After a certain energy, the individual natMo( γ, xn) reaction cross-sections decrease with the increase of bremsstrahlung energy due to opening of other reactions, which indicates sharing of energy in different reaction channels. The 100Mo( γ, n) reaction cross-section is important for the production of 99Mo , which is a probable alternative to the 98Mo(n, γ) and 235U(n, f ) reactions.

  11. User's manual for the Graphical Constituent Loading Analysis System (GCLAS)

    USGS Publications Warehouse

    Koltun, G.F.; Eberle, Michael; Gray, J.R.; Glysson, G.D.

    2006-01-01

    This manual describes the Graphical Constituent Loading Analysis System (GCLAS), an interactive cross-platform program for computing the mass (load) and average concentration of a constituent that is transported in stream water over a period of time. GCLAS computes loads as a function of an equal-interval streamflow time series and an equal- or unequal-interval time series of constituent concentrations. The constituent-concentration time series may be composed of measured concentrations or a combination of measured and estimated concentrations. GCLAS is not intended for use in situations where concentration data (or an appropriate surrogate) are collected infrequently or where an appreciable amount of the concentration values are censored. It is assumed that the constituent-concentration time series used by GCLAS adequately represents the true time-varying concentration. Commonly, measured constituent concentrations are collected at a frequency that is less than ideal (from a load-computation standpoint), so estimated concentrations must be inserted in the time series to better approximate the expected chemograph. GCLAS provides tools to facilitate estimation and entry of instantaneous concentrations for that purpose. Water-quality samples collected for load computation frequently are collected in a single vertical or at single point in a stream cross section. Several factors, some of which may vary as a function of time and (or) streamflow, can affect whether the sample concentrations are representative of the mean concentration in the cross section. GCLAS provides tools to aid the analyst in assessing whether concentrations in samples collected in a single vertical or at single point in a stream cross section exhibit systematic bias with respect to the mean concentrations. In cases where bias is evident, the analyst can construct coefficient relations in GCLAS to reduce or eliminate the observed bias. GCLAS can export load and concentration data in formats suitable for entry into the U.S. Geological Survey's National Water Information System. GCLAS can also import and export data in formats that are compatible with various commonly used spreadsheet and statistics programs.

  12. Fluid Dynamic and Stability Analysis of a Thin Liquid Sheet

    NASA Technical Reports Server (NTRS)

    McMaster, Matthew S.

    1992-01-01

    Interest in thin sheet flows has recently been renewed due to their potential application in space radiators. Theoretical and experimental studies of the fluid dynamics and stability of thin liquid sheet flows have been carried out in this thesis. A computer program was developed to determine the cross-sectional shape of the edge cylinder given the cross-sectional area of the edge cylinder. A stability analysis was performed on a non-planer liquid sheet. A study was conducted to determine the effects of air resistance on the sheet.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anastasiou, Charalampos; Duhr, Claude; Dulat, Falko

    In this study, we compute the gluon fusion Higgs boson cross-section at N 3LO through the second term in the threshold expansion. This calculation constitutes a major milestone towards the full N 3LO cross section. Our result has the best formal accuracy in the threshold expansion currently available, and includes contributions from collinear regions besides subleading corrections from soft and hard regions, as well as certain logarithmically enhanced contributions for general kinematics. We use our results to perform a critical appraisal of the validity of the threshold approximation at N 3LO in perturbative QCD.

  14. Inband radar cross section of phased arrays with parallel feeds

    NASA Astrophysics Data System (ADS)

    Flokas, Vassilios

    1994-06-01

    Approximate formulas for the inband radar cross section of arrays with parallel feeds are presented. To obtain the formulas, multiple reflections are neglected, and devices of the same type are assumed to have identical electrical performance. The approximate results were compared to the results obtained using a scattering matrix formulation. Both methods were in agreement in predicting RCS lobe positions, levels, and behavior with scanning. The advantages of the approximate method are its computational efficiency and its flexibility in handling an arbitrary number of coupler levels.

  15. Kuang's Semi-Classical Formalism for Calculating Electron Capture Cross Sections: A Space- Physics Application

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.

    2014-01-01

    Accurate estimates of electroncapture cross sections at energies relevant to the modeling of the transport, acceleration, and interaction of energetic neutral atoms (ENA) in space (approximately few MeV per nucleon) and especially for multi-electron ions must rely on detailed, but computationally expensive, quantum-mechanical description of the collision process. Kuang's semi-classical approach is an elegant and efficient way to arrive at these estimates. Motivated by ENA modeling efforts for apace applications, we shall briefly present this approach along with sample applications and report on current progress.

  16. Doppler Temperature Coefficient Calculations Using Adjoint-Weighted Tallies and Continuous Energy Cross Sections in MCNP6

    NASA Astrophysics Data System (ADS)

    Gonzales, Matthew Alejandro

    The calculation of the thermal neutron Doppler temperature reactivity feedback co-efficient, a key parameter in the design and safe operation of advanced reactors, using first order perturbation theory in continuous energy Monte Carlo codes is challenging as the continuous energy adjoint flux is not readily available. Traditional approaches of obtaining the adjoint flux attempt to invert the random walk process as well as require data corresponding to all temperatures and their respective temperature derivatives within the system in order to accurately calculate the Doppler temperature feedback. A new method has been developed using adjoint-weighted tallies and On-The-Fly (OTF) generated continuous energy cross sections within the Monte Carlo N-Particle (MCNP6) transport code. The adjoint-weighted tallies are generated during the continuous energy k-eigenvalue Monte Carlo calculation. The weighting is based upon the iterated fission probability interpretation of the adjoint flux, which is the steady state population in a critical nuclear reactor caused by a neutron introduced at that point in phase space. The adjoint-weighted tallies are produced in a forward calculation and do not require an inversion of the random walk. The OTF cross section database uses a high order functional expansion between points on a user-defined energy-temperature mesh in which the coefficients with respect to a polynomial fitting in temperature are stored. The coefficients of the fits are generated before run- time and called upon during the simulation to produce cross sections at any given energy and temperature. The polynomial form of the OTF cross sections allows the possibility of obtaining temperature derivatives of the cross sections on-the-fly. The use of Monte Carlo sampling of adjoint-weighted tallies and the capability of computing derivatives of continuous energy cross sections with respect to temperature are used to calculate the Doppler temperature coefficient in a research version of MCNP6. Temperature feedback results from the cross sections themselves, changes in the probability density functions, as well as changes in the density of the materials. The focus of this work is specific to the Doppler temperature feedback which result from Doppler broadening of cross sections as well as changes in the probability density function within the scattering kernel. This method is compared against published results using Mosteller's numerical benchmark to show accurate evaluations of the Doppler temperature coefficient, fuel assembly calculations, and a benchmark solution based on the heavy gas model for free-gas elastic scattering. An infinite medium benchmark for neutron free gas elastic scattering for large scattering ratios and constant absorption cross section has been developed using the heavy gas model. An exact closed form solution for the neutron energy spectrum is obtained in terms of the confluent hypergeometric function and compared against spectra for the free gas scattering model in MCNP6. Results show a quick increase in convergence of the analytic energy spectrum to the MCNP6 code with increasing target size, showing absolute relative differences of less than 5% for neutrons scattering with carbon. The analytic solution has been generalized to accommodate piecewise constant in energy absorption cross section to produce temperature feedback. Results reinforce the constraints in which heavy gas theory may be applied resulting in a significant target size to accommodate increasing cross section structure. The energy dependent piecewise constant cross section heavy gas model was used to produce a benchmark calculation of the Doppler temperature coefficient to show accurate calculations when using the adjoint-weighted method. Results show the Doppler temperature coefficient using adjoint weighting and cross section derivatives accurately obtains the correct solution within statistics as well as reduce computer runtimes by a factor of 50.

  17. Slope-Area Computation Program Graphical User Interface 1.0—A Preprocessing and Postprocessing Tool for Estimating Peak Flood Discharge Using the Slope-Area Method

    USGS Publications Warehouse

    Bradley, D. Nathan

    2012-01-01

    The slope-area method is a technique for estimating the peak discharge of a flood after the water has receded (Dalrymple and Benson, 1967). This type of discharge estimate is called an “indirect measurement” because it relies on evidence left behind by the flood, such as high-water marks (HWMs) on trees or buildings. These indicators of flood stage are combined with measurements of the cross-sectional geometry of the stream, estimates of channel roughness, and a mathematical model that balances the total energy of the flow between cross sections. This is in contrast to a “direct” measurement of discharge during the flood where cross-sectional area is measured and a current meter or acoustic equipment is used to measure the water velocity. When a direct discharge measurement cannot be made at a gage during high flows because of logistics or safety reasons, an indirect measurement of a peak discharge is useful for defining the high-flow section of the stage-discharge relation (rating curve) at the stream gage, resulting in more accurate computation of high flows. The Slope-Area Computation program (SAC; Fulford, 1994) is an implementation of the slope-area method that computes a peak-discharge estimate from inputs of water-surface slope (from surveyed HWMs), channel geometry, and estimated channel roughness. SAC is a command line program written in Fortran that reads input data from a formatted text file and prints results to another formatted text file. Preparing the input file can be time-consuming and prone to errors. This document describes the SAC graphical user interface (GUI), a crossplatform “wrapper” application that prepares the SAC input file, executes the program, and helps the user interpret the output. The SAC GUI is an update and enhancement of the slope-area method (SAM; Hortness, 2004; Berenbrock, 1996), an earlier spreadsheet tool used to aid field personnel in the completion of a slope-area measurement. The SAC GUI reads survey data, develops a plan-view plot, water-surface profile, cross-section plots, and develops the SAC input file. The SAC GUI also develops HEC-2 files that can be imported into HEC–RAS.

  18. Aerodynamic improvement of the assembly through which gas conduits are taken into a smoke stack by simulating gas flow on a computer

    NASA Astrophysics Data System (ADS)

    Prokhorov, V. B.; Fomenko, M. V.; Grigor'ev, I. V.

    2012-06-01

    Results from computer simulation of gas flow motion for gas conduits taken on one and two sides into the gas-removal shaft of a smoke stack with a constant cross section carried out using the SolidWorks and FlowVision application software packages are presented.

  19. K-Shell Photoabsorption and Photoionisation of Trace Elements I. Isoelectronic Sequences With Electron Number 3< or = N < or = 11

    NASA Technical Reports Server (NTRS)

    Palmeri, P.; Quinet, P.; Mendoza, C.; Bautista, M. A.; Witthoeft, M. C.; Kallman, T. R.

    2016-01-01

    Context. With the recent launching of the Hitomi X-ray space observatory, K lines and edges of chemical elements with low cosmic abundances, namely F, Na, P, Cl, K, Sc, Ti, V, Cr, Mn, Co, Cu and Zn, can be resolved and used to determine important properties of supernova remnants, galaxy clusters and accreting black holes and neutron stars.Aims. The second stage of the present ongoing project involves the computation of the accurate photoabsorption and photoionisation cross sections required to interpret the X-ray spectra of such trace elements.Methods. Depending on target complexity and computer tractability, ground-state cross sections are computed either with the close-coupling Breit-Pauli R-matrix method or with the autostructure atomic structure code in the isolated-resonance approximation. The intermediate-coupling scheme is used whenever possible. In order to determine a realistic K-edge behaviour for each species, both radiative and Auger dampings are taken into account, the latter being included in the R-matrix formalism by means of an optical potential.Results. Photoabsorption and total and partial photoionisation cross sections are reported for isoelectronic sequences with electron numbers 3< or = N< or = 11. The Na sequence (N=11) is used to estimate the contributions from configurations with a 2s hole (i.e. [2s]) and those containing 3d orbitals, which will be crucial when considering sequences with N 11.Conclusions. It is found that the [2s/u] configurations must be included in the target representations of species with N> 11 as they contribute significantly to the monotonic background of the cross section between the L and K edges. Configurations with 3d orbitals are important in rendering an accurate L edge, but they can be practically neglected in the K-edge region.

  20. Cross sections for electron collision with difluoroacetylene

    NASA Astrophysics Data System (ADS)

    Gupta, Dhanoj; Choi, Heechol; Kwon, Deuk-Chul; Yoon, Jung-Sik; Antony, Bobby; Song, Mi-Young

    2017-04-01

    We report a detailed calculation of total elastic, differential elastic, momentum transfer and electronic excitation for electron impact on difluoroacetylene (C2F2) molecules using the R-matrix method at low energies. After testing many target models, the final results are reported for the target model that gave the best target properties and predicted the lowest value of the shape resonance. The shape resonance is detected at 5.86 eV and 6.49 eV with the close-coupling and static exchange models due to 2Πg (2B2g, 2B3g) states. We observed that the effect of polarization becomes prominent at low energies below 4 eV, decreasing the magnitude of the elastic cross section systematically as it increases for C2F2. We have also computed elastic cross sections for C2H2, C2F4 and C2H4 with a similar model and compared with the experimental data for these molecules along with C2F2. General agreement is found in terms of the shape and nature of the cross section. Such a comparison shows the reliability of the present method for obtaining the cross section for C2F2. The calculation of elastic scattering cross section is extended to higher energies up to 5 keV using the spherical complex optical potential method. The two methods are found to be consistent, merging at around 12 eV for the elastic scattering cross section. Finally we report the total ionization cross section using the binary encounter Bethe method for C2F2. The perfluorination effect in the shape and magnitude of the elastic, momentum transfer and ionization cross sections when compared with C2H2 showed a similar trend to that in the C2H4-C2F4 and C6H6-C6F6 systems. The cross-section data reported in this article could be an important input for the development of a C2F2 plasma model for selective etching of Si/SiO2 in the semiconductor industry.

  1. Electron-Atom Ionization Calculations using Propagating Exterior Complex Scaling

    NASA Astrophysics Data System (ADS)

    Bartlett, Philip

    2007-10-01

    The exterior complex scaling method (Science 286 (1999) 2474), pioneered by Rescigno, McCurdy and coworkers, provided highly accurate ab initio solutions for electron-hydrogen collisions by directly solving the time-independent Schr"odinger equation in coordinate space. An extension of this method, propagating exterior complex scaling (PECS), was developed by Bartlett and Stelbovics (J. Phys. B 37 (2004) L69, J. Phys. B 39 (2006) R379) and has been demonstrated to provide computationally efficient and accurate calculations of ionization and scattering cross sections over a large range of energies below, above and near the ionization threshold. An overview of the PECS method for three-body collisions and the computational advantages of its propagation and iterative coupling techniques will be presented along with results of: (1) near-threshold ionization of electron-hydrogen collisions and the Wannier threshold laws, (2) scattering cross section resonances below the ionization threshold, and (3) total and differential cross sections for electron collisions with excited targets and hydrogenic ions from low through to high energies. Recently, the PECS method has been extended to solve four-body collisions using time-independent methods in coordinate space and has initially been applied to the s-wave model for electron-helium collisions. A description of the extensions made to the PECS method to facilitate these significantly more computationally demanding calculations will be given, and results will be presented for elastic, single-excitation, double-excitation, single-ionization and double-ionization collisions.

  2. Investigation of the effects of miniscrew-assisted rapid palatal expansion on airflow in the upper airway of an adult patient with obstructive sleep apnea syndrome using computational fluid-structure interaction analysis

    PubMed Central

    Hur, Jae-Sik; Kim, Hyoung-Ho; Choi, Jin-Young; Suh, Sang-Ho

    2017-01-01

    Objective The objective of this study was to investigate the effects of miniscrew-assisted rapid palatal expansion (MARPE) on changes in airflow in the upper airway (UA) of an adult patient with obstructive sleep apnea syndrome (OSAS) using computational fluid-structure interaction analysis. Methods Three-dimensional UA models fabricated from cone beam computed tomography images obtained before (T0) and after (T1) MARPE in an adult patient with OSAS were used for computational fluid dynamics with fluid-structure interaction analysis. Seven and nine cross-sectional planes (interplane distance of 10 mm) in the nasal cavity (NC) and pharynx, respectively, were set along UA. Changes in the cross-sectional area and changes in airflow velocity and pressure, node displacement, and total resistance at maximum inspiration (MI), rest, and maximum expiration (ME) were investigated at each plane after MARPE. Results The cross-sectional areas at most planes in NC and the upper half of the pharynx were significantly increased at T1. Moreover, airflow velocity decreased in the anterior NC at MI and ME and in the nasopharynx and oropharynx at MI. The decrease in velocity was greater in NC than in the pharynx. The airflow pressure in the anterior NC and entire pharynx exhibited a decrease at T1. The amount of node displacement in NC and the pharynx was insignificant at both T0 and T1. Absolute values for the total resistance at MI, rest, and ME were lower at T1 than at T0. Conclusions MARPE improves airflow and decreases resistance in UA; therefore, it may be an effective treatment modality for adult patients with moderate OSAS. PMID:29090123

  3. Computed Tomographic Morphometry of the Internal Anatomy of Mandibular Second Primary Molars.

    PubMed

    Kurthukoti, Ameet J; Sharma, Pranjal; Swamy, Dinesh Francis; Shashidara, R; Swamy, Elaine Barretto

    2015-01-01

    Need for the study: The most important procedure for a successful endodontic treatment is the cleaning and shaping of the canal system. Understanding the internal anatomy of teeth provides valuable information to the clinician that would help him achieve higher clinical success during endodontic therapy. To evaluate by computed tomography-the internal anatomy of mandibular second primary molars with respect to the number of canals, cross-sectional shape of canals, cross-sectional area of canals and the root dentin thickness. A total of 31 mandibular second primary molars were subjected to computed-tomographic evaluation in the transverse plane, after mounting them in a prefabricated template. The images, thus, obtained were analyzed using De-winter Bio-wizard® software. All the samples demonstrated two canals in the mesial root, while majority of the samples (65.48%) demonstrated two canals in the distal root. The cross-sectional images of the mesial canals demonstrated a round shape, while the distal canals demonstrated an irregular shape. The root dentin thickness was highly reduced on the distal aspect of mesial and mesial aspect of distal canals. The mandibular second primary molars demonstrated wide variation and complexities in their internal anatomy. A thorough understanding of the complexity of the root canal system is essential for understanding the principles and problems of shaping and cleaning, determining the apical limits and dimensions of canal preparations, and for performing successful endodontic procedures. How to cite this article: Kurthukoti AJ, Sharma P, Swamy DF, Shashidara R, Swamy EB. Computed Tomographic Morphometry of the Internal Anatomy of Mandibular Second Primary Molars. Int J Clin Pediatr Dent 2015;8(3):202-207.

  4. Computed Tomographic Morphometry of the Internal Anatomy of Mandibular Second Primary Molars

    PubMed Central

    Sharma, Pranjal; Swamy, Dinesh Francis; Shashidara, R; Swamy, Elaine Barretto

    2015-01-01

    ABSTRACT Need for the study: The most important procedure for a successful endodontic treatment is the cleaning and shaping of the canal system. Understanding the internal anatomy of teeth provides valuable information to the clinician that would help him achieve higher clinical success during endodontic therapy. Aims: To evaluate by computed tomography—the internal anatomy of mandibular second primary molars with respect to the number of canals, cross-sectional shape of canals, cross-sectional area of canals and the root dentin thickness. Materials and methods: A total of 31 mandibular second primary molars were subjected to computed-tomographic evaluation in the transverse plane, after mounting them in a prefabricated template. The images, thus, obtained were analyzed using De-winter Bio-wizard® software. Results: All the samples demonstrated two canals in the mesial root, while majority of the samples (65.48%) demonstrated two canals in the distal root. The cross-sectional images of the mesial canals demonstrated a round shape, while the distal canals demonstrated an irregular shape. The root dentin thickness was highly reduced on the distal aspect of mesial and mesial aspect of distal canals. Conclusion: The mandibular second primary molars demonstrated wide variation and complexities in their internal anatomy. A thorough understanding of the complexity of the root canal system is essential for understanding the principles and problems of shaping and cleaning, determining the apical limits and dimensions of canal preparations, and for performing successful endodontic procedures. How to cite this article: Kurthukoti AJ, Sharma P, Swamy DF, Shashidara R, Swamy EB. Computed Tomographic Morphometry of the Internal Anatomy of Mandibular Second Primary Molars. Int J Clin Pediatr Dent 2015;8(3):202-207. PMID:26628855

  5. Measuring laser reflection cross-sections of small unmanned aerial vehicles for laser detection, ranging and tracking

    NASA Astrophysics Data System (ADS)

    Laurenzis, Martin; Bacher, Emmanuel; Christnacher, Frank

    2017-05-01

    An increasing number of incidents are reported where small unmanned aerial vehicles (UAV) are involved flying at low altitude. Thus UAVs are becoming more and more a serious threat in civilian and military scenarios leading to serious danger to safety or privacy issues. In this context, the detection and tracking of small UAV flying at low altitude in urban environment or near background structures is a challenge for state of the art detection technologies. In this paper, we focus on detection, tracking and identification by laser sensing technologies that are Laser Gated Viewing and scanning LiDAR. The laser reflection cross-sections (LRCS) has direct impact on the probability to detection and capability for range measurement. Here, we present methods to determine the laser reflection cross-sections by experimental and computational approaches.

  6. Searches for New Physics Using High Mass Dimuons at the CDF II Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karagoz Unel, Muge

    2004-12-01

    This work describes the measurement of inclusive jets cross section in the D0 experiment. This cross section is computed as a function of jet transverse momentum, in several rapidity intervals. This quantity is sensitive to the proton structure and is crucial for the determination of parton distribution functions (PDF), essentially for the gluon at high proton momentum fraction. The measurement presented here gives the first values obtained for Tevatron Run II for the cross section in several rapidity intervals, for an integrated luminosity of 143 pb -1. The results are in agreement, within the uncertainties, with theoretical Standard Model predictions,more » showing no evidence for new physics. This work points out the aspects of the detector which need better understanding to reach Run I precision and to constrain the PDFs.« less

  7. Digital database of channel cross-section surveys, Mount St. Helens, Washington

    USGS Publications Warehouse

    Mosbrucker, Adam R.; Spicer, Kurt R.; Major, Jon J.; Saunders, Dennis R.; Christianson, Tami S.; Kingsbury, Cole G.

    2015-08-06

    Stream-channel cross-section survey data are a fundamental component to studies of fluvial geomorphology. Such data provide important parameters required by many open-channel flow models, sediment-transport equations, sediment-budget computations, and flood-hazard assessments. At Mount St. Helens, Washington, the long-term response of channels to the May 18, 1980, eruption, which dramatically altered the hydrogeomorphic regime of several drainages, is documented by an exceptional time series of repeat stream-channel cross-section surveys. More than 300 cross sections, most established shortly following the eruption, represent more than 100 kilometers of surveyed topography. Although selected cross sections have been published previously in print form, we present a comprehensive digital database that includes geospatial and tabular data. Furthermore, survey data are referenced to a common geographic projection and to common datums. Database design, maintenance, and data dissemination are accomplished through a geographic information system (GIS) platform, which integrates survey data acquired with theodolite, total station, and global navigation satellite system (GNSS) instrumentation. Users can interactively perform advanced queries and geospatial time-series analysis. An accuracy assessment provides users the ability to quantify uncertainty within these data. At the time of publication, this project is ongoing. Regular database updates are expected; users are advised to confirm they are using the latest version.

  8. A Computational Model to Simulate Groundwater Seepage Risk in Support of Geotechnical Investigations of Levee and Dam Projects

    DTIC Science & Technology

    2013-03-01

    Allen 1974, 1978; Bridge and Leeder 1979; Mackey and Bridge 1992) that computes synthetic stratigraphy for a floodplain cross section. The model...typical of that used to record and communicate geologic information for engineering applications. The computed stratigraphy differentiates between...belt dimensions measured for two well-studied river systems: (A) the Linge River within the Rhine-Meuse Delta , Netherlands, and (B) the Lower

  9. Brown Adipose Tissue and Its Relationship to Bone Structure in Pediatric Patients

    PubMed Central

    Ponrartana, Skorn; Aggabao, Patricia C.; Hu, Houchun H.; Aldrovandi, Grace M.; Wren, Tishya A. L.

    2012-01-01

    Context: Emerging evidence suggests a possible link between brown adipose tissue (BAT) and bone metabolism. Objective: The objective of this study was to examine the relationships between BAT and bone cross-sectional dimensions in children and adolescents. Design: This was a cross-sectional study. Setting: The study was conducted at a pediatric referral center. Patients: Patients included 40 children and teenagers (21 males and 19 females) successfully treated for pediatric malignancies. Interventions: There were no interventions. Main Outcome Measures: The volume of BAT was determined by fluorodeoxyglucose-positron emission tomography/computed tomography. Measures of the cross-sectional area and cortical bone area and measures of thigh musculature and sc fat were determined at the midshaft of the femur. Results: Regardless of sex, there were significant correlations seen between BAT volume and the cross-sectional dimensions of the bone (r values between 0.68 and 0.77; all P ≤ 0 .001). Multiple regression analyses indicated that the volume of BAT predicted femoral cross-sectional area and cortical bone area, even after accounting for height, weight, and gender. The addition of muscle as an independent variable increased the predictive power of the model but significantly decreased the contribution of BAT. Conclusions: The volume of BAT is positively associated with the amount of bone and the cross-sectional size of the femur in children and adolescents. This relation between BAT and bone structure could, at least in part, be mediated by muscle. PMID:22593587

  10. An R-matrix study of electron induced processes in BF3 plasma

    NASA Astrophysics Data System (ADS)

    Gupta, Dhanoj; Chakrabarti, Kalyan; Yoon, Jung-Sik; Song, Mi-Young

    2017-12-01

    An R-matrix formalism is used to study electron collision with the BF3 molecule using Quantemol-N, a computational system for electron molecule collisions which uses the molecular R-matrix method. Several target models are tested for BF3 in its equilibrium geometry, and the results are presented for the best model. Scattering calculations are then performed to yield resonance parameters, elastic, differential, excitation, and momentum transfer cross sections. The results for all the cross sections are compared with the experimental and theoretical data, and a good agreement is obtained. The resonances have been detected at 3.79 and 13.58 eV, with the ionization threshold being 15.7 eV. We have also estimated the absolute dissociative electron attachment (DEA) cross section for the F- ion production from BF3, which is a maiden attempt. The peak of the DEA is at around 13.5 eV, which is well supported by the resonance detected at 13.58 eV. The cross sections reported here find a variety of applications in the plasma technology.

  11. Resonant vibrational-excitation cross sections and rate constants for low-energy electron scattering by molecular oxygen

    NASA Astrophysics Data System (ADS)

    Laporta, V.; Celiberto, R.; Tennyson, J.

    2013-04-01

    Resonant vibrational-excitation cross sections and rate constants for electron scattering by molecular oxygen are presented. Transitions between all 42 vibrational levels of O_2({X}\\, ^3\\Sigma_g^{-}) are considered. Molecular rotations are parametrized by the rotational quantum number J, which is considered in the range 1-151. The lowest four resonant states of O_2^- , 2Πg, 2Πu, ^4\\Sigma_u^- and ^2\\Sigma_u^- are taken into account. The calculations are performed using the fixed-nuclei R-matrix approach to determine the resonance positions and widths, and the boomerang model to characterize the nuclei motion. Two energy regions below and above 4 eV are investigated: the first one is characterized by sharp structures in the cross section and the second by a broad resonance peaked at 10 eV. The computed cross sections are compared with theoretical and experimental results available in the literature for both energy regions, and are made available for use by modelers. The effect of including rotational motion is found to be non-negligible.

  12. MsSpec-1.0: A multiple scattering package for electron spectroscopies in material science

    NASA Astrophysics Data System (ADS)

    Sébilleau, Didier; Natoli, Calogero; Gavaza, George M.; Zhao, Haifeng; Da Pieve, Fabiana; Hatada, Keisuke

    2011-12-01

    We present a multiple scattering package to calculate the cross-section of various spectroscopies namely photoelectron diffraction (PED), Auger electron diffraction (AED), X-ray absorption (XAS), low-energy electron diffraction (LEED) and Auger photoelectron coincidence spectroscopy (APECS). This package is composed of three main codes, computing respectively the cluster, the potential and the cross-section. In the latter case, in order to cover a range of energies as wide as possible, three different algorithms are provided to perform the multiple scattering calculation: full matrix inversion, series expansion or correlation expansion of the multiple scattering matrix. Numerous other small Fortran codes or bash/csh shell scripts are also provided to perform specific tasks. The cross-section code is built by the user from a library of subroutines using a makefile. Program summaryProgram title: MsSpec-1.0 Catalogue identifier: AEJT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJT_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 504 438 No. of bytes in distributed program, including test data, etc.: 14 448 180 Distribution format: tar.gz Programming language: Fortran 77 Computer: Any Operating system: Linux, MacOs RAM: Bytes Classification: 7.2 External routines: Lapack ( http://www.netlib.org/lapack/) Nature of problem: Calculation of the cross-section of various spectroscopies. Solution method: Multiple scattering. Running time: The test runs provided only take a few seconds to run.

  13. 3D Printing of Preoperative Simulation Models of a Splenic Artery Aneurysm: Precision and Accuracy.

    PubMed

    Takao, Hidemasa; Amemiya, Shiori; Shibata, Eisuke; Ohtomo, Kuni

    2017-05-01

    Three-dimensional (3D) printing is attracting increasing attention in the medical field. This study aimed to apply 3D printing to the production of hollow splenic artery aneurysm models for use in the simulation of endovascular treatment, and to evaluate the precision and accuracy of the simulation model. From 3D computed tomography (CT) angiography data of a splenic artery aneurysm, 10 hollow models reproducing the vascular lumen were created using a fused deposition modeling-type desktop 3D printer. After filling with water, each model was scanned using T2-weighted magnetic resonance imaging for the evaluation of the lumen. All images were coregistered, binarized, and then combined to create an overlap map. The cross-sectional area of the splenic artery aneurysm and its standard deviation (SD) were calculated perpendicular to the x- and y-axes. Most voxels overlapped among the models. The cross-sectional areas were similar among the models, with SDs <0.05 cm 2 . The mean cross-sectional areas of the splenic artery aneurysm were slightly smaller than those calculated from the original mask images. The maximum mean cross-sectional areas calculated perpendicular to the x- and y-axes were 3.90 cm 2 (SD, 0.02) and 4.33 cm 2 (SD, 0.02), whereas those calculated from the original mask images were 4.14 cm 2 and 4.66 cm 2 , respectively. The mean cross-sectional areas of the afferent artery were, however, almost the same as those calculated from the original mask images. The results suggest that 3D simulation modeling of a visceral artery aneurysm using a fused deposition modeling-type desktop 3D printer and computed tomography angiography data is highly precise and accurate. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  14. The dynamics of bedrock channel adjustment: Modeling the influence of sediment supply, weathering, and lithology on channel cross-sectional and longitudinal shape

    NASA Astrophysics Data System (ADS)

    Wobus, C.; Tucker, G.; Anderson, R.; Kean, J.; Small, E.; Hancock, G.

    2007-12-01

    The cross-sectional form of a natural river channel controls the capacity of the system to carry water off a landscape, to convey sediment derived from hillslopes, and to erode its bed and banks. Numerical models that describe the response of a landscape to changes in climate or tectonics therefore require formulations that can accommodate changes in channel cross-sectional geometry through time. We have developed a 2D numerical model that computes the formation of a channel in a cohesive, detachment-limited substrate subject to steady, unidirectional flow. Boundary shear stress is calculated using a simple approximation of the flow field in which log-velocity profiles are assumed to apply along vectors that are perpendicular to the local boundary surface. The resulting model predictions for the velocity structure, peak boundary shear stress, and equilibrium channel shape compare well with the predictions of a more sophisticated but more computationally demanding ray-isovel model. For example, the mean velocities computed by the two models are consistent to within ~3%, and the predicted peak shear stress is consistent to within ~7%. The efficiency of our model makes it suitable for calculations of long-term morphologic change both in single cross-sections and in series of cross-sections arrayed downstream. For a uniform substrate, the model predicts a strong tendency toward a fixed width-to-depth ratio, regardless of gradient or discharge. The model predicts power-law relationships between width and discharge with an exponent near 2/5, and between width and gradient with an exponent near -1/5. Recent enhancements to the model include the addition of sediment, which increases the width-to-depth ratio at steady state by favoring erosion of the channel walls relative to the channel bed (the "cover effect"). Inclusion of a probability density function of discharges with a simple parameterization of weathering along channel banks leads to the formation of model strath terraces. Downstream changes in substrate erodibility or tectonic uplift rate lead to step-function changes in channel width, consistent with empirical observations. Finally, explicit inclusion of bedload transport allows channel width, gradient, and the pattern of sediment flux to evolve dynamically, allowing us to explore the response of bedrock channels to both spatial patterns of rock uplift, and temporal variations in sediment input.

  15. Universal computer test stand (recommended computer test requirements). [for space shuttle computer evaluation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Techniques are considered which would be used to characterize areospace computers with the space shuttle application as end usage. The system level digital problems which have been encountered and documented are surveyed. From the large cross section of tests, an optimum set is recommended that has a high probability of discovering documented system level digital problems within laboratory environments. Defined is a baseline hardware, software system which is required as a laboratory tool to test aerospace computers. Hardware and software baselines and additions necessary to interface the UTE to aerospace computers for test purposes are outlined.

  16. Level II scour analysis for Bridge 4 (CRAFTH00040004) on Town Highway 4, crossing Whitney Brook, Craftsbury, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Hammond, Robert E.

    1996-01-01

    Total scour at a highway crossing is comprised of three components: 1) long-term degradation; 2) contraction scour (due to accelerated flow caused by reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the computed scour results follow. Contraction scour for all modelled flows ranged from 0.7 to 1.7 feet. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 10.7 to 15.3 feet. The worst-case abutment scour also occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  17. Broadband Terahertz Computed Tomography Using a 5k-pixel Real-time THz Camera

    NASA Astrophysics Data System (ADS)

    Trichopoulos, Georgios C.; Sertel, Kubilay

    2015-07-01

    We present a novel THz computed tomography system that enables fast 3-dimensional imaging and spectroscopy in the 0.6-1.2 THz band. The system is based on a new real-time broadband THz camera that enables rapid acquisition of multiple cross-sectional images required in computed tomography. Tomographic reconstruction is achieved using digital images from the densely-packed large-format (80×64) focal plane array sensor located behind a hyper-hemispherical silicon lens. Each pixel of the sensor array consists of an 85 μm × 92 μm lithographically fabricated wideband dual-slot antenna, monolithically integrated with an ultra-fast diode tuned to operate in the 0.6-1.2 THz regime. Concurrently, optimum impedance matching was implemented for maximum pixel sensitivity, enabling 5 frames-per-second image acquisition speed. As such, the THz computed tomography system generates diffraction-limited resolution cross-section images as well as the three-dimensional models of various opaque and partially transparent objects. As an example, an over-the-counter vitamin supplement pill is imaged and its material composition is reconstructed. The new THz camera enables, for the first time, a practical application of THz computed tomography for non-destructive evaluation and biomedical imaging.

  18. Ab Initio Computation of Dynamical Properties: Pressure Broadening

    NASA Astrophysics Data System (ADS)

    Wiesenfeld, Laurent; Drouin, Brian

    2014-06-01

    Rotational spectroscopy of polar molecules is the main observational tool in many areas of astrophysics, for gases of low densities (n ˜ 102 - 108 cm-3). Spectral line shapes in astrophysical media are largely dominated by turbulence-induced Doppler effects and natural line broadening are negligible. However line broadening remains an important tool for denser gases, like planetary high atmospheres. Understanding the excitation schemes of polar molecules requires the knowledge of excitation transfer rate due to collisional excitation, between the polar molecule and the ambient gas, usually H2. Transport properties in ionized media also require a precise knowledge of momentum transfer rates by elastic collisions. In order to assess the theoretically computed cross section and energy/momentum transfer rates, direct absolute experiments are scarce. The best way is to measure not individual scattering events but rather the global effect of the buffer gas, thanks to the pressure broadening cross sections, whose magnitude can be measured without any scaling parameters. At low temperatures, both elastic and inelastic scattering amplitudes are tested. At higher temperature, depending on the interaction strength, only inelastic scattering cross section are shown to play a significant role 1 ,2. Thanks to the advances of computer capabilities, it has become practical to compute spectral line parameters fromab initio quantum chemistry. In particular, the theory of rotational line broadening is readily incorporated into scattering quantum dynamical theory, like close-coupling schemes. The only approximations used in the computation are the isolated collision/isolated line approximations. We compute the non-binding interaction potential with high precision quantum chemistry and fit the resulting ab initio points onto a suitable functional. We have recently computed several such systems, for molecules in H2 buffer gas: H2O,3 H2CO,4 HCO+ .5 Detailed computations taking into account the ortho or para state of H2 were performed, at temperatures ranging from 10 K to 100K, typically. Reliable results are found, that compare favorably to experiments. In particular, the water-molecular hydrogen system has been thoroughly computed and successfully experimentally tested 6. New projects consider other simple molecules as well as heavier systems, relevant for cometary comae and planetary high atmospheres. as part of the GNU EPrints system , and is freely redistributable under the GPL .

  19. Overweight and television and computer habits in Swedish school-age children and adolescents: a cross-sectional study.

    PubMed

    Garmy, Pernilla; Clausson, Eva K; Nyberg, Per; Jakobsson, Ulf

    2014-06-01

    The aim of this cross-sectional study was to investigate the prevalence of overweight and obesity in children and adolescents (6-16 years), and relationships between being overweight and sleep, experiencing of fatigue, enjoyment of school, and time spent in watching television and in sitting at the computer. Trained school nurses measured the weight and height of 2891 children aged 6, 7, 10, 14, and 16, and distributed a questionnaire to them regarding television and computer habits, sleep, and enjoyment of school. Overweight, obesity included, was present in 16.1% of the study population. Relationships between lifestyle factors and overweight were studied using multivariate logistic regression analysis. Having a bedroom television and spending more than 2 h a day watching television were found to be associated with overweight (OR 1.26 and 1.55 respectively). No association was found between overweight and time spent at the computer, short sleep duration, enjoyment of school, tiredness at school, or difficulties in sleeping and waking up. It is recommended that the school health service discuss with pupils their media habits so as to promote their maintaining a healthy lifestyle. © 2013 Wiley Publishing Asia Pty Ltd.

  20. Level II scour analysis for Bridge 27 (STJOTH00080027) on Town Highway 8, crossing the Sleepers River, St. Johnsbury, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.

    1997-01-01

    Contraction scour computed for all modelled flows was zero ft. Abutment scour ranged from 6.2 to 9.7 ft. The worst-case abutment scour occurred at the 100-year discharge at the right abutment and at the 500-year discharge at the left abutment. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  1. Simulation of the Velocity and Temperature Distribution of Inhalation Thermal Injury in a Human Upper Airway Model by Application of Computational Fluid Dynamics.

    PubMed

    Chang, Yang; Zhao, Xiao-zhuo; Wang, Cheng; Ning, Fang-gang; Zhang, Guo-an

    2015-01-01

    Inhalation injury is an important cause of death after thermal burns. This study was designed to simulate the velocity and temperature distribution of inhalation thermal injury in the upper airway in humans using computational fluid dynamics. Cervical computed tomography images of three Chinese adults were imported to Mimics software to produce three-dimensional models. After grids were established and boundary conditions were defined, the simulation time was set at 1 minute and the gas temperature was set to 80 to 320°C using ANSYS software (ANSYS, Canonsburg, PA) to simulate the velocity and temperature distribution of inhalation thermal injury. Cross-sections were cut at 2-mm intervals, and maximum airway temperature and velocity were recorded for each cross-section. The maximum velocity peaked in the lower part of the nasal cavity and then decreased with air flow. The velocities in the epiglottis and glottis were higher than those in the surrounding areas. Further, the maximum airway temperature decreased from the nasal cavity to the trachea. Computational fluid dynamics technology can be used to simulate the velocity and temperature distribution of inhaled heated air.

  2. Overweight and television and computer habits in Swedish school-age children and adolescents: A cross-sectional study

    PubMed Central

    Garmy, Pernilla; Clausson, Eva K; Nyberg, Per; Jakobsson, Ulf

    2014-01-01

    The aim of this cross-sectional study was to investigate the prevalence of overweight and obesity in children and adolescents (6–16 years), and relationships between being overweight and sleep, experiencing of fatigue, enjoyment of school, and time spent in watching television and in sitting at the computer. Trained school nurses measured the weight and height of 2891 children aged 6, 7, 10, 14, and 16, and distributed a questionnaire to them regarding television and computer habits, sleep, and enjoyment of school. Overweight, obesity included, was present in 16.1% of the study population. Relationships between lifestyle factors and overweight were studied using multivariate logistic regression analysis. Having a bedroom television and spending more than 2 h a day watching television were found to be associated with overweight (OR 1.26 and 1.55 respectively). No association was found between overweight and time spent at the computer, short sleep duration, enjoyment of school, tiredness at school, or difficulties in sleeping and waking up. It is recommended that the school health service discuss with pupils their media habits so as to promote their maintaining a healthy lifestyle. PMID:23796145

  3. XPATCH: a high-frequency electromagnetic scattering prediction code using shooting and bouncing rays

    NASA Astrophysics Data System (ADS)

    Hazlett, Michael; Andersh, Dennis J.; Lee, Shung W.; Ling, Hao; Yu, C. L.

    1995-06-01

    This paper describes an electromagnetic computer prediction code for generating radar cross section (RCS), time domain signatures, and synthetic aperture radar (SAR) images of realistic 3-D vehicles. The vehicle, typically an airplane or a ground vehicle, is represented by a computer-aided design (CAD) file with triangular facets, curved surfaces, or solid geometries. The computer code, XPATCH, based on the shooting and bouncing ray technique, is used to calculate the polarimetric radar return from the vehicles represented by these different CAD files. XPATCH computes the first-bounce physical optics plus the physical theory of diffraction contributions and the multi-bounce ray contributions for complex vehicles with materials. It has been found that the multi-bounce contributions are crucial for many aspect angles of all classes of vehicles. Without the multi-bounce calculations, the radar return is typically 10 to 15 dB too low. Examples of predicted range profiles, SAR imagery, and radar cross sections (RCS) for several different geometries are compared with measured data to demonstrate the quality of the predictions. The comparisons are from the UHF through the Ka frequency ranges. Recent enhancements to XPATCH for MMW applications and target Doppler predictions are also presented.

  4. Factors influencing health professions students' use of computers for data analysis at three Ugandan public medical schools: a cross-sectional survey.

    PubMed

    Munabi, Ian G; Buwembo, William; Bajunirwe, Francis; Kitara, David Lagoro; Joseph, Ruberwa; Peter, Kawungezi; Obua, Celestino; Quinn, John; Mwaka, Erisa S

    2015-02-25

    Effective utilization of computers and their applications in medical education and research is of paramount importance to students. The objective of this study was to determine the association between owning a computer and use of computers for research data analysis and the other factors influencing health professions students' computer use for data analysis. We conducted a cross sectional study among undergraduate health professions students at three public universities in Uganda using a self-administered questionnaire. The questionnaire was composed of questions on participant demographics, students' participation in research, computer ownership, and use of computers for data analysis. Descriptive and inferential statistics (uni-variable and multi- level logistic regression analysis) were used to analyse data. The level of significance was set at 0.05. Six hundred (600) of 668 questionnaires were completed and returned (response rate 89.8%). A majority of respondents were male (68.8%) and 75.3% reported owning computers. Overall, 63.7% of respondents reported that they had ever done computer based data analysis. The following factors were significant predictors of having ever done computer based data analysis: ownership of a computer (adj. OR 1.80, p = 0.02), recently completed course in statistics (Adj. OR 1.48, p =0.04), and participation in research (Adj. OR 2.64, p <0.01). Owning a computer, participation in research and undertaking courses in research methods influence undergraduate students' use of computers for research data analysis. Students are increasingly participating in research, and thus need to have competencies for the successful conduct of research. Medical training institutions should encourage both curricular and extra-curricular efforts to enhance research capacity in line with the modern theories of adult learning.

  5. Level II scour analysis for Bridge 17 (NEWHTH00200017) on Town Highway 20, crossing Little Otter Creek, New Haven, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Burns, Ronda L.

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure NEWHTH00200017 on Town Highway 20 crossing Little Otter Creek, New Haven, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D. The site is in the Champlain section of the St. Lawrence Valley physiographic province in west-central Vermont. The 10.8-mi2 drainage area is in a predominantly rural and wetland basin. In the vicinity of the study site, the surface cover is shrubland on the downstream right overbank. The surface cover of the downstream left overbank, the upstream right overbank and the upstream left overbank is wetland and pasture. In the study area, Little Otter Creek has a meandering channel with a slope of approximately 0.0007 ft/ft, an average channel top width of 97 ft and an average bank height of 5 ft. The channel bed material ranges from silt and clay to cobble. Medium sized silt and clay is the channel material upstream of the approach cross-section and downstream of the exit cross-section. The median grain size (D50) of the silt and clay channel bed material is 1.52 mm (0.005 ft), which was used for contraction and abutment scour computations. From the approach cross-section, under the bridge, and to the exit cross-section, stone fill is the channel bed material. The median grain size (D50) of the stone fill channel bed material is 95.7 mm (0.314 ft). The stone fill median grain size was used solely for armoring computations. The geomorphic assessment at the time of the Level I and Level II site visit on June 11, 1996, indicated that the reach was stable.The Town Highway 20 crossing of Little Otter Creek is a 32-ft-long, two-lane bridge consisting of a 28-ft steel-beam span (Vermont Agency of Transportation, written communication, December 15, 1995). The opening length of the structure parallel to the bridge face is 24.9 ft. The bridge is supported by almost vertical, concrete abutments. The channel is skewed approximately 15 degrees to the opening while the opening-skew-toroadway is zero degrees. The scour countermeasures at the site consisted of type-1 stone fill (less than 12 inches diameter) along the left and right abutments, as well as along the upstream left and right banks. Type-2 stone fill (less than 36 inches diameter) was present along the downstream right bank. Additional details describing conditions at the site are included in the Level II Summary and appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and Davis, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge was determined and analyzed as another potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 9.7 to 13.8 ft. The worst-case contraction scour occurred at the 500-year discharge. Left abutment scour ranged from 6.9 to 7.9 ft. Right abutment scour ranged from 10.5 to 11.8 ft. The worst-case left and right abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and Davis, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  6. A computer program for fitting smooth surfaces to an aircraft configuration and other three dimensional geometries

    NASA Technical Reports Server (NTRS)

    Craidon, C. B.

    1975-01-01

    A computer program that uses a three-dimensional geometric technique for fitting a smooth surface to the component parts of an aircraft configuration is presented. The resulting surface equations are useful in performing various kinds of calculations in which a three-dimensional mathematical description is necessary. Programs options may be used to compute information for three-view and orthographic projections of the configuration as well as cross-section plots at any orientation through the configuration. The aircraft geometry input section of the program may be easily replaced with a surface point description in a different form so that the program could be of use for any three-dimensional surface equations.

  7. A probabilistic methodology for radar cross section prediction in conceptual aircraft design

    NASA Astrophysics Data System (ADS)

    Hines, Nathan Robert

    System effectiveness has increasingly become the prime metric for the evaluation of military aircraft. As such, it is the decision maker's/designer's goal to maximize system effectiveness. Industry and government research documents indicate that all future military aircraft will incorporate signature reduction as an attempt to improve system effectiveness and reduce the cost of attrition. Today's operating environments demand low observable aircraft which are able to reliably take out valuable, time critical targets. Thus it is desirable to be able to design vehicles that are balanced for increased effectiveness. Previous studies have shown that shaping of the vehicle is one of the most important contributors to radar cross section, a measure of radar signature, and must be considered from the very beginning of the design process. Radar cross section estimation should be incorporated into conceptual design to develop more capable systems. This research strives to meet these needs by developing a conceptual design tool that predicts radar cross section for parametric geometries. This tool predicts the absolute radar cross section of the vehicle as well as the impact of geometry changes, allowing for the simultaneous tradeoff of the aerodynamic, performance, and cost characteristics of the vehicle with the radar cross section. Furthermore, this tool can be linked to a campaign theater analysis code to demonstrate the changes in system and system of system effectiveness due to changes in aircraft geometry. A general methodology was developed and implemented and sample computer codes applied to prototype the proposed process. Studies utilizing this radar cross section tool were subsequently performed to demonstrate the capabilities of this method and show the impact that various inputs have on the outputs of these models. The F/A-18 aircraft configuration was chosen as a case study vehicle to perform a design space exercise and to investigate the relative impact of shaping parameters on radar cross section. Finally, two unique low observable configurations were analyzed to examine the impact of shaping for stealthiness.

  8. National Bureau Of Standards Data Base Of Photon Absorption Cross Sections From 10 eV To 100 deV

    NASA Astrophysics Data System (ADS)

    Saloman, E. B.; Hubbell, J. H.; Berger, M. J.

    1988-07-01

    The National Bureau of Standards (NBS) has maintained a data base of experimental and theoretical photon absorption cross sections (attenuation coefficients) since 1950. Currently the measured data include more than 20,000 data points abstracted from more than 500 independen.t literature sources including both published and unpublished reports and private communications. We have recently completed a systematic comparison over the energy range 0.1-100 keV of the measured cross sections in the NBS data base with cross sections obtained using the photoionization cross sections calculated by Scofield and the semi-empirical set of recommended photoionization cross section values of Henke et al. Cross sections for coherent and incoherent scattering were added to that of photoionization to obtain a value which could be compared to the experimental results. At energies above 1 keV, agreement between theory and experiment is rather good except for some special situations which prevent the accurate description of the measured samples as free atoms. These include molecular effects near absorption edges and solid state and crystal effects (such as for silicon). Below 1 keV the comparison indicates the range of atomic numbers and energies where the theory becomes inapplicable. The results obtained using Henke et al. agree well with the measured data when such data exist, but there are many elements for which data are not available over a wide range of energies. Comparisons with other theoretical data are in progress. This study also enabled us to show that a suggested renormalization procedure to the Scofield calculation (from dartree-Slater to Hartree-Fock) worsened the agreement between the theory and experiment. We have recently developed a PC-based computer program to generate theoretical cross section values based on Scofield's calculation. We have also completed a related program to enable a user to extract selected data from the measured data base.

  9. A cross-sectional study of the effects of load carriage on running characteristics and tibial mechanical stress: implications for stress fracture injuries in women

    DTIC Science & Technology

    2017-03-23

    performance computing resources made available by the US Department of Defense High Performance Computing Modernization Program at the Air Force...1Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United...States Army Medical Research and Materiel Command, Fort Detrick, Maryland, USA Full list of author information is available at the end of the article

  10. Comparison of energy expenditure in adolescents when playing new generation and sedentary computer games: cross sectional study

    PubMed Central

    2007-01-01

    Objective To compare the energy expenditure of adolescents when playing sedentary and new generation active computer games. Design Cross sectional comparison of four computer games. Setting Research laboratories. Participants Six boys and five girls aged 13-15 years. Procedure Participants were fitted with a monitoring device validated to predict energy expenditure. They played four computer games for 15 minutes each. One of the games was sedentary (XBOX 360) and the other three were active (Wii Sports). Main outcome measure Predicted energy expenditure, compared using repeated measures analysis of variance. Results Mean (standard deviation) predicted energy expenditure when playing Wii Sports bowling (190.6 (22.2) kJ/kg/min), tennis (202.5 (31.5) kJ/kg/min), and boxing (198.1 (33.9) kJ/kg/min) was significantly greater than when playing sedentary games (125.5 (13.7) kJ/kg/min) (P<0.001). Predicted energy expenditure was at least 65.1 (95% confidence interval 47.3 to 82.9) kJ/kg/min greater when playing active rather than sedentary games. Conclusions Playing new generation active computer games uses significantly more energy than playing sedentary computer games but not as much energy as playing the sport itself. The energy used when playing active Wii Sports games was not of high enough intensity to contribute towards the recommended daily amount of exercise in children. PMID:18156227

  11. Comparison of energy expenditure in adolescents when playing new generation and sedentary computer games: cross sectional study.

    PubMed

    Graves, Lee; Stratton, Gareth; Ridgers, N D; Cable, N T

    2007-12-22

    To compare the energy expenditure of adolescents when playing sedentary and new generation active computer games. Cross sectional comparison of four computer games. Research laboratories. Six boys and five girls aged 13-15 years. Procedure Participants were fitted with a monitoring device validated to predict energy expenditure. They played four computer games for 15 minutes each. One of the games was sedentary (XBOX 360) and the other three were active (Wii Sports). Predicted energy expenditure, compared using repeated measures analysis of variance. Mean (standard deviation) predicted energy expenditure when playing Wii Sports bowling (190.6 (22.2) kJ/kg/min), tennis (202.5 (31.5) kJ/kg/min), and boxing (198.1 (33.9) kJ/kg/min) was significantly greater than when playing sedentary games (125.5 (13.7) kJ/kg/min) (P<0.001). Predicted energy expenditure was at least 65.1 (95% confidence interval 47.3 to 82.9) kJ/kg/min greater when playing active rather than sedentary games. Playing new generation active computer games uses significantly more energy than playing sedentary computer games but not as much energy as playing the sport itself. The energy used when playing active Wii Sports games was not of high enough intensity to contribute towards the recommended daily amount of exercise in children.

  12. Extension-torsion coupling behavior of advanced composite tilt-rotor blades

    NASA Technical Reports Server (NTRS)

    Kosmatka, J. B.

    1989-01-01

    An analytic model was developed to study the extension-bend-twist coupling behavior of an advanced composite helicopter or tilt-rotor blade. The outer surface of the blade is defined by rotating an arbitrary cross section about an initial twist axis. The cross section can be nonhomogeneous and composed of generally anisotropic materials. The model is developed based upon a three dimensional elasticity approach that is recast as a coupled two-dimensional boundary value problem defined in a curvilinear coordinate system. Displacement solutions are written in terms of known functions that represent extension, bending, and twisting and unknown functions for local cross section deformations. The unknown local deformation functions are determined by applying the principle of minimum potential energy to the discretized two-dimensional cross section. This is an application of the Ritz method, where the trial function family is the displacement field associated with a finite element (8-node isoparametric quadrilaterals) representation of the section. A computer program was written where the cross section is discretized into 8-node quadrilateral subregions. Initially the program was verified using previously published results (both three-dimensional elasticity and technical beam theory) for pretwisted isotropic bars with an elliptical cross section. In addition, solid and thin-wall multi-cell NACA-0012 airfoil sections were analyzed to illustrate the pronounced effects that pretwist, initial twist axis location, and spar location has on coupled behavior. Currently, a series of advanced composite airfoils are being modeled in order to assess how the use of laminated composite materials interacts with pretwist to alter the coupling behavior of the blade. These studies will investigate the use of different ply angle orientations and the use of symmetric versus unsymmetric laminates.

  13. Monostatic Radar Cross Section Estimation of Missile Shaped Object Using Physical Optics Method

    NASA Astrophysics Data System (ADS)

    Sasi Bhushana Rao, G.; Nambari, Swathi; Kota, Srikanth; Ranga Rao, K. S.

    2017-08-01

    Stealth Technology manages many signatures for a target in which most radar systems use radar cross section (RCS) for discriminating targets and classifying them with regard to Stealth. During a war target’s RCS has to be very small to make target invisible to enemy radar. In this study, Radar Cross Section of perfectly conducting objects like cylinder, truncated cone (frustum) and circular flat plate is estimated with respect to parameters like size, frequency and aspect angle. Due to the difficulties in exactly predicting the RCS, approximate methods become the alternative. Majority of approximate methods are valid in optical region and where optical region has its own strengths and weaknesses. Therefore, the analysis given in this study is purely based on far field monostatic RCS measurements in the optical region. Computation is done using Physical Optics (PO) method for determining RCS of simple models. In this study not only the RCS of simple models but also missile shaped and rocket shaped models obtained from the cascaded objects with backscatter has been computed using Matlab simulation. Rectangular plots are obtained for RCS in dbsm versus aspect angle for simple and missile shaped objects using Matlab simulation. Treatment of RCS, in this study is based on Narrow Band.

  14. PDEPTH—A computer program for the geophysical interpretation of magnetic and gravity profiles through Fourier filtering, source-depth analysis, and forward modeling

    USGS Publications Warehouse

    Phillips, Jeffrey D.

    2018-01-10

    PDEPTH is an interactive, graphical computer program used to construct interpreted geological source models for observed potential-field geophysical profile data. The current version of PDEPTH has been adapted to the Windows platform from an earlier DOS-based version. The input total-field magnetic anomaly and vertical gravity anomaly profiles can be filtered to produce derivative products such as reduced-to-pole magnetic profiles, pseudogravity profiles, pseudomagnetic profiles, and upward-or-downward-continued profiles. A variety of source-location methods can be applied to the original and filtered profiles to estimate (and display on a cross section) the locations and physical properties of contacts, sheet edges, horizontal line sources, point sources, and interface surfaces. Two-and-a-half-dimensional source bodies having polygonal cross sections can be constructed using a mouse and keyboard. These bodies can then be adjusted until the calculated gravity and magnetic fields of the source bodies are close to the observed profiles. Auxiliary information such as the topographic surface, bathymetric surface, seismic basement, and geologic contact locations can be displayed on the cross section using optional input files. Test data files, used to demonstrate the source location methods in the report, and several utility programs are included.

  15. Transactions of the Conference of Army Mathematicians (23rd), held at U. S. Army Mobility Research and Development Laboratory, Langley Research Center, Hampton, Virginia, 11-13 May 1977

    DTIC Science & Technology

    1978-02-01

    Trans. ASME, Vol. 81, 1959, pp. 259- 264 . 112 0 C> 0 LJj 0 CD 0 D ~) . [") r "-’ . 1’ n -- 1 . 2 0 1 . lj 0 1. :iO 1 • 13 0 ? . (JO p;a...n ntout Compute determinant elements forb n, Comoute and write backsc~tter cross-section\\ (Figure 2.2-1) 264 J. BACKSCATTER CROSS-SECTION FOR A...Overrelaxation Iteration Methods," Report WAPD -TM-1038, Bettis Atomic Power Laboratory, Westinghouse Electric Corp., Pittsburgh, Pennsylvania. 10

  16. Scattering of Non-Relativistic Charged Particles by Electromagnetic Radiation

    NASA Astrophysics Data System (ADS)

    Apostol, M.

    2017-11-01

    The cross-section is computed for non-relativistic charged particles (like electrons and ions) scattered by electromagnetic radiation confined to a finite region (like the focal region of optical laser beams). The cross-section exhibits maxima at scattering angles given by the energy and momentum conservation in multi-photon absorption or emission processes. For convenience, a potential scattering is included and a comparison is made with the well-known Kroll-Watson scattering formula. The scattering process addressed in this paper is distinct from the process dealt with in previous studies, where the scattering is immersed in the radiation field.

  17. A radiologic correlation with the basic functional neuroanatomy of the brain.

    PubMed

    Bilicka, Z; Liska, M; Bluska, P; Bilicky, J

    2014-01-01

    Primary cortical areas for motor, sensory and sensitive functions are localized in certain areas of the brain cortex. In clinical practice, cross sectional imaging (computer tomography and magnetic resonance) is wildy used for diagnostics purpose, treatment planning and follow up of the patients. Accurate orientation in brain structures is necessary for the evaluation of radiological images. There are numerable landmark signs, which can be used for precise identification of important brain structures. In this review article, the mostly used anatomical landmarks are described and shown on the cross sectional images (magnetic resonance imaging) (Fig. 14, Ref. 25).

  18. Analytic integration of real-virtual counterterms in NNLO jet cross sections II

    NASA Astrophysics Data System (ADS)

    Bolzoni, Paolo; Moch, Sven-Olaf; Somogyi, Gábor; Trócsányi, Zoltán

    2009-08-01

    We present analytic expressions of all integrals required to complete the explicit evaluation of the real-virtual integrated counterterms needed to define a recently proposed subtraction scheme for jet cross sections at next-to-next-to-leading order in QCD. We use the Mellin-Barnes representation of these integrals in 4 - 2epsilon dimensions to obtain the coefficients of their Laurent expansions around epsilon = 0. These coefficients are given by linear combinations of multidimensional Mellin-Barnes integrals. We compute the coefficients of such expansions in epsilon both numerically and analytically by complex integration over the Mellin-Barnes contours.

  19. HZEFRG1: An energy-dependent semiempirical nuclear fragmentation model

    NASA Technical Reports Server (NTRS)

    Townsend, Lawrence W.; Wilson, John W.; Tripathi, Ram K.; Norbury, John W.; Badavi, Francis F.; Khan, Ferdous

    1993-01-01

    Methods for calculating cross sections for the breakup of high-energy heavy ions by the combined nuclear and coulomb fields of the interacting nuclei are presented. The nuclear breakup contributions are estimated with an abrasion-ablation model of heavy ion fragmentation that includes an energy-dependent, mean free path. The electromagnetic dissociation contributions arising from the interacting coulomb fields are estimated by using Weizsacker-Williams theory extended to include electric dipole and electric quadrupole contributions. The complete computer code that implements the model is included as an appendix. Extensive comparisons of cross section predictions with available experimental data are made.

  20. Higgs boson gluon-fusion production beyond threshold in N 3LO QCD

    DOE PAGES

    Anastasiou, Charalampos; Duhr, Claude; Dulat, Falko; ...

    2015-03-18

    In this study, we compute the gluon fusion Higgs boson cross-section at N 3LO through the second term in the threshold expansion. This calculation constitutes a major milestone towards the full N 3LO cross section. Our result has the best formal accuracy in the threshold expansion currently available, and includes contributions from collinear regions besides subleading corrections from soft and hard regions, as well as certain logarithmically enhanced contributions for general kinematics. We use our results to perform a critical appraisal of the validity of the threshold approximation at N 3LO in perturbative QCD.

  1. Photoionization Rate of Atomic Oxygen

    NASA Astrophysics Data System (ADS)

    Meier, R. R.; McLaughlin, B. M.; Warren, H. P.; Bishop, J.

    2006-05-01

    Accurate knowledge of the photoionization rate of atomic oxygen is important for the study and understanding of the ionospheres and emission processes of terrestrial, planetary, and cometary atmospheres. Past calculations of the photoionization rate have been carried out at various spectral resolutions, but none were at sufficiently high resolution to accommodate accidental resonances between solar emission lines and highly structured auto-ionization features in the photoionization cross section. A new version of the NRLEUV solar spectral irradiance model (at solar minimum) and a new model of the O photoionization cross section enable calculations at very high spectral resolution. We find unattenuated photoionization rates computed at 0.001 nm resolution are larger than those at moderate resolution (0.1 nm) by amounts approaching 20%. Allowing for attenuation in the terrestrial atmosphere, we find differences in photoionization rates computed at high and moderate resolution to vary with altitude, especially below 200 km where deviations of plus or minus 20% occur between the two cases.

  2. A new technique to determine the correlation between the QT interval and heart-rate for control and SIDS babies

    NASA Technical Reports Server (NTRS)

    Sadeh, D.; Shannon, D. C.; Abboud, S.; Akselrod, S.; Cohen, R. J.

    1987-01-01

    The ability of the autonomic nervous system to alter the QT interval in response to heart rate changes is essential to cardiovascular control. An accurate way to determine the relation between QT intervals and their corresponding RR intervals is described. A computer algorithm measures the RR intervals using digital filtering and cross-correlating the QRS sections of consecutive waveforms. The QT intervals is calculated by choosing a section of, the ECG that includes the T wave and cross-correlating it with all the consecutive T waves. At least 4000 pairs of QT-RR intervals are computed for each subject and a best fit correlation function determines the relations between the QT and RR intervals. This technique enables to establish a precise correlation between RR and QT in order to distinguish between control and SIDS babies.

  3. aMC fast: automation of fast NLO computations for PDF fits

    NASA Astrophysics Data System (ADS)

    Bertone, Valerio; Frederix, Rikkert; Frixione, Stefano; Rojo, Juan; Sutton, Mark

    2014-08-01

    We present the interface between M adG raph5_ aMC@NLO, a self-contained program that calculates cross sections up to next-to-leading order accuracy in an automated manner, and APPL grid, a code that parametrises such cross sections in the form of look-up tables which can be used for the fast computations needed in the context of PDF fits. The main characteristic of this interface, which we dub aMC fast, is its being fully automated as well, which removes the need to extract manually the process-specific information for additional physics processes, as is the case with other matrix-element calculators, and renders it straightforward to include any new process in the PDF fits. We demonstrate this by studying several cases which are easily measured at the LHC, have a good constraining power on PDFs, and some of which were previously unavailable in the form of a fast interface.

  4. The H2 + + He proton transfer reaction: quantum reactive differential cross sections to be linked with future velocity mapping experiments

    NASA Astrophysics Data System (ADS)

    Hernández Vera, Mario; Wester, Roland; Gianturco, Francesco Antonio

    2018-01-01

    We construct the velocity map images of the proton transfer reaction between helium and molecular hydrogen ion {{{H}}}2+. We perform simulations of imaging experiments at one representative total collision energy taking into account the inherent aberrations of the velocity mapping in order to explore the feasibility of direct comparisons between theory and future experiments planned in our laboratory. The asymptotic angular distributions of the fragments in a 3D velocity space is determined from the quantum state-to-state differential reactive cross sections and reaction probabilities which are computed by using the time-independent coupled channel hyperspherical coordinate method. The calculations employ an earlier ab initio potential energy surface computed at the FCI/cc-pVQZ level of theory. The present simulations indicate that the planned experiments would be selective enough to differentiate between product distributions resulting from different initial internal states of the reactants.

  5. Using Cross-Sectional Imaging to Convey Organ Relationships: An Integrated Learning Environment for Students of Gross Anatomy

    PubMed Central

    Forman, Bruce H.; Eccles, Randy; Piggins, Judith; Raila, Wayne; Estey, Greg; Barnett, G. Octo

    1990-01-01

    We have developed a visually oriented, computer-controlled learning environment designed for use by students of gross anatomy. The goals of this module are to reinforce the concepts of organ relationships and topography by using computed axial tomographic (CAT) images accessed from a videodisc integrated with color graphics and to introduce students to cross-sectional radiographic anatomy. We chose to build the program around CAT scan images because they not only provide excellent structural detail but also offer an anatomic orientation (transverse) that complements that used in the dissection laboratory (basically a layer-by-layer, anterior-to-posterior, or coronal approach). Our system, built using a Microsoft Windows-386 based authoring environment which we designed and implemented, integrates text, video images, and graphics into a single screen display. The program allows both user browsing of information, facilitated by hypertext links, and didactic sessions including mini-quizzes for self-assessment.

  6. One-dimensional nonlinear theory for rectangular helix traveling-wave tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Chengfang, E-mail: fchffchf@126.com; Zhao, Bo; Yang, Yudong

    A 1-D nonlinear theory of a rectangular helix traveling-wave tube (TWT) interacting with a ribbon beam is presented in this paper. The RF field is modeled by a transmission line equivalent circuit, the ribbon beam is divided into a sequence of thin rectangular electron discs with the same cross section as the beam, and the charges are assumed to be uniformly distributed over these discs. Then a method of computing the space-charge field by solving Green's Function in the Cartesian Coordinate-system is fully described. Nonlinear partial differential equations for field amplitudes and Lorentz force equations for particles are solved numericallymore » using the fourth-order Runge-Kutta technique. The tube's gain, output power, and efficiency of the above TWT are computed. The results show that increasing the cross section of the ribbon beam will improve a rectangular helix TWT's efficiency and reduce the saturated length.« less

  7. Effect of molecular anisotropy on beam scattering measurements

    NASA Technical Reports Server (NTRS)

    Goldflam, R.; Green, S.; Kouri, D. J.; Monchick, L.

    1978-01-01

    Within the energy sudden approximation, the total integral and total differential scattering cross sections are given by the angle average of scattering cross sections computed at fixed rotor orientations. Using this formalism the effect of molecular anisotropy on scattering of He by HCl and by CO is examined. Comparisons with accurate close coupling calculations indicate that this approximation is quite reliable, even at very low collision energies, for both of these systems. Comparisons are also made with predictions based on the spherical average of the interaction. For HCl the anisotropy is rather weak and its main effect is a slight quenching of the oscillations in the differential cross sections relative to predictions of the spherical averaged potential. For CO the anisotropy is much stronger, so that the oscillatory pattern is strongly quenched and somewhat shifted. It appears that the sudden approximation provides a simple yet accurate method for describing the effect of molecular anisotropy on scattering measurements.

  8. H{sub 2} dissociation due to collisions with He

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohlinger, L.; Forrey, R. C.; Lee, Teck-Ghee

    2007-10-15

    Cross sections for dissociation of H{sub 2} due to collision with He are calculated for highly excited rovibrational states using the quantum-mechanical coupled-states approximation. An L{sup 2} Sturmian basis set with multiple length scales is used to provide a discrete representation of the H{sub 2} continuum which includes orbiting resonances and a nonresonant background. Cross sections are given over a range of translational energies for both resonant and nonresonant dissociation together with the most important bound-state transitions for many different initial states. The results demonstrate that it is possible to compute converged quantum-mechanical cross sections using basis sets of modestmore » size. It is found that collision-induced dissociation competes with inelastic scattering as a depopulation mechanism for the highly excited states. The relevance of the present calculations to astrophysical models is discussed.« less

  9. Vortex breakdown in closed containers with polygonal cross sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naumov, I. V., E-mail: naumov@itp.nsc.ru; Dvoynishnikov, S. V.; Kabardin, I. K.

    2015-12-15

    The vortex breakdown bubble in the confined flow generated by a rotating lid in closed containers with polygonal cross sections was analysed both experimentally and numerically for the height/radius aspect ratio equal to 2. The stagnation point locations of the breakdown bubble emergence and the corresponding Reynolds number were determined experimentally and in addition computed numerically by STAR-CCM+ CFD software for square, pentagonal, hexagonal, and octagonal cross section configurations. The flow pattern and the velocity were observed and measured by combining the seeding particle visualization and the temporal accuracy of laser Doppler anemometry. The vortex breakdown size and position onmore » the container axis were determined for Reynolds numbers, ranging from 1450 to 2400. The obtained results were compared with the flow structure in the closed container of cubical and cylindrical configurations. It is shown that the measured evolution of steady vortex breakdown is in close agreement with the numerical results.« less

  10. Erratum: Measurement of σ(e+e-→ψ(3770)→hadrons) at Ec.m.=3773MeV [Phys. Rev. Lett. 96, 092002 (2006)

    NASA Astrophysics Data System (ADS)

    Besson, D.; Pedlar, T. K.; Cronin-Hennessy, D.; Gao, K. Y.; Gong, D. T.; Hietala, J.; Kubota, Y.; Klein, T.; Lang, B. W.; Poling, R.; Scott, A. W.; Smith, A.; Dobbs, S.; Metreveli, Z.; Seth, K. K.; Tomaradze, A.; Zweber, P.; Ernst, J.; Arms, K.; Severini, H.; Dytman, S. A.; Love, W.; Mehrabyan, S.; Mueller, J. A.; Savinov, V.; Li, Z.; Lopez, A.; Mendez, H.; Ramirez, J.; Huang, G. S.; Miller, D. H.; Pavlunin, V.; Sanghi, B.; Shipsey, I. P. J.; Adams, G. S.; Anderson, M.; Cummings, J. P.; Danko, I.; Napolitano, J.; He, Q.; Muramatsu, H.; Park, C. S.; Thorndike, E. H.; Coan, T. E.; Gao, Y. S.; Liu, F.; Artuso, M.; Boulahouache, C.; Blusk, S.; Butt, J.; Li, J.; Menaa, N.; Mountain, R.; Nisar, S.; Randrianarivony, K.; Redjimi, R.; Sia, R.; Skwarnicki, T.; Stone, S.; Wang, J. C.; Zhang, K.; Csorna, S. E.; Bonvicini, G.; Cinabro, D.; Dubrovin, M.; Lincoln, A.; Briere, R. A.; Chen, G. P.; Chen, J.; Ferguson, T.; Tatishvili, G.; Vogel, H.; Watkins, M. E.; Rosner, J. L.; Adam, N. E.; Alexander, J. P.; Berkelman, K.; Cassel, D. G.; Duboscq, J. E.; Ecklund, K. M.; Ehrlich, R.; Fields, L.; Gibbons, L.; Gray, R.; Gray, S. W.; Hartill, D. L.; Heltsley, B. K.; Hertz, D.; Jones, C. D.; Kandaswamy, J.; Kreinick, D. L.; Kuznetsov, V. E.; Mahlke-Krüger, H.; Meyer, T. O.; Onyisi, P. U. E.; Patterson, J. R.; Peterson, D.; Phillips, E. A.; Pivarski, J.; Riley, D.; Ryd, A.; Sadoff, A. J.; Schwarthoff, H.; Shi, X.; Stroiney, S.; Sun, W. M.; Wilksen, T.; Weinberger, M.; Athar, S. B.; Avery, P.; Breva-Newell, L.; Patel, R.; Potlia, V.; Stoeck, H.; Yelton, J.; Rubin, P.; Cawlfield, C.; Eisenstein, B. I.; Karliner, I.; Kim, D.; Lowrey, N.; Naik, P.; Sedlack, C.; Selen, M.; White, E. J.; Wiss, J.; Shepherd, M. R.; Asner, D. M.; Edwards, K. W.

    2010-04-01

    We have updated our measurement of the cross section for e^+e^- -> psi(3770) -> hadrons, our publication "Measurement of sigma(e^+e^- -> psi(3770) -> hadrons) at E_{c.m.} = 3773 MeV", arXiv:hep-ex/0512038, Phys.Rev.Lett.96, 092002 (2006). Simultaneous with this arXiv update, we have published an erratum in Phys.Rev.Lett.104, 159901 (2010). There, and in this update, we have corrected a mistake in the computation of the error on the difference of the cross sections for e^+e^- -> psi(3770) -> hadrons and e^+e^- -> psi(3770) -> DDbar. We have also used a more recent CLEO measurement of cross section for e^+e^- -> psi(3770) -> DDbar. From this, we obtain an upper limit on the branching fraction for psi(3770) -> non-DDbar of 9% at 90% confidence level.

  11. extrap: Software to assist the selection of extrapolation methods for moving-boat ADCP streamflow measurements

    USGS Publications Warehouse

    Mueller, David S.

    2013-01-01

    profiles from the entire cross section and multiple transects to determine a mean profile for the measurement. The use of an exponent derived from normalized data from the entire cross section is shown to be valid for application of the power velocity distribution law in the computation of the unmeasured discharge in a cross section. Selected statistics are combined with empirically derived criteria to automatically select the appropriate extrapolation methods. A graphical user interface (GUI) provides the user tools to visually evaluate the automatically selected extrapolation methods and manually change them, as necessary. The sensitivity of the total discharge to available extrapolation methods is presented in the GUI. Use of extrap by field hydrographers has demonstrated that extrap is a more accurate and efficient method of determining the appropriate extrapolation methods compared with tools currently (2012) provided in the ADCP manufacturers’ software.

  12. Fragmentation contributions to J / ψ photoproduction at HERA

    DOE PAGES

    Bodwin, Geoffrey T.; Chung, Hee Sok; Kim, U-Rae; ...

    2015-10-28

    Here, we compute leading-power fragmentation corrections to J/ψ photoproduction at DESY HERA, making use of the nonrelativistic QCD factorization approach. Our calculations include parton production cross sections through order α 3 s, fragmentation functions though order α 2 s, and leading logarithms of the transverse momentum divided by the charm-quark mass to all orders in α s. We find that the leading-power fragmentation corrections, beyond those that are included through next-to-leading order in α s, are small relative to the fixed-order contributions through next-to-leading order in α s. Consequently, an important discrepancy remains between the experimental measurements of the J/ψmore » photoproduction cross section and predictions that make use of nonrelativistic-QCD long-distance matrix elements that are extracted from the J/ψ hadroproduction cross-section and polarization data.« less

  13. FY17 Status Report on NEAMS Neutronics Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C. H.; Jung, Y. S.; Smith, M. A.

    2017-09-30

    Under the U.S. DOE NEAMS program, the high-fidelity neutronics code system has been developed to support the multiphysics modeling and simulation capability named SHARP. The neutronics code system includes the high-fidelity neutronics code PROTEUS, the cross section library and preprocessing tools, the multigroup cross section generation code MC2-3, the in-house meshing generation tool, the perturbation and sensitivity analysis code PERSENT, and post-processing tools. The main objectives of the NEAMS neutronics activities in FY17 are to continue development of an advanced nodal solver in PROTEUS for use in nuclear reactor design and analysis projects, implement a simplified sub-channel based thermal-hydraulic (T/H)more » capability into PROTEUS to efficiently compute the thermal feedback, improve the performance of PROTEUS-MOCEX using numerical acceleration and code optimization, improve the cross section generation tools including MC2-3, and continue to perform verification and validation tests for PROTEUS.« less

  14. Measurement of the $$\\mathrm{Z}\\gamma^{*} \\to \\tau\\tau$$ cross section in pp collisions at $$\\sqrt{s} = $$ 13 TeV and validation of $$\\tau$$ lepton analysis techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, Albert M; et al.

    A measurement is presented of themore » $$\\mathrm{Z}/\\gamma^{*} \\to \\tau\\tau$$ cross section in pp collisions at $$\\sqrt{s} = $$ 13 TeV, using data recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 2.3 fb$$^{-1}$$. The product of the inclusive cross section and branching fraction is measured to be $$\\sigma(\\mathrm{pp} \\to \\mathrm{Z}/\\gamma^{*}\\text{+X}) \\, \\mathcal{B}(\\mathrm{Z}/\\gamma^{*} \\to \\tau\\tau) = $$ 1848 $$\\pm$$ 12 (stat) $$\\pm$$ 67 (syst+lumi) pb, in agreement with the standard model expectation, computed at next-to-next-to-leading order accuracy in perturbative quantum chromodynamics. The measurement is used to validate new analysis techniques relevant for future measurements of $$\\tau$$ lepton production. The measurement also provides the reconstruction efficiency and energy scale for $$\\tau$$ decays to hadrons+$$\

  15. A double fluorescence staining protocol to determine the cross-sectional area of myofibers using image analysis

    NASA Technical Reports Server (NTRS)

    Mozdziak, P. E.; Fassel, T. A.; Schultz, E.; Greaser, M. L.; Cassens, R. G.

    1996-01-01

    A double fluorescence staining protocol was developed to facilitate computer based image analysis. Myofibers from experimentally treated (irradiated) and control growing turkey skeletal muscle were labeled with the anti-myosin antibody MF-20 and detected using fluorescein-5-isothiocyanate (FITC). Extracellular material was stained with concanavalin A (ConA)-Texas red. The cross-sectional area of the myofibers was determined by calculating the number of pixels (0.83 mu m(2)) overlying each myofiber after subtracting the ConA-Texas red image from the MF-20-FITC image for each region of interest. As expected, myofibers in the irradiated muscle were smaller (P < 0.05) than those in the non-irradiated muscle. This double fluorescence staining protocol combined with image analysis is accurate and less labor-intensive than classical procedures for determining the cross-sectional area of myofibers.

  16. Micro-computed Tomography versus the Cross-sectioning Method to Evaluate Dentin Defects Induced by Different Mechanized Instrumentation Techniques.

    PubMed

    Stringheta, Carolina Pessoa; Pelegrine, Rina Andréa; Kato, Augusto Shoji; Freire, Laila Gonzales; Iglecias, Elaine Faga; Gavini, Giulio; Bueno, Carlos Eduardo da Silveira

    2017-12-01

    The objective of this study was to compare the methods of micro-computed tomography (micro-CT) and cross-sectioning followed by stereomicroscopy in assessing dentinal defects after instrumentation with different mechanized systems. Forty mesial roots of mandibular molars were scanned and divided into 4 groups (n = 10): Group R, Reciproc; Group PTN, ProTaper Next; Group WOG, WaveOne Gold; Group PDL, ProDesign Logic. After instrumentation, the roots were once again submitted to a micro-CT scan, and then sectioned at 3, 6, and 9 mm from the apex, and assessed for the presence of complete and incomplete dentinal defects under a stereomicroscope. The nonparametric Kruskal-Wallis, Friedman, and Wilcoxon tests were used in the statistical analysis. The study used a significance level of 5%. The total number of defects observed by cross-sectioning followed by stereomicroscopy was significantly higher than that observed by micro-CT, in all of the experimental groups (P ≤ .05). All of the defects identified in the postoperative period were already present in the corresponding preoperative period. There was no significant difference among the instrumentation systems as to the median numbers of defects, for either cross-sectioning followed by stereomicroscopy or micro-CT, at all the root levels (P > .05). In the micro-CT analysis, no significant difference was found between the median numbers of pre- and postinstrumentation defects, regardless of the instrumentation system (P > .05). None of the evaluated instrumentation systems led to the formation of new dentin defects. All of the defects identified in the stereomicroscopic analysis were already present before instrumentation, or were absent at both time points in the micro-CT analysis, indicating that the formation of new defects resulted from the sectioning procedure performed before stereomicroscopy and not from instrumentation. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. SU-E-I-43: Photoelectric Cross Section Revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haga, A; Nakagawa, K; Kotoku, J

    2015-06-15

    Purpose: The importance of the precision in photoelectric cross-section value increases for recent developed technology such as dual energy computed tomography, in which some reconstruction algorithms require the energy dependence of the photo-absorption in each material composition of human being. In this study, we revisited the photoelectric cross-section calculation by self-consistent relativistic Hartree-Fock (HF) atomic model and compared with that widely distributed as “XCOM database” in National Institute of Standards and Technology, which was evaluated with localdensity approximation for electron-exchange (Fock)z potential. Methods: The photoelectric cross section can be calculated with the electron wave functions in initial atomic state (boundmore » electron) and final continuum state (photoelectron). These electron states were constructed based on the selfconsistent HF calculation, where the repulsive Coulomb potential from the electron charge distribution (Hartree term) and the electron exchange potential with full electromagnetic interaction (Fock term) were included for the electron-electron interaction. The photoelectric cross sections were evaluated for He (Z=2), Be (Z=4), C (Z=6), O (Z=8), and Ne (Z=10) in energy range of 10keV to 1MeV. The Result was compared with XCOM database. Results: The difference of the photoelectric cross section between the present calculation and XCOM database was 8% at a maximum (in 10keV for Be). The agreement tends to be better as the atomic number increases. The contribution from each atomic shell has a considerable discrepancy with XCOM database except for K-shell. However, because the photoelectric cross section arising from K-shell is dominant, the net photoelectric cross section was almost insensitive to the different handling in Fock potential. Conclusion: The photoelectric cross-section program has been developed based on the fully self-consistent relativistic HF atomic model. Due to small effect on the Fock potential for K-shell electrons, the difference from XCOM database was limited: 1% to 8% for low-Z elements in 10keV-1MeV energy ranges. This work was partly supported by the JSPS Core-to-Core Program (No. 23003)« less

  18. Numerical Modeling of Three-Dimensional Confined Flows

    NASA Technical Reports Server (NTRS)

    Greywall, M. S.

    1981-01-01

    A three dimensional confined flow model is presented. The flow field is computed by calculating velocity and enthalpy along a set of streamlines. The finite difference equations are obtained by applying conservation principles to streamtubes constructed around the chosen streamlines. With appropriate substitutions for the body force terms, the approach computes three dimensional magnetohydrodynamic channel flows. A listing of a computer code, based on this approach is presented in FORTRAN IV language. The code computes three dimensional compressible viscous flow through a rectangular duct, with the duct cross section specified along the axis.

  19. Level II scour analysis for Bridge 29 (LONDTH00410029) on Town Highway 41, crossing Cook Brook, Londonderry, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Wild, Emily C.

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 1.5. Abutment scour ranged from 8.4 to 15.1 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  20. Determining physiological cross-sectional area of extensor carpi radialis longus and brevis as a whole and by regions using 3D computer muscle models created from digitized fiber bundle data.

    PubMed

    Ravichandiran, Kajeandra; Ravichandiran, Mayoorendra; Oliver, Michele L; Singh, Karan S; McKee, Nancy H; Agur, Anne M R

    2009-09-01

    Architectural parameters and physiological cross-sectional area (PCSA) are important determinants of muscle function. Extensor carpi radialis longus (ECRL) and brevis (ECRB) are used in muscle transfers; however, their regional architectural differences have not been investigated. The aim of this study is to develop computational algorithms to quantify and compare architectural parameters (fiber bundle length, pennation angle, and volume) and PCSA of ECRL and ECRB. Fiber bundles distributed throughout the volume of ECRL (75+/-20) and ECRB (110+/-30) were digitized in eight formalin embalmed cadaveric specimens. The digitized data was reconstructed in Autodesk Maya with computational algorithms implemented in Python. The mean PCSA and fiber bundle length were significantly different between ECRL and ECRB (p < or = 0.05). Superficial ECRL had significantly longer fiber bundle length than the deep region, whereas the PCSA of superficial ECRB was significantly larger than the deep region. The regional quantification of architectural parameters and PCSA provides a framework for the exploration of partial tendon transfers of ECRL and ECRB.

  1. PHD TUTORIAL: A complete numerical approach to electron hydrogen collisions

    NASA Astrophysics Data System (ADS)

    Bartlett, Philip L.

    2006-11-01

    This tutorial presents an extensive computational study of electron-impact scattering and ionization of atomic hydrogen and hydrogenic ions, through the solution of the non-relativistic Schrödinger equation in coordinate space using propagating exterior complex scaling (PECS). It details the complete numerical and computational development of the PECS method, which enables highly computationally-efficient solution of these collision systems. Benchmark results are presented for a complete range of electron-hydrogen collisions, including discrete elastic and inelastic scattering both below and above the ionization threshold energy, very low-energy ionizing collisions through to moderately high-energy ionizing collisions, ground-state and excited-state targets and charged hydrogenic targets with Z <= 4. Total ionization cross sections through to fully differential cross sections, both in-plane and out-of-plane, are given and are found to be in excellent accord with other state-of-the-art methods and measurements, where available. We also review our recent confirmation (Bartlett and Stelbovics 2004 Phys. Rev. Lett. 93 233201) of the Wannier and related threshold laws for e-H collisions.

  2. Level II scour analysis for Bridge 17 (SHEFTH00380017) on Town Highway 38, crossing Miller Run, Sheffield, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Degnan, James R.

    1997-01-01

    Contraction scour for modelled flows ranged from 0.0 to 2.4 ft. Abutment scour ranged from 6.1 to 7.9 ft at the left abutment and 11.4 to 17.4 ft at the right abutment. The worstcase contraction and abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  3. Cross-sectional shape of the child's trachea by computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griscom, N.T.

    1983-06-01

    Computed tomographic scanning was used to investigate the shape in cross section of the lumen of the pediatric trachea. Seven children up to age 10 (mostly age 6 or older), six girls aged 10 to 19, and six boys aged 10 to 19 had scans of their tracheas, mostly during breath-holding not far from total lung capacity. At these ages and under these circumstances, the trachea may be slightly narrow just below the larynx, and it broadens just above its bifurcation. At other levels, it is only mildly or moderately off-circular although there are variations from patient to patient andmore » from level to level. The severely off-circular shapes found by others during autopsies and computed tomography of the middle-aged and elderly were not detected in these children and adolescents. Under the circumstances of the study, there was little change in shape or size as the trachea passed from the neck into the chest, nor was there a consistent difference in tracheal shape between girls and boys.« less

  4. Level II scour analysis for Bridge 12 (CHESVT01030012) on State Highway 103, crossing the Williams River, Chester, Vermont

    USGS Publications Warehouse

    Flynn, Robert H.; Burns, Ronda L.

    1997-01-01

    northerly pier) and from 13.5 to 17.1 ft along Pier 2 (southerly pier). The worst case pier scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured -streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  5. Level II scour analysis for Bridge 30, (HUNTTH00220030), on Town Highway 22, crossing Brush Brook, Huntington, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.

    1997-01-01

    Contraction scour for all modelled flows was zero. Abutment scour ranged from 7.8 to 10.1 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  6. Probing short-range nucleon-nucleon interactions with an electron-ion collider

    DOE PAGES

    Miller, Gerald A.; Sievert, Matthew D.; Venugopalan, Raju

    2016-04-07

    For this research, we derive the cross section for exclusive vector meson production in high-energy deeply inelastic scattering off a deuteron target that disintegrates into a proton and a neutron carrying large relative momentum in the final state. This cross section can be expressed in terms of a novel gluon transition generalized parton distribution (T-GPD); the hard scale in the final state makes the T-GPD sensitive to the short-distance nucleon-nucleon interaction. We perform a toy model computation of this process in a perturbative framework and discuss the time scales that allow the separation of initial- and final-state dynamics in themore » T-GPD. We outline the more general computation based on the factorization suggested by the toy computation: In particular, we discuss the relative role of “pointlike” and “geometric” Fock configurations that control the parton dynamics of short-range nucleon-nucleon scattering. With the aid of exclusive J/ψ production data at the Hadron-Electron Ring Accelerator at DESY, as well as elastic nucleon-nucleon cross sections, we estimate rates for exclusive deuteron photodisintegration at a future Electron-Ion Collider (EIC). Our results, obtained using conservative estimates of EIC integrated luminosities, suggest that center-of-mass energies sNN ~12GeV 2 of the neutron-proton subsystem can be accessed. We argue that the high energies of the EIC can address outstanding dynamical questions regarding the short-range quark-gluon structure of nuclear forces by providing clean gluon probes of such “knockout” exclusive reactions in light and heavy nuclei.« less

  7. Section modulus is the optimum geometric predictor for stress fractures and medial tibial stress syndrome in both male and female athletes.

    PubMed

    Franklyn, Melanie; Oakes, Barry; Field, Bruce; Wells, Peter; Morgan, David

    2008-06-01

    Various tibial dimensions and geometric parameters have been linked to stress fractures in athletes and military recruits, but many mechanical parameters have still not been investigated. Sedentary people, athletes with medial tibial stress syndrome, and athletes with stress fractures have smaller tibial geometric dimensions and parameters than do uninjured athletes. Cohort study; Level of evidence, 3. Using a total of 88 subjects, male and female patients with either a tibial stress fracture or medial tibial stress syndrome were compared with both uninjured aerobically active controls and uninjured sedentary controls. Tibial scout radiographs and cross-sectional computed tomography images of all subjects were scanned at the junction of the midthird and distal third of the tibia. Tibial dimensions were measured directly from the films; other parameters were calculated numerically. Uninjured exercising men have a greater tibial cortical cross-sectional area than do their sedentary and injured counterparts, resulting in a greater value of some other cross-sectional geometric parameters, particularly the section modulus. However, for women, the cross-sectional areas are either not different or only marginally different, and there are few tibial dimensions or geometric parameters that distinguish the uninjured exercisers from the sedentary and injured subjects. In women, the main difference between the groups was the distribution of cortical bone about the centroid as a result of the different values of section modulus. Last, medial tibial stress syndrome subjects had smaller tibial cross-sectional dimensions than did their uninjured exercising counterparts, suggesting that medial tibial stress syndrome is not just a soft-tissue injury but also a bony injury. The results show that in men, the cross-sectional area and the section modulus are the key parameters in the tibia to distinguish exercise and injury status, whereas for women, it is the section modulus only.

  8. Computer Attitude, and the Impact of Personal Characteristics and Information and Communication Technology Adoption Patterns on Performance of Teaching Faculty in Higher Education in Ghana, West Africa

    ERIC Educational Resources Information Center

    Larbi-Apau, Josephine A.

    2011-01-01

    This study examined computer attitude, and the impact of personal characteristics and ICT adoption patterns on performance of multidisciplinary teaching faculty in three public universities in Ghana. A cross-sectional research of mixed methods was applied in collecting data and information. Quantitative data from 164 respondents were analyzed…

  9. Staff Perspectives on the Use of a Computer-Based Concept for Lifestyle Intervention Implemented in Primary Health Care

    ERIC Educational Resources Information Center

    Carlfjord, Siw; Johansson, Kjell; Bendtsen, Preben; Nilsen, Per; Andersson, Agneta

    2010-01-01

    Objective: The aim of this study was to evaluate staff experiences of the use of a computer-based concept for lifestyle testing and tailored advice implemented in routine primary health care (PHC). Design: The design of the study was a cross-sectional, retrospective survey. Setting: The study population consisted of staff at nine PHC units in the…

  10. Neuroanatomy of cranial computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kretschmann, H.J.; Weinrich, W.

    1985-01-01

    Based on the fundamental structures visualized by means of computed tomography, the authors present the functional systems which are relevant in neurology by means of axial cross-sections. All drawings were prepared from original preparations by means of a new technique which is similar to the grey values of X-ray CT and nuclear magnetic resonance tomography. A detailed description is given of the topics of neurofunctional lesions.

  11. Subtraction with hadronic initial states at NLO: an NNLO-compatible scheme

    NASA Astrophysics Data System (ADS)

    Somogyi, Gábor

    2009-05-01

    We present an NNLO-compatible subtraction scheme for computing QCD jet cross sections of hadron-initiated processes at NLO accuracy. The scheme is constructed specifically with those complications in mind, that emerge when extending the subtraction algorithm to next-to-next-to-leading order. It is therefore possible to embed the present scheme in a full NNLO computation without any modifications.

  12. Risk factors of non-specific neck pain and low back pain in computer-using office workers in China: a cross-sectional study.

    PubMed

    Ye, Sunyue; Jing, Qinglei; Wei, Chen; Lu, Jie

    2017-04-11

    Several studies have found that inappropriate workstations are associated with musculoskeletal disorders. The present cross-sectional study aimed to identify the risk factors of non-specific neck pain (NP) and low back pain (LBP) among computer-using workers. Observational study with a cross-sectional sample. This study surveyed 15 companies in Zhejiang province, China. After excluding participants with missing variables, 417 office workers, including 163 men and 254 women, were analyzed. Demographic information was collected by self-report. The standard Northwick Park Neck Pain Questionnaire and Oswestry Low Back Pain Disability Index, along with other relevant questions, were used to assess the presence of potential occupational risk factors and the perceived levels of pain. Multinomial logistic regression analysis, adjusted for age, sex, body mass index, education, marital status and neck/low back injury, was performed to identify significant risk factors. Compared with low-level NP, the computer location (monitor not in front of the operator, but on the right or left side) was associated with ORs of 2.6 and 2.9 for medium- and high-level NP, respectively. For LBP, the computer location (monitor not in front) was associated with an OR of 3.2 for high-level pain, as compared with low-level pain, in females. Significant associations were also observed between the office temperature and LBP (OR 5.4 for high vs low), and between office work duration ≥5 years and NP in female office workers (OR 2.7 for medium vs low). Not having the computer monitor located in front of the operator was found to be an important risk factor for NP and LBP in computer-using female workers. This information may not only enable the development of potential preventive strategies but may also provide new insights for designing appropriate workstations. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  13. A conservative spectral method for the Boltzmann equation with anisotropic scattering and the grazing collisions limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamba, Irene M.; ICES, The University of Texas at Austin, 201 E. 24th St., Stop C0200, Austin, TX 78712; Haack, Jeffrey R.

    2014-08-01

    We present the formulation of a conservative spectral method for the Boltzmann collision operator with anisotropic scattering cross-sections. The method is an extension of the conservative spectral method of Gamba and Tharkabhushanam [17,18], which uses the weak form of the collision operator to represent the collisional term as a weighted convolution in Fourier space. The method is tested by computing the collision operator with a suitably cut-off angular cross section and comparing the results with the solution of the Landau equation. We analytically study the convergence rate of the Fourier transformed Boltzmann collision operator in the grazing collisions limit tomore » the Fourier transformed Landau collision operator under the assumption of some regularity and decay conditions of the solution to the Boltzmann equation. Our results show that the angular singularity which corresponds to the Rutherford scattering cross section is the critical singularity for which a grazing collision limit exists for the Boltzmann operator. Additionally, we numerically study the differences between homogeneous solutions of the Boltzmann equation with the Rutherford scattering cross section and an artificial cross section, which give convergence to solutions of the Landau equation at different asymptotic rates. We numerically show the rate of the approximation as well as the consequences for the rate of entropy decay for homogeneous solutions of the Boltzmann equation and Landau equation.« less

  14. Linear attenuation coefficients of tissues from 1 keV to 150 keV

    NASA Astrophysics Data System (ADS)

    Böke, Aysun

    2014-09-01

    The linear attenuation coefficients and three interaction processes have been computed for liver, kidney, muscle, fat and for a range of x-ray energies from 1 keV to 150 keV. Molecular photoelectric absorption cross sections were calculated from atomic cross section data. Total coherent (Rayleigh) and incoherent (Compton) scattering cross sections were obtained by numerical integration over combinations of F2m(x) with the Thomson formula and Sm(x) with the Klein-Nishina formula, respectively. For the coherent (Rayleigh) scattering cross section calculations, molecular form factors were obtained from recent experimental data in the literature for values of x<1 Å-1 and from the relativistic modified atomic form factors for values of x≥1 Å-1. With the inclusion of molecular interference effects in the coherent (Rayleigh) scattering, more accurate knowledge of the scatter from these tissues will be provided. The number of elements involved in tissue composition is 5 for liver, 47 for kidney, 44 for muscle and 3 for fat. The results are compared with previously published experimental and theoretical linear attenuation coefficients. In general, good agreement is obtained. The molecular form factors and scattering functions and cross sections are incorporated into a Monte Carlo program. The energy distributions of x-ray photons scattered from tissues have been simulated and the results are presented.

  15. New Features in the Computational Infrastructure for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Smith, M. S.; Lingerfelt, E. J.; Scott, J. P.; Hix, W. R.; Nesaraja, C. D.; Koura, H.; Roberts, L. F.

    2006-04-01

    The Computational Infrastructure for Nuclear Astrophysics is a suite of computer codes online at nucastrodata.org that streamlines the incorporation of recent nuclear physics results into astrophysical simulations. The freely-available, cross- platform suite enables users to upload cross sections and s-factors, convert them into reaction rates, parameterize the rates, store the rates in customizable libraries, setup and run custom post-processing element synthesis calculations, and visualize the results. New features include the ability for users to comment on rates or libraries using an email-type interface, a nuclear mass model evaluator, enhanced techniques for rate parameterization, better treatment of rate inverses, and creation and exporting of custom animations of simulation results. We also have online animations of r- process, rp-process, and neutrino-p process element synthesis occurring in stellar explosions.

  16. NLO properties of ester containing fluorescent carbazole based styryl dyes - Consolidated spectroscopic and DFT approach

    NASA Astrophysics Data System (ADS)

    Rajeshirke, Manali; Sekar, Nagaiyan

    2018-02-01

    The linear and nonlinear optical (NLO) properties of new fluorescent styryl dyes based on anchoring ester containing carbazole as donor appended to different acceptor groups to have a conjugated π-system with push-pull geometry are studied. The NLO properties have been determined using solvatochromic and computational methods. Three different TD-DFT functional are used namely, B3LYP, BHandHLYP, and CAM-B3LYP, with aim of elucidating better functional for NLOphores. Further, the two photon properties (σ2PA) have been described theoretically by two level model considering the dipole moment difference between the ground and the final electronic states and bypassing the intermediated resonance state. The compounds with a high charge transfer from the acceptor group to the carbazole ring have relatively high two-photon absorption cross-sections (60-317 GM). The linear polarizability (αCT), first order hyperpolarizability (β) and second order hyperpolarizability (ɣ) for 4c dye was the highest among the studied dyes which is attributed to the lesser energy gap evident by both the methods. But in contrary, the σ2PA cross-section value was low for dye 4c which is due to the presence of freely rotatable twisted phenyl ring in the conjugation path, pulling the electron density towards itself and thus lead to decrease in σ2PA cross-section. Structure-property relationship is better understood by the correlation of bond length alternation/bond order alternation (BLA/BOA) with NLO properties of dyes. Thus by simple solvatochromic method and computational method, we have screened the carbazole styryls as NLO candidates with good first order hyperpolarizability and good two photon cross-section.

  17. A spectral-Tchebychev solution for three-dimensional dynamics of curved beams under mixed boundary conditions

    NASA Astrophysics Data System (ADS)

    Bediz, Bekir; Aksoy, Serdar

    2018-01-01

    This paper presents the application of the spectral-Tchebychev (ST) technique for solution of three-dimensional dynamics of curved beams/structures having variable and arbitrary cross-section under mixed boundary conditions. To accurately capture the vibrational behavior of curved structures, a three-dimensional (3D) solution approach is required since these structures generally exhibit coupled motions. In this study, the integral boundary value problem (IBVP) governing the dynamics of the curved structures is found using extended Hamilton's principle where the strain energy is expressed using 3D linear elasticity equation. To solve the IBVP numerically, the 3D spectral Tchebychev (3D-ST) approach is used. To evaluate the integral and derivative operations defined by the IBVP and to render the complex geometry into an equivalent straight beam with rectangular cross-section, a series of coordinate transformations are applied. To validate and assess the performance of the presented solution approach, two case studies are performed: (i) curved beam with rectangular cross-section, (ii) curved and pretwisted beam with airfoil cross-section. In both cases, the results (natural frequencies and mode shapes) are also found using a finite element (FE) solution approach. It is shown that the difference in predicted natural frequencies are less than 1%, and the mode shapes are in excellent agreement based on the modal assurance criteria (MAC) analyses; however, the presented spectral-Tchebychev solution approach significantly reduces the computational burden. Therefore, it can be concluded that the presented solution approach can capture the 3D vibrational behavior of curved beams as accurately as an FE solution, but for a fraction of the computational cost.

  18. Optical tractor Bessel polarized beams

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.; Li, R. X.; Guo, L. X.; Ding, C. Y.

    2017-01-01

    Axial and transverse radiation force cross-sections of optical tractor Bessel polarized beams are theoretically investigated for a dielectric sphere with particular emphasis on the beam topological charge (or order), half-cone angle and polarization. The angular spectrum decomposition method (ASDM) is used to derive the non-paraxial electromagnetic (EM) field components of the Bessel beams. The multipole expansion method using vector spherical harmonics is utilized and appropriate beam-shape coefficients are derived in order to compute the radiation force cross-sections. The analysis has no limitation to a particular range of frequencies such that the Rayleigh, Mie or geometrical optics regimes can all be considered effectively using the present rigorous formalism. The focus of this investigation is to identify some of the tractor beam conditions so as to achieve retrograde motion of a dielectric sphere located arbitrarily in space. Numerical computations for the axial and transverse radiation force cross-sections are presented for linear, right-circular, radial, azimuthal and mixed polarizations of the individual plane waves forming the Bessel beams of zeroth- and first-order (with positive or negative helicity), respectively. As the sphere shifts off the beam's axis, the axial pulling (tractor) force is weakened. Moreover, the transverse radiation force cross-section field changes with the sphere's size factor ka (where k is the wavenumber and a is the sphere radius). Both stable and unstable equilibrium regions around the beam's axis are found, depending on the choice of ka and the half-cone angle α0. These results are particularly important in the development of emergent technologies for the photophoretic assembly of optically-engineered (meta)materials with designed properties using optical tractor (vortex) beams, particle manipulation, levitation and positioning, and other applications.

  19. Metal poisons for criticality in waste streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, T.G.; Goslen, A.Q.

    1996-12-31

    Many of the wastes from processing fissile materials contain metals that may serve as neutron poisons. It would be advantageous to the criticality evaluation of these wastes to demonstrate that the poisons remain with the fissile materials and to demonstrate an always safe poison-to-fissile ratio. The first task, demonstrating that the materials stay together, is the job of the chemist; the second, calculating an always safe ratio, is an object of this paper. In an earlier study, the authors demonstrated safe ratios for iron, manganese, and chromium oxides to {sup 235}U. In these studies, the Hansen-Roach 16-group cross sections weremore » used with the Savannah River site code HRXN. Multiplication factors were computed, and safe ratios were defined such that the adjusted neutron multiplication factors (k values) were <0.95. These safe weight ratios were Fe:{sup 235}U - 77:1; Mn:{sup 235}U - 30:1; and Cr:{sup 235}U - 52:1. Palmer has shown that for certain mixtures of aluminum, iron, and zirconium with {sup 235}U, the computed infinite multiplication factors may differ by as much as 20% with different cross sections and processing systems. Parks et al. have further studied these mixtures and state, {open_quotes}...these metal/uranium mixtures are very sensitive to the metal cross-section data in the intermediate-energy range and the processing methods that are used.{close_quotes} They conclude with a call for more experimental data. The purpose of this study is to reexamine earlier work with cross sections and processing codes used at Westinghouse Savannah River Company today. This study will focus on {sup 235}U mixtures with iron, manganese and chromium. Sodium will be included in the list of poisons because it is abundant in many of the waste materials.« less

  20. Reconstruction of Sea State One

    DTIC Science & Technology

    1988-02-01

    this section only a general overview of the wave computer system will be offered. A more comprehensive treatment of this subject is available in Appendix...1) Sync Strip and Threshold Processing Card (2) Pulse Generation Logic Card (3) X Vector Logic Card (4) Y Vector Logic Card (5) Blanking Interval...output by this comparator when the threshold is crossed, which shall be referred to as threshold crossing (THC). (2) PULSE GENERATION LOGIC CARD Turning

  1. Computer use, sleep duration and health symptoms: a cross-sectional study of 15-year olds in three countries.

    PubMed

    Nuutinen, Teija; Roos, Eva; Ray, Carola; Villberg, Jari; Välimaa, Raili; Rasmussen, Mette; Holstein, Bjørn; Godeau, Emmanuelle; Beck, Francois; Léger, Damien; Tynjälä, Jorma

    2014-08-01

    This study investigated whether computer use is associated with health symptoms through sleep duration among 15-year olds in Finland, France and Denmark. We used data from the WHO cross-national Health Behaviour in School-aged Children study collected in Finland, France and Denmark in 2010, including data on 5,402 adolescents (mean age 15.61 (SD 0.37), girls 53%). Symptoms assessed included feeling low, irritability/bad temper, nervousness, headache, stomachache, backache, and feeling dizzy. We used structural equation modeling to explore the mediating effect of sleep duration on the association between computer use and symptom load. Adolescents slept approximately 8 h a night and computer use was approximately 2 h a day. Computer use was associated with shorter sleep duration and higher symptom load. Sleep duration partly mediated the association between computer use and symptom load, but the indirect effects of sleep duration were quite modest in all countries. Sleep duration may be a potential underlying mechanism behind the association between computer use and health symptoms.

  2. A cross-sectional evaluation of computer literacy among medical students at a tertiary care teaching hospital in Mumbai, Bombay.

    PubMed

    Panchabhai, T S; Dangayach, N S; Mehta, V S; Patankar, C V; Rege, N N

    2011-01-01

    Computer usage capabilities of medical students for introduction of computer-aided learning have not been adequately assessed. Cross-sectional study to evaluate computer literacy among medical students. Tertiary care teaching hospital in Mumbai, India. Participants were administered a 52-question questionnaire, designed to study their background, computer resources, computer usage, activities enhancing computer skills, and attitudes toward computer-aided learning (CAL). The data was classified on the basis of sex, native place, and year of medical school, and the computer resources were compared. The computer usage and attitudes toward computer-based learning were assessed on a five-point Likert scale, to calculate Computer usage score (CUS - maximum 55, minimum 11) and Attitude score (AS - maximum 60, minimum 12). The quartile distribution among the groups with respect to the CUS and AS was compared by chi-squared tests. The correlation between CUS and AS was then tested. Eight hundred and seventy-five students agreed to participate in the study and 832 completed the questionnaire. One hundred and twenty eight questionnaires were excluded and 704 were analyzed. Outstation students had significantly lesser computer resources as compared to local students (P<0.0001). The mean CUS for local students (27.0±9.2, Mean±SD) was significantly higher than outstation students (23.2±9.05). No such difference was observed for the AS. The means of CUS and AS did not differ between males and females. The CUS and AS had positive, but weak correlations for all subgroups. The weak correlation between AS and CUS for all students could be explained by the lack of computer resources or inadequate training to use computers for learning. Providing additional resources would benefit the subset of outstation students with lesser computer resources. This weak correlation between the attitudes and practices of all students needs to be investigated. We believe that this gap can be bridged with a structured computer learning program.

  3. Level II scour analysis for Bridge 21 (MIDBTH00230021) on Town Highway 23, crossing the Middlebury River, Middlebury, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Degnan, James R.

    1997-01-01

    year discharges. In addition, the incipient roadway-overtopping discharge is determined and analyzed as another potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 1.2 to 1.8 feet. The worst-case contraction scour occurred at the incipient overtopping discharge, which is less than the 500-year discharge. Abutment scour ranged from 17.7 to 23.7 feet. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  4. Level II scour analysis for Bridge 46 (CHELTH00680046) on Town Highway 68, crossing the First Branch of the White River, Chelsea, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.; Song, Donald L.

    1996-01-01

    Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.9 to 2.6 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 14.3 to 24.0 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The left abutment sits atop a bedrock outcrop. The results of the calculated scour depths will be limited by the bedrock. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  5. Measurement of formation cross-section of 99Mo from the 98Mo(n,γ) and 100Mo(n,2n) reactions.

    PubMed

    Badwar, Sylvia; Ghosh, Reetuparna; Lawriniang, Bioletty M; Vansola, Vibha; Sheela, Y S; Naik, Haladhara; Naik, Yeshwant; Suryanarayana, Saraswatula V; Jyrwa, Betylda; Ganesan, Srinivasan

    2017-11-01

    The formation cross-section of medical isotope 99 Mo from the 98 Mo(n,γ) reaction at the neutron energy of 0.025eV and from the 100 Mo(n,2n) reaction at the neutron energies of 11.9 and 15.75MeV have been determined by using activation and off-line γ-ray spectrometric technique. The thermal neutron energy of 0.025eV was used from the reactor critical facility at BARC, Mumbai, whereas the average neutron energies of 11.9 and 15.75MeV were generated using 7 Li(p,n) reaction in the Pelletron facility at TIFR, Mumbai. The experimentally determined cross-sections were compared with the evaluated nuclear data libraries of ENDF/B-VII.1, CENDL-3.1, JENDL-4.0 and JEFF-3.2 and are found to be in close agreement. The 100 Mo(n,2n) 99 Mo reaction cross-sections were also calculated theoretically by using TALYS-1.8 and EMPIRE-3.2 computer codes and compared with the experimental data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Charge transfer between O6+ and atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Stancil, P. C.; Liebermann, H. P.; Buenker, R. J.; Schultz, D. R.; Hui, Y.

    2011-05-01

    The charge exchange process has been found to play a dominant role in the production of X-rays and/or EUV photons observed in cometary and planetary atmospheres and from the heliosphere. Charge transfer cross sections, especially state-selective cross sections, are necessary parameters in simulations of X-ray emission. In the present work, charge transfer due to collisions of ground state O6+(1s2 1 S) with atomic hydrogen has been investigated theoretically using the quantum-mechanical molecular-orbital close-coupling method (QMOCC). The multi-reference single- and double-excitation configuration interaction approach (MRDCI) has been applied to compute the adiabatic potential and nonadiabatic couplings, and the atomic basis sets used have been optimized with the method proposed previously to obtain precise potential data. Total and state-selective cross sections are calculated for energies between 10 meV/u and 10 keV/u. The QMOCC results are compared to available experimental and theoretical data as well as to new atomic-orbital close-coupling (AOCC) and classical trajectory Monte Carlo (CTMC) calculations. A recommended set of cross sections, based on the MOCC, AOCC, and CTMC calculations, is deduced which should aid in X-ray modeling studies.

  7. Measurement of double-differential cross sections for top quark pair production in pp collisions at √{s} = 8 {TeV} and impact on parton distribution functions

    NASA Astrophysics Data System (ADS)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; König, A.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Strauss, J.; Waltenberger, W.; Wulz, C.-E.; Dvornikov, O.; Makarenko, V.; Mossolov, V.; Suarez Gonzalez, J.; Zykunov, V.; Shumeiko, N.; Alderweireldt, S.; De Wolf, E. A.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Salva, S.; Schöfbeck, R.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Jafari, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Chagas, E. Belchior Batista Das; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; De Oliveira Martins, C.; De Souza, S. Fonseca; Guativa, L. M. Huertas; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Cheng, T.; Jiang, C. H.; Leggat, D.; Liu, Z.; Romeo, F.; Ruan, M.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Ellithi Kamel, A.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Miné, P.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Stahl Leiton, A. G.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Bihan, A.-C. Le; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Khvedelidze, A.; Lomidze, D.; Autermann, C.; Beranek, S.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Verlage, T.; Albert, A.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bin Anuar, A. A.; Borras, K.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wissing, C.; Zenaiev, O.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hoffmann, M.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Lapsien, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baur, S.; Baus, C.; Berger, J.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Fink, S.; Freund, B.; Friese, R.; Giffels, M.; Gilbert, A.; Goldenzweig, P.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Katkov, I.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Kousouris, K.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Filipovic, N.; Pasztor, G.; Bencze, G.; Hajdu, C.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Komaragiri, J. R.; Bahinipati, S.; Bhowmik, S.; Choudhury, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Kumari, P.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Kole, G.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sur, N.; Sutar, B.; Banerjee, S.; Dewanjee, R. K.; Ganguly, S.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; De Nardo, G.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Antunes De Oliveira, A. Carvalho; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, U.; Gonella, F.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Rossin, R.; Simonetto, F.; Torassa, E.; Ventura, S.; Zanetti, M.; Zotto, P.; Braghieri, A.; Fallavollita, F.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Mariani, V.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Del Re, D.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Brochero Cifuentes, J. A.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Lee, H.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. H.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Lopez-Fernandez, R.; Magaña Villalba, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Calpas, B.; Di Francesco, A.; Faccioli, P.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Chtchipounov, L.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Murzin, V.; Oreshkin, V.; Sulimov, V.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Danilov, M.; Popova, E.; Rusinov, V.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Klyukhin, V.; Korneeva, N.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Perfilov, M.; Savrin, V.; Volkov, P.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Erice, C.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Suárez Andrés, I.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Baillon, P.; Ball, A. H.; Barney, D.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chen, Y.; Cimmino, A.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dorney, B.; du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fartoukh, S.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Gulhan, D.; Gundacker, S.; Guthoff, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kieseler, J.; Kirschenmann, H.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Sauvan, J. B.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Verweij, M.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; De Cosa, A.; Donato, S.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Seitz, C.; Yang, Y.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Paganis, E.; Psallidas, A.; Tsai, J. F.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Boran, F.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Jesus, O.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Spencer, E.; Syarif, R.; Breedon, R.; Burns, D.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Squires, M.; Stolp, D.; Tos, K.; Tripathi, M.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Weber, M.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Si, W.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Holzner, A.; Klein, D.; Krutelyov, V.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mullin, S. D.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bendavid, J.; Bornheim, A.; Bunn, J.; Duarte, J.; Lawhorn, J. M.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Winn, D.; Abdullin, S.; Albrow, M.; Apollinari, G.; Apresyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cremonesi, M.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Wu, Y.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Shchutska, L.; Sperka, D.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Bein, S.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Perry, T.; Prosper, H.; Santra, A.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Sandoval Gonzalez, I. D.; Trauger, H.; Varelas, N.; Wang, H.; Wu, Z.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Forthomme, L.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Apyan, A.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Malta Rodrigues, A.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Rupprecht, N.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Lange, D.; Luo, J.; Marlow, D.; Medvedeva, T.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Svyatkovskiy, A.; Tully, C.; Malik, S.; Barker, A.; Barnes, V. E.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Schulte, J. F.; Shi, X.; Sun, J.; Wang, F.; Xie, W.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. T.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Juska, E.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Sturdy, J.; Zaleski, S.; Belknap, D. A.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.

    2017-07-01

    Normalized double-differential cross sections for top quark pair (t\\overline{t}) production are measured in pp collisions at a centre-of-mass energy of 8 {TeV} with the CMS experiment at the LHC. The analyzed data correspond to an integrated luminosity of 19.7 {fb}^{-1}. The measurement is performed in the dilepton e^{± }μ ^{∓ } final state. The t\\overline{t} cross section is determined as a function of various pairs of observables characterizing the kinematics of the top quark and t\\overline{t} system. The data are compared to calculations using perturbative quantum chromodynamics at next-to-leading and approximate next-to-next-to-leading orders. They are also compared to predictions of Monte Carlo event generators that complement fixed-order computations with parton showers, hadronization, and multiple-parton interactions. Overall agreement is observed with the predictions, which is improved when the latest global sets of proton parton distribution functions are used. The inclusion of the measured t\\overline{t} cross sections in a fit of parametrized parton distribution functions is shown to have significant impact on the gluon distribution.

  8. Measurement of double-differential cross sections for top quark pair production in pp collisions at [Formula: see text][Formula: see text] and impact on parton distribution functions.

    PubMed

    Sirunyan, A M; Tumasyan, A; Adam, W; Asilar, E; Bergauer, T; Brandstetter, J; Brondolin, E; Dragicevic, M; Erö, J; Flechl, M; Friedl, M; Frühwirth, R; Ghete, V M; Hartl, C; Hörmann, N; Hrubec, J; Jeitler, M; König, A; Krätschmer, I; Liko, D; Matsushita, T; Mikulec, I; Rabady, D; Rad, N; Rahbaran, B; Rohringer, H; Schieck, J; Strauss, J; Waltenberger, W; Wulz, C-E; Dvornikov, O; Makarenko, V; Mossolov, V; Suarez Gonzalez, J; Zykunov, V; Shumeiko, N; Alderweireldt, S; De Wolf, E A; Janssen, X; Lauwers, J; Van De Klundert, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Abu Zeid, S; Blekman, F; D'Hondt, J; Daci, N; De Bruyn, I; Deroover, K; Lowette, S; Moortgat, S; Moreels, L; Olbrechts, A; Python, Q; Skovpen, K; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Parijs, I; Brun, H; Clerbaux, B; De Lentdecker, G; Delannoy, H; Fasanella, G; Favart, L; Goldouzian, R; Grebenyuk, A; Karapostoli, G; Lenzi, T; Léonard, A; Luetic, J; Maerschalk, T; Marinov, A; Randle-Conde, A; Seva, T; Vander Velde, C; Vanlaer, P; Vannerom, D; Yonamine, R; Zenoni, F; Zhang, F; Cornelis, T; Dobur, D; Fagot, A; Gul, M; Khvastunov, I; Poyraz, D; Salva, S; Schöfbeck, R; Tytgat, M; Van Driessche, W; Yazgan, E; Zaganidis, N; Bakhshiansohi, H; Bondu, O; Brochet, S; Bruno, G; Caudron, A; De Visscher, S; Delaere, C; Delcourt, M; Francois, B; Giammanco, A; Jafari, A; Komm, M; Krintiras, G; Lemaitre, V; Magitteri, A; Mertens, A; Musich, M; Piotrzkowski, K; Quertenmont, L; Selvaggi, M; Vidal Marono, M; Wertz, S; Beliy, N; Aldá Júnior, W L; Alves, F L; Alves, G A; Brito, L; Hensel, C; Moraes, A; Pol, M E; Rebello Teles, P; Chagas, E Belchior Batista Das; Carvalho, W; Chinellato, J; Custódio, A; Da Costa, E M; Da Silveira, G G; De Jesus Damiao, D; De Oliveira Martins, C; De Souza, S Fonseca; Guativa, L M Huertas; Malbouisson, H; Matos Figueiredo, D; Mora Herrera, C; Mundim, L; Nogima, H; Prado Da Silva, W L; Santoro, A; Sznajder, A; Tonelli Manganote, E J; Torres Da Silva De Araujo, F; Vilela Pereira, A; Ahuja, S; Bernardes, C A; Dogra, S; Fernandez Perez Tomei, T R; Gregores, E M; Mercadante, P G; Moon, C S; Novaes, S F; Padula, Sandra S; Romero Abad, D; Ruiz Vargas, J C; Aleksandrov, A; Hadjiiska, R; Iaydjiev, P; Rodozov, M; Stoykova, S; Sultanov, G; Vutova, M; Dimitrov, A; Glushkov, I; Litov, L; Pavlov, B; Petkov, P; Fang, W; Ahmad, M; Bian, J G; Chen, G M; Chen, H S; Chen, M; Chen, Y; Cheng, T; Jiang, C H; Leggat, D; Liu, Z; Romeo, F; Ruan, M; Shaheen, S M; Spiezia, A; Tao, J; Wang, C; Wang, Z; Zhang, H; Zhao, J; Ban, Y; Chen, G; Li, Q; Liu, S; Mao, Y; Qian, S J; Wang, D; Xu, Z; Avila, C; Cabrera, A; Chaparro Sierra, L F; Florez, C; Gomez, J P; González Hernández, C F; Ruiz Alvarez, J D; Sanabria, J C; Godinovic, N; Lelas, D; Puljak, I; Ribeiro Cipriano, P M; Sculac, T; Antunovic, Z; Kovac, M; Brigljevic, V; Ferencek, D; Kadija, K; Mesic, B; Susa, T; Ather, M W; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Rykaczewski, H; Finger, M; Finger, M; Carrera Jarrin, E; Ellithi Kamel, A; Mahmoud, M A; Radi, A; Kadastik, M; Perrini, L; Raidal, M; Tiko, A; Veelken, C; Eerola, P; Pekkanen, J; Voutilainen, M; Härkönen, J; Järvinen, T; Karimäki, V; Kinnunen, R; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Tuominiemi, J; Tuovinen, E; Wendland, L; Talvitie, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Favaro, C; Ferri, F; Ganjour, S; Ghosh, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Kucher, I; Locci, E; Machet, M; Malcles, J; Rander, J; Rosowsky, A; Titov, M; Abdulsalam, A; Antropov, I; Baffioni, S; Beaudette, F; Busson, P; Cadamuro, L; Chapon, E; Charlot, C; Davignon, O; Granier de Cassagnac, R; Jo, M; Lisniak, S; Miné, P; Nguyen, M; Ochando, C; Ortona, G; Paganini, P; Pigard, P; Regnard, S; Salerno, R; Sirois, Y; Stahl Leiton, A G; Strebler, T; Yilmaz, Y; Zabi, A; Zghiche, A; Agram, J-L; Andrea, J; Bloch, D; Brom, J-M; Buttignol, M; Chabert, E C; Chanon, N; Collard, C; Conte, E; Coubez, X; Fontaine, J-C; Gelé, D; Goerlach, U; Bihan, A-C Le; Van Hove, P; Gadrat, S; Beauceron, S; Bernet, C; Boudoul, G; Carrillo Montoya, C A; Chierici, R; Contardo, D; Courbon, B; Depasse, P; El Mamouni, H; Fay, J; Finco, L; Gascon, S; Gouzevitch, M; Grenier, G; Ille, B; Lagarde, F; Laktineh, I B; Lethuillier, M; Mirabito, L; Pequegnot, A L; Perries, S; Popov, A; Sordini, V; Vander Donckt, M; Verdier, P; Viret, S; Khvedelidze, A; Lomidze, D; Autermann, C; Beranek, S; Feld, L; Kiesel, M K; Klein, K; Lipinski, M; Preuten, M; Schomakers, C; Schulz, J; Verlage, T; Albert, A; Brodski, M; Dietz-Laursonn, E; Duchardt, D; Endres, M; Erdmann, M; Erdweg, S; Esch, T; Fischer, R; Güth, A; Hamer, M; Hebbeker, T; Heidemann, C; Hoepfner, K; Knutzen, S; Merschmeyer, M; Meyer, A; Millet, P; Mukherjee, S; Olschewski, M; Padeken, K; Pook, T; Radziej, M; Reithler, H; Rieger, M; Scheuch, F; Sonnenschein, L; Teyssier, D; Thüer, S; Cherepanov, V; Flügge, G; Kargoll, B; Kress, T; Künsken, A; Lingemann, J; Müller, T; Nehrkorn, A; Nowack, A; Pistone, C; Pooth, O; Stahl, A; Aldaya Martin, M; Arndt, T; Asawatangtrakuldee, C; Beernaert, K; Behnke, O; Behrens, U; Bin Anuar, A A; Borras, K; Campbell, A; Connor, P; Contreras-Campana, C; Costanza, F; Diez Pardos, C; Dolinska, G; Eckerlin, G; Eckstein, D; Eichhorn, T; Eren, E; Gallo, E; Garay Garcia, J; Geiser, A; Gizhko, A; Grados Luyando, J M; Grohsjean, A; Gunnellini, P; Harb, A; Hauk, J; Hempel, M; Jung, H; Kalogeropoulos, A; Karacheban, O; Kasemann, M; Keaveney, J; Kleinwort, C; Korol, I; Krücker, D; Lange, W; Lelek, A; Lenz, T; Leonard, J; Lipka, K; Lobanov, A; Lohmann, W; Mankel, R; Melzer-Pellmann, I-A; Meyer, A B; Mittag, G; Mnich, J; Mussgiller, A; Pitzl, D; Placakyte, R; Raspereza, A; Roland, B; Sahin, M Ö; Saxena, P; Schoerner-Sadenius, T; Spannagel, S; Stefaniuk, N; Van Onsem, G P; Walsh, R; Wissing, C; Zenaiev, O; Blobel, V; Centis Vignali, M; Draeger, A R; Dreyer, T; Garutti, E; Gonzalez, D; Haller, J; Hoffmann, M; Junkes, A; Klanner, R; Kogler, R; Kovalchuk, N; Kurz, S; Lapsien, T; Marchesini, I; Marconi, D; Meyer, M; Niedziela, M; Nowatschin, D; Pantaleo, F; Peiffer, T; Perieanu, A; Scharf, C; Schleper, P; Schmidt, A; Schumann, S; Schwandt, J; Sonneveld, J; Stadie, H; Steinbrück, G; Stober, F M; Stöver, M; Tholen, H; Troendle, D; Usai, E; Vanelderen, L; Vanhoefer, A; Vormwald, B; Akbiyik, M; Barth, C; Baur, S; Baus, C; Berger, J; Butz, E; Caspart, R; Chwalek, T; Colombo, F; De Boer, W; Dierlamm, A; Fink, S; Freund, B; Friese, R; Giffels, M; Gilbert, A; Goldenzweig, P; Haitz, D; Hartmann, F; Heindl, S M; Husemann, U; Kassel, F; Katkov, I; Kudella, S; Mildner, H; Mozer, M U; Müller, Th; Plagge, M; Quast, G; Rabbertz, K; Röcker, S; Roscher, F; Schröder, M; Shvetsov, I; Sieber, G; Simonis, H J; Ulrich, R; Wayand, S; Weber, M; Weiler, T; Williamson, S; Wöhrmann, C; Wolf, R; Anagnostou, G; Daskalakis, G; Geralis, T; Giakoumopoulou, V A; Kyriakis, A; Loukas, D; Topsis-Giotis, I; Kesisoglou, S; Panagiotou, A; Saoulidou, N; Tziaferi, E; Kousouris, K; Evangelou, I; Flouris, G; Foudas, C; Kokkas, P; Loukas, N; Manthos, N; Papadopoulos, I; Paradas, E; Filipovic, N; Pasztor, G; Bencze, G; Hajdu, C; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Zsigmond, A J; Beni, N; Czellar, S; Karancsi, J; Makovec, A; Molnar, J; Szillasi, Z; Bartók, M; Raics, P; Trocsanyi, Z L; Ujvari, B; Komaragiri, J R; Bahinipati, S; Bhowmik, S; Choudhury, S; Mal, P; Mandal, K; Nayak, A; Sahoo, D K; Sahoo, N; Swain, S K; Bansal, S; Beri, S B; Bhatnagar, V; Chawla, R; Bhawandeep, U; Kalsi, A K; Kaur, A; Kaur, M; Kumar, R; Kumari, P; Mehta, A; Mittal, M; Singh, J B; Walia, G; Kumar, Ashok; Bhardwaj, A; Choudhary, B C; Garg, R B; Keshri, S; Kumar, A; Malhotra, S; Naimuddin, M; Ranjan, K; Sharma, R; Sharma, V; Bhattacharya, R; Bhattacharya, S; Chatterjee, K; Dey, S; Dutt, S; Dutta, S; Ghosh, S; Majumdar, N; Modak, A; Mondal, K; Mukhopadhyay, S; Nandan, S; Purohit, A; Roy, A; Roy, D; Roy Chowdhury, S; Sarkar, S; Sharan, M; Thakur, S; Behera, P K; Chudasama, R; Dutta, D; Jha, V; Kumar, V; Mohanty, A K; Netrakanti, P K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Dugad, S; Kole, G; Mahakud, B; Mitra, S; Mohanty, G B; Parida, B; Sur, N; Sutar, B; Banerjee, S; Dewanjee, R K; Ganguly, S; Guchait, M; Jain, Sa; Kumar, S; Maity, M; Majumder, G; Mazumdar, K; Sarkar, T; Wickramage, N; Chauhan, S; Dube, S; Hegde, V; Kapoor, A; Kothekar, K; Pandey, S; Rane, A; Sharma, S; Chenarani, S; Eskandari Tadavani, E; Etesami, S M; Khakzad, M; Mohammadi Najafabadi, M; Naseri, M; Paktinat Mehdiabadi, S; Rezaei Hosseinabadi, F; Safarzadeh, B; Zeinali, M; Felcini, M; Grunewald, M; Abbrescia, M; Calabria, C; Caputo, C; Colaleo, A; Creanza, D; Cristella, L; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Maggi, G; Maggi, M; Miniello, G; My, S; Nuzzo, S; Pompili, A; Pugliese, G; Radogna, R; Ranieri, A; Selvaggi, G; Sharma, A; Silvestris, L; Venditti, R; Verwilligen, P; Abbiendi, G; Battilana, C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Chhibra, S S; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G P; Tosi, N; Albergo, S; Costa, S; Di Mattia, A; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Lenzi, P; Meschini, M; Paoletti, S; Russo, L; Sguazzoni, G; Strom, D; Viliani, L; Benussi, L; Bianco, S; Fabbri, F; Piccolo, D; Primavera, F; Calvelli, V; Ferro, F; Monge, M R; Robutti, E; Tosi, S; Brianza, L; Brivio, F; Ciriolo, V; Dinardo, M E; Fiorendi, S; Gennai, S; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Manzoni, R A; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Pigazzini, S; Ragazzi, S; Tabarelli de Fatis, T; Buontempo, S; Cavallo, N; De Nardo, G; Di Guida, S; Esposito, M; Fabozzi, F; Fienga, F; Iorio, A O M; Lanza, G; Lista, L; Meola, S; Paolucci, P; Sciacca, C; Thyssen, F; Azzi, P; Bacchetta, N; Benato, L; Bisello, D; Boletti, A; Carlin, R; Antunes De Oliveira, A Carvalho; Checchia, P; Dall'Osso, M; De Castro Manzano, P; Dorigo, T; Dosselli, U; Gasparini, U; Gonella, F; Lacaprara, S; Margoni, M; Meneguzzo, A T; Pazzini, J; Pozzobon, N; Ronchese, P; Rossin, R; Simonetto, F; Torassa, E; Ventura, S; Zanetti, M; Zotto, P; Braghieri, A; Fallavollita, F; Magnani, A; Montagna, P; Ratti, S P; Re, V; Ressegotti, M; Riccardi, C; Salvini, P; Vai, I; Vitulo, P; Alunni Solestizi, L; Bilei, G M; Ciangottini, D; Fanò, L; Lariccia, P; Leonardi, R; Mantovani, G; Mariani, V; Menichelli, M; Saha, A; Santocchia, A; Androsov, K; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Castaldi, R; Ciocci, M A; Dell'Orso, R; Fedi, G; Giassi, A; Grippo, M T; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Palla, F; Rizzi, A; Savoy-Navarro, A; Spagnolo, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; Cipriani, M; Del Re, D; Diemoz, M; Gelli, S; Longo, E; Margaroli, F; Marzocchi, B; Meridiani, P; Organtini, G; Paramatti, R; Preiato, F; Rahatlou, S; Rovelli, C; Santanastasio, F; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bartosik, N; Bellan, R; Biino, C; Cartiglia, N; Cenna, F; Costa, M; Covarelli, R; Degano, A; Demaria, N; Kiani, B; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Monteil, E; Monteno, M; Obertino, M M; Pacher, L; Pastrone, N; Pelliccioni, M; Pinna Angioni, G L; Ravera, F; Romero, A; Ruspa, M; Sacchi, R; Shchelina, K; Sola, V; Solano, A; Staiano, A; Traczyk, P; Belforte, S; Casarsa, M; Cossutti, F; Della Ricca, G; Zanetti, A; Kim, D H; Kim, G N; Kim, M S; Lee, J; Lee, S; Lee, S W; Oh, Y D; Sekmen, S; Son, D C; Yang, Y C; Lee, A; Kim, H; Brochero Cifuentes, J A; Kim, T J; Cho, S; Choi, S; Go, Y; Gyun, D; Ha, S; Hong, B; Jo, Y; Kim, Y; Lee, K; Lee, K S; Lee, S; Lim, J; Park, S K; Roh, Y; Almond, J; Kim, J; Lee, H; Oh, S B; Radburn-Smith, B C; Seo, S H; Yang, U K; Yoo, H D; Yu, G B; Choi, M; Kim, H; Kim, J H; Lee, J S H; Park, I C; Ryu, G; Ryu, M S; Choi, Y; Goh, J; Hwang, C; Lee, J; Yu, I; Dudenas, V; Juodagalvis, A; Vaitkus, J; Ahmed, I; Ibrahim, Z A; Md Ali, M A B; Mohamad Idris, F; Wan Abdullah, W A T; Yusli, M N; Zolkapli, Z; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-De La Cruz, I; Lopez-Fernandez, R; Magaña Villalba, R; Mejia Guisao, J; Sanchez-Hernandez, A; Carrillo Moreno, S; Oropeza Barrera, C; Vazquez Valencia, F; Carpinteyro, S; Pedraza, I; Salazar Ibarguen, H A; Uribe Estrada, C; Morelos Pineda, A; Krofcheck, D; Butler, P H; Ahmad, A; Ahmad, M; Hassan, Q; Hoorani, H R; Khan, W A; Saddique, A; Shah, M A; Shoaib, M; Waqas, M; Bialkowska, H; Bluj, M; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Zalewski, P; Bunkowski, K; Byszuk, A; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Olszewski, M; Pyskir, A; Walczak, M; Bargassa, P; Beirão Da Cruz E Silva, C; Calpas, B; Di Francesco, A; Faccioli, P; Gallinaro, M; Hollar, J; Leonardo, N; Lloret Iglesias, L; Nemallapudi, M V; Seixas, J; Toldaiev, O; Vadruccio, D; Varela, J; Afanasiev, S; Bunin, P; Gavrilenko, M; Golutvin, I; Gorbunov, I; Kamenev, A; Karjavin, V; Lanev, A; Malakhov, A; Matveev, V; Palichik, V; Perelygin, V; Shmatov, S; Shulha, S; Skatchkov, N; Smirnov, V; Voytishin, N; Zarubin, A; Chtchipounov, L; Golovtsov, V; Ivanov, Y; Kim, V; Kuznetsova, E; Murzin, V; Oreshkin, V; Sulimov, V; Vorobyev, A; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Karneyeu, A; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Gavrilov, V; Lychkovskaya, N; Popov, V; Pozdnyakov, I; Safronov, G; Spiridonov, A; Toms, M; Vlasov, E; Zhokin, A; Aushev, T; Bylinkin, A; Danilov, M; Popova, E; Rusinov, V; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Terkulov, A; Baskakov, A; Belyaev, A; Boos, E; Bunichev, V; Dubinin, M; Dudko, L; Ershov, A; Klyukhin, V; Korneeva, N; Lokhtin, I; Miagkov, I; Obraztsov, S; Perfilov, M; Savrin, V; Volkov, P; Blinov, V; Skovpen, Y; Shtol, D; Azhgirey, I; Bayshev, I; Bitioukov, S; Elumakhov, D; Kachanov, V; Kalinin, A; Konstantinov, D; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Cirkovic, P; Devetak, D; Dordevic, M; Milosevic, J; Rekovic, V; Alcaraz Maestre, J; Barrio Luna, M; Calvo, E; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Delgado Peris, A; Escalante Del Valle, A; Fernandez Bedoya, C; Fernández Ramos, J P; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Navarro De Martino, E; Pérez-Calero Yzquierdo, A; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Soares, M S; de Trocóniz, J F; Missiroli, M; Moran, D; Cuevas, J; Erice, C; Fernandez Menendez, J; Gonzalez Caballero, I; González Fernández, J R; Palencia Cortezon, E; Sanchez Cruz, S; Suárez Andrés, I; Vischia, P; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Curras, E; Fernandez, M; Garcia-Ferrero, J; Gomez, G; Lopez Virto, A; Marco, J; Martinez Rivero, C; Matorras, F; Piedra Gomez, J; Rodrigo, T; Ruiz-Jimeno, A; Scodellaro, L; Trevisani, N; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Baillon, P; Ball, A H; Barney, D; Bloch, P; Bocci, A; Botta, C; Camporesi, T; Castello, R; Cepeda, M; Cerminara, G; Chen, Y; Cimmino, A; d'Enterria, D; Dabrowski, A; Daponte, V; David, A; De Gruttola, M; De Roeck, A; Di Marco, E; Dobson, M; Dorney, B; du Pree, T; Duggan, D; Dünser, M; Dupont, N; Elliott-Peisert, A; Everaerts, P; Fartoukh, S; Franzoni, G; Fulcher, J; Funk, W; Gigi, D; Gill, K; Girone, M; Glege, F; Gulhan, D; Gundacker, S; Guthoff, M; Harris, P; Hegeman, J; Innocente, V; Janot, P; Kieseler, J; Kirschenmann, H; Knünz, V; Kornmayer, A; Kortelainen, M J; Krammer, M; Lange, C; Lecoq, P; Lourenço, C; Lucchini, M T; Malgeri, L; Mannelli, M; Martelli, A; Meijers, F; Merlin, J A; Mersi, S; Meschi, E; Milenovic, P; Moortgat, F; Morovic, S; Mulders, M; Neugebauer, H; Orfanelli, S; Orsini, L; Pape, L; Perez, E; Peruzzi, M; Petrilli, A; Petrucciani, G; Pfeiffer, A; Pierini, M; Racz, A; Reis, T; Rolandi, G; Rovere, M; Sakulin, H; Sauvan, J B; Schäfer, C; Schwick, C; Seidel, M; Sharma, A; Silva, P; Sphicas, P; Steggemann, J; Stoye, M; Takahashi, Y; Tosi, M; Treille, D; Triossi, A; Tsirou, A; Veckalns, V; Veres, G I; Verweij, M; Wardle, N; Wöhri, H K; Zagozdzinska, A; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Horisberger, R; Ingram, Q; Kaestli, H C; Kotlinski, D; Langenegger, U; Rohe, T; Wiederkehr, S A; Bachmair, F; Bäni, L; Bianchini, L; Casal, B; Dissertori, G; Dittmar, M; Donegà, M; Grab, C; Heidegger, C; Hits, D; Hoss, J; Kasieczka, G; Lustermann, W; Mangano, B; Marionneau, M; Martinez Ruiz Del Arbol, P; Masciovecchio, M; Meinhard, M T; Meister, D; Micheli, F; Musella, P; Nessi-Tedaldi, F; Pandolfi, F; Pata, J; Pauss, F; Perrin, G; Perrozzi, L; Quittnat, M; Rossini, M; Schönenberger, M; Starodumov, A; Tavolaro, V R; Theofilatos, K; Wallny, R; Aarrestad, T K; Amsler, C; Caminada, L; Canelli, M F; De Cosa, A; Donato, S; Galloni, C; Hinzmann, A; Hreus, T; Kilminster, B; Ngadiuba, J; Pinna, D; Rauco, G; Robmann, P; Salerno, D; Seitz, C; Yang, Y; Zucchetta, A; Candelise, V; Doan, T H; Jain, Sh; Khurana, R; Konyushikhin, M; Kuo, C M; Lin, W; Pozdnyakov, A; Yu, S S; Kumar, Arun; Chang, P; Chang, Y H; Chao, Y; Chen, K F; Chen, P H; Fiori, F; Hou, W-S; Hsiung, Y; Liu, Y F; Lu, R-S; Miñano Moya, M; Paganis, E; Psallidas, A; Tsai, J F; Asavapibhop, B; Singh, G; Srimanobhas, N; Suwonjandee, N; Adiguzel, A; Boran, F; Cerci, S; Damarseckin, S; Demiroglu, Z S; Dozen, C; Dumanoglu, I; Girgis, S; Gokbulut, G; Guler, Y; Hos, I; Kangal, E E; Kara, O; Kiminsu, U; Oglakci, M; Onengut, G; Ozdemir, K; Sunar Cerci, D; Tali, B; Topakli, H; Turkcapar, S; Zorbakir, I S; Zorbilmez, C; Bilin, B; Bilmis, S; Isildak, B; Karapinar, G; Yalvac, M; Zeyrek, M; Gülmez, E; Kaya, M; Kaya, O; Yetkin, E A; Yetkin, T; Cakir, A; Cankocak, K; Sen, S; Grynyov, B; Levchuk, L; Sorokin, P; Aggleton, R; Ball, F; Beck, L; Brooke, J J; Burns, D; Clement, E; Cussans, D; Flacher, H; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Jacob, J; Kreczko, L; Lucas, C; Newbold, D M; Paramesvaran, S; Poll, A; Sakuma, T; Seif El Nasr-Storey, S; Smith, D; Smith, V J; Bell, K W; Belyaev, A; Brew, C; Brown, R M; Calligaris, L; Cieri, D; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Olaiya, E; Petyt, D; Shepherd-Themistocleous, C H; Thea, A; Tomalin, I R; Williams, T; Baber, M; Bainbridge, R; Buchmuller, O; Bundock, A; Casasso, S; Citron, M; Colling, D; Corpe, L; Dauncey, P; Davies, G; De Wit, A; Della Negra, M; Di Maria, R; Dunne, P; Elwood, A; Futyan, D; Haddad, Y; Hall, G; Iles, G; James, T; Lane, R; Laner, C; Lyons, L; Magnan, A-M; Malik, S; Mastrolorenzo, L; Nash, J; Nikitenko, A; Pela, J; Penning, B; Pesaresi, M; Raymond, D M; Richards, A; Rose, A; Scott, E; Seez, C; Summers, S; Tapper, A; Uchida, K; Vazquez Acosta, M; Virdee, T; Wright, J; Zenz, S C; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Borzou, A; Call, K; Dittmann, J; Hatakeyama, K; Liu, H; Pastika, N; Bartek, R; Dominguez, A; Buccilli, A; Cooper, S I; Henderson, C; Rumerio, P; West, C; Arcaro, D; Avetisyan, A; Bose, T; Gastler, D; Rankin, D; Richardson, C; Rohlf, J; Sulak, L; Zou, D; Benelli, G; Cutts, D; Garabedian, A; Hakala, J; Heintz, U; Hogan, J M; Jesus, O; Kwok, K H M; Laird, E; Landsberg, G; Mao, Z; Narain, M; Piperov, S; Sagir, S; Spencer, E; Syarif, R; Breedon, R; Burns, D; Calderon De La Barca Sanchez, M; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Flores, C; Funk, G; Gardner, M; Ko, W; Lander, R; Mclean, C; Mulhearn, M; Pellett, D; Pilot, J; Shalhout, S; Shi, M; Smith, J; Squires, M; Stolp, D; Tos, K; Tripathi, M; Bachtis, M; Bravo, C; Cousins, R; Dasgupta, A; Florent, A; Hauser, J; Ignatenko, M; Mccoll, N; Saltzberg, D; Schnaible, C; Valuev, V; Weber, M; Bouvier, E; Burt, K; Clare, R; Ellison, J; Gary, J W; Ghiasi Shirazi, S M A; Hanson, G; Heilman, J; Jandir, P; Kennedy, E; Lacroix, F; Long, O R; Olmedo Negrete, M; Paneva, M I; Shrinivas, A; Si, W; Wei, H; Wimpenny, S; Yates, B R; Branson, J G; Cerati, G B; Cittolin, S; Derdzinski, M; Gerosa, R; Holzner, A; Klein, D; Krutelyov, V; Letts, J; Macneill, I; Olivito, D; Padhi, S; Pieri, M; Sani, M; Sharma, V; Simon, S; Tadel, M; Vartak, A; Wasserbaech, S; Welke, C; Wood, J; Würthwein, F; Yagil, A; Zevi Della Porta, G; Amin, N; Bhandari, R; Bradmiller-Feld, J; Campagnari, C; Dishaw, A; Dutta, V; Franco Sevilla, M; George, C; Golf, F; Gouskos, L; Gran, J; Heller, R; Incandela, J; Mullin, S D; Ovcharova, A; Qu, H; Richman, J; Stuart, D; Suarez, I; Yoo, J; Anderson, D; Bendavid, J; Bornheim, A; Bunn, J; Duarte, J; Lawhorn, J M; Mott, A; Newman, H B; Pena, C; Spiropulu, M; Vlimant, J R; Xie, S; Zhu, R Y; Andrews, M B; Ferguson, T; Paulini, M; Russ, J; Sun, M; Vogel, H; Vorobiev, I; Weinberg, M; Cumalat, J P; Ford, W T; Jensen, F; Johnson, A; Krohn, M; Leontsinis, S; Mulholland, T; Stenson, K; Wagner, S R; Alexander, J; Chaves, J; Chu, J; Dittmer, S; Mcdermott, K; Mirman, N; Patterson, J R; Rinkevicius, A; Ryd, A; Skinnari, L; Soffi, L; Tan, S M; Tao, Z; Thom, J; Tucker, J; Wittich, P; Zientek, M; Winn, D; Abdullin, S; Albrow, M; Apollinari, G; Apresyan, A; Banerjee, S; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bolla, G; Burkett, K; Butler, J N; Cheung, H W K; Chlebana, F; Cihangir, S; Cremonesi, M; Elvira, V D; Fisk, I; Freeman, J; Gottschalk, E; Gray, L; Green, D; Grünendahl, S; Gutsche, O; Hare, D; Harris, R M; Hasegawa, S; Hirschauer, J; Hu, Z; Jayatilaka, B; Jindariani, S; Johnson, M; Joshi, U; Klima, B; Kreis, B; Lammel, S; Linacre, J; Lincoln, D; Lipton, R; Liu, M; Liu, T; Lopes De Sá, R; Lykken, J; Maeshima, K; Magini, N; Marraffino, J M; Maruyama, S; Mason, D; McBride, P; Merkel, P; Mrenna, S; Nahn, S; O'Dell, V; Pedro, K; Prokofyev, O; Rakness, G; Ristori, L; Sexton-Kennedy, E; Soha, A; Spalding, W J; Spiegel, L; Stoynev, S; Strait, J; Strobbe, N; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vernieri, C; Verzocchi, M; Vidal, R; Wang, M; Weber, H A; Whitbeck, A; Wu, Y; Acosta, D; Avery, P; Bortignon, P; Bourilkov, D; Brinkerhoff, A; Carnes, A; Carver, M; Curry, D; Das, S; Field, R D; Furic, I K; Konigsberg, J; Korytov, A; Low, J F; Ma, P; Matchev, K; Mei, H; Mitselmakher, G; Rank, D; Shchutska, L; Sperka, D; Thomas, L; Wang, J; Wang, S; Yelton, J; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Ackert, A; Adams, T; Askew, A; Bein, S; Hagopian, S; Hagopian, V; Johnson, K F; Kolberg, T; Perry, T; Prosper, H; Santra, A; Yohay, R; Baarmand, M M; Bhopatkar, V; Colafranceschi, S; Hohlmann, M; Noonan, D; Roy, T; Yumiceva, F; Adams, M R; Apanasevich, L; Berry, D; Betts, R R; Cavanaugh, R; Chen, X; Evdokimov, O; Gerber, C E; Hangal, D A; Hofman, D J; Jung, K; Kamin, J; Sandoval Gonzalez, I D; Trauger, H; Varelas, N; Wang, H; Wu, Z; Zhang, J; Bilki, B; Clarida, W; Dilsiz, K; Durgut, S; Gandrajula, R P; Haytmyradov, M; Khristenko, V; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Ogul, H; Onel, Y; Ozok, F; Penzo, A; Snyder, C; Tiras, E; Wetzel, J; Yi, K; Blumenfeld, B; Cocoros, A; Eminizer, N; Fehling, D; Feng, L; Gritsan, A V; Maksimovic, P; Roskes, J; Sarica, U; Swartz, M; Xiao, M; You, C; Al-Bataineh, A; Baringer, P; Bean, A; Boren, S; Bowen, J; Castle, J; Forthomme, L; Khalil, S; Kropivnitskaya, A; Majumder, D; Mcbrayer, W; Murray, M; Sanders, S; Stringer, R; Tapia Takaki, J D; Wang, Q; Ivanov, A; Kaadze, K; Maravin, Y; Mohammadi, A; Saini, L K; Skhirtladze, N; Toda, S; Rebassoo, F; Wright, D; Anelli, C; Baden, A; Baron, O; Belloni, A; Calvert, B; Eno, S C; Ferraioli, C; Gomez, J A; Hadley, N J; Jabeen, S; Jeng, G Y; Kellogg, R G; Kunkle, J; Mignerey, A C; Ricci-Tam, F; Shin, Y H; Skuja, A; Tonjes, M B; Tonwar, S C; Abercrombie, D; Allen, B; Apyan, A; Azzolini, V; Barbieri, R; Baty, A; Bi, R; Bierwagen, K; Brandt, S; Busza, W; Cali, I A; D'Alfonso, M; Demiragli, Z; Gomez Ceballos, G; Goncharov, M; Hsu, D; Iiyama, Y; Innocenti, G M; Klute, M; Kovalskyi, D; Krajczar, K; Lai, Y S; Lee, Y-J; Levin, A; Luckey, P D; Maier, B; Marini, A C; Mcginn, C; Mironov, C; Narayanan, S; Niu, X; Paus, C; Roland, C; Roland, G; Salfeld-Nebgen, J; Stephans, G S F; Tatar, K; Velicanu, D; Wang, J; Wang, T W; Wyslouch, B; Benvenuti, A C; Chatterjee, R M; Evans, A; Hansen, P; Kalafut, S; Kao, S C; Kubota, Y; Lesko, Z; Mans, J; Nourbakhsh, S; Ruckstuhl, N; Rusack, R; Tambe, N; Turkewitz, J; Acosta, J G; Oliveros, S; Avdeeva, E; Bloom, K; Claes, D R; Fangmeier, C; Gonzalez Suarez, R; Kamalieddin, R; Kravchenko, I; Malta Rodrigues, A; Monroy, J; Siado, J E; Snow, G R; Stieger, B; Alyari, M; Dolen, J; Godshalk, A; Harrington, C; Iashvili, I; Kaisen, J; Nguyen, D; Parker, A; Rappoccio, S; Roozbahani, B; Alverson, G; Barberis, E; Hortiangtham, A; Massironi, A; Morse, D M; Nash, D; Orimoto, T; Teixeira De Lima, R; Trocino, D; Wang, R-J; Wood, D; Bhattacharya, S; Charaf, O; Hahn, K A; Mucia, N; Odell, N; Pollack, B; Schmitt, M H; Sung, K; Trovato, M; Velasco, M; Dev, N; Hildreth, M; Hurtado Anampa, K; Jessop, C; Karmgard, D J; Kellams, N; Lannon, K; Marinelli, N; Meng, F; Mueller, C; Musienko, Y; Planer, M; Reinsvold, A; Ruchti, R; Rupprecht, N; Smith, G; Taroni, S; Wayne, M; Wolf, M; Woodard, A; Alimena, J; Antonelli, L; Bylsma, B; Durkin, L S; Flowers, S; Francis, B; Hart, A; Hill, C; Ji, W; Liu, B; Luo, W; Puigh, D; Winer, B L; Wulsin, H W; Cooperstein, S; Driga, O; Elmer, P; Hardenbrook, J; Hebda, P; Lange, D; Luo, J; Marlow, D; Medvedeva, T; Mei, K; Ojalvo, I; Olsen, J; Palmer, C; Piroué, P; Stickland, D; Svyatkovskiy, A; Tully, C; Malik, S; Barker, A; Barnes, V E; Folgueras, S; Gutay, L; Jha, M K; Jones, M; Jung, A W; Khatiwada, A; Miller, D H; Neumeister, N; Schulte, J F; Shi, X; Sun, J; Wang, F; Xie, W; Parashar, N; Stupak, J; Adair, A; Akgun, B; Chen, Z; Ecklund, K M; Geurts, F J M; Guilbaud, M; Li, W; Michlin, B; Northup, M; Padley, B P; Roberts, J; Rorie, J; Tu, Z; Zabel, J; Betchart, B; Bodek, A; de Barbaro, P; Demina, R; Duh, Y T; Ferbel, T; Galanti, M; Garcia-Bellido, A; Han, J; Hindrichs, O; Khukhunaishvili, A; Lo, K H; Tan, P; Verzetti, M; Agapitos, A; Chou, J P; Gershtein, Y; Gómez Espinosa, T A; Halkiadakis, E; Heindl, M; Hughes, E; Kaplan, S; Kunnawalkam Elayavalli, R; Kyriacou, S; Lath, A; Montalvo, R; Nash, K; Osherson, M; Saka, H; Salur, S; Schnetzer, S; Sheffield, D; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Delannoy, A G; Foerster, M; Heideman, J; Riley, G; Rose, K; Spanier, S; Thapa, K; Bouhali, O; Celik, A; Dalchenko, M; De Mattia, M; Delgado, A; Dildick, S; Eusebi, R; Gilmore, J; Huang, T; Juska, E; Kamon, T; Mueller, R; Pakhotin, Y; Patel, R; Perloff, A; Perniè, L; Rathjens, D; Safonov, A; Tatarinov, A; Ulmer, K A; Akchurin, N; Damgov, J; De Guio, F; Dragoiu, C; Dudero, P R; Faulkner, J; Gurpinar, E; Kunori, S; Lamichhane, K; Lee, S W; Libeiro, T; Peltola, T; Undleeb, S; Volobouev, I; Wang, Z; Greene, S; Gurrola, A; Janjam, R; Johns, W; Maguire, C; Melo, A; Ni, H; Sheldon, P; Tuo, S; Velkovska, J; Xu, Q; Arenton, M W; Barria, P; Cox, B; Hirosky, R; Ledovskoy, A; Li, H; Neu, C; Sinthuprasith, T; Sun, X; Wang, Y; Wolfe, E; Xia, F; Clarke, C; Harr, R; Karchin, P E; Sturdy, J; Zaleski, S; Belknap, D A; Buchanan, J; Caillol, C; Dasu, S; Dodd, L; Duric, S; Gomber, B; Grothe, M; Herndon, M; Hervé, A; Hussain, U; Klabbers, P; Lanaro, A; Levine, A; Long, K; Loveless, R; Pierro, G A; Polese, G; Ruggles, T; Savin, A; Smith, N; Smith, W H; Taylor, D; Woods, N

    2017-01-01

    Normalized double-differential cross sections for top quark pair ([Formula: see text]) production are measured in pp collisions at a centre-of-mass energy of 8[Formula: see text] with the CMS experiment at the LHC. The analyzed data correspond to an integrated luminosity of 19.7[Formula: see text]. The measurement is performed in the dilepton [Formula: see text] final state. The [Formula: see text] cross section is determined as a function of various pairs of observables characterizing the kinematics of the top quark and [Formula: see text] system. The data are compared to calculations using perturbative quantum chromodynamics at next-to-leading and approximate next-to-next-to-leading orders. They are also compared to predictions of Monte Carlo event generators that complement fixed-order computations with parton showers, hadronization, and multiple-parton interactions. Overall agreement is observed with the predictions, which is improved when the latest global sets of proton parton distribution functions are used. The inclusion of the measured [Formula: see text] cross sections in a fit of parametrized parton distribution functions is shown to have significant impact on the gluon distribution.

  9. Rayleigh, Compton and K-shell radiative resonant Raman scattering in 83Bi for 88.034 keV γ-rays

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjeev; Sharma, Veena; Mehta, D.; Singh, Nirmal

    2007-11-01

    The Rayleigh, Compton and K-shell radiative resonant Raman scattering cross-sections for the 88.034 keV γ-rays have been measured in the 83Bi (K-shell binding energy = 90.526 keV) element. The measurements have been performed at 130° scattering angle using reflection-mode geometrical arrangement involving the 109Cd radioisotope as photon source and an LEGe detector. Computer simulations were exercised to determine distributions of the incident and emission angles, which were further used in evaluation of the absorption corrections for the incident and emitted photons in the target. The measured cross-sections for the Rayleigh scattering are compared with the modified form-factors (MFs) corrected for the anomalous-scattering factors (ASFs) and the S-matrix calculations; and those for the Compton scattering are compared with the Klein-Nishina cross-sections corrected for the non-relativistic Hartree-Fock incoherent scattering function S(x, Z). The ratios of the measured KL2, KL3, KM and KN2,3 radiative resonant Raman scattering cross-sections are found to be in general agreement with those of the corresponding measured fluorescence transition probabilities.

  10. Photodissociation in the atmosphere of Mars - Impact of high resolution, temperature-dependent CO2 cross-section measurements

    NASA Technical Reports Server (NTRS)

    Anbar, A. D.; Allen, M.; Nair, H. A.

    1993-01-01

    We have investigated the impact of high resolution, temperature-dependent CO2 cross-section measurements, reported by Lewis and Carver (1983), on calculations of photodissociation rate coefficients in the Martian atmosphere. We find that the adoption of 50 A intervals for the purpose of computational efficiency results in errors in the calculated values for photodissociation of CO2, H2O, and O2 which are generally not above 10 percent, but as large as 20 percent in some instances. These are acceptably small errors, especially considering the uncertainties introduced by the large temperature dependence of the CO2 cross section. The inclusion of temperature-dependent CO2 cross sections is shown to lead to a decrease in the diurnally averaged rate of CO2 photodissociation as large as 33 percent at some altitudes, and increases of as much as 950 percent and 80 percent in the photodissociation rate coefficients of H2O and O2, respectively. The actual magnitude of the changes depends on the assumptions used to model the CO2 absorption spectrum at temperatures lower than the available measurements, and at wavelengths longward of 1970 A.

  11. ELECTRICAL RESISTIVITY TECHNIQUE TO ASSESS THE INTEGRITY OF GEOMEMBRANE LINERS

    EPA Science Inventory

    Two-dimensional electrical modeling of a liner system was performed using computer techniques. The modeling effort examined the voltage distributions in cross sections of lined facilities with different leak locations. Results confirmed that leaks in the liner influenced voltage ...

  12. Navier-Stokes analysis and experimental data comparison of compressible flow within ducts

    NASA Technical Reports Server (NTRS)

    Harloff, G. J.; Reichert, B. A.; Sirbaugh, J. R.; Wellborn, S. R.

    1992-01-01

    Many aircraft employ ducts with centerline curvature or changing cross-sectional shape to join the engine with inlet and exhaust components. S-ducts convey air to the engine compressor from the intake and often decelerate the flow to achieve an acceptable Mach number at the engine compressor by increasing the cross-sectional area downstream. Circular-to-rectangular transition ducts are used on aircraft with rectangular exhaust nozzles to connect the engine and nozzle. To achieve maximum engine performance, the ducts should minimize flow total pressure loss and total pressure distortion at the duct exit. Changes in the curvature of the duct centerline or the duct cross-sectional shape give rise to streamline curvature which causes cross stream pressure gradients. Secondary flows can be caused by deflection of the transverse vorticity component of the boundary layer. This vortex tilting results in counter-rotating vortices. Additionally, the adverse streamwise pressure gradient caused by increasing cross-sectional area can lead to flow separation. Vortex pairs have been observed in the exit planes of both duct types. These vortices are due to secondary flows induced by pressure gradients resulting from streamline curvature. Regions of low total pressure are produced when the vortices convect boundary layer fluid into the main flow. The purpose of the present study is to predict the measured flow field in a diffusing S-duct and a circular-to-rectangular transition duct with a full Navier-Stokes computer program, PARC3D, and to compare the numerical predictions with new detailed experimental measurements. The work was undertaken to extend previous studies and to provide additional CFD validation data needed to help model flows with strong secondary flow and boundary layer separation. The S-duct computation extends the study of Smith et al, and Harloff et al, which concluded that the computation might be improved by using a finer grid and more advanced turbulence models. The present study compares results for both the Baldwin-Lomas and k-epsilon turbulence models and is conducted with a refined grid. For the transition duct, two inlet conditions were considered, the first with straight flow and the second with swirling flow. The first case permits examination of the effects of the geometric transition on the flow field, while the second case includes the rotational flow effect characteristic of a gas turbine engine.

  13. Determination of channel capacity of the Mokelumne River downstream from Camanche Dam, San Joaquin and Sacramento Counties, California

    USGS Publications Warehouse

    Simpson, R.G.

    1972-01-01

    This study evaluates the adequacy of a 39-mile reach of the Mokelumne River in San Joaquin and Sacramento Counties, California, to carry planned flood releases between Camanche Reservoir and the Bensons Ferry Bridge near Thornton. The flood releases from Camanche Reservoir are to be restricted, insofar as possible, so that the flows in the Mokelumne River will not exceed 5,000 cfs (cubic feet per second) as measured at the gaging station below Camanche Dam. Areas of inundation and computed floodwater profiles are based on channel conditions in late 1970 and on observed water-surface profiles during flood releases of about 5,000 cfs in January 1969 and January 1970. The inundated area shown on the maps (appendix A) and the water-surface elevations indicated on the cross sections (appendix G) are for the flood releases of those dates. The following conclusions are contingent on there being no levee failures during periods of high flow and no significant channel changes since the flood release of January 1970. 1. High tides in San Francisco Bay and, to a greater degree, flood stages on the Cosumnes River, cause backwater in the study reach. Severe backwater conditions occurring simultaneously with a flow of 5,000 cfs in the Mokelumne River can increase the flood stage 4 to 6 feet at Bensons Ferry Bridge (cross section 1). Backwater effects decrease in an upstream direction and are less than 0.5 foot at cross section 35, a river distance of 8.6 miles upstream from cross section 1, and 1.5 miles downstream from the Peltier Road bridge. 2. In the reach between cross sections 1 and 35, a 5,000 cfs release from Camanche Reservoir with maximum backwater effect (measured at cross section 1 at the mouth of the Cosumnes River) is confined within the natural or leveed banks except on the right bank flood plain between cross sections 12 and 19. 3. Upstream from cross section 35, there is overbank flooding at a flow of 5,000 cfs between cross sections 48 and 51, and 62 and 67.5. An increase in flow from 5,000 to 6,000 cfs will cause flooding between cross sections 43 and 47, 52 and 56, and 73 and 85. 4. A discharge of 5,000 cfs will pass through all bridge openings in the study reach except that of the Western Pacific Railroad Co. bridge at cross section 4. If large amounts of debris lodge on the railroad bridge when backwater from the Cosumnes River occurs, the debris could cause higher stages and flooding along the right bank between cross sections 5 and 12.

  14. Adhesion of Mineral and Soot Aerosols can Strongly Affect their Scattering and Absorption Properties

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Dlugach, Jana M.

    2012-01-01

    We use the numerically exact superposition T-matrix method to compute the optical cross sections and the Stokes scattering matrix for polydisperse mineral aerosols (modeled as homogeneous spheres) covered with a large number of much smaller soot particles. These results are compared with the Lorenz-Mie results for a uniform external mixture of mineral and soot aerosols. We show that the effect of soot particles adhering to large mineral particles can be to change the extinction and scattering cross sections and the asymmetry parameter quite substantially. The effect on the phase function and degree of linear polarization can be equally significant.

  15. Finite-element reentry heat-transfer analysis of space shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Quinn, Robert D.; Gong, Leslie

    1986-01-01

    A structural performance and resizing (SPAR) finite-element thermal analysis computer program was used in the heat-transfer analysis of the space shuttle orbiter subjected to reentry aerodynamic heating. Three wing cross sections and one midfuselage cross section were selected for the thermal analysis. The predicted thermal protection system temperatures were found to agree well with flight-measured temperatures. The calculated aluminum structural temperatures also agreed reasonably well with the flight data from reentry to touchdown. The effects of internal radiation and of internal convection were found to be significant. The SPAR finite-element solutions agreed reasonably well with those obtained from the conventional finite-difference method.

  16. Magnetic resonance electrical impedance tomography (MREIT): simulation study of J-substitution algorithm.

    PubMed

    Kwon, Ohin; Woo, Eung Je; Yoon, Jeong-Rock; Seo, Jin Keun

    2002-02-01

    We developed a new image reconstruction algorithm for magnetic resonance electrical impedance tomography (MREIT). MREIT is a new EIT imaging technique integrated into magnetic resonance imaging (MRI) system. Based on the assumption that internal current density distribution is obtained using magnetic resonance imaging (MRI) technique, the new image reconstruction algorithm called J-substitution algorithm produces cross-sectional static images of resistivity (or conductivity) distributions. Computer simulations show that the spatial resolution of resistivity image is comparable to that of MRI. MREIT provides accurate high-resolution cross-sectional resistivity images making resistivity values of various human tissues available for many biomedical applications.

  17. Photoionization of sodium atoms and electron scattering from ionized sodium

    NASA Technical Reports Server (NTRS)

    Dasgupta, A.; Bhatia, A. K.

    1985-01-01

    The polarized-orbital method of Temkin (1957) is applied using polarized orbitals determined from Sternheimer's equation to compute the photoionization cross sections of Na atoms from threshold to about 60 eV. The approximations involved in the analysis are explained in detail; the explicit forms of the integrals and matrix expressions are given in appendices; and the results are presented in tables and graphs. Good agreement is found with the results of Chang and Kelly (1975), and the possibility that small amounts of molecular vapor in Na-photoionization experiments are responsible for the discrepancies between calculated and measured cross sections is considered.

  18. Photoionization cross section by Stieltjes imaging applied to coupled cluster Lanczos pseudo-spectra

    NASA Astrophysics Data System (ADS)

    Cukras, Janusz; Coriani, Sonia; Decleva, Piero; Christiansen, Ove; Norman, Patrick

    2013-09-01

    A recently implemented asymmetric Lanczos algorithm for computing (complex) linear response functions within the coupled cluster singles (CCS), coupled cluster singles and iterative approximate doubles (CC2), and coupled cluster singles and doubles (CCSD) is coupled to a Stieltjes imaging technique in order to describe the photoionization cross section of atoms and molecules, in the spirit of a similar procedure recently proposed by Averbukh and co-workers within the Algebraic Diagrammatic Construction approach. Pilot results are reported for the atoms He, Ne, and Ar and for the molecules H2, H2O, NH3, HF, CO, and CO2.

  19. Photoionization cross section by Stieltjes imaging applied to coupled cluster Lanczos pseudo-spectra.

    PubMed

    Cukras, Janusz; Coriani, Sonia; Decleva, Piero; Christiansen, Ove; Norman, Patrick

    2013-09-07

    A recently implemented asymmetric Lanczos algorithm for computing (complex) linear response functions within the coupled cluster singles (CCS), coupled cluster singles and iterative approximate doubles (CC2), and coupled cluster singles and doubles (CCSD) is coupled to a Stieltjes imaging technique in order to describe the photoionization cross section of atoms and molecules, in the spirit of a similar procedure recently proposed by Averbukh and co-workers within the Algebraic Diagrammatic Construction approach. Pilot results are reported for the atoms He, Ne, and Ar and for the molecules H2, H2O, NH3, HF, CO, and CO2.

  20. Connecting Ellipses to Rectangles in Passive Scalar Transport

    NASA Astrophysics Data System (ADS)

    Aminian, Manuchehr; Bernardi, Francesca; Camassa, Roberto; Harris, Daniel; McLaughlin, Richard

    2017-11-01

    We study how passive scalar transport in Poiseuille flow is affected by the shape of the pipe cross section. Our previous results have established nontrivial dependence of the skewness of the tracer distribution upon the pipe shape. Previously, we have studied the families of rectangles and ellipses, with the behavior past diffusive timescales primarily depending on aspect ratio, and the type of geometry being secondary. However, at timescales well before the diffusion timescale, the family of ellipses is distinct compared to rectangles. We investigate this phenomenon by studying a collection of exotic cross sections connecting the ellipses and rectangles, using a combination of theoretical and computational tools.

  1. Stress state estimation in multilayer support of vertical shafts, considering off-design cross-sectional deformation

    NASA Astrophysics Data System (ADS)

    Antsiferov, SV; Sammal, AS; Deev, PV

    2018-03-01

    To determine the stress-strain state of multilayer support of vertical shafts, including cross-sectional deformation of the tubing rings as against the design, the authors propose an analytical method based on the provision of the mechanics of underground structures and surrounding rock mass as the elements of an integrated deformable system. The method involves a rigorous solution of the corresponding problem of elasticity, obtained using the mathematical apparatus of the theory of analytic functions of a complex variable. The design method is implemented as a software program allowing multivariate applied computation. Examples of the calculation are given.

  2. Cochlear mechanics: Analysis for a pure tone

    NASA Astrophysics Data System (ADS)

    Holmes, M. H.; Cole, J. D.

    1983-11-01

    The dynamical response of a three-dimensional hydroelastic model of the cochlea is studied for a pure tone forcing. The basilar membrane is modeled as an inhomogenous, orthotropic elastic plate and the fluid is assumed to be Newtonian. The resulting mathematical problem is reduced using viscous boundary layer theory and slender body approximations. This leads to a nonlinear eigenvalue problem in the transverse cross-section. The solutions for the case of a rectangular and semi-circular cross-section are computed and comparison is made with experiment. The role of the place principle in determining the difference limen is presented and it is shown how the theory agrees with the experimental measurements.

  3. Calculating Second-Order Effects in MOSFET's

    NASA Technical Reports Server (NTRS)

    Benumof, Reuben; Zoutendyk, John A.; Coss, James R.

    1990-01-01

    Collection of mathematical models includes second-order effects in n-channel, enhancement-mode, metal-oxide-semiconductor field-effect transistors (MOSFET's). When dimensions of circuit elements relatively large, effects neglected safely. However, as very-large-scale integration of microelectronic circuits leads to MOSFET's shorter or narrower than 2 micrometer, effects become significant in design and operation. Such computer programs as widely-used "Simulation Program With Integrated Circuit Emphasis, Version 2" (SPICE 2) include many of these effects. In second-order models of n-channel, enhancement-mode MOSFET, first-order gate-depletion region diminished by triangular-cross-section deletions on end and augmented by circular-wedge-cross-section bulges on sides.

  4. Comprehensive description of J / ψ production in proton-proton collisions at collider energies

    DOE PAGES

    Ma, Yan -Qing; Venugopalan, Raju

    2014-11-04

    We employ a small x Color Glass Condensate + Non-Relativistic QCD (NRQCD) formalism to compute J/ψ production at low p⊥ in proton-proton collisions at collider energies. Very good agreement is obtained for total cross-sections, rapidity distributions and low momentum p⊥ distributions. Similar agreement is obtained for ψ' production. We observe an overlap region in p⊥ where our results match smoothly to those obtained in a next-to-leading order (NLO) collinearly factorized NRQCD formalism. The relative contribution of color singlet and color octet contributions can be quantified in the CGC+NRQCD framework, with the former contributing approximately 10% of the total cross-section.

  5. HZEFRG1 - SEMIEMPIRICAL NUCLEAR FRAGMENTATION MODEL

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.

    1994-01-01

    The high charge and energy (HZE), Semiempirical Nuclear Fragmentation Model, HZEFRG1, was developed to provide a computationally efficient, user-friendly, physics-based program package for generating nuclear fragmentation databases. These databases can then be used in radiation transport applications such as space radiation shielding and dosimetry, cancer therapy with laboratory heavy ion beams, and simulation studies of detector design in nuclear physics experiments. The program provides individual element and isotope production cross sections for the breakup of high energy heavy ions by the combined nuclear and Coulomb fields of the interacting nuclei. The nuclear breakup contributions are estimated using an energy-dependent abrasion-ablation model of heavy ion fragmentation. The abrasion step involves removal of nucleons by direct knockout in the overlap region of the colliding nuclei. The abrasions are treated on a geometric basis and uniform spherical nuclear density distributions are assumed. Actual experimental nuclear radii obtained from tabulations of electron scattering data are incorporated. Nuclear transparency effects are included by using an energy-dependent, impact-parameter-dependent average transmission factor for the projectile and target nuclei, which accounts for the finite mean free path of nucleons in nuclear matter. The ablation step, as implemented by Bowman, Swiatecki, and Tsang (LBL report no. LBL-2908, July 1973), was treated as a single-nucleon emission for every 10 MeV of excitation energy. Fragmentation contributions from electromagnetic dissociation (EMD) processes, arising from the interacting Coulomb fields, are estimated by using the Weiszacker-Williams theory, extended to include electric dipole and electric quadrupole contributions to one-nucleon removal cross sections. HZEFRG1 consists of a main program, seven function subprograms, and thirteen subroutines. Each is fully commented and begins with a brief description of its functionality. The inputs, which are provided interactively by the user in response to on-screen questions, consist of the projectile kinetic energy in units of MeV/nucleon and the masses and charges of the projectile and target nuclei. With proper inputs, HZEFRG1 first calculates the EMD cross sections and then begins the calculations for nuclear fragmentation by searching through a specified number of isotopes for each charge number (Z) from Z=1 (hydrogen) to the charge of the incident fragmenting nucleus (Zp). After completing the nuclear fragmentation cross sections, HZEFRG1 sorts through the results and writes the sorted output to a file in descending order, based on the charge number of the fragmented nucleus. Details of the theory, extensive comparisons of its predictions with available experimental cross section data, and a complete description of the code implementing it are given in the program documentation. HZEFRG1 is written in ANSI FORTRAN 77 to be machine independent. It was originally developed on a DEC VAX series computer, and has been successfully implemented on a DECstation running RISC ULTRIX 4.3, a Sun4 series computer running SunOS 4.1, an HP 9000 series computer running HP-UX 8.0.1, a Cray Y-MP series computer running UNICOS, and IBM PC series computers running MS-DOS 3.3 and higher. HZEFRG1 requires 1Mb of RAM for execution. In addition, a FORTRAN 77 compiler is required to create an executable. A sample output run is included on the distribution medium for numerical comparison. The standard distribution medium for this program is a 3.5 inch 1.44Mb MS-DOS format diskette. Alternate distribution media and formats are available upon request. HZEFRG1 was completed in 1992.

  6. Level II scour analysis for Bridge 8 (BARTTH00020008) on Town Highway 2, crossing Roaring Brook, Barton, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Ivanoff, Michael A.

    1996-01-01

    Total scour at a highway crossing is comprised of three components: 1) long-term aggradation or degradation; 2) contraction scour (due to reduction in flow area caused by a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute scour depths for contraction and local scour and a summary of the results follows. Contraction scour for all modelled flows ranged from 1.4 to 2.8 feet and the worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 8.5 to 16.5 feet and the worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  7. Level II scour analysis for Bridge 49 (BENNCYHUNT0049) on Hunt Street, crossing the Walloomsac River, Bennington, Vermont

    USGS Publications Warehouse

    Olson, Scott A.; Medalie, Laura

    1997-01-01

    2 stone fill also protects the channel banks upstream and downstream of the bridge for a minimum distance of 17 feet from the respective bridge faces. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour computed for all modelled flows ranged from 0.9 to 5.0 ft. The worst-case contraction scour occurred at the 500-year discharge. Computed left abutment scour ranged from 15.3 to 16.5 ft. with the worst-case scour occurring at the incipient roadway-overtopping discharge. Computed right abutment scour ranged from 6.0 to 8.7 ft. with the worst-case scour occurring at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  8. An experiment for determining the Euler load by direct computation

    NASA Technical Reports Server (NTRS)

    Thurston, Gaylen A.; Stein, Peter A.

    1986-01-01

    A direct algorithm is presented for computing the Euler load of a column from experimental data. The method is based on exact inextensional theory for imperfect columns, which predicts two distinct deflected shapes at loads near the Euler load. The bending stiffness of the column appears in the expression for the Euler load along with the column length, therefore the experimental data allows a direct computation of bending stiffness. Experiments on graphite-epoxy columns of rectangular cross-section are reported in the paper. The bending stiffness of each composite column computed from experiment is compared with predictions from laminated plate theory.

  9. Implementation of radiation shielding calculation methods. Volume 1: Synopsis of methods and summary of results

    NASA Technical Reports Server (NTRS)

    Capo, M. A.; Disney, R. K.

    1971-01-01

    The work performed in the following areas is summarized: (1) Analysis of Realistic nuclear-propelled vehicle was analyzed using the Marshall Space Flight Center computer code package. This code package includes one and two dimensional discrete ordinate transport, point kernel, and single scatter techniques, as well as cross section preparation and data processing codes, (2) Techniques were developed to improve the automated data transfer in the coupled computation method of the computer code package and improve the utilization of this code package on the Univac-1108 computer system. (3) The MSFC master data libraries were updated.

  10. Energy Deposition and Escape Fluxes Induced by Energetic Solar Wind Ions and ENAs Precipitating into Mars Atmosphere: Accurate Consideration of Energy Transfer Collisions

    NASA Astrophysics Data System (ADS)

    Kharchenko, V. A.; Lewkow, N.; Gacesa, M.

    2014-12-01

    Formation and evolution of neutral fluxes of atoms and molecules escaping from the Mars atmosphere have been investigated for the sputtering and photo-chemical mechanisms. Energy and momentum transfer in collisions between the atmospheric gas and fast atoms and molecules have been considered using our recently obtained angular and energy dependent cross sections[1]. We have showed that accurate angular dependent collision cross sections are critical for the description of the energy relaxation of precipitating keV energetic ions/ENAs and for computations of altitude profiles of the fast atom and molecule production rates in recoil collisions. Upward and escape fluxes of the secondary energetic He and O atoms and H2, N2, CO and CO2 molecules, induced by precipitating ENAs, have been determined and their non-thermal energy distribution functions have been computed at different altitudes for different solar conditions. Precipitation and energy deposition of the energetic H2O molecules and products of their dissociations into the Mars atmosphere in the Comet C/2013 A1 (Siding Spring) - Mars interaction have been modeled using accurate cross sections. Reflection of precipitating ENAs by the Mars atmosphere has been analyzed in detail. [1] N. Lewkow and V. Kharchenko, "Precipitation of Energetic Neutral Atoms and Escape Fluxes induced from the Mars Atmosphere, ApJ, v.790, p.98 (2014).

  11. Potential energy surface and rate coefficients of protonated cyanogen (HNCCN+) induced by collision with helium (He) at low temperature

    NASA Astrophysics Data System (ADS)

    Bop, Cheikh T.; Faye, N. AB; Hammami, K.

    2018-05-01

    Nitriles have been identified in space. Accurately modeling their abundance requires calculations of collisional rate coefficients. These data are obtained by first computing potential energy surfaces (PES) and cross-sections using high accurate quantum methods. In this paper, we report the first interaction potential of the HNCCN+-He collisional system along with downward rate coefficients among the 11 lowest rotational levels of HNCCN+. The PES was calculated using the explicitly correlated coupled cluster approach with simple, second and non-iterative triple excitation (CCSD(T)-F12) in conjunction with the augmented-correlation consistent-polarized valence triple zeta (aug-cc-pVTZ) Gaussian basis set. It presents two local minima of ˜283 and ˜136 cm-1, the deeper one is located at R = 9 a0 towards the H end (HeṡṡṡHNCCN+). Using the so-computed PES, we calculated rotational cross-sections of HNCCN+ induced by collision with He for energies ranging up to 500 cm-1 with the exact quantum mechanical close coupling (CC) method. Downward rate coefficients were then worked out by thermally averaging the cross-sections at low temperature (T ≤ 100 K). The discussion on propensity rules showed that the odd Δj transitions were favored. The results obtained in this work may be crucially needed to accurately model the abundance of cyanogen and its protonated form in space.

  12. Rotationally inelastic collisions of H2+ ions with He buffer gas: Computing cross sections and rates

    NASA Astrophysics Data System (ADS)

    Hernández Vera, Mario; Gianturco, F. A.; Wester, R.; da Silva, H.; Dulieu, O.; Schiller, S.

    2017-03-01

    We present quantum calculations for the inelastic collisions between H2+ molecules, in rotationally excited internal states, and He atoms. This work is motivated by the possibility of experiments in which the molecular ions are stored and translationally cooled in an ion trap and a He buffer gas is added for deactivation of the internal rotational population, in particular at low (cryogenic) translational temperatures. We carry out an accurate representation of the forces at play from an ab initio description of the relevant potential energy surface, with the molecular ion in its ground vibrational state, and obtain the cross sections for state-changing rotationally inelastic collisions by solving the coupled channel quantum scattering equations. The presence of hyperfine and fine structure effects in both ortho- and para-H2+ molecules is investigated and compared to the results where such a contribution is disregarded. An analysis of possible propensity rules that may predict the relative probabilities of inelastic events involving rotational state-changing is also carried out, together with the corresponding elastic cross sections from several initial rotational states. Temperature-dependent rotationally inelastic rates are then computed and discussed in terms of relative state-changing collisional efficiency under trap conditions. The results provide the essential input data for modeling different aspects of the experimental setups which can finally produce internally cold molecular ions interacting with a buffer gas.

  13. Electron impact ionization cross section studies of C2Fx (x = 1 - 6) and C3Fx (x = 1 - 8) fluorocarbon species

    NASA Astrophysics Data System (ADS)

    Gupta, Dhanoj; Choi, Heechol; Song, Mi-Young; Karwasz, Grzegorz P.; Yoon, Jung-Sik

    2017-05-01

    The total ionization cross section for C2Fx (x = 1 - 6) and C3Fx (x = 1 - 8) fluorocarbon species are studied with the Binary-Encounter Bethe (BEB) model using various orbital parameters calculated from restricted/unrestricted Hartree-Fock (RHF/UHF) and Density Functional Theory (DFT). All the targets were optimized for their minimal structures and energies with several ab-initio methods with the aug-cc-pVTZ basis set. Among them, the present results with RHF/UHF orbital energies showed good agreement with the experimental results for stable targets C2F6, C2F4, C3F6 and C3F8. The results with the DFT (ωB97X/ωB97X-D) showed a reasonable agreement with the recent calculation of Bull et al. [J.N. Bull, M. Bart, C. Vallance, P.W. Harland, Phys. Rev. A 88, 062710 (2013)] for C2F6, C3F6 and C3F8 targets. The ionization cross section for C2F, C2F2, C2F3, C3F, C3F2, C3F3, C3F4, C3F5 and C3F7 were computed for the first time in the present study. We have also computed the vertical ionization potentials and polarizability for all the targets and compared them with other experimental and theoretical values. A good agreement is found between the present and the previous results. The calculated polarizability in turn is used to study the correlation with maximum ionization cross section and in general a good correlation is found among them, confirming the consistency and reliability of the present data. The cross section data reported in this article are very important for plasma modeling especially related to fluorocarbon plasmas. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

  14. Comparison of x-ray cross sections for diagnostic and therapeutic medical physics.

    PubMed

    Boone, J M; Chavez, A E

    1996-12-01

    The purpose of this technical report is to make available an up-to-date source of attenuation coefficient data to the medical physics community, and to compare these data with other more familiar sources. Data files from Lawrence Livermore National Laboratory (in Livermore, CA) were truncated to match the needs of the medical physics community, and an interpolation routine was written to calculate a continuous set of cross sections spanning energies from 1 keV to 50 MeV. Coefficient data are available for elements Z = 1 through Z = 100. Values for mass attenuation coefficients, mass-energy-transfer coefficients, and mass-energy absorption coefficients are produced by a single computer subroutine. In addition to total interaction cross sections, the cross sections for photoelectric, Rayleigh, Compton, pair, and some triplet interactions are also produced by this single program. The coefficients were compared to the 1970 data of Storm and Israel over the energy interval from 1 to 1000 keV; for elements 10, 20, 30, 40, 50, 60, 70, and 80, the average positive difference between the Storm and Israel coefficients and the coefficients reported here are 1.4%, 2.7%, and 2.6%, for the mass attenuation, mass energy-transfer, and mass-energy absorption coefficients, respectively. The 1969 data compilation of mass attenuation coefficients from McMaster et al. were also compared with the newer LLNL data. Over the energy region from 10 keV to 1000 keV, and from elements Z = 1 to Z = 82 (inclusive), the overall average difference was 1.53% (sigma = 0.85%). While the overall average difference was small, there was larger variation (> 5%) between cross sections for some elements. In addition to coefficient data, other useful data such as the density, atomic weight, K, L1, L2, L3, M, and N edges, and numerous characteristic emission energies are output by the program, depending on a single input variable. The computer source code, written in C, can be accessed and downloaded from the World Wide Web at: http:@www.aip.org/epaps/epaps.html [E-MPHSA-23-1977].

  15. Cross-Sectional Time Series Designs: A General Transformation Approach.

    ERIC Educational Resources Information Center

    Velicer, Wayne F.; McDonald, Roderick P.

    1991-01-01

    The general transformation approach to time series analysis is extended to the analysis of multiple unit data by the development of a patterned transformation matrix. The procedure includes alternatives for special cases and requires only minor revisions in existing computer software. (SLD)

  16. Femoral strength and posture in terrestrial birds and non-avian theropods.

    PubMed

    Farke, Andrew A; Alicea, Justy

    2009-09-01

    Osteological and experimental evidence suggest a change in femoral posture between non-avian dinosaurs (in which the femur presumably was carried in a subvertical position) and birds (in which the femur is held nearly horizontal during most phases of terrestrial locomotion). In this study, we used a broad comparative sample to test the hypothesis that cross-sectional properties of the femur records evidence of this presumed change in posture. I(max) and I(min) (second moment of area, related to resistance to bending) and cross-sectional area (indicating resistance to compression) were measured from computed tomography scans of the femora of 30 species of flightless or primarily terrestrial birds, one probable non-dinosaur dinosauromorph, and at least four species of non-avian theropods. It was predicted that birds should have more eccentrically shaped femoral midshafts as measured by I(max)/II(min) (reflecting greater bending) and comparatively smaller cross-sectional areas than non-avians. Results show that no significant differences occur between non-avian dinosaurs and birds for any parameter, and the samples overlapped broadly in many cases. Thus, cross-sectional properties cannot be used to infer differences in femoral posture between the two groups. This surprising finding might be explained by the fact that femoral postures were not drastically different or that a gradation of postures occurred in each sample. It is also possible that bone loading during life was not closely correlated with cross-sectional morphology. We conclude that cross-sectional properties should be used with caution in determining the posture and behaviors of extinct animals, and only in conjunction with other morphological information. (c) 2009 Wiley-Liss, Inc.

  17. Staging studies for cutaneous melanoma in the United States: a population-based analysis.

    PubMed

    Wasif, Nabil; Etzioni, David; Haddad, Dana; Gray, Richard J; Bagaria, Sanjay P; Pockaj, Barbara A

    2015-04-01

    Routine cross-sectional imaging for staging of early-stage cutaneous melanoma is not recommended. This study sought to investigate the use of imaging for staging of cutaneous melanoma in the United States. Patients with nonmetastatic cutaneous melanoma newly diagnosed between 2000 and 2007 were identified from the Surveillance Epidemiology End Results-Medicare registry. Any imaging study performed within 90 days after diagnosis was considered a staging study. The study identified 25,643 patients, 3,116 (12.2 %) of whom underwent cross-sectional imaging: positron emission tomography (PET) (7.2 %), computed tomography (CT) (5.9 %), and magnetic resonance imaging (MRI) (0.6 %). From 2000 to 2007, the use of cross-sectional imaging increased from 8.7 to 16.1 % (p < 0.001), driven predominantly by increased usage of PET (4.2-12.1 %). Stratification by T and N classification showed that cross-sectional imaging was used for 8.6 % of T1, 14.3 % of T2, 18.6 % of T3, and 26.7 % of T4 tumors (p < 0.001) and for 33.3 % of node-positive patients versus 11.1 % of node-negative patients (p < 0.001). Factors predictive of cross-sectional imaging included T classification [odds ratio (OR) for T4 vs T1, 2.66; 95 % confidence interval (CI) 2.33-3.03], node positivity (OR 2.70; 95 % CI 2.36-3.10), more recent year of diagnosis (OR 2.05 for 2007 vs 2000; 95 % CI 1.74-2.42), atypical histology, and non-Caucasian race (OR 1.32; 95 % CI 1.02-1.73). The use of cross-sectional imaging for staging of early-stage cutaneous melanoma is increasing in the Medicare population. Better dissemination of guidelines and judicious use of imaging should be encouraged.

  18. Numerical analysis of flows of rarefied gases in long channels with octagonal cross section shapes

    NASA Astrophysics Data System (ADS)

    Szalmas, L.

    2014-12-01

    Isothermal, pressure driven rarefied gas flows through long channels with octagonal cross section shapes are analyzed computationally. The capillary is between inlet and outlet reservoirs. The cross section is constant along the axial direction. The boundary condition at the solid-gas interface is assumed to be diffuse reflection. Since the channel is long, the gaseous velocity is small compared to the average molecular speed. Consequently, a linearized description can be used. The flow is described by the linearized Bhatnagar-Gross-Krook kinetic model. The solution of the problem is divided into two stages. First, the local flow field is determined by assuming the local pressure gradient. Secondly, the global flow behavior is deduced by the consideration of the conservation of the mass along the axis of the capillary. The kinetic equation is solved by the discrete velocity method on the cross section. Both spatial and velocity spaces are discretized. A body fitted rectangular grid is used for the spatial space. Near the boundary, first-order, while in the interior part of the flow domain, second-order finite-differences are applied to approximate the spatial derivatives. This combination results into an efficient and straightforward numerical treatment. The velocity space is represented by a Gauss-Legendre quadrature. The kinetic equation is solved in an iterative manner. The local dimensionless flow rate is calculated and tabulated for a wide range of the gaseous rarefaction for octagonal cross sections with various geometrical parameters. It exhibits the Knudsen minimum phenomenon. The flow rates in the octagonal channel are compared to those through capillaries with circular and square cross sections. Typical velocity profiles are also shown. The mass flow rate and the distribution of the pressure are determined and presented for global pressure driven flows.

  19. Modeling the evolution of channel shape: Balancing computational efficiency with hydraulic fidelity

    USGS Publications Warehouse

    Wobus, C.W.; Kean, J.W.; Tucker, G.E.; Anderson, R. Scott

    2008-01-01

    The cross-sectional shape of a natural river channel controls the capacity of the system to carry water off a landscape, to convey sediment derived from hillslopes, and to erode its bed and banks. Numerical models that describe the response of a landscape to changes in climate or tectonics therefore require formulations that can accommodate evolution of channel cross-sectional geometry. However, fully two-dimensional (2-D) flow models are too computationally expensive to implement in large-scale landscape evolution models, while available simple empirical relationships between width and discharge do not adequately capture the dynamics of channel adjustment. We have developed a simplified 2-D numerical model of channel evolution in a cohesive, detachment-limited substrate subject to steady, unidirectional flow. Erosion is assumed to be proportional to boundary shear stress, which is calculated using an approximation of the flow field in which log-velocity profiles are assumed to apply along vectors that are perpendicular to the local channel bed. Model predictions of the velocity structure, peak boundary shear stress, and equilibrium channel shape compare well with predictions of a more sophisticated but more computationally demanding ray-isovel model. For example, the mean velocities computed by the two models are consistent to within ???3%, and the predicted peak shear stress is consistent to within ???7%. Furthermore, the shear stress distributions predicted by our model compare favorably with available laboratory measurements for prescribed channel shapes. A modification to our simplified code in which the flow includes a high-velocity core allows the model to be extended to estimate shear stress distributions in channels with large width-to-depth ratios. Our model is efficient enough to incorporate into large-scale landscape evolution codes and can be used to examine how channels adjust both cross-sectional shape and slope in response to tectonic and climatic forcing. Copyright 2008 by the American Geophysical Union.

  20. Control of Flow Structure in Square Cross-Sectioned U Bend using Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Yavuz, Mehmet Metin; Guden, Yigitcan

    2014-11-01

    Due to the curvature in U-bends, the flow development involves complex flow structures including Dean vortices and high levels of turbulence that are quite critical in considering noise problems and structural failure of the ducts. Computational fluid dynamic (CFD) models are developed using ANSYS Fluent to analyze and to control the flow structure in a square cross-sectioned U-bend with a radius of curvature Rc/D = 0.65. The predictions of velocity profiles on different angular positions of the U-bend are compared against the experimental results available in the literature and the previous numerical studies. The performances of different turbulence models are evaluated to propose the best numerical approach that has high accuracy with reduced computation time. The numerical results of the present study indicate improvements with respect to the previous numerical predictions and very good agreement with the available experimental results. In addition, a flow control technique is utilized to regulate the flow inside the bend. The elimination of Dean vortices along with significant reduction in turbulence levels in different cross flow planes are successfully achieved when the flow control technique is applied. The project is supported by Meteksan Defense Industries, Inc.

  1. CESAR5.3: Isotopic depletion for Research and Testing Reactor decommissioning

    NASA Astrophysics Data System (ADS)

    Ritter, Guillaume; Eschbach, Romain; Girieud, Richard; Soulard, Maxime

    2018-05-01

    CESAR stands in French for "simplified depletion applied to reprocessing". The current version is now number 5.3 as it started 30 years ago from a long lasting cooperation with ORANO, co-owner of the code with CEA. This computer code can characterize several types of nuclear fuel assemblies, from the most regular PWR power plants to the most unexpected gas cooled and graphite moderated old timer research facility. Each type of fuel can also include numerous ranges of compositions like UOX, MOX, LEU or HEU. Such versatility comes from a broad catalog of cross section libraries, each corresponding to a specific reactor and fuel matrix design. CESAR goes beyond fuel characterization and can also provide an evaluation of structural materials activation. The cross-sections libraries are generated using the most refined assembly or core level transport code calculation schemes (CEA APOLLO2 or ERANOS), based on the European JEFF3.1.1 nuclear data base. Each new CESAR self shielded cross section library benefits all most recent CEA recommendations as for deterministic physics options. Resulting cross sections are organized as a function of burn up and initial fuel enrichment which allows to condensate this costly process into a series of Legendre polynomials. The final outcome is a fast, accurate and compact CESAR cross section library. Each library is fully validated, against a stochastic transport code (CEA TRIPOLI 4) if needed and against a reference depletion code (CEA DARWIN). Using CESAR does not require any of the neutron physics expertise implemented into cross section libraries generation. It is based on top quality nuclear data (JEFF3.1.1 for ˜400 isotopes) and includes up to date Bateman equation solving algorithms. However, defining a CESAR computation case can be very straightforward. Most results are only 3 steps away from any beginner's ambition: Initial composition, in core depletion and pool decay scenario. On top of a simple utilization architecture, CESAR includes a portable Graphical User Interface which can be broadly deployed in R&D or industrial facilities. Aging facilities currently face decommissioning and dismantling issues. This way to the end of the nuclear fuel cycle requires a careful assessment of source terms in the fuel, core structures and all parts of a facility that must be disposed of with "industrial nuclear" constraints. In that perspective, several CESAR cross section libraries were constructed for early CEA Research and Testing Reactors (RTR's). The aim of this paper is to describe how CESAR operates and how it can be used to help these facilities care for waste disposal, nuclear materials transport or basic safety cases. The test case will be based on the PHEBUS Facility located at CEA - Cadarache.

  2. Two-photon absorption cross sections within equation-of-motion coupled-cluster formalism using resolution-of-the-identity and Cholesky decomposition representations: Theory, implementation, and benchmarks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nanda, Kaushik D.; Krylov, Anna I.

    The equation-of-motion coupled-cluster (EOM-CC) methods provide a robust description of electronically excited states and their properties. Here, we present a formalism for two-photon absorption (2PA) cross sections for the equation-of-motion for excitation energies CC with single and double substitutions (EOM-CC for electronically excited states with single and double substitutions) wave functions. Rather than the response theory formulation, we employ the expectation-value approach which is commonly used within EOM-CC, configuration interaction, and algebraic diagrammatic construction frameworks. In addition to canonical implementation, we also exploit resolution-of-the-identity (RI) and Cholesky decomposition (CD) for the electron-repulsion integrals to reduce memory requirements and to increasemore » parallel efficiency. The new methods are benchmarked against the CCSD and CC3 response theories for several small molecules. We found that the expectation-value 2PA cross sections are within 5% from the quadratic response CCSD values. The RI and CD approximations lead to small errors relative to the canonical implementation (less than 4%) while affording computational savings. RI/CD successfully address the well-known issue of large basis set requirements for 2PA cross sections calculations. The capabilities of the new code are illustrated by calculations of the 2PA cross sections for model chromophores of the photoactive yellow and green fluorescent proteins.« less

  3. An interactive user-friendly approach to surface-fitting three-dimensional geometries

    NASA Technical Reports Server (NTRS)

    Cheatwood, F. Mcneil; Dejarnette, Fred R.

    1988-01-01

    A surface-fitting technique has been developed which addresses two problems with existing geometry packages: computer storage requirements and the time required of the user for the initial setup of the geometry model. Coordinates of cross sections are fit using segments of general conic sections. The next step is to blend the cross-sectional curve-fits in the longitudinal direction using general conics to fit specific meridional half-planes. Provisions are made to allow the fitting of fuselages and wings so that entire wing-body combinations may be modeled. This report includes the development of the technique along with a User's Guide for the various menus within the program. Results for the modeling of the Space Shuttle and a proposed Aeroassist Flight Experiment geometry are presented.

  4. Assessment of optimum threshold and particle shape parameter for the image analysis of aggregate size distribution of concrete sections

    NASA Astrophysics Data System (ADS)

    Ozen, Murat; Guler, Murat

    2014-02-01

    Aggregate gradation is one of the key design parameters affecting the workability and strength properties of concrete mixtures. Estimating aggregate gradation from hardened concrete samples can offer valuable insights into the quality of mixtures in terms of the degree of segregation and the amount of deviation from the specified gradation limits. In this study, a methodology is introduced to determine the particle size distribution of aggregates from 2D cross sectional images of concrete samples. The samples used in the study were fabricated from six mix designs by varying the aggregate gradation, aggregate source and maximum aggregate size with five replicates of each design combination. Each sample was cut into three pieces using a diamond saw and then scanned to obtain the cross sectional images using a desktop flatbed scanner. An algorithm is proposed to determine the optimum threshold for the image analysis of the cross sections. A procedure was also suggested to determine a suitable particle shape parameter to be used in the analysis of aggregate size distribution within each cross section. Results of analyses indicated that the optimum threshold hence the pixel distribution functions may be different even for the cross sections of an identical concrete sample. Besides, the maximum ferret diameter is the most suitable shape parameter to estimate the size distribution of aggregates when computed based on the diagonal sieve opening. The outcome of this study can be of practical value for the practitioners to evaluate concrete in terms of the degree of segregation and the bounds of mixture's gradation achieved during manufacturing.

  5. Level II scour analysis for Bridge 12 (BRAITH00230012) on Town Highway 23, crossing Ayers Brook, Braintree, Vermont

    USGS Publications Warehouse

    Olson, Scott A.

    1996-01-01

    D and E. Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 4.2 to 9.4 ft. The worst-case contraction scour occurred at the incipient-overtopping discharge which was less than the 100-year discharge. Abutment scour ranged from 4.3 to 17.5 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1993, p. 48). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  6. The role of computational chemistry in the science and measurements of the atmosphere

    NASA Technical Reports Server (NTRS)

    Phillips, D. H.

    1978-01-01

    The role of computational chemistry in determining the stability, photochemistry, spectroscopic parameters, and parameters for estimating reaction rates of atmospheric constituents is discussed. Examples dealing with the photolysis cross sections of HOCl and (1 Delta g) O2 and with the stability of gaseous NH4Cl and asymmetric ClO3 are presented. It is concluded that computational chemistry can play an important role in the study of atmospheric constituents, particularly reactive and short-lived species which are difficult to investigate experimentally.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dulat, Falko; Lionetti, Simone; Mistlberger, Bernhard

    We present an analytic computation of the Higgs production cross section in the gluon fusion channel, which is differential in the components of the Higgs momentum and inclusive in the associated partonic radiation through NNLO in perturbative QCD. Our computation includes the necessary higher order terms in the dimensional regulator beyond the finite part that are required for renormalisation and collinear factorisation at N 3LO. We outline in detail the computational methods which we employ. We present numerical predictions for realistic final state observables, specifically distributions for the decay products of the Higgs boson in the γγ decay channel.

  8. Improved Interactive Medical-Imaging System

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.; Twombly, Ian A.; Senger, Steven

    2003-01-01

    An improved computational-simulation system for interactive medical imaging has been invented. The system displays high-resolution, three-dimensional-appearing images of anatomical objects based on data acquired by such techniques as computed tomography (CT) and magnetic-resonance imaging (MRI). The system enables users to manipulate the data to obtain a variety of views for example, to display cross sections in specified planes or to rotate images about specified axes. Relative to prior such systems, this system offers enhanced capabilities for synthesizing images of surgical cuts and for collaboration by users at multiple, remote computing sites.

  9. Computational chemistry and aeroassisted orbital transfer vehicles

    NASA Technical Reports Server (NTRS)

    Cooper, D. M.; Jaffe, R. L.; Arnold, J. O.

    1985-01-01

    An analysis of the radiative heating phenomena encountered during a typical aeroassisted orbital transfer vehicle (AOTV) trajectory was made to determine the potential impact of computational chemistry on AOTV design technology. Both equilibrium and nonequilibrium radiation mechanisms were considered. This analysis showed that computational chemistry can be used to predict (1) radiative intensity factors and spectroscopic data; (2) the excitation rates of both atoms and molecules; (3) high-temperature reaction rate constants for metathesis and charge exchange reactions; (4) particle ionization and neutralization rates and cross sections; and (5) spectral line widths.

  10. Nuclear Analysis

    NASA Technical Reports Server (NTRS)

    Clement, J. D.; Kirby, K. D.

    1973-01-01

    Exploratory calculations were performed for several gas core breeder reactor configurations. The computational method involved the use of the MACH-1 one dimensional diffusion theory code and the THERMOS integral transport theory code for thermal cross sections. Computations were performed to analyze thermal breeder concepts and nonbreeder concepts. Analysis of breeders was restricted to the (U-233)-Th breeding cycle, and computations were performed to examine a range of parameters. These parameters include U-233 to hydrogen atom ratio in the gaseous cavity, carbon to thorium atom ratio in the breeding blanket, cavity size, and blanket size.

  11. Quasi-heterogeneous efficient 3-D discrete ordinates CANDU calculations using Attila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preeti, T.; Rulko, R.

    2012-07-01

    In this paper, 3-D quasi-heterogeneous large scale parallel Attila calculations of a generic CANDU test problem consisting of 42 complete fuel channels and a perpendicular to fuel reactivity device are presented. The solution method is that of discrete ordinates SN and the computational model is quasi-heterogeneous, i.e. fuel bundle is partially homogenized into five homogeneous rings consistently with the DRAGON code model used by the industry for the incremental cross-section generation. In calculations, the HELIOS-generated 45 macroscopic cross-sections library was used. This approach to CANDU calculations has the following advantages: 1) it allows detailed bundle (and eventually channel) power calculationsmore » for each fuel ring in a bundle, 2) it allows the exact reactivity device representation for its precise reactivity worth calculation, and 3) it eliminates the need for incremental cross-sections. Our results are compared to the reference Monte Carlo MCNP solution. In addition, the Attila SN method performance in CANDU calculations characterized by significant up scattering is discussed. (authors)« less

  12. Anomalous Photoionization in Xe

    NASA Astrophysics Data System (ADS)

    Klapisch, Marcel; Busquet, Michel

    2012-10-01

    Photoionization (PI) cross sections are important components of the opacities that are necessary for the simulation of astrophysical and ICF plasmas. Most of PI cross sections (i) start abruptly at threshold and (ii) decrease as an inverse power (e.g.3^rd) of the photon energy. In the framework of the CRASH project [1] we computed Xe opacities with the STA code [2]. We observed that the PI cross section for the 4d shell has neither of these 2 characteristics. We explain this result as interference between the bound 4d wavefunction (wf), the photon, and the free electron wf. Similar, but less pronounced effects are seen for the 5d and 5p shells. Simplified models of PI not involving the actual wf would not show this effect and would probably be inaccurate.[4pt] [1] Doss, F. W., Drake, R. P., and Kuranz, C. C., High Ener. Dens. Phys. 6, 157-61.[0pt] [2] Busquet, M., Klapisch, M., Bar-Shalom, A., et al., Bull. Am. Phys. Soc. 55, 225 (2010).

  13. Electron-impact ionization of atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Baertschy, Mark David

    2000-10-01

    Since the invention of quantum mechanics, even the simplest example of collisional breakup in a system of charged particles, e - + H --> H+ + e- + e-, has stood as one of the last unsolved fundamental problems in atomic physics. A complete solution requires calculating the energies and directions for a final state in which three charged particles are moving apart. Advances in the formal description of three-body breakup have yet to lead to a viable computational method. Traditional approaches, based on two-body formalisms, have been unable to produce differential cross sections for the three-body final state. Now, by using a mathematical transformation of the Schrödinger equation that makes the final state tractable, a complete solution has finally been achieved. Under this transformation, the scattering wave function can be calculated without imposing explicit scattering boundary conditions. This approach has produced the first triple differential cross sections that agree on an absolute scale with experiment as well as the first ab initio calculations of the single differential cross section [29].

  14. Flexural-torsional vibration of simply supported open cross-section steel beams under moving loads

    NASA Astrophysics Data System (ADS)

    Michaltsos, G. T.; Sarantithou, E.; Sophianopoulos, D. S.

    2005-02-01

    SummaryThe present work deals with linearized modal analysis of the combined flexural-torsional vibration of simply supported steel beams with open monosymmetric cross-sections, acted upon by a load of constant magnitude, traversing its span eccentrically with constant velocity. After thoroughly investigating the free vibrations of the structure, which simulates a commonly used highway bridge, its forced motions under the aforementioned loading type are investigated. Utilizing the capabilities of symbolic computations within modern mathematical software, the effect of the most significant geometrical and cross-sectional beam properties on the free vibration characteristics of the beam are established and presented in tabular and graphical form. Moreover, adopting realistic values of the simplified vehicle model adopted, the effects of eccentricity, load magnitude and corresponding velocity are assessed and interesting conclusions for structural design purposes are drawn. The proposed methodology may serve as a starting point for further in-depth study of the whole scientific subject, in which sophisticated vehicle models, energy dissipation and more complicated bridge models may be used.

  15. Update on J /ψ regeneration in a hadron gas

    NASA Astrophysics Data System (ADS)

    Abreu, L. M.; Khemchandani, K. P.; Torres, A. Martínez; Navarra, F. S.; Nielsen, M.

    2018-04-01

    In heavy-ion collisions, after the quark-gluon plasma there is a hadronic gas phase. Using effective Lagrangians, we study the interactions of charmed mesons which lead to J /ψ production and absorption in this gas. We update and extend previous calculations introducing strange meson interactions and also including the interactions mediated by the recently measured exotic charmonium resonances Z (3900 ) and Z (4025 ) . These resonances open new reaction channels for the J /ψ , which could potentially lead to changes in its multiplicity. We compute the J /ψ production cross section in processes such as D(s) (*)+D¯(*)→J /ψ +(π ,ρ ,K ,K*) and also the J /ψ absorption cross section in the corresponding inverse processes. Using the obtained cross sections as input to solve the appropriate rate equation, we conclude that the interactions in the hadron gas phase lead to a 20-24% reduction of the J /ψ abundance. Within the uncertainties of the calculation, this reduction is the same at the Relativistic Heavy Ion Collider and the large Hadron Collider.

  16. AMPX-77: A modular code system for generating coupled multigroup neutron-gamma cross-section libraries from ENDF/B-IV and/or ENDF/B-V

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, N.M.; Ford, W.E. III; Petrie, L.M.

    AMPX-77 is a modular system of computer programs that pertain to nuclear analyses, with a primary emphasis on tasks associated with the production and use of multigroup cross sections. AH basic cross-section data are to be input in the formats used by the Evaluated Nuclear Data Files (ENDF/B), and output can be obtained in a variety of formats, including its own internal and very general formats, along with a variety of other useful formats used by major transport, diffusion theory, and Monte Carlo codes. Processing is provided for both neutron and gamma-my data. The present release contains codes all writtenmore » in the FORTRAN-77 dialect of FORTRAN and wig process ENDF/B-V and earlier evaluations, though major modules are being upgraded in order to process ENDF/B-VI and will be released when a complete collection of usable routines is available.« less

  17. Pseudostate methods and differential cross sections for antiproton ionization of atomic hydrogen and helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGovern, M.; Walters, H. R. J.; Assafrao, D.

    2010-03-15

    A relaxed form of a recent impact parameter coupled pseudostate approximation of McGovern et al. [Phys. Rev. A 79, 042707 (2009)] for calculating differential ionization cross sections is proposed. This greatly eases the computational burden in cases where a range of ejected electron energies has to be considered. The relaxed approximation is tested against exact first Born calculations for antiproton impact on H and nonperturbatively for the highly nonperturbative system of Au{sup 53+} incident upon He. The approximation performs well in these tests. It is shown how, with a little further approximation, the relaxed theory leads to a widely usedmore » prescription for the total ionization cross section. Results for differential ionization of H and He by antiprotons are presented. These reveal the growing dominance of the interaction between the antiproton and the target nucleus at low impact energies and show the changing importance of the role of the postcollisional interaction between the antiproton and the ejected electron.« less

  18. Particle Deposition in Human Lungs due to Varying Cross-Sectional Ellipticity of Left and Right Main Bronchi

    NASA Astrophysics Data System (ADS)

    Roth, Steven; Oakes, Jessica; Shadden, Shawn

    2015-11-01

    Particle deposition in the human lungs can occur with every breathe. Airbourne particles can range from toxic constituents (e.g. tobacco smoke and air pollution) to aerosolized particles designed for drug treatment (e.g. insulin to treat diabetes). The effect of various realistic airway geometries on complex flow structures, and thus particle deposition sites, has yet to be extensively investigated using computational fluid dynamics (CFD). In this work, we created an image-based geometric airway model of the human lung and performed CFD simulations by employing multi-domain methods. Following the flow simulations, Lagrangian particle tracking was used to study the effect of cross-sectional shape on deposition sites in the conducting airways. From a single human lung model, the cross-sectional ellipticity (the ratio of major and minor diameters) of the left and right main bronchi was varied systematically from 2:1 to 1:1. The influence of the airway ellipticity on the surrounding flow field and particle deposition was determined.

  19. Electron-impact ionization of atomic hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baertschy, Mark D.

    2000-02-01

    Since the invention of quantum mechanics, even the simplest example of collisional breakup in a system of charged particles, e - + H → H + + e - + e +, has stood as one of the last unsolved fundamental problems in atomic physics. A complete solution requires calculating the energies and directions for a final state in which three charged particles are moving apart. Advances in the formal description of three-body breakup have yet to lead to a viable computational method. Traditional approaches, based on two-body formalisms, have been unable to produce differential cross sections for the three-bodymore » final state. Now, by using a mathematical transformation of the Schrodinger equation that makes the final state tractable, a complete solution has finally been achieved, Under this transformation, the scattering wave function can be calculated without imposing explicit scattering boundary conditions. This approach has produced the first triple differential cross sections that agree on an absolute scale with experiment as well as the first ab initio calculations of the single differential cross section.« less

  20. Determination of neutron capture cross sections of 232Th at 14.1 MeV and 14.8 MeV using the neutron activation method

    NASA Astrophysics Data System (ADS)

    Lan, Chang-Lin; Zhang, Yi; Lv, Tao; Xie, Bao-Lin; Peng, Meng; Yao, Ze-En; Chen, Jin-Gen; Kong, Xiang-Zhong

    2017-04-01

    The 232Th(n, γ)233Th neutron capture reaction cross sections were measured at average neutron energies of 14.1 MeV and 14.8 MeV using the activation method. The neutron flux was determined using the monitor reaction 27Al(n,α)24Na. The induced gamma-ray activities were measured using a low background gamma ray spectrometer equipped with a high resolution HPGe detector. The experimentally determined cross sections were compared with the data in the literature, and the evaluated data of ENDF/B-VII.1, JENDL-4.0u+, and CENDL-3.1. The excitation functions of the 232Th(n,γ)233Th reaction were also calculated theoretically using the TALYS1.6 computer code. Supported by Chinese TMSR Strategic Pioneer Science and Technology Project-The Th-U Fuel Physics Term (XDA02010100) and National Natural Science Foundation of China (11205076, 21327801)

  1. Level II scour analysis for Bridge 38 (RANDTH00640038) on Town Highway 64, crossing the Second Branch of the White River, Randolph, Vermont

    USGS Publications Warehouse

    Olson, Scott A.

    1996-01-01

    Contraction scour for all modelled flows ranged from 1.7 to 2.6 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 7.2 to 24.2 ft. The worst-case abutment scour also occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  2. Radiation damage of biomolecules (RADAM) database development: current status

    NASA Astrophysics Data System (ADS)

    Denifl, S.; Garcia, G.; Huber, B. A.; Marinković, B. P.; Mason, N.; Postler, J.; Rabus, H.; Rixon, G.; Solov'yov, A. V.; Suraud, E.; Yakubovich, A. V.

    2013-06-01

    Ion beam therapy offers the possibility of excellent dose localization for treatment of malignant tumours, minimizing radiation damage in normal tissue, while maximizing cell killing within the tumour. However, as the underlying dependent physical, chemical and biological processes are too complex to treat them on a purely analytical level, most of our current and future understanding will rely on computer simulations, based on mathematical equations, algorithms and last, but not least, on the available atomic and molecular data. The viability of the simulated output and the success of any computer simulation will be determined by these data, which are treated as the input variables in each computer simulation performed. The radiation research community lacks a complete database for the cross sections of all the different processes involved in ion beam induced damage: ionization and excitation cross sections for ions with liquid water and biological molecules, all the possible electron - medium interactions, dielectric response data, electron attachment to biomolecules etc. In this paper we discuss current progress in the creation of such a database, outline the roadmap of the project and review plans for the exploitation of such a database in future simulations.

  3. Level II scour analysis for Bridge 36 (RANDTH00480036) on Town Highway 48, crossing Snows Brook, Randolph, Vermont

    USGS Publications Warehouse

    Olson, Scott A.

    1996-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 0.8 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 6.1 to 11.6 ft. The worst-case abutment scour occurred at the incipient-overtopping discharge, which was 50 cfs lower than the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scouredstreambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particlesize distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  4. Level II scour analysis for Bridge 46 (ENOSVT01080046) on State Route 108, crossing an Unnamed "The Branch" Tributary, Enosburg, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Medalie, Laura

    1996-01-01

    Contraction scour for all modelled flows ranged from 0.3 to 0.5 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 4.0 to 8.0 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  5. Level II scour analysis for Bridge 30 (BRNATH00470030) on Town Highway 47, crossing Locust Creek, Barnard, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Song, Donald L.

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 1.4 feet. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 2.3 to 8.9 feet. The worst-case abutment scour occurred at the 100-year discharge at the right abutment. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  6. Level II scour analysis for Bridge 25 (DANVTH00610025) on Town Highway 61, crossing Water Andric Brook, Danville, Vermont

    USGS Publications Warehouse

    Flynn, Robert H.; Severance, Timothy

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.7 to 1.3 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 9.1 to 12.5 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  7. Level II scour analysis for Bridge 8 (WELLTH00020008) on Town Highway 2, crossing Wells Brook, Wells, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Ivanoff, Michael A.

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 0.8 ft. The worst-case contraction scour occurred at the incipient roadway-overtopping discharge, which was less than the 100-year discharge. Abutment scour ranged from 5.6 to 10.0 ft at the left abutment and from 3.1 to 4.2 ft at the right abutment. The worst-case abutment scour occurred at the incipient roadway-overtopping discharge at the left abutment. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  8. Level II scour analysis for Bridge 145 (HANCVT01000145) on Vermont Highway 100, crossing the Hancock Branch of the White River, Hancock, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.; Hammond, Robert E.

    1996-01-01

    Contraction scour for all modelled flows ranged from 3.4 to 4.3 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 8.2 to 11.1 ft. The worst-case abutment scour occurred at the 100-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  9. Level II scour analysis for Bridge 32 (CONCTH00030032) on Town Highway 3, crossing the Moose River, Concord, Vermont

    USGS Publications Warehouse

    Olson, Scott A.

    1996-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 0.7 ft. Abutment scour ranged from 9.9 to 16.4 ft. Pier scour ranged from 14.4 to 16.2 ft. The worst-case contraction, abutment, and pier scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  10. Level II scour analysis for Bridge 5 (MORRTH00060005) on Town Highway 6, crossing Bedell Brook, Morristown, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Degnan, James R.

    1997-01-01

    Contraction scour for all modelled flows ranged from 1.1 to 2.0 feet. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 3.9 to 8.6 feet. The worst-case abutment scour occurred at the 500-year event. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  11. Level II scour analysis for Bridge 25 (CLARTH00100025) on Town Highway 10, crossing the Clarendon River, Clarendon, Vermont

    USGS Publications Warehouse

    Ayotte, Joseph D.

    1996-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 0.8 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 5.7 to 10.6 ft. The worst-case abutment scour also occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  12. Level II scour analysis for brigde 5 (STOCTH00360005) on Town Highway 36, crossing Stony Brook, Stockridge, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Weber, Matthew A.

    1998-01-01

    Contraction scour for all modelled flows ranged from 2.0 to 3.2 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 9.7 to 22.2 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and Davis, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  13. Level II scour analysis for Bridge 17 (POMFTH00010017) on Town Highway 1 (FAS 166) crossing Mill Brook, Pomfret, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Hammond, Robert E.

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 0.9 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 3.6 to 7.1 ft. The worst-case abutment scour also occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  14. Level II scour analysis for Bridge 6 (VICTTH000110006) on Town Highway 1, crossing the Moose River, Victory, Vermont

    USGS Publications Warehouse

    Olson, Scott A.

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.2 to 0.4 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 7.3 to 8.2 ft. The worst-case abutment scour also occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  15. Level II scour analysis for Bridge 8, (MANCTH00060008) on Town Highway 6, crossing Bourn Brook, Manchester, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Hammond, Robert E.

    1997-01-01

    Contraction scour for all modelled flows was zero ft. The left abutment scour ranged from 3.6 to 9.2 ft. The worst-case left abutment scour occurred at the 500-year discharge. The right abutment scour ranged from 9.8 to 12.6 ft. The worst case right abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  16. Level II scour analysis for Bridge 22 (REDSVT01000022) on State Route 100, crossing the West Branch Deerfield River, Readsboro, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Burns, Ronda L.

    1997-01-01

    There was no predicted contraction scour for any of the modelled flows. Abutment scour ranged from 4.9 to 11.6 ft. The worst-case abutment scour occurred at the right abutment for the 500-year discharge. However, historical information indicates the right abutment is in contact with bedrock at least in part. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  17. Level II scour analysis for Bridge 36 (ANDOVT00110036) on VT 11, crossing Middle Branch Williams River, Andover, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Burns, Rhonda L.

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 2.8 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 9.5 to 13.7 ft. The worst-case abutment scour also occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  18. Level II scour analysis for Bridge 6 (BRISVT01160006) on State Highway 116, crossing Little Notch Brook, Bristol, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Burns, Ronda L.

    1997-01-01

    Contraction scour for all modelled flows ranged from 3.2 to 4.3 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 6.0 to 10.0 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  19. Level II scour analysis for Bridge 92 (WSTOVT01000092) on State Highway 100, crossing the West River, Weston, Vermont

    USGS Publications Warehouse

    Flynn, Robert H.; Burns, Ronda L.

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.4 to 2.1 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 8.4 to 30.7 ft. The worst-case abutment scour occurred at the 500-year discharge along the left abutment. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  20. Level II scour analysis for Bridge 50 (STARTH00250050) on Town Highway 25, crossing Lewis Creek, Starksboro, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Boehmler, Erick M.

    1997-01-01

    Contraction scour for all modelled flows ranged from 5.2 to 9.1 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 13.1 to 18.2 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  1. Level II scour analysis for Bridge 22 (WALDTH00180022) on Town Highway 18, crossing Coles Brook, Walden, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Ivanoff, Michael A.

    1997-01-01

    Contraction scour for all modelled flows was 0.0 ft. Abutment scour ranged from 6.4 to 7.9 ft at the left abutment and from 11.8 to 14.9 ft at the right abutment. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scouredstreambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particlesize distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  2. Level II scour analysis for Bridge 53 (CHESTH01180053) on Town Highway 118, crossing the Williams River, Chester, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Medalie, Laura

    1997-01-01

    Contraction scour for all modelled flows was 0.0 ft. Abutment scour ranged from 5.8 to 6.8 ft at the left abutment and 9.4 to 14.4 ft at the right abutment. The worst-case abutment scour occurred at the incipient roadway-overtopping discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  3. Level II scour analysis for Bridge 4 (RYEGTH00050004) on Town Highway 5, crossing the Wells River, Ryegate, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.; Hammond, Robert E.

    1997-01-01

    Contraction scour for all modelled flows ranged from 1.8 to 2.6 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 10.2 to 22.6 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  4. Level II scour analysis for Bridge 46 (BRNETH00610046) on Town Highway 61, crossing East Peacham Brook, Barnet, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.

    1997-01-01

    Contraction scour for all modelled flows ranged from 0 to 1.2 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 10.4 to 13.9 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  5. Level II scour analysis for Bridge 45 (NFIETH00250045) on Town Highway 25, crossing Union Brook, Northfield, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Ivanoff, Michael A.

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.4 to 0.9 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 4.5 to 9.1 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  6. Level II scour analysis for Bridge 21 (WALDTH00450021) on Town Highway 45, crossing Joes Brook, Walden, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.; Medalie, Laura

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 1.5 ft. The worst-case contraction scour occurred at the incipient roadway-overtopping discharge, which was less than the 100-year discharge. Abutment scour ranged from 12.4 to 24.4 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scouredstreambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particlesize distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  7. Level II scour analysis for Bridge 81 (NFIETH00PL0081) on Pleasant Street, crossing Union Brook, Northfield, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Medalie, Laura

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 0.5 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 4.2 to 13.3 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  8. Level II scour analysis for Bridge 9 (JAYVT02420009) on Vermont Highway 242, crossing the Jay Branch of the Missisquoi River, Jay, Vermont

    USGS Publications Warehouse

    Flynn, Robert H.; Ivanoff, Michael A.

    1996-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 0.6 ft. The worst-case contraction scour occurred at the 100-year discharge. Abutment scour ranged from 0.8 to 5.6 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  9. Benchmarked analyses of gamma skyshine using MORSE-CGA-PC and the DABL69 cross-section set

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reichert, P.T.; Golshani, M.

    1991-01-01

    Design for gamma-ray skyshine is a common consideration for a variety of nuclear and accelerator facilities. Many of these designs can benefit from a more accurate and complete treatment than can be provided by simple skyshine analysis tools. Those methods typically require a number of conservative, simplifying assumptions in modeling the radiation source and shielding geometry. This paper considers the benchmarking of one analytical option. The MORSE-CGA Monte Carlo radiation transport code system provides the capability for detailed treatment of virtually any source and shielding geometry. Unfortunately, the mainframe computer costs of MORSE-CGA analyses can prevent cost-effective application to smallmore » projects. For this reason, the MORSE-CGA system was converted to run on IBM personal computer (PC)-compatible computers using the Intel 80386 or 80486 microprocessors. The DLC-130/DABL69 cross-section set (46n,23g) was chosen as the most suitable, readily available, broad-group library. The most important reason is the relatively high (P{sub 5}) Legendre order of expansion for angular distribution. This is likely to be beneficial in the deep-penetration conditions modeled in some skyshine problems.« less

  10. Measuring and modeling the backscattering cross section of a leaf

    NASA Technical Reports Server (NTRS)

    Senior, T. B. A.; Sarabandi, K.; Ulaby, F. T.

    1987-01-01

    Leaves are a significant feature of any vegetation canopy, and for remote sensing purposes it is important to develop an effective model for predicting the scattering from a leaf. From measurements of the X band backscattering cross section of a coleus leaf in varying stages of dryness, it is shown that a uniform resistive sheet constitutes such a model for a planar leaf. The scattering is determined by the (complex) resistivity which is, in turn, entirely specified by the gravimetric moisture content of the leaf. Using an available asymptotic expression for the scattering from a rectangular resistive plate which includes, as a special case, a metallic plate whose resistivity is zero, the computed backscattering cross sections for both principal polarizations are found to be in excellent agreement with data measured for rectangular sections of leaves with different moisture contents. If the resistivity is sufficiently large, the asymptotic expressions do not differ significantly from the physical optics ones, and for naturally shaped leaves as well as rectangular sections, the physical optics approximation in conjunction with the resistive sheet model faithfully reproduces the dominant feataures of the scattering patterns under all moisture conditions.

  11. A computer program for fitting smooth surfaces to three-dimensional aircraft configurations

    NASA Technical Reports Server (NTRS)

    Craidon, C. B.; Smith, R. E., Jr.

    1975-01-01

    A computer program developed to fit smooth surfaces to the component parts of three-dimensional aircraft configurations was described. The resulting equation definition of an aircraft numerical model is useful in obtaining continuous two-dimensional cross section plots in arbitrarily defined planes, local tangents, enriched surface plots and other pertinent geometric information; the geometry organization used as input to the program has become known as the Harris Wave Drag Geometry.

  12. Algorithm for Surface of Translation Attached Radiators (A-STAR). Volume 2. Users manual

    NASA Astrophysics Data System (ADS)

    Medgyesimitschang, L. N.; Putnam, J. M.

    1982-05-01

    A hierarchy of computer programs implementing the method of moments for bodies of translation (MM/BOT) is described. The algorithm treats the far-field radiation from off-surface and aperture antennas on finite-length open or closed bodies of arbitrary cross section. The near fields and antenna coupling on such bodies are computed. The theoretical development underlying the algorithm is described in Volume 1 of this report.

  13. Jet production in the CoLoRFulNNLO method: Event shapes in electron-positron collisions

    NASA Astrophysics Data System (ADS)

    Del Duca, Vittorio; Duhr, Claude; Kardos, Adam; Somogyi, Gábor; Szőr, Zoltán; Trócsányi, Zoltán; Tulipánt, Zoltán

    2016-10-01

    We present the CoLoRFulNNLO method to compute higher order radiative corrections to jet cross sections in perturbative QCD. We apply our method to the computation of event shape observables in electron-positron collisions at NNLO accuracy and validate our code by comparing our predictions to previous results in the literature. We also calculate for the first time jet cone energy fraction at NNLO.

  14. Active Flow Control in an Aggressive Transonic Diffuser

    NASA Astrophysics Data System (ADS)

    Skinner, Ryan W.; Jansen, Kenneth E.

    2017-11-01

    A diffuser exchanges upstream kinetic energy for higher downstream static pressure by increasing duct cross-sectional area. The resulting stream-wise and span-wise pressure gradients promote extensive separation in many diffuser configurations. The present computational work evaluates active flow control strategies for separation control in an asymmetric, aggressive diffuser of rectangular cross-section at inlet Mach 0.7 and Re 2.19M. Corner suction is used to suppress secondary flows, and steady/unsteady tangential blowing controls separation on both the single ramped face and the opposite flat face. We explore results from both Spalart-Allmaras RANS and DDES turbulence modeling frameworks; the former is found to miss key physics of the flow control mechanisms. Simulated baseline, steady, and unsteady blowing performance is validated against experimental data. Funding was provided by Northrop Grumman Corporation, and this research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.

  15. CT analysis of nasal volume changes after surgically-assisted rapid maxillary expansion.

    PubMed

    Tausche, Eve; Deeb, Wayel; Hansen, Lars; Hietschold, Volker; Harzer, Winfried; Schneider, Matthias

    2009-07-01

    Aim of this study was to detect the changes in nasal volume due to bone-borne, surgically-assisted rapid palatal expansion (RPE) with the Dresden Distractor using computed tomography (CT). 17 patients (mean age 28.8) underwent axial CT scanning before and 6 months after RPE. The nasal bone width was examined in the coronal plane. Cross-sectional images of the nasal cavity were taken of the area surrounding the piriform aperture, choanae and in between. Bony nasal volume was computed by connecting the three cross-sectional areas. All but two patients showed a 4.8% increase in nasal volume (SD 4.6%). The highest value, 33.3% (SD 45.1%), was measured anteriorly at the level of the nasal floor. This correlated with the midpalatal suture's V-shaped opening. There was no significant correlation between an increase in nasal volume and transverse dental arch expansion. As most of the air we breathe passes the lower nasal floor, an improvement in nasal breathing is likely.

  16. Dynamics of threading dislocations in porous heteroepitaxial GaN films

    NASA Astrophysics Data System (ADS)

    Gutkin, M. Yu.; Rzhavtsev, E. A.

    2017-12-01

    Behavior of threading dislocations in porous heteroepitaxial gallium nitride (GaN) films has been studied using computer simulation by the two-dimensional discrete dislocation dynamics approach. A computational scheme, where pores are modeled as cross sections of cylindrical cavities, elastically interacting with unidirectional parallel edge dislocations, which imitate threading dislocations, is used. Time dependences of coordinates and velocities of each dislocation from dislocation ensembles under investigation are obtained. Visualization of current structure of dislocation ensemble is performed in the form of a location map of dislocations at any time. It has been shown that the density of appearing dislocation structures significantly depends on the ratio of area of a pore cross section to area of the simulation region. In particular, increasing the portion of pores surface on the layer surface up to 2% should lead to about a 1.5-times decrease of the final density of threading dislocations, and increase of this portion up to 15% should lead to approximately a 4.5-times decrease of it.

  17. Light element opacities of astrophysical interest from ATOMIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colgan, J.; Kilcrease, D. P.; Magee, N. H. Jr.

    We present new calculations of local-thermodynamic-equilibrium (LTE) light element opacities from the Los Alamos ATOMIC code for systems of astrophysical interest. ATOMIC is a multi-purpose code that can generate LTE or non-LTE quantities of interest at various levels of approximation. Our calculations, which include fine-structure detail, represent a systematic improvement over previous Los Alamos opacity calculations using the LEDCOP legacy code. The ATOMIC code uses ab-initio atomic structure data computed from the CATS code, which is based on Cowan's atomic structure codes, and photoionization cross section data computed from the Los Alamos ionization code GIPPER. ATOMIC also incorporates a newmore » equation-of-state (EOS) model based on the chemical picture. ATOMIC incorporates some physics packages from LEDCOP and also includes additional physical processes, such as improved free-free cross sections and additional scattering mechanisms. Our new calculations are made for elements of astrophysical interest and for a wide range of temperatures and densities.« less

  18. Quenching of internally 'hot' H2 and N2 gases by collisions with ultracold electrons: a computational 'experiment'

    NASA Astrophysics Data System (ADS)

    Gianturco, F. A.

    2008-11-01

    Quantum mechanical methods are employed to obtain superelastic cross sections involving H2 and N2 molecules, in excited rotational states, colliding with electrons at the very low collision energies which are encountered in cold trap experiments. This computational analysis intends to explore the feasibility of cold electrons for the collisional quenching of molecular gases down to the nanokelvin regimes. The results are obtained using rigorous coupled-channel (CC) calculations in the laboratory frame of reference which allows one to correctly describe the cross section behaviour at ultralow energies. The results are analysed down to the ultracold region of validity of Wigner's law, where it is found that electron-driven collisions exhibit substantial efficiency for the quenching of rotational populations in molecular gases involving the title systems. This work is affectionately dedicated to Anna Giardini, a creative experimentalist and a long-time friend, on the occasion of her 'official' retirement.

  19. Ultra wide band 3-D cross section (RCS) holography

    NASA Astrophysics Data System (ADS)

    Collins, H. D.; Hall, T. E.

    1992-07-01

    Ultra wide band impulse holography is an exciting new concept for predictive radar cross section (RCS) evaluation employing near-field measurements. Reconstruction of the near-field hologram data maps the target's scattering areas, and uniquely identifies the 'hot spot' locations on the target. In addition, the target and calibration sphere's plane wave angular spectrums are computed (via digital algorithm) and used to generate the target's far-field RCS values in three dimensions for each frequency component in the impulse. Thin and thick targets are defined in terms of their near-field amplitude variations in range. Range gating and computer holographic techniques are applied to correct these variations. Preliminary experimental results on various targets verify the concept of RCS holography. The unique 3-D presentation (i.e., typically containing 524,288 RCS values for a 1024 (times) 512 sampled aperture for every frequency component) illustrates the efficacy of target recognition in terms of its far-field plane wave angular spectrum image. RCS images can then be viewed at different angles for target recognition, etc.

  20. Electron-pair-production cross section in the tip region of the positron spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sud, K.K.; Sharma, D.K.

    1984-11-01

    The radial integrals for electron-pair production in a point Coulomb potential have been expressed by Sud, Sharma, and Sud in terms of the matrix generalization of the GAMMA function. Two new partial differential equations in photon energy satisfied by the matrix GAMMA function are obtained. We have obtained, on integrating the partial differential equations, accurate radial integrals as a function of photon energy for the pair production by intermediate-energy photons. The cross section in the tip region of the spectrum are calculated for photons of energy 5.0 to 10.0 MeV for /sup 92/U. The new technique results in extensive savingmore » in computer time as the basic radial integrals in terms of the hypergeometric function F/sub 2/ are computed at one photon energy for each pair of partial waves. The results of our calculations are compared with plane-wave Born-approximation results and with the calculations of Dugne and of Deck, Moroi, and Alling.« less

  1. Computer simulation program for medium-energy ion scattering and Rutherford backscattering spectrometry

    NASA Astrophysics Data System (ADS)

    Nishimura, Tomoaki

    2016-03-01

    A computer simulation program for ion scattering and its graphical user interface (MEISwin) has been developed. Using this program, researchers have analyzed medium-energy ion scattering and Rutherford backscattering spectrometry at Ritsumeikan University since 1998, and at Rutgers University since 2007. The main features of the program are as follows: (1) stopping power can be chosen from five datasets spanning several decades (from 1977 to 2011), (2) straggling can be chosen from two datasets, (3) spectral shape can be selected as Gaussian or exponentially modified Gaussian, (4) scattering cross sections can be selected as Coulomb or screened, (5) simulations adopt the resonant elastic scattering cross section of 16O(4He, 4He)16O, (6) pileup simulation for RBS spectra is supported, (7) natural and specific isotope abundances are supported, and (8) the charge fraction can be chosen from three patterns (fixed, energy-dependent, and ion fraction with charge-exchange parameters for medium-energy ion scattering). This study demonstrates and discusses the simulations and their results.

  2. A simulation-based study on the influence of beam hardening in X-ray computed tomography for dimensional metrology.

    PubMed

    Lifton, Joseph J; Malcolm, Andrew A; McBride, John W

    2015-01-01

    X-ray computed tomography (CT) is a radiographic scanning technique for visualising cross-sectional images of an object non-destructively. From these cross-sectional images it is possible to evaluate internal dimensional features of a workpiece which may otherwise be inaccessible to tactile and optical instruments. Beam hardening is a physical process that degrades the quality of CT images and has previously been suggested to influence dimensional measurements. Using a validated simulation tool, the influence of spectrum pre-filtration and beam hardening correction are evaluated for internal and external dimensional measurements. Beam hardening is shown to influence internal and external dimensions in opposition, and to have a greater influence on outer dimensions compared to inner dimensions. The results suggest the combination of spectrum pre-filtration and a local gradient-based surface determination method are able to greatly reduce the influence of beam hardening in X-ray CT for dimensional metrology.

  3. Individual and work-related risk factors for musculoskeletal pain: a cross-sectional study among Estonian computer users.

    PubMed

    Oha, Kristel; Animägi, Liina; Pääsuke, Mati; Coggon, David; Merisalu, Eda

    2014-05-28

    Occupational use of computers has increased rapidly over recent decades, and has been linked with various musculoskeletal disorders, which are now the most commonly diagnosed occupational diseases in Estonia. The aim of this study was to assess the prevalence of musculoskeletal pain (MSP) by anatomical region during the past 12 months and to investigate its association with personal characteristics and work-related risk factors among Estonian office workers using computers. In a cross-sectional survey, the questionnaires were sent to the 415 computer users. Data were collected by self-administered questionnaire from 202 computer users at two universities in Estonia. The questionnaire asked about MSP at different anatomical sites, and potential individual and work related risk factors. Associations with risk factors were assessed by logistic regression. Most respondents (77%) reported MSP in at least one anatomical region during the past 12 months. Most prevalent was pain in the neck (51%), followed by low back pain (42%), wrist/hand pain (35%) and shoulder pain (30%). Older age, right-handedness, not currently smoking, emotional exhaustion, belief that musculoskeletal problems are commonly caused by work, and low job security were the statistically significant risk factors for MSP in different anatomical sites. A high prevalence of MSP in the neck, low back, wrist/arm and shoulder was observed among Estonian computer users. Psychosocial risk factors were broadly consistent with those reported from elsewhere. While computer users should be aware of ergonomic techniques that can make their work easier and more comfortable, presenting computer use as a serious health hazard may modify health beliefs in a way that is unhelpful.

  4. Research on slow electron collision processes in gases. Final report, September 15, 1970--December 31, 1972

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldwin, G C

    1974-04-30

    Research on low energy electron collisions in gases by the time-of- flight velocity selection technique included, as a preliminary to total cross section measurements, investigations of the statistical and systematic errors inherent in the technique. In particular, thermal transpiration and instrumental fluctuation errors in manometry were investigated, and the results embodied in computer programs for data reduction. The instrumental system was improved to permit extended periods of data accumulation without manual attention. Total cross section measurements in helium, made prior to, and in molecular nitrogen, made after the supporting work was completed, are reported. The total cross sec tion ofmore » helium is found to be higher than reported in previous beam determinations. That of nitrogen is found to be structureless at low energies. (auth)« less

  5. Analysis and classification of topographic flow steering and inferred geomorphic processes as a function of discharge in a mountain river

    NASA Astrophysics Data System (ADS)

    Gore, J.; Pasternack, G. B.; Wiener, J.

    2016-12-01

    Process-based river classification tends to be done at reach to catchment scales assuming channels are uniform and thus differentiated by the simple specific stream power metric. In fact, mountain rivers are highly variable at subreach scales to the point that local topographic steering may be the dominant control on geomorphic processes. This study presents a new framework for characterizing how stage-dependent topographic steering varies continuously down a river, leading to a classification of subreach landforms on the basis of the geomorphic mechanism of flow convergence routing. The two remote mountain river segments were located in the 3480-km2 Yuba River, with the upper South Yuba having a substantial sediment supply from legacy hydraulic gold mining and the mainstem Yuba downstream of New Bullards Bar Dam having a restricted sediment supply. Meter-scale DEMs were produced for both cases using airborne LiDAR and survey data. DEMs were slope detrended to focus the analysis on cross-sectional variability. DEMs were then heavily smoothed to allow for automated tracing of the valley centerline, and then cross-sectional rectangles were spaced every 5 m. The average width (W) and detrended bed elevation (Z) of the wetted area was computed from the DEM for each raster for 6-7 different river stages. Both width and cross-sectionally averaged bed elevation were standardized. The product of these two variables was computed as a measure of cross-sectional area, and is termed the geomorphic covariance (Czw) series when plotted along each river corridor. Cwz was then used to classify each cross-section as one of five distinct landform types: nozzle, wide bar, normal channel, constricted pool, and oversized pool- with this classification varying with discharge such that a section could, for example, function as a nozzle during low flow but an oversized pool at high flow, or any other combination. Longitudinal profiles of bed elevation, width, covariance, and landform type were analyzed for their stage-dependent patterns to understand their geomorphic significance and to contrast the two rivers. This new method may be the first example of a hierarchical, process-based classification at the subreach scale in which one mechanism is assessed for how it varies not only in space, but as a function of discharge.

  6. Electron capture in collisions of ? with H and ? with C

    NASA Astrophysics Data System (ADS)

    Stancil, P. C.; Gu, J.-P.; Havener, C. C.; Krstic, P. S.; Schultz, D. R.; Kimura, M.; Zygelman, B.; Hirsch, G.; Buenker, R. J.; Bannister, M. E.

    1998-08-01

    A comprehensive theoretical and experimental study of electron capture in collisions of 0953-4075/31/16/017/img15 with H and 0953-4075/31/16/017/img16 with C extending over the energy range 0953-4075/31/16/017/img17 to 0953-4075/31/16/017/img18 is presented. A variety of theoretical approaches were used including those based on quantal molecular-orbital close-coupling (MOCC), multielectron hidden crossings (MEHC), quantal decay and classical trajectory Monte Carlo techniques. Radiative charge transfer cross sections were computed using the optical potential/distorted wave (OPDW) and fully quantal (FQ) approaches. The MOCC, OPDW and FQ calculations incorporated ab initio potentials, nonadiabatic coupling matrix elements and transition moments computed at the configuration-interaction level. Ab initio potential surfaces in the plane of complex internuclear distance were obtained for the MEHC calculations. Merged-beam measurements were performed between 0953-4075/31/16/017/img19 and 0953-4075/31/16/017/img20 for the 0953-4075/31/16/017/img21 collision system. Diagnostics of the 0953-4075/31/16/017/img15 beam with a crossed electron beam could find no presence of a 0953-4075/31/16/017/img15 metastable component. The current results, in conjunction with previous measurements, are used to deduce a set of recommended cross sections.

  7. Cross-sectional mapping for refined beam elements with applications to shell-like structures

    NASA Astrophysics Data System (ADS)

    Pagani, A.; de Miguel, A. G.; Carrera, E.

    2017-06-01

    This paper discusses the use of higher-order mapping functions for enhancing the physical representation of refined beam theories. Based on the Carrera unified formulation (CUF), advanced one-dimensional models are formulated by expressing the displacement field as a generic expansion of the generalized unknowns. According to CUF, a novel physically/geometrically consistent model is devised by employing Legendre-like polynomial sets to approximate the generalized unknowns at the cross-sectional level, whereas a local mapping technique based on the blending functions method is used to describe the exact physical boundaries of the cross-section domain. Classical and innovative finite element methods, including hierarchical p-elements and locking-free integration schemes, are utilized to solve the governing equations of the unified beam theory. Several numerical applications accounting for small displacements/rotations and strains are discussed, including beam structures with cross-sectional curved edges, cylindrical shells, and thin-walled aeronautical wing structures with reinforcements. The results from the proposed methodology are widely assessed by comparisons with solutions from the literature and commercial finite element software tools. The attention is focussed on the high computational efficiency and the marked capabilities of the present beam model, which can deal with a broad spectrum of structural problems with unveiled accuracy in terms of geometrical representation of the domain boundaries.

  8. Occult spinal canal stenosis due to C-1 hypoplasia in children with Down syndrome.

    PubMed

    Matsunaga, Shunji; Imakiire, Takanori; Koga, Hiroaki; Ishidou, Yasuhiro; Sasaki, Hiromi; Taketomi, Eiji; Higo, Masaru; Tanaka, Hiroshi; Komiya, Setsuro

    2007-12-01

    Little has been published about subclinical spinal canal stenosis due to C-1 hypoplasia in patients with Down syndrome. In this paper the authors performed a matched comparison study with cross-sectional survey to investigate occult spinal canal stenosis due to C-1 hypoplasia in children with Down syndrome. A total of 102 children with Down syndrome ranging in age from 10 to 15 years were matched according to age and physique with 176 normal children. In all participants, the anteroposterior (AP) diameter of C-1 and the atlas-dens interval (ADI) were measured on plain lateral x-ray images of the cervical spine. The cross-sectional area of the atlas was also measured from a cross-sectional computed tomography image of C-1. Eight children (6.7%) with Down syndrome developed atlantoaxial subluxation associated with myelopathy. The difference in the ADI between the patients and controls was not statistically significant. The average AP diameter of the atlas and the spinal canal area along the cross-section of the atlas were significantly smaller in children with Down syndrome than those in the control group. Atlantoaxial instability and occult spinal canal stenosis due to C-1 hypoplasia in patients with Down syndrome may significantly increase the risk of myelopathy.

  9. Undergraduate students introduction to manual and rotary root canal instrumentation.

    PubMed

    Leonardi, Denise Piotto; Haragushiku, Gisele Aihara; Tomazinho, Flavia Sens Fagundes; Furuse, Adilson Yoshio; Volpato, Lusiane; Baratto-Filho, Flares

    2012-01-01

    The aim of this study was to evaluate the performance of undergraduates in their first contact with manual and rotary root canal instrumentation. Forty-two students who had never worked on a root canal before instrumented 42 extracted lower-incisors. Participants were assigned to one of two groups: Rotary instrumentation or manual instrumentation. Pre- and post-operative computed tomography scans were obtained with a 3-dimensional dental imaging system. Starting and finishing times of preparation were recorded. The cross-sectional area of the root canal was analyzed with 2-mm-below-the-apex initial and final transverse images recorded through a digital imaging system and analyzed with software to measure the initial and final area of the root canal in mm(2). Data from the cross-sectional area of the root canal and time spent were subjected to the Mann-Whitney's U-test (p<0.05). The rotary instrumentation group showed smaller time for preparation (p=0.0204). No differences between rotary and manual instrumentation regarding the cross-sectional area of the root canal were observed (p=0.25). No accidents occurred. Undergraduate students showed good performance in their first contact with the manual and rotary instrumentation with regard to time spent and cross-sectional area of the root canal, with no operative accidents.

  10. Quantitative imaging biomarkers for dural sinus patterns in idiopathic intracranial hypertension.

    PubMed

    Zur, Dinah; Anconina, Reut; Kesler, Anat; Lublinsky, Svetlana; Toledano, Ronen; Shelef, Ilan

    2017-02-01

    To quantitatively characterize transverse dural sinuses (TS) on magnetic resonance venography (MRV) in patients with idiopathic intracranial hypertension (IIH), compared to healthy controls, using a computer assisted detection (CAD) method. We retrospectively analyzed MRV studies of 38 IIH patients and 30 controls, matched by age and gender. Data analysis was performed using a specially developed Matlab algorithm for vessel cross-sectional analysis. The cross-sectional area and shape measurements were evaluated in patients and controls. Mean, minimal, and maximal cross-sectional areas as well as volumetric parameters of the right and left transverse sinuses were significantly smaller in IIH patients than in controls ( p  < .005 for all). Idiopathic intracranial hypertension patients showed a narrowed segment in both TS, clustering near the junction with the sigmoid sinus. In 36% (right TS) and 43% (left TS), the stenosis extended to >50% of the entire length of the TS, i.e. the TS was hypoplastic. Narrower vessels tended to have a more triangular shape than did wider vessels. Using CAD we precisely quantified TS stenosis and its severity in IIH patients by cross-sectional and volumetric analysis. This method can be used as an exact tool for investigating mechanisms of IIH development and response to treatment.

  11. Measurement of double-differential cross sections for top quark pair production in pp collisions at $$\\sqrt{s} = 8$$ TeV and impact on parton distribution functions

    DOE PAGES

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; ...

    2017-07-11

    Normalized double-differential cross sections for top quark pair (more » $$\\mathrm{t}\\overline{\\mathrm{t}}$$ ) production are measured in pp collisions at a centre-of-mass energy of 8 $$\\,\\text {TeV}$$ with the CMS experiment at the LHC. The analyzed data correspond to an integrated luminosity of 19.7 $$\\,\\text {fb}^{-1}$$ . The measurement is performed in the dilepton $$\\mathrm {e}^{\\pm }\\mu ^{\\mp }$$ final state. The $$\\mathrm{t}\\overline{\\mathrm{t}}$$ cross section is determined as a function of various pairs of observables characterizing the kinematics of the top quark and $$\\mathrm{t}\\overline{\\mathrm{t}}$$ system. The data are compared to calculations using perturbative quantum chromodynamics at next-to-leading and approximate next-to-next-to-leading orders. They are also compared to predictions of Monte Carlo event generators that complement fixed-order computations with parton showers, hadronization, and multiple-parton interactions. Overall agreement is observed with the predictions, which is improved when the latest global sets of proton parton distribution functions are used. Lastly, the inclusion of the measured $$\\mathrm{t}\\overline{\\mathrm{t}}$$ cross sections in a fit of parametrized parton distribution functions is shown to have significant impact on the gluon distribution.« less

  12. Measurement of stream channel habitat using sonar

    USGS Publications Warehouse

    Flug, Marshall; Seitz, Heather; Scott, John

    1998-01-01

    An efficient and low cost technique using a sonar system was evaluated for describing channel geometry and quantifying inundated area in a large river. The boat-mounted portable sonar equipment was used to record water depths and river width measurements for direct storage on a laptop computer. The field data collected from repeated traverses at a cross-section were evaluated to determine the precision of the system and field technique. Results from validation at two different sites showed average sample standard deviations (S.D.s) of 0.12 m for these complete cross-sections, with coefficient of variations of 10%. Validation using only the mid-channel river cross-section data yields an average sample S.D. of 0.05 m, with a coefficient of variation below 5%, at a stable and gauged river site using only measurements of water depths greater than 0.6 m. Accuracy of the sonar system was evaluated by comparison to traditionally surveyed transect data from a regularly gauged site. We observed an average mean squared deviation of 46.0 cm2, considering only that portion of the cross-section inundated by more than 0.6 m of water. Our procedure proved to be a reliable, accurate, safe, quick, and economic method to record river depths, discharges, bed conditions, and substratum composition necessary for stream habitat studies.

  13. An atlas of objectively analyzed atmospheric cross sections, 1973-1980

    NASA Technical Reports Server (NTRS)

    Goodman, J.; Gaines, S. E.; Hipskind, R. S.

    1985-01-01

    Atmospheric variability over time scales greater than one month is conceptually simplified and readily recognized from vertical cross-sections of zonal-monthly mean data. The reduction to two dimensions, latitude and height, explicitly eliminates all zonal waves but implicity retains their effects on the thermal-pressure fields and the dynamically related zonal wind fields. This atlas contains 96 examples, spanning all latitudes in both the northern and southern hemispheres and two decades in pressure, from 1000 to 10 mb. Four analyses, representing each month from January 1973 through December 1980, depicts the potential virtual temperature, the observed zonal wind velocity, the virtual temperature and the geostrophic zonal wind velocity. Each variable is contoured at a close interval to facilitate visual estimates of stability and vorticity via their gradients. The analyses are generated and contoured by objective computer methods from just one data source: in situ measurements from the conventional rawin-radiosonde system. Although the analyses are independently made at constant pressure levels (the mandatory levels) the cross-sections are drawn with geopotential height as the ordinate. With this ordinate one can observe the seasonal expansion and contraction of the earth's atmosphere, especially that of the polar stratosphere. Also, the quasi-biannual cycle can be identified and studied directly from successive cross-sections.

  14. Helium Atom Scattering from C2H6, F2HCCH3, F3CCH2F and C2F6 in Crossed Molecular Beams

    NASA Astrophysics Data System (ADS)

    Hammer, Markus; Seidel, Wolfhart

    1997-10-01

    Rotationally unresolved differential cross sections were measured in crossed molecular beam experiments by scattering Helium atoms from Ethane, 1,1-Difluoroethane, 1,1,1,2-Tetrafluoroethane and Hexafluoroethane. The damping of observed diffraction oscillations was used to extract anisotropic interaction potentials for these scattering systems applying the infinite order sudden approximation (IOSA). Binary macroscopic parameters such as second heterogeneous virial coefficients and the coefficients of diffusion and viscosity were computed from these potentials and compared to results from macroscopic experiments.

  15. Diagnostic ability of computed tomography using DentaScan software in endodontics: case reports.

    PubMed

    Siotia, Jaya; Gupta, Sunil K; Acharya, Shashi R; Saraswathi, Vidya

    2011-01-01

    Radiographic examination is essential in diagnosis and treatment planning in endodontics. Conventional radiographs depict structures in two dimensions only. The ability to assess the area of interest in three dimensions is advantageous. Computed tomography is an imaging technique which produces three-dimensional images of an object by taking a series of two-dimensional sectional X-ray images. DentaScan is a computed tomography software program that allows the mandible and maxilla to be imaged in three planes: axial, panoramic, and cross-sectional. As computed tomography is used in endodontics, DentaScan can play a wider role in endodontic diagnosis. It provides valuable information in the assessment of the morphology of the root canal, diagnosis of root fractures, internal and external resorptions, pre-operative assessment of anatomic structures etc. The aim of this article is to explore the clinical usefulness of computed tomography and DentaScan in endodontic diagnosis, through a series of four cases of different endodontic problems.

  16. A planar near-field scanning technique for bistatic radar cross section measurements

    NASA Technical Reports Server (NTRS)

    Tuhela-Reuning, S.; Walton, E. K.

    1990-01-01

    A progress report on the development of a bistatic radar cross section (RCS) measurement range is presented. A technique using one parabolic reflector and a planar scanning probe antenna is analyzed. The field pattern in the test zone is computed using a spatial array of signal sources. It achieved an illumination pattern with 1 dB amplitude and 15 degree phase ripple over the target zone. The required scan plane size is found to be proportional to the size of the desired test target. Scan plane probe sample spacing can be increased beyond the Nyquist lambda/2 limit permitting constant probe sample spacing over a range of frequencies.

  17. Electron capture to the continuum manifestation in fully differential cross sections for ion impact single ionization

    NASA Astrophysics Data System (ADS)

    Ciappina, M. F.; Fojón, O. A.; Rivarola, R. D.

    2018-04-01

    We present theoretical calculations of single ionization of He atoms by protons and multiply charged ions. The kinematical conditions are deliberately chosen in such a way that the ejected electron velocity matches the projectile impact velocity. The computed fully differential cross sections (FDCS) in the scattering plane using the continuum-distorted wave-eikonal initial state show a distinct peaked structure for a polar electron emission angle θ k = 0°. This element is absent when a first order theory is employed. Consequently, we can argue that this peak is a clear manifestation of a three-body effect, not observed before in FDCS. We discuss a possible interpretation of this new feature.

  18. Time-Dependent Wave Packet Dynamics Calculations of Cross Sections for Ultracold Scattering of Molecules

    NASA Astrophysics Data System (ADS)

    Huang, Jiayu; Liu, Shu; Zhang, Dong H.; Krems, Roman V.

    2018-04-01

    Because the de Broglie wavelength of ultracold molecules is very large, the cross sections for collisions of molecules at ultracold temperatures are always computed by the time-independent quantum scattering approach. Here, we report the first accurate time-dependent wave packet dynamics calculation for reactive scattering of ultracold molecules. Wave packet dynamics calculations can be applied to molecular systems with more dimensions and provide real-time information on the process of bond rearrangement and/or energy exchange in molecular collisions. Our work thus makes possible the extension of rigorous quantum calculations of ultracold reaction properties to polyatomic molecules and adds a new powerful tool for the study of ultracold chemistry.

  19. Inverse Thermal Analysis of Alloy 690 Laser and Hybrid Laser-GMA Welds Using Solidification-Boundary Constraints

    NASA Astrophysics Data System (ADS)

    Lambrakos, S. G.

    2017-08-01

    An inverse thermal analysis of Alloy 690 laser and hybrid laser-GMA welds is presented that uses numerical-analytical basis functions and boundary constraints based on measured solidification cross sections. In particular, the inverse analysis procedure uses three-dimensional constraint conditions such that two-dimensional projections of calculated solidification boundaries are constrained to map within experimentally measured solidification cross sections. Temperature histories calculated by this analysis are input data for computational procedures that predict solid-state phase transformations and mechanical response. These temperature histories can be used for inverse thermal analysis of welds corresponding to other welding processes whose process conditions are within similar regimes.

  20. Experimental and rendering-based investigation of laser radar cross sections of small unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Laurenzis, Martin; Bacher, Emmanuel; Christnacher, Frank

    2017-12-01

    Laser imaging systems are prominent candidates for detection and tracking of small unmanned aerial vehicles (UAVs) in current and future security scenarios. Laser reflection characteristics for laser imaging (e.g., laser gated viewing) of small UAVs are investigated to determine their laser radar cross section (LRCS) by analyzing the intensity distribution of laser reflection in high resolution images. For the first time, LRCSs are determined in a combined experimental and computational approaches by high resolution laser gated viewing and three-dimensional rendering. An optimized simple surface model is calculated taking into account diffuse and specular reflectance properties based on the Oren-Nayar and the Cook-Torrance reflectance models, respectively.

Top