Sample records for computed d0 values

  1. Quasi Three-Body Decay of D Meson

    NASA Astrophysics Data System (ADS)

    Estabar, T.; Mehraban, H.

    2018-04-01

    The aim of this work is to provide a phenomenological analysis of the contribution of D 0 meson to {\\bar{K}}* {(892)}0{π }+{π }-({\\bar{K}}* {(892)}0\\to {π }+{K}-), K ‑ π + ω (ω → π + π ‑ π 0) and K ‑ π + ø (ø(1020) → K+ K ‑) quasi-three-body decays. The analysis of mentioned multi-body decays is such as to factorize into the three-body decay and several channels observed. Hadronic three-body decays receive both resonant and non-resonant contribution. Based on the factorization method, there are tree and emission annihilation diagrams for these decay modes. In the case of D 0 to vector pseudoscalar states appeared in factored terms, the matrix elements of the vector and axial vector currents between the D 0 and PV mesons can be computed by using D *+ pole. Considering the non-resonant and resonant amplitude in our computation, the theoretical values of the branching ratio are (9.78±0.46)×10‑3, (2.74±0.17)×10‑2, and (3.53±0.23)×10‑5, while the experimental results of them are (9.9±2.3)×10‑3, (2.7±0.5)×10‑2, and (4±1.7)×10‑5 respectively. Comparing computational analysis values with experimental values show that our results are in approximately agreement with them.

  2. Lateral solids dispersion coefficient in large-scale fluidized beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Daoyin; Chen, Xiaoping

    2010-11-15

    The design of fuel feed ports in a large-scale fluidized bed combustor depends on the fuel characteristics and lateral solids mixing. However, the reported values of the effective lateral solids dispersion coefficient (D{sub sr}) are scattered in the broad range of 0.0001-0.1 m{sup 2}/s. With the aim of predicting D{sub sr} in wider fluidized beds which is difficult to measure directly or deduce from experimental results in lab-scale facilities, a computational method is proposed. It combines the Eulerian-Granular simulation and fictitious particle tracing technique. The value of D{sub sr} is calculated based on the movement of the tracers. The effectmore » on D{sub sr} of bed width (W) ranging from 0.4 m up to 12.8 m at different levels of superficial gas velocity (U{sub 0}) is investigated. It is found that increasing W whilst maintaining U{sub 0}, D{sub sr} initially increases markedly, then its increase rate declines, and finally it stays around a constant value. The computed values of D{sub sr} are examined quantitatively and compared with a thorough list of the measured D{sub sr} in the literature since 1980s. Agreed with the measurements performed in the pilot-scale fluidized beds, the value of D{sub sr} in wider facilities at higher fluidizing velocities is predicted to be around the order of magnitude of 0.1 m{sup 2}/s, much higher than that in lab-scale beds. Finally, the effect of D{sub sr} on the distribution of fuel particles over the cross section in fluidized beds with the specified layout of feed ports is discussed. (author)« less

  3. Comparing surgically induced astigmatism calculated by means of simulated keratometry versus total corneal refractive power.

    PubMed

    Garzón, Nuria; Rodríguez-Vallejo, Manuel; Carmona, David; Calvo-Sanz, Jorge A; Poyales, Francisco; Palomino, Carlos; Zato-Gómez de Liaño, Miguel Á; Fernández, Joaquín

    2018-03-01

    To evaluate surgically induced astigmatism as computed by means of either simulated keratometry (K SIM ) or total corneal refractive power (TCRP) after temporal incisions. Prospective observational study including 36 right eyes undergoing cataract surgery. Astigmatism was measured preoperatively during the 3-month follow-up period using Pentacam. Surgically induced astigmatism was computed considering anterior corneal surface astigmatism at 3 mm with K SIM and considering both corneal surfaces with TCRP from 1 to 8 mm (TCRP 3 for 3 mm). The eyes under study were divided into two balanced groups: LOW with K SIM astigmatism <0.90 D and HIGH with K SIM astigmatism ≥0.90 D. Resulting surgically induced astigmatism values were compared across groups and measuring techniques by means of flattening, steepening, and torque analysis. Mean surgically induced astigmatism was higher in the HIGH group (0.31 D @ 102°) than in the LOW group (0.04 D @ 16°). The temporal incision resulted in a steepening in the HIGH group of 0.15 D @ 90°, as estimated with K SIM , versus 0.28 D @ 90° with TCRP 3 , but no significant differences were found for the steepening in the LOW group or for the torque in either group. Differences between K SIM - and TCRP 3 -based surgically induced astigmatism values were negligible in LOW group. Surgically induced astigmatism was considerably higher in the high-astigmatism group and its value was underestimated with the K SIM approach. Eyes having low astigmatism should not be included for computing the surgically induced astigmatism because steepening would be underestimated.

  4. Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for 20 Molecules

    DOE PAGES

    Cheng, Lan; Gauss, Jürgen; Ruscic, Branko; ...

    2017-01-12

    Benchmark scalar-relativistic coupled-cluster calculations for dissociation energies of the 20 diatomic molecules containing 3d transition metals in the 3dMLBE20 database ( J. Chem. Theory Comput. 2015, 11, 2036) are reported in this paper. Electron correlation and basis set effects are systematically studied. The agreement between theory and experiment is in general satisfactory. For a subset of 16 molecules, the standard deviation between computational and experimental values is 9 kJ/mol with the maximum deviation being 15 kJ/mol. The discrepancies between theory and experiment remain substantial (more than 20 kJ/mol) for VH, CrH, CoH, and FeH. To explore the source of themore » latter discrepancies, the analysis used to determine the experimental dissociation energies for VH and CrH is revisited. It is shown that, if improved values are used for the heterolytic C–H dissociation energies of di- and trimethylamine involved in the experimental determination, the experimental values for the dissociation energies of VH and CrH are increased by 18 kJ/mol, such that D 0(VH) = 223 ± 7 kJ/mol and D 0(CrH) = 204 ± 7 kJ/mol (or D e(VH) = 233 ± 7 kJ/mol and D e(CrH) = 214 ± 7 kJ/mol). Finally, the new experimental values agree quite well with the calculated values, showing the consistency of the computation and the measured reaction thresholds.« less

  5. Computer Algebra Reexamination of the Scaled Particle Theory for Hard-Sphere and Lennard-Jones Fluids

    NASA Astrophysics Data System (ADS)

    Khasare, S. B.

    In the present work, an extension of the scaled particle theory (ESPT) for fluid using computer algebra is developed to obtain an equation of state (EOS), for Lennard-Jones fluid. A suitable functional form for surface tension S(r,d,ɛ) is assumed with intermolecular separation r as a variable, given below: $$S(r,d,\\epsilon)=S_{0}[1+2\\delta(d/r)^{m}],\\qquad r\\geq d/2\\,,$$ where m is arbitrary real number, and d and ɛ are related to physical property such as average or suitable molecular diameter and the binding energy of the molecule respectively. It is found that, for hard sphere fluid ɛ = 0, the above assumption when introduced in scaled particle theory (SPT) frame and choosing arbitrary real number, m = 1/3, the corresponding EOS is in good agreement with the computer simulation of molecular dynamics (MD) result. Furthermore, for the value of m = -1 it gives a Percus-Yevick (pressure), and for the value of m = 1, it corresponds Percus-Yevick (compressibility) EOS.

  6. Computed 88% TCP dose for SBRT of NSCLC from tumour hypoxia modelling

    NASA Astrophysics Data System (ADS)

    Ruggieri, Ruggero; Stavreva, Nadejda; Naccarato, Stefania; Stavrev, Pavel

    2013-07-01

    In small NSCLC, 88% local control at three years from SBRT was reported both for schedule (20-22 Gy ×3) (Fakiris et al 2009 Int. J. Radiat. Oncol. Biol. Phys. 75 677-82), actually close to (18-20 Gy ×3) if density correction is properly applied, and for schedules (18 Gy ×3) and (11 Gy ×5) (Palma et al 2012 Int. J. Radiat. Oncol. Biol. Phys. 82 1149-56). Here, we compare our computed iso-TCP = 88% dose per fraction (d88) for three and five fractions (n) with such clinically adopted ones. Our TCP model accounts for tumour repopulation, at rate λ (d-1), reoxygenation of chronic hypoxia (ch-), at rate a (d-1) and fluctuating oxygenation of acute hypoxia (ah-), with hypoxic fraction (C) of the acutely hypoxic fractional volume (AHF). Out of the eight free parameters whose values we had fitted to in vivo animal data (Ruggieri et al 2012 Int. J. Radiat. Oncol. Biol. Phys. 83 1603-8), we here maintained (a(d-1), C, OERch, OERah/OERch, AHF, CHF) = (0.026, 0.17, 1.9, 2.2, 0.033, 0.145) while rescaling the initial total number of clonogens (No) according to the ratio of NSCLC on animal median tumour volumes. From the clinical literature, the usually assumed (αo/βo(Gy), λ(d-1)) = (10, 0.217) for the well-oxygenated (o-)cells were taken. By normal (lognormal) random sampling of all parameter values over their 95% C.I., the uncertainty on present d88(n) computations was estimated. Finally, SBRT intra-tumour dose heterogeneity was simulated by a 1.3 dose boost ratio on 50% of tumour volume. Computed d88(±1σ) were 19.0 (16.3; 21.7) Gy, for n = 3; 10.4 (8.7; 12.1) Gy, for n = 5; 5.8 (5.2; 6.4) Gy, for n = 8; 4.0 (3.6; 4.3) Gy, for n = 12. Furthermore, the iso-TCP = 88% total dose, D88(n) = d88(n)*n, exhibited a relative minimum around n = 8. Computed d88(n = 3, 5) are strictly consistent with the clinically adopted ones, which confirms the validity of LQ-model-based TCP predictions at the doses used in SBRT if a highly radioresistant cell subpopulation is properly modelled. The computed minimum D88(n) around n = 8 suggests the adoption of 6 ≤ n ≤ 10 instead of n = 3 in SBRT of small NSCLC tumours.

  7. Shot Noise in a Quantum Dot with the Finite Coulomb Interaction

    NASA Astrophysics Data System (ADS)

    Cao, Xian-Sheng

    2011-09-01

    We study the shot noise in a quantum dot which coupled to metallic leads using the equation of motion of nonequilibrium Green's function technique at Kondo temperature T K . We compute the out of equilibrium density of states, the current and the shot noise. We find that the value of shot noise in the finite coulomb interaction case is smaller than one at Kondo temperature T K when variation of ɛ d values of the QD energy in the absence of the external magnetic field. We also find that the values of S(0)/ V are almost insusceptible to U when eV d under 2, while the values of S(0)/ V appear slightly branch off when the value of eV d approach to 6.

  8. Comparison of sedation and mechanical antinociception induced by intravenous administration of acepromazine and four dose rates of dexmedetomidine in donkeys.

    PubMed

    Lizarraga, Ignacio; Castillo-Alcala, Fernanda; Robinson, Lauren S

    2017-05-01

    To assess and compare the sedative and antinociceptive effects of four dosages of dexmedetomidine in donkeys. Randomized, controlled, crossover, Latin-square, blinded study. Six healthy, castrated, adult, standard donkeys. Dexmedetomidine (2, 3, 4 and 5 μg kg -1 ; D2, D3, D4 and D5), acepromazine (0.1 mg kg -1 ) and saline were administered intravenously to each donkey and a 1 week interval was allowed between successive trials on each animal. Sedation scores (SS) and head heights above ground (HHAG) were used to assess sedation and mechanical nociceptive threshold (MNT) testing to assess antinociception over 120 minutes post-treatment. Areas under the curve (AUC) for 0-30, 30-60 and 60-120 minutes were computed to compare the effect of treatments. SS-AUC 0-30 values were larger for D4 and D5, and SS-AUC 30-60 values were larger for D5 than for saline. All dexmedetomidine treatments produced lower HHAG-AUC 0-30 and HHAG-AUC 30-60 values, and acepromazine produced lower HHAG AUC 60-120 values than did saline. For MNT, D3, D4 and D5 increased AUC 0-30 and AUC 30-60 values compared with saline and also AUC 0-30 values compared with D2 and acepromazine. Smaller MNT-AUC 30-60 values were obtained with D2 than with D4 and D5, with D3 than with D5, and with acepromazine than with D4 and D5. Dexmedetomidine induced sedation and dosage-dependent mechanical antinociception. Larger dexmedetomidine dose rates were required to induce antinociception than sedation. Furthermore, the antinociception induced by dexmedetomidine was of shorter duration than its sedation. For minor painful procedures on standing donkeys, D5 may be clinically useful to provide sedation and analgesia. Copyright © 2017 Association of Veterinary Anaesthetists and American College of Veterinary Anesthesia and Analgesia. Published by Elsevier Ltd. All rights reserved.

  9. Three-column classification and Schatzker classification: a three- and two-dimensional computed tomography characterisation and analysis of tibial plateau fractures.

    PubMed

    Patange Subba Rao, Sheethal Prasad; Lewis, James; Haddad, Ziad; Paringe, Vishal; Mohanty, Khitish

    2014-10-01

    The aim of the study was to evaluate inter-observer reliability and intra-observer reproducibility between the three-column classification and Schatzker classification systems using 2D and 3D CT models. Fifty-two consecutive patients with tibial plateau fractures were evaluated by five orthopaedic surgeons. All patients were classified into Schatzker and three-column classification systems using x-rays and 2D and 3D CT images. The inter-observer reliability was evaluated in the first round and the intra-observer reliability was determined during the second round 2 weeks later. The average intra-observer reproducibility for the three-column classification was from substantial to excellent in all sub classifications, as compared with Schatzker classification. The inter-observer kappa values increased from substantial to excellent in three-column classification and to moderate in Schatzker classification The average values for three-column classification for all the categories are as follows: (I-III) k2D = 0.718, 95% CI 0.554-0.864, p < 0.0001 and average 3D = 0.874, 95% CI 0.754-0.890, p < 0.0001. For Schatzker classification system, the average values for all six categories are as follows: (I-VI) k2D = 0.536, 95% CI 0.365-0.685, p < 0.0001 and average k3D = 0.552 95% CI 0.405-0.700, p < 0.0001. The values are statistically significant. Statistically significant inter-observer values in both rounds were noted with the three-column classification, making it statistically an excellent agreement. The intra-observer reproducibility for the three-column classification improved as compared with the Schatzker classification. The three-column classification seems to be an effective way to characterise and classify fractures of tibial plateau.

  10. Kidney lower pole pelvicaliceal anatomy: comparative analysis between intravenous urogram and three-dimensional helical computed tomography.

    PubMed

    Rachid Filho, Daibes; Favorito, Luciano A; Costa, Waldemar S; Sampaio, Francisco J B

    2009-12-01

    The aim of our study was to evaluate if there is any advantage of three-dimensional helical computed tomography (3D-HCT) over intravenous urogram (IVU) in the morphometric and morphological analysis of lower pole spatial anatomy of the kidney. We analyzed 52 renal collecting systems in 30 patients, ranging in age from 23 to 80 years. The study compared the following features: (1) the angle formed between the lower infundibulum and the renal pelvis (i.e., lower infundibulum-pelvic angle [IPA]), (2) the lower infundibulum diameter (ID), and (3) the spatial distribution and number of lower pole calices (i.e., caliceal distribution [CD]). The study started with the 3D-HCT images obtained for posterior reconstruction and analysis. Afterward, we obtained anteroposterior and oblique IVU images. For IPA (in degrees) we found a mean +/- standard deviation (SD) value of 75.79 +/- 15.3 with 3D-HCT and 77.4 +/- 17.17 with IVU, which were not statistically significant. For ID (in mm) we found a mean +/- SD value of 7.5 +/- 2.92 with 3D-HCT and 8.15 +/- 3.27 with IVU. For CD we found a mean +/- SD value of 2.37 +/- 0.75 calices with 3D-HCT and 2.43 +/- 0.67 calices with IVU. On analyzing the difference between 3D-HCT and IVU, we found a mean +/- SD value of 0.06 +/- 0.51, and we verified that 74.5% of the examinations compared did not present statistically significant difference, with a Wilcoxon p-value of 0.405. Although 3D-HCT is more precise to study calculus location, tumors, and vessels, IVU was also demonstrated to be as precise as 3D-HCT for studying the lower pole spatial anatomy. We did not observe any statistically significant difference in the measurements of IPA, ID, and CD obtained using 3D-HCT when compared with those obtained using IVU. Therefore, 3D-HCT does not present any advantage over IVU in the evaluation of lower pole caliceal anatomy.

  11. Method of Individual Adjustment for 3D CT Analysis: Linear Measurement.

    PubMed

    Kim, Dong Kyu; Choi, Dong Hun; Lee, Jeong Woo; Yang, Jung Dug; Chung, Ho Yun; Cho, Byung Chae; Choi, Kang Young

    2016-01-01

    Introduction . We aim to regularize measurement values in three-dimensional (3D) computed tomography (CT) reconstructed images for higher-precision 3D analysis, focusing on length-based 3D cephalometric examinations. Methods . We measure the linear distances between points on different skull models using Vernier calipers (real values). We use 10 differently tilted CT scans for 3D CT reconstruction of the models and measure the same linear distances from the picture archiving and communication system (PACS). In both cases, each measurement is performed three times by three doctors, yielding nine measurements. The real values are compared with the PACS values. Each PACS measurement is revised based on the display field of view (DFOV) values and compared with the real values. Results . The real values and the PACS measurement changes according to tilt value have no significant correlations ( p > 0.05). However, significant correlations appear between the real values and DFOV-adjusted PACS measurements ( p < 0.001). Hence, we obtain a correlation expression that can yield real physical values from PACS measurements. The DFOV value intervals for various age groups are also verified. Conclusion . Precise confirmation of individual preoperative length and precise analysis of postoperative improvements through 3D analysis is possible, which is helpful for facial-bone-surgery symmetry correction.

  12. Analysis of four-body decay of D meson

    NASA Astrophysics Data System (ADS)

    Estabar, T.; Mehraban, H.

    2017-01-01

    The aim of this work is to provide a phenomenological analysis of the contribution of D0 meson to f0(980)π+π-(f 0(980) → π+π-), K+K-K¯∗(982)0(K¯∗(982)0 → π+K-) and ϕ(π+π-) S-wave(ϕ → K+K-) quasi-three-body decays. Such that the analysis of mentioned four-body decays is summarized into three-body decay and several channels are observed. Based on the factorization approach, hadronic three-body decays receive both resonant and nonresonant contributions. We compute both contributions of three-body decays. As, there are tree, penguin, emission, and emission annihilation diagrams for these decay modes. Our theoretical model for D0 → ϕ(ππ) S-wave decay is based on the QCD factorization to quasi-two body followed by S-wave. This model for this decay following experimental information which demonstrated two pion interaction in the S-wave is introduced by the scalar resonance. The theoretical values are (1.82 ± 0.24) × 10-4, (4.46 ± 0.41) × 10-5 and (1.1 ± 0.18) × 10-4, while the experimental results of them are (1.8 ± 0.5) × 10-4, (4.4 ± 1.7) × 10-5 and (2.5 ± 0.33) × 10-4, respectively. Comparing computation analysis values with experimental values show that our results are in agreement with them.

  13. Hyper-Fractal Analysis: A visual tool for estimating the fractal dimension of 4D objects

    NASA Astrophysics Data System (ADS)

    Grossu, I. V.; Grossu, I.; Felea, D.; Besliu, C.; Jipa, Al.; Esanu, T.; Bordeianu, C. C.; Stan, E.

    2013-04-01

    This work presents a new version of a Visual Basic 6.0 application for estimating the fractal dimension of images and 3D objects (Grossu et al. (2010) [1]). The program was extended for working with four-dimensional objects stored in comma separated values files. This might be of interest in biomedicine, for analyzing the evolution in time of three-dimensional images. New version program summaryProgram title: Hyper-Fractal Analysis (Fractal Analysis v03) Catalogue identifier: AEEG_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEG_v3_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 745761 No. of bytes in distributed program, including test data, etc.: 12544491 Distribution format: tar.gz Programming language: MS Visual Basic 6.0 Computer: PC Operating system: MS Windows 98 or later RAM: 100M Classification: 14 Catalogue identifier of previous version: AEEG_v2_0 Journal reference of previous version: Comput. Phys. Comm. 181 (2010) 831-832 Does the new version supersede the previous version? Yes Nature of problem: Estimating the fractal dimension of 4D images. Solution method: Optimized implementation of the 4D box-counting algorithm. Reasons for new version: Inspired by existing applications of 3D fractals in biomedicine [3], we extended the optimized version of the box-counting algorithm [1, 2] to the four-dimensional case. This might be of interest in analyzing the evolution in time of 3D images. The box-counting algorithm was extended in order to support 4D objects, stored in comma separated values files. A new form was added for generating 2D, 3D, and 4D test data. The application was tested on 4D objects with known dimension, e.g. the Sierpinski hypertetrahedron gasket, Df=ln(5)/ln(2) (Fig. 1). The algorithm could be extended, with minimum effort, to higher number of dimensions. Easy integration with other applications by using the very simple comma separated values file format for storing multi-dimensional images. Implementation of χ2 test as a criterion for deciding whether an object is fractal or not. User friendly graphical interface. Hyper-Fractal Analysis-Test on the Sierpinski hypertetrahedron 4D gasket (Df=ln(5)/ln(2)≅2.32). Running time: In a first approximation, the algorithm is linear [2]. References: [1] V. Grossu, D. Felea, C. Besliu, Al. Jipa, C.C. Bordeianu, E. Stan, T. Esanu, Computer Physics Communications, 181 (2010) 831-832. [2] I.V. Grossu, C. Besliu, M.V. Rusu, Al. Jipa, C. C. Bordeianu, D. Felea, Computer Physics Communications, 180 (2009) 1999-2001. [3] J. Ruiz de Miras, J. Navas, P. Villoslada, F.J. Esteban, Computer Methods and Programs in Biomedicine, 104 Issue 3 (2011) 452-460.

  14. Flood Control Project Lac Qui Parle, Emergency Plan

    DTIC Science & Technology

    1988-10-01

    elevation of the breach (924.0 as shown in Table 1), is approximately 22.2 feet. The value of the envelope curve shown on Plate D-10 for a hydraulic...approximately 83% of the computed maximum outflow. Several failure scenarios for Lac qui Parle Dam were studied. The case of failure concurrent with a PKF ...discharge would plot very close to Lac qui Parle in Plate D-10. Plate D-10 shows that the value of the envelope curve for a hydraulic depth of 18.8 feet

  15. Assessment of passive drag in swimming by numerical simulation and analytical procedure.

    PubMed

    Barbosa, Tiago M; Ramos, Rui; Silva, António J; Marinho, Daniel A

    2018-03-01

    The aim was to compare the passive drag-gliding underwater by a numerical simulation and an analytical procedure. An Olympic swimmer was scanned by computer tomography and modelled gliding at a 0.75-m depth in the streamlined position. Steady-state computer fluid dynamics (CFD) analyses were performed on Fluent. A set of analytical procedures was selected concurrently. Friction drag (D f ), pressure drag (D pr ), total passive drag force (D f +pr ) and drag coefficient (C D ) were computed between 1.3 and 2.5 m · s -1 by both techniques. D f +pr ranged from 45.44 to 144.06 N with CFD, from 46.03 to 167.06 N with the analytical procedure (differences: from 1.28% to 13.77%). C D ranged between 0.698 and 0.622 by CFD, 0.657 and 0.644 by analytical procedures (differences: 0.40-6.30%). Linear regression models showed a very high association for D f +pr plotted in absolute values (R 2  = 0.98) and after log-log transformation (R 2  = 0.99). The C D also obtained a very high adjustment for both absolute (R 2  = 0.97) and log-log plots (R 2  = 0.97). The bias for the D f +pr was 8.37 N and 0.076 N after logarithmic transformation. D f represented between 15.97% and 18.82% of the D f +pr by the CFD, 14.66% and 16.21% by the analytical procedures. Therefore, despite the bias, analytical procedures offer a feasible way of gathering insight on one's hydrodynamics characteristics.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Eric L.; Davis, Quincy C.; Morse, Michael D.

    The abrupt onset of predissociation in the congested electronic spectra of jet-cooled VC, VN, and VS has been observed using resonant two-photon ionization spectroscopy. It is argued that because of the high density of electronic states in these molecules, the predissociation threshold occurs at the thermochemical threshold for the production of separated atoms in their ground electronic states. As a result, the measured threshold represents the bond dissociation energy. Using this method, bond dissociation energies of D{sub 0}(V C) = 4.1086(25) eV, D{sub 0}(V N) = 4.9968(20) eV, and D{sub 0}(V S) = 4.5353(25) eV are obtained. From these values,more » enthalpies of formation are derived as Δ{sub f,0K}H°(V C(g)) = 827.0 ± 8 kJ mol{sup −1}, Δ{sub f,0K}H°(V N(g)) = 500.9 ± 8 kJ mol{sup −1}, and Δ{sub f,0K}H°(V S(g)) = 349.3 ± 8 kJ mol{sup −1}. Using a thermochemical cycle and the well-known ionization energies of V, VC, and VN, our results also provide D{sub 0}(V{sup +}–C) = 3.7242(25) eV and D{sub 0}(V{sup +}–N) = 4.6871(20) eV. These values are compared to previous measurements and to computational results. The precision of these bond dissociation energies makes them good candidates for testing computational chemistry methods, particularly those that employ density functional theory.« less

  17. A new wavefront sensor with polar symmetry: quantitative comparisons with a Shack-Hartmann wavefront sensor.

    PubMed

    Carvalho, Luis Alberto; Castro, Jarbas; Chamon, Wallace; Schor, Paulo

    2006-11-01

    A novel wavefront sensor has been developed. It follows the same principle of the Shack-Hartmann wavefront sensor in that it is based on slope information. However, it has a different symmetry, which may offer benefits in terms of application. The new wavefront sensor consists of a set of donut-shaped acrylic lenses with a charge coupled device located at the focal plane. From detection of shift in the radial direction, radial slopes are computed for 2880 points. Theoretical computations for higher order aberrations and lower order aberrations were implemented for the Shack-Hartmann wavefront sensor and the new wavefront sensor, and practical measurements were conducted on several sphere-cylinder trial lenses. The overall mean value of root mean square error (RMSE) (in microns) for theoretical computations was 0.03 for the Shack-Hartmann wavefront sensor and 0.02 for the new wavefront sensor. The mean value of RMSE for lower order aberrations (1-5) was 0.01 and 0.00003, and for higher order aberrations was 0.02 and 0.02, for the Shack-Hartmann and new wavefront sensors, respectively. For practical measurements (sphere, cylinder, axis), the standard deviation was 0.04 diopters (D), 0.04 D, and 4 degrees for the new wavefront sensor and 0.02 D, 0.02 D, and 5 degrees for the Shack-Hartmann wavefront sensor. Precision of the new wavefront sensor when measuring astigmatic and spherical surfaces is compatible with the Shack-Hartmann wavefront sensor. Centration with this new sensor is an absolute process using the center of the entrance pupil, which is where the line of site passes. This wavefront sensor, similar to the Shack-Hartmann sensor, does not eliminate the possibility of tilt. For more conclusive and statistically valid data, in vivo measurements are needed.

  18. Investigation of the highest bound ro-vibrational states of H+ 3, DH+ 2, HD+ 2, D+ 3, and T+ 3: use of a non-direct product basis to compute the highest allowed J > 0 states

    NASA Astrophysics Data System (ADS)

    Jaquet, Ralph

    2013-09-01

    A Lanczos algorithm with a non-direct product basis was used to compute energy levels of H+ 3, H2D+, D2H+, D+ 3, and T+ 3 with J values as large as 46, 53, 66, 66, and 81. The energy levels are based on a modified potential surface of M. Pavanello et al. that is better adapted to the ab initio energies near the dissociation limit.

  19. Bond Dissociation Energies of Tungsten Molecules: WC, WSi, WS, WSe, and WCl.

    PubMed

    Sevy, Andrew; Huffaker, Robert F; Morse, Michael D

    2017-12-14

    Resonant two-photon ionization spectroscopy was used to locate predissociation thresholds in WC, WSi, WS, WSe, and WCl, allowing bond dissociation energies to be measured for these species. Because of the high degree of vibronic congestion in the observed spectra, it is thought that the molecules dissociate as soon as the lowest separated atom limit is exceeded. From the observed predissociation thresholds, dissociation energies are assigned as D 0 (WC) = 5.289(8) eV, D 0 (WSi) = 3.103(10) eV, D 0 (WS) = 4.935(3) eV, D 0 (WSe) = 4.333(6) eV, and D 0 (WCl) = 3.818(6) eV. These results are combined with other data to obtain the ionization energy IE(WC) = 8.39(9) eV and the anionic bond dissociation energies of D 0 (W-C - ) = 6.181(17) eV, D 0 (W - -C) = 7.363(19) eV, D 0 (W-Si - ) ≤ 3.44(4) eV, and D 0 (W - -Si) ≤ 4.01(4) eV. Combination of the D 0 (WX) values with atomic enthalpies of formation also provides Δ f H 0K ° values for the gaseous WX molecules. Computational results are also provided, which shed some light on the electronic structure of these molecules.

  20. Proton affinity and enthalpy of formation of formaldehyde

    NASA Astrophysics Data System (ADS)

    Czakó, Gábor; Nagy, Balázs; Tasi, Gyula; Somogyi, Árpád; Šimunek, Ján; Noga, Jozef; Braams, Bastiaan J.; Bowman, Joel M.; Császár; , Attila G.

    The proton affinity and the enthalpy of formation of the prototypical carbonyl, formaldehyde, have been determined by the first-principles composite focal-point analysis (FPA) approach. The electronic structure computations employed the all-electron coupled-cluster method with up to single, double, triple, quadruple, and even pentuple excitations. In these computations the aug-cc-p(C)VXZ [X = 2(D), 3(T), 4(Q), 5, and 6] correlation-consistent Gaussian basis sets for C and O were used in conjunction with the corresponding aug-cc-pVXZ (X = 2-6) sets for H. The basis set limit values have been confirmed via explicitly correlated computations. Our FPA study supersedes previous computational work for the proton affinity and to some extent the enthalpy of formation of formaldehyde by accounting for (a) electron correlation beyond the "gold standard" CCSD(T) level; (b) the non-additivity of core electron correlation effects; (c) scalar relativity; (d) diagonal Born-Oppenheimer corrections computed at a correlated level; (e) anharmonicity of zero-point vibrational energies, based on global potential energy surfaces and variational vibrational computations; and (f) thermal corrections to enthalpies by direct summation over rovibrational energy levels. Our final proton affinities at 298.15 (0.0) K are ΔpaHo (H2CO) = 711.02 (704.98) ± 0.39 kJ mol-1. Our final enthalpies of formation at 298.15 (0.0) K are ΔfHo (H2CO) = -109.23 (-105.42) ± 0.33 kJ mol-1. The latter values are based on the enthalpy of the H2 + CO → H2CO reaction but supported by two further reaction schemes, H2O + C → H2CO and 2H + C + O → H2CO. These values, especially ΔpaHo (H2CO), have better accuracy and considerably lower uncertainty than the best previous recommendations and thus should be employed in future studies.

  1. Volumetric quantification of bone-implant contact using micro-computed tomography analysis based on region-based segmentation.

    PubMed

    Kang, Sung-Won; Lee, Woo-Jin; Choi, Soon-Chul; Lee, Sam-Sun; Heo, Min-Suk; Huh, Kyung-Hoe; Kim, Tae-Il; Yi, Won-Jin

    2015-03-01

    We have developed a new method of segmenting the areas of absorbable implants and bone using region-based segmentation of micro-computed tomography (micro-CT) images, which allowed us to quantify volumetric bone-implant contact (VBIC) and volumetric absorption (VA). The simple threshold technique generally used in micro-CT analysis cannot be used to segment the areas of absorbable implants and bone. Instead, a region-based segmentation method, a region-labeling method, and subsequent morphological operations were successively applied to micro-CT images. The three-dimensional VBIC and VA of the absorbable implant were then calculated over the entire volume of the implant. Two-dimensional (2D) bone-implant contact (BIC) and bone area (BA) were also measured based on the conventional histomorphometric method. VA and VBIC increased significantly with as the healing period increased (p<0.05). VBIC values were significantly correlated with VA values (p<0.05) and with 2D BIC values (p<0.05). It is possible to quantify VBIC and VA for absorbable implants using micro-CT analysis using a region-based segmentation method.

  2. Time-Adjusted Internal Target Volume: A Novel Approach Focusing on Heterogeneity of Tumor Motion Based on 4-Dimensional Computed Tomography Imaging for Radiation Therapy Planning of Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishibuchi, Ikuno; Department of Radiation Oncology, Hiroshima Prefectural Hospital, Hiroshima; Kimura, Tomoki, E-mail: tkkimura@hiroshima-u.ac.jp

    2014-08-01

    Purpose: To consider nonuniform tumor motion within the internal target volume (ITV) by defining time-adjusted ITV (TTV), a volume designed to include heterogeneity of tumor existence on the basis of 4-dimensional computed tomography (4D-CT). Methods and Materials: We evaluated 30 lung cancer patients. Breath-hold CT (BH-CT) and free-breathing 4D-CT scans were acquired for each patient. The tumors were manually delineated using a lung CT window setting (window, 1600 HU; level, −300 HU). Tumor in BH-CT images was defined as gross tumor volume (GTV), and the sum of tumors in 4D-CT images was defined as ITV-4D. The TTV images were generatedmore » from the 4D-CT datasets, and the tumor existence probability within ITV-4D was calculated. We calculated the TTV{sub 80} value, which is the percentage of the volume with a tumor existence probability that exceeded 80% on ITV-4D. Several factors that affected the TTV{sub 80} value, such as the ITV-4D/GTV ratio or tumor centroid deviation, were evaluated. Results: Time-adjusted ITV images were acquired for all patients, and tumor respiratory motion heterogeneity was visualized. The median (range) ITV-4D/GTV ratio and median tumor centroid deviation were 1.6 (1.0-4.1) and 6.3 mm (0.1-30.3 mm), respectively. The median TTV{sub 80} value was 43.3% (2.9-98.7%). Strong correlations were observed between the TTV{sub 80} value and the ITV-4D/GTV ratio (R=−0.71) and tumor centroid deviation (R=−0.72). The TTV images revealed the tumor motion pattern features within ITV. Conclusions: The TTV images reflected nonuniform tumor motion, and they revealed the tumor motion pattern features, suggesting that the TTV concept may facilitate various aspects of radiation therapy planning of lung cancer while incorporating respiratory motion in the future.« less

  3. Heuristic lipophilicity potential for computer-aided rational drug design: optimizations of screening functions and parameters.

    PubMed

    Du, Q; Mezey, P G

    1998-09-01

    In this research we test and compare three possible atom-based screening functions used in the heuristic molecular lipophilicity potential (HMLP). Screening function 1 is a power distance-dependent function, bi/[formula: see text] Ri-r [formula: see text] gamma, screening function 2 is an exponential distance-dependent function, bi exp(-[formula: see text] Ri-r [formula: see text]/d0), and screening function 3 is a weighted distance-dependent function, sign(bi) exp[-xi [formula: see text] Ri-r [formula: see text]/magnitude of bi)]. For every screening function, the parameters (gamma, d0, and xi) are optimized using 41 common organic molecules of 4 types of compounds: aliphatic alcohols, aliphatic carboxylic acids, aliphatic amines, and aliphatic alkanes. The results of calculations show that screening function 3 cannot give chemically reasonable results, however, both the power screening function and the exponential screening function give chemically satisfactory results. There are two notable differences between screening functions 1 and 2. First, the exponential screening function has larger values in the short distance than the power screening function, therefore more influence from the nearest neighbors is involved using screening function 2 than screening function 1. Second, the power screening function has larger values in the long distance than the exponential screening function, therefore screening function 1 is effected by atoms at long distance more than screening function 2. For screening function 1, the suitable range of parameter gamma is 1.0 < gamma < 3.0, gamma = 2.3 is recommended, and gamma = 2.0 is the nearest integral value. For screening function 2, the suitable range of parameter d0 is 1.5 < d0 < 3.0, and d0 = 2.0 is recommended. HMLP developed in this research provides a potential tool for computer-aided three-dimensional drug design.

  4. The efficacy of preoperative positron emission tomography-computed tomography (PET-CT) for detection of lymph node metastasis in cervical and endometrial cancer: clinical and pathological factors influencing it.

    PubMed

    Nogami, Yuya; Banno, Kouji; Irie, Haruko; Iida, Miho; Kisu, Iori; Masugi, Yohei; Tanaka, Kyoko; Tominaga, Eiichiro; Okuda, Shigeo; Murakami, Koji; Aoki, Daisuke

    2015-01-01

    We studied the diagnostic performance of (18)F-fluoro-2-deoxy-d-glucose-positron emission tomography/computed tomography in cervical and endometrial cancers with particular focus on lymph node metastases. Seventy patients with cervical cancer and 53 with endometrial cancer were imaged with (18)F-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography before lymphadenectomy. We evaluated the diagnostic performance of (18)F-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography using the final pathological diagnoses as the golden standard. We calculated the sensitivity, specificity, positive predictive value and negative predictive value of (18)F-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography. In cervical cancer, the results evaluated by cases were 33.3, 92.7, 55.6 and 83.6%, respectively. When evaluated by the area of lymph nodes, the results were 30.6, 98.9, 55.0 and 97.0%, respectively. As for endometrial cancer, the results evaluated by cases were 50.0, 93.9, 40.0 and 95.8%, and by area of lymph nodes, 45.0, 99.4, 64.3 and 98.5%, respectively. The limitation of the efficacy was found out by analyzing it by the region of the lymph node, the size of metastatic node, the historical type of tumor in cervical cancer and the prevalence of lymph node metastasis. The efficacy of positron emission tomography/computed tomography regarding the detection of lymph node metastasis in cervical and endometrial cancer is not established and has limitations associated with the region of the lymph node, the size of metastasis lesion in lymph node and the pathological type of primary tumor. The indication for the imaging and the interpretation of the results requires consideration for each case by the pretest probability based on the information obtained preoperatively. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Added value of delayed computed tomography angiography in primary intracranial hemorrhage and hematoma size for predicting spot sign.

    PubMed

    Wu, Te Chang; Chen, Tai Yuan; Shiue, Yow Ling; Chen, Jeon Hor; Hsieh, Tsyh-Jyi; Ko, Ching Chung; Lin, Ching Po

    2018-04-01

    Background The computed tomography angiography (CTA) spot sign represents active contrast extravasation within acute primary intracerebral hemorrhage (ICH) and is an independent predictor of hematoma expansion (HE) and poor clinical outcomes. The spot sign could be detected on first-pass CTA (fpCTA) or delayed CTA (dCTA). Purpose To investigate the additional benefits of dCTA spot sign in primary ICH and hematoma size for predicting spot sign. Material and Methods This is a retrospective study of 100 patients who underwent non-contrast CT (NCCT) and CTA within 24 h of onset of primary ICH. The presence of spot sign on fpCTA or dCTA, and hematoma size on NCCT were recorded. The spot sign on fpCTA or dCTA for predicting significant HE, in-hospital mortality, and poor clinical outcomes (mRS ≥ 4) are calculated. The hematoma size for prediction of CTA spot sign was also analyzed. Results Only the spot sign on dCTA could predict high risk of significant HE and poor clinical outcomes as on fpCTA ( P < 0.05). With dCTA, there is increased sensitivity and negative predictive value (NPV) for predicting significant HE, in-hospital mortality, and poor clinical outcomes. The XY value (product of the two maximum perpendicular axial dimensions) is the best predictor (area under the curve [AUC] = 0.82) for predicting spot sign on fpCTA or dCTA in the absence of intraventricular and subarachnoid hemorrhage. Conclusion This study clarifies that dCTA imaging could improve predictive performance of CTA in primary ICH. Furthermore, the XY value is the best predictor for CTA spot sign.

  6. Whole brain C-arm computed tomography parenchymal blood volume measurements

    PubMed Central

    Byrne, James V

    2016-01-01

    Introduction C-arm flat detector computed tomography (FDCT) parenchymal blood volume (PBV) imaging in the neuro-interventional suite is a new technique for which detailed whole brain measurements have not been previously reported. This study aims to create a catalogue of PBV measurements for various anatomical regions encompassing the whole brain, using a three-dimensional volume-of-interest (3D-VOI) analysis. Methods We acquired and analysed 30 C-arm FDCT datasets from 26 patients with aneurysmal subarachnoid haemorrhage (SAH), as part of a prospective study comparing C-arm computed tomography (CT) PBV with magnetic resonance perfusion-weighted imaging (MR-PWI). We calculated the PBV values for various brain regions with an automated analysis, using 58 pre-defined atlas-based 3D-VOIs encompassing the whole brain. VOIs partially or completely overlapping regions of magnetic resonance diffusion weighted imaging (MR-DWI) abnormality or magnetic resonance cerebral blood flow (MR-CBF) asymmetry were excluded from the analysis. Results Of the 30 C-arm CT PBV datasets, 14 (54%; 12 patients) had areas of restricted diffusion, the majority of which were focal. The PBV values for the cerebral cortex and cerebral white matter were 4.01 ± 0.47 (mean ± SD) and 3.01 ± 0.39 ml per 100 ml. Lobar PBV values were: frontal lobe 4.2 ± 0.8, temporal lobe 4.2 ± 0.9, parietal lobe 3.9 ± 0.7 and occipital lobe 4.3 ± 0.8 ml/100 ml. The basal ganglia and brainstem PBV values were 3.4 ± 0.7 and 4.6 ± 0.6 ml/100 ml, respectively. Conclusions Compared with the typical reference cerebral blood volume (CBV) values reported in the literature for Positron Emission Tomography (PET), the PBV values were relatively high for the white matter and relatively low for the cortical grey matter. The reported catalogue of PBV values for various brain regions would be useful to inform future studies and could be used in clinical practice, when interpreting PBV maps. PMID:26769737

  7. Whole brain C-arm computed tomography parenchymal blood volume measurements.

    PubMed

    Kamran, Mudassar; Byrne, James V

    2016-04-01

    C-arm flat detector computed tomography (FDCT) parenchymal blood volume (PBV) imaging in the neuro-interventional suite is a new technique for which detailed whole brain measurements have not been previously reported. This study aims to create a catalogue of PBV measurements for various anatomical regions encompassing the whole brain, using a three-dimensional volume-of-interest (3D-VOI) analysis. We acquired and analysed 30 C-arm FDCT datasets from 26 patients with aneurysmal subarachnoid haemorrhage (SAH), as part of a prospective study comparing C-arm computed tomography (CT) PBV with magnetic resonance perfusion-weighted imaging (MR-PWI). We calculated the PBV values for various brain regions with an automated analysis, using 58 pre-defined atlas-based 3D-VOIs encompassing the whole brain. VOIs partially or completely overlapping regions of magnetic resonance diffusion weighted imaging (MR-DWI) abnormality or magnetic resonance cerebral blood flow (MR-CBF) asymmetry were excluded from the analysis. Of the 30 C-arm CT PBV datasets, 14 (54%; 12 patients) had areas of restricted diffusion, the majority of which were focal. The PBV values for the cerebral cortex and cerebral white matter were 4.01 ± 0.47 (mean ± SD) and 3.01 ± 0.39 ml per 100 ml. Lobar PBV values were: frontal lobe 4.2 ± 0.8, temporal lobe 4.2 ± 0.9, parietal lobe 3.9 ± 0.7 and occipital lobe 4.3 ± 0.8 ml/100 ml. The basal ganglia and brainstem PBV values were 3.4 ± 0.7 and 4.6 ± 0.6 ml/100 ml, respectively. Compared with the typical reference cerebral blood volume (CBV) values reported in the literature for Positron Emission Tomography (PET), the PBV values were relatively high for the white matter and relatively low for the cortical grey matter. The reported catalogue of PBV values for various brain regions would be useful to inform future studies and could be used in clinical practice, when interpreting PBV maps. © The Author(s) 2016.

  8. Computer modeling of obesity links theoretical energetic measures with experimental measures of fuel use for lean and obese men.

    PubMed

    Rossow, Heidi A; Calvert, C Chris

    2014-10-01

    The goal of this research was to use a computational model of human metabolism to predict energy metabolism for lean and obese men. The model is composed of 6 state variables representing amino acids, muscle protein, visceral protein, glucose, triglycerides, and fatty acids (FAs). Differential equations represent carbohydrate, amino acid, and FA uptake and output by tissues based on ATP creation and use for both lean and obese men. Model parameterization is based on data from previous studies. Results from sensitivity analyses indicate that model predictions of resting energy expenditure (REE) and respiratory quotient (RQ) are dependent on FA and glucose oxidation rates with the highest sensitivity coefficients (0.6, 0.8 and 0.43, 0.15, respectively, for lean and obese models). Metabolizable energy (ME) is influenced by ingested energy intake with a sensitivity coefficient of 0.98, and a phosphate-to-oxygen ratio by FA oxidation rate and amino acid oxidation rate (0.32, 0.24 and 0.55, 0.65 for lean and obese models, respectively). Simulations of previously published studies showed that the model is able to predict ME ranging from 6.6 to 9.3 with 0% differences between published and model values, and RQ ranging from 0.79 to 0.86 with 1% differences between published and model values. REEs >7 MJ/d are predicted with 6% differences between published and model values. Glucose oxidation increases by ∼0.59 mol/d, RQ increases by 0.03, REE increases by 2 MJ/d, and heat production increases by 1.8 MJ/d in the obese model compared with lean model simulations. Increased FA oxidation results in higher changes in RQ and lower relative changes in REE. These results suggest that because fat mass is directly related to REE and rate of FA oxidation, body fat content could be used as a predictor of RQ. © 2014 American Society for Nutrition.

  9. Precise computation of the direct and indirect topographic effects of Helmert's 2nd method of condensation using SRTM30 digital elevation model

    NASA Astrophysics Data System (ADS)

    Wang, Y.

    2011-01-01

    The direct topographic effect (DTE) and indirect topographic effect (ITE) of Helmert's 2nd method of condensation are computed using the digital elevation model (DEM) SRTM30 in 30 arc-seconds globally. The computations assume a constant density of the topographic masses. Closed formulas are used in the inner zone of half degree, and Nagy's formulas are used in the innermost column to treat the singularity of integrals. To speed up the computations, 1-dimensional fast Fourier transform (1D FFT) is applied in outer zone computations. The computation accuracy is limited to 0.1 mGal and 0.1cm for the direct and indirect effect, respectively. The mean value and standard deviation of the DTE are -0.8 and ±7.6 mGal over land areas. The extreme value -274.3 mGal is located at latitude -13.579° and longitude 289.496°, at the height of 1426 meter in the Andes Mountains. The ITE is negative everywhere and has its minimum of -235.9 cm at the peak of Himalayas (8685 meter). The standard deviation and mean value over land areas are ±15.6 cm and -6.4 cm, respectively. Because the Stokes kernel does not contain the zero and first degree spherical harmonics, the mean value of the ITE can't be compensated through the remove-restore procedure under the Stokes-Helmert scheme, and careful treatment of the mean value in the ITE is required.

  10. Volumetric quantification of bone-implant contact using micro-computed tomography analysis based on region-based segmentation

    PubMed Central

    Kang, Sung-Won; Lee, Woo-Jin; Choi, Soon-Chul; Lee, Sam-Sun; Heo, Min-Suk; Huh, Kyung-Hoe

    2015-01-01

    Purpose We have developed a new method of segmenting the areas of absorbable implants and bone using region-based segmentation of micro-computed tomography (micro-CT) images, which allowed us to quantify volumetric bone-implant contact (VBIC) and volumetric absorption (VA). Materials and Methods The simple threshold technique generally used in micro-CT analysis cannot be used to segment the areas of absorbable implants and bone. Instead, a region-based segmentation method, a region-labeling method, and subsequent morphological operations were successively applied to micro-CT images. The three-dimensional VBIC and VA of the absorbable implant were then calculated over the entire volume of the implant. Two-dimensional (2D) bone-implant contact (BIC) and bone area (BA) were also measured based on the conventional histomorphometric method. Results VA and VBIC increased significantly with as the healing period increased (p<0.05). VBIC values were significantly correlated with VA values (p<0.05) and with 2D BIC values (p<0.05). Conclusion It is possible to quantify VBIC and VA for absorbable implants using micro-CT analysis using a region-based segmentation method. PMID:25793178

  11. Reliability of voxel gray values in cone beam computed tomography for preoperative implant planning assessment.

    PubMed

    Parsa, Azin; Ibrahim, Norliza; Hassan, Bassam; Motroni, Alessandro; van der Stelt, Paul; Wismeijer, Daniel

    2012-01-01

    To assess the reliability of cone beam computed tomography (CBCT) voxel gray value measurements using Hounsfield units (HU) derived from multislice computed tomography (MSCT) as a clinical reference (gold standard). Ten partially edentulous human mandibular cadavers were scanned by two types of computed tomography (CT) modalities: multislice CT and cone beam CT. On MSCT scans, eight regions of interest (ROI) designating the site for preoperative implant placement were selected in each mandible. The datasets from both CT systems were matched using a three-dimensional (3D) registration algorithm. The mean voxel gray values of the region around the implant sites were compared between MSCT and CBCT. Significant differences between the mean gray values obtained by CBCT and HU by MSCT were found. In all the selected ROIs, CBCT showed higher mean values than MSCT. A strong correlation (R=0.968) between mean voxel gray values of CBCT and mean HU of MSCT was determined. Voxel gray values from CBCT deviate from actual HU units. However, a strong linear correlation exists, which may permit deriving actual HU units from CBCT using linear regression models.

  12. Application of a time-magnitude prediction model for earthquakes

    NASA Astrophysics Data System (ADS)

    An, Weiping; Jin, Xueshen; Yang, Jialiang; Dong, Peng; Zhao, Jun; Zhang, He

    2007-06-01

    In this paper we discuss the physical meaning of the magnitude-time model parameters for earthquake prediction. The gestation process for strong earthquake in all eleven seismic zones in China can be described by the magnitude-time prediction model using the computations of the parameters of the model. The average model parameter values for China are: b = 0.383, c=0.154, d = 0.035, B = 0.844, C = -0.209, and D = 0.188. The robustness of the model parameters is estimated from the variation in the minimum magnitude of the transformed data, the spatial extent, and the temporal period. Analysis of the spatial and temporal suitability of the model indicates that the computation unit size should be at least 4° × 4° for seismic zones in North China, at least 3° × 3° in Southwest and Northwest China, and the time period should be as long as possible.

  13. Performance evaluation of an automatic MGRF-based lung segmentation approach

    NASA Astrophysics Data System (ADS)

    Soliman, Ahmed; Khalifa, Fahmi; Alansary, Amir; Gimel'farb, Georgy; El-Baz, Ayman

    2013-10-01

    The segmentation of the lung tissues in chest Computed Tomography (CT) images is an important step for developing any Computer-Aided Diagnostic (CAD) system for lung cancer and other pulmonary diseases. In this paper, we introduce a new framework for validating the accuracy of our developed Joint Markov-Gibbs based lung segmentation approach using 3D realistic synthetic phantoms. These phantoms are created using a 3D Generalized Gauss-Markov Random Field (GGMRF) model of voxel intensities with pairwise interaction to model the 3D appearance of the lung tissues. Then, the appearance of the generated 3D phantoms is simulated based on iterative minimization of an energy function that is based on the learned 3D-GGMRF image model. These 3D realistic phantoms can be used to evaluate the performance of any lung segmentation approach. The performance of our segmentation approach is evaluated using three metrics, namely, the Dice Similarity Coefficient (DSC), the modified Hausdorff distance, and the Average Volume Difference (AVD) between our segmentation and the ground truth. Our approach achieves mean values of 0.994±0.003, 8.844±2.495 mm, and 0.784±0.912 mm3, for the DSC, Hausdorff distance, and the AVD, respectively.

  14. Automated computation of femoral angles in dogs from three-dimensional computed tomography reconstructions: Comparison with manual techniques.

    PubMed

    Longo, F; Nicetto, T; Banzato, T; Savio, G; Drigo, M; Meneghello, R; Concheri, G; Isola, M

    2018-02-01

    The aim of this ex vivo study was to test a novel three-dimensional (3D) automated computer-aided design (CAD) method (aCAD) for the computation of femoral angles in dogs from 3D reconstructions of computed tomography (CT) images. The repeatability and reproducibility of three manual radiography, manual CT reconstructions and the aCAD method for the measurement of three femoral angles were evaluated: (1) anatomical lateral distal femoral angle (aLDFA); (2) femoral neck angle (FNA); and (3) femoral torsion angle (FTA). Femoral angles of 22 femurs obtained from 16 cadavers were measured by three blinded observers. Measurements were repeated three times by each observer for each diagnostic technique. Femoral angle measurements were analysed using a mixed effects linear model for repeated measures to determine the levels of intra-observer agreement (repeatability) and inter-observer agreement (reproducibility). Repeatability and reproducibility of measurements using the aCAD method were excellent (intra-class coefficients, ICCs≥0.98) for all three angles assessed. Manual radiography and CT exhibited excellent agreement for the aLDFA measurement (ICCs≥0.90). However, FNA repeatability and reproducibility were poor (ICCs<0.8), whereas FTA measurement showed slightly higher ICCs values, except for the radiographic reproducibility, which was poor (ICCs<0.8). The computation of the 3D aCAD method provided the highest repeatability and reproducibility among the tested methodologies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Recharge rates and aquifer hydraulic characteristics for selected drainage basins in middle and east Tennessee

    USGS Publications Warehouse

    Hoos, A.B.

    1990-01-01

    Quantitative information concerning aquifer hydrologic and hydraulic characteristics is needed to manage the development of ground-water resources. These characteristics are poorly defined for the bedrock aquifers in Middle and East Tennessee where demand for water is increasing. This report presents estimates of recharge rate, storage coefficient, diffusivity, and transmissivity for representative drainage basins in Middle and East Tennessee, as determined from analyses of stream-aquifer interactions. The drainage basins have been grouped according to the underlying major aquifer, then statistical descriptions applied to each group, in order to define area1 distribution of these characteristics. Aquifer recharge rates are estimated for representative low, average, and high flow years for 63 drainage basins using hydrograph analysis techniques. Net annual recharge during average flow years for all basins ranges from 4.1 to 16.8 in/yr (inches per year), with a mean value of 7.3 in. In general, recharge rates are highest for basins underlain by the Blue Ridge aquifer (mean value11.7 in/yr) and lowest for basins underlain by the Central Basin aquifer (mean value 5.6 in/yr). Mean recharge values for the Cumberland Plateau, Highland Rim, and Valley and Ridge aquifers are 6.5, 7.4, and 6.6 in/yr, respectively. Gravity drainage characterizes ground-water flow in most surficial bedrock aquifer in Tennessee. Accordingly, a gravity yield analysis, which compares concurrent water-level and streamflow hydrographs, was used to estimate aquifer storage coefficient for nine study basins. The basin estimates range from 0.002 to 0.140; however, most estimates are within a narrow range of values, from 0.01 to 0.025. Accordingly, storage coefficient is estimated to be 0.01 for all aquifers in Middle and East Tennessee, with the exception of the aquifer in the inner part of the Central Basin, for which storage coefficient is estimated to be 0.002. Estimates of aquifer hydraulic diffusivity are derived from estimates of the streamflow recession index and drainage density for 75 drainage basins; values range from 3,300 to 130,000 ft^2/d (feet squared per day). Basin-specific and site-specific estimates of transmissivity are computed from estimates of hydraulic diffusivity and specific-capacity test data, respectively. Basin-specific, or areal, estimates of transmissivity range from 22 to 1,300 ft^2/d, with a mean of 240 ft^2/d In general, areal transmissivity is highest for basins underlain by the Cumberland Plateau aquifer (mean value 480 ft^2/d) and lowest for basins underlain by the Central Basin aquifer (mean value 79 ft^2/d). Mean transmissivity values for the Highland Rim, Valley and Ridge, and Blue Ridge aquifer are 320,140, and 120 ft^2/d respectively. Site-specific estimates of transmissivity, computed from specific-capacity data from 118 test wells in Middle and East Tennessee range from 2 to 93,000 ft^2/d with a mean of 2,600 ft^2/d Mean transmissivity values for the Cumberland Plateau, Highland Rim, Central Basin, Valley and Ridge, and Blue Ridge aquifers are 2,800,1,200, 7,800, 390, and 65Oft Id, respectively.

  16. Masses and decay constants of D(s) * and B(s) * mesons with Nf=2 +1 +1 twisted mass fermions

    NASA Astrophysics Data System (ADS)

    Lubicz, V.; Melis, A.; Simula, S.; ETM Collaboration

    2017-08-01

    We present a lattice calculation of the masses and decay constants of D(s) * and B(s) * mesons using the gauge configurations produced by the European Twisted Mass Collaboration (ETMC) with Nf=2 +1 +1 dynamical quarks at three values of the lattice spacing a ˜(0.06 -0.09 ) fm . Pion masses are simulated in the range Mπ≃(210 - 450 ) MeV , while the strange and charm sea-quark masses are close to their physical values. We compute the ratios of vector to pseudoscalar masses and decay constants for various values of the heavy-quark mass mh in the range 0.7 mcphys≲mh≲3 mcphys . In order to reach the physical b -quark mass, we exploit the heavy quark effective theory prediction that, in the static limit of infinite heavy-quark mass, the considered ratios are equal to one. At the physical point our results are MD*/MD=1.0769 (79 ) , MDs*/MDs=1.0751(56 ), fD*/fD=1.078 (36 ), fDs*/fD s=1.087 (20 ), MB*/MB=1.0078 (15 ), MBs*/MBs=1.0083(10 ), fB*/fB=0.958 (22 ) and fBs*/fB s=0.974 (10 ). Combining them with the experimental values of the pseudoscalar meson masses (used as input to fix the quark masses) and the values of the pseudoscalar decay constants calculated by ETMC, we get MD*=2013 (14 ), MDs*=2116 (11 ), fD*=223.5 (8.4 ), fDs*=268.8 (6.6 ), MB*=5320.5 (7.6 ), MBs*=5411.36 (5.3 ), fB*=185.9 (7.2 ) and fBs*=223.1 (5.4 ) MeV .

  17. Establishing a threshold for the number of missing days using 7 d pedometer data.

    PubMed

    Kang, Minsoo; Hart, Peter D; Kim, Youngdeok

    2012-11-01

    The purpose of this study was to examine the threshold of the number of missing days of recovery using the individual information (II)-centered approach. Data for this study came from 86 participants, aged from 17 to 79 years old, who had 7 consecutive days of complete pedometer (Yamax SW 200) wear. Missing datasets (1 d through 5 d missing) were created by a SAS random process 10,000 times each. All missing values were replaced using the II-centered approach. A 7 d average was calculated for each dataset, including the complete dataset. Repeated measure ANOVA was used to determine the differences between 1 d through 5 d missing datasets and the complete dataset. Mean absolute percentage error (MAPE) was also computed. Mean (SD) daily step count for the complete 7 d dataset was 7979 (3084). Mean (SD) values for the 1 d through 5 d missing datasets were 8072 (3218), 8066 (3109), 7968 (3273), 7741 (3050) and 8314 (3529), respectively (p > 0.05). The lower MAPEs were estimated for 1 d missing (5.2%, 95% confidence interval (CI) 4.4-6.0) and 2 d missing (8.4%, 95% CI 7.0-9.8), while all others were greater than 10%. The results of this study show that the 1 d through 5 d missing datasets, with replaced values, were not significantly different from the complete dataset. Based on the MAPE results, it is not recommended to replace more than two days of missing step counts.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, S; Mazur, T; Li, H

    Purpose: The aim of this paper was to demonstrate the feasibility and creditability of computing and verifying 3D fluencies to assure IMRT and VMAT treatment deliveries, by correlating the passing rates of the 3D fluence-based QA (P(ά)) to the passing rates of 2D dose measurementbased QA (P(Dm)). Methods: 3D volumetric primary fluencies are calculated by forward-projecting the beam apertures and modulated by beam MU values at all gantry angles. We first introduce simulated machine parameter errors (MU, MLC positions, jaw, gantry and collimator) to the plan. Using passing rates of voxel intensity differences (P(Ir)) and 3D gamma analysis (P(γ)), calculatedmore » 3D fluencies, calculated 3D delivered dose, and measured 2D planar dose in phantom from the original plan are then compared with those from corresponding plans with errors, respectively. The correlations of these three groups of resultant passing rates, i.e. 3D fluence-based QA (P(ά,Ir) and P(ά,γ)), calculated 3D dose (P(Dc,Ir) and P(Dc,γ)), and 2D dose measurement-based QA (P(Dm,Ir) and P(Dm,γ)), will be investigated. Results: 20 treatment plans with 5 different types of errors were tested. Spearman’s correlations were found between P(ά,Ir) and P(Dc,Ir), and also between P(ά,γ) and P(Dc,γ), with averaged p-value 0.037, 0.065, and averaged correlation coefficient ρ-value 0.942, 0.871 respectively. Using Matrixx QA for IMRT plans, Spearman’s correlations were also obtained between P(ά,Ir) and P(Dm,Ir) and also between P(ά,γ) and P(Dm,γ), with p-value being 0.048, 0.071 and ρ-value being 0.897, 0.779 respectively. Conclusion: The demonstrated correlations improve the creditability of using 3D fluence-based QA for assuring treatment deliveries for IMRT/VMAT plans. Together with advantages of high detection sensitivity and better visualization of machine parameter errors, this study further demonstrates the accuracy and feasibility of 3D fluence based-QA in pre-treatment QA and daily QA. Research reported in this study is supported by the Agency for Healthcare Research and Quality (AHRQ) under award 1R01HS0222888. The senior author received research grants from ViewRay Inc. and Varian Medical System.« less

  19. Computational molecular spectroscopy of X ˜ 2 Π NCS: Electronic properties and ro-vibrationally averaged structure

    NASA Astrophysics Data System (ADS)

    Hirano, Tsuneo; Nagashima, Umpei; Jensen, Per

    2018-04-01

    For NCS in the X ˜ 2 Π electronic ground state, three-dimensional potential energy surfaces (3D PESs) have been calculated ab initio at the core-valence, full-valence MR-SDCI+Q/[aug-cc-pCVQZ (N, C, S)] level of theory. The ab initio 3D PESs are employed in second-order-perturbation-theory and DVR3D calculations to obtain various molecular constants and ro-vibrationally averaged structures. The 3D PESs show that the X ˜ 2 Π NCS has its potential minimum at a linear configuration, and hence it is a "linear molecule." The equilibrium structure has re (N-C) = 1.1778 Å, re (C-S) = 1.6335 Å, and ∠e (N-C-S) = 180°. The ro-vibrationally averaged structure, determined as expectation values over DVR3D wavefunctions, has 〈 r (N-C)〉0 = 1.1836 Å, 〈 r (C-S)〉0 = 1.6356 Å, and 〈 ∠ (N-C-S)〉0 = 172.5°. Using these expectation values as the initial guess, a bent r0 structure having an 〈 ∠ (N-C-S)〉0 of 172.2° is deduced from the experimentally reported B0 values for NC32S and NC34S. Our previous prediction that a linear molecule, in any ro-vibrational state including the ro-vibrational ground state, is to be "observed" as being bent on ro-vibrational average, has been confirmed here theoretically through the expectation value for the bond-angle deviation from linearity, 〈 ρ bar 〉 , and experimentally through the interpretation of the experimentally derived rotational-constant values.

  20. Mean glandular dose coefficients (D(g)N) for x-ray spectra used in contemporary breast imaging systems.

    PubMed

    Nosratieh, Anita; Hernandez, Andrew; Shen, Sam Z; Yaffe, Martin J; Seibert, J Anthony; Boone, John M

    2015-09-21

    To develop tables of normalized glandular dose coefficients D(g)N for a range of anode-filter combinations and tube voltages used in contemporary breast imaging systems. Previously published mono-energetic D(g)N values were used with various spectra to mathematically compute D(g)N coefficients. The tungsten anode spectra from TASMICS were used; molybdenum and rhodium anode-spectra were generated using MCNPX Monte Carlo code. The spectra were filtered with various thicknesses of Al, Rh, Mo or Cu. An initial half value layer (HVL) calculation was made using the anode and filter material. A range of the HVL values was produced with the addition of small thicknesses of polymethyl methacrylate (PMMA) as a surrogate for the breast compression paddle, to produce a range of HVL values at each tube voltage. Using a spectral weighting method, D(g)N coefficients for the generated spectra were calculated for breast glandular densities of 0%, 12.5%, 25%, 37.5%, 50% and 100% for a range of compressed breast thicknesses from 3 to 8 cm. Eleven tables of normalized glandular dose (D(g)N) coefficients were produced for the following anode/filter combinations: W + 50 μm Ag, W + 500 μm Al, W + 700 μm Al, W + 200 μm Cu, W + 300 μm Cu, W + 50 μm Rh, Mo + 400 μm Cu, Mo + 30 μm Mo, Mo + 25 μm Rh, Rh + 400 μm Cu and Rh + 25 μm Rh. Where possible, these results were compared to previously published D(g)N values and were found to be on average less than 2% different than previously reported values.Over 200 pages of D(g)N coefficients were computed for modeled x-ray system spectra that are used in a number of new breast imaging applications. The reported values were found to be in excellent agreement when compared to published values.

  1. Performance Evaluation of a Radar by Computer

    DTIC Science & Technology

    1992-09-01

    spatial-resolution map (0.25 nmi x 2.80 ) is employed to select the appropriate threshold values for the ground clutter; a doppler weighting that...seconds with approximately 16 mi’ x 3-Doppler-bin resolution. The second filter integrates over 5 seconds and covers within 20 miles of radar and within 3...also includes receiver matching loss , beamshape loss , and the signal processing loss. D, can be written as D,=D, (n) MLL,= -f- (3.2) where x

  2. Dopamine Receptor-Specific Contributions to the Computation of Value.

    PubMed

    Burke, Christopher J; Soutschek, Alexander; Weber, Susanna; Raja Beharelle, Anjali; Fehr, Ernst; Haker, Helene; Tobler, Philippe N

    2018-05-01

    Dopamine is thought to play a crucial role in value-based decision making. However, the specific contributions of different dopamine receptor subtypes to the computation of subjective value remain unknown. Here we demonstrate how the balance between D1 and D2 dopamine receptor subtypes shapes subjective value computation during risky decision making. We administered the D2 receptor antagonist amisulpride or placebo before participants made choices between risky options. Compared with placebo, D2 receptor blockade resulted in more frequent choice of higher risk and higher expected value options. Using a novel model fitting procedure, we concurrently estimated the three parameters that define individual risk attitude according to an influential theoretical account of risky decision making (prospect theory). This analysis revealed that the observed reduction in risk aversion under amisulpride was driven by increased sensitivity to reward magnitude and decreased distortion of outcome probability, resulting in more linear value coding. Our data suggest that different components that govern individual risk attitude are under dopaminergic control, such that D2 receptor blockade facilitates risk taking and expected value processing.

  3. [Accuracy of computer aided measurement for detecting dental proximal caries lesions in images of cone-beam computed tomography].

    PubMed

    Zhang, Z L; Li, J P; Li, G; Ma, X C

    2017-02-09

    Objective: To establish and validate a computer program used to aid the detection of dental proximal caries in the images cone beam computed tomography (CBCT) images. Methods: According to the characteristics of caries lesions in X-ray images, a computer aided detection program for proximal caries was established with Matlab and Visual C++. The whole process for caries lesion detection included image import and preprocessing, measuring average gray value of air area, choosing region of interest and calculating gray value, defining the caries areas. The program was used to examine 90 proximal surfaces from 45 extracted human teeth collected from Peking University School and Hospital of Stomatology. The teeth were then scanned with a CBCT scanner (Promax 3D). The proximal surfaces of the teeth were respectively detected by caries detection program and scored by human observer for the extent of lesions with 6-level-scale. With histologic examination serving as the reference standard, the caries detection program and the human observer performances were assessed with receiver operating characteristic (ROC) curves. Student t -test was used to analyze the areas under the ROC curves (AUC) for the differences between caries detection program and human observer. Spearman correlation coefficient was used to analyze the detection accuracy of caries depth. Results: For the diagnosis of proximal caries in CBCT images, the AUC values of human observers and caries detection program were 0.632 and 0.703, respectively. There was a statistically significant difference between the AUC values ( P= 0.023). The correlation between program performance and gold standard (correlation coefficient r (s)=0.525) was higher than that of observer performance and gold standard ( r (s)=0.457) and there was a statistically significant difference between the correlation coefficients ( P= 0.000). Conclusions: The program that automatically detects dental proximal caries lesions could improve the diagnostic value of CBCT images.

  4. Validation of the facial assessment by computer evaluation (FACE) program for software-aided eyelid measurements.

    PubMed

    Choi, Catherine J; Lefebvre, Daniel R; Yoon, Michael K

    2016-06-01

    The aim of this article is to validate the accuracy of Facial Assessment by Computer Evaluation (FACE) program in eyelid measurements. Sixteen subjects between the ages of 27 and 65 were included with IRB approval. Clinical measurements of upper eyelid margin reflex distance (MRD1) and inter-palpebral fissure (IPF) were obtained. Photographs were then taken with a digital single lens reflex camera with built-in pop-up flash (dSLR-pop) and a dSLR with lens-mounted ring flash (dSLR-ring) with the cameras upright, rotated 90, 180, and 270 degrees. The images were analyzed using both the FACE and ImageJ software to measure MRD1 and IPF.Thirty-two eyes of sixteen subjects were included. Comparison of clinical measurement of MRD1 and IPF with FACE measurements of photos in upright position showed no statistically significant differences for dSLR-pop (MRD1: p = 0.0912, IPF: p = 0.334) and for dSLR-ring (MRD1: p = 0.105, IPF: p = 0.538). One-to-one comparison of MRD1 and IPF measurements in four positions obtained with FACE versus ImageJ for dSLR-pop showed moderate to substantial agreement for MRD1 (intraclass correlation coefficient = 0.534 upright, 0.731 in 90 degree rotation, 0.627 in 180 degree rotation, 0.477 in 270 degree rotation) and substantial to excellent agreement in IPF (ICC = 0.740, 0.859, 0.849, 0.805). In photos taken with dSLR-ring, there was excellent agreement of all MRD1 (ICC = 0.916, 0.932, 0.845, 0.812) and IPF (ICC = 0.937, 0.938, 0.917, 0.888) values. The FACE program is a valid method for measuring margin reflex distance and inter-palpebral fissure.

  5. HO + CO reaction rates and H/D kinetic isotope effects: master equation models with ab initio SCTST rate constants.

    PubMed

    Weston, Ralph E; Nguyen, Thanh Lam; Stanton, John F; Barker, John R

    2013-02-07

    Ab initio microcanonical rate constants were computed using Semi-Classical Transition State Theory (SCTST) and used in two master equation formulations (1D, depending on active energy with centrifugal corrections, and 2D, depending on total energy and angular momentum) to compute temperature-dependent rate constants for the title reactions using a potential energy surface obtained by sophisticated ab initio calculations. The 2D master equation was used at the P = 0 and P = ∞ limits, while the 1D master equation with centrifugal corrections and an empirical energy transfer parameter could be used over the entire pressure range. Rate constants were computed for 75 K ≤ T ≤ 2500 K and 0 ≤ [He] ≤ 10(23) cm(-3). For all temperatures and pressures important for combustion and for the terrestrial atmosphere, the agreement with the experimental rate constants is very good, but at very high pressures and T ≤ 200 K, the theoretical rate constants are significantly smaller than the experimental values. This effect is possibly due to the presence in the experiments of dimers and prereactive complexes, which were not included in the model calculations. The computed H/D kinetic isotope effects are in acceptable agreement with experimental data, which show considerable scatter. Overall, the agreement between experimental and theoretical H/D kinetic isotope effects is much better than in previous work, and an assumption of non-RRKM behavior does not appear to be needed to reproduce experimental observations.

  6. Is there evidence for more than two diffusion components in abdominal organs? - A magnetic resonance imaging study in healthy volunteers.

    PubMed

    Wurnig, Moritz C; Germann, Manon; Boss, Andreas

    2018-01-01

    The most commonly applied model for the description of diffusion-weighted imaging (DWI) data in perfused organs is bicompartmental intravoxel incoherent motion (IVIM) analysis. In this study, we assessed the ground truth of underlying diffusion components in healthy abdominal organs using an extensive DWI protocol and subsequent computation of apparent diffusion coefficient 'spectra', similar to the computation of previously described T 2 relaxation spectra. Diffusion datasets of eight healthy subjects were acquired in a 3-T magnetic resonance scanner using 68 different b values during free breathing (equidistantly placed in the range 0-1005 s/mm 2 ). Signal intensity curves as a function of the b value were analyzed in liver, spleen and kidneys using non-negative least-squares fitting to a distribution of decaying exponential functions with minimum amplitude energy regularization. In all assessed organs, the typical slow- and fast-diffusing components of the IVIM model were detected [liver: true diffusion D = (1.26 ± 0.01) × 10 -3 mm 2 /s, pseudodiffusion D* = (270 ± 44) × 10 -3 mm 2 /s; kidney cortex: D = (2.26 ± 0.07) × 10 -3 mm 2 /s, D* = (264 ± 78) × 10 -3 mm 2 /s; kidney medulla: D = (1.57 ± 0.28) × 10 -3 mm 2 /s, D* = (168 ± 18) × 10 -3 mm 2 /s; spleen: D = (0.91 ± 0.01) × 10 -3 mm 2 /s, D* = (69.8 ± 0.50) × 10 -3 mm 2 /s]. However, in the liver and kidney, a third component between D and D* was found [liver: D' = (43.8 ± 5.9) × 10 -3 mm 2 /s; kidney cortex: D' = (23.8 ± 11.5) × 10 -3 mm 2 /s; kidney medulla: D' = (5.23 ± 0.93) × 10 -3 mm 2 /s], whereas no third component was detected in the spleen. Fitting with a diffusion kurtosis model did not lead to a better fit of the resulting curves to the acquired data compared with apparent diffusion coefficient spectrum analysis. For a most accurate description of diffusion properties in the liver and the kidneys, a more sophisticated model seems to be required including three diffusion components. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Computed Tomography Angiography in Patients Evaluated for Acute Pulmonary Embolism with Low Serum D-dimer Levels: A Prospective Study.

    PubMed

    Gimber, Lana Hirai; Travis, R Ing; Takahashi, Jayme M; Goodman, Torrey L; Yoon, Hyo-Chun

    2009-01-01

    Pulmonary computed tomography angiography (CTA) and the Wells criteria both have interobserver variability in the assessment of pulmonary embolism (PE). Quantitative D-dimer assay findings have been shown to have a high negative predictive value in patients with low pretest probability of PE. Evaluate roles for clinical probability and CTA in Emergency Department (ED) patients suspected of acute PE but having a low serum D-dimer level. Prospective observational study of ED patients with possible PE who underwent pulmonary CTA and had D-dimer levels

  8. Can very high level of D-dimer exclusively predict the presence of thromboembolic diseases?

    PubMed

    Ho, Chao-Hung

    2011-04-01

    D-dimer quantitative test is mainly used to rule out the presence of thromboembolic diseases (TEDs). Whether very high D-dimer (100 times above the cutoff point) can exclusively indicate the presence of TED should be known. D-dimer was detected by a quantitative immunoturbidimetric assay. The normal value is 0.2-0.7 mg/L fibrinogen equivalent units (FEUs). During the year of 2009, 1,053 D-dimer tests were performed. We analyzed the results of these patients to find out the causes of very high D-dimer. The mean value of D-dimer in the 1,053 tests was 8.56 mg/L FEU, ranging from <0.2 mg/L to 563.2 mg/L FEU. Of them, 28 samples from 21 patients had very high D-dimer value: >50 mg/L FEU. Of the 21 patients, 9 (43%) had TED, 1 had suspected TED, but not proved by computed tomographic (CT) angiogram, 3 had massive gastrointestinal or other site bleeding, 3 patients had cardiac arrest with samples taken immediately after recovery from cardiopulmonary resuscitation (CPR), 2 had sepsis with disseminated intravascular coagulation (DIC), 1 had postpartum hemolysis, elevated liver enzymes, low platelets (HELLP) syndrome with acute pulmonary edema and renal failure, 1 had multiple traumatic injury, and 1 received thrombolytic therapy. Although TED was the most frequently seen disorder in patients with very high D-dimer value, very high D-dimer was not necessary exclusively the marker of TED. Other disorders such as massive bleeding, status post CPR, sepsis with DIC, multiple traumatic injuries, hyperfibrinolysis and HELLP syndrome can also have very high D-dimer. Copyright © 2011. Published by Elsevier B.V.

  9. Recommendations for dose calculations of lung cancer treatment plans treated with stereotactic ablative body radiotherapy (SABR)

    NASA Astrophysics Data System (ADS)

    Devpura, S.; Siddiqui, M. S.; Chen, D.; Liu, D.; Li, H.; Kumar, S.; Gordon, J.; Ajlouni, M.; Movsas, B.; Chetty, I. J.

    2014-03-01

    The purpose of this study was to systematically evaluate dose distributions computed with 5 different dose algorithms for patients with lung cancers treated using stereotactic ablative body radiotherapy (SABR). Treatment plans for 133 lung cancer patients, initially computed with a 1D-pencil beam (equivalent-path-length, EPL-1D) algorithm, were recalculated with 4 other algorithms commissioned for treatment planning, including 3-D pencil-beam (EPL-3D), anisotropic analytical algorithm (AAA), collapsed cone convolution superposition (CCC), and Monte Carlo (MC). The plan prescription dose was 48 Gy in 4 fractions normalized to the 95% isodose line. Tumors were classified according to location: peripheral tumors surrounded by lung (lung-island, N=39), peripheral tumors attached to the rib-cage or chest wall (lung-wall, N=44), and centrally-located tumors (lung-central, N=50). Relative to the EPL-1D algorithm, PTV D95 and mean dose values computed with the other 4 algorithms were lowest for "lung-island" tumors with smallest field sizes (3-5 cm). On the other hand, the smallest differences were noted for lung-central tumors treated with largest field widths (7-10 cm). Amongst all locations, dose distribution differences were most strongly correlated with tumor size for lung-island tumors. For most cases, convolution/superposition and MC algorithms were in good agreement. Mean lung dose (MLD) values computed with the EPL-1D algorithm were highly correlated with that of the other algorithms (correlation coefficient =0.99). The MLD values were found to be ~10% lower for small lung-island tumors with the model-based (conv/superposition and MC) vs. the correction-based (pencil-beam) algorithms with the model-based algorithms predicting greater low dose spread within the lungs. This study suggests that pencil beam algorithms should be avoided for lung SABR planning. For the most challenging cases, small tumors surrounded entirely by lung tissue (lung-island type), a Monte-Carlo-based algorithm may be warranted.

  10. Algorithms to evaluate multiple sums for loop computations

    NASA Astrophysics Data System (ADS)

    Anzai, C.; Sumino, Y.

    2013-03-01

    We present algorithms to evaluate two types of multiple sums, which appear in higher-order loop computations. We consider expansions of a generalized hyper-geometric-type sums, sum _{n_1,\\cdots,n_N} Γ ({a}_1\\cdot {n}+c_1) Γ ({a}_2\\cdot {n}+c_2) \\cdots Γ ({a}_P\\cdot {n}+c_P) / Γ ({b_1\\cdot {n}+d_1) Γ ({b}_2\\cdot {n}+d_2) \\cdots Γ ({b}_Q\\cdot {n}+d_Q) } x_1^{n_1}\\cdots x_N^{n_N} with {a}_i \\cdot {n} = sum _{j=1}^N a_{ij}n_j, etc., in a small parameter ɛ around rational values of ci,di's. Type I sum corresponds to the case where, in the limit ɛ → 0, the summand reduces to a rational function of nj's times x_1^{n_1}\\cdots x_N^{n_N}; ci,di's can depend on an external integer index. Type II sum is a double sum (N = 2), where ci, di's are half-integers or integers as ɛ → 0 and xi = 1; we consider some specific cases where at most six Γ functions remain in the limit ɛ → 0. The algorithms enable evaluations of arbitrary expansion coefficients in ɛ in terms of Z-sums and multiple polylogarithms (generalized multiple zeta values). We also present applications of these algorithms. In particular, Type I sums can be used to generate a new class of relations among generalized multiple zeta values. We provide a Mathematica package, in which these algorithms are implemented.

  11. [A method for rapid extracting three-dimensional root model of vivo tooth from cone beam computed tomography data based on the anatomical characteristics of periodontal ligament].

    PubMed

    Zhao, Y J; Wang, S W; Liu, Y; Wang, Y

    2017-02-18

    To explore a new method for rapid extracting and rebuilding three-dimensional (3D) digital root model of vivo tooth from cone beam computed tomography (CBCT) data based on the anatomical characteristics of periodontal ligament, and to evaluate the extraction accuracy of the method. In the study, 15 extracted teeth (11 with single root, 4 with double roots) were collected from oral clinic and 3D digital root models of each tooth were obtained by 3D dental scanner with a high accuracy 0.02 mm in STL format. CBCT data for each patient were acquired before tooth extraction, DICOM data with a voxel size 0.3 mm were input to Mimics 18.0 software. Segmentation, Morphology operations, Boolean operations and Smart expanded function in Mimics software were used to edit teeth, bone and periodontal ligament threshold mask, and root threshold mask were automatically acquired after a series of mask operations. 3D digital root models were extracted in STL format finally. 3D morphology deviation between the extracted root models and corresponding vivo root models were compared in Geomagic Studio 2012 software. The 3D size errors in long axis, bucco-lingual direction and mesio-distal direction were also calculated. The average value of the 3D morphology deviation for 15 roots by calculating Root Mean Square (RMS) value was 0.22 mm, the average size errors in the mesio-distal direction, the bucco-lingual direction and the long axis were 0.46 mm, 0.36 mm and -0.68 mm separately. The average time of this new method for extracting single root was about 2-3 min. It could meet the accuracy requirement of the root 3D reconstruction fororal clinical use. This study established a new method for rapid extracting 3D root model of vivo tooth from CBCT data. It could simplify the traditional manual operation and improve the efficiency and automation of single root extraction. The strategy of this method for complete dentition extraction needs further research.

  12. High-Resolution Infrared Studies of Perdeutero-Spiropentane, C 5D 8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Blake A.; Ju, X.; Nibler, Joseph W.

    Perdeutero-spiropentane (C 5D 8) has been synthesized and infrared and Raman spectra are reported for the first time. Wavenumber assignments are made for most of the fundamental vibrational modes. Gas phase infrared spectra were recorded at a resolution (0.002 cm -1) sufficient to resolve individual rovibrational lines and show evidence of strong Coriolis and/or Fermi resonance interactions for most bands. However a detailed rovibrational analysis of the fundamental v 15 (b 2) parallel band proved possible and a fit of more than 1600 lines yielded a band origin of 1053.84465(10) cm -1 and ground state constants (in units of cmmore » -1): B 0 = 0.1120700(9), D J = 1.51(3) x10 -8, D JK = 3.42(15) x10 -8. We note that the B 0 value is significantly less than a value of Ba = 0.1140 cm-1 calculated using structural parameters from an earlier electron diffraction (ED) study, whereas one expects B a to be lower than B 0 because of thermal averaging over higher vibrational levels. A similar discrepancy was noted in an earlier study of C 5H 8 [1]. The structural and spectroscopic results are in good accord with values computed at the anharmonic level using the B3LYP density functional method with a cc-pVTZ basis set.« less

  13. Micro-Mechanical Modeling of Ductile Fracture in Welded Aluminum-Lithium Alloys

    NASA Technical Reports Server (NTRS)

    Ibrahim, Ahmed

    2002-01-01

    This computation model for microscopic crack growth in welded aluminum-lithium alloys consists of a cavity with initial volume specified by the fraction f(sub 0), i.e. the void volume relative to the cell volume. Thus, cell size D and initial porosity f(sub 0) defines the key parameters in this model. The choice of cell size requires: 1) D must be representative of the large inclusion spacing. 2) Predicted R-curves scale almost proportionally with D for fixed f(sub 0). 3) mapping of one finite element per cell must provide adequate resolution of the stress-strain fields in the active layer and the adjacent material. For the ferritic steels studied thus far with this model, calibrated cell sizes range from 50-200 microns with f(sub 0) in the 0.0001 to 0.004 micron range. This range of values for D and f (sub 0) satisfies issues 1) and 3). This computational model employs the Gurson and Tvergaard constitutive model for porous plastic materials to describe the progressive damage of cells due to the growth of pre-existing voids. The model derives from a rigid-plastic limit analysis of a solid having a volume fraction (f) of voids approximated by a homogenous spherical body containing a spherical void.

  14. The development of AR book for computer learning

    NASA Astrophysics Data System (ADS)

    Phadung, Muneeroh; Wani, Najela; Tongmnee, Nur-aiynee

    2017-08-01

    Educators need to provide the alternative educational tools to foster learning outcomes of students. By using AR technology to create exciting edutainment experiences, this paper presents how augmented reality (AR) can be applied in the education. This study aims to develop the AR book for tenth grade students (age 15-16) and evaluate its quality. The AR book was developed based on ADDIE framework processes to provide computer learning on software computer knowledge. The content was accorded with the current Thai education curriculum. The AR book had 10 pages in three topics (the first was "Introduction," the second was "System Software" and the third was "Application Software"). Each page contained markers that placed virtual objects (2D animation and video clip). The obtained data were analyzed in terms of average and standard deviation. The validity of multimedia design of the AR book was assessed by three experts in multimedia design. A five-point Likert scale was used and the values were X¯ =4 .84 , S.D. = 1.27 which referred to very high. Moreover, three content experts, who specialize in computer teaching, evaluated the AR book's validity. The values determined by the experts were X¯ =4 .69 , S.D. = 0.29 which referred to very high. Implications for future study and education are discussed.

  15. Lattice QCD calculation of the B(s )→D(s) *ℓν form factors at zero recoil and implications for |Vc b|

    NASA Astrophysics Data System (ADS)

    Harrison, Judd; Davies, Christine T. H.; Wingate, Matthew; Hpqcd Collaboration

    2018-03-01

    We present results of a lattice QCD calculation of B →D* and Bs→Ds* axial vector matrix elements with both states at rest. These zero recoil matrix elements provide the normalization necessary to infer a value for the CKM matrix element |Vc b| from experimental measurements of B¯ 0→D*+ℓ-ν ¯ and B¯s0→Ds*+ℓ-ν¯ decay. Results are derived from correlation functions computed with highly improved staggered quarks (HISQ) for light, strange, and charm quark propagators, and nonrelativistic QCD for the bottom quark propagator. The calculation of correlation functions employs MILC Collaboration ensembles over a range of three lattice spacings. These gauge field configurations include sea quark effects of charm, strange, and equal-mass up and down quarks. We use ensembles with physically light up and down quarks, as well as heavier values. Our main results are FB→D *(1 )=0.895 ±0.01 0stat±0.024sys and FBs→Ds*(1 )=0.883 ±0.01 2stat±0.02 8sys . We discuss the consequences for |Vc b| in light of recent investigations into the extrapolation of experimental data to zero recoil.

  16. Position of the prosthesis and the incidence of dislocation following total hip replacement.

    PubMed

    He, Rong-xin; Yan, Shi-gui; Wu, Li-dong; Wang, Xiang-hua; Dai, Xue-song

    2007-07-05

    Dislocation is the second most common complication of hip replacement surgery, and impact of the prosthesis is believed to be the fundamental reason. The present study employed Solidworks 2003 and MSC-Nastran software to analyze the three dimensional variables in order to investigate how to prevent dislocation following hip replacement surgery. Computed tomography (CT) imaging was used to collect femoral outline data and Solidworks 2003 software was used to construct the cup model with variabilities. Nastran software was used to evaluate dislocation at different prosthesis positions and different geometrical shapes. Three dimensional movement and results from finite element method were analyzed and the values of dislocation resistance index (DRI), range of motion to impingement (ROM-I), range of motion to dislocation (ROM-D) and peak resisting moment (PRM) were determined. Computer simulation was used to evaluate the range of motion of the hip joint at different prosthesis positions. Finite element analysis showed: (1) Increasing the ratio of head/neck increased the ROM-I values and moderately increased ROM-D and PRM values. Increasing the head size significantly increased PRM and to some extent ROM-I and ROM-D values, which suggested that there would be a greater likelihood of dislocation. (2) Increasing the anteversion angle increased the ROM-I, ROM-D, PRM, energy required for dislocation (ENERGY-D) and DRI values, which would increase the stability of the joint. (3) As the chamber angle was increased, ROM-I, ROM-D, PRM, Energy-D and DRI values were increased, resulting in improved joint stability. Chamber angles exceeding 55 degrees resulted in increases in ROM-I and ROM-D values, but decreases in PRM, Energy-D, and DRI values, which, in turn, increased the likelihood of dislocation. (4) The cup, which was reduced posteriorly, reduced ROM-I values (2.1 -- 5.3 degrees ) and increased the DRI value (0.073). This suggested that the posterior high side had the effect of 10 degrees anteversion angle. Increasing the head/neck ratio increases joint stability. Posterior high side reduced the range of motion of the joint but increased joint stability; Increasing the anteversion angle increases DRI values and thus improve joint stability; Increasing the chamber angle increases DRI values and improves joint stability. However, at angles exceeding 55 degrees , further increases in the chamber angle result in decreased DRI values and reduce the stability of the joint.

  17. A Comparison of Approaches for Solving Hard Graph-Theoretic Problems

    DTIC Science & Technology

    2015-04-29

    can be converted to a quadratic unconstrained binary optimization ( QUBO ) problem that uses 0/1-valued variables, and so they are often used...Frontiers in Physics, 2:5 (12 Feb 2014). [7] “Programming with QUBOs ,” (instructional document) D-Wave: The Quantum Computing Company, 2013. [8

  18. A Numerical Evaluation of Icing Effects on a Natural Laminar Flow Airfoil

    NASA Technical Reports Server (NTRS)

    Chung, James J.; Addy, Harold E., Jr.

    2000-01-01

    As a part of CFD code validation efforts within the Icing Branch of NASA Glenn Research Center, computations were performed for natural laminar flow (NLF) airfoil, NLF-0414. with 6 and 22.5 minute ice accretions. Both 3-D ice castings and 2-D machine-generated ice shapes were used in wind tunnel tests to study the effects of natural ice is well as simulated ice. They were mounted in the test section of the Low Turbulence Pressure Tunnel (LTPT) at NASA Langley that the 2-dimensionality of the flow can be maintained. Aerodynamic properties predicted by computations were compared to data obtained through the experiment by the authors at the LTPT. Computations were performed only in 2-D and in the case of 3-D ice, the digitized ice shape obtained at one spanwise location was used. The comparisons were mainly concentrated on the lift characteristics over Reynolds numbers ranging from 3 to 10 million and Mach numbers ranging from 0.12 to 0.29. WIND code computations indicated that the predicted stall angles were in agreement with experiment within one or two degrees. The maximum lift values obtained by computations were in good agreement with those of the experiment for the 6 minute ice shapes and the minute 3-D ice, but were somewhat lower in the case of the 22.5 minute 2-D ice. In general, the Reynolds number variation did not cause much change in the lift values while the variation of Mach number showed more change in the lift. The Spalart-Allmaras (S-A) turbulence model was the best performing model for the airfoil with the 22.5 minute ice and the Shear Stress Turbulence (SST) turbulence model was the best for the airfoil with the 6 minute ice and also for the clean airfoil. The pressure distribution on the surface of the iced airfoil showed good agreement for the 6 minute ice. However, relatively poor agreement of the pressure distribution on the upper surface aft of the leading edge horn for the 22.5 minute ice suggests that improvements are needed in the grid or turbulence models.

  19. Reliability and Usefulness of Intraoperative 3-Dimensional Imaging by Mobile C-Arm With Flat-Panel Detector.

    PubMed

    Fujimori, Takahito; Iwasaki, Motoki; Nagamoto, Yukitaka; Kashii, Masafumi; Takao, Masaki; Sugiura, Tsuyoshi; Yoshikawa, Hideki

    2017-02-01

    Reliability and agreement study. To assess the reliability of intraoperative 3-dimensional imaging with a mobile C-arm (3D C-arm) equipped with a flat-panel detector. Pedicle screws are widely used in spinal surgery. Postoperative computed tomography (CT) is the most reliable method to detect screw misplacement. Recent advances in imaging devices have enabled surgeons to acquire 3D images of the spine during surgery. However, the reliability of these imaging devices is not known. A total of 203 screws were used in 22 consecutive patients who underwent surgery for scoliosis. Screw position was read twice with a 3D C-arm and twice with CT in a blinded manner by 2 independent observers. Screw positions were classified into 4 categories at every 2 mm and then into 2 simpler categories of acceptable or unacceptable. The degree of agreement with respect to screw positions between the double readings was evaluated by κ value. With unanimous agreement between 2 observers regarding postoperative CT readings considered the gold standard, the sensitivity of the 3D C-arm for determining screw misplacement was calculated. A total 804 readings were performed. For the 4-category classification, the mean κ value for the 2 interobserver readings was 0.52 for the 3D C-arm and 0.46 for CT. For the 2-category classification, the mean κ value for the 2 interobserver readings was 0.80 for the 3D C-arm and 0.66 for CT. The sensitivity, specificity, positive predictive value, and negative predictive value of intraoperative imaging with the 3D C-arm were 70%, 95%, 44%, and 98%, respectively. With respect to screws with perforation ≥4 mm, the sensitivity was 83%. No revision surgery was performed. Intraoperative imaging with a 3D C-arm was reliable for detecting screw misplacement and helpful in decreasing the rate of revision surgery for screw misplacement.

  20. Refining new-physics searches in B→Dτν with lattice QCD.

    PubMed

    Bailey, Jon A; Bazavov, A; Bernard, C; Bouchard, C M; Detar, C; Du, Daping; El-Khadra, A X; Foley, J; Freeland, E D; Gámiz, E; Gottlieb, Steven; Heller, U M; Kim, Jongjeong; Kronfeld, A S; Laiho, J; Levkova, L; Mackenzie, P B; Meurice, Y; Neil, E T; Oktay, M B; Qiu, Si-Wei; Simone, J N; Sugar, R; Toussaint, D; Van de Water, R S; Zhou, Ran

    2012-08-17

    The semileptonic decay channel B→Dτν is sensitive to the presence of a scalar current, such as that mediated by a charged-Higgs boson. Recently, the BABAR experiment reported the first observation of the exclusive semileptonic decay B→Dτ(-)ν, finding an approximately 2σ disagreement with the standard-model prediction for the ratio R(D)=BR(B→Dτν)/BR(B→Dℓν), where ℓ = e,μ. We compute this ratio of branching fractions using hadronic form factors computed in unquenched lattice QCD and obtain R(D)=0.316(12)(7), where the errors are statistical and total systematic, respectively. This result is the first standard-model calculation of R(D) from ab initio full QCD. Its error is smaller than that of previous estimates, primarily due to the reduced uncertainty in the scalar form factor f(0)(q(2)). Our determination of R(D) is approximately 1σ higher than previous estimates and, thus, reduces the tension with experiment. We also compute R(D) in models with electrically charged scalar exchange, such as the type-II two-Higgs-doublet model. Once again, our result is consistent with, but approximately 1σ higher than, previous estimates for phenomenologically relevant values of the scalar coupling in the type-II model. As a by-product of our calculation, we also present the standard-model prediction for the longitudinal-polarization ratio P(L)(D)=0.325(4)(3).

  1. Study on the influence of leucine-rich amelogenin peptide (LRAP) on the remineralization of enamel defects via micro-focus x-ray computed tomography and nanoindentation.

    PubMed

    Bagheri G, Hossein; Sadr, Alireza; Espigares, Jorge; Hariri, Ilnaz; Nakashima, Syozi; Hamba, Hidenori; Shafiei, Farhad; Moztarzadeh, Fathollah; Tagami, Junji

    2015-06-04

    Regeneration of severely damaged enamel (e.g. deep demineralized lesions) is currently not possible, because the structural units of enamel crystal construction are removed after its maturation. The aim of this in vitro study was to evaluate the effect of surface impregnation by leucine-rich amelogenin peptide (LRAP) on the remineralization of eroded enamel using micro-focus x-ray computed tomography (µCT). Fifteen bovine enamel blocks were embedded in resin and three zones (sound, demineralization, and remineralization) were defined on each specimen. Lesions were prepared by immersing the samples in demineralization solution for 7 d. The samples were soaked in distilled water or 60 or 120 µg mL(-1) solution of LRAP in water for 30 min. After the surface treatment, specimens were incubated in artificial saliva for either 5 or 10 d at 37 °C. The amount of mineral gain (dΔZ%) and the relative changes in the lesion depth (dLD%), obtained from µCT, were used to evaluate the effect of LRAP on the remineralization of lesions. The effects of LRAP on cross-sectional integrated hardness ΔINH were studied after 10 d using nanoindentation. ANOVA test was used to determine the effect of time and/or LRAP concentration on dΔZ%, dLD% and ΔINH mean values. Tukey's analysis was used for multiple comparison testing (α = 0.05). Analysis of µCT data showed significant effect of time and LRAP concentration on the dΔZ% (p = 0.013, p = 0.003) and the dLD% (p  <  0.001, p = 0.002) mean values. The nanoindentation hardness was significantly improved by 120 µg mL(-1) LRAP (p = 0.02). Also, the peptide treatment affected the mineral distribution throughout the lesion by inhibiting of superficial deposition. This study showed that the treatment of eroded lesions in enamel by LRAP can improve and regulate the pattern of remineralization in vitro.

  2. Accuracy of Orthognathic Surgical Outcomes Using 2- and 3-Dimensional Landmarks-The Case for Apples and Oranges?

    PubMed

    Borba, Alexandre Meireles; José da Silva, Everton; Fernandes da Silva, André Luis; Han, Michael D; da Graça Naclério-Homem, Maria; Miloro, Michael

    2018-01-12

    To verify predicted versus obtained surgical movements in 2-dimensional (2D) and 3-dimensional (3D) measurements and compare the equivalence between these methods. A retrospective observational study of bimaxillary orthognathic surgeries was performed. Postoperative cone-beam computed tomographic (CBCT) scans were superimposed on preoperative scans and a lateral cephalometric radiograph was generated from each CBCT scan. After identification of the sella, nasion, and upper central incisor tip landmarks on 2D and 3D images, actual and planned movements were compared by cephalometric measurements. One-sample t test was used to statistically evaluate results, with expected mean discrepancy values ranging from 0 to 2 mm. Equivalence of 2D and 3D values was compared using paired t test. The final sample of 46 cases showed by 2D cephalometry that differences between actual and planned movements in the horizontal axis were statistically relevant for expected means of 0, 0.5, and 2 mm without relevance for expected means of 1 and 1.5 mm; vertical movements were statistically relevant for expected means of 0 and 0.5 mm without relevance for expected means of 1, 1.5, and 2 mm. For 3D cephalometry in the horizontal axis, there were statistically relevant differences for expected means of 0, 1.5, and 2 mm without relevance for expected means of 0.5 and 1 mm; vertical movements showed statistically relevant differences for expected means of 0, 0.5, 1.5 and 2 mm without relevance for the expected mean of 1 mm. Comparison of 2D and 3D values displayed statistical differences for the horizontal and vertical axes. Comparison of 2D and 3D surgical outcome assessments should be performed with caution because there seems to be a difference in acceptable levels of accuracy between these 2 methods of evaluation. Moreover, 3D accuracy studies should no longer rely on a 2-mm level of discrepancy but on a 1-mm level. Copyright © 2018 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  3. The Dissociation Energies of CH4 and C2H2 Revisited

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The bond dissociation energies of CH4 and C2H2 and their fragments are investigated using basis set extrapolations and high levels of correlation. The computed bond dissociation energies (D(sub e)) are accurate to within 0.2 kcal/mol. The agreement with the experimental (D(sub 0)) values is excellent if we assume that the zero-point energy of C2H is 9.18 kcal/mol. The effect of core (1s) correlation on the bond dissociation energies of C-H bonds is shown to vary from 0.2 to 0.7 kcal/mol and that for C-C bonds varies from 0.4 to 2.2 kcal/mol.

  4. [Gemstone computed tomography in the evaluation of material distribution in pulmonary parenchyma for pulmonary embolism].

    PubMed

    Zhang, Lan; Lü, Lei; Wu, Hua-wei; Zhang, Hao; Zhang, Ji-wei

    2011-12-06

    To present our initial experiences with pulmonary high-definition multidetector computed tomography (HDCT) in patients with acute venous thromboembolism (AVTE) to evaluate their corresponding clinical manifestations. Since December 2009 to March 2010, 23 AVTE patients underwent HDCT at our hospital. Pulmonary embolism (PE) was diagnosed based on the 3D-reconstructed images of computed tomography pulmonary angiography (CTPA). The post processed data were collected by spectral imaging system software to detect the iodine distribution maps. Perfusion defects, calculated as the values of iodine content, were compared with those of normal lung parenchymal perfusion in the absence of PE. Among them, 14 AVTE patients were definitely diagnosed with PE. Prior to anticoagulant therapy, their values of iodine content in defective perfusion area were significantly lower than those in normal perfusion area. After a 3-month anticoagulant therapy, the values of iodine content for the defective perfusion area increased significantly (P < 0.05). There was no significant correlation between the values of iodine content for segmental/subsegmental filling defect area and clinical risk score of DVT (r = 2.68, P > 0.05). But there was a significant negative correlation between the values of iodine content for segmental/subsegmental filling defection area and clinical probability score of PE (r = 0.78, P < 0.05). HDCT is a promising modality of visualizing pulmonary microvasculature as a correlative manifestation of regional perfusion. PE results in hypoperfusion with decreased values of iodine content in affected lung parenchyma. Hemodynamic changes in affected areas correlate with the severity of clinical manifestations of PE.

  5. Disease Staging and Prognosis in Smokers Using Deep Learning in Chest Computed Tomography.

    PubMed

    González, Germán; Ash, Samuel Y; Vegas-Sánchez-Ferrero, Gonzalo; Onieva Onieva, Jorge; Rahaghi, Farbod N; Ross, James C; Díaz, Alejandro; San José Estépar, Raúl; Washko, George R

    2018-01-15

    Deep learning is a powerful tool that may allow for improved outcome prediction. To determine if deep learning, specifically convolutional neural network (CNN) analysis, could detect and stage chronic obstructive pulmonary disease (COPD) and predict acute respiratory disease (ARD) events and mortality in smokers. A CNN was trained using computed tomography scans from 7,983 COPDGene participants and evaluated using 1,000 nonoverlapping COPDGene participants and 1,672 ECLIPSE participants. Logistic regression (C statistic and the Hosmer-Lemeshow test) was used to assess COPD diagnosis and ARD prediction. Cox regression (C index and the Greenwood-Nam-D'Agnostino test) was used to assess mortality. In COPDGene, the C statistic for the detection of COPD was 0.856. A total of 51.1% of participants in COPDGene were accurately staged and 74.95% were within one stage. In ECLIPSE, 29.4% were accurately staged and 74.6% were within one stage. In COPDGene and ECLIPSE, the C statistics for ARD events were 0.64 and 0.55, respectively, and the Hosmer-Lemeshow P values were 0.502 and 0.380, respectively, suggesting no evidence of poor calibration. In COPDGene and ECLIPSE, CNN predicted mortality with fair discrimination (C indices, 0.72 and 0.60, respectively), and without evidence of poor calibration (Greenwood-Nam-D'Agnostino P values, 0.307 and 0.331, respectively). A deep-learning approach that uses only computed tomography imaging data can identify those smokers who have COPD and predict who are most likely to have ARD events and those with the highest mortality. At a population level CNN analysis may be a powerful tool for risk assessment.

  6. Binding energies from diffusion Monte Carlo for the MB-pol H{sub 2}O and D{sub 2}O dimer: A comparison to experimental values

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallory, Joel D.; Mandelshtam, Vladimir A.

    2015-10-14

    The diffusion Monte Carlo (DMC) method is applied to compute the ground state energies of the water monomer and dimer and their D{sub 2}O isotopomers using MB-pol; the most recent and most accurate ab inito-based potential energy surface (PES). MB-pol has already demonstrated excellent agreement with high level electronic structure data, as well as agreement with some experimental, spectroscopic, and thermodynamic data. Here, the DMC binding energies of (H{sub 2}O){sub 2} and (D{sub 2}O){sub 2} agree with the corresponding values obtained from velocity map imaging within, respectively, 0.01 and 0.02 kcal/mol. This work adds two more valuable data points thatmore » highlight the accuracy of the MB-pol PES.« less

  7. Coupling HYDRUS-1D Code with PA-DDS Algorithms for Inverse Calibration

    NASA Astrophysics Data System (ADS)

    Wang, Xiang; Asadzadeh, Masoud; Holländer, Hartmut

    2017-04-01

    Numerical modelling requires calibration to predict future stages. A standard method for calibration is inverse calibration where generally multi-objective optimization algorithms are used to find a solution, e.g. to find an optimal solution of the van Genuchten Mualem (VGM) parameters to predict water fluxes in the vadose zone. We coupled HYDRUS-1D with PA-DDS to add a new, robust function for inverse calibration to the model. The PA-DDS method is a recently developed multi-objective optimization algorithm, which combines Dynamically Dimensioned Search (DDS) and Pareto Archived Evolution Strategy (PAES). The results were compared to a standard method (Marquardt-Levenberg method) implemented in HYDRUS-1D. Calibration performance is evaluated using observed and simulated soil moisture at two soil layers in the Southern Abbotsford, British Columbia, Canada in the terms of the root mean squared error (RMSE) and the Nash-Sutcliffe Efficiency (NSE). Results showed low RMSE values of 0.014 and 0.017 and strong NSE values of 0.961 and 0.939. Compared to the results by the Marquardt-Levenberg method, we received better calibration results for deeper located soil sensors. However, VGM parameters were similar comparing with previous studies. Both methods are equally computational efficient. We claim that a direct implementation of PA-DDS into HYDRUS-1D should reduce the computation effort further. This, the PA-DDS method is efficient for calibrating recharge for complex vadose zone modelling with multiple soil layer and can be a potential tool for calibration of heat and solute transport. Future work should focus on the effectiveness of PA-DDS for calibrating more complex versions of the model with complex vadose zone settings, with more soil layers, and against measured heat and solute transport. Keywords: Recharge, Calibration, HYDRUS-1D, Multi-objective Optimization

  8. Evaluating the distance between the femoral tunnel centers in anatomic double-bundle anterior cruciate ligament reconstruction using a computer simulation

    PubMed Central

    Tashiro, Yasutaka; Okazaki, Ken; Iwamoto, Yukihide

    2015-01-01

    Purpose We aimed to clarify the distance between the anteromedial (AM) bundle and posterolateral (PL) bundle tunnel-aperture centers by simulating the anatomical femoral tunnel placement during double-bundle anterior cruciate ligament reconstruction using 3-D computer-aided design models of the knee, in order to discuss the risk of tunnel overlap. Relationships between the AM to PL center distance, body height, and sex difference were also analyzed. Patients and methods The positions of the AM and PL tunnel centers were defined based on previous studies using the quadrant method, and were superimposed anatomically onto the 3-D computer-aided design knee models from 68 intact femurs. The distance between the tunnel centers was measured using the 3-D DICOM software package. The correlation between the AM–PL distance and the subject’s body height was assessed, and a cutoff height value for a higher risk of overlap of the AM and PL tunnel apertures was identified. Results The distance between the AM and PL centers was 10.2±0.6 mm in males and 9.4±0.5 mm in females (P<0.01). The AM–PL center distance demonstrated good correlation with body height in both males (r=0.66, P<0.01) and females (r=0.63, P<0.01). When 9 mm was defined as the critical distance between the tunnel centers to preserve a 2 mm bony bridge between the two tunnels, the cutoff value was calculated to be a height of 160 cm in males and 155 cm in females. Conclusion When AM and PL tunnels were placed anatomically in simulated double-bundle anterior cruciate ligament reconstruction, the distance between the two tunnel centers showed a strong positive correlation with body height. In cases with relatively short stature, the AM and PL tunnel apertures are considered to be at a higher risk of overlap when surgeons choose the double-bundle technique. PMID:26170727

  9. Using open source computational tools for predicting human metabolic stability and additional absorption, distribution, metabolism, excretion, and toxicity properties.

    PubMed

    Gupta, Rishi R; Gifford, Eric M; Liston, Ted; Waller, Chris L; Hohman, Moses; Bunin, Barry A; Ekins, Sean

    2010-11-01

    Ligand-based computational models could be more readily shared between researchers and organizations if they were generated with open source molecular descriptors [e.g., chemistry development kit (CDK)] and modeling algorithms, because this would negate the requirement for proprietary commercial software. We initially evaluated open source descriptors and model building algorithms using a training set of approximately 50,000 molecules and a test set of approximately 25,000 molecules with human liver microsomal metabolic stability data. A C5.0 decision tree model demonstrated that CDK descriptors together with a set of Smiles Arbitrary Target Specification (SMARTS) keys had good statistics [κ = 0.43, sensitivity = 0.57, specificity = 0.91, and positive predicted value (PPV) = 0.64], equivalent to those of models built with commercial Molecular Operating Environment 2D (MOE2D) and the same set of SMARTS keys (κ = 0.43, sensitivity = 0.58, specificity = 0.91, and PPV = 0.63). Extending the dataset to ∼193,000 molecules and generating a continuous model using Cubist with a combination of CDK and SMARTS keys or MOE2D and SMARTS keys confirmed this observation. When the continuous predictions and actual values were binned to get a categorical score we observed a similar κ statistic (0.42). The same combination of descriptor set and modeling method was applied to passive permeability and P-glycoprotein efflux data with similar model testing statistics. In summary, open source tools demonstrated predictive results comparable to those of commercial software with attendant cost savings. We discuss the advantages and disadvantages of open source descriptors and the opportunity for their use as a tool for organizations to share data precompetitively, avoiding repetition and assisting drug discovery.

  10. TH-E-17A-07: Improved Cine Four-Dimensional Computed Tomography (4D CT) Acquisition and Processing Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castillo, S; Castillo, R; Castillo, E

    2014-06-15

    Purpose: Artifacts arising from the 4D CT acquisition and post-processing methods add systematic uncertainty to the treatment planning process. We propose an alternate cine 4D CT acquisition and post-processing method to consistently reduce artifacts, and explore patient parameters indicative of image quality. Methods: In an IRB-approved protocol, 18 patients with primary thoracic malignancies received a standard cine 4D CT acquisition followed by an oversampling 4D CT that doubled the number of images acquired. A second cohort of 10 patients received the clinical 4D CT plus 3 oversampling scans for intra-fraction reproducibility. The clinical acquisitions were processed by the standard phasemore » sorting method. The oversampling acquisitions were processed using Dijkstras algorithm to optimize an artifact metric over available image data. Image quality was evaluated with a one-way mixed ANOVA model using a correlation-based artifact metric calculated from the final 4D CT image sets. Spearman correlations and a linear mixed model tested the association between breathing parameters, patient characteristics, and image quality. Results: The oversampling 4D CT scans reduced artifact presence significantly by 27% and 28%, for the first cohort and second cohort respectively. From cohort 2, the inter-replicate deviation for the oversampling method was within approximately 13% of the cross scan average at the 0.05 significance level. Artifact presence for both clinical and oversampling methods was significantly correlated with breathing period (ρ=0.407, p-value<0.032 clinical, ρ=0.296, p-value<0.041 oversampling). Artifact presence in the oversampling method was significantly correlated with amount of data acquired, (ρ=-0.335, p-value<0.02) indicating decreased artifact presence with increased breathing cycles per scan location. Conclusion: The 4D CT oversampling acquisition with optimized sorting reduced artifact presence significantly and reproducibly compared to the phase-sorted clinical acquisition.« less

  11. Masking ability of a zirconia ceramic on composite resin substrate shades.

    PubMed

    Tabatabaian, Farhad; Shabani, Sima; Namdari, Mahshid; Sadeghpour, Koroush

    2017-01-01

    Masking ability of a restorative material plays an important role to cover discolored tooth structure; however, this ability has not yet been well understood in zirconia-based restorations. This study assessed the masking ability of a zirconia ceramic on composite resin substrates with different shades. Ten zirconia disc specimens, with 0.5 mm thickness and 10 mm diameter, were fabricated by a computer-aided design/computer-aided manufacturing system. A white substrate (control) and six composite resin substrates with different shades including A1, A2, A3, B2, C2, and D3 were prepared. The substrates had a cylindrical shape with 10 mm diameter and height. The specimens were placed onto the substrates for spectrophotometric evaluation. A spectrophotometer measured the L*, a*, and b* values for the specimens. ΔE values were calculated to determine the color differences between the groups and the control and then were compared with a perceptional threshold (ΔE = 2.6). Repeated measures ANOVA and Bonferroni tests were used for data analysis ( P < 0.05). The mean and standard deviation of ΔE values for A1, A2, A3, B2, C2, and D3 groups were 6.78 ± 1.59, 8.13 ± 1.66, 9.81 ± 2.64, 9.61 ± 1.38, 9.59 ± 2.63, and 8.13 ± 1.89, respectively. A significant difference was found among the groups in the ΔE values ( P = 0.006). The ΔE values were more than the perceptional threshold in all the groups ( P < 0.0001). Within the limitations of this study, it can be concluded that the tested zirconia ceramic could not thoroughly mask different shades of the composite resin substrates. Moreover, color masking of zirconia depends on the shade of substrate.

  12. Oscillator strengths and branching fractions of 4d75p-4d75s Rh II transitions

    NASA Astrophysics Data System (ADS)

    Bouazza, Safa

    2017-01-01

    This work reports semi-empirical determination of oscillator strengths, transition probabilities and branching fractions for Rh II 4d75p-4d75s transitions in a wide wavelength range. The angular coefficients of the transition matrix, beforehand obtained in pure SL coupling with help of Racah algebra are transformed into intermediate coupling using eigenvector amplitudes of these two configuration levels determined for this purpose; The transition integral was treated as free parameter in the least squares fit to experimental oscillator strength (gf) values found in literature. The extracted value: <4d75s|r1|4d75p> =2.7426 ± 0.0007 is slightly smaller than that computed by means of ab-initio method. Subsequently to oscillator strength evaluations, transition probabilities and branching fractions were deduced and compared to those obtained experimentally or through another approach like pseudo-relativistic Hartree-Fock model including core-polarization effects.

  13. Extended solvent-contact model approach to blind SAMPL5 prediction challenge for the distribution coefficients of drug-like molecules

    NASA Astrophysics Data System (ADS)

    Chung, Kee-Choo; Park, Hwangseo

    2016-11-01

    The performance of the extended solvent-contact model has been addressed in the SAMPL5 blind prediction challenge for distribution coefficient (LogD) of drug-like molecules with respect to the cyclohexane/water partitioning system. All the atomic parameters defined for 41 atom types in the solvation free energy function were optimized by operating a standard genetic algorithm with respect to water and cyclohexane solvents. In the parameterizations for cyclohexane, the experimental solvation free energy (Δ G sol ) data of 15 molecules for 1-octanol were combined with those of 77 molecules for cyclohexane to construct a training set because Δ G sol values of the former were unavailable for cyclohexane in publicly accessible databases. Using this hybrid training set, we established the LogD prediction model with the correlation coefficient ( R), average error (AE), and root mean square error (RMSE) of 0.55, 1.53, and 3.03, respectively, for the comparison of experimental and computational results for 53 SAMPL5 molecules. The modest accuracy in LogD prediction could be attributed to the incomplete optimization of atomic solvation parameters for cyclohexane. With respect to 31 SAMPL5 molecules containing the atom types for which experimental reference data for Δ G sol were available for both water and cyclohexane, the accuracy in LogD prediction increased remarkably with the R, AE, and RMSE values of 0.82, 0.89, and 1.60, respectively. This significant enhancement in performance stemmed from the better optimization of atomic solvation parameters by limiting the element of training set to the molecules with experimental Δ G sol data for cyclohexane. Due to the simplicity in model building and to low computational cost for parameterizations, the extended solvent-contact model is anticipated to serve as a valuable computational tool for LogD prediction upon the enrichment of experimental Δ G sol data for organic solvents.

  14. Global height datum unification: a new approach in gravity potential space

    NASA Astrophysics Data System (ADS)

    Ardalan, A. A.; Safari, A.

    2005-12-01

    The problem of “global height datum unification” is solved in the gravity potential space based on: (1) high-resolution local gravity field modeling, (2) geocentric coordinates of the reference benchmark, and (3) a known value of the geoid’s potential. The high-resolution local gravity field model is derived based on a solution of the fixed-free two-boundary-value problem of the Earth’s gravity field using (a) potential difference values (from precise leveling), (b) modulus of the gravity vector (from gravimetry), (c) astronomical longitude and latitude (from geodetic astronomy and/or combination of (GNSS) Global Navigation Satellite System observations with total station measurements), (d) and satellite altimetry. Knowing the height of the reference benchmark in the national height system and its geocentric GNSS coordinates, and using the derived high-resolution local gravity field model, the gravity potential value of the zero point of the height system is computed. The difference between the derived gravity potential value of the zero point of the height system and the geoid’s potential value is computed. This potential difference gives the offset of the zero point of the height system from geoid in the “potential space”, which is transferred into “geometry space” using the transformation formula derived in this paper. The method was applied to the computation of the offset of the zero point of the Iranian height datum from the geoid’s potential value W 0=62636855.8 m2/s2. According to the geometry space computations, the height datum of Iran is 0.09 m below the geoid.

  15. B- and D-meson decay constants from three-flavor lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazavov, A.; et al.

    2012-06-01

    We calculate the leptonic decay constants of B_{(s)} and D_{(s)} mesons in lattice QCD using staggered light quarks and Fermilab bottom and charm quarks. We compute the heavy-light meson correlation functions on the MILC asqtad-improved staggered gauge configurations which include the effects of three light dynamical sea quarks. We simulate with several values of the light valence- and sea-quark masses (down to ~m_s/10) and at three lattice spacings (a ~ 0.15, 0.12, and 0.09 fm) and extrapolate to the physical up and down quark masses and the continuum using expressions derived in heavy-light meson staggered chiral perturbation theory. We renormalizemore » the heavy-light axial current using a mostly nonperturbative method such that only a small correction to unity must be computed in lattice perturbation theory and higher-order terms are expected to be small. We obtain f_{B^+} = 196.9(8.9) MeV, f_{B_s} = 242.0(9.5) MeV, f_{D^+} = 218.9(11.3) MeV, f_{D_s} = 260.1(10.8) MeV, and the SU(3) flavor-breaking ratios f_{B_s}/f_{B} = 1.229(26) and f_{D_s}/f_{D} = 1.188(25), where the numbers in parentheses are the total statistical and systematic uncertainties added in quadrature.« less

  16. Three-dimensional segmentation of luminal and adventitial borders in serial intravascular ultrasound images

    NASA Technical Reports Server (NTRS)

    Shekhar, R.; Cothren, R. M.; Vince, D. G.; Chandra, S.; Thomas, J. D.; Cornhill, J. F.

    1999-01-01

    Intravascular ultrasound (IVUS) provides exact anatomy of arteries, allowing accurate quantitative analysis. Automated segmentation of IVUS images is a prerequisite for routine quantitative analyses. We present a new three-dimensional (3D) segmentation technique, called active surface segmentation, which detects luminal and adventitial borders in IVUS pullback examinations of coronary arteries. The technique was validated against expert tracings by computing correlation coefficients (range 0.83-0.97) and William's index values (range 0.37-0.66). The technique was statistically accurate, robust to image artifacts, and capable of segmenting a large number of images rapidly. Active surface segmentation enabled geometrically accurate 3D reconstruction and visualization of coronary arteries and volumetric measurements.

  17. Comparison Between 2D and 3D Simulations of Rate Dependent Friction Using DEM

    NASA Astrophysics Data System (ADS)

    Wang, C.; Elsworth, D.

    2017-12-01

    Rate-state dependent constitutive laws of frictional evolution have been successful in representing many of the first- and second- order components of earthquake rupture. Although this constitutive law has been successfully applied in numerical models, difficulty remains in efficient implementation of this constitutive law in computationally-expensive granular mechanics simulations using discrete element methods (DEM). This study introduces a novel approach in implementing a rate-dependent constitutive relation of contact friction into DEM. This is essentially an implementation of a slip-weakening constitutive law onto local particle contacts without sacrificing computational efficiency. This implementation allows the analysis of slip stability of simulated fault gouge materials. Velocity-stepping experiments are reported on both uniform and textured distributions of quartz and talc as 3D analogs of gouge mixtures. Distinct local slip stability parameters (a-b) are assigned to the quartz and talc, respectively. We separately vary talc content from 0 to 100% in the uniform mixtures and talc layer thickness from 1 to 20 particles in the textured mixtures. Applied shear displacements are cycled through velocities of 1μm/s and 10μm/s. Frictional evolution data are collected and compared to 2D simulation results. We show that dimensionality significantly impacts the evolution of friction. 3D simulation results are more representative of laboratory observed behavior and numerical noise is shown at a magnitude of 0.01 in terms of friction coefficient. Stability parameters (a-b) can be straightforwardly obtained from analyzing velocity steps, and are different from locally assigned (a-b) values. Sensitivity studies on normal stress, shear velocity, particle size, local (a-b) values, and characteristic slip distance (Dc) show that the implementation is sensitive to local (a-b) values and relations between (Dc) and particle size.

  18. Automatic dynamic range adjustment for ultrasound B-mode imaging.

    PubMed

    Lee, Yeonhwa; Kang, Jinbum; Yoo, Yangmo

    2015-02-01

    In medical ultrasound imaging, dynamic range (DR) is defined as the difference between the maximum and minimum values of the displayed signal to display and it is one of the most essential parameters that determine its image quality. Typically, DR is given with a fixed value and adjusted manually by operators, which leads to low clinical productivity and high user dependency. Furthermore, in 3D ultrasound imaging, DR values are unable to be adjusted during 3D data acquisition. A histogram matching method, which equalizes the histogram of an input image based on that from a reference image, can be applied to determine the DR value. However, it could be lead to an over contrasted image. In this paper, a new Automatic Dynamic Range Adjustment (ADRA) method is presented that adaptively adjusts the DR value by manipulating input images similar to a reference image. The proposed ADRA method uses the distance ratio between the log average and each extreme value of a reference image. To evaluate the performance of the ADRA method, the similarity between the reference and input images was measured by computing a correlation coefficient (CC). In in vivo experiments, the CC values were increased by applying the ADRA method from 0.6872 to 0.9870 and from 0.9274 to 0.9939 for kidney and liver data, respectively, compared to the fixed DR case. In addition, the proposed ADRA method showed to outperform the histogram matching method with in vivo liver and kidney data. When using 3D abdominal data with 70 frames, while the CC value from the ADRA method is slightly increased (i.e., 0.6%), the proposed method showed improved image quality in the c-plane compared to its fixed counterpart, which suffered from a shadow artifact. These results indicate that the proposed method can enhance image quality in 2D and 3D ultrasound B-mode imaging by improving the similarity between the reference and input images while eliminating unnecessary manual interaction by the user. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Heuristic lipophilicity potential for computer-aided rational drug design: Optimizations of screening functions and parameters

    NASA Astrophysics Data System (ADS)

    Du, Qishi; Mezey, Paul G.

    1998-09-01

    In this research we test and compare three possible atom-basedscreening functions used in the heuristic molecular lipophilicity potential(HMLP). Screening function 1 is a power distance-dependent function, b_{{i}} /| {R_{{i}}- r} |^γ, screening function 2is an exponential distance-dependent function, biexp(-| {R_i- r} |/d_0 , and screening function 3 is aweighted distance-dependent function, {{sign}}( {b_i } ){{exp}}ξ ( {| {R_i- r} |/| {b_i } |} )For every screening function, the parameters (γ ,d0, and ξ are optimized using 41 common organic molecules of 4 types of compounds:aliphatic alcohols, aliphatic carboxylic acids, aliphatic amines, andaliphatic alkanes. The results of calculations show that screening function3 cannot give chemically reasonable results, however, both the powerscreening function and the exponential screening function give chemicallysatisfactory results. There are two notable differences between screeningfunctions 1 and 2. First, the exponential screening function has largervalues in the short distance than the power screening function, thereforemore influence from the nearest neighbors is involved using screeningfunction 2 than screening function 1. Second, the power screening functionhas larger values in the long distance than the exponential screeningfunction, therefore screening function 1 is effected by atoms at longdistance more than screening function 2. For screening function 1, thesuitable range of parameter d0 is 1.5 < d0 < 3.0, and d0 = 2.0 is recommended. HMLP developed in this researchprovides a potential tool for computer-aided three-dimensional drugdesign.

  20. Sign changes in sums of the Liouville function

    NASA Astrophysics Data System (ADS)

    Borwein, Peter; Ferguson, Ron; Mossinghoff, Michael J.

    2008-09-01

    The Liouville function λ(n) is the completely multiplicative function whose value is -1 at each prime. We develop some algorithms for computing the sum T(n)Dsum_{kD1}^n λ(k)/k , and use these methods to determine the smallest positive integer n where T(n)<0 . This answers a question originating in some work of Turan, who linked the behavior of T(n) to questions about the Riemann zeta function. We also study the problem of evaluating Polya's sum L(n)Dsum_{kD1}^nλ(k) , and we determine some new local extrema for this function, including some new positive values.

  1. Spectral Estimation: An Overdetermined Rational Model Equation Approach.

    DTIC Science & Technology

    1982-09-15

    A-A123 122 SPECTRAL ESTIMATION: AN OVERDETERMINEO RATIONAL MODEL 1/2 EQUATION APPROACH..(U) ARIZONA STATE UNIV TEMPE DEPT OF ELECTRICAL AND COMPUTER...2 0 447,_______ 4. TITLE (mAd Sabile) S. TYPE or REPORT a PEP40D COVERED Spectral Estimation; An Overdeteruined Rational Final Report 9/3 D/8 to...andmmd&t, by uwek 7a5 4 Rational Spectral Estimation, ARMA mo~Ie1, AR model, NMA Mdle, Spectrum, Singular Value Decomposition. Adaptivb Implementatlan

  2. HOSVD-Based 3D Active Appearance Model: Segmentation of Lung Fields in CT Images.

    PubMed

    Wang, Qingzhu; Kang, Wanjun; Hu, Haihui; Wang, Bin

    2016-07-01

    An Active Appearance Model (AAM) is a computer vision model which can be used to effectively segment lung fields in CT images. However, the fitting result is often inadequate when the lungs are affected by high-density pathologies. To overcome this problem, we propose a Higher-order Singular Value Decomposition (HOSVD)-based Three-dimensional (3D) AAM. An evaluation was performed on 310 diseased lungs form the Lung Image Database Consortium Image Collection. Other contemporary AAMs operate directly on patterns represented by vectors, i.e., before applying the AAM to a 3D lung volume,it has to be vectorized first into a vector pattern by some technique like concatenation. However, some implicit structural or local contextual information may be lost in this transformation. According to the nature of the 3D lung volume, HOSVD is introduced to represent and process the lung in tensor space. Our method can not only directly operate on the original 3D tensor patterns, but also efficiently reduce the computer memory usage. The evaluation resulted in an average Dice coefficient of 97.0 % ± 0.59 %, a mean absolute surface distance error of 1.0403 ± 0.5716 mm, a mean border positioning errors of 0.9187 ± 0.5381 pixel, and a Hausdorff Distance of 20.4064 ± 4.3855, respectively. Experimental results showed that our methods delivered significant and better segmentation results, compared with the three other model-based lung segmentation approaches, namely 3D Snake, 3D ASM and 3D AAM.

  3. Evaluation of the flexural strength and microhardness of provisional crown and bridge materials fabricated by different methods

    PubMed Central

    Digholkar, Shruti; Madhav, V. N. V.; Palaskar, Jayant

    2016-01-01

    Purpose: The purpose of this study was to evaluate and compare the flexural strength and microhardness of provisional restorative materials fabricated utilizing rapid prototyping (RP), Computer Assisted Designing and Computer Assisted Milling (CAD-CAM) and conventional method. Materials and Methods: Twenty specimens of dimensions 25 mm × 2 mm × 2 mm (ADA-ANSI specification #27) were fabricated each using: (1) Three dimensional (3D) printed light-cured micro-hybrid filled composite by RP resin group, (2) a milled polymethyl methacrylate (CH) using CAD-CAM (CC resin group), and (3) a conventionally fabricated heat activated polymerized CH resin group. Flexural strength and microhardness were measured and values obtained were evaluated. Results: The measured mean flexural strength values (MegaPascals) were 79.54 (RP resin group), 104.20 (CC resin group), and 95.58 (CH resin group). The measured mean microhardness values (Knoop hardness number) were 32.77 (RP resin group), 25.33 (CC resin group), and 27.36 (CH resin group). The analysis of variance (ANOVA) test shows that there is statistically significant difference in the flexural strength values of the three groups (P < 0.05). According to the pairwise comparison of Tukey's honest significant difference (HSD) test, flexural strength values of CC resin group and CH resin group were higher and statistically significant than those of the RP resin group (P < 0.05). However, there was no significant difference between flexural strength values of CC resin and CH resin group (P = 0.64). The difference in microhardness values of the three groups was statistically significant according to ANOVA as well as the intergroup comparison done using the Tukey's HSD (post hoc) test (P < 0.05). Conclusions: CC-based CH had the highest flexural strength whereas RP-based 3D printed and light cured micro-hybrid filled composite had the highest microhardness. PMID:27746595

  4. Different Conformations of 2'-Deoxycytidine in the Gas and Solid Phases: Competition between Intra- and Intermolecular Hydrogen Bonds.

    PubMed

    Ling, Sanliang; Gutowski, Maciej

    2016-10-06

    Computational results have been reported for 2'-deoxycytidine (dC), its gas phase isomers, tautomers, and their conformers, as well as for the crystalline phase. In addition to the neutral gas phase molecules, we have also considered associated radical anions and cations. The structural calculations were performed at the density functional and MP2 levels of theory. Vertical electron ionization energies and excess electron binding energies were determined using electron propagator theory. The α-anomer proved to be more stable by a fraction of kcal/mol than the biologically relevant canonical β-anomer. The conformational space of canonical dC has been systematically probed. dC in the crystalline phase or DNA structures favors canonical anti conformations. These structures were used in past computational studies to model gas phase characteristics of dC. Our findings indicate, however, that the gas phase dC favors syn conformations. It has repercussions for earlier interpretations of gas phase experimental results based on these computational results. The thermodynamic dominance of syn conformations results from the formation of an intramolecular O5'-H13···O2 hydrogen bond. The IR spectra of the most stable syn and anti canonical conformers differ markedly in the region of frequencies corresponding to NH/OH stretching modes. The MP2 value of deprotonation enthalpy of dC of 1411.7 kJ/mol is in very good agreement with the experimental value of 1409 ± 2.5 kJ/mol. The most stable valence anions are characterized by electron vertical detachment energies (VDE) in the 0.8-1.0 eV range, in good agreement with the experimental VDE of 0.87 eV. The barrier for the glycosidic bond cleavage is significant in the neutral canonical dC, 40.0 kcal/mol, and it is reduced to 22 and 16 kcal/mol for the anionic and cationic radicals of dC, respectively. The cleavage reaction is exothermic by 4 kcal/mol for dC - and endothermic by 7 and 9 kcal/mol for dC + and dC, respectively. We decomposed the crystal cohesive energy into repulsive one-body terms associated with the syn-anti conformational changes, and the attractive intermolecular interaction term. We exposed that the syn-anti conformational changes are very favorable for intermolecular interactions; in particular they make the imino-amino side of the cytosine residue accessible to intermolecular interactions.

  5. Investigation of four-dimensional computed tomography-based pulmonary ventilation imaging in patients with emphysematous lung regions

    NASA Astrophysics Data System (ADS)

    Yamamoto, Tokihiro; Kabus, Sven; Klinder, Tobias; Lorenz, Cristian; von Berg, Jens; Blaffert, Thomas; Loo, Billy W., Jr.; Keall, Paul J.

    2011-04-01

    A pulmonary ventilation imaging technique based on four-dimensional (4D) computed tomography (CT) has advantages over existing techniques. However, physiologically accurate 4D-CT ventilation imaging has not been achieved in patients. The purpose of this study was to evaluate 4D-CT ventilation imaging by correlating ventilation with emphysema. Emphysematous lung regions are less ventilated and can be used as surrogates for low ventilation. We tested the hypothesis: 4D-CT ventilation in emphysematous lung regions is significantly lower than in non-emphysematous regions. Four-dimensional CT ventilation images were created for 12 patients with emphysematous lung regions as observed on CT, using a total of four combinations of two deformable image registration (DIR) algorithms: surface-based (DIRsur) and volumetric (DIRvol), and two metrics: Hounsfield unit (HU) change (VHU) and Jacobian determinant of deformation (VJac), yielding four ventilation image sets per patient. Emphysematous lung regions were detected by density masking. We tested our hypothesis using the one-tailed t-test. Visually, different DIR algorithms and metrics yielded spatially variant 4D-CT ventilation images. The mean ventilation values in emphysematous lung regions were consistently lower than in non-emphysematous regions for all the combinations of DIR algorithms and metrics. VHU resulted in statistically significant differences for both DIRsur (0.14 ± 0.14 versus 0.29 ± 0.16, p = 0.01) and DIRvol (0.13 ± 0.13 versus 0.27 ± 0.15, p < 0.01). However, VJac resulted in non-significant differences for both DIRsur (0.15 ± 0.07 versus 0.17 ± 0.08, p = 0.20) and DIRvol (0.17 ± 0.08 versus 0.19 ± 0.09, p = 0.30). This study demonstrated the strong correlation between the HU-based 4D-CT ventilation and emphysema, which indicates the potential for HU-based 4D-CT ventilation imaging to achieve high physiologic accuracy. A further study is needed to confirm these results.

  6. SU-E-I-74: Image-Matching Technique of Computed Tomography Images for Personal Identification: A Preliminary Study Using Anthropomorphic Chest Phantoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsunobu, Y; Shiotsuki, K; Morishita, J

    Purpose: Fingerprints, dental impressions, and DNA are used to identify unidentified bodies in forensic medicine. Cranial Computed tomography (CT) images and/or dental radiographs are also used for identification. Radiological identification is important, particularly in the absence of comparative fingerprints, dental impressions, and DNA samples. The development of an automated radiological identification system for unidentified bodies is desirable. We investigated the potential usefulness of bone structure for matching chest CT images. Methods: CT images of three anthropomorphic chest phantoms were obtained on different days in various settings. One of the phantoms was assumed to be an unidentified body. The bone imagemore » and the bone image with soft tissue (BST image) were extracted from the CT images. To examine the usefulness of the bone image and/or the BST image, the similarities between the two-dimensional (2D) or threedimensional (3D) images of the same and different phantoms were evaluated in terms of the normalized cross-correlation value (NCC). Results: For the 2D and 3D BST images, the NCCs obtained from the same phantom assumed to be an unidentified body (2D, 0.99; 3D, 0.93) were higher than those for the different phantoms (2D, 0.95 and 0.91; 3D, 0.89 and 0.80). The NCCs for the same phantom (2D, 0.95; 3D, 0.88) were greater compared to those of the different phantoms (2D, 0.61 and 0.25; 3D, 0.23 and 0.10) for the bone image. The difference in the NCCs between the same and different phantoms tended to be larger for the bone images than for the BST images. These findings suggest that the image-matching technique is more useful when utilizing the bone image than when utilizing the BST image to identify different people. Conclusion: This preliminary study indicated that evaluating the similarity of bone structure in 2D and 3D images is potentially useful for identifying of an unidentified body.« less

  7. Fast parallel approach for 2-D DHT-based real-valued discrete Gabor transform.

    PubMed

    Tao, Liang; Kwan, Hon Keung

    2009-12-01

    Two-dimensional fast Gabor transform algorithms are useful for real-time applications due to the high computational complexity of the traditional 2-D complex-valued discrete Gabor transform (CDGT). This paper presents two block time-recursive algorithms for 2-D DHT-based real-valued discrete Gabor transform (RDGT) and its inverse transform and develops a fast parallel approach for the implementation of the two algorithms. The computational complexity of the proposed parallel approach is analyzed and compared with that of the existing 2-D CDGT algorithms. The results indicate that the proposed parallel approach is attractive for real time image processing.

  8. 15 CFR 742.7 - Crime control and detection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...: 0A978, 0A979, 0A984, 0A987, 0E984, 1A984, 1A985, 3A980, 3A981, 3D980, 3E980, 4A003 (for fingerprint computers only), 4A980, 4D001 (for fingerprint computers only), 4D980, 4E001 (for fingerprint computers only...

  9. 15 CFR 742.7 - Crime control and detection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...: 0A978, 0A979, 0A984, 0A987, 0E984, 1A984, 1A985, 3A980, 3A981, 3D980, 3E980, 4A003 (for fingerprint computers only), 4A980, 4D001 (for fingerprint computers only), 4D980, 4E001 (for fingerprint computers only...

  10. 15 CFR 742.7 - Crime control and detection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...: 0A978, 0A979, 0A984, 0A987, 0E984, 1A984, 1A985, 3A980, 3A981, 3D980, 3E980, 4A003 (for fingerprint computers only), 4A980, 4D001 (for fingerprint computers only), 4D980, 4E001 (for fingerprint computers only...

  11. 15 CFR 742.7 - Crime control and detection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...: 0A978, 0A979, 0A984, 0A987, 0E984, 1A984, 1A985, 3A980, 3A981, 3D980, 3E980, 4A003 (for fingerprint computers only), 4A980, 4D001 (for fingerprint computers only), 4D980, 4E001 (for fingerprint computers only...

  12. Three-dimensional computer simulation of radiostereometric analysis (RSA) in distal radius fractures.

    PubMed

    Madanat, Rami; Moritz, Niko; Aro, Hannu T

    2007-01-01

    Physical phantom models have conventionally been used to determine the accuracy and precision of radiostereometric analysis (RSA) in various orthopaedic applications. Using a phantom model of a fracture of the distal radius it has previously been shown that RSA is a highly accurate and precise method for measuring both translation and rotation in three-dimensions (3-D). The main shortcoming of a physical phantom model is its inability to mimic complex 3-D motion. The goal of this study was to create a realistic computer model for preoperative planning of RSA studies and to test the accuracy of RSA in measuring complex movements in fractures of the distal radius using this new model. The 3-D computer model was created from a set of tomographic scans. The simulation of the radiographic imaging was performed using ray-tracing software (POV-Ray). RSA measurements were performed according to standard protocol. Using a two-part fracture model (AO/ASIF type A2), it was found that for simple movements in one axis, translations in the range of 25microm-2mm could be measured with an accuracy of +/-2microm. Rotations ranging from 16 degrees to 2 degrees could be measured with an accuracy of +/-0.015 degrees . Using a three-part fracture model the corresponding values of accuracy were found to be +/-4microm and +/-0.031 degrees for translation and rotation, respectively. For complex 3-D motion in a three-part fracture model (AO/ASIF type C1) the accuracy was +/-6microm for translation and +/-0.120 degrees for rotation. The use of 3-D computer modelling can provide a method for preoperative planning of RSA studies in complex fractures of the distal radius and in other clinical situations in which the RSA method is applicable.

  13. Oscillator strength of symmetry-forbidden d-d absorption of octahedral transition metal complex: theoretical evaluation.

    PubMed

    Saito, Ken; Eishiro, Yoshinori; Nakao, Yoshihide; Sato, Hirofumi; Sakaki, Shigeyoshi

    2012-03-05

    The theoretical evaluation of the oscillator strength of a symmetry-forbidden d-d transition is not easy even nowadays. A new approximate method is proposed here and applied to octahedral complexes [Co(NH(3))(6)](3+) and [Rh(NH(3))(6)](3+) as an example. Our method incorporates the effects of geometry distortion induced by molecular vibration and the thermal distribution of such distorted geometries but does not need the Herzberg-Teller approximation. The calculated oscillator strengths of [Co(NH(3))(6)](3+) agree well with the experimental values in both (1)A(1g) → (1)T(1g) and (1)A(1g) → (1)T(2g) transitions. In the Rh analogue, though the calculated oscillator strengths are somewhat smaller than the experimental values, computational results reproduce well the experimental trends that the oscillator strengths of [Rh(NH(3))(6)](3+) are much larger than those of the Co analogue and the oscillator strength of the (1)A(1g) → (1)T(1g) transition is larger than that of the (1)A(1g) → (1)T(2g) transition. It is clearly shown that the oscillator strength is not negligibly small even at 0 K because the distorted geometry (or the uncertainty in geometry) by zero-point vibration contributes to the oscillator strength at 0 K. These results are discussed in terms of frequency of molecular vibration, extent of distortion induced by molecular vibration, and charge-transfer character involved in the d-d transition. The computational results clearly show that our method is useful in evaluating and discussing the oscillator strength of symmetry-forbidden d-d absorption of transition metal complex.

  14. MRI-based patient-specific human carotid atherosclerotic vessel material property variations in patients, vessel location and long-term follow up

    PubMed Central

    Wang, Qingyu; Canton, Gador; Guo, Jian; Guo, Xiaoya; Hatsukami, Thomas S.; Billiar, Kristen L.; Yuan, Chun; Wu, Zheyang

    2017-01-01

    Background Image-based computational models are widely used to determine atherosclerotic plaque stress/strain conditions and investigate their association with plaque progression and rupture. However, patient-specific vessel material properties are in general lacking in those models, limiting the accuracy of their stress/strain measurements. A noninvasive approach of combining in vivo 3D multi-contrast and Cine magnetic resonance imaging (MRI) and computational modeling was introduced to quantify patient-specific carotid plaque material properties for potential plaque model improvements. Vessel material property variation in patients, along vessel segment, and between baseline and follow up were investigated. Methods In vivo 3D multi-contrast and Cine MRI carotid plaque data were acquired from 8 patients with follow-up (18 months) with written informed consent obtained. 3D thin-layer models and an established iterative procedure were used to determine parameter values of the Mooney-Rivlin models for the 81slices from 16 plaque samples. Effective Young’s Modulus (YM) values were calculated for comparison and analysis. Results Average Effective Young’s Modulus (YM) and circumferential shrinkage rate (C-Shrink) value of the 81 slices was 411kPa and 5.62%, respectively. Slice YM value varied from 70 kPa (softest) to 1284 kPa (stiffest), a 1734% difference. Average slice YM values by vessel varied from 109 kPa (softest) to 922 kPa (stiffest), a 746% difference. Location-wise, the maximum slice YM variation rate within a vessel was 311% (149 kPa vs. 613 kPa). The average slice YM variation rate for the 16 vessels was 134%. The average variation of YM values for all patients from baseline to follow up was 61.0%. The range of the variation of YM values was [-28.4%, 215%]. For plaque progression study, YM at follow-up showed negative correlation with plaque progression measured by wall thickness increase (WTI) (r = -0.7764, p = 0.0235). Wall thickness at baseline correlated with WTI negatively, with r = -0.5253 (p = 0.1813). Plaque burden at baseline correlated with YM change between baseline and follow-up, with r = 0.5939 (p = 0.1205). Conclusion In vivo carotid vessel material properties have large variations from patient to patient, along the diseased segment within a patient, and with time. The use of patient-specific, location specific and time-specific material properties in plaque models could potentially improve the accuracy of model stress/strain calculations. PMID:28715441

  15. Multirate-based fast parallel algorithms for 2-D DHT-based real-valued discrete Gabor transform.

    PubMed

    Tao, Liang; Kwan, Hon Keung

    2012-07-01

    Novel algorithms for the multirate and fast parallel implementation of the 2-D discrete Hartley transform (DHT)-based real-valued discrete Gabor transform (RDGT) and its inverse transform are presented in this paper. A 2-D multirate-based analysis convolver bank is designed for the 2-D RDGT, and a 2-D multirate-based synthesis convolver bank is designed for the 2-D inverse RDGT. The parallel channels in each of the two convolver banks have a unified structure and can apply the 2-D fast DHT algorithm to speed up their computations. The computational complexity of each parallel channel is low and is independent of the Gabor oversampling rate. All the 2-D RDGT coefficients of an image are computed in parallel during the analysis process and can be reconstructed in parallel during the synthesis process. The computational complexity and time of the proposed parallel algorithms are analyzed and compared with those of the existing fastest algorithms for 2-D discrete Gabor transforms. The results indicate that the proposed algorithms are the fastest, which make them attractive for real-time image processing.

  16. Intensity-based 2D 3D registration for lead localization in robot guided deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Hunsche, Stefan; Sauner, Dieter; El Majdoub, Faycal; Neudorfer, Clemens; Poggenborg, Jörg; Goßmann, Axel; Maarouf, Mohammad

    2017-03-01

    Intraoperative assessment of lead localization has become a standard procedure during deep brain stimulation surgery in many centers, allowing immediate verification of targeting accuracy and, if necessary, adjustment of the trajectory. The most suitable imaging modality to determine lead positioning, however, remains controversially discussed. Current approaches entail the implementation of computed tomography and magnetic resonance imaging. In the present study, we adopted the technique of intensity-based 2D 3D registration that is commonly employed in stereotactic radiotherapy and spinal surgery. For this purpose, intraoperatively acquired 2D x-ray images were fused with preoperative 3D computed tomography (CT) data to verify lead placement during stereotactic robot assisted surgery. Accuracy of lead localization determined from 2D 3D registration was compared to conventional 3D 3D registration in a subsequent patient study. The mean Euclidian distance of lead coordinates estimated from intensity-based 2D 3D registration versus flat-panel detector CT 3D 3D registration was 0.7 mm  ±  0.2 mm. Maximum values of these distances amounted to 1.2 mm. To further investigate 2D 3D registration a simulation study was conducted, challenging two observers to visually assess artificially generated 2D 3D registration errors. 95% of deviation simulations, which were visually assessed as sufficient, had a registration error below 0.7 mm. In conclusion, 2D 3D intensity-based registration revealed high accuracy and reliability during robot guided stereotactic neurosurgery and holds great potential as a low dose, cost effective means for intraoperative lead localization.

  17. Computed Tomography Angiography in Patients Evaluated for Acute Pulmonary Embolism with Low Serum D-dimer Levels: A Prospective Study

    PubMed Central

    Gimber, Lana Hirai; Travis, R Ing; Takahashi, Jayme M; Goodman, Torrey L; Yoon, Hyo-Chun

    2009-01-01

    Context: Pulmonary computed tomography angiography (CTA) and the Wells criteria both have interobserver variability in the assessment of pulmonary embolism (PE). Quantitative D-dimer assay findings have been shown to have a high negative predictive value in patients with low pretest probability of PE. Objective: Evaluate roles for clinical probability and CTA in Emergency Department (ED) patients suspected of acute PE but having a low serum D-dimer level. Design: Prospective observational study of ED patients with possible PE who underwent pulmonary CTA and had D-dimer levels ≤1.0 μg/mL. Main Outcome: Clinical probability of PE determined by ED physicians using standard published criteria; pulmonary CTAs read by initial and study radiologists kept unaware of D-dimer results. Results: In 16 months, 744 patients underwent pulmonary CTA, with 347 study participants who had a D-dimer level ≤ 1.0 μg/mL. In one participant, CTA showed a PE that was agreed on by both the initial and study radiologists. In six participants, the initial findings were reported as positive for PE but were not interpreted as positive by the study radiologist. In none of these participants was PE diagnosed on the basis of clinical probability, of findings on ancillary studies and three-month follow-up examination, or by another radiologist, unaware of findings, acting as a tiebreaker. Conclusion: Pulmonary CTA findings positive for acute embolism should be viewed with caution, especially if the suspected PE is in a distal segmental or subsegmental artery in a patient with a serum D-dimer level of ≤1.0 μg/mL. Furthermore, the Wells criteria may be of limited additional value in this group of patients with low D-dimer levels because most will have low or intermediate clinical probability of PE. PMID:20740096

  18. Computational Aerodynamic Analysis of Three-Dimensional Ice Shapes on a NACA 23012 Airfoil

    NASA Technical Reports Server (NTRS)

    Jun, GaRam; Oliden, Daniel; Potapczuk, Mark G.; Tsao, Jen-Ching

    2014-01-01

    The present study identifies a process for performing computational fluid dynamic calculations of the flow over full three-dimensional (3D) representations of complex ice shapes deposited on aircraft surfaces. Rime and glaze icing geometries formed on a NACA23012 airfoil were obtained during testing in the NASA Glenn Research Centers Icing Research Tunnel (IRT). The ice shape geometries were scanned as a cloud of data points using a 3D laser scanner. The data point clouds were meshed using Geomagic software to create highly accurate models of the ice surface. The surface data was imported into Pointwise grid generation software to create the CFD surface and volume grids. It was determined that generating grids in Pointwise for complex 3D icing geometries was possible using various techniques that depended on the ice shape. Computations of the flow fields over these ice shapes were performed using the NASA National Combustion Code (NCC). Results for a rime ice shape for angle of attack conditions ranging from 0 to 10 degrees and for freestream Mach numbers of 0.10 and 0.18 are presented. For validation of the computational results, comparisons were made to test results from rapid-prototype models of the selected ice accretion shapes, obtained from a separate study in a subsonic wind tunnel at the University of Illinois at Urbana-Champaign. The computational and experimental results were compared for values of pressure coefficient and lift. Initial results show fairly good agreement for rime ice accretion simulations across the range of conditions examined. The glaze ice results are promising but require some further examination.

  19. Computational Aerodynamic Analysis of Three-Dimensional Ice Shapes on a NACA 23012 Airfoil

    NASA Technical Reports Server (NTRS)

    Jun, Garam; Oliden, Daniel; Potapczuk, Mark G.; Tsao, Jen-Ching

    2014-01-01

    The present study identifies a process for performing computational fluid dynamic calculations of the flow over full three-dimensional (3D) representations of complex ice shapes deposited on aircraft surfaces. Rime and glaze icing geometries formed on a NACA23012 airfoil were obtained during testing in the NASA Glenn Research Center's Icing Research Tunnel (IRT). The ice shape geometries were scanned as a cloud of data points using a 3D laser scanner. The data point clouds were meshed using Geomagic software to create highly accurate models of the ice surface. The surface data was imported into Pointwise grid generation software to create the CFD surface and volume grids. It was determined that generating grids in Pointwise for complex 3D icing geometries was possible using various techniques that depended on the ice shape. Computations of the flow fields over these ice shapes were performed using the NASA National Combustion Code (NCC). Results for a rime ice shape for angle of attack conditions ranging from 0 to 10 degrees and for freestream Mach numbers of 0.10 and 0.18 are presented. For validation of the computational results, comparisons were made to test results from rapid-prototype models of the selected ice accretion shapes, obtained from a separate study in a subsonic wind tunnel at the University of Illinois at Urbana-Champaign. The computational and experimental results were compared for values of pressure coefficient and lift. Initial results show fairly good agreement for rime ice accretion simulations across the range of conditions examined. The glaze ice results are promising but require some further examination.

  20. Development of the web-based Spanish and Catalan versions of the Euroqol 5D-Y (EQ-5D-Y) and comparison of results with the paper version.

    PubMed

    Robles, Noemí; Rajmil, Luis; Rodriguez-Arjona, Dolors; Azuara, Marta; Codina, Francisco; Raat, Hein; Ravens-Sieberer, Ulrike; Herdman, Michael

    2015-06-03

    The objectives of the study were to develop web-based Spanish and Catalan versions of the EQ-5D-Y, and to compare scores and psychometric properties with the paper version. Web-based and paper versions of EQ-5D-Y were included in a cross-sectional study in Palafolls (Barcelona), Spain and administered to students (n = 923) aged 8 to 18 years from 2 primary and 1 secondary school and their parents. All students completed both the web-based and paper versions during school time with an interval of at least 2 h between administrations. The order of administration was randomized. Participants completed EQ-5D-Y, a measure of mental health status (the Strengths and Difficulties Questionnaire), and sociodemographic variables using a self-administered questionnaire. Parents questionnaire included parental level of education and presence of chronic conditions in children. Missing values, and floor and ceiling effects were compared between versions. Mean score differences were computed for the visual analogue scale (VAS). Percentage of agreement, kappa index (k) and intraclass correlation coefficient (ICC) were computed to analyze the level of agreement between web-based and paper versions on EQ-5D-Y dimensions and VAS. Known groups validity was analyzed and compared between the two formats. Participation rate was 77 % (n = 715). Both formats of EQ-5D-Y showed low percentages of missing values (n = 2, and 4 to 9 for web and paper versions respectively), and a high ceiling effect by dimension (range from 79 % to 96 %). Percent agreement for EQ-5D-Y dimensions on the web and paper versions was acceptable (range 89 % to 97 %), and k ranged from 0.55 (0.48-0.61, usual activities dimension) to 0.75 (0.68-0.82, mobility dimension). Mean score difference on the VAS was 0.07, and the ICC for VAS scores on the two formats was 0.84 (0.82-0.86). Both formats showed acceptable ability to discriminate according to self-perceived health, reporting chronic conditions, and mental health status. The digital EQ-5D-Y showed almost identical VAS scores and acceptable levels of agreement on dimensions. Both formats demonstrated acceptable levels of construct validity. Availability of the Spanish and Catalan web-version will facilitate its use in HRQOL assessment and in economic evaluation.

  1. Methodology to reduce 6D patient positional shifts into a 3D linear shift and its verification in frameless stereotactic radiotherapy

    NASA Astrophysics Data System (ADS)

    Sarkar, Biplab; Ray, Jyotirmoy; Ganesh, Tharmarnadar; Manikandan, Arjunan; Munshi, Anusheel; Rathinamuthu, Sasikumar; Kaur, Harpreet; Anbazhagan, Satheeshkumar; Giri, Upendra K.; Roy, Soumya; Jassal, Kanan; Kalyan Mohanti, Bidhu

    2018-04-01

    The aim of this article is to derive and verify a mathematical formulation for the reduction of the six-dimensional (6D) positional inaccuracies of patients (lateral, longitudinal, vertical, pitch, roll and yaw) to three-dimensional (3D) linear shifts. The formulation was mathematically and experimentally tested and verified for 169 stereotactic radiotherapy patients. The mathematical verification involves the comparison of any (one) of the calculated rotational coordinates with the corresponding value from the 6D shifts obtained by cone beam computed tomography (CBCT). The experimental verification involves three sets of measurements using an ArcCHECK phantom, when (i) the phantom was not moved (neutral position: 0MES), (ii) the position of the phantom shifted by 6D shifts obtained from CBCT (6DMES) from neutral position and (iii) the phantom shifted from its neutral position by 3D shifts reduced from 6D shifts (3DMES). Dose volume histogram and statistical comparisons were made between ≤ft< TPSCAL{\\text -}0MES \\right> and ≤ft< 3DMES{\\text -6DMES} \\right> . The mathematical verification was performed by a comparison of the calculated and measured yaw (γ°) rotation values, which gave a straight line, Y  =  1X with a goodness of fit as R 2  =  0.9982. The verification, based on measurements, gave a planning target volume receiving 100% of the dose (V100%) as 99.1  ±  1.9%, 96.3  ±  1.8%, 74.3  ±  1.9% and 72.6  ±  2.8% for the calculated treatment planning system values TPSCAL, 0MES, 3DMES and 6DMES, respectively. The statistical significance (p-values: paired sample t-test) of V100% were found to be 0.03 for the paired sample ≤ft< 3DMES{\\text -6DMES} \\right> and 0.01 for ≤ft< 0MES{\\text -TPSCAL} \\right> . In this paper, a mathematical method to reduce 6D shifts to 3D shifts is presented. The mathematical method is verified by using well-matched values between the measured and calculated γ°. Measurements done on the ArcCHECK phantom also proved that the proposed methodology is correct. The post-correction of the table position condition introduces a minimal spatial dose delivery error in the frameless stereotactic system, using a 6D motion enabled robotic couch. This formulation enables the reduction of 6D positional inaccuracies to 3D linear shifts, and hence allows the treatment of patients with frameless stereotactic radiosurgery by using only a 3D linear motion enabled couch.

  2. Method to Rapidly Collect Thousands of Velocity Observations to Validate Million-Element 2D Hydrodynamic Models

    NASA Astrophysics Data System (ADS)

    Barker, J. R.; Pasternack, G. B.; Bratovich, P.; Massa, D.; Reedy, G.; Johnson, T.

    2010-12-01

    Two-dimensional (depth-averaged) hydrodynamic models have existed for decades and are used to study a variety of hydrogeomorphic processes as well as to design river rehabilitation projects. Rapid computer and coding advances are revolutionizing the size and detail of 2D models. Meanwhile, advances in topo mapping and environmental informatics are providing the data inputs to drive large, detailed simulations. Million-element computational meshes are in hand. With simulations of this size and detail, the primary challenge has shifted to finding rapid and inexpensive means for testing model predictions against observations. Standard methods for collecting velocity data include boat-mounted ADCP and point-based sensors on boats or wading rods. These methods are labor intensive and often limited to a narrow flow range. Also, they generate small datasets at a few cross-sections, which is inadequate to characterize the statistical structure of the relation between predictions and observations. Drawing on the long-standing oceanographic method of using drogues to track water currents, previous studies have demonstrated the potential of small dGPS units to obtain surface velocity in rivers. However, dGPS is too inaccurate to test 2D models. Also, there is financial risk in losing drogues in rough currents. In this study, an RTK GPS unit was mounted onto a manned whitewater kayak. The boater positioned himself into the current and used floating debris to maintain a speed and heading consistent with the ambient surface flow field. RTK GPS measurements were taken ever 5 sec. From these positions, a 2D velocity vector was obtained. The method was tested over ~20 km of the lower Yuba River in California in flows ranging from 500-5000 cfs, yielding 5816 observations. To compare velocity magnitude against the 2D model-predicted depth-averaged value, kayak-based surface values were scaled down by an optimized constant (0.72), which had no negative effect on regression analysis. The r2 value for speed was 0.78 by this method, compared with 0.57 based on 199 points from traditional measurements. The r2 value for velocity direction was 0.77. Although it is not ideal to rely on observed surface velocity to evaluate depth-average velocity predictions, all available velocity-measurement methods have a suite of assumptions and complications. Using this method, the availability of 10-100x more data was so beneficial that the outcome was among the highest model performance outcomes reported in the literature.

  3. Consolidation of Soft Layers by Finite Strain Analysis.

    DTIC Science & Technology

    1982-03-01

    compressible foundation or layer is divided into for computation purposes. NBL an integer denoting the following options: 1 = consolidation calculated for...i.e., NDATAI 1), the data file should be sequenced in the following manner: a. NST, NPROB, NDATA1, NDATA2 b. NST, NPT, NBL c. NST, GSBL, HBL, WLl, LBL...particular line types: Line type c: Q0 and DQ have nonzero values only if NBL = 3. If NBL = 2, all data values are set to zero except NST. Line type d: There

  4. Computer-analyzed facial expression as a surrogate marker for autism spectrum social core symptoms.

    PubMed

    Owada, Keiho; Kojima, Masaki; Yassin, Walid; Kuroda, Miho; Kawakubo, Yuki; Kuwabara, Hitoshi; Kano, Yukiko; Yamasue, Hidenori

    2018-01-01

    To develop novel interventions for autism spectrum disorder (ASD) core symptoms, valid, reliable, and sensitive longitudinal outcome measures are required for detecting symptom change over time. Here, we tested whether a computerized analysis of quantitative facial expression measures could act as a marker for core ASD social symptoms. Facial expression intensity values during a semi-structured socially interactive situation extracted from the Autism Diagnostic Observation Schedule (ADOS) were quantified by dedicated software in 18 high-functioning adult males with ASD. Controls were 17 age-, gender-, parental socioeconomic background-, and intellectual level-matched typically developing (TD) individuals. Statistical analyses determined whether values representing the strength and variability of each facial expression element differed significantly between the ASD and TD groups and whether they correlated with ADOS reciprocal social interaction scores. Compared with the TD controls, facial expressions in the ASD group appeared more "Neutral" (d = 1.02, P = 0.005, PFDR < 0.05) with less variation in Neutral expression (d = 1.08, P = 0.003, PFDR < 0.05). Their expressions were also less "Happy" (d = -0.78, P = 0.038, PFDR > 0.05) with lower variability in Happy expression (d = 1.10, P = 0.003, PFDR < 0.05). Moreover, the stronger Neutral facial expressions in the ASD participants were positively correlated with poorer ADOS reciprocal social interaction scores (ρ = 0.48, P = 0.042). These findings indicate that our method for quantitatively measuring reduced facial expressivity during social interactions can be a promising marker for core ASD social symptoms.

  5. High Excitation Rydberg Levels of Fe I from the ATMOS Solar Spectrum at 2.5 and 7 microns

    NASA Technical Reports Server (NTRS)

    Schoenfeld, W. G.; Chang, E. S.; Geller, M.; Johansson, S.; Nave, G.; Sauval, A. J.; Grevesse, N.

    1995-01-01

    The quadrupole-polarization theory has been applied to the 3d(sup 6)4S(D-6)4f and 5g subconfigurations of Fe I by a parametric fit, and the fitted parameters are used to predict levels in the 6g and 6h subconfigurations. Using the predicted values, we have computed the 4f-6g and 5g-6h transition arrays and made identifications in the ATMOS infrared solar spectrum. The newly identified 6g and 6h levels, based on ATMOS wavenumbers, are combined with the 5g levels and found to agree with the theoretical values with a root mean-squared-deviation of 0.042/ cm. Our approach yields a polarizability of 28.07 a(sub o, sup 2) and a quadrupole moment of 0.4360 +/- 0.0010 ea(sup 2, sub o) for Fe II, as well as an improved ionization potential of 63737.700 +/- 0.010/ cm for Fe I.

  6. Approach for scene reconstruction from the analysis of a triplet of still images

    NASA Astrophysics Data System (ADS)

    Lechat, Patrick; Le Mestre, Gwenaelle; Pele, Danielle

    1997-03-01

    Three-dimensional modeling of a scene from the automatic analysis of 2D image sequences is a big challenge for future interactive audiovisual services based on 3D content manipulation such as virtual vests, 3D teleconferencing and interactive television. We propose a scheme that computes 3D objects models from stereo analysis of image triplets shot by calibrated cameras. After matching the different views with a correlation based algorithm, a depth map referring to a given view is built by using a fusion criterion taking into account depth coherency, visibility constraints and correlation scores. Because luminance segmentation helps to compute accurate object borders and to detect and improve the unreliable depth values, a two steps segmentation algorithm using both depth map and graylevel image is applied to extract the objects masks. First an edge detection segments the luminance image in regions and a multimodal thresholding method selects depth classes from the depth map. Then the regions are merged and labelled with the different depth classes numbers by using a coherence test on depth values according to the rate of reliable and dominant depth values and the size of the regions. The structures of the segmented objects are obtained with a constrained Delaunay triangulation followed by a refining stage. Finally, texture mapping is performed using open inventor or VRML1.0 tools.

  7. Survival curves of Listeria monocytogenes in chorizos modeled with artificial neural networks.

    PubMed

    Hajmeer, M; Basheer, I; Cliver, D O

    2006-09-01

    Using artificial neural networks (ANNs), a highly accurate model was developed to simulate survival curves of Listeria monocytogenes in chorizos as affected by the initial water activity (a(w0)) of the sausage formulation, temperature (T), and air inflow velocity (F) where the sausages are stored. The ANN-based survival model (R(2)=0.970) outperformed the regression-based cubic model (R(2)=0.851), and as such was used to derive other models (using regression) that allow prediction of the times needed to drop count by 1, 2, 3, and 4 logs (i.e., nD-values, n=1, 2, 3, 4). The nD-value regression models almost perfectly predicted the various times derived from a number of simulated survival curves exhibiting a wide variety of the operating conditions (R(2)=0.990-0.995). The nD-values were found to decrease with decreasing a(w0), and increasing T and F. The influence of a(w0) on nD-values seems to become more significant at some critical value of a(w0), below which the variation is negligible (0.93 for 1D-value, 0.90 for 2D-value, and <0.85 for 3D- and 4D-values). There is greater influence of storage T and F on 3D- and 4D-values than on 1D- and 2D-values.

  8. Efficacy of 3 different artificial tears for the treatment of dry eye in frequent computer users and/or contact lens users.

    PubMed

    Calvão-Santos, Gil; Borges, Cristina; Nunes, Sandrina; Salgado-Borges, José; Duarte, Lilianne

    2011-01-01

    To compare the efficacy of 3 different artificial tears (AT) acting primarily in one of the 3 tear film layers (Tears Again®, lipidic; Opticol®, aqueous; Optive®, mucin) in recovering the tear film changes in patients with dry eye symptoms due to external causes. A total of 27 patients, with dry eye symptoms associated with extra hours of computer or contact lenses use, were randomized to 4 treatment groups: A received Tears Again®; B received Optive®; C received Opticol®; D received no treatment (control). Patients were observed in 3 visits: day 0, day 7, and day 30. Tear break-up time (TBUT) and Schirmer tests and the Ocular Surface Disease Index were performed. Data analysis was performed. There were no significant differences between the groups. From day 0 to day 30, there was a decrease in the number of eyes with abnormal TBUT (not significant) and Schirmer (significant in A, B, D; p<0.031). There was an increase in the average TBUT for all groups (significant in A, C; p<0.001) and a decrease in the average Schirmer value in groups B, C, and D (not significant) and an increase in group A (p = 0.002). There was a decrease in the average Ocular Surface Disease Index value in all groups (p<0.045). All AT were efficient at recovering the tear film, but those acting primarily on the internal and intermediate layer led to a mild decline on lachrymal production. An association of different kinds of AT acting on each layer can be the best treatment for corneal surface diseases affecting eye lubrication.

  9. Accurate 3D kinematic measurement of temporomandibular joint using X-ray fluoroscopic images

    NASA Astrophysics Data System (ADS)

    Yamazaki, Takaharu; Matsumoto, Akiko; Sugamoto, Kazuomi; Matsumoto, Ken; Kakimoto, Naoya; Yura, Yoshiaki

    2014-04-01

    Accurate measurement and analysis of 3D kinematics of temporomandibular joint (TMJ) is very important for assisting clinical diagnosis and treatment of prosthodontics and orthodontics, and oral surgery. This study presents a new 3D kinematic measurement technique of the TMJ using X-ray fluoroscopic images, which can easily obtain the TMJ kinematic data in natural motion. In vivo kinematics of the TMJ (maxilla and mandibular bone) is determined using a feature-based 2D/3D registration, which uses beads silhouette on fluoroscopic images and 3D surface bone models with beads. The 3D surface models of maxilla and mandibular bone with beads were created from CT scans data of the subject using the mouthpiece with the seven strategically placed beads. In order to validate the accuracy of pose estimation for the maxilla and mandibular bone, computer simulation test was performed using five patterns of synthetic tantalum beads silhouette images. In the clinical applications, dynamic movement during jaw opening and closing was conducted, and the relative pose of the mandibular bone with respect to the maxilla bone was determined. The results of computer simulation test showed that the root mean square errors were sufficiently smaller than 1.0 mm and 1.0 degree. In the results of clinical application, during jaw opening from 0.0 to 36.8 degree of rotation, mandibular condyle exhibited 19.8 mm of anterior sliding relative to maxillary articular fossa, and these measurement values were clinically similar to the previous reports. Consequently, present technique was thought to be suitable for the 3D TMJ kinematic analysis.

  10. Whole-body diffusion kurtosis imaging: initial experience on non-Gaussian diffusion in various organs.

    PubMed

    Filli, Lukas; Wurnig, Moritz; Nanz, Daniel; Luechinger, Roger; Kenkel, David; Boss, Andreas

    2014-12-01

    Diffusion kurtosis imaging (DKI) is based on a non-Gaussian diffusion model that should inherently better account for restricted water diffusion within the complex microstructure of most tissues than the conventional diffusion-weighted imaging (DWI), which presumes Gaussian distributed water molecule displacement probability. The aim of this investigation was to test the technical feasibility of in vivo whole-body DKI, probe for organ-specific differences, and compare whole-body DKI and DWI results. Eight healthy subjects underwent whole-body DWI on a clinical 3.0 T magnetic resonance imaging system. Echo-planar images in the axial orientation were acquired at b-values of 0, 150, 300, 500, and 800 mm²/s. Parametrical whole-body maps of the diffusion coefficient (D), the kurtosis (K), and the traditional apparent diffusion coefficient (ADC) were generated. Goodness of fit was compared between DKI and DWI fits using the sums of squared residuals. Data groups were tested for significant differences of the mean by paired Student t tests. Good-quality parametrical whole-body maps of D, K, and ADC could be computed. Compared with ADC values, D values were significantly higher in the cerebral gray matter (by 30%) and white matter (27%), renal cortex (23%) and medulla (21%), spleen (101%), as well as erector spinae muscle (34%) (each P value <0.001). No significant differences between D and ADC were found in the cerebrospinal fluid (P = 0.08) and in the liver (P = 0.13). Curves of DKI fitted the measurement points significantly better than DWI curves did in most organs. Whole-body DKI is technically feasible and may reflect tissue microstructure more meaningfully than whole-body DWI.

  11. Development of an algorithm for corneal reshaping with a scanning laser beam

    NASA Astrophysics Data System (ADS)

    Shen, Jin-Hui; Söderberg, Per; Matsui, Takaaki; Manns, Fabrice; Parel, Jean-Marie

    1995-07-01

    The corneal-ablation rate, the beam-intensity distribution, and the initial and the desired corneal topographies are used to calculate a spatial distribution map of laser pulses. The optimal values of the parameters are determined with a computer model, for a system that produces 213-nm radiation with a Gaussian beam-intensity distribution and a peak radiant exposure of 400 mJ/cm2. The model shows that with a beam diameter of 0.5 mm, an overlap of 80%, and a 5-mm treatment zone, the roughness is less than 6% of the central ablation depth, the refractive error after correction is less than 0.1 D for corrections of myopia of 1, 3, and 6 D and less than 0.4 D for a correction of myopia of 10 D, and the number of pulses per diopter of

  12. A computational investigation of the finite-time blow-up of the 3D incompressible Euler equations based on the Voigt regularization

    DOE PAGES

    Larios, Adam; Petersen, Mark R.; Titi, Edriss S.; ...

    2017-04-29

    We report the results of a computational investigation of two blow-up criteria for the 3D incompressible Euler equations. One criterion was proven in a previous work, and a related criterion is proved here. These criteria are based on an inviscid regularization of the Euler equations known as the 3D Euler-Voigt equations, which are known to be globally well-posed. Moreover, simulations of the 3D Euler-Voigt equations also require less resolution than simulations of the 3D Euler equations for xed values of the regularization parameter α > 0. Therefore, the new blow-up criteria allow one to gain information about possible singularity formationmore » in the 3D Euler equations indirectly; namely, by simulating the better-behaved 3D Euler-Voigt equations. The new criteria are only known to be suficient for blow-up. Therefore, to test the robustness of the inviscid-regularization approach, we also investigate analogous criteria for blow-up of the 1D Burgers equation, where blow-up is well-known to occur.« less

  13. A computational investigation of the finite-time blow-up of the 3D incompressible Euler equations based on the Voigt regularization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larios, Adam; Petersen, Mark R.; Titi, Edriss S.

    We report the results of a computational investigation of two blow-up criteria for the 3D incompressible Euler equations. One criterion was proven in a previous work, and a related criterion is proved here. These criteria are based on an inviscid regularization of the Euler equations known as the 3D Euler-Voigt equations, which are known to be globally well-posed. Moreover, simulations of the 3D Euler-Voigt equations also require less resolution than simulations of the 3D Euler equations for xed values of the regularization parameter α > 0. Therefore, the new blow-up criteria allow one to gain information about possible singularity formationmore » in the 3D Euler equations indirectly; namely, by simulating the better-behaved 3D Euler-Voigt equations. The new criteria are only known to be suficient for blow-up. Therefore, to test the robustness of the inviscid-regularization approach, we also investigate analogous criteria for blow-up of the 1D Burgers equation, where blow-up is well-known to occur.« less

  14. Estimators of The Magnitude-Squared Spectrum and Methods for Incorporating SNR Uncertainty

    PubMed Central

    Lu, Yang; Loizou, Philipos C.

    2011-01-01

    Statistical estimators of the magnitude-squared spectrum are derived based on the assumption that the magnitude-squared spectrum of the noisy speech signal can be computed as the sum of the (clean) signal and noise magnitude-squared spectra. Maximum a posterior (MAP) and minimum mean square error (MMSE) estimators are derived based on a Gaussian statistical model. The gain function of the MAP estimator was found to be identical to the gain function used in the ideal binary mask (IdBM) that is widely used in computational auditory scene analysis (CASA). As such, it was binary and assumed the value of 1 if the local SNR exceeded 0 dB, and assumed the value of 0 otherwise. By modeling the local instantaneous SNR as an F-distributed random variable, soft masking methods were derived incorporating SNR uncertainty. The soft masking method, in particular, which weighted the noisy magnitude-squared spectrum by the a priori probability that the local SNR exceeds 0 dB was shown to be identical to the Wiener gain function. Results indicated that the proposed estimators yielded significantly better speech quality than the conventional MMSE spectral power estimators, in terms of yielding lower residual noise and lower speech distortion. PMID:21886543

  15. Coarse Grid Modeling of Turbine Film Cooling Flows Using Volumetric Source Terms

    NASA Technical Reports Server (NTRS)

    Heidmann, James D.; Hunter, Scott D.

    2001-01-01

    The recent trend in numerical modeling of turbine film cooling flows has been toward higher fidelity grids and more complex geometries. This trend has been enabled by the rapid increase in computing power available to researchers. However, the turbine design community requires fast turnaround time in its design computations, rendering these comprehensive simulations ineffective in the design cycle. The present study describes a methodology for implementing a volumetric source term distribution in a coarse grid calculation that can model the small-scale and three-dimensional effects present in turbine film cooling flows. This model could be implemented in turbine design codes or in multistage turbomachinery codes such as APNASA, where the computational grid size may be larger than the film hole size. Detailed computations of a single row of 35 deg round holes on a flat plate have been obtained for blowing ratios of 0.5, 0.8, and 1.0, and density ratios of 1.0 and 2.0 using a multiblock grid system to resolve the flows on both sides of the plate as well as inside the hole itself. These detailed flow fields were spatially averaged to generate a field of volumetric source terms for each conservative flow variable. Solutions were also obtained using three coarse grids having streamwise and spanwise grid spacings of 3d, 1d, and d/3. These coarse grid solutions used the integrated hole exit mass, momentum, energy, and turbulence quantities from the detailed solutions as volumetric source terms. It is shown that a uniform source term addition over a distance from the wall on the order of the hole diameter is able to predict adiabatic film effectiveness better than a near-wall source term model, while strictly enforcing correct values of integrated boundary layer quantities.

  16. Quantitative Structure – Property Relationship Modeling of Remote Liposome Loading Of Drugs

    PubMed Central

    Cern, Ahuva; Golbraikh, Alexander; Sedykh, Aleck; Tropsha, Alexander; Barenholz, Yechezkel; Goldblum, Amiram

    2012-01-01

    Remote loading of liposomes by trans-membrane gradients is used to achieve therapeutically efficacious intra-liposome concentrations of drugs. We have developed Quantitative Structure Property Relationship (QSPR) models of remote liposome loading for a dataset including 60 drugs studied in 366 loading experiments internally or elsewhere. Both experimental conditions and computed chemical descriptors were employed as independent variables to predict the initial drug/lipid ratio (D/L) required to achieve high loading efficiency. Both binary (to distinguish high vs. low initial D/L) and continuous (to predict real D/L values) models were generated using advanced machine learning approaches and five-fold external validation. The external prediction accuracy for binary models was as high as 91–96%; for continuous models the mean coefficient R2 for regression between predicted versus observed values was 0.76–0.79. We conclude that QSPR models can be used to identify candidate drugs expected to have high remote loading capacity while simultaneously optimizing the design of formulation experiments. PMID:22154932

  17. Optical Computations for Image Bandwidth Compression.

    DTIC Science & Technology

    1982-05-15

    coefficient between E and S, defined by ES = <LEAS> , - PES . (3) GE o S Note that negative values of o account for contrast reversals between bands...The 4:1 maximum compression ratio for the four-band case does not take into account any further compression available by the usual single-band methods...a *e ea m a RA a w xUalaUUI ~ggc 7 ail ,9 At Is mu agoamanwma accae g a a a. eme., d"l ac me . s sC g: A ge a & o a a a .0 AC 0 .01’a d gRo n’s. aa a

  18. Brownian motion of polyphosphate complexes in yeast vacuoles: characterization by fluorescence microscopy with image analysis.

    PubMed

    Puchkov, Evgeny O

    2010-06-01

    In the vacuoles of Saccharomyces cerevisiae yeast cells, vividly moving insoluble polyphosphate complexes (IPCs) <1 microm size, stainable by a fluorescent dye, 4',6-diamidino-2-phenylindole (DAPI), may appear under some growth conditions. The aim of this study was to quantitatively characterize the movement of the IPCs and to evaluate the viscosity in the vacuoles using the obtained data. Studies were conducted on S. cerevisiae cells stained by DAPI and fluorescein isothyocyanate-labelled latex microspheres, using fluorescence microscopy combined with computer image analysis (ImageJ software, NIH, USA). IPC movement was photorecorded and shown to be Brownian motion. On latex microspheres, a methodology was developed for measuring a fluorescing particle's two-dimensional (2D) displacements and its size. In four yeast cells, the 2D displacements and sizes of the IPCs were evaluated. Apparent viscosity values in the vacuoles of the cells, computed by the Einstein-Smoluchowski equation using the obtained data, were found to be 2.16 +/- 0.60, 2.52 +/- 0.63, 3.32 +/- 0.9 and 11.3 +/- 1.7 cP. The first three viscosity values correspond to 30-40% glycerol solutions. The viscosity value of 11.3 +/- 1.7 cP was supposed to be an overestimation, caused by the peculiarities of the vacuole structure and/or volume in this particular cell. This conclusion was supported by the particular quality of the Brownian motion trajectories set in this cell as compared to the other three cells.

  19. Longitudinal association between television watching and computer use and risk markers in diabetes in the SEARCH for Diabetes in Youth Study

    PubMed Central

    Li, Chao; Beech, Bettina; Crume, Tessa; D’Agostino, Ralph B.; Dabelea, Dana; Kaar, Jill L; Liese, Angela D.; Mayer-Davis, Elizabeth J.; Pate, Russell; Pettitt, David J.; Taplin, Craig; Rodriguez, Beatriz; Merchant, Anwar T.

    2014-01-01

    Background The study provides evidence of the longitudinal association between screen time with hemoglobin A1c and cardiovascular risk markers among youth with type 1 (T1D) and type 2 diabetes (T2D) . Objective To examine the longitudinal relationship of screen time with HbA1c and serum lipids among youth with diabetes. Subjects Youth with T1D and T2D. Methods We followed up 1049 youth (≥10 yr. old) with recently diagnosed T1D and T2D participating in the SEARCH for Diabetes in Youth Study. Results Increased television watching on weekdays and during the week over time was associated with larger increases in HbA1c among youth with T1D and T2D (p-value<0.05). Among youth with T1D, significant longitudinal associations were observed between television watching and TG (p-value<0.05) (week days and whole week), and LDL-c (p-value<0.05) (whole week). For example, for youth who watched 1 hour of television per weekday at the outset and 3 hours per weekday 5 years later, the longitudinal model predicted greater absolute increases in HbA1c (2.19% for T1D and 2.16% for T2D); whereas for youth who watched television 3 hours per weekday at the outset and 1 hour per weekday 5 years later, the model predicted lesser absolute increases in HbA1c (2.08% for T1D and 1.06% for T2D). Conclusions Youth with T2D who increased their television watching over time vs those that decreased it had larger increases in HbA1c over 5 years. Youth with T1D who increased their television watching over time had increases in LDL-c, TG and to a lesser extent HbA1c . PMID:25041407

  20. Prostate multimodality image registration based on B-splines and quadrature local energy.

    PubMed

    Mitra, Jhimli; Martí, Robert; Oliver, Arnau; Lladó, Xavier; Ghose, Soumya; Vilanova, Joan C; Meriaudeau, Fabrice

    2012-05-01

    Needle biopsy of the prostate is guided by Transrectal Ultrasound (TRUS) imaging. The TRUS images do not provide proper spatial localization of malignant tissues due to the poor sensitivity of TRUS to visualize early malignancy. Magnetic Resonance Imaging (MRI) has been shown to be sensitive for the detection of early stage malignancy, and therefore, a novel 2D deformable registration method that overlays pre-biopsy MRI onto TRUS images has been proposed. The registration method involves B-spline deformations with Normalized Mutual Information (NMI) as the similarity measure computed from the texture images obtained from the amplitude responses of the directional quadrature filter pairs. Registration accuracy of the proposed method is evaluated by computing the Dice Similarity coefficient (DSC) and 95% Hausdorff Distance (HD) values for 20 patients prostate mid-gland slices and Target Registration Error (TRE) for 18 patients only where homologous structures are visible in both the TRUS and transformed MR images. The proposed method and B-splines using NMI computed from intensities provide average TRE values of 2.64 ± 1.37 and 4.43 ± 2.77 mm respectively. Our method shows statistically significant improvement in TRE when compared with B-spline using NMI computed from intensities with Student's t test p = 0.02. The proposed method shows 1.18 times improvement over thin-plate splines registration with average TRE of 3.11 ± 2.18 mm. The mean DSC and the mean 95% HD values obtained with the proposed method of B-spline with NMI computed from texture are 0.943 ± 0.039 and 4.75 ± 2.40 mm respectively. The texture energy computed from the quadrature filter pairs provides better registration accuracy for multimodal images than raw intensities. Low TRE values of the proposed registration method add to the feasibility of it being used during TRUS-guided biopsy.

  1. A Multi-institution, Retrospective Analysis of Cervix Intracavitary Brachytherapy Treatments. Part 1: Is EQD2 Good Enough for Reporting Radiobiological Effects?

    PubMed

    Fields, Emma C; Melvani, Rakhi; Hajdok, George; D'Souza, David; Jones, Bernard; Stuhr, Kelly; Diot, Quentin; Fisher, Christine M; Mukhopadhyay, Nitai; Todor, Dorin

    2017-09-01

    When brachytherapy doses are reported or added, biologically effective dose (BED) minimum dose covering 90% of the volume (D90) is used as if dose is delivered uniformly to the target. Unlike BED(D90), equivalent uniform BED (EUBED) and generalized biologically equivalent uniform dose (gBEUD) are quantities that integrate dose inhomogeneity. Here we compared BED(D90) and equivalent uniform BED (EUBED)/gBEUD in 3 settings: (1) 2 sites using tandem and ovoid (T&O) but different styles of implants; (2) 2 sites using different devices-T&O and tandem and ring (T&R)-and different styles; and (3) the same site using T&O and T&R with the same style. EUBED and gBEUD were calculated for 260 fractions from 3 institutions using BED(α/β = 10 Gy). EUBED uses an extra parameter α with smaller values associated with radioresistant tumors. Similarly, gBEUD uses a, which places variable emphasis on hot/cold spots. Distributions were compared using the Kolmogorov-Smirnoff test at 5% significance. For the 2 sites using T&O, the distribution of EUBED-BED(D90) was not different for values of α = 0.5 to 0.3 Gy -1 but was statistically different for values of α = 0.15 to 0.05 Gy -1 (P=.01, .002). The mean percentage differences between EUBED and BED(D90) ranged from 20% to 100% for α = 0.5 Gy -1 to 0.05 Gy -1 . Using gBEUD-BED(D90), the P values indicate the distributions to be similar for a = -10 but to be significantly different for other values of a (-5, -1, 1). Between sites and at the same site using T&O versus T&R, the distributions were statistically different with EUBED/gBEUD irrespective of parameter values at which these quantities were computed. These differences indicate that EUBED/gBEUD capture differences between the techniques and applicators that are not detected by the BED(D90). BED(D90) is unable to distinguish between plans created by different devices or optimized differently. EUBED/gBEUD distinguish between dose distributions created by different devices and styles of implant and planning. This discrepancy is particularly important with the increased use of magnetic resonance imaging and hybrid devices, whereby one has the ability to create dose distributions that are significant departures from the classic pear. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. A new version of Visual tool for estimating the fractal dimension of images

    NASA Astrophysics Data System (ADS)

    Grossu, I. V.; Felea, D.; Besliu, C.; Jipa, Al.; Bordeianu, C. C.; Stan, E.; Esanu, T.

    2010-04-01

    This work presents a new version of a Visual Basic 6.0 application for estimating the fractal dimension of images (Grossu et al., 2009 [1]). The earlier version was limited to bi-dimensional sets of points, stored in bitmap files. The application was extended for working also with comma separated values files and three-dimensional images. New version program summaryProgram title: Fractal Analysis v02 Catalogue identifier: AEEG_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEG_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 9999 No. of bytes in distributed program, including test data, etc.: 4 366 783 Distribution format: tar.gz Programming language: MS Visual Basic 6.0 Computer: PC Operating system: MS Windows 98 or later RAM: 30 M Classification: 14 Catalogue identifier of previous version: AEEG_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 1999 Does the new version supersede the previous version?: Yes Nature of problem: Estimating the fractal dimension of 2D and 3D images. Solution method: Optimized implementation of the box-counting algorithm. Reasons for new version:The previous version was limited to bitmap image files. The new application was extended in order to work with objects stored in comma separated values (csv) files. The main advantages are: Easier integration with other applications (csv is a widely used, simple text file format); Less resources consumed and improved performance (only the information of interest, the "black points", are stored); Higher resolution (the points coordinates are loaded into Visual Basic double variables [2]); Possibility of storing three-dimensional objects (e.g. the 3D Sierpinski gasket). In this version the optimized box-counting algorithm [1] was extended to the three-dimensional case. Summary of revisions:The application interface was changed from SDI (single document interface) to MDI (multi-document interface). One form was added in order to provide a graphical user interface for the new functionalities (fractal analysis of 2D and 3D images stored in csv files). Additional comments: User friendly graphical interface; Easy deployment mechanism. Running time: In the first approximation, the algorithm is linear. References:[1] I.V. Grossu, C. Besliu, M.V. Rusu, Al. Jipa, C.C. Bordeianu, D. Felea, Comput. Phys. Comm. 180 (2009) 1999-2001.[2] F. Balena, Programming Microsoft Visual Basic 6.0, Microsoft Press, US, 1999.

  3. Individual and combined efficacies of mild heat and ultraviolet-c radiation against Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes in coconut liquid endosperm.

    PubMed

    Gabriel, Alonzo A; Ostonal, Jeffrey M; Cristobal, Jannelle O; Pagal, Gladess A; Armada, John Vincent E

    2018-07-20

    This study determined the inactivation kinetic parameters of selected pathogens in heat, ultraviolet-C and combined heat-UV-C treated coconut liquid endosperm. Separate cocktails of Escherichia coli O157:H7, Salmonella enterica serovars, and Listeria monocytogenes strains were inoculated into coconut liquid endosperm (pH 5.15, TSS 4.4 o Bx, TA 0.062% malic acid, extinction coefficient (ε) at 254 nm of 0.0154 cm -1 ) for inactivation studies. Result showed that all organisms generally exhibited a log-linear heat inactivation behavior (R 2 0.81-0.99). The E. coli O157:H7 cocktail (D 55  = 19.75 min, D 57  = 10.79 min, D 60  = 3.38 min, and D 63  = 0.46 min) was found to be significantly more resistant (P > 0.05) than the tested cocktail of L. monocytogenes (D 55  = 11.68 min, D 57  = 4.53 min, D 60  = 1.82 min and D 63  = 0.26 min) and S. enterica cocktail (D 55  = 3.08 min, D 57  = 2.60 min, D 60  = 0.89 min and D 63  = 0.25 min). Despite the differences in D T values, computed z values for L. monocytogenes cocktail (5.12 ± 0.43 °C) and E. coli O157:H7 cocktail (4.95 ± 0.12 °C) were not significantly different (P > 0.05), but were both significantly (P < 0.05) lower than that of S. enterica cocktail (7.10 ± 0.15 °C). All test organisms also exhibited a generally log-linear UV-C inactivation behavior (R 2 0.90-0.99) with E. coli O157:H7 cocktail (D UV-C  = 25.26 mJ/cm 2 ) demonstrating greatest resistance to UV-C than S. enterica (D UV-C  = 24.65 mJ/cm 2 ) and L. monocytogenes (D UV-C  = 17.30 mJ/cm 2 ) cocktails. The D 55 values of each organism cocktail were used to calculate for the 3-log reduction heating process schedules, during which UV-C treatments were simultaneously applied. Lethal rates (F values) calculations in the combined processes revealed that within the 3-log reduction heating processes, co-exposure of UV-C resulted in 5.62 to 6.20 log reductions in the test organism populations. Heating caused 69.3, 97.2, and 67.4% of the reduction in E. coli O157:H7, S. enterica and L. monocytogenes cocktails, respectively. These results can be used as baseline data in the establishment of mild heat treatment in combination with UV-C process schedules for coconut liquid endosperm and other similar products. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Evaluation of Least-Squares Collocation and the Reduced Point Mass method using the International Association of Geodesy, Joint Study Group 0.3 test data.

    NASA Astrophysics Data System (ADS)

    Tscherning, Carl Christian; Herceg, Matija

    2014-05-01

    The methods of Least-Squares Collocation (LSC) and the Reduced Point Mass method (RPM) both uses radial basis-functions for the representation of the anomalous gravity potential (T). LSC uses as many base-functions as the number of observations, while the RPM method uses as many as deemed necessary. Both methods have been evaluated and for some tests compared in the two areas (Central Europe and South-East Pacific). For both areas test data had been generated using EGM2008. As observational data (a) ground gravity disturbances, (b) airborne gravity disturbances, (c) GOCE like Second order radial derivatives and (d) GRACE along-track potential differences were available. The use of these data for the computation of values of (e) T in a grid was the target of the evaluation and comparison investigation. Due to the fact that T in principle can only be computed using global data, the remove-restore procedure was used, with EGM2008 subtracted (and later added to T) up to degree 240 using dataset (a) and (b) and up to degree 36 for datasets (c) and (d). The estimated coefficient error was accounted for when using LSC and in the calculation of error-estimates. The main result is that T was estimated with an error (computed minus control data, (e) from which EGM2008 to degree 240 or 36 had been subtracted ) as found in the table (LSC used): Area Europe Data-set (mgal) (e)-240(a) (b) (e)-36 (c) (d) Mean -0.0 0.0 -0.1 -0.1 -0.3 -1.8 Standard deviation4.1 0.8 2.7 32.6 6.0 19.2 Max. difference 19.9 10.4 16.9 69.9 31.3 47.0 Min.difference -16.2 -3.7 -15.5 -92.1 -27.8 -65.5 Area Pacific Data-set (mgal) (e)-240(a) (b) (e)-36 (c) (d) Mean -0.1 -0.1 -0.1 4.6 -0.2 0.2 Standard deviation4.8 0.2 1.9 49.1 6.7 18.6 Max.difference 22.2 1.8 13.4 115.5 26.9 26.5 Min.difference -28.7 -3.1 -15.7 -106.4 -33.6 22.1 The result using RPM with data-sets (a), (b), (c) gave comparable results. The use of (d) with the RPM method is being implemented. Tests were also done computing dataset (a) from the other datasets. The results here may serve as a bench-mark for other radial basis-function implementations for computing approximations to T. Improvements are certainly possible, e.g. by taking the topography and bathymetry into account.

  5. Implications of Marcus-Hush theory for steady-state heterogeneous electron transfer at an inlaid disk electrode.

    PubMed

    Feldberg, Stephen W

    2010-06-15

    For an outer-sphere heterogeneous electron transfer, Ox + e = Red, between an electrode and a redox couple, the Butler-Volmer formalism predicts that the operative heterogeneous rate constant, k(red) (cm s(-1)) for reduction (or k(ox) for oxidation) increases without limit as an exponential function of -alpha (E - E(0)) for reduction (or (1 - alpha)(E - E(0)) for oxidation), where E is the applied electrode potential, alpha (~1/2) is the transfer coefficient and E(0) is the formal potential. The Marcus-Hush formalism, as exposited by Chidsey (Chidsey, C. E. D. Science 1991, 215, 919), predicts that the value of k(red) or k(ox) limits at sufficiently large values of -(E - E(0)) or (E - E(0)). The steady-state currents at an inlaid disk electrode obtained for a redox species in solution were computed using both formalisms with the Oldham-Zoski approximation (Oldham, K. B.; Zoski, C. G. J. Electroanal. Chem. 1988, 256, 11). Significant differences are noted for the two formalisms. When k(0)r(0)/D is sufficiently small (k(0) is the standard rate constant, r(0) is the radius of the disk electrode, and D is the diffusion coefficient of the redox species), the Marcus-Hush formalism effects a limiting current that can be significantly smaller than the mass transport limited current. This is easily explained in terms of the limiting values of k(red) and k(ox) predicted by the Marcus-Hush formalism. The experimental conditions that must be met to effect significant differences in behavior are discussed; experimental conditions that effect virtually identical behavior are also discussed. As a caveat for experimentalists, applications of the Butler-Volmer formalism to systems that are more properly described using the Marcus-Hush formalism are shown to yield incorrect values of k(0) and meaningless values of alpha, which serves only as a fitting parameter.

  6. 3D Biometrics for Hindfoot Alignment Using Weightbearing CT.

    PubMed

    Lintz, François; Welck, Matthew; Bernasconi, Alessio; Thornton, James; Cullen, Nicholas P; Singh, Dishan; Goldberg, Andy

    2017-06-01

    Hindfoot alignment on 2D radiographs can present anatomical and operator-related bias. In this study, software designed for weightbearing computed tomography (WBCT) was used to calculate a new 3D biometric tool: the Foot and Ankle Offset (FAO). We described the distribution of FAO in a series of data sets from clinically normal, varus, and valgus cases, hypothesizing that FAO values would be significantly different in the 3 groups. In this retrospective cohort study, 135 data sets (57 normal, 38 varus, 40 valgus) from WBCT (PedCAT; CurveBeam LLC, Warrington, PA) were obtained from a specialized foot and ankle unit. 3D coordinates of specific anatomical landmarks (weightbearing points of the calcaneus, of the first and fifth metatarsal heads and the highest and centermost point on the talar dome) were collected. These data were processed with the TALAS system (CurveBeam), which resulted in an FAO value for each case. Intraobserver and interobserver reliability were also assessed. In normal cases, the mean value for FAO was 2.3% ± 2.9%, whereas in varus and valgus cases, the mean was -11.6% ± 6.9% and 11.4% ± 5.7%, respectively, with a statistically significant difference among groups ( P < .001). The distribution of the normal population was Gaussian. The inter- and intraobserver reliability were 0.99 +/- 0.00 and 0.97 +/-0.02 Conclusions: This pilot study suggests that the FAO is an efficient tool for measuring hindfoot alignment using WBCT. Previously published research in this field has looked at WBCT by adapting 2D biometrics. The present study introduces the concept of 3D biometrics and describes an efficient, semiautomatic tool for measuring hindfoot alignment. Level III, retrospective comparative study.

  7. Influence of the operational parameters on bioelectricity generation in continuous microbial fuel cell, experimental and computational fluid dynamics modelling

    NASA Astrophysics Data System (ADS)

    Sobieszuk, Paweł; Zamojska-Jaroszewicz, Anna; Makowski, Łukasz

    2017-12-01

    The influence of the organic loading rate (also known as active anodic chamber volume) on bioelectricity generation in a continuous, two-chamber microbial fuel cell for the treatment of synthetic wastewater, with glucose as the only carbon source, was examined. Ten sets of experiments with different combinations of hydraulic retention times (0.24-1.14 d) and influent chemical oxygen demand concentrations were performed to verify the impact of organic loading rate on the voltage generation capacity of a simple dual-chamber microbial fuel cell working in continuous mode. We found that there is an optimal hydraulic retention time value at which the maximum voltage is generated: 0.41 d. However, there were no similar effects, in terms of voltage generation, when a constant hydraulic retention time with different influent chemical oxygen demand of wastewater was used. The obtained maximal voltage value (600 mV) has also been compared to literature data. Computational fluid dynamics (CFD) was used to calculate the fluid flow and the exit age distribution of fluid elements in the reactor to explain the obtained experimental results and identify the crucial parameters for the design of bioreactors on an industrial scale.

  8. An analysis of deep vein thrombosis in burn patients (Part 1): Comparison of D-dimer and Doppler ultrasound as screening tools.

    PubMed

    Ahuja, Rajeev B; Bansal, Priya; Pradhan, Gaurav S; Subberwal, Manju

    2016-12-01

    The high prevalence of deep vein thrombosis (DVT) reported in prospective studies and the unreliability of clinical diagnosis mandates prospective screening for DVT in burn patients. Our study seeks to compare D-dimer and Doppler ultrasound (DUS) in search for a practical, inexpensive and a reliable screening tool. One hundred burn patients (inclusion criteria: 30-60% TBSA burn, >18 years of age, admitted within 48h of burn) were computer randomized into two equal groups. The study (prophylaxis) group received low molecular weight heparin (LMWH) (0.5mg/kg, twice daily-max 60mg/day) from day one, till discharge. Screening D-dimer assays and DUS of the lower extremities were performed on all 100 patients on day five, and then weekly, till discharge. Signs and symptoms simulating DVT (pain, swelling, redness, warmth, positive Homans' and Moses' sign) were present in majority of patients with lower limb burns. 43/50 patients (86%) in the control group and 38/50 patients (76%) in the study (prophylaxis) group had positive D-dimer values (>0.5μg/ml) on the 5th post-burn day. D-dimer was positive in all the four patients identified with DVT. However, only 4/100 patients enrolled in the study demonstrated DVT on DUS. Thus, the specificity of the D-dimer assay was only 20% with a positive predictive value of 5%. Absolute D-dimer values were found to have no correlation to the extent of burns. We conclude that D-dimer is not a useful screening tool for DVT in burns contrary to its accepted value in general trauma and medical patients. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  9. Automated bone segmentation from large field of view 3D MR images of the hip joint

    NASA Astrophysics Data System (ADS)

    Xia, Ying; Fripp, Jurgen; Chandra, Shekhar S.; Schwarz, Raphael; Engstrom, Craig; Crozier, Stuart

    2013-10-01

    Accurate bone segmentation in the hip joint region from magnetic resonance (MR) images can provide quantitative data for examining pathoanatomical conditions such as femoroacetabular impingement through to varying stages of osteoarthritis to monitor bone and associated cartilage morphometry. We evaluate two state-of-the-art methods (multi-atlas and active shape model (ASM) approaches) on bilateral MR images for automatic 3D bone segmentation in the hip region (proximal femur and innominate bone). Bilateral MR images of the hip joints were acquired at 3T from 30 volunteers. Image sequences included water-excitation dual echo stead state (FOV 38.6 × 24.1 cm, matrix 576 × 360, thickness 0.61 mm) in all subjects and multi-echo data image combination (FOV 37.6 × 23.5 cm, matrix 576 × 360, thickness 0.70 mm) for a subset of eight subjects. Following manual segmentation of femoral (head-neck, proximal-shaft) and innominate (ilium+ischium+pubis) bone, automated bone segmentation proceeded via two approaches: (1) multi-atlas segmentation incorporating non-rigid registration and (2) an advanced ASM-based scheme. Mean inter- and intra-rater reliability Dice's similarity coefficients (DSC) for manual segmentation of femoral and innominate bone were (0.970, 0.963) and (0.971, 0.965). Compared with manual data, mean DSC values for femoral and innominate bone volumes using automated multi-atlas and ASM-based methods were (0.950, 0.922) and (0.946, 0.917), respectively. Both approaches delivered accurate (high DSC values) segmentation results; notably, ASM data were generated in substantially less computational time (12 min versus 10 h). Both automated algorithms provided accurate 3D bone volumetric descriptions for MR-based measures in the hip region. The highly computational efficient ASM-based approach is more likely suitable for future clinical applications such as extracting bone-cartilage interfaces for potential cartilage segmentation.

  10. Automated bone segmentation from large field of view 3D MR images of the hip joint.

    PubMed

    Xia, Ying; Fripp, Jurgen; Chandra, Shekhar S; Schwarz, Raphael; Engstrom, Craig; Crozier, Stuart

    2013-10-21

    Accurate bone segmentation in the hip joint region from magnetic resonance (MR) images can provide quantitative data for examining pathoanatomical conditions such as femoroacetabular impingement through to varying stages of osteoarthritis to monitor bone and associated cartilage morphometry. We evaluate two state-of-the-art methods (multi-atlas and active shape model (ASM) approaches) on bilateral MR images for automatic 3D bone segmentation in the hip region (proximal femur and innominate bone). Bilateral MR images of the hip joints were acquired at 3T from 30 volunteers. Image sequences included water-excitation dual echo stead state (FOV 38.6 × 24.1 cm, matrix 576 × 360, thickness 0.61 mm) in all subjects and multi-echo data image combination (FOV 37.6 × 23.5 cm, matrix 576 × 360, thickness 0.70 mm) for a subset of eight subjects. Following manual segmentation of femoral (head-neck, proximal-shaft) and innominate (ilium+ischium+pubis) bone, automated bone segmentation proceeded via two approaches: (1) multi-atlas segmentation incorporating non-rigid registration and (2) an advanced ASM-based scheme. Mean inter- and intra-rater reliability Dice's similarity coefficients (DSC) for manual segmentation of femoral and innominate bone were (0.970, 0.963) and (0.971, 0.965). Compared with manual data, mean DSC values for femoral and innominate bone volumes using automated multi-atlas and ASM-based methods were (0.950, 0.922) and (0.946, 0.917), respectively. Both approaches delivered accurate (high DSC values) segmentation results; notably, ASM data were generated in substantially less computational time (12 min versus 10 h). Both automated algorithms provided accurate 3D bone volumetric descriptions for MR-based measures in the hip region. The highly computational efficient ASM-based approach is more likely suitable for future clinical applications such as extracting bone-cartilage interfaces for potential cartilage segmentation.

  11. A comparison between temporal and subband minimum variance adaptive beamforming

    NASA Astrophysics Data System (ADS)

    Diamantis, Konstantinos; Voxen, Iben H.; Greenaway, Alan H.; Anderson, Tom; Jensen, Jørgen A.; Sboros, Vassilis

    2014-03-01

    This paper compares the performance between temporal and subband Minimum Variance (MV) beamformers for medical ultrasound imaging. Both adaptive methods provide an optimized set of apodization weights but are implemented in the time and frequency domains respectively. Their performance is evaluated with simulated synthetic aperture data obtained from Field II and is quantified by the Full-Width-Half-Maximum (FWHM), the Peak-Side-Lobe level (PSL) and the contrast level. From a point phantom, a full sequence of 128 emissions with one transducer element transmitting and all 128 elements receiving each time, provides a FWHM of 0.03 mm (0.14λ) for both implementations at a depth of 40 mm. This value is more than 20 times lower than the one achieved by conventional beamforming. The corresponding values of PSL are -58 dB and -63 dB for time and frequency domain MV beamformers, while a value no lower than -50 dB can be obtained from either Boxcar or Hanning weights. Interestingly, a single emission with central element #64 as the transmitting aperture provides results comparable to the full sequence. The values of FWHM are 0.04 mm and 0.03 mm and those of PSL are -42 dB and -46 dB for temporal and subband approaches. From a cyst phantom and for 128 emissions, the contrast level is calculated at -54 dB and -63 dB respectively at the same depth, with the initial shape of the cyst being preserved in contrast to conventional beamforming. The difference between the two adaptive beamformers is less significant in the case of a single emission, with the contrast level being estimated at -42 dB for the time domain and -43 dB for the frequency domain implementation. For the estimation of a single MV weight of a low resolution image formed by a single emission, 0.44 * 109 calculations per second are required for the temporal approach. The same numbers for the subband approach are 0.62 * 109 for the point and 1.33 * 109 for the cyst phantom. The comparison demonstrates similar resolution but slightly lower side-lobes and higher contrast for the subband approach at the expense of increased computation time.

  12. [Reliability of iWitness photogrammetry in maxillofacial application].

    PubMed

    Jiang, Chengcheng; Song, Qinggao; He, Wei; Chen, Shang; Hong, Tao

    2015-06-01

    This study aims to test the accuracy and precision of iWitness photogrammetry for measuring the facial tissues of mannequin head. Under ideal circumstances, the 3D landmark coordinates were repeatedly obtained from a mannequin head using iWitness photogrammetric system with different parameters, to examine the precision of this system. The differences between the 3D data and their true distance values of mannequin head were computed. Operator error of 3D system in non-zoom and zoom status were 0.20 mm and 0.09 mm, and the difference was significant (P 0.05). Image captured error of 3D system was 0.283 mm, and there was no significant difference compared with the same group of images (P>0.05). Error of 3D systen with recalibration was 0.251 mm, and the difference was not statistically significant compared with image captured error (P>0.05). Good congruence was observed between means derived from the 3D photos and direct anthropometry, with difference ranging from -0.4 mm to +0.4 mm. This study provides further evidence of the high reliability of iWitness photogrammetry for several craniofacial measurements, including landmarks and inter-landmark distances. The evaluated system can be recommended for the evaluation and documentation of the facial surface.

  13. Myocardial wall thickening from gated magnetic resonance images using Laplace's equation

    NASA Astrophysics Data System (ADS)

    Prasad, M.; Ramesh, A.; Kavanagh, P.; Gerlach, J.; Germano, G.; Berman, D. S.; Slomka, P. J.

    2009-02-01

    The aim of our work is to present a robust 3D automated method for measuring regional myocardial thickening using cardiac magnetic resonance imaging (MRI) based on Laplace's equation. Multiple slices of the myocardium in short-axis orientation at end-diastolic and end-systolic phases were considered for this analysis. Automatically assigned 3D epicardial and endocardial boundaries were fitted to short-axis and long axis slices corrected for breathold related misregistration, and final boundaries were edited by a cardiologist if required. Myocardial thickness was quantified at the two cardiac phases by computing the distances between the myocardial boundaries over the entire volume using Laplace's equation. The distance between the surfaces was found by computing normalized gradients that form a vector field. The vector fields represent tangent vectors along field lines connecting both boundaries. 3D thickening measurements were transformed into polar map representation and 17-segment model (American Heart Association) regional thickening values were derived. The thickening results were then compared with standard 17-segment 6-point visual scoring of wall motion/wall thickening (0=normal; 5=greatest abnormality) performed by a consensus of two experienced imaging cardiologists. Preliminary results on eight subjects indicated a strong negative correlation (r=-0.8, p<0.0001) between the average thickening obtained using Laplace and the summed segmental visual scores. Additionally, quantitative ejection fraction measurements also correlated well with average thickening scores (r=0.72, p<0.0001). For segmental analysis, we obtained an overall correlation of -0.55 (p<0.0001) with higher agreement along the mid and apical regions (r=-0.6). In conclusion 3D Laplace transform can be used to quantify myocardial thickening in 3D.

  14. Association between anemia and subclinical infection in children in Paraíba State, Brazil

    PubMed Central

    Sales, Márcia Cristina; de Queiroz, Everton Oliveira; Paiva, Adriana de Azevedo

    2011-01-01

    Background With subclinical infection, serum iron concentrations are reduced, altering the synthesis of hemoglobin, the main indicator of anemia. Objective To evaluate the association between subclinical infection and anemia in children of Paraíba State. Methods This is a cross-sectional study involving 1116 children aged 6 to 59 months from nine municipalities of Paraíba State. Demographic and socioeconomic data were collected by means of a specific questionnaire. The C-reactive protein and hemoglobin levels were determined by the latex agglutination technique and automated counter, respectively. C-reactive protein values ≥ 6 mg/L were used as indicative of subclinical infection, while the presence of anemia was determined by hemoglobin values < 11.0 g/dL. The data were analyzed using the Epi Info computer program, with significance being set at 5%. Results Data from this research showed that 80.1% of the children belonged to families that were below the bread line, with per capita income < ½ of the minimum wage at that time (R$ 350.00 approximately US$ 175.00). The prevalences of subclinical infection and anemia were 11.3% and 36.3%, respectively. Subclinical infection was significantly associated with anemia (p-value < 0.05). There were lower levels of hemoglobin in children with C-reactive protein ≥ 6 mg/L, with a mean hemoglobin level in children with subclinical infection of 10.93 g/dL (standard deviation - SD = 1.21 g/dL) and without infection of 11.26 g/dL (SD = 1.18 g/dL) (p-value < 0.05). Conclusion Anemia is associated with subclinical infection in this population, indicating that this is an important variable to be considered in studies of the prevalence of anemia in children. PMID:23284254

  15. Quantitative comparison of noise texture across CT scanners from different manufacturers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, Justin B.; Christianson, Olav; Samei, Ehsan

    2012-10-15

    Purpose: To quantitatively compare noise texture across computed tomography (CT) scanners from different manufacturers using the noise power spectrum (NPS). Methods: The American College of Radiology CT accreditation phantom (Gammex 464, Gammex, Inc., Middleton, WI) was imaged on two scanners: Discovery CT 750HD (GE Healthcare, Waukesha, WI), and SOMATOM Definition Flash (Siemens Healthcare, Germany), using a consistent acquisition protocol (120 kVp, 0.625/0.6 mm slice thickness, 250 mAs, and 22 cm field of view). Images were reconstructed using filtered backprojection and a wide selection of reconstruction kernels. For each image set, the 2D NPS were estimated from the uniform section ofmore » the phantom. The 2D spectra were normalized by their integral value, radially averaged, and filtered by the human visual response function. A systematic kernel-by-kernel comparison across manufacturers was performed by computing the root mean square difference (RMSD) and the peak frequency difference (PFD) between the NPS from different kernels. GE and Siemens kernels were compared and kernel pairs that minimized the RMSD and |PFD| were identified. Results: The RMSD (|PFD|) values between the NPS of GE and Siemens kernels varied from 0.01 mm{sup 2} (0.002 mm{sup -1}) to 0.29 mm{sup 2} (0.74 mm{sup -1}). The GE kernels 'Soft,''Standard,''Chest,' and 'Lung' closely matched the Siemens kernels 'B35f,''B43f,''B41f,' and 'B80f' (RMSD < 0.05 mm{sup 2}, |PFD| < 0.02 mm{sup -1}, respectively). The GE 'Bone,''Bone+,' and 'Edge' kernels all matched most closely with Siemens 'B75f' kernel but with sizeable RMSD and |PFD| values up to 0.18 mm{sup 2} and 0.41 mm{sup -1}, respectively. These sizeable RMSD and |PFD| values corresponded to visually perceivable differences in the noise texture of the images. Conclusions: It is possible to use the NPS to quantitatively compare noise texture across CT systems. The degree to which similar texture across scanners could be achieved varies and is limited by the kernels available on each scanner.« less

  16. Quantitative comparison of noise texture across CT scanners from different manufacturers.

    PubMed

    Solomon, Justin B; Christianson, Olav; Samei, Ehsan

    2012-10-01

    To quantitatively compare noise texture across computed tomography (CT) scanners from different manufacturers using the noise power spectrum (NPS). The American College of Radiology CT accreditation phantom (Gammex 464, Gammex, Inc., Middleton, WI) was imaged on two scanners: Discovery CT 750HD (GE Healthcare, Waukesha, WI), and SOMATOM Definition Flash (Siemens Healthcare, Germany), using a consistent acquisition protocol (120 kVp, 0.625∕0.6 mm slice thickness, 250 mAs, and 22 cm field of view). Images were reconstructed using filtered backprojection and a wide selection of reconstruction kernels. For each image set, the 2D NPS were estimated from the uniform section of the phantom. The 2D spectra were normalized by their integral value, radially averaged, and filtered by the human visual response function. A systematic kernel-by-kernel comparison across manufacturers was performed by computing the root mean square difference (RMSD) and the peak frequency difference (PFD) between the NPS from different kernels. GE and Siemens kernels were compared and kernel pairs that minimized the RMSD and |PFD| were identified. The RMSD (|PFD|) values between the NPS of GE and Siemens kernels varied from 0.01 mm(2) (0.002 mm(-1)) to 0.29 mm(2) (0.74 mm(-1)). The GE kernels "Soft," "Standard," "Chest," and "Lung" closely matched the Siemens kernels "B35f," "B43f," "B41f," and "B80f" (RMSD < 0.05 mm(2), |PFD| < 0.02 mm(-1), respectively). The GE "Bone," "Bone+," and "Edge" kernels all matched most closely with Siemens "B75f" kernel but with sizeable RMSD and |PFD| values up to 0.18 mm(2) and 0.41 mm(-1), respectively. These sizeable RMSD and |PFD| values corresponded to visually perceivable differences in the noise texture of the images. It is possible to use the NPS to quantitatively compare noise texture across CT systems. The degree to which similar texture across scanners could be achieved varies and is limited by the kernels available on each scanner.

  17. Computer-Aided Synthesis and Design of Monolithic Microwave GaAs MESFET Amplifiers.

    DTIC Science & Technology

    1983-08-01

    increased by iDPC until the limiting value for realizability is encountered (at about 0.023 in this example). (Note that the DPC axis in Figure 2.6(b...warranted on how best to use it in designing circuits. ------- ---- 26 Rou Mf) 50.0 40.0 30.0 ii I I I I I I IDPC 0.0002 0.0006 0.001 0.004 0.008...ORDER GS =6 INPUT 0.401 MIL=O0 NETWORK iDPC z 3.0 6W: 8.25 -9.50 8.944 0.091 (b) -.jRIP a0.092 dB 4TH ORDER 0.034 0.504 GS :6 INPUT MIL:0 NETWORK 0-BW

  18. A Predictive Model to Identify Patients With Fecal Incontinence Based on High-Definition Anorectal Manometry.

    PubMed

    Zifan, Ali; Ledgerwood-Lee, Melissa; Mittal, Ravinder K

    2016-12-01

    Three-dimensional high-definition anorectal manometry (3D-HDAM) is used to assess anal sphincter function; it determines profiles of regional pressure distribution along the length and circumference of the anal canal. There is no consensus, however, on the best way to analyze data from 3D-HDAM to distinguish healthy individuals from persons with sphincter dysfunction. We developed a computer analysis system to analyze 3D-HDAM data and to aid in the diagnosis and assessment of patients with fecal incontinence (FI). In a prospective study, we performed 3D-HDAM analysis of 24 asymptomatic healthy subjects (control subjects; all women; mean age, 39 ± 10 years) and 24 patients with symptoms of FI (all women; mean age, 58 ± 13 years). Patients completed a standardized questionnaire (FI severity index) to score the severity of FI symptoms. We developed and evaluated a robust prediction model to distinguish patients with FI from control subjects using linear discriminant, quadratic discriminant, and logistic regression analyses. In addition to collecting pressure information from the HDAM data, we assessed regional features based on shape characteristics and the anal sphincter pressure symmetry index. The combination of pressure values, anal sphincter area, and reflective symmetry values was identified in patients with FI versus control subjects with an area under the curve value of 1.0. In logistic regression analyses using different predictors, the model identified patients with FI with an area under the curve value of 0.96 (interquartile range, 0.22). In discriminant analysis, results were classified with a minimum error of 0.02, calculated using 10-fold cross-validation; different combinations of predictors produced median classification errors of 0.16 in linear discriminant analysis (interquartile range, 0.25) and 0.08 in quadratic discriminant analysis (interquartile range, 0.25). We developed and validated a novel prediction model to analyze 3D-HDAM data. This system can accurately distinguish patients with FI from control subjects. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.

  19. Predictive value of clinical scoring and simplified gait analysis for acetabulum fractures.

    PubMed

    Braun, Benedikt J; Wrona, Julian; Veith, Nils T; Rollman, Mika; Orth, Marcel; Herath, Steven C; Holstein, Jörg H; Pohlemann, Tim

    2016-12-01

    Fractures of the acetabulum show a high, long-term complication rate. The aim of the present study was to determine the predictive value of clinical scoring and standardized, simplified gait analysis on the outcome after these fractures. Forty-one patients with acetabular fractures treated between 2008 and 2013 and available, standardized video recorded aftercare were identified from a prospective database. A visual gait score was used to determine the patients walking abilities 6-m postoperatively. Clinical (Merle d'Aubigne and Postel score, visual analogue scale pain, EQ5d) and radiological scoring (Kellgren-Lawrence score, postoperative computed tomography, and Matta classification) were used to perform correlation and multivariate regression analysis. The average patient age was 48 y (range, 15-82 y), six female patients were included in the study. Mean follow-up was 1.6 y (range, 1-2 y). Moderate correlation between the gait score and outcome (versus EQ5d: r s  = 0.477; versus Merle d'Aubigne: r s  = 0.444; versus Kellgren-Lawrence: r s  = -0.533), as well as high correlation between the Merle d'Aubigne score and outcome were seen (versus EQ5d: r s  = 0.575; versus Merle d'Aubigne: r s  = 0.776; versus Kellgren-Lawrence: r s  = -0.419). Using a multivariate regression model, the 6 m gait score (B = -0.299; P < 0.05) and early osteoarthritis development (B = 1.026; P < 0.05) were determined as predictors of final osteoarthritis. A good fit of the regression model was seen (R 2  = 904). Easy and available clinical scoring (gait score/Merle d'Aubigne) can predict short-term radiological and functional outcome after acetabular fractures with sufficient accuracy. Decisions on further treatment and interventions could be based on simplified gait analysis. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. The study of the influence of the diameter ratio and blade number to the performance of the cross flow wind turbine by using 2D computational fluid dynamics modeling

    NASA Astrophysics Data System (ADS)

    Tjahjana, Dominicus Danardono Dwi Prija; Purbaningrum, Pradityasari; Hadi, Syamsul; Wicaksono, Yoga Arob; Adiputra, Dimas

    2018-02-01

    Cross flow turbine can be one of the alternative energies for regions with low wind speed. Collision between wind and the blades which happened two times caused the cross flow turbine to have high power coefficient. Some factors that influence the turbine power coefficient are diameter ratio and blade number. The objective of the research was to study the effect of the diameter ratio and the blade number to the cross flow wind turbine performance. The study was done in two dimensional (2D) computational fluid dynamics (CFD) simulation method using the ANSYS-Fluent software. The turbine diameter ratio were 0.58, 0.63, 0.68 and 0.73. The diameter ratio resulting in the highest power coefficient value was then simulated by varying the number of blades, namely 16, 20 and 24. Each variation was tested on the wind speed of 2 m/s and at the tip speed ratio (TSR) of 0.1 to 0.4 with the interval of 0.1. The wind turbine with the ratio diameter of 0.68 and the number of blades of 20 generated the highest power coefficient of 0.5 at the TSR of 0.3.

  1. Spin-Based Lattice-Gas Quantum Computers in Solids Using Optical Addressing

    DTIC Science & Technology

    2007-04-30

    excitation spectra recorded while changing step wise the applied electric field from zero to 0.3 MVm 1. The resulting spectral trails give an overview of...optics (Wiley, New York, 1984). 24 to a few MVm ’, the Stark shift of the optical resonance is well fitted by linear and quadratic dependences, Av= aF+bF2...effect with a = - 6.3 GHz/ MVm n which corresponds to Ag = 1.3 D (I Debye = 3.33 1030 Cm). This value is very similar to values found in other cases

  2. Full-dimensional quantum calculations of the dissociation energy, zero-point, and 10 K properties of H7+/D7+ clusters using an ab initio potential energy surface.

    PubMed

    Barragán, Patricia; Pérez de Tudela, Ricardo; Qu, Chen; Prosmiti, Rita; Bowman, Joel M

    2013-07-14

    Diffusion Monte Carlo (DMC) and path-integral Monte Carlo computations of the vibrational ground state and 10 K equilibrium state properties of the H7 (+)/D7 (+) cations are presented, using an ab initio full-dimensional potential energy surface. The DMC zero-point energies of dissociated fragments H5 (+)(D5 (+))+H2(D2) are also calculated and from these results and the electronic dissociation energy, dissociation energies, D0, of 752 ± 15 and 980 ± 14 cm(-1) are reported for H7 (+) and D7 (+), respectively. Due to the known error in the electronic dissociation energy of the potential surface, these quantities are underestimated by roughly 65 cm(-1). These values are rigorously determined for first time, and compared with previous theoretical estimates from electronic structure calculations using standard harmonic analysis, and available experimental measurements. Probability density distributions are also computed for the ground vibrational and 10 K state of H7 (+) and D7 (+). These are qualitatively described as a central H3 (+)/D3 (+) core surrounded by "solvent" H2/D2 molecules that nearly freely rotate.

  3. Leading isospin-breaking corrections to pion, kaon, and charmed-meson masses with twisted-mass fermions

    NASA Astrophysics Data System (ADS)

    Giusti, D.; Lubicz, V.; Tarantino, C.; Martinelli, G.; Sanfilippo, F.; Simula, S.; Tantalo, N.; RM123 Collaboration

    2017-06-01

    We present a lattice computation of the isospin-breaking corrections to pseudoscalar meson masses using the gauge configurations produced by the European Twisted Mass Collaboration with Nf=2 +1 +1 dynamical quarks at three values of the lattice spacing (a ≃0.062 , 0.082, and 0.089 fm) with pion masses in the range Mπ≃210 - 450 MeV . The strange and charm quark masses are tuned at their physical values. We adopt the RM123 method based on the combined expansion of the path integral in powers of the d - and u -quark mass difference (m^d-m^u) and of the electromagnetic coupling αe m. Within the quenched QED approximation, which neglects the effects of the sea-quark charges, and after the extrapolations to the physical pion mass and to the continuum and infinite volume limits, we provide results for the pion, kaon, and (for the first time) charmed-meson mass splittings, for the prescription-dependent parameters ɛπ0, ɛγ(M S ¯ ,2 GeV ) , ɛK0(M S ¯ ,2 GeV ) , related to the violations of the Dashen's theorem, and for the light quark mass difference (m^ d-m^ u)(M S ¯ ,2 GeV ) .

  4. Methodology to reduce 6D patient positional shifts into a 3D linear shift and its verification in frameless stereotactic radiotherapy.

    PubMed

    Sarkar, Biplab; Ray, Jyotirmoy; Ganesh, Tharmarnadar; Manikandan, Arjunan; Munshi, Anusheel; Rathinamuthu, Sasikumar; Kaur, Harpreet; Anbazhagan, Satheeshkumar; Giri, Upendra K; Roy, Soumya; Jassal, Kanan; Mohanti, Bidhu Kalyan

    2018-03-22

    The aim of this article is to derive and verify a mathematical formulation for the reduction of the six-dimensional (6D) positional inaccuracies of patients (lateral, longitudinal, vertical, pitch, roll and yaw) to three-dimensional (3D) linear shifts. The formulation was mathematically and experimentally tested and verified for 169 stereotactic radiotherapy patients. The mathematical verification involves the comparison of any (one) of the calculated rotational coordinates with the corresponding value from the 6D shifts obtained by cone beam computed tomography (CBCT). The experimental verification involves three sets of measurements using an ArcCHECK phantom, when (i) the phantom was not moved (neutral position: 0MES), (ii) the position of the phantom shifted by 6D shifts obtained from CBCT (6DMES) from neutral position and (iii) the phantom shifted from its neutral position by 3D shifts reduced from 6D shifts (3DMES). Dose volume histogram and statistical comparisons were made between [Formula: see text] and [Formula: see text]. The mathematical verification was performed by a comparison of the calculated and measured yaw (γ°) rotation values, which gave a straight line, Y  =  1X with a goodness of fit as R 2   =  0.9982. The verification, based on measurements, gave a planning target volume receiving 100% of the dose (V100%) as 99.1  ±  1.9%, 96.3  ±  1.8%, 74.3  ±  1.9% and 72.6  ±  2.8% for the calculated treatment planning system values TPSCAL, 0MES, 3DMES and 6DMES, respectively. The statistical significance (p-values: paired sample t-test) of V100% were found to be 0.03 for the paired sample [Formula: see text] and 0.01 for [Formula: see text]. In this paper, a mathematical method to reduce 6D shifts to 3D shifts is presented. The mathematical method is verified by using well-matched values between the measured and calculated γ°. Measurements done on the ArcCHECK phantom also proved that the proposed methodology is correct. The post-correction of the table position condition introduces a minimal spatial dose delivery error in the frameless stereotactic system, using a 6D motion enabled robotic couch. This formulation enables the reduction of 6D positional inaccuracies to 3D linear shifts, and hence allows the treatment of patients with frameless stereotactic radiosurgery by using only a 3D linear motion enabled couch.

  5. Thermal inactivation of avian influenza virus and Newcastle disease virus in a fat-free egg product.

    PubMed

    Chmielewski, Revis A; Beck, Joan R; Swayne, David E

    2011-07-01

    High-pathogenicity avian influenza (HPAI) virus, low-pathogenicity avian influenza (LPAI) virus, virulent Newcastle disease virus (vNDV) and low-virulent Newcastle disease virus (lNDV) can be present on the eggshell surface, and HPAI viruses and vNDV can be present in the internal contents of chicken eggs laid by infected hens. With the increase in global trade, egg products could present potential biosecurity problems and affect international trade in liquid and dried egg products. Therefore, the generation of survival curves to determine decimal reduction times (D(T)-values) and change in heat resistance of the viruses (z(D)-value) within fat-free egg product could provide valuable information for development of risk reduction strategies. Thermal inactivation studies using A/chicken/Pennsylvania/1370/83 (H5N2) HPAI virus resulted in D(55)-, D(56)-, D(56.7)-, D(57)-, D(58)-, and D(59)-values of 18.6, 8.5, 3.6, 2.5, 0.4, and 0.4 min, respectively. The z(D)-value was 4.4 °C. LPAI virus A/chicken/New York/13142/94 (H7N2) had D(55)-, D(56.7)-, D(57)-, D(58)-, D(59)-, and D(60)-values of 2.9, 1.4, 0.8, 0.7, 0.7, and 0.5 min, respectively, and a z-value of 0.4 °C. vNDV avian paramyxoviruses of serotype 1 (AMPV-1)/chicken/California/212676/2002 had D(55)-, D(56)-, D(56.7)-, D(57)-, D(58)-, and D(59)-values of 12.4, 9.3, 6.2, 5, 3.7, and 1.7 min, respectively. The z(D)-value was 4.7 °C. lNDV AMPV-1/chicken/United States/B1/1948 had D(55)-, D(57)-, D(58)-, D(59)-, D(61)-, and D(63)-values of 5.3, 2.2, 1.1, 0.55, 0.19, and 0.17 min, respectively, and a z(D)-value of 1.0 °C. Use of these data in developing egg pasteurization standards for AI and NDV-infected countries should allow safer trade in liquid egg products. Copyright ©, International Association for Food Protection

  6. Intraoperative assessment of reduction and implant placement in acetabular fractures-limitations of 3D-imaging compared to computed tomography.

    PubMed

    Keil, Holger; Beisemann, Nils; Schnetzke, Marc; Vetter, Sven Yves; Swartman, Benedict; Grützner, Paul Alfred; Franke, Jochen

    2018-04-10

    In acetabular fractures, the assessment of reduction and implant placement has limitations in conventional 2D intraoperative imaging. 3D imaging offers the opportunity to acquire CT-like images and thus to improve the results. However, clinical experience shows that even 3D imaging has limitations, especially regarding artifacts when implants are placed. The purpose of this study was to assess the difference between intraoperative 3D imaging and postoperative CT regarding reduction and implant placement. Twenty consecutive cases of acetabular fractures were selected with a complete set of intraoperative 3D imaging and postoperative CT data. The largest detectable step and the largest detectable gap were measured in all three standard planes. These values were compared between the 3D data sets and CT data sets. Additionally, possible correlations between the possible confounders age and BMI and the difference between 3D and CT values were tested. The mean difference of largest visible step between the 3D imaging and CT scan was 2.0 ± 1.8 mm (0.0-5.8, p = 0.02) in the axial, 1.3 ± 1.4 mm (0.0-3.7, p = 0.15) in the sagittal and 1.9 ± 2.4 mm (0.0-7.4, p = 0.22) in the coronal views. The mean difference of largest visible gap between the 3D imaging and CT scan was 3.1 ± 3.6 mm (0.0-14.1, p = 0.03) in the axial, 4.6 ± 2.7 mm (1.2-8.7, p = 0.001) in the sagittal and 3.5 ± 4.0 mm (0.0-15.4, p = 0.06) in the coronal views. A positive correlation between the age and the difference in gap measurements in the sagittal view was shown (rho = 0.556, p = 0.011). Intraoperative 3D imaging is a valuable adjunct in assessing reduction and implant placement in acetabular fractures but has limitations due to artifacts caused by implant material. This can lead to missed malreduction and impairment of clinical outcome, so postoperative CT should be considered in these cases.

  7. Theoretical insights into the origin of magnetic exchange and magnetic anisotropy in {Re(IV)-M(II)} (M = Mn, Fe, Co, Ni and Cu) single chain magnets.

    PubMed

    Singh, Saurabh Kumar; Vignesh, Kuduva R; Archana, Velloth; Rajaraman, Gopalan

    2016-05-10

    Density functional calculations have been performed on a series of {Re(IV)-M(II)} (M = Mn(), Fe(), Co(), Ni(), Cu()) complexes to compute the magnetic exchange interaction between the Re(IV) and M(II) ions, and understand the mechanism of magnetic coupling in this series. DFT calculations yield J values of -5.54 cm(-1), +0.44 cm(-1), +10.5 cm(-1), +4.54 cm(-1) and +19 cm(-1) for complexes respectively, and these estimates are in general agreement with the experimental reports. Using molecular orbital (MO) and overlap integral analysis, we have established a mechanism of coupling for a {3d-5d} pair and the proposed mechanism rationalises both the sign and the magnitude of J values observed in this series. Our proposed mechanism of coupling has five contributing factors: (i) (Re)dyz-dyz(3d) overlap, (ii) (Re)dxz-dxz(3d) overlap, (iii) (Re)dxy-dxy(3d) overlap, (iv) (Re)eg-t2g(3d) overlaps and (v) (Re)eg-eg(3d) overlaps. Here, the first two terms are found to contribute to the antiferromagnetic part of the exchange, while the other three contribute to the ferromagnetic part. The last two terms correspond to the cross-interactions and also contribute to the ferromagnetic part of the exchange. A record high ferromagnetic J value observed for the {Re(IV)-Cu(II)} pair in complex is found to be due to a significant cross interaction between the dz(2) orbital of the Re(IV) ion and the dx(2)-y(2) orbital of the Cu(ii) ion. Magneto-structural correlations are developed for Re-C and M-N bond lengths and Re-C-N and M-N-C bond angles. Among the developed correlations, the M-N-C bond angle is found to be the most sensitive parameter which influences the sign and strength of J values in this series. The J values are found to be more positive (or less negative) as the angle increases, indicating stronger ferromagnetic coupling at linear M-N-C angles. Apart from the magnetic exchange interaction, we have also estimated the magnetic anisotropy of [ReCl4(CN)2](2-) and [(DMF)4(CN)M(II)(CN)] (M(II)-Fe(II), Co(II) and Ni(II)) units using the state-of-the-art ab initio CASSCF/PT2/RASSI-SO/SINGLE_ANISO approach. The calculated D and E values for these building units are found to be in agreement with the available experimental results. Particularly a large positive D computed for the [ReCl4(CN)2](2-) unit was found to arise from dxz/dyz → dxy excitations corresponding to the low-lying doublet states. Similarly, a very large positive D value computed for Fe(II) and Co(II) units are also rationalised based on the corresponding ground state electronic configurations computed. The non-collinearity of the Re(IV) ion and the M(II) ion axial anisotropy (DZZ) axis are found to diminish the anisotropy of the building unit, leading to the observation of moderate relaxation barriers for these molecules.

  8. Spatial correspondence of 4D CT ventilation and SPECT pulmonary perfusion defects in patients with malignant airway stenosis

    NASA Astrophysics Data System (ADS)

    Castillo, Richard; Castillo, Edward; McCurdy, Matthew; Gomez, Daniel R.; Block, Alec M.; Bergsma, Derek; Joy, Sarah; Guerrero, Thomas

    2012-04-01

    To determine the spatial overlap agreement between four-dimensional computed tomography (4D CT) ventilation and single photon emission computed tomography (SPECT) perfusion hypo-functioning pulmonary defect regions in a patient population with malignant airway stenosis. Treatment planning 4D CT images were obtained retrospectively for ten lung cancer patients with radiographically demonstrated airway obstruction due to gross tumor volume. Each patient also received a SPECT perfusion study within one week of the planning 4D CT, and prior to the initiation of treatment. Deformable image registration was used to map corresponding lung tissue elements between the extreme component phase images, from which quantitative three-dimensional (3D) images representing the local pulmonary specific ventilation were constructed. Semi-automated segmentation of the percentile perfusion distribution was performed to identify regional defects distal to the known obstructing lesion. Semi-automated segmentation was similarly performed by multiple observers to delineate corresponding defect regions depicted on 4D CT ventilation. Normalized Dice similarity coefficient (NDSC) indices were determined for each observer between SPECT perfusion and 4D CT ventilation defect regions to assess spatial overlap agreement. Tidal volumes determined from 4D CT ventilation were evaluated versus measurements obtained from lung parenchyma segmentation. Linear regression resulted in a linear fit with slope = 1.01 (R2 = 0.99). Respective values for the average DSC, NDSC1 mm and NDSC2 mm for all cases and multiple observers were 0.78, 0.88 and 0.99, indicating that, on average, spatial overlap agreement between ventilation and perfusion defect regions was comparable to the threshold for agreement within 1-2 mm uncertainty. Corresponding coefficients of variation for all metrics were similarly in the range: 0.10%-19%. This study is the first to quantitatively assess 3D spatial overlap agreement between clinically acquired SPECT perfusion and specific ventilation from 4D CT. Results suggest high correlation between methods within the sub-population of lung cancer patients with malignant airway stenosis.

  9. Proximal pulmonary vein stenosis detection in pediatric patients: value of multiplanar and 3-D VR imaging evaluation.

    PubMed

    Lee, Edward Y; Jenkins, Kathy J; Muneeb, Muhammad; Marshall, Audrey C; Tracy, Donald A; Zurakowski, David; Boiselle, Phillip M

    2013-08-01

    One of the important benefits of using multidetector computed tomography (MDCT) is its capability to generate high-quality two-dimensional (2-D) multiplanar (MPR) and three-dimensional (3-D) images from volumetric and isotropic axial CT data. However, to the best of our knowledge, no results have been published on the potential diagnostic role of multiplanar and 3-D volume-rendered (VR) images in detecting pulmonary vein stenosis, a condition in which MDCT has recently assumed a role as the initial noninvasive imaging modality of choice. The purpose of this study was to compare diagnostic accuracy and interpretation time of axial, multiplanar and 3-D VR images for detection of proximal pulmonary vein stenosis in children, and to assess the potential added diagnostic value of multiplanar and 3-D VR images. We used our hospital information system to identify all consecutive children (< 18 years of age) with proximal pulmonary vein stenosis who had both a thoracic MDCT angiography study and a catheter-based conventional angiography within 2 months from June 2005 to February 2012. Two experienced pediatric radiologists independently reviewed each MDCT study for the presence of proximal pulmonary vein stenosis defined as ≥ 50% of luminal narrowing on axial, multiplanar and 3-D VR images. Final diagnosis was confirmed by angiographic findings. Diagnostic accuracy was compared using the z-test. Confidence level of diagnosis (scale 1-5, 5 = highest), perceived added diagnostic value (scale 1-5, 5 = highest), and interpretation time of multiplanar or 3-D VR images were compared using paired t-tests. Interobserver agreement was measured using the chance-corrected kappa coefficient. The final study population consisted of 28 children (15 boys and 13 girls; mean age: 5.2 months). Diagnostic accuracy based on 116 individual pulmonary veins for detection of proximal pulmonary vein stenosis was 72.4% (84 of 116) for axial MDCT images, 77.5% (90 of 116 cases) for multiplanar MDCT images, and 93% (108 of 116 cases) for 3-D VR images with significantly higher accuracy with 3-D VR compared to axial (z = 4.17, P < 0.001) and multiplanar (z = 3.34, P < 0.001) images. Confidence levels for detection of proximal pulmonary vein stenosis were significantly higher with 3-D VR images (mean level: 4.6) compared to axial MDCT images (mean level: 1.7) and multiplanar MDCT images (mean level: 2.0) (paired t-tests, P < 0.001). Thus, 3-D VR images (mean added diagnostic value: 4.7) were found to provide added diagnostic value for detecting proximal pulmonary vein stenosis (paired t-test, P < 0.001); however, multiplanar MDCT images did not provide added value (paired t-test, P = 0.89). Interpretation time was significantly longer and interobserver agreement was higher when using 3-D VR images than using axial MDCT images or MPR MDCT images for diagnosing proximal pulmonary vein stenosis (paired t-tests, P < 0.001). Use of 3-D VR images in the diagnosis of proximal pulmonary vein stenosis in children significantly increases accuracy, confidence level, added diagnostic value and interobserver agreement. Thus, the routine use of this technique should be encouraged despite its increased interpretation time.

  10. 3D and 2D marginal fit of pressed and CAD/CAM lithium disilicate crowns made from digital and conventional impressions.

    PubMed

    Anadioti, Evanthia; Aquilino, Steven A; Gratton, David G; Holloway, Julie A; Denry, Isabelle; Thomas, Geb W; Qian, Fang

    2014-12-01

    This in vitro study evaluated the 3D and 2D marginal fit of pressed and computer-aided-designed/computer-aided-manufactured (CAD/CAM) all-ceramic crowns made from digital and conventional impressions. A dentoform tooth (#30) was prepared for an all-ceramic crown (master die). Thirty type IV definitive casts were made from 30 polyvinyl siloxane (PVS) impressions. Thirty resin models were produced from thirty Lava Chairside Oral Scanner impressions. Thirty crowns were pressed in lithium disilicate (IPS e.max Press; 15/impression technique). Thirty crowns were milled from lithium disilicate blocks (IPS e.max CAD; 15/impression technique) using the E4D scanner and milling engine. The master die and the intaglio of the crowns were digitized using a 3D laser coordinate measurement machine with accuracy of ±0.00898 mm. For each specimen a separate data set was created for the Qualify 2012 software. The digital master die and the digital intaglio of each crown were merged using best-fitting alignment. An area above the margin with 0.75 mm occlusal-gingival width circumferentially was defined. The 3D marginal fit of each specimen was an average of all 3D gap values on that area. For the 2D measurements, the marginal gap was measured at two standardized points (on the margin and at 0.75 mm above the margin), from standardized facial-lingual and mesial-distal digitized sections. One-way ANOVA with post hoc Tukey's honestly significant difference and two-way ANOVA tests were used, separately, for statistical analysis of the 3D and 2D marginal data (alpha = 0.05). One-way ANOVA revealed that both 3D and 2D mean marginal gap for group A: PVS impression/IPS e.max Press (0.048 mm ± 0.009 and 0.040 mm ± 0.009) were significantly smaller than those obtained from the other three groups (p < 0.0001), while no significant differences were found among groups B: PVS impression/IPS e.max CAD (0.088 mm ± 0.024 and 0.076 mm ± 0.023), C: digital impression/IPS e.max Press (0.089 mm ± 0.020 and 0.075 mm ± 0.015) and D: digital impression/IPS e.max CAD (0.084 mm ± 0.021 and 0.074 mm ± 0.026). The results of two-way ANOVA revealed a significant interaction between impression techniques and crown fabrication methods for both 3D and 2D measurements. The combination of PVS impression method and press fabrication technique produced the most accurate 3D and 2D marginal fits. © 2014 by the American College of Prosthodontists.

  11. IRFK2D: a computer program for simulating intrinsic random functions of order k

    NASA Astrophysics Data System (ADS)

    Pardo-Igúzquiza, Eulogio; Dowd, Peter A.

    2003-07-01

    IRFK2D is an ANSI Fortran-77 program that generates realizations of an intrinsic function of order k (with k equal to 0, 1 or 2) with a permissible polynomial generalized covariance model. The realizations may be non-conditional or conditioned to the experimental data. The turning bands method is used to generate realizations in 2D and 3D from simulations of an intrinsic random function of order k along lines that span the 2D or 3D space. The program generates two output files, the first containing the simulated values and the second containing the theoretical generalized variogram for different directions together with the theoretical model. The experimental variogram is calculated from the simulated values while the theoretical variogram is the specified generalized covariance model. The generalized variogram is used to assess the quality of the simulation as measured by the extent to which the generalized covariance is reproduced by the simulation. The examples given in this paper indicate that IRFK2D is an efficient implementation of the methodology.

  12. Layered uranium(VI) hydroxides: structural and thermodynamic properties of dehydrated schoepite α-UO₂(OH)₂.

    PubMed

    Weck, Philippe F; Kim, Eunja

    2014-12-07

    The structure of dehydrated schoepite, α-UO2(OH)2, was investigated using computational approaches that go beyond standard density functional theory and include van der Waals dispersion corrections (DFT-D). Thermal properties of α-UO2(OH)2, were also obtained from phonon frequencies calculated with density functional perturbation theory (DFPT) including van der Waals dispersion corrections. While the isobaric heat capacity computed from first-principles reproduces available calorimetric data to within 5% up to 500 K, some entropy estimates based on calorimetric measurements for UO3·0.85H2O were found to overestimate by up to 23% the values computed in this study.

  13. Comparison of patient-specific internal gross tumor volume for radiation treatment of primary esophageal cancer based separately on three-dimensional and four-dimensional computed tomography images.

    PubMed

    Wang, W; Li, J; Zhang, Y; Li, F; Xu, M; Fan, T; Shao, Q; Shang, D

    2014-01-01

    To compare the target volume, position and matching index of the patient-specific internal gross tumor volume (IGTV) based on three-dimensional (3D) and four-dimensional (4D) computed tomography (CT) images for primary esophageal cancer. Twenty-nine patients with primary thoracic esophageal cancer underwent 3DCT and 4DCT scans during free breathing. IGTVs were constructed using three approaches: combining the gross target volumes from the 10 respiratory phases of the 4DCT dataset to produce IGTV10 ; IGTV2 was acquired by combining the two extreme phases; and IGTV3D was created from the 3DCT-based gross target volume by enlarging the 95th percentile of motion in each direction measured by the 4DCT. 0.16 cm lateral (LR), 0.14 cm anteroposterior (AP) and 0.29 cm superoinferior (SI) in the upper; 0.18 cm LR, 0.10 cm AP and 0.63 cm SI in the middle; and 0.40 cm LR, 0.58 cm AP and 0.82 cm in the lower thoracic esophagus could account for 95% of respiratory-induced tumor motion. The centroid position shift between IGTV10 and IGTV2 was all below 0.10 cm, and less than 0.20 cm between IGTV10 and IGTV3D . IGTV10 was bigger than IGTV2 ; the mean value of matching index for IGTV2 to IGTV10 was 0.87 ± 0.05, 0.85 ± 0.06 and 0.83 ± 0.05 for upper, middle and distal thoracic esophageal tumors, respectively, and just 0.57 ± 0.11, 0.56 ± 0.13 and 0.40 ± 0.03 between IGTV3D and IGTV10 . 4DCT-based IGTV10 is a reasonable patient-specific IGTV for primary thoracic esophageal cancer, and IGTV2 is considered as an acceptable alternative to IGTV10 . However, it seems unreasonable to use IGTV3D substitute IGTV10 . © 2013 Wiley Periodicals, Inc. and the International Society for Diseases of the Esophagus.

  14. 2D-3D registration for cranial radiation therapy using a 3D kV CBCT and a single limited field-of-view 2D kV radiograph.

    PubMed

    Munbodh, Reshma; Knisely, Jonathan Ps; Jaffray, David A; Moseley, Douglas J

    2018-05-01

    We present and evaluate a fully automated 2D-3D intensity-based registration framework using a single limited field-of-view (FOV) 2D kV radiograph and a 3D kV CBCT for 3D estimation of patient setup errors during brain radiotherapy. We evaluated two similarity measures, the Pearson correlation coefficient on image intensity values (ICC) and maximum likelihood measure with Gaussian noise (MLG), derived from the statistics of transmission images. Pose determination experiments were conducted on 2D kV radiographs in the anterior-posterior (AP) and left lateral (LL) views and 3D kV CBCTs of an anthropomorphic head phantom. In order to minimize radiation exposure and exclude nonrigid structures from the registration, limited FOV 2D kV radiographs were employed. A spatial frequency band useful for the 2D-3D registration was identified from the bone-to-no-bone spectral ratio (BNBSR) of digitally reconstructed radiographs (DRRs) computed from the 3D kV planning CT of the phantom. The images being registered were filtered accordingly prior to computation of the similarity measures. We evaluated the registration accuracy achievable with a single 2D kV radiograph and with the registration results from the AP and LL views combined. We also compared the performance of the 2D-3D registration solutions proposed to that of a commercial 3D-3D registration algorithm, which used the entire skull for the registration. The ground truth was determined from markers affixed to the phantom and visible in the CBCT images. The accuracy of the 2D-3D registration solutions, as quantified by the root mean squared value of the target registration error (TRE) calculated over a radius of 3 cm for all poses tested, was ICC AP : 0.56 mm, MLG AP : 0.74 mm, ICC LL : 0.57 mm, MLG LL : 0.54 mm, ICC (AP and LL combined): 0.19 mm, and MLG (AP and LL combined): 0.21 mm. The accuracy of the 3D-3D registration algorithm was 0.27 mm. There was no significant difference in mean TRE for the 2D-3D registration algorithms using a single 2D kV radiograph with similarity measure and image view point. There was no significant difference in mean TRE between ICC LL , MLG LL , ICC (AP and LL combined), MLG (AP and LL combined), and the 3D-3D registration algorithm despite the smaller FOV used for the 2D-3D registration. While submillimeter registration accuracy was obtained with both ICC and MLG using a single 2D kV radiograph, combining the results from the two projection views resulted in a significantly smaller (P≤0.05) mean TRE. Our results indicate that it is possible to achieve submillimeter registration accuracy with both ICC and MLG using either single or dual limited FOV 2D kV radiographs of the head in the AP and LL views. The registration accuracy suggests that the 2D-3D registration solutions presented are suitable for the estimation of patient setup errors not only during conventional brain radiation therapy, but also during stereotactic procedures and proton radiation therapy where tighter setup margins are required. © 2018 American Association of Physicists in Medicine.

  15. Quantification of the kV X-ray imaging dose during real-time tumor tracking and from three- and four-dimensional cone-beam computed tomography in lung cancer patients using a Monte Carlo simulation.

    PubMed

    Nakamura, Mitsuhiro; Ishihara, Yoshitomo; Matsuo, Yukinori; Iizuka, Yusuke; Ueki, Nami; Iramina, Hiraku; Hirashima, Hideaki; Mizowaki, Takashi

    2018-03-01

    Knowledge of the imaging doses delivered to patients and accurate dosimetry of the radiation to organs from various imaging procedures is becoming increasingly important for clinicians. The purposes of this study were to calculate imaging doses delivered to the organs of lung cancer patients during real-time tumor tracking (RTTT) with three-dimensional (3D), and four-dimensional (4D) cone-beam computed tomography (CBCT), using Monte Carlo techniques to simulate kV X-ray dose distributions delivered using the Vero4DRT. Imaging doses from RTTT, 3D-CBCT and 4D-CBCT were calculated with the planning CT images for nine lung cancer patients who underwent stereotactic body radiotherapy (SBRT) with RTTT. With RTTT, imaging doses from correlation modeling and from monitoring of imaging during beam delivery were calculated. With CBCT, doses from 3D-CBCT and 4D-CBCT were also simulated. The doses covering 2-cc volumes (D2cc) in correlation modeling were up to 9.3 cGy for soft tissues and 48.4 cGy for bone. The values from correlation modeling and monitoring were up to 11.0 cGy for soft tissues and 59.8 cGy for bone. Imaging doses in correlation modeling were larger with RTTT. On a single 4D-CBCT, the skin and bone D2cc values were in the ranges of 7.4-10.5 cGy and 33.5-58.1 cGy, respectively. The D2cc from 4D-CBCT was approximately double that from 3D-CBCT. Clinicians should Figure that the imaging dose increases the cumulative doses to organs.

  16. Quantification of the kV X-ray imaging dose during real-time tumor tracking and from three- and four-dimensional cone-beam computed tomography in lung cancer patients using a Monte Carlo simulation

    PubMed Central

    Nakamura, Mitsuhiro; Ishihara, Yoshitomo; Matsuo, Yukinori; Iizuka, Yusuke; Ueki, Nami; Iramina, Hiraku; Hirashima, Hideaki; Mizowaki, Takashi

    2018-01-01

    Abstract Knowledge of the imaging doses delivered to patients and accurate dosimetry of the radiation to organs from various imaging procedures is becoming increasingly important for clinicians. The purposes of this study were to calculate imaging doses delivered to the organs of lung cancer patients during real-time tumor tracking (RTTT) with three-dimensional (3D), and four-dimensional (4D) cone-beam computed tomography (CBCT), using Monte Carlo techniques to simulate kV X-ray dose distributions delivered using the Vero4DRT. Imaging doses from RTTT, 3D-CBCT and 4D-CBCT were calculated with the planning CT images for nine lung cancer patients who underwent stereotactic body radiotherapy (SBRT) with RTTT. With RTTT, imaging doses from correlation modeling and from monitoring of imaging during beam delivery were calculated. With CBCT, doses from 3D-CBCT and 4D-CBCT were also simulated. The doses covering 2-cc volumes (D2cc) in correlation modeling were up to 9.3 cGy for soft tissues and 48.4 cGy for bone. The values from correlation modeling and monitoring were up to 11.0 cGy for soft tissues and 59.8 cGy for bone. Imaging doses in correlation modeling were larger with RTTT. On a single 4D-CBCT, the skin and bone D2cc values were in the ranges of 7.4–10.5 cGy and 33.5–58.1 cGy, respectively. The D2cc from 4D-CBCT was approximately double that from 3D-CBCT. Clinicians should Figure that the imaging dose increases the cumulative doses to organs. PMID:29385514

  17. Dynamical susceptibility near a long-wavelength critical point with a nonconserved order parameter

    NASA Astrophysics Data System (ADS)

    Klein, Avraham; Lederer, Samuel; Chowdhury, Debanjan; Berg, Erez; Chubukov, Andrey

    2018-04-01

    We study the dynamic response of a two-dimensional system of itinerant fermions in the vicinity of a uniform (Q =0 ) Ising nematic quantum critical point of d - wave symmetry. The nematic order parameter is not a conserved quantity, and this permits a nonzero value of the fermionic polarization in the d - wave channel even for vanishing momentum and finite frequency: Π (q =0 ,Ωm)≠0 . For weak coupling between the fermions and the nematic order parameter (i.e., the coupling is small compared to the Fermi energy), we perturbatively compute Π (q =0 ,Ωm)≠0 over a parametrically broad range of frequencies where the fermionic self-energy Σ (ω ) is irrelevant, and use Eliashberg theory to compute Π (q =0 ,Ωm) in the non-Fermi-liquid regime at smaller frequencies, where Σ (ω )>ω . We find that Π (q =0 ,Ω ) is a constant, plus a frequency-dependent correction that goes as |Ω | at high frequencies, crossing over to |Ω| 1 /3 at lower frequencies. The |Ω| 1 /3 scaling holds also in a non-Fermi-liquid regime. The nonvanishing of Π (q =0 ,Ω ) gives rise to additional structure in the imaginary part of the nematic susceptibility χ″(q ,Ω ) at Ω >vFq , in marked contrast to the behavior of the susceptibility for a conserved order parameter. This additional structure may be detected in Raman scattering experiments in the d - wave geometry.

  18. Molecular Modeling Studies of 4,5-Dihydro-1H-pyrazolo[4,3-h] quinazoline Derivatives as Potent CDK2/Cyclin A Inhibitors Using 3D-QSAR and Docking

    PubMed Central

    Ai, Yong; Wang, Shao-Teng; Sun, Ping-Hua; Song, Fa-Jun

    2010-01-01

    CDK2/cyclin A has appeared as an attractive drug targets over the years with diverse therapeutic potentials. A computational strategy based on comparative molecular fields analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) followed by molecular docking studies were performed on a series of 4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline derivatives as potent CDK2/cyclin A inhibitors. The CoMFA and CoMSIA models, using 38 molecules in the training set, gave r2cv values of 0.747 and 0.518 and r2 values of 0.970 and 0.934, respectively. 3D contour maps generated by the CoMFA and CoMSIA models were used to identify the key structural requirements responsible for the biological activity. Molecular docking was applied to explore the binding mode between the ligands and the receptor. The information obtained from molecular modeling studies may be helpful to design novel inhibitors of CDK2/cyclin A with desired activity. PMID:21152296

  19. Molecular modeling studies of 4,5-dihydro-1H-pyrazolo[4,3-h] quinazoline derivatives as potent CDK2/Cyclin a inhibitors using 3D-QSAR and docking.

    PubMed

    Ai, Yong; Wang, Shao-Teng; Sun, Ping-Hua; Song, Fa-Jun

    2010-09-28

    CDK2/cyclin A has appeared as an attractive drug targets over the years with diverse therapeutic potentials. A computational strategy based on comparative molecular fields analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) followed by molecular docking studies were performed on a series of 4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline derivatives as potent CDK2/cyclin A inhibitors. The CoMFA and CoMSIA models, using 38 molecules in the training set, gave r(2) (cv) values of 0.747 and 0.518 and r(2) values of 0.970 and 0.934, respectively. 3D contour maps generated by the CoMFA and CoMSIA models were used to identify the key structural requirements responsible for the biological activity. Molecular docking was applied to explore the binding mode between the ligands and the receptor. The information obtained from molecular modeling studies may be helpful to design novel inhibitors of CDK2/cyclin A with desired activity.

  20. A comparison of EuroQol 5-Dimension health-related utilities using Italian, UK, and US preference weights in a patient sample.

    PubMed

    Mozzi, Adelaide; Meregaglia, Michela; Lazzaro, Carlo; Tornatore, Valentina; Belfiglio, Maurizio; Fattore, Giovanni

    2016-01-01

    Weights associated with the EuroQol 5-Dimension 3-Level (EQ-5D-3L) instrument represent preferences for health states elicited from general population's samples. Weights have not been calculated for every country; however, empirical research shows that cross-country differences exist. This empirical study aims at investigating the impact of recently developed Italian weights in comparison with UK and US scores on health-related utility calculation using a sample of patients with Crohn's disease. The study is based on a survey on health-related quality of life in patients (n=552) affected by active Crohn's disease conducted in Italy from 2012 to 2013. Utilities computed through the Italian algorithm (mean: 0.76; SD: 0.20; median: 0.81) are generally higher than US (mean: 0.69; SD: 0.22; median: 0.77) and UK (mean: 0.57; SD: 0.32; median: 0.69) utilities, except for extremely severe health states where US values outweigh the Italian ones. UK preference weights generate the highest number of negative results. All the three value distributions are left-skewed due to very low scores associated with the most serious health states (ie, three or four levels equal to 3). As expected, despite the tariff set considered, more severe disease (Harvey Bradshaw Index >16) reduces the mean conditional EQ-5D-3L index (P<0.0001). Kendall's rank correlation between EQ Visual Analog Scale score and EQ-5D-3L index is positive (P<0.0001), even though patients tend to value their health-related quality of life more when responding to EQ-5D-3L questions than on EQ Visual Analog Scale. Regardless of the tariff set considered, ordinary least-square results highlight that more severe disease (Harvey Bradshaw Index >16) reduces the mean conditional EQ-5D-3L index (P<0.0001). Results reveal remarkable differences among the three national tariff sets and especially when severe health states occur, suggesting the need for country-specific preference weights when evaluating utilities, which can be problematic since they have not been calculated for every country yet.

  1. Quantitative three-dimensional analysis of root canal curvature in maxillary first molars using micro-computed tomography.

    PubMed

    Lee, Jong-Ki; Ha, Byung-Hyun; Choi, Jeong-Ho; Heo, Seok-Mo; Perinpanayagam, Hiran

    2006-10-01

    In endodontic therapy, access and instrumentation are strongly affected by root canal curvature. However, the few studies that have actually measured curvature are mostly from two-dimensional radiographs. The purpose of this study was to measure the three-dimensional (3D) canal curvature in maxillary first molars using micro-computed tomography (microCT) and mathematical modeling. Extracted maxillary first molars (46) were scanned by microCT (502 image slices/tooth, 1024 X 1024 pixels, voxel size of 19.5 x 19.5 x 39.0 microm) and their canals reconstructed by 3D modeling software. The intersection of major and minor axes in the canal space of each image slice were connected to create an imaginary central axis for each canal. The radius of curvature of the tangential circle was measured and inverted as a measure of curvature using custom-made mathematical modeling software. Root canal curvature was greatest in the apical third and least in the middle third for all canals. The greatest curvatures were in the mesiobuccal (MB) canal (0.76 +/- 0.48 mm(-1)) with abrupt curves, and the least curvatures were in the palatal (P) canal (0.38 +/- 0.34 mm(-1)) with a gradual curve. This study has measured the 3D curvature of root canals in maxillary first molars and reinforced the value of microCT with mathematical modeling.

  2. Ab initio calculation of the neutron-proton mass difference

    NASA Astrophysics Data System (ADS)

    Borsanyi, Sz.; Durr, S.; Fodor, Z.; Hoelbling, C.; Katz, S. D.; Krieg, S.; Lellouch, L.; Lippert, T.; Portelli, A.; Szabo, K. K.; Toth, B. C.

    2015-03-01

    The existence and stability of atoms rely on the fact that neutrons are more massive than protons. The measured mass difference is only 0.14% of the average of the two masses. A slightly smaller or larger value would have led to a dramatically different universe. Here, we show that this difference results from the competition between electromagnetic and mass isospin breaking effects. We performed lattice quantum-chromodynamics and quantum-electrodynamics computations with four nondegenerate Wilson fermion flavors and computed the neutron-proton mass-splitting with an accuracy of 300 kilo-electron volts, which is greater than 0 by 5 standard deviations. We also determine the splittings in the Σ, Ξ, D, and Ξcc isospin multiplets, exceeding in some cases the precision of experimental measurements.

  3. Quantitative structure-property relationship modeling of remote liposome loading of drugs.

    PubMed

    Cern, Ahuva; Golbraikh, Alexander; Sedykh, Aleck; Tropsha, Alexander; Barenholz, Yechezkel; Goldblum, Amiram

    2012-06-10

    Remote loading of liposomes by trans-membrane gradients is used to achieve therapeutically efficacious intra-liposome concentrations of drugs. We have developed Quantitative Structure Property Relationship (QSPR) models of remote liposome loading for a data set including 60 drugs studied in 366 loading experiments internally or elsewhere. Both experimental conditions and computed chemical descriptors were employed as independent variables to predict the initial drug/lipid ratio (D/L) required to achieve high loading efficiency. Both binary (to distinguish high vs. low initial D/L) and continuous (to predict real D/L values) models were generated using advanced machine learning approaches and 5-fold external validation. The external prediction accuracy for binary models was as high as 91-96%; for continuous models the mean coefficient R(2) for regression between predicted versus observed values was 0.76-0.79. We conclude that QSPR models can be used to identify candidate drugs expected to have high remote loading capacity while simultaneously optimizing the design of formulation experiments. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Does familiarity with computers affect computerized neuropsychological test performance?

    PubMed

    Iverson, Grant L; Brooks, Brian L; Ashton, V Lynn; Johnson, Lynda G; Gualtieri, C Thomas

    2009-07-01

    The purpose of this study was to determine whether self-reported computer familiarity is related to performance on computerized neurocognitive testing. Participants were 130 healthy adults who self-reported whether their computer use was "some" (n = 65) or "frequent" (n = 65). The two groups were individually matched on age, education, sex, and race. All completed the CNS Vital Signs (Gualtieri & Johnson, 2006b) computerized neurocognitive battery. There were significant differences on 6 of the 23 scores, including scores derived from the Symbol-Digit Coding Test, Stroop Test, and the Shifting Attention Test. The two groups were also significantly different on the Psychomotor Speed (Cohen's d = 0.37), Reaction Time (d = 0.68), Complex Attention (d = 0.40), and Cognitive Flexibility (d = 0.64) domain scores. People with "frequent" computer use performed better than people with "some" computer use on some tests requiring rapid visual scanning and keyboard work.

  5. 3-D Quantitative Dynamic Contrast Ultrasound for Prostate Cancer Localization.

    PubMed

    Schalk, Stefan G; Huang, Jing; Li, Jia; Demi, Libertario; Wijkstra, Hessel; Huang, Pintong; Mischi, Massimo

    2018-04-01

    To investigate quantitative 3-D dynamic contrast-enhanced ultrasound (DCE-US) and, in particular 3-D contrast-ultrasound dispersion imaging (CUDI), for prostate cancer detection and localization, 43 patients referred for 10-12-core systematic biopsy underwent 3-D DCE-US. For each 3-D DCE-US recording, parametric maps of CUDI-based and perfusion-based parameters were computed. The parametric maps were divided in regions, each corresponding to a biopsy core. The obtained parameters were validated per biopsy location and after combining two or more adjacent regions. For CUDI by correlation (r) and for the wash-in time (WIT), a significant difference in parameter values between benign and malignant biopsy cores was found (p < 0.001). In a per-prostate analysis, sensitivity and specificity were 94% and 50% for r, and 53% and 81% for WIT. Based on these results, it can be concluded that quantitative 3-D DCE-US could aid in localizing prostate cancer. Therefore, we recommend follow-up studies to investigate its value for targeting biopsies. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  6. Tumor and red bone marrow dosimetry: comparison of methods for prospective treatment planning in pretargeted radioimmunotherapy.

    PubMed

    Woliner-van der Weg, Wietske; Schoffelen, Rafke; Hobbs, Robert F; Gotthardt, Martin; Goldenberg, David M; Sharkey, Robert M; Slump, Cornelis H; van der Graaf, Winette Ta; Oyen, Wim Jg; Boerman, Otto C; Sgouros, George; Visser, Eric P

    2015-12-01

    Red bone marrow (RBM) toxicity is dose-limiting in (pretargeted) radioimmunotherapy (RIT). Previous blood-based and two-dimensional (2D) image-based methods have failed to show a clear dose-response relationship. We developed a three-dimensional (3D) image-based RBM dosimetry approach using the Monte Carlo-based 3D radiobiological dosimetry (3D-RD) software and determined its additional value for predicting RBM toxicity. RBM doses were calculated for 13 colorectal cancer patients after pretargeted RIT with the two-step administration of an anti-CEA × anti-HSG bispecific monoclonal antibody and a (177)Lu-labeled di-HSG-peptide. 3D-RD RBM dosimetry was based on the lumbar vertebrae, delineated on single photon emission computed tomography (SPECT) scans acquired directly, 3, 24, and 72 h after (177)Lu administration. RBM doses were correlated to hematologic effects, according to NCI-CTC v3 and compared with conventional 2D cranium-based and blood-based dosimetry results. Tumor doses were calculated with 3D-RD, which has not been possible with 2D dosimetry. Tumor-to-RBM dose ratios were calculated and compared for (177)Lu-based pretargeted RIT and simulated pretargeted RIT with (90)Y. 3D-RD RBM doses of all seven patients who developed thrombocytopenia were higher (range 0.43 to 0.97 Gy) than that of the six patients without thrombocytopenia (range 0.12 to 0.39 Gy), except in one patient (0.47 Gy) without thrombocytopenia but with grade 2 leucopenia. Blood and 2D image-based RBM doses for patients with grade 1 to 2 thrombocytopenia were in the same range as in patients without thrombocytopenia (0.14 to 0.29 and 0.11 to 0.26 Gy, respectively). Blood-based RBM doses for two grade 3 to 4 patients were higher (0.66 and 0.51 Gy, respectively) than the others, and the cranium-based dose of only the grade 4 patient was higher (0.34 Gy). Tumor-to-RBM dose ratios would increase by 25% on average when treating with (90)Y instead of (177)Lu. 3D dosimetry identifies patients at risk of developing any grade of RBM toxicity more accurately than blood- or 2D image-based methods. It has the added value to enable calculation of tumor-to-RBM dose ratios.

  7. Impact of temporal probability in 4D dose calculation for lung tumors.

    PubMed

    Rouabhi, Ouided; Ma, Mingyu; Bayouth, John; Xia, Junyi

    2015-11-08

    The purpose of this study was to evaluate the dosimetric uncertainty in 4D dose calculation using three temporal probability distributions: uniform distribution, sinusoidal distribution, and patient-specific distribution derived from the patient respiratory trace. Temporal probability, defined as the fraction of time a patient spends in each respiratory amplitude, was evaluated in nine lung cancer patients. Four-dimensional computed tomography (4D CT), along with deformable image registration, was used to compute 4D dose incorporating the patient's respiratory motion. First, the dose of each of 10 phase CTs was computed using the same planning parameters as those used in 3D treatment planning based on the breath-hold CT. Next, deformable image registration was used to deform the dose of each phase CT to the breath-hold CT using the deformation map between the phase CT and the breath-hold CT. Finally, the 4D dose was computed by summing the deformed phase doses using their corresponding temporal probabilities. In this study, 4D dose calculated from the patient-specific temporal probability distribution was used as the ground truth. The dosimetric evaluation matrix included: 1) 3D gamma analysis, 2) mean tumor dose (MTD), 3) mean lung dose (MLD), and 4) lung V20. For seven out of nine patients, both uniform and sinusoidal temporal probability dose distributions were found to have an average gamma passing rate > 95% for both the lung and PTV regions. Compared with 4D dose calculated using the patient respiratory trace, doses using uniform and sinusoidal distribution showed a percentage difference on average of -0.1% ± 0.6% and -0.2% ± 0.4% in MTD, -0.2% ± 1.9% and -0.2% ± 1.3% in MLD, 0.09% ± 2.8% and -0.07% ± 1.8% in lung V20, -0.1% ± 2.0% and 0.08% ± 1.34% in lung V10, 0.47% ± 1.8% and 0.19% ± 1.3% in lung V5, respectively. We concluded that four-dimensional dose computed using either a uniform or sinusoidal temporal probability distribution can approximate four-dimensional dose computed using the patient-specific respiratory trace.

  8. SU-F-303-13: Initial Evaluation of Four Dimensional Diffusion- Weighted MRI (4D-DWI) and Its Effect On Apparent Diffusion Coefficient (ADC) Measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y; Yin, F; Czito, B

    2015-06-15

    Purpose: Diffusion-weighted imaging(DWI) has been shown to have superior tumor-to-tissue contrast for cancer detection.This study aims at developing and evaluating a four dimensional DWI(4D-DWI) technique using retrospective sorting method for imaging respiratory motion for radiotherapy planning,and evaluate its effect on Apparent Diffusion Coefficient(ADC) measurement. Materials/Methods: Image acquisition was performed by repeatedly imaging a volume of interest using a multi-slice single-shot 2D-DWI sequence in the axial planes and cine MRI(served as reference) using FIESTA sequence.Each 2D-DWI image were acquired in xyz-diffusion-directions with a high b-value(b=500s/mm2).The respiratory motion was simultaneously recorded using bellows.Retrospective sorting was applied in each direction to reconstruct 4D-DWI.Themore » technique was evaluated using a computer simulated 4D-digital human phantom(XCAT),a motion phantom and a healthy volunteer under an IRB-approved study.Motion trajectories of regions-of-interests(ROI) were extracted from 4D-DWI and compared with reference.The mean motion trajectory amplitude differences(D) between the two was calculated.To quantitatively analyze the motion artifacts,XCAT were controlled to simulate regular motion and the motions of 10 liver cancer patients.4D-DWI,free-breathing DWI(FB- DWI) were reconstructed.Tumor volume difference(VD) of each phase of 4D-DWI and FB-DWI from the input static tumor were calculated.Furthermore, ADC was measured for each phase of 4D-DWI and FB-DWI data,and mean tumor ADC values(M-ADC) were calculated.Mean M-ADC over all 4D-DWI phases was compared with M-ADC calculated from FB-DWI. Results: 4D-DWI of XCAT,the motion phantom and the healthy volunteer demonstrated the respiratory motion clearly.ROI D values were 1.9mm,1.7mm and 2.0mm,respectively.For motion artifacts analysis,XCAT 4D-DWI images show much less motion artifacts compare to FB-DWI.Mean VD for 4D-WDI and FB-DWI were 8.5±1.4% and 108±15%,respectively.Mean M-ADC for ADC measured from 4D-DWI and M-ADC measured from FB-DWI were (2.29±0.04)*0.001*mm2/s and (3.80±0.01)*0.001*mm2/s,respectively.ADC value ground-truth is 2.24*0.001*mm2/s from the input of the simulation. Conclusion: A respiratory correlated 4D-DWI technique has been initially evaluated in phantoms and a human subject.Comparing to free breathing DWI,4D-DWI can lead to more accurate measurement of ADC.« less

  9. General Quantum Meet-in-the-Middle Search Algorithm Based on Target Solution of Fixed Weight

    NASA Astrophysics Data System (ADS)

    Fu, Xiang-Qun; Bao, Wan-Su; Wang, Xiang; Shi, Jian-Hong

    2016-10-01

    Similar to the classical meet-in-the-middle algorithm, the storage and computation complexity are the key factors that decide the efficiency of the quantum meet-in-the-middle algorithm. Aiming at the target vector of fixed weight, based on the quantum meet-in-the-middle algorithm, the algorithm for searching all n-product vectors with the same weight is presented, whose complexity is better than the exhaustive search algorithm. And the algorithm can reduce the storage complexity of the quantum meet-in-the-middle search algorithm. Then based on the algorithm and the knapsack vector of the Chor-Rivest public-key crypto of fixed weight d, we present a general quantum meet-in-the-middle search algorithm based on the target solution of fixed weight, whose computational complexity is \\sumj = 0d {(O(\\sqrt {Cn - k + 1d - j }) + O(C_kj log C_k^j))} with Σd i =0 Ck i memory cost. And the optimal value of k is given. Compared to the quantum meet-in-the-middle search algorithm for knapsack problem and the quantum algorithm for searching a target solution of fixed weight, the computational complexity of the algorithm is lower. And its storage complexity is smaller than the quantum meet-in-the-middle-algorithm. Supported by the National Basic Research Program of China under Grant No. 2013CB338002 and the National Natural Science Foundation of China under Grant No. 61502526

  10. Nonlinear optical properties of curcumin: solvatochromism-based approach and computational study

    NASA Astrophysics Data System (ADS)

    Margar, Sachin N.; Sekar, Nagaiyan

    2016-06-01

    Nonlinear optical (NLO) properties of curcumin were studied using solvatochromic method and density functional theory (DFT). DFT calculations were performed to determine the static first hyperpolarisability (βο) and its related properties (μ, α0,Δα, β, ?) for curcumin, using B3LYP functional with 6-31G (d), 6-311+G (d) and 6-311+G (d,p) basis sets at the ground-state and excited-state geometries and with CAM-B3LYP using 6-311+G (d,p) basis sets at the ground-state geometry in different solvent environments. In polar solvent environment, the values are slightly lower as compared to the non-polar solvent environments. The results obtained are correlated with the polarisability parameter αCT, first hyperpolarisability parameter βCT and the solvatochromic descriptor of γSDobtained by the solvatochromic method. The static first hyperpolarisability (βο) and its related properties were compared with urea and dibenzoylmethane (β-diketonate) and it is observed that curcumin shows very large values for first hyperpolarisability and its components.

  11. Development of the Likelihood of Low Glucose (LLG) algorithm for evaluating risk of hypoglycemia: a new approach for using continuous glucose data to guide therapeutic decision making.

    PubMed

    Dunn, Timothy C; Hayter, Gary A; Doniger, Ken J; Wolpert, Howard A

    2014-07-01

    The objective was to develop an analysis methodology for generating diabetes therapy decision guidance using continuous glucose (CG) data. The novel Likelihood of Low Glucose (LLG) methodology, which exploits the relationship between glucose median, glucose variability, and hypoglycemia risk, is mathematically based and can be implemented in computer software. Using JDRF Continuous Glucose Monitoring Clinical Trial data, CG values for all participants were divided into 4-week periods starting at the first available sensor reading. The safety and sensitivity performance regarding hypoglycemia guidance "stoplights" were compared between the LLG method and one based on 10th percentile (P10) values. Examining 13 932 hypoglycemia guidance outputs, the safety performance of the LLG method ranged from 0.5% to 5.4% incorrect "green" indicators, compared with 0.9% to 6.0% for P10 value of 110 mg/dL. Guidance with lower P10 values yielded higher rates of incorrect indicators, such as 11.7% to 38% at 80 mg/dL. When evaluated only for periods of higher glucose (median above 155 mg/dL), the safety performance of the LLG method was superior to the P10 method. Sensitivity performance of correct "red" indicators of the LLG method had an in sample rate of 88.3% and an out of sample rate of 59.6%, comparable with the P10 method up to about 80 mg/dL. To aid in therapeutic decision making, we developed an algorithm-supported report that graphically highlights low glucose risk and increased variability. When tested with clinical data, the proposed method demonstrated equivalent or superior safety and sensitivity performance. © 2014 Diabetes Technology Society.

  12. Numerical Investigations of the Benchmark Supercritical Wing in Transonic Flow

    NASA Technical Reports Server (NTRS)

    Chwalowski, Pawel; Heeg, Jennifer; Biedron, Robert T.

    2017-01-01

    This paper builds on the computational aeroelastic results published previously and generated in support of the second Aeroelastic Prediction Workshop for the NASA Benchmark Supercritical Wing (BSCW) configuration. The computational results are obtained using FUN3D, an unstructured grid Reynolds-Averaged Navier-Stokes solver developed at the NASA Langley Research Center. The analysis results show the effects of the temporal and spatial resolution, the coupling scheme between the flow and the structural solvers, and the initial excitation conditions on the numerical flutter onset. Depending on the free stream condition and the angle of attack, the above parameters do affect the flutter onset. Two conditions are analyzed: Mach 0.74 with angle of attack 0 and Mach 0.85 with angle of attack 5. The results are presented in the form of the damping values computed from the wing pitch angle response as a function of the dynamic pressure or in the form of dynamic pressure as a function of the Mach number.

  13. 26 CFR 25.2512-5 - Valuation of annuities, unitrust interests, interests for life or term of years, and remainder or...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... transferred by gift is the present value of the interests determined under paragraph (d) of this section... standard actuarial factors and examples that illustrate how to use the tables to compute the present value... and special actuarial factors that may be necessary to compute the present value of similar interests...

  14. Electromagnetic Effects of (Carbon) Composite Materials Upon Avionics Systems

    DTIC Science & Technology

    1980-10-01

    d’ohm classique VA xmOx = Rdc x I L avac Rd = ( si /* eat faible R net faible, Tp est qrend at f ( Tp, I (t), t) o. 0 car i1, d. dcp 3.1 - Aplication A...effect such as may be encountered by a home computer’ or a mobile communications system, or it may be critical such as on the flight deck of an aircraft...Refs 9, 10), the subscript "a" indicating a measurement parallel to the hexagonal planes. This value results from a mobility pu - 1.2 x 104 cm2/volt

  15. Effect of field-of-view size on gray values derived from cone-beam computed tomography compared with the Hounsfield unit values from multidetector computed tomography scans.

    PubMed

    Shokri, Abbas; Ramezani, Leila; Bidgoli, Mohsen; Akbarzadeh, Mahdi; Ghazikhanlu-Sani, Karim; Fallahi-Sichani, Hamed

    2018-03-01

    This study aimed to evaluate the effect of field-of-view (FOV) size on the gray values derived from conebeam computed tomography (CBCT) compared with the Hounsfield unit values from multidetector computed tomography (MDCT) scans as the gold standard. A radiographic phantom was designed with 4 acrylic cylinders. One cylinder was filled with distilled water, and the other 3 were filled with 3 types of bone substitute: namely, Nanobone, Cenobone, and Cerabone. The phantom was scanned with 2 CBCT systems using 2 different FOV sizes, and 1 MDCT system was used as the gold standard. The mean gray values (MGVs) of each cylinder were calculated in each imaging protocol. In both CBCT systems, significant differences were noted in the MGVs of all materials between the 2 FOV sizes ( P <.05) except for Cerabone in the Cranex3D system. Significant differences were found in the MGVs of each material compared with the others in both FOV sizes for each CBCT system. No significant difference was seen between the Cranex3D CBCT system and the MDCT system in the MGVs of bone substitutes on images obtained with a small FOV. The size of the FOV significantly changed the MGVs of all bone substitutes, except for Cerabone in the Cranex3D system. Both CBCT systems had the ability to distinguish the 3 types of bone substitutes based on a comparison of their MGVs. The Cranex3D CBCT system used with a small FOV had a significant correlation with MDCT results.

  16. Deutsch, Toffoli, and cnot Gates via Rydberg Blockade of Neutral Atoms

    NASA Astrophysics Data System (ADS)

    Shi, Xiao-Feng

    2018-05-01

    Universal quantum gates and quantum error correction (QEC) lie at the heart of quantum-information science. Large-scale quantum computing depends on a universal set of quantum gates, in which some gates may be easily carried out, while others are restricted to certain physical systems. There is a unique three-qubit quantum gate called the Deutsch gate [D (θ )], from which a circuit can be constructed so that any feasible quantum computing is attainable. We design an easily realizable D (θ ) by using the Rydberg blockade of neutral atoms, where θ can be tuned to any value in [0 ,π ] by adjusting the strengths of external control fields. Using similar protocols, we further show that both the Toffoli and controlled-not gates can be achieved with only three laser pulses. The Toffoli gate, being universal for classical reversible computing, is also useful for QEC, which plays an important role in quantum communication and fault-tolerant quantum computation. The possibility and speed of realizing these gates shed light on the study of quantum information with neutral atoms.

  17. Melanoma Cell Colony Expansion Parameters Revealed by Approximate Bayesian Computation

    PubMed Central

    Vo, Brenda N.; Drovandi, Christopher C.; Pettitt, Anthony N.; Pettet, Graeme J.

    2015-01-01

    In vitro studies and mathematical models are now being widely used to study the underlying mechanisms driving the expansion of cell colonies. This can improve our understanding of cancer formation and progression. Although much progress has been made in terms of developing and analysing mathematical models, far less progress has been made in terms of understanding how to estimate model parameters using experimental in vitro image-based data. To address this issue, a new approximate Bayesian computation (ABC) algorithm is proposed to estimate key parameters governing the expansion of melanoma cell (MM127) colonies, including cell diffusivity, D, cell proliferation rate, λ, and cell-to-cell adhesion, q, in two experimental scenarios, namely with and without a chemical treatment to suppress cell proliferation. Even when little prior biological knowledge about the parameters is assumed, all parameters are precisely inferred with a small posterior coefficient of variation, approximately 2–12%. The ABC analyses reveal that the posterior distributions of D and q depend on the experimental elapsed time, whereas the posterior distribution of λ does not. The posterior mean values of D and q are in the ranges 226–268 µm2h−1, 311–351 µm2h−1 and 0.23–0.39, 0.32–0.61 for the experimental periods of 0–24 h and 24–48 h, respectively. Furthermore, we found that the posterior distribution of q also depends on the initial cell density, whereas the posterior distributions of D and λ do not. The ABC approach also enables information from the two experiments to be combined, resulting in greater precision for all estimates of D and λ. PMID:26642072

  18. Synthesis, spectroscopic and DFT studies of novel 4-(morpholinomethyl)-5-oxo-1-phenylpyrrolidine-3-carboxylic acid

    NASA Astrophysics Data System (ADS)

    Devi, Poornima; Fatma, Shaheen; Bishnoi, Abha; Srivastava, Krishna; Shukla, Shraddha; Kumar, Roop

    2018-04-01

    A novel 4-(morpholinomethyl)-5-oxo-1-phenylpyrrolidine-3-carboxylic acid has been synthesized and its structural elucidation has been done by UV, FT-IR, 1H and 13C NMR spectroscopy. All quantum chemical calculations were carried out at level of density functional theory (DFT) with B3LYP function using 6-31G (d, p) basis atomic set. AIM approach has been incorporated for the analysis of various intermolecular interactions. Polarizability and hyperpolarizabilities values have been calculated along with the exploration of nonlinear optical properties of the title compound. DFT computed total first static hyperpolarizability (β0 = 0.2747 × 10-30 esu) indicates that title molecule could be an area of interest as an attractive future NLO material. For the analysis of thermal behaviour of title molecule, thermodynamic properties such as heat capacity, entropy and enthalpy change at various temperatures have been calculated. The NBO computations were done for the correlation of possible transitions with the electronic transitions. Electrophilic and nucleophilic regions were identified with the help of MESP plot. Determination of energy gap has been done by using HOMO and LUMO energy values, along with the computation of electronegativity and electrophilicity indices.

  19. Nomograms for two-dimensional echocardiography derived valvular and arterial dimensions in Caucasian children.

    PubMed

    Cantinotti, Massimiliano; Giordano, Raffaele; Scalese, Marco; Murzi, Bruno; Assanta, Nadia; Spadoni, Isabella; Maura, Crocetti; Marco, Marotta; Molinaro, Sabrina; Kutty, Shelby; Iervasi, Giorgio

    2017-01-01

    Despite recent advances, current pediatric echocardiographic nomograms for valvular and arterial dimensions remain limited. We prospectively studied healthy Caucasian Italian children by two-dimensional (2D) echocardiography. Echocardiographic measurements for 18 valvular and arterial dimensions were performed and models were generated testing for linear, logarithmic, exponential, and square root relationships. Heteroscedasticity was accounted for by White or Breusch-Pagan test. Age, weight, height, heart rate, and body surface area (BSA) were used as independent variables in different analyses to predict the mean values of each measurement. Structured Z-scores were then computed. In all, 1151 subjects (age 0 days to 17 years; 45% females; BSA 0.12-2.12m 2 ) were studied. The Haycock formula was used when presenting data as predicted values (mean±2 SDs) for a given BSA and within equations relating echocardiographic measurements to BSA. The predicted values and Z-score boundaries for all measurements are presented. We report echocardiographic nomograms for valvular and arterial dimensions derived from a large population of children. Integration of these data with those of previous reports would allow for a comprehensive coverage of pediatric 2D echocardiographic nomograms for measurement of 2D cardiac structures. Copyright © 2016 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  20. Use of intravoxel incoherent motion diffusion-weighted imaging to detect early changes in diabetic kidneys.

    PubMed

    Deng, Yi; Yang, Biran; Peng, Yan; Liu, Zhiqiang; Luo, Jinwen; Du, Guoxin

    2018-03-14

    The purpose of the study was to examine differences in kidney intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) parameters in early-stage diabetic patients versus healthy controls. Nineteen type 2 diabetic patients (group A) with a urinary albumin-to-creatinine ratio (ACR) < 30 mg/g and an estimated glomerular filtration rate (eGFR) of 80-120 mL/(min 1.73 m 2 ) and twelve healthy volunteers (group B) were recruited. Kidneys were scanned with 1.5-Tesla IVIM-DWI. Nine b values (0, 50, 100, 150, 200, 300, 400, 600, and 800 s/mm 2 ) were used. The parameters derived from IVIM-DWI were calculated for each kidney by two radiologists and included the perfusion fraction (f), diffusion coefficient (D), and pseudo-diffusion coefficient (D*). The mean values of f, D, and D* were calculated by selecting multiple regions of interest in the kidney. The diagnostic performance of the f, D, and D* values for the diagnosis of early diabetic kidney changes was determined by receiver operating characteristic analysis. Three radiologists independently measured the parameters derived from IVIM-DWI in the two groups by free-hand placing regions of interest, and the interclass coefficients (ICCs) were analyzed by SPSS.16.0 software. The f values of the kidneys were significantly higher in diabetic patients than in healthy volunteers. The D value of the kidneys was significantly lower in diabetic patients than in healthy volunteers. No significant differences in the D* values of the kidneys were observed between diabetic patients and healthy volunteers. The D values of the right kidneys were significantly higher than those of the left kidneys in both groups. The results of the receiver operating characteristic analysis were as follows: left kidney-f value AUC = 0.650 (cutoff point ≥ 27.49%) and D value AUC = 0.752 (cutoff point ≤ 1.68 × 10 -3  mm 2 /s); and right kidney-f value AUC = 0.650 (cutoff point ≥ 28.24%) and D value AUC = 0.752 (cutoff point ≤ 1.81 × 10 -3 mm 2 /s). The diagnostic performance of the D* value was very low (AUC < 0.6). No significant differences were present between the areas under the curves of the f and D values (P > 0.05). The ICCs of the f value and D value were between 0.637 and 0.827. The ICC of the D* value was less than 0.3. The results of our study suggest that changes in kidneys detected by IVIM-DWI may serve as indicators of early diabetic kidney disease.

  1. Self-diffusion coefficients and shear viscosity of inverse power fluids: from hard- to soft-spheres.

    PubMed

    Heyes, D M; Brańka, A C

    2008-07-21

    Molecular dynamics computer simulation has been used to compute the self-diffusion coefficient, D, and shear viscosity, eta(s), of soft-sphere fluids, in which the particles interact through the soft-sphere or inverse power pair potential, phi(r) = epsilon(sigma/r)(n), where n measures the steepness or stiffness of the potential, and epsilon and sigma are a characteristic energy and distance, respectively. The simulations were carried out on monodisperse systems for a range of n values from the hard-sphere (n --> infinity) limit down to n = 4, and up to densities in excess of the fluid-solid co-existence value. A new analytical procedure is proposed which reproduces the transport coefficients at high densities, and can be used to extrapolate the data to densities higher than accurately accessible by simulation or experiment, and tending to the glass transition. This formula, DX(c-1) proportional, variant A/X + B, where c is an adjustable parameter, and X is either the packing fraction or the pressure, is a development of one proposed by Dymond. In the expression, -A/B is the value of X at the ideal glass transition (i.e., where D and eta(s)(-1) --> 0). Estimated values are presented for the packing fraction and the pressure at the glass transition for n values between the hard and soft particle limits. The above expression is also shown to reproduce the high density viscosity data of supercritical argon, krypton and nitrogen. Fits to the soft-sphere simulation transport coefficients close to solid-fluid co-existence are also made using the analytic form, ln(D) = alpha(X)X, and n-dependence of the alpha(X) is presented (X is either the packing fraction or the pressure).

  2. Pulmonary hyperpolarized (129) Xe morphometry for mapping xenon gas concentrations and alveolar oxygen partial pressure: Proof-of-concept demonstration in healthy and COPD subjects.

    PubMed

    Ouriadov, A; Farag, A; Kirby, M; McCormack, D G; Parraga, G; Santyr, G E

    2015-12-01

    Diffusion-weighted (DW) hyperpolarized (129) Xe morphometry magnetic resonance imaging (MRI) can be used to map regional differences in lung tissue micro-structure. We aimed to generate absolute xenon concentration ([Xe]) and alveolar oxygen partial pressure (pA O2 ) maps by extracting the unrestricted diffusion coefficient (D0 ) of xenon as a morphometric parameter. In this proof-of-concept demonstration, morphometry was performed using multi b-value (0, 12, 20, 30 s/cm(2) ) DW hyperpolarized (129) Xe images obtained in four never-smokers and four COPD ex-smokers. Morphometric parameters and D0 maps were computed and the latter used to generate [Xe] and pA O2 maps. Xenon concentration phantoms estimating a range of values mimicking those observed in vivo were also investigated. Xenon D0 was significantly increased (P = 0.035) in COPD (0.14 ± 0.03 cm(2) /s) compared with never-smokers (0.12 ± 0.02 cm(2) /s). COPD ex-smokers also had significantly decreased [Xe] (COPD = 8 ± 7% versus never-smokers = 13 ± 8%, P = 0.012) and increased pA O2 (COPD = 18 ± 3% versus never-smokers = 15 ± 3%, P = 0.009) compared with never-smokers. Phantom measurements showed the expected dependence of D0 on [Xe] over the range of concentrations anticipated in vivo. DW hyperpolarized (129) Xe MRI morphometry can be used to simultaneously map [Xe] and pA O2 in addition to providing micro-structural biomarkers of emphysematous destruction in COPD. Phantom measurements of D0 ([Xe]) supported the hypotheses that differences in subjects may reflect differences in functional residual capacity. © 2014 Wiley Periodicals, Inc.

  3. Comparative Analysis of Red-Edge Hyperspectral Indices

    NASA Astrophysics Data System (ADS)

    Gupta, R.; Vijayan, D.; Prasad, T.

    The spectrally continuous observations of 3 nm bandwidth in 680 to 800 nm range over the growth cycle of wheat were subjected to first order differentiation to identify the point of inflection in red to near-IR transition zone. During 40 to 84 days after sowing (DAS), the point of inflection was observed in 723 to 735 nm region with peak response at 729 nm for 64 DAS . For differentiated curve pertaining to 25 DAS (initial vegetative) and 90 DAS (initial senescence) phenological stages, the point of inflection was in 690-693 and 744-747 nm spectral region, respectively. The ratios corresponding to 1dB (RI1dB = R 735 /R720), 2dB (RI 2dB = R738/R 720), 3dB (RI3dB = R741 /R 717) down signal levels and half signal level (RIhalf = R747/R 708 ) were computed. For nomenclature point of view, R41 refers to reflectance for 3 nm7 bandwidth centered at 741 nm. Correlations for these developed RIs were studied with reference to indices given by Vogelmann i.e., VOG a = R 740 /R720 , VOG b = [(R 734-R747)/(R715+R720)] and red edge spectral parameter (RESP) = R750 /R 710. VOG a and RESP conceptually resemble with developed RI 2dB and RIhalf , respectively. All RIs were found correlated with VOGa , VOG b and RESP with r2 in the range of 0.96 to 0.99; r2 was 0.998 for RI2dB and VOG a pair and 0.996 for RI half and RESP pair; the slope factor of regression relationship improved by about 50% from RI dB to2 RI3dB and by about 125% from RI3dB to RIhalf with r2 in 0.97-0.99 range. Thus, theoretical basis for VOG a and RESP in terms of dB based indices has been provided. The wavelengths used in VOGb are noticed in dB based indices ; to provide stability to small magnitude R720, the sum of R720 and R715 has been used in VOGb. Based on regression analysis of these indices with LAI in its growth and decline phases separately, the slope value for VOG b, RI 2dB, VOG a, RIhalf, RESP and area under 680 to 760 nm for first order derivative curve (area) were in 0.08-0.11, 0.24 - 0.34, 0.27-0.38, 0.86-1.18, 0.89-1.27 and 7.6-13.87 range, respectively. Here, the first value in the range refers to slope value for the growth phase of LAI while the second value in the range refers to that for the decline phase of LAI. To judge the sensitivity for the rate of change in red - edge, the change in area for ratio indices and normalized indices in 680 to 760 nm (red-near IR transition region) with 673 nm were analysed. The rate of change for area under the red edge as a function of DAS was more for ratio indices as compared to that for normalized indices.

  4. Three-dimensional computed tomographic volumetry precisely predicts the postoperative pulmonary function.

    PubMed

    Kobayashi, Keisuke; Saeki, Yusuke; Kitazawa, Shinsuke; Kobayashi, Naohiro; Kikuchi, Shinji; Goto, Yukinobu; Sakai, Mitsuaki; Sato, Yukio

    2017-11-01

    It is important to accurately predict the patient's postoperative pulmonary function. The aim of this study was to compare the accuracy of predictions of the postoperative residual pulmonary function obtained with three-dimensional computed tomographic (3D-CT) volumetry with that of predictions obtained with the conventional segment-counting method. Fifty-three patients scheduled to undergo lung cancer resection, pulmonary function tests, and computed tomography were enrolled in this study. The postoperative residual pulmonary function was predicted based on the segment-counting and 3D-CT volumetry methods. The predicted postoperative values were compared with the results of postoperative pulmonary function tests. Regarding the linear correlation coefficients between the predicted postoperative values and the measured values, those obtained using the 3D-CT volumetry method tended to be higher than those acquired using the segment-counting method. In addition, the variations between the predicted and measured values were smaller with the 3D-CT volumetry method than with the segment-counting method. These results were more obvious in COPD patients than in non-COPD patients. Our findings suggested that the 3D-CT volumetry was able to predict the residual pulmonary function more accurately than the segment-counting method, especially in patients with COPD. This method might lead to the selection of appropriate candidates for surgery among patients with a marginal pulmonary function.

  5. GPU-based prompt gamma ray imaging from boron neutron capture therapy.

    PubMed

    Yoon, Do-Kun; Jung, Joo-Young; Jo Hong, Key; Sil Lee, Keum; Suk Suh, Tae

    2015-01-01

    The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU). Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray image reconstruction using the GPU computation for BNCT simulations.

  6. Comparison of Bispectral Index™ values during the flotation restricted environmental stimulation technique and results for stage I sleep: a prospective pilot investigation.

    PubMed

    Dunham, C Michael; McClain, Jesse V; Burger, Amanda

    2017-11-29

    To determine whether Bispectral Index™ values obtained during flotation-restricted environment stimulation technique have a similar profile in a single observation compared to literature-derived results found during sleep and other relaxation-induction interventions. Bispectral Index™ values were as follows: awake-state, 96.6; float session-1, 84.3; float session-2, 82.3; relaxation-induction, 82.8; stage I sleep, 86.0; stage II sleep, 66.2; and stages III-IV sleep, 45.1. Awake-state values differed from float session-1 (%difference 12.7%; Cohen's d = 3.6) and float session-2 (%difference 14.8%; Cohen's d = 4.6). Relaxation-induction values were similar to float session-1 (%difference 1.8%; Cohen's d = 0.3) and float session-2 (%difference 0.5%; Cohen's d = 0.1). Stage I sleep values were similar to float session-1 (%difference 1.9%; Cohen's d = 0.4) and float session-2 (%difference 4.3%; Cohen's d = 1.0). Stage II sleep values differed from float session-1 (%difference 21.5%; Cohen's d = 4.3) and float session-2 (%difference 19.6%; Cohen's d = 4.0). Stages III-IV sleep values differed from float session-1 (%difference 46.5%; Cohen's d = 5.6) and float session-2 (%difference 45.2%; Cohen's d = 5.4). Bispectral Index™ values during flotation were comparable to those found in stage I sleep and nadir values described with other relaxation-induction techniques.

  7. Structure and binding energy of the H2S dimer at the CCSD(T) complete basis set limit.

    PubMed

    Lemke, Kono H

    2017-06-21

    This study presents results for the binding energy and geometry of the H 2 S dimer which have been computed using Møller-Plesset perturbation theory (MP2, MP4) and coupled cluster (CCSD, CCSD(T)) calculations with basis sets up to aug-cc-pV5Z. Estimates of D e , E ZPE , D o , and dimer geometry have been obtained at each level of theory by taking advantage of the systematic convergence behavior toward the complete basis set (CBS) limit. The CBS limit binding energy values of D e are 1.91 (MP2), 1.75 (MP4), 1.41 (CCSD), and 1.69 kcal/mol (CCSD[T]). The most accurate values for the equilibrium S-S distance r SS (without counterpoise correction) are 4.080 (MP2/aug-cc-pV5Z), 4.131 (MP4/aug-cc-pVQZ), 4.225 (CCSD/aug-cc-pVQZ), and 4.146 Å (CCSD(T)/aug-cc-pVQZ). This study also evaluates the effect of counterpoise correction on the H 2 S dimer geometry and binding energy. As regards the structure of (H 2 S) 2 , MPn, CCSD, and CCSD(T) level values of r SS , obtained by performing geometry optimizations on the counterpoise-corrected potential energy surface, converge systematically to CBS limit values of 4.099 (MP2), 4.146 (MP4), 4.233 (CCSD), and 4.167 Å (CCSD(T)). The corresponding CBS limit values of the equilibrium binding energy D e are 1.88 (MP2), 1.76 (MP4), 1.41 (CCSD), and 1.69 kcal/mol (CCSD(T)), the latter in excellent agreement with the measured binding energy value of 1.68 ± 0.02 kcal/mol reported by Ciaffoni et al. [Appl. Phys. B 92, 627 (2008)]. Combining CBS electronic binding energies D e with E ZPE predicted by CCSD(T) vibrational second-order perturbation theory calculations yields D o = 1.08 kcal/mol, which is around 0.6 kcal/mol smaller than the measured value of 1.7 ± 0.3 kcal/mol. Overall, the results presented here demonstrate that the application of high level calculations, in particular CCSD(T), in combination with augmented correlation consistent basis sets provides valuable insight into the structure and energetics of the hydrogen sulfide dimer.

  8. Comparison of SSS and SRS calculated from normal databases provided by QPS and 4D-MSPECT manufacturers and from identical institutional normals.

    PubMed

    Knollmann, Daniela; Knebel, Ingrid; Koch, Karl-Christian; Gebhard, Michael; Krohn, Thomas; Buell, Ulrich; Schaefer, Wolfgang M

    2008-02-01

    There is proven evidence for the importance of myocardial perfusion-single-photon emission computed tomography (SPECT) with computerised determination of summed stress and rest scores (SSS/SRS) for the diagnosis of coronary artery disease (CAD). SSS and SRS can thereby be calculated semi-quantitatively using a 20-segment model by comparing tracer-uptake with values from normal databases (NDB). Four severity-degrees for SSS and SRS are normally used: <4, 4-8, 9-13, and > or =14. Manufacturers' NDBs (M-NDBs) often do not fit the institutional (I) settings. Therefore, this study compared SSS and SRS obtained with the algorithms Quantitative Perfusion SPECT (QPS) and 4D-MSPECT using M-NDB and I-NDB. I-NDBs were obtained using QPS and 4D-MSPECT from exercise stress data (450 MBq (99m)Tc-tetrofosmin, triple-head-camera, 30 s/view, 20 views/head) from 36 men with a low post-stress test CAD probability and visually normal SPECT findings. Patient group was 60 men showing the entire CAD-spectrum referred for routine perfusion-SPECT. Stress/rest results of automatic quantification of the 60 patients were compared to M-NDB and I-NDB. After reclassifying SSS/SRS into the four severity degrees, kappa values were calculated to objectify agreement. Mean values (vs M-NDB) were 9.4 +/- 10.3 (SSS) and 5.8 +/- 9.7 (SRS) for QPS and 8.2 +/- 8.7 (SSS) and 6.2 +/- 7.8 (SRS) for 4D-MSPECT. Thirty seven of sixty SSS classifications (kappa = 0.462) and 40/60 SRS classifications (kappa = 0.457) agreed. Compared to I-NDB, mean values were 10.2 +/- 11.6 (SSS) and 6.5 +/- 10.4 (SRS) for QPS and 9.2 +/- 9.3 (SSS) and 7.2 +/- 8.6 (SRS) for 4D-MSPECT. Forty four of sixty patients agreed in SSS and SRS (kappa = 0.621 resp. 0.58). Considerable differences between SSS/SRS obtained with QPS and 4D-MSPECT were found when using M-NDB. Even using identical patients and identical I-NDB, the algorithms still gave substantial different results.

  9. Analysis of acetabular orientation and femoral anteversion using images of three-dimensional reconstructed bone models.

    PubMed

    Park, Jaeyeong; Kim, Jun-Young; Kim, Hyun Deok; Kim, Young Cheol; Seo, Anna; Je, Minkyu; Mun, Jong Uk; Kim, Bia; Park, Il Hyung; Kim, Shin-Yoon

    2017-05-01

    Radiographic measurements using two-dimensional (2D) plain radiographs or planes from computed tomography (CT) scans have several drawbacks, while measurements using images of three-dimensional (3D) reconstructed bone models can provide more consistent anthropometric information. We compared the consistency of results using measurements based on images of 3D reconstructed bone models (3D measurements) with those using planes from CT scans (measurements using 2D slice images). Ninety-six of 561 patients who had undergone deep vein thrombosis-CT between January 2013 and November 2014 were randomly selected. We evaluated measurements using 2D slice images and 3D measurements. The images used for 3D reconstruction of bone models were obtained and measured using [Formula: see text] and [Formula: see text] (Materialize, Leuven, Belgium). The mean acetabular inclination, acetabular anteversion and femoral anteversion values on 2D slice images were 42.01[Formula: see text], 18.64[Formula: see text] and 14.44[Formula: see text], respectively, while those using images of 3D reconstructed bone models were 52.80[Formula: see text], 14.98[Formula: see text] and 17.26[Formula: see text]. Intra-rater reliabilities for acetabular inclination, acetabular anteversion, and femoral anteversion on 2D slice images were 0.55, 0.81, and 0.85, respectively, while those for 3D measurements were 0.98, 0.99, and 0.98. Inter-rater reliabilities for acetabular inclination, acetabular anteversion and femoral anteversion on 2D slice images were 0.48, 0.86, and 0.84, respectively, while those for 3D measurements were 0.97, 0.99, and 0.97. The differences between the two measurements are explained by the use of different tools. However, more consistent measurements were possible using the images of 3D reconstructed bone models. Therefore, 3D measurement can be a good alternative to measurement using 2D slice images.

  10. Computational Investigation of a Pitch Oscillating Canard on Lift Enhancement and Tip Vortex Mitigation

    DTIC Science & Technology

    2017-04-01

    dimensional canard and computational domain ..........................4 Fig. 3 Prescribed dynamic ramp motion for the 2-D airfoil at k2 = 0.5 (a) and...airfoil as a function of equivalent mean angle of attack, unfiltered (a, c) and filtered (b, d), for reduced frequency of oscillation of k2 = 0.5 (a–b...filtered (b, d), for reduced frequency of oscillation of k2 = 0.5 (a–b) and 1.0 (c–d), M∞ = 0.5 .....10 Fig. 6 Lift coefficient of dynamic canard

  11. Characterizing focal hepatic lesions by free-breathing intravoxel incoherent motion MRI at 3.0 T.

    PubMed

    Watanabe, Haruo; Kanematsu, Masayuki; Goshima, Satoshi; Kajita, Kimihiro; Kawada, Hiroshi; Noda, Yoshifumi; Tatahashi, Yukichi; Kawai, Nobuyuki; Kondo, Hiroshi; Moriyama, Noriyuki

    2014-12-01

    Diffusion-weighted (DW) imaging is commonly used to distinguish between benign and malignant liver lesions. To prospectively evaluate the true molecular-diffusion coefficient (D), perfusion-related diffusion coefficient (D*), perfusion fraction (f), and ADC of focal hepatic lesions using a free-breathing intravoxel incoherent motion (IVIM) DW sequence, and to determine if these parameters are useful for characterizing focal hepatic lesions. One hundred and twenty hepatic lesions (34 metastases, 32 hepatocellular carcinoma [HCC], 33 hemangiomas, and 21 liver cysts) in 74 patients were examined. Mean D, D*, f, and ADC values of hepatic lesions were compared among pathologies. ROC curve analyses were performed to assess the performances of D, D*, f, and ADC values for the characterization of liver lesions as benign or malignant. The mean D and ADC values of benign lesions were greater than those of malignant lesions (P < 0.001). Although the mean D and ADC values of liver cysts were greater than those of hemangiomas (P < 0.001), and these values were not significantly different between metastases and HCCs (P = 0.99). Area under the ROC curve for ADC values (0.98) was significantly greater (P = 0.048) than that for D values (0.96) for the differentiation of benign and malignant lesions. Sensitivity and specificity for the detection of malignant lesion were 89% and 98%, respectively, when an ADC cut-off value of 1.40 was applied. D and ADC values have more potential for characterizing focal hepatic lesions than D* or f values, and for the differentiation of malignancy and benignity. © The Foundation Acta Radiologica 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  12. Integrating dimension reduction and out-of-sample extension in automated classification of ex vivo human patellar cartilage on phase contrast X-ray computed tomography.

    PubMed

    Nagarajan, Mahesh B; Coan, Paola; Huber, Markus B; Diemoz, Paul C; Wismüller, Axel

    2015-01-01

    Phase contrast X-ray computed tomography (PCI-CT) has been demonstrated as a novel imaging technique that can visualize human cartilage with high spatial resolution and soft tissue contrast. Different textural approaches have been previously investigated for characterizing chondrocyte organization on PCI-CT to enable classification of healthy and osteoarthritic cartilage. However, the large size of feature sets extracted in such studies motivates an investigation into algorithmic feature reduction for computing efficient feature representations without compromising their discriminatory power. For this purpose, geometrical feature sets derived from the scaling index method (SIM) were extracted from 1392 volumes of interest (VOI) annotated on PCI-CT images of ex vivo human patellar cartilage specimens. The extracted feature sets were subject to linear and non-linear dimension reduction techniques as well as feature selection based on evaluation of mutual information criteria. The reduced feature set was subsequently used in a machine learning task with support vector regression to classify VOIs as healthy or osteoarthritic; classification performance was evaluated using the area under the receiver-operating characteristic (ROC) curve (AUC). Our results show that the classification performance achieved by 9-D SIM-derived geometric feature sets (AUC: 0.96 ± 0.02) can be maintained with 2-D representations computed from both dimension reduction and feature selection (AUC values as high as 0.97 ± 0.02). Thus, such feature reduction techniques can offer a high degree of compaction to large feature sets extracted from PCI-CT images while maintaining their ability to characterize the underlying chondrocyte patterns.

  13. 3D printing of shape-conformable thermoelectric materials using all-inorganic Bi2Te3-based inks

    NASA Astrophysics Data System (ADS)

    Kim, Fredrick; Kwon, Beomjin; Eom, Youngho; Lee, Ji Eun; Park, Sangmin; Jo, Seungki; Park, Sung Hoon; Kim, Bong-Seo; Im, Hye Jin; Lee, Min Ho; Min, Tae Sik; Kim, Kyung Tae; Chae, Han Gi; King, William P.; Son, Jae Sung

    2018-04-01

    Thermoelectric energy conversion offers a unique solution for generating electricity from waste heat. However, despite recent improvements in the efficiency of thermoelectric materials, the widespread application of thermoelectric generators has been hampered by challenges in fabricating thermoelectric materials with appropriate dimensions to perfectly fit heat sources. Herein, we report an extrusion-based three-dimensional printing method to produce thermoelectric materials with geometries suitable for heat sources. All-inorganic viscoelastic inks were synthesized using Sb2Te3 chalcogenidometallate ions as inorganic binders for Bi2Te3-based particles. Three-dimensional printed materials with various geometries showed homogenous thermoelectric properties, and their dimensionless figure-of-merit values of 0.9 (p-type) and 0.6 (n-type) were comparable to the bulk values. Conformal cylindrical thermoelectric generators made of 3D-printed half rings mounted on an alumina pipe were studied both experimentally and computationally. Simulations show that the power output of the conformal, shape-optimized generator is higher than that of conventional planar generators.

  14. Energy Levels, Lifetimes, and Transition Rates for P-like Ions from Cr X to Zn XVI from Large-scale Relativistic Multiconfiguration Calculations

    NASA Astrophysics Data System (ADS)

    Wang, K.; Jönsson, P.; Gaigalas, G.; Radžiūtė, L.; Rynkun, P.; Del Zanna, G.; Chen, C. Y.

    2018-04-01

    The fully relativistic multiconfiguration Dirac–Hartree–Fock method is used to compute excitation energies and lifetimes for the 143 lowest states of the 3{s}23{p}3, 3s3p 4, 3{s}23{p}23d, 3s3p 33d, 3p 5, 3{s}23p3{d}2 configurations in P-like ions from Cr X to Zn XVI. Multipole (E1, M1, E2, M2) transition rates, line strengths, oscillator strengths, and branching fractions among these states are also given. Valence–valence and core–valence electron correlation effects are systematically accounted for using large basis function expansions. Computed excitation energies are compared with the NIST ASD and CHIANTI compiled values and previous calculations. The mean average absolute difference, removing obvious outliers, between computed and observed energies for the 41 lowest identified levels in Fe XII, is only 0.057%, implying that the computed energies are accurate enough to aid identification of new emission lines from the Sun and other astrophysical sources. The amount of energy and transition data of high accuracy are significantly increased for several P-like ions of astrophysics interest, where experimental data are still very scarce.

  15. A new strategic neurosurgical planning tool for brainstem cavernous malformations using interactive computer graphics with multimodal fusion images.

    PubMed

    Kin, Taichi; Nakatomi, Hirofumi; Shojima, Masaaki; Tanaka, Minoru; Ino, Kenji; Mori, Harushi; Kunimatsu, Akira; Oyama, Hiroshi; Saito, Nobuhito

    2012-07-01

    In this study, the authors used preoperative simulation employing 3D computer graphics (interactive computer graphics) to fuse all imaging data for brainstem cavernous malformations. The authors evaluated whether interactive computer graphics or 2D imaging correlated better with the actual operative field, particularly in identifying a developmental venous anomaly (DVA). The study population consisted of 10 patients scheduled for surgical treatment of brainstem cavernous malformations. Data from preoperative imaging (MRI, CT, and 3D rotational angiography) were automatically fused using a normalized mutual information method, and then reconstructed by a hybrid method combining surface rendering and volume rendering methods. With surface rendering, multimodality and multithreshold techniques for 1 tissue were applied. The completed interactive computer graphics were used for simulation of surgical approaches and assumed surgical fields. Preoperative diagnostic rates for a DVA associated with brainstem cavernous malformation were compared between conventional 2D imaging and interactive computer graphics employing receiver operating characteristic (ROC) analysis. The time required for reconstruction of 3D images was 3-6 hours for interactive computer graphics. Observation in interactive mode required approximately 15 minutes. Detailed anatomical information for operative procedures, from the craniotomy to microsurgical operations, could be visualized and simulated three-dimensionally as 1 computer graphic using interactive computer graphics. Virtual surgical views were consistent with actual operative views. This technique was very useful for examining various surgical approaches. Mean (±SEM) area under the ROC curve for rate of DVA diagnosis was significantly better for interactive computer graphics (1.000±0.000) than for 2D imaging (0.766±0.091; p<0.001, Mann-Whitney U-test). The authors report a new method for automatic registration of preoperative imaging data from CT, MRI, and 3D rotational angiography for reconstruction into 1 computer graphic. The diagnostic rate of DVA associated with brainstem cavernous malformation was significantly better using interactive computer graphics than with 2D images. Interactive computer graphics was also useful in helping to plan the surgical access corridor.

  16. Higher Rank ABJM Wilson Loops from Matrix Models

    NASA Astrophysics Data System (ADS)

    Cookmeyer, Jonathan; Liu, James; Zayas, Leopoldo

    2017-01-01

    We compute the expectation values of 1/6 supersymmetric Wilson Loops in ABJM theory in higher rank representations. Using standard matrix model techniques, we calculate the expectation value in the rank m fully symmetric and fully antisymmetric representation where m is scaled with N. To leading order, we find agreement with the classical action of D6 and D2 branes in AdS4 ×CP3 respectively. Further, we compute the first subleading order term, which, on the AdS side, makes a prediction for the one-loop effective action of the corresponding D6 and D2 branes. Supported by the National Science Foundation under Grant No. PHY 1559988 and the US Department of Energy under Grant No. DE-SC0007859.

  17. Computational representation of the aponeuroses as NURBS surfaces in 3D musculoskeletal models.

    PubMed

    Wu, Florence T H; Ng-Thow-Hing, Victor; Singh, Karan; Agur, Anne M; McKee, Nancy H

    2007-11-01

    Computational musculoskeletal (MSK) models - 3D graphics-based models that accurately simulate the anatomical architecture and/or the biomechanical behaviour of organ systems consisting of skeletal muscles, tendons, ligaments, cartilage and bones - are valued biomedical tools, with applications ranging from pathological diagnosis to surgical planning. However, current MSK models are often limited by their oversimplifications in anatomical geometries, sometimes lacking discrete representations of connective tissue components entirely, which ultimately affect their accuracy in biomechanical simulation. In particular, the aponeuroses - the flattened fibrous connective sheets connecting muscle fibres to tendons - have never been geometrically modeled. The initiative was thus to extend Anatomy3D - a previously developed software bundle for reconstructing muscle fibre architecture - to incorporate aponeurosis-modeling capacity. Two different algorithms for aponeurosis reconstruction were written in the MEL scripting language of the animation software Maya 6.0, using its NURBS (non-uniform rational B-splines) modeling functionality for aponeurosis surface representation. Both algorithms were validated qualitatively against anatomical and functional criteria.

  18. Study between anb angle and wits appraisal in cone beam computed tomography (cbct)

    PubMed Central

    Cibrián, Rosa; Gandia, Jose L.; Paredes, Vanessa

    2013-01-01

    Objectives: To analyse the ANB and Wits values and to study correlations between those two measurements and other measurements in diagnosing the anteroposterior maxilo-mandibular relationship with CBCT. Study Design: Ninety patients who had previously a CBCT (i-CAT®) as a diagnostic register were selected. A 3D cephalometry was designed using one software package, InVivo5®. This cephalometry included 3 planes of reference, 3 angle measurements and 1 linear measurement. The means and standard deviations of the mean of each measurement were assessed. After that, a Pearson´s correlation coefficient has been performed to analyse the significance of each relationship. Results: When classifying the sample according to the anteroposterior relationship, the values obtained of ANB (Class I: 53%; Class II: 37%; Class III: 10%) and Wits (Class I: 35%; Class II: 56%; Class III: 9%) did not coincide, except for the Class III group. However, of the patients classified differently (Class I and Class II patients) by ANB and Wits, a high percentage of individuals (n=22; 49%), had a mesofacial pattern with a mandibular plane angle within normal values. A correlation has been found between ANB and Wits (r=0,262), occlusal plane angle and ANB (r=0,426), and mandibular plane angle and Wits (r=0,242). No correlation was found between either Wits or ANB in relation with the age of the individuals. Conclusions: ANB and Wits must be included in 3D cephalometric analyses as both are necessary to undertake a more accurate diagnosis of the maxillo-mandibular relationship of the patients. Key words:Cone beam computed tomography, ANB, Wits, cephalometrics. PMID:23722136

  19. Computer-Aided Structural Engineering (CASE) Project. CBASIN--Structural Design of Saint Anthony Falls Stilling Basins According to Corps of Engineers Criteria for Hydraulic Structures. Computer Program X0098

    DTIC Science & Technology

    1989-08-01

    was entered as 1 in line four. Its values are entered under the following prompting message: UNIT WGT UNIT WGT LAT SOIL COEF DEPTH WIDTH MOIST...basins, tuese thick- A67 54 1 16 Hsi/2 : \\l 2 7 >- 9 >- 0x HSl/2 L 3 U- HSV /2 ( \\ i ^\\^ (J-HSl)/2 ! ^ I TYPE(A) i 6 N/2 : 1 2...program uses working stress analysis in accordance with Corps of Engineers EM 1110- 1 -2101, "Working Stresses." C METHODS D. EQUIPMENT DETAILS

  20. 4D Flexible Atom-Pairs: An efficient probabilistic conformational space comparison for ligand-based virtual screening

    PubMed Central

    2011-01-01

    Background The performance of 3D-based virtual screening similarity functions is affected by the applied conformations of compounds. Therefore, the results of 3D approaches are often less robust than 2D approaches. The application of 3D methods on multiple conformer data sets normally reduces this weakness, but entails a significant computational overhead. Therefore, we developed a special conformational space encoding by means of Gaussian mixture models and a similarity function that operates on these models. The application of a model-based encoding allows an efficient comparison of the conformational space of compounds. Results Comparisons of our 4D flexible atom-pair approach with over 15 state-of-the-art 2D- and 3D-based virtual screening similarity functions on the 40 data sets of the Directory of Useful Decoys show a robust performance of our approach. Even 3D-based approaches that operate on multiple conformers yield inferior results. The 4D flexible atom-pair method achieves an averaged AUC value of 0.78 on the filtered Directory of Useful Decoys data sets. The best 2D- and 3D-based approaches of this study yield an AUC value of 0.74 and 0.72, respectively. As a result, the 4D flexible atom-pair approach achieves an average rank of 1.25 with respect to 15 other state-of-the-art similarity functions and four different evaluation metrics. Conclusions Our 4D method yields a robust performance on 40 pharmaceutically relevant targets. The conformational space encoding enables an efficient comparison of the conformational space. Therefore, the weakness of the 3D-based approaches on single conformations is circumvented. With over 100,000 similarity calculations on a single desktop CPU, the utilization of the 4D flexible atom-pair in real-world applications is feasible. PMID:21733172

  1. Zero-point corrections for isotropic coupling constants for cyclohexadienyl radical, C₆H₇ and C₆H₆Mu: beyond the bond length change approximation.

    PubMed

    Hudson, Bruce S; Chafetz, Suzanne K

    2013-04-25

    Zero-point vibrational level averaging for electron spin resonance (ESR) and muon spin resonance (µSR) hyperfine coupling constants (HFCCs) are computed for H and Mu isotopomers of the cyclohexadienyl radical. A local mode approximation previously developed for computation of the effect of replacement of H by D on ¹³C-NMR chemical shifts is used. DFT methods are used to compute the change in energy and HFCCs when the geometry is changed from the equilibrium values for the stretch and both bend degrees of freedom. This variation is then averaged over the probability distribution for each degree of freedom. The method is tested using data for the methylene group of C₆H₇, cyclohexadienyl radical and its Mu analog. Good agreement is found for the difference between the HFCCs for Mu and H of CHMu and that for H of CHMu and CH₂ of the parent radical methylene group. All three of these HFCCs are the same in the absence of the zero point average, a one-parameter fit of the static HFCC, a(0), can be computed. That value, 45.2 Gauss, is compared to the results of several fixed geometry electronic structure computations. The HFCC values for the ortho, meta and para H atoms are then discussed.

  2. The Quantitative Criteria Based on the Fractal Dimensions, Entropy, and Lacunarity for the Spatial Distribution of Cancer Cell Nuclei Enable Identification of Low or High Aggressive Prostate Carcinomas

    PubMed Central

    Waliszewski, Przemyslaw

    2016-01-01

    Background: Tumor grading, PSA concentration, and stage determine a risk of prostate cancer patients with accuracy of about 70%. An approach based on the fractal geometrical model was proposed to eliminate subjectivity from the evaluation of tumor aggressiveness and to improve the prediction. This study was undertaken to validate classes of equivalence for the spatial distribution of cancer cell nuclei in a larger, independent set of prostate carcinomas. Methods: The global fractal capacity D0, information D1 and correlation D2 dimension, the local fractal dimension (LFD) and the local connected fractal dimension (LCFD), Shannon entropy H and lacunarity λ were measured using computer algorithms in digitalized images of both the reference set (n = 60) and the test set (n = 208) of prostate carcinomas. Results: Prostate carcinomas were re-stratified into seven classes of equivalence. The cut-off D0-values 1.5450, 1.5820, 1.6270, 1.6490, 1.6980, 1.7640 defined the classes from C1 to C7, respectively. The other measures but the D1 failed to define the same classes of equivalence. The pairs (D0, LFD), (D0, H), (D0, λ), (D1, LFD), (D1, H), (D1, λ) characterized the spatial distribution of cancer cell nuclei in each class. The co-application of those measures enabled the subordination of prostate carcinomas to one out of three clusters associated with different tumor aggressiveness. For D0 < 1.5820, LFD < 1.3, LCFD > 1.5, H < 0.7, and λ > 0.8, the class C1 or C2 contains low complexity low aggressive carcinomas exclusively. For D0 > 1.6980, LFD > 1.7644, LCFD > 1.7051, H > 0.9, and λ < 0.7, the class C6 or C7 contains high complexity high aggressive carcinomas. Conclusions: The cut-off D0-values defining the classes of equivalence were validated in this study. The cluster analysis suggested that the number of the subjective Gleason grades and the number of the objective classes of equivalence could be decreased from seven to three without a loss of clinically relevant information. Two novel quantitative criteria based on the complexity and the diversity measures enabled the identification of low or high aggressive prostate carcinomas and should be verified in the future multicenter, randomized studies. PMID:26903883

  3. Development of a flocculation sub-model for a 3-D CFD model based on rectangular settling tanks.

    PubMed

    Gong, M; Xanthos, S; Ramalingam, K; Fillos, J; Beckmann, K; Deur, A; McCorquodale, J A

    2011-01-01

    To assess performance and evaluate alternatives to improve the efficiency of rectangular Gould II type final settling tanks (FSTs), New York City Department of Environmental Protection and City College of NY developed a 3D computer model depicting the actual structural configuration of the tanks and the current and proposed hydraulic and solids loading rates. Fluent 6.3.26™ was the base platform for the computational fluid dynamics (CFD) model, for which sub-models of the SS settling characteristics, turbulence, flocculation and rheology were incorporated. This was supplemented by field and bench scale experiments to quantify the coefficients integral to the sub-models. The 3D model developed can be used to consider different baffle arrangements, sludge withdrawal mechanisms and loading alternatives to the FSTs. Flocculation in the front half of the rectangular tank especially in the region before and after the inlet baffle is one of the vital parameters that influences the capture efficiency of SS. Flocculation could be further improved by capturing medium and small size particles by creating an additional zone with an in-tank baffle. This was one of the methods that was adopted in optimizing the performance of the tank where the CCNY 3D CFD model was used to locate the in-tank baffle position. This paper describes the development of the flocculation sub-model and the relationship of the flocculation coefficients in the known Parker equation to the initial mixed liquor suspended solids (MLSS) concentration X0. A new modified equation is proposed removing the dependency of the breakup coefficient to the initial value of X0 based on preliminary data using normal and low concentration mixed liquor suspended solids values in flocculation experiments performed.

  4. Clinical value of patient-specific three-dimensional printing of congenital heart disease: Quantitative and qualitative assessments

    PubMed Central

    Lau, Ivan Wen Wen; Liu, Dongting; Xu, Lei; Fan, Zhanming

    2018-01-01

    Objective Current diagnostic assessment tools remain suboptimal in demonstrating complex morphology of congenital heart disease (CHD). This limitation has posed several challenges in preoperative planning, communication in medical practice, and medical education. This study aims to investigate the dimensional accuracy and the clinical value of 3D printed model of CHD in the above three areas. Methods Using cardiac computed tomography angiography (CCTA) data, a patient-specific 3D model of a 20-month-old boy with double outlet right ventricle was printed in Tango Plus material. Pearson correlation coefficient was used to evaluate correlation of the quantitative measurements taken at analogous anatomical locations between the CCTA images pre- and post-3D printing. Qualitative analysis was conducted by distributing surveys to six health professionals (two radiologists, two cardiologists and two cardiac surgeons) and three medical academics to assess the clinical value of the 3D printed model in these three areas. Results Excellent correlation (r = 0.99) was noted in the measurements between CCTA and 3D printed model, with a mean difference of 0.23 mm. Four out of six health professionals found the model to be useful in facilitating preoperative planning, while all of them thought that the model would be invaluable in enhancing patient-doctor communication. All three medical academics found the model to be helpful in teaching, and thought that the students will be able to learn the pathology quicker with better understanding. Conclusion The complex cardiac anatomy can be accurately replicated in flexible material using 3D printing technology. 3D printed heart models could serve as an excellent tool in facilitating preoperative planning, communication in medical practice, and medical education, although further studies with inclusion of more clinical cases are needed. PMID:29561912

  5. Accuracy of laser-scanned models compared to plaster models and cone-beam computed tomography.

    PubMed

    Kim, Jooseong; Heo, Giseon; Lagravère, Manuel O

    2014-05-01

    To compare the accuracy of measurements obtained from the three-dimensional (3D) laser scans to those taken from the cone-beam computed tomography (CBCT) scans and those obtained from plaster models. Eighteen different measurements, encompassing mesiodistal width of teeth and both maxillary and mandibular arch length and width, were selected using various landmarks. CBCT scans and plaster models were prepared from 60 patients. Plaster models were scanned using the Ortho Insight 3D laser scanner, and the selected landmarks were measured using its software. CBCT scans were imported and analyzed using the Avizo software, and the 26 landmarks corresponding to the selected measurements were located and recorded. The plaster models were also measured using a digital caliper. Descriptive statistics and intraclass correlation coefficient (ICC) were used to analyze the data. The ICC result showed that the values obtained by the three different methods were highly correlated in all measurements, all having correlations>0.808. When checking the differences between values and methods, the largest mean difference found was 0.59 mm±0.38 mm. In conclusion, plaster models, CBCT models, and laser-scanned models are three different diagnostic records, each with its own advantages and disadvantages. The present results showed that the laser-scanned models are highly accurate to plaster models and CBCT scans. This gives general clinicians an alternative to take into consideration the advantages of laser-scanned models over plaster models and CBCT reconstructions.

  6. A real-time moment-tensor inversion system (GRiD-MT-3D) using 3-D Green's functions

    NASA Astrophysics Data System (ADS)

    Nagao, A.; Furumura, T.; Tsuruoka, H.

    2016-12-01

    We developed a real-time moment-tensor inversion system using 3-D Green's functions (GRiD-MT-3D) by improving the current system (GRiD-MT; Tsuruoka et al., 2009), which uses 1-D Green's functions for longer periods than 20 s. Our moment-tensor inversion is applied to the real-time monitoring of earthquakes occurring beneath Kanto basin area. The basin, which is constituted of thick sediment layers, lies on the complex subduction of the Philippine-Sea Plate and the Pacific Plate that can significantly affect the seismic wave propagation. We compute 3-D Green's functions using finite-difference-method (FDM) simulations considering a 3-D velocity model, which is based on the Japan Integrated Velocity Structure Model (Koketsu et al., 2012), that includes crust, mantle, and subducting plates. The 3-D FDM simulations are computed over a volume of 468 km by 432 km by 120 km in the EW, NS, and depth directions, respectively, that is discretized into 0.25 km grids. Considering that the minimum S wave velocity of the sedimentary layer is 0.5 km/s, simulations can compute seismograms up to 0.5 Hz. We calculate Green's functions between 24,700 sources, which are distributed every 0.1° in the horizontal direction and every 9 km in depth direction, and 13 F-net stations. To compute this large number of Green's functions, we used the EIC parallel computer of ERI. The reciprocity theory, which switches the source and station positions, is used to reduce total computation costs. It took 156 hours to compute all the Green's functions. Results show that at long-periods (T>15 s), only small differences are observed between the 3-D and 1-D Green's functions as indicated by high correlation coefficients of 0.9 between the waveforms. However, at shorter periods (T<10 s), the differences become larger and the correlation coefficients drop to 0.5. The effect of the 3-D heterogeneous structure especially affects the Green's functions for the ray paths that across complex geological structures, such as the sedimentary basin or the subducting plates. After incorporation of the 3-D Green's functions in the GRiD-MT-3D system, we compare the results to the former GRiD-MT system to demonstrate the effectiveness of the new system in terms of variance reduction and accuracy of the moment-tensor estimation for much smaller events than the current one.

  7. Pure MW Data for v=0-6 of PbI Give Vibrational Spacings and a Full Analytic Potential Energy Function

    NASA Astrophysics Data System (ADS)

    Yoo, Ji Ho (Chris); Evans, Corey; Walker, Nick; Le Roy, Robert J.

    2015-06-01

    At last year's ISMS meeting, Zaleski et al. reported new broadband MW spectroscopy measurements of pure rotational transitions in the v=0-6 levels of the ^2Π1/2 ground electronic state of PbI. The analysis presented at that time was a conventional v-level by v-level `band-constant' analysis performed using the PGopher program. That level-by-level PGopher analysis yielded values of B_v, D_v and five spin-splitting parameters for each vibrational level of each isotopologue. Ignoring the spin-splitting information, the B_v and D_v values were used to generate a set of synthetic pure R(0) transitions for each level that were taken to represent the ``mechanical'' information about the molecule contained in these spectra. A standard direct-potential-fit (DPF) analysis was then used to fit these data to an ``Expanded Morse Oscillator'' (EMO) potential function form. The well-depth parameter D_e was fixed at the literature value, while values of the equilibrium distance r_e and three EMO exponent-coefficient expansion `potential shape' parameters are determined from the fits. The best fits to the data yield potentials whose fundamental vibrational spacings are in excellent agreement with experiment together with reliable predictions for the first five overtone energies. D.P. Zaleski, H. Köckert, S.L. Stephens, N. Walker, L.-M. Dickens, and C. Evans, paper RE08 at the 69th International Symposium on Molecular Spectroscopy, University of Illinois (2014). PGopher - a Program for Simulating Rotational Structure, C. M. Western, University of Bristol, http://pgopher.chm.bris.ac.uk DPotFit 2.0: A Computer Program for fitting Diatomic Molecule Spectra to Potential Energy Functions, R.J. Le Roy, J. Seto and Y. Huang, University of Waterloo Chemical Physics Research Report CP-667 (2013); see http://leroy.uwaterloo.ca/programs/. K. Ziebarth, R. Breidohr, O. Shestakov and E.H. Fink, Chem. Phys. Lett. 190, 271 (1992).

  8. SU-E-T-184: Clinical VMAT QA Practice Using LINAC Delivery Log Files

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, H; Jacobson, T; Gu, X

    2015-06-15

    Purpose: To evaluate the accuracy of volumetric modulated arc therapy (VMAT) treatment delivery dose clouds by comparing linac log data to doses measured using an ionization chamber and film. Methods: A commercial IMRT quality assurance (QA) process utilizing a DICOM-RT framework was tested for clinical practice using 30 prostate and 30 head and neck VMAT plans. Delivered 3D VMAT dose distributions were independently checked using a PinPoint ionization chamber and radiographic film in a solid water phantom. DICOM RT coordinates were used to extract the corresponding point and planar doses from 3D log file dose distributions. Point doses were evaluatedmore » by computing the percent error between log file and chamber measured values. A planar dose evaluation was performed for each plan using a 2D gamma analysis with 3% global dose difference and 3 mm isodose point distance criteria. The same analysis was performed to compare treatment planning system (TPS) doses to measured values to establish a baseline assessment of agreement. Results: The mean percent error between log file and ionization chamber dose was 1.0%±2.1% for prostate VMAT plans and −0.2%±1.4% for head and neck plans. The corresponding TPS calculated and measured ionization chamber values agree within 1.7%±1.6%. The average 2D gamma passing rates for the log file comparison to film are 98.8%±1.0% and 96.2%±4.2% for the prostate and head and neck plans, respectively. The corresponding passing rates for the TPS comparison to film are 99.4%±0.5% and 93.9%±5.1%. Overall, the point dose and film data indicate that log file determined doses are in excellent agreement with measured values. Conclusion: Clinical VMAT QA practice using LINAC treatment log files is a fast and reliable method for patient-specific plan evaluation.« less

  9. 3D shape recovery from image focus using gray level co-occurrence matrix

    NASA Astrophysics Data System (ADS)

    Mahmood, Fahad; Munir, Umair; Mehmood, Fahad; Iqbal, Javaid

    2018-04-01

    Recovering a precise and accurate 3-D shape of the target object utilizing robust 3-D shape recovery algorithm is an ultimate objective of computer vision community. Focus measure algorithm plays an important role in this architecture which convert the color values of each pixel of the acquired 2-D image dataset into corresponding focus values. After convolving the focus measure filter with the input 2-D image dataset, a 3-D shape recovery approach is applied which will recover the depth map. In this document, we are concerned with proposing Gray Level Co-occurrence Matrix along with its statistical features for computing the focus information of the image dataset. The Gray Level Co-occurrence Matrix quantifies the texture present in the image using statistical features and then applies joint probability distributive function of the gray level pairs of the input image. Finally, we quantify the focus value of the input image using Gaussian Mixture Model. Due to its little computational complexity, sharp focus measure curve, robust to random noise sources and accuracy, it is considered as superior alternative to most of recently proposed 3-D shape recovery approaches. This algorithm is deeply investigated on real image sequences and synthetic image dataset. The efficiency of the proposed scheme is also compared with the state of art 3-D shape recovery approaches. Finally, by means of two global statistical measures, root mean square error and correlation, we claim that this approach -in spite of simplicity generates accurate results.

  10. Computer-aided diagnosis of lung cancer: the effect of training data sets on classification accuracy of lung nodules.

    PubMed

    Gong, Jing; Liu, Ji-Yu; Sun, Xi-Wen; Zheng, Bin; Nie, Sheng-Dong

    2018-02-05

    This study aims to develop a computer-aided diagnosis (CADx) scheme for classification between malignant and benign lung nodules, and also assess whether CADx performance changes in detecting nodules associated with early and advanced stage lung cancer. The study involves 243 biopsy-confirmed pulmonary nodules. Among them, 76 are benign, 81 are stage I and 86 are stage III malignant nodules. The cases are separated into three data sets involving: (1) all nodules, (2) benign and stage I malignant nodules, and (3) benign and stage III malignant nodules. A CADx scheme is applied to segment lung nodules depicted on computed tomography images and we initially computed 66 3D image features. Then, three machine learning models namely, a support vector machine, naïve Bayes classifier and linear discriminant analysis, are separately trained and tested by using three data sets and a leave-one-case-out cross-validation method embedded with a Relief-F feature selection algorithm. When separately using three data sets to train and test three classifiers, the average areas under receiver operating characteristic curves (AUC) are 0.94, 0.90 and 0.99, respectively. When using the classifiers trained using data sets with all nodules, average AUC values are 0.88 and 0.99 for detecting early and advanced stage nodules, respectively. AUC values computed from three classifiers trained using the same data set are consistent without statistically significant difference (p  >  0.05). This study demonstrates (1) the feasibility of applying a CADx scheme to accurately distinguish between benign and malignant lung nodules, and (2) a positive trend between CADx performance and cancer progression stage. Thus, in order to increase CADx performance in detecting subtle and early cancer, training data sets should include more diverse early stage cancer cases.

  11. Computer-aided diagnosis of lung cancer: the effect of training data sets on classification accuracy of lung nodules

    NASA Astrophysics Data System (ADS)

    Gong, Jing; Liu, Ji-Yu; Sun, Xi-Wen; Zheng, Bin; Nie, Sheng-Dong

    2018-02-01

    This study aims to develop a computer-aided diagnosis (CADx) scheme for classification between malignant and benign lung nodules, and also assess whether CADx performance changes in detecting nodules associated with early and advanced stage lung cancer. The study involves 243 biopsy-confirmed pulmonary nodules. Among them, 76 are benign, 81 are stage I and 86 are stage III malignant nodules. The cases are separated into three data sets involving: (1) all nodules, (2) benign and stage I malignant nodules, and (3) benign and stage III malignant nodules. A CADx scheme is applied to segment lung nodules depicted on computed tomography images and we initially computed 66 3D image features. Then, three machine learning models namely, a support vector machine, naïve Bayes classifier and linear discriminant analysis, are separately trained and tested by using three data sets and a leave-one-case-out cross-validation method embedded with a Relief-F feature selection algorithm. When separately using three data sets to train and test three classifiers, the average areas under receiver operating characteristic curves (AUC) are 0.94, 0.90 and 0.99, respectively. When using the classifiers trained using data sets with all nodules, average AUC values are 0.88 and 0.99 for detecting early and advanced stage nodules, respectively. AUC values computed from three classifiers trained using the same data set are consistent without statistically significant difference (p  >  0.05). This study demonstrates (1) the feasibility of applying a CADx scheme to accurately distinguish between benign and malignant lung nodules, and (2) a positive trend between CADx performance and cancer progression stage. Thus, in order to increase CADx performance in detecting subtle and early cancer, training data sets should include more diverse early stage cancer cases.

  12. The spectrum of singly ionized tungsten

    NASA Astrophysics Data System (ADS)

    Husain, Abid; Jabeen, S.; Wajid, Abdul

    2018-05-01

    The ab initio calculations were performed using Cowan's computer code for ground configuration5d46s incorporating other interacting even parity configurations 5d36s2 and 5d5, also for the three lowest excited configurations5d46p, 5d36s6p and 5d36s5f of odd parity matrix. The initial energy parameter scaling applied for Eav and ζ at 100% of the HFR values and Fk at 85%, Gk and Rk at 75% of the HFR values. The reported values of levels were taken from NIST ASD levels list. The levels were used to run least square fitted (LSF). This allowed adjusting the energy to the real values and hence a better prediction was achieved.

  13. Diffusion coefficients of Mg isotopes in enstatite and forsterite melts calculated by first-principles molecular dynamic simulations

    NASA Astrophysics Data System (ADS)

    Huang, F.; Qi, Y.; Liu, X.; He, L.

    2016-12-01

    Stable isotopes can be fractionated by kinetic chemical diffusion because diffusion coefficients (D) of isotopes are mass-dependent. Diffusive isotopic fractionation recorded in rocks and minerals provide unique temporal constrains on geological processes. The mass dependence of D can be described in the form of Di/Dj= (mj/mi)β, where m denotes masses of isotope i and j, and β is an emperical parameter used to quantify the diffusive transport of isotopes [1]. β values can be estimated by experimental calibration and observation of natural samples, which are still rarely reported because it is challenging to precisely quantify the boundary conditions of diffusion processes [2,3,4]. Recent advances in computation technique provide a new way to theoretically calculate β values. For instance, classical molecular dynamics with empirical potential have been used to simulate interactions between atoms and estimate β of Mg isotopes in MgSiO3 melt [3]. Here, to further consider the effect of bonding and electron properties on β values, we apply first-principles Born-Oppenheimer Molecular Dynamics and pseudo-isotope methods (assuming mj/mi = 1/24, 1/4, 2, and 5) to estimate β for MgSiO3 and Mg2SiO4 melts. Our calculation shows that β of Mg isotopes with pseudo-mass ratios are consistent, indicating the reliability of the pseudo-isotope method. For MgSiO3 melt, β is 0.18 at 4000K and 0 GPa, higher than the value calculatedusing molecular dynamics simulations (0.135) [3]. For Mg2SiO4 melt at 0 GPa, β values are: 0.23 ± 0.04 at 2300K, 0.24 ± 0.07 at 3000K, and 0.24 ± 0.01 at 4000K. Notably, β of MgSiO3 and Mg2SiO4 melts are significantly higher than the value determined by diffusion experiments (0.05) [2]. These results indicate that β values are not sensitive to temperature, but dependent on melt composition.

  14. Computational and Experimental Characterization of Five Crystal Forms of Thymine: Packing Polymorphism, Polytypism/Disorder and Stoichiometric 0.8-Hydrate.

    PubMed

    Braun, Doris E; Gelbrich, Thomas; Wurst, Klaus; Griesser, Ulrich J

    2016-06-01

    New polymorphs of thymine emerged in an experimental search for solid forms, which was guided by the computationally generated crystal energy landscape. Three of the four anhydrates (AH) are homeoenergetic ( A° - C ) and their packing modes differ only in the location of oxygen and hydrogen atoms. AHs A° and B are ordered phases, whereas AH C shows disorder (X-ray diffuse scattering). Anhydrates AHs A° and B are ordered phases, whereas AH C shows disorder (X-ray diffuse scattering). Analysis of the crystal energy landscape for alternative AH C hydrogen bonded ribbon motifs identified a number of different packing modes, whose 3D structures were calculated to deviate by less than 0.24 kJ mol -1 in lattice energy. These structures provide models for stacking faults. The three anhydrates A ° - C show strong similarity in their powder X-ray diffraction, thermoanalytical and spectroscopic (IR and Raman) characteristics. The already known anhydrate AH A ° was identified as the thermodynamically most stable form at ambient conditions; AH B and AH C are metastable but show high kinetic stability. The hydrate of thymine is stable only at water activities ( a w ) > 0.95 at temperatures ≤ 25 °C. It was found to be a stoichiometric hydrate despite being a channel hydrate with an unusual water:thymine ratio of 0.8:1. Depending on the dehydration conditions, either AH C or AH D is obtained. The hydrate is the only known precursor to AH D . This study highlights the value and complementarity of simultaneous explorations of computationally and experimentally generated solid form landscapes of a small molecule anhydrate ↔ hydrate system.

  15. Computational and Experimental Characterization of Five Crystal Forms of Thymine: Packing Polymorphism, Polytypism/Disorder and Stoichiometric 0.8-Hydrate

    PubMed Central

    Braun, Doris E.; Gelbrich, Thomas; Wurst, Klaus; Griesser, Ulrich J.

    2017-01-01

    New polymorphs of thymine emerged in an experimental search for solid forms, which was guided by the computationally generated crystal energy landscape. Three of the four anhydrates (AH) are homeoenergetic (A° – C) and their packing modes differ only in the location of oxygen and hydrogen atoms. AHs A° and B are ordered phases, whereas AH C shows disorder (X-ray diffuse scattering). Anhydrates AHs A° and B are ordered phases, whereas AH C shows disorder (X-ray diffuse scattering). Analysis of the crystal energy landscape for alternative AH C hydrogen bonded ribbon motifs identified a number of different packing modes, whose 3D structures were calculated to deviate by less than 0.24 kJ mol–1 in lattice energy. These structures provide models for stacking faults. The three anhydrates A° – C show strong similarity in their powder X-ray diffraction, thermoanalytical and spectroscopic (IR and Raman) characteristics. The already known anhydrate AH A° was identified as the thermodynamically most stable form at ambient conditions; AH B and AH C are metastable but show high kinetic stability. The hydrate of thymine is stable only at water activities (aw) > 0.95 at temperatures ≤ 25 °C. It was found to be a stoichiometric hydrate despite being a channel hydrate with an unusual water:thymine ratio of 0.8:1. Depending on the dehydration conditions, either AH C or AH D is obtained. The hydrate is the only known precursor to AH D. This study highlights the value and complementarity of simultaneous explorations of computationally and experimentally generated solid form landscapes of a small molecule anhydrate ↔ hydrate system. PMID:28663717

  16. 0–0 Energies Using Hybrid Schemes: Benchmarks of TD-DFT, CIS(D), ADC(2), CC2, and BSE/GW formalisms for 80 Real-Life Compounds

    PubMed Central

    2015-01-01

    The 0–0 energies of 80 medium and large molecules have been computed with a large panel of theoretical formalisms. We have used an approach computationally tractable for large molecules, that is, the structural and vibrational parameters are obtained with TD-DFT, the solvent effects are accounted for with the PCM model, whereas the total and transition energies have been determined with TD-DFT and with five wave function approaches accounting for contributions from double excitations, namely, CIS(D), ADC(2), CC2, SCS-CC2, and SOS-CC2, as well as Green’s function based BSE/GW approach. Atomic basis sets including diffuse functions have been systematically applied, and several variations of the PCM have been evaluated. Using solvent corrections obtained with corrected linear-response approach, we found that three schemes, namely, ADC(2), CC2, and BSE/GW allow one to reach a mean absolute deviation smaller than 0.15 eV compared to the measurements, the two former yielding slightly better correlation with experiments than the latter. CIS(D), SCS-CC2, and SOS-CC2 provide significantly larger deviations, though the latter approach delivers highly consistent transition energies. In addition, we show that (i) ADC(2) and CC2 values are extremely close to each other but for systems absorbing at low energies; (ii) the linear-response PCM scheme tends to overestimate solvation effects; and that (iii) the average impact of nonequilibrium correction on 0–0 energies is negligible. PMID:26574326

  17. On the performance of large Gaussian basis sets for the computation of total atomization energies

    NASA Technical Reports Server (NTRS)

    Martin, J. M. L.

    1992-01-01

    The total atomization energies of a number of molecules have been computed using an augmented coupled-cluster method and (5s4p3d2f1g) and 4s3p2d1f) atomic natural orbital (ANO) basis sets, as well as the correlation consistent valence triple zeta plus polarization (cc-pVTZ) correlation consistent valence quadrupole zeta plus polarization (cc-pVQZ) basis sets. The performance of ANO and correlation consistent basis sets is comparable throughout, although the latter can result in significant CPU time savings. Whereas the inclusion of g functions has significant effects on the computed Sigma D(e) values, chemical accuracy is still not reached for molecules involving multiple bonds. A Gaussian-1 (G) type correction lowers the error, but not much beyond the accuracy of the G1 model itself. Using separate corrections for sigma bonds, pi bonds, and valence pairs brings down the mean absolute error to less than 1 kcal/mol for the spdf basis sets, and about 0.5 kcal/mol for the spdfg basis sets. Some conclusions on the success of the Gaussian-1 and Gaussian-2 models are drawn.

  18. Aerosol and cloud microphysics covariability in the northeast Pacific boundary layer estimated with ship-based and satellite remote sensing observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Painemal, David; Chiu, J. -Y. Christine; Minnis, Patrick

    We utilized ship measurements collected over the northeast Pacific along transects between the port of Los Angeles (33.7°N, 118.2°W) and Honolulu (21.3°N, 157.8°W) during May to August 2013 in order to investigate the covariability between marine low cloud microphysical and aerosol properties. Ship-based retrievals of cloud optical depth (τ) from a Sun photometer and liquid water path (LWP) from a microwave radiometer were combined to derive cloud droplet number concentration N d and compute a cloud-aerosol interaction (ACI) metric defined as ACI CCN=∂ ln(N d)/∂ ln(CCN), with CCN denoting the cloud condensation nuclei concentration measured at 0.4% (CCN 0.4) andmore » 0.3% (CCN 0.3) supersaturation. Analysis of CCN 0.4, accumulation mode aerosol concentration (N a), and extinction coefficient (σ ext) indicates that N a and σ ext can be used as CCN 0.4 proxies for estimating ACI. ACI CCN derived from 10 min averaged N d and CCN 0.4 and CCN 0.3, and CCN 0.4 regressions using N a and σ ext, produce high ACI CCN: near 1.0, that is, a fractional change in aerosols is associated with an equivalent fractional change in Nd. ACI CCN computed in deep boundary layers was small (ACI CCN=0.60), indicating that surface aerosol measurements inadequately represent the aerosol variability below clouds. Satellite cloud retrievals from MODerate-resolution Imaging Spectroradiometer and GOES-15 data were compared against ship-based retrievals and further analyzed to compute a satellite-based ACI CCN. We found that the satellite data correlated well with their ship-based counterparts with linear correlation coefficients equal to or greater than 0.78. Combined satellite Nd and ship-based CCN 0.4 and Na yielded a maximum ACI CCN=0.88–0.92, a value slightly less than the ship-based ACI CCN, but still consistent with aircraft-based studies in the eastern Pacific.« less

  19. Aerosol and cloud microphysics covariability in the northeast Pacific boundary layer estimated with ship-based and satellite remote sensing observations

    DOE PAGES

    Painemal, David; Chiu, J. -Y. Christine; Minnis, Patrick; ...

    2017-02-27

    We utilized ship measurements collected over the northeast Pacific along transects between the port of Los Angeles (33.7°N, 118.2°W) and Honolulu (21.3°N, 157.8°W) during May to August 2013 in order to investigate the covariability between marine low cloud microphysical and aerosol properties. Ship-based retrievals of cloud optical depth (τ) from a Sun photometer and liquid water path (LWP) from a microwave radiometer were combined to derive cloud droplet number concentration N d and compute a cloud-aerosol interaction (ACI) metric defined as ACI CCN=∂ ln(N d)/∂ ln(CCN), with CCN denoting the cloud condensation nuclei concentration measured at 0.4% (CCN 0.4) andmore » 0.3% (CCN 0.3) supersaturation. Analysis of CCN 0.4, accumulation mode aerosol concentration (N a), and extinction coefficient (σ ext) indicates that N a and σ ext can be used as CCN 0.4 proxies for estimating ACI. ACI CCN derived from 10 min averaged N d and CCN 0.4 and CCN 0.3, and CCN 0.4 regressions using N a and σ ext, produce high ACI CCN: near 1.0, that is, a fractional change in aerosols is associated with an equivalent fractional change in Nd. ACI CCN computed in deep boundary layers was small (ACI CCN=0.60), indicating that surface aerosol measurements inadequately represent the aerosol variability below clouds. Satellite cloud retrievals from MODerate-resolution Imaging Spectroradiometer and GOES-15 data were compared against ship-based retrievals and further analyzed to compute a satellite-based ACI CCN. We found that the satellite data correlated well with their ship-based counterparts with linear correlation coefficients equal to or greater than 0.78. Combined satellite Nd and ship-based CCN 0.4 and Na yielded a maximum ACI CCN=0.88–0.92, a value slightly less than the ship-based ACI CCN, but still consistent with aircraft-based studies in the eastern Pacific.« less

  20. Multiple-3D-object secure information system based on phase shifting method and single interference.

    PubMed

    Li, Wei-Na; Shi, Chen-Xiao; Piao, Mei-Lan; Kim, Nam

    2016-05-20

    We propose a multiple-3D-object secure information system for encrypting multiple three-dimensional (3D) objects based on the three-step phase shifting method. During the decryption procedure, five phase functions (PFs) are decreased to three PFs, in comparison with our previous method, which implies that one cross beam splitter is utilized to implement the single decryption interference. Moreover, the advantages of the proposed scheme also include: each 3D object can be decrypted discretionarily without decrypting a series of other objects earlier; the quality of the decrypted slice image of each object is high according to the correlation coefficient values, none of which is lower than 0.95; no iterative algorithm is involved. The feasibility of the proposed scheme is demonstrated by computer simulation results.

  1. Predicting SF-6D utility scores from the Neck Disability Index and Numeric Rating Scales for Neck and Arm Pain

    PubMed Central

    Carreon, Leah Y.; Anderson, Paul A.; McDonough, Christine M.; Djurasovic, Mladen; Glassman, Steven D.

    2010-01-01

    Study Design Cross-sectional cohort Objective This study aims to provide an algorithm estimate SF-6D utilities using data from the NDI, neck pain and arm pain scores. Summary of Background Data Although cost-utility analysis is increasingly used to provide information about the relative value of alternative interventions, health state values or utilities are rarely available from clinical trial data. The Neck Disability Index (NDI) and numeric rating scales for neck and arm pain, are widely used disease-specific measures of symptoms, function and disability in patients with cervical degenerative disorders. The purpose of this study is to provide an algorithm to allow estimation of SF-6D utilities using data from the NDI, and numeric rating scales for neck and arm pain. Methods SF-36, NDI, neck and arm pain rating scale scores were prospectively collected pre-operatively, at 12 and 24 months post-operatively in 2080 patients undergoing cervical fusion for degenerative disorders. SF-6D utilities were computed and Spearman correlation coefficients were calculated for paired observations from multiple time points between NDI, neck and arm pain scores and SF-6D utility scores. SF-6D scores were estimated from the NDI, neck and arm pain scores using a linear regression model. Using a separate, independent dataset of 396 patients in which and NDI scores were available SF-6D was estimated for each subject and compared to their actual SF-6D. Results The mean age for those in the development sample, was 50.4 ± 11.0 years and 33% were male. In the validation sample the mean age was 53.1 ± 9.9 years and 35% were male. Correlations between the SF-6D and the NDI, neck and arm pain scores were statistically significant (p<0.0001) with correlation coefficients of 0.82, 0.62, and 0.50 respectively. The regression equation using NDI alone to predict SF-6D had an R2 of 0.66 and a root mean square error (RMSE) of 0.056. In the validation analysis, there was no statistically significant difference (p=0.961) between actual mean SF-6D (0.49 ± 0.08) and the estimated mean SF-6D score (0.49 ± 0.08) using the NDI regression model. Conclusion This regression-based algorithm may be a useful tool to predict SF-6D scores in studies of cervical degenerative disease that have collected NDI but not utility scores. PMID:20847713

  2. Effect of field-of-view size on gray values derived from cone-beam computed tomography compared with the Hounsfield unit values from multidetector computed tomography scans

    PubMed Central

    Shokri, Abbas; Bidgoli, Mohsen; Akbarzadeh, Mahdi; Ghazikhanlu-Sani, Karim; Fallahi-Sichani, Hamed

    2018-01-01

    Purpose This study aimed to evaluate the effect of field-of-view (FOV) size on the gray values derived from conebeam computed tomography (CBCT) compared with the Hounsfield unit values from multidetector computed tomography (MDCT) scans as the gold standard. Materials and Methods A radiographic phantom was designed with 4 acrylic cylinders. One cylinder was filled with distilled water, and the other 3 were filled with 3 types of bone substitute: namely, Nanobone, Cenobone, and Cerabone. The phantom was scanned with 2 CBCT systems using 2 different FOV sizes, and 1 MDCT system was used as the gold standard. The mean gray values (MGVs) of each cylinder were calculated in each imaging protocol. Results In both CBCT systems, significant differences were noted in the MGVs of all materials between the 2 FOV sizes (P<.05) except for Cerabone in the Cranex3D system. Significant differences were found in the MGVs of each material compared with the others in both FOV sizes for each CBCT system. No significant difference was seen between the Cranex3D CBCT system and the MDCT system in the MGVs of bone substitutes on images obtained with a small FOV. Conclusion The size of the FOV significantly changed the MGVs of all bone substitutes, except for Cerabone in the Cranex3D system. Both CBCT systems had the ability to distinguish the 3 types of bone substitutes based on a comparison of their MGVs. The Cranex3D CBCT system used with a small FOV had a significant correlation with MDCT results. PMID:29581947

  3. Influence of refractive condition on retinal vasculature complexity in younger subjects.

    PubMed

    Azemin, Mohd Zulfaezal Che; Daud, Norsyazwani Mohamad; Ab Hamid, Fadilah; Zahari, Ilyanoon; Sapuan, Abdul Halim

    2014-01-01

    The aim of this study was to compare the retinal vasculature complexity between emmetropia, and myopia in younger subjects. A total of 82 patients (24.12 ± 1.25 years) with two types of refractive conditions, myopia and emmetropia were enrolled in this study. Refraction data were converted to spherical equivalent refraction. These retinal images (right eyes) were obtained from NAVIS Lite Image Filing System and the vasculature complexity was measured by fractal dimension (D f ), quantified using a computer software following a standardized protocol. There was a significant difference (P < 0.05) in the value of D f between emmetropic (1.5666 ± 0.0160) and myopic (1.5588 ± 0.0142) groups. A positive correlation (rho = 0.260, P < 0.05) between the D f and the spherical equivalent refraction was detected in this study. Using a linear model, it was estimated that 6.7% of the variation in D f could be explained by spherical equivalent refraction. This study provides valuable findings about the effect of moderate to high myopia on the fractal dimension of the retinal vasculature network. These results show that myopic refraction in younger subjects was associated with a decrease in D f , suggesting a loss of retinal vessel density with moderate to high myopia.

  4. Comparison of spatiotemporal interpolators for 4D image reconstruction from 2D transesophageal ultrasound

    NASA Astrophysics Data System (ADS)

    Haak, Alexander; van Stralen, Marijn; van Burken, Gerard; Klein, Stefan; Pluim, Josien P. W.; de Jong, Nico; van der Steen, Antonius F. W.; Bosch, Johan G.

    2012-03-01

    °For electrophysiology intervention monitoring, we intend to reconstruct 4D ultrasound (US) of structures in the beating heart from 2D transesophageal US by scanplane rotation. The image acquisition is continuous but unsynchronized to the heart rate, which results in a sparsely and irregularly sampled dataset and a spatiotemporal interpolation method is desired. Previously, we showed the potential of normalized convolution (NC) for interpolating such datasets. We explored 4D interpolation by 3 different methods: NC, nearest neighbor (NN), and temporal binning followed by linear interpolation (LTB). The test datasets were derived by slicing three 4D echocardiography datasets at random rotation angles (θ, range: 0-180) and random normalized cardiac phase (τ, range: 0-1). Four different distributions of rotated 2D images with 600, 900, 1350, and 1800 2D input images were created from all TEE sets. A 2D Gaussian kernel was used for NC and optimal kernel sizes (σθ and στ) were found by performing an exhaustive search. The RMS gray value error (RMSE) of the reconstructed images was computed for all interpolation methods. The estimated optimal kernels were in the range of σθ = 3.24 - 3.69°/ στ = 0.045 - 0.048, σθ = 2.79°/ στ = 0.031 - 0.038, σθ = 2.34°/ στ = 0.023 - 0.026, and σθ = 1.89°/ στ = 0.021 - 0.023 for 600, 900, 1350, and 1800 input images respectively. We showed that NC outperforms NN and LTB. For a small number of input images the advantage of NC is more pronounced.

  5. Measurement of D s + production and nuclear modification factor in Pb-Pb collisions at sqrt{{s}_{NN}}=2.76 TeV

    NASA Astrophysics Data System (ADS)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Böttger, S.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Balbastre, G. Conesa; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; De, S.; De Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; Deplano, C.; Dhankher, P.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Engel, H.; Epple, E.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Grachov, O. A.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Hosokawa, R.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Innocenti, G. M.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobayashi, T.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Lehas, F.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; León Vargas, H.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; Mcdonald, D.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Minervini, L. M.; Mischke, A.; Mishra, A. N.; Miskowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Moreira De Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Munzer, R. H.; Murray, S.; Musa, L.; Musinsky, J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Nayak, K.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, P.; Paić, G.; Pal, S. K.; Pan, J.; Pandey, A. K.; Papcun, P.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Ploskon, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Søgaard, C.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Stachel, J.; Stan, I.; Stefanek, G.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tangaro, M. A.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yaldo, C. G.; Yang, H.; Yang, P.; Yano, S.; Yasar, C.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.

    2016-03-01

    The production of prompt D s + mesons was measured for the first time in collisions of heavy nuclei with the ALICE detector at the LHC. The analysis was performed on a data sample of Pb-Pb collisions at a centre-of-mass energy per nucleon pair, sqrt{s_{NN}} , of 2.76 TeV in two different centrality classes, namely 0-10% and 20-50%. D s + mesons and their antiparticles were reconstructed at mid-rapidity from their hadronic decay channel D s + → ϕπ +, with ϕ → K-K+, in the transverse momentum intervals 4 < p T < 12GeV/ c and 6 < p T < 12 GeV/ c for the 0-10% and 20-50% centrality classes, respectively. The nuclear modification factor R AA was computed by comparing the p T-differential production yields in Pb-Pb collisions to those in proton-proton (pp) collisions at the same energy. This pp reference was obtained using the cross section measured at sqrt{s}=7 TeV and scaled to sqrt{s}=2.76 TeV. The R AA of D s + mesons was compared to that of non-strange D mesons in the 10% most central Pb-Pb collisions. At high p T (8 < p T < 12 GeV/ c) a suppression of the D s + -meson yield by a factor of about three, compatible within uncertainties with that of non-strange D mesons, is observed. At lower p T (4 < p T < 8 GeV/ c) the values of the D s + -meson R AA are larger than those of non-strange D mesons, although compatible within uncertainties. The production ratios D s + /D0 and D s + /D+ were also measured in Pb-Pb collisions and compared to their values in proton-proton collisions. [Figure not available: see fulltext.

  6. Evaluation of the Antidiabetic Activity and Chemical Composition of Geranium collinum Root Extracts-Computational and Experimental Investigations.

    PubMed

    Numonov, Sodik; Edirs, Salamet; Bobakulov, Khayrulla; Qureshi, Muhammad Nasimullah; Bozorov, Khurshed; Sharopov, Farukh; Setzer, William N; Zhao, Haiqing; Habasi, Maidina; Sharofova, Mizhgona; Aisa, Haji Akber

    2017-06-13

    The root of Geranium collinum Steph is known in Tajik traditional medicine for its hepatoprotective, antioxidant, and anti-inflammatory therapeutic effects. The present study was conducted to evaluate of potential antidiabetic, antioxidant activities, total polyphenolic and flavonoid content from the different extracts (aqueous, aqueous-ethanolic) and individual compounds isolated of the root parts of G. collinum . The 50% aqueous-ethanolic extract possesses potent antidiabetic activity, with IC 50 values of 0.10 μg/mL and 0.09 μg/mL for the enzymes protein-tyrosine phosphatase (1B PTP-1B) and α-glucosidase, respectively. Phytochemical investigations of the 50% aqueous-ethanolic extract of G. collinum , led to the isolation of ten pure compounds identified as 3,3',4,4'-tetra- O -methylellagic acid ( 1 ), 3,3'-di- O -methylellagic acid ( 2 ), quercetin ( 3 ), caffeic acid ( 4 ), (+)-catechin ( 5 ), (-)-epicatechin ( 6 ), (-)-epigallocatechin ( 7 ), gallic acid ( 8 ), β-sitosterol-3- O -β-d-glucopyranoside ( 9 ), and corilagin ( 10 ). Their structures were determined based on 1D and 2D NMR and mass spectrometric analyses. Three isolated compounds exhibited strong inhibitory activity against PTP-1B, with IC 50 values below 0.9 μg/mL, more effective than the positive control (1.46 μg/mL). Molecular docking analysis suggests polyphenolic compounds such as corilagin, catechin and caffeic acid inhibit PTP-1B and β-sitosterol-3- O -β-d-gluco-pyranoside inhibits α-glucosidase. The experimental results suggest that the biological activity of G. collinum is related to its polyphenol contents. The results are also in agreement with computational investigations. Furthermore, the potent antidiabetic activity of the 50% aqueous-ethanolic extract from G. collinum shows promise for its future application in medicine. To the best of our knowledge, we hereby report, for the first time, the antidiabetic activity of G. collinum.

  7. Energy and Quality-Aware Multimedia Signal Processing

    NASA Astrophysics Data System (ADS)

    Emre, Yunus

    Today's mobile devices have to support computation-intensive multimedia applications with a limited energy budget. In this dissertation, we present architecture level and algorithm-level techniques that reduce energy consumption of these devices with minimal impact on system quality. First, we present novel techniques to mitigate the effects of SRAM memory failures in JPEG2000 implementations operating in scaled voltages. We investigate error control coding schemes and propose an unequal error protection scheme tailored for JPEG2000 that reduces overhead without affecting the performance. Furthermore, we propose algorithm-specific techniques for error compensation that exploit the fact that in JPEG2000 the discrete wavelet transform outputs have larger values for low frequency subband coefficients and smaller values for high frequency subband coefficients. Next, we present use of voltage overscaling to reduce the data-path power consumption of JPEG codecs. We propose an algorithm-specific technique which exploits the characteristics of the quantized coefficients after zig-zag scan to mitigate errors introduced by aggressive voltage scaling. Third, we investigate the effect of reducing dynamic range for datapath energy reduction. We analyze the effect of truncation error and propose a scheme that estimates the mean value of the truncation error during the pre-computation stage and compensates for this error. Such a scheme is very effective for reducing the noise power in applications that are dominated by additions and multiplications such as FIR filter and transform computation. We also present a novel sum of absolute difference (SAD) scheme that is based on most significant bit truncation. The proposed scheme exploits the fact that most of the absolute difference (AD) calculations result in small values, and most of the large AD values do not contribute to the SAD values of the blocks that are selected. Such a scheme is highly effective in reducing the energy consumption of motion estimation and intra-prediction kernels in video codecs. Finally, we present several hybrid energy-saving techniques based on combination of voltage scaling, computation reduction and dynamic range reduction that further reduce the energy consumption while keeping the performance degradation very low. For instance, a combination of computation reduction and dynamic range reduction for Discrete Cosine Transform shows on average, 33% to 46% reduction in energy consumption while incurring only 0.5dB to 1.5dB loss in PSNR.

  8. A 2D Model of Hydraulic Fracturing, Damage and Microseismicity

    NASA Astrophysics Data System (ADS)

    Wangen, Magnus

    2018-03-01

    We present a model for hydraulic fracturing and damage of low-permeable rock. It computes the intermittent propagation of rock damage, microseismic event locations, microseismic frequency-magnitude distributions, stimulated rock volume and the injection pressure. The model uses a regular 2D grid and is based on ideas from invasion percolation. All damaged and connected cells during a time step constitute a microseismic event, where the size of the event is the number of cells in the cluster. The magnitude of the event is the log _{10} of the event size. The model produces events with a magnitude-frequency distribution having a b value that is approximately 0.8. The model is studied with respect to the physical parameters: permeability of damaged rock and the rock strength. "High" permeabilities of the damaged rock give the same b value ≈ 0.8, but "moderate" permeabilities give higher b values. Another difference is that "high" permeabilities produce a percolation-like fracture network, while "moderate" permeabilities result in damage zones that expand circularly away from the injection point. In the latter case of "moderate" permeabilities, the injection pressure increases substantially beyond the fracturing level. The rock strength and the time step do not change the observed b value of the model for moderate changes.

  9. The Relationship between Dental Follicle Width and Maxillary Impacted Canines' Descriptive and Resorptive Features Using Cone-Beam Computed Tomography.

    PubMed

    Dağsuyu, İlhan Metin; Okşayan, Rıdvan; Kahraman, Fatih; Aydın, Mehmet; Bayrakdar, İbrahim Şevki; Uğurlu, Mehmet

    2017-01-01

    To assess the relationship between dental follicle width and maxillary impacted canines' descriptive and resorptive features with three-dimensional (3D) cone-beam computed tomography (CBCT). The study comprised 102 patients with cone-beam computed tomography 3D images and a total of 140 impacted canines. The association between maxillary impacted canine dental follicle width and the variables of gender, impaction side (right and left), localization of impacted canine (buccal, central, and palatal), and resorption of the adjacent laterals was compared. Measurements were analyzed with Student's t -test, Kruskal-Wallis test, and Mann-Whitney U statistical test. According to gender, no statistically significant differences were found in the follicle size of the maxillary impacted canine between males and females ( p > 0.05). Widths of the follicles were determined for the right and left impaction sides, and no statistically significant relation was found ( p > 0.05). There were statistically significant differences between root resorption degrees of lateral incisors and maxillary impacted canine follicle width ( p < 0.05). Statistically significant higher follicle width values were present in degree 2 (mild) resorption than in degree 1 (no) and degree 3 (moderate) resorption samples ( p < 0.05). No significant correlation was found between follicle width and the variables of gender, impaction side, and localization of maxillary impacted canines. Our study could not confirm that increased dental follicle width of the maxillary impacted canines exhibited more resorption risk for the adjacent lateral incisors.

  10. Controlling total spot power from holographic laser by superimposing a binary phase grating.

    PubMed

    Liu, Xiang; Zhang, Jian; Gan, Yu; Wu, Liying

    2011-04-25

    By superimposing a tunable binary phase grating with a conventional computer-generated hologram, the total power of multiple holographic 3D spots can be easily controlled by changing the phase depth of grating with high accuracy to a random power value for real-time optical manipulation without extra power loss. Simulation and experiment results indicate that a resolution of 0.002 can be achieved at a lower time cost for normalized total spot power.

  11. Measurement of D s + production and nuclear modification factor in Pb-Pb collisions at $$ \\sqrt{{\\mathrm{s}}_{\\mathrm{NN}}}=2.76 $$

    DOE PAGES

    Adam, J.; Adamová, D.; Aggarwal, M. M.; ...

    2016-03-14

    Here, the production of prompt D s + mesons was measured for the first time in collisions of heavy nuclei with the ALICE detector at the LHC. The analysis was performed on a data sample of Pb-Pb collisions at a centre-of-mass energy per nucleon pair, √s NN, of 2.76 TeV in two different centrality classes, namely 0–10% and 20–50%. Ds+ mesons and their antiparticles were reconstructed at mid-rapidity from their hadronic decay channel D s + → Φπ +, with Φ → K –K +, in the transverse momentum intervals 4 < pT < 12GeV/c and 6 < pT

  12. Principal component analysis in construction of 3D human knee joint models using a statistical shape model method.

    PubMed

    Tsai, Tsung-Yuan; Li, Jing-Sheng; Wang, Shaobai; Li, Pingyue; Kwon, Young-Min; Li, Guoan

    2015-01-01

    The statistical shape model (SSM) method that uses 2D images of the knee joint to predict the three-dimensional (3D) joint surface model has been reported in the literature. In this study, we constructed a SSM database using 152 human computed tomography (CT) knee joint models, including the femur, tibia and patella and analysed the characteristics of each principal component of the SSM. The surface models of two in vivo knees were predicted using the SSM and their 2D bi-plane fluoroscopic images. The predicted models were compared to their CT joint models. The differences between the predicted 3D knee joint surfaces and the CT image-based surfaces were 0.30 ± 0.81 mm, 0.34 ± 0.79 mm and 0.36 ± 0.59 mm for the femur, tibia and patella, respectively (average ± standard deviation). The computational time for each bone of the knee joint was within 30 s using a personal computer. The analysis of this study indicated that the SSM method could be a useful tool to construct 3D surface models of the knee with sub-millimeter accuracy in real time. Thus, it may have a broad application in computer-assisted knee surgeries that require 3D surface models of the knee.

  13. Addendum to "Charm and bottom quark masses: An update"

    NASA Astrophysics Data System (ADS)

    Chetyrkin, Konstantin G.; Kühn, Johann H.; Maier, Andreas; Maierhöfer, Philipp; Marquard, Peter; Steinhauser, Matthias; Sturm, Christian

    2017-12-01

    We update the experimental moments for the charm quark as computed in [J. H. Kühn, M. Steinhauser, and C. Sturm, Nucl. Phys. B778, 192 (2007), 10.1016/j.nuclphysb.2007.04.036] and used in [K. G. Chetyrkin, J. H. Kühn, A. Maier, P. Maierhöfer, P. Marquard, M. Steinhauser, and C. Sturm, Phys. Rev. D 80, 074010 (2009),, 10.1103/PhysRevD.80.074010 K. Chetyrkin, J. H. Kühn, A. Maier, P. Maierhöfer, P. Marquard, M. Steinhauser, and C. Sturm, Theor. Math. Phys. 170, 217 (2012), 10.1007/s11232-012-0024-7] for the determination of the charm-quark mass. The new value for the MS ¯ charm-quark mass reads mc(3 GeV )=0.993 ±0.008 GeV .

  14. Human body area factors for radiation exchange analysis: standing and walking postures

    NASA Astrophysics Data System (ADS)

    Park, Sookuk; Tuller, Stanton E.

    2011-09-01

    Effective radiation area factors ( f eff) and projected area factors ( f p) of unclothed Caucasians' standing and walking postures used in estimating human radiation exchange with the surrounding environment were determined from a sample of adults in Canada. Several three-dimensional (3D) computer body models were created for standing and walking postures. Only small differences in f eff and f p values for standing posture were found between gender (male or female) and body type (normal- or over-weight). Differences between this study and previous studies were much larger: ≤0.173 in f p and ≤0.101 in f eff. Directionless f p values for walking posture also had only minor differences between genders and positions in a stride. However, the differences of mean directional f p values of the positions dependent on azimuth angles were large enough, ≤0.072, to create important differences in modeled radiation receipt. Differences in f eff values were small: 0.02 between the normal-weight male and female models and up to 0.033 between positions in a stride. Variations of directional f p values depending on solar altitudes for walking posture were narrower than those for standing posture. When both standing and walking postures are considered, the mean f eff value, 0.836, of standing (0.826) and walking (0.846) could be used. However, f p values should be selected carefully because differences between directional and directionless f p values were large enough that they could influence the estimated level of human thermal sensation.

  15. Electro-mechanical Properties of Carbon Nanotubes: Effect of Small Tensile and Torsional Strains

    NASA Technical Reports Server (NTRS)

    Anantram, M. P.; Yang, Liu; Han, Jie; Liu, J. P.; Saini, Subhash (Technical Monitor)

    1999-01-01

    We present a simple picture to calculate the bandgap ($E_g$) of carbon nanotubes (CNT) in the presence of uniform torsional and tensile strain ($\\sigma$). We find that under tensile strain, $ absolute value of dE_g/d\\sigma$ of zig-zag tubes is approximately equal to $3t_0$, where $t_0$ is the hopping parameter. Further, $ absolute value of dE_g/d\\sigma$ decreases as the chirality changes to armchair, where it takes the value zero. The sign of $dE_g/d\\sigma$ follows the $(N_x-N_y) *mod 3$(equal to - 1, 0 and +1) rule. In contrast to the above, we show that under torsional strain, $absolute value of dE_g/d\\sigma$ of armchair tubes is approximately equal to $3t_0$ and continually decreases as the chirality changes to zig-zag, where is takes a small value. The sign of $dE_g/d\\sigma$ again follows the $(N_x-N_y)*mod 3$ rule. Finally, we predict a change in the sign of $dE_g/d\\sigma$ as function of strain, corresponding to a change in the value of $q$ that corresponds to the bandgap minimum.

  16. Comparison of 3D computer-aided with manual cerebral aneurysm measurements in different imaging modalities.

    PubMed

    Groth, M; Forkert, N D; Buhk, J H; Schoenfeld, M; Goebell, E; Fiehler, J

    2013-02-01

    To compare intra- and inter-observer reliability of aneurysm measurements obtained by a 3D computer-aided technique with standard manual aneurysm measurements in different imaging modalities. A total of 21 patients with 29 cerebral aneurysms were studied. All patients underwent digital subtraction angiography (DSA), contrast-enhanced (CE-MRA) and time-of-flight magnetic resonance angiography (TOF-MRA). Aneurysm neck and depth diameters were manually measured by two observers in each modality. Additionally, semi-automatic computer-aided diameter measurements were performed using 3D vessel surface models derived from CE- (CE-com) and TOF-MRA (TOF-com) datasets. Bland-Altman analysis (BA) and intra-class correlation coefficient (ICC) were used to evaluate intra- and inter-observer agreement. BA revealed the narrowest relative limits of intra- and inter-observer agreement for aneurysm neck and depth diameters obtained by TOF-com (ranging between ±5.3 % and ±28.3 %) and CE-com (ranging between ±23.3 % and ±38.1 %). Direct measurements in DSA, TOF-MRA and CE-MRA showed considerably wider limits of agreement. The highest ICCs were observed for TOF-com and CE-com (ICC values, 0.92 or higher for intra- as well as inter-observer reliability). Computer-aided aneurysm measurement in 3D offers improved intra- and inter-observer reliability and a reproducible parameter extraction, which may be used in clinical routine and as objective surrogate end-points in clinical trials.

  17. [Polymorphism of PentaD and PentaE STR locus in five Chinese Han population].

    PubMed

    Liu, Qiu-ling; Lu, Hui-ling; Lü, De-jian

    2003-01-01

    To obtain the genetic polymorphism data of Guangxi, Hunan, Henan, Sichuan, Taiwang Chinese Han population and compare the polymorphism of PentaD and PentaE STR locus. The two loci was analyzed by using the PowerPlex 16 System. 10 alleles of PentaD and 19 alleles of PentaE were found in the five Han population. PentaD and PentaE have the expected heterozygosity values of 0.7746-0.8047 and 0.9005-0.9219, the polymorphism information content values of 0.7710-0.8025 and 0.8969-0.9176, the discrimination power values of 0.9223-0.9341 and 0.9471-0.9782, the power of exclusion values of 0.5435-0.6325 and 0.6785-0.8465, respectively. The result showed that these two loci were highly informative and suitable for forensic application.

  18. State-specific approach and computation of resonance states: Identification and properties of the lowest 2Po and 2D triply excited states of He-

    NASA Astrophysics Data System (ADS)

    Nicolaides, Cleanthes A.; Piangos, Nicos A.

    2001-11-01

    We discuss aspects of the theory and computation of resonance (autoionizing) states of polyelectronic atoms and their positive and negative ions, in the context of the state-specific approach, using as paradigms the He-2s22p 2Po and 2s2p2 2D triply excited states. The He- 2D resonance has been the subject of controversy about its nature and its very existence, with ramifications as to the physics of electron-He scattering measurements and as to the theory of resonance states in multiparticle systems in general. By carrying out a series of computations, we show how (quasi)localization of these resonances takes place. The results confirm the existence of the 2D resonance just below the energy of the He 2s2p 3Po resonance, with which it overlaps. The localization of the two He- resonances is achieved already at the single-configuration level, provided the orbitals are calculated by solving state-specific restricted Hartree-Fock (HF) equations. Accounting for orbital flexibility and relaxation due to the self-consistent interactions is essential to the achievement of a local energy minimum. The localized nature of the wavepacket is revealed even more definitely by solving appropriate multiconfigurational HF (MCHF) equations containing the information from the self-consistent interaction with closed channels as well as with the neighboring significant open ones. Reaching a reliable MCHF solution for a variety of polyelectronic multiply excited states may often be difficult, but once it is achieved it provides the overwhelmingly dominant characteristics of the state. It is then used as the reference wave function for computing variationally the remaining of the localized electron correlation in terms of optimized analytic orbitals representing very nearly the full space of the electron virtual excitations. The calculation of the localized part Ψ0 and of E0=<Ψ0/H/Ψ0>, is done by nonorthonormal configuration interaction (NONCI) since parts of Ψ0 are optimized separately in terms of their own basis sets. The final Ψ0s for the two resonances consisted of 683 symmetry-adapted configurations for the 2Po state and 778 ones for the 2D state. Using these functions and final state scattering functions with continuum orbitals obtained numerically in term-dependent core potentials, without and with polarization, of a number of lower-lying open channels, we employed the independent channel approximation and computed partial and total energy shifts and widths, the latter from energy-dependent golden rule expressions. Critical comparison of our results for E=E0+Δ, where Δ is the shift induced by the interaction of Ψ0 with the continuum, and for the width, Γ, with the existing few experimental and theoretical values, led us to the conclusion that the E and Γ lie in the following ranges: For the 2Po state: E=57.204+/-0.005 eV, Γ=68-74 meV, and for the 2D state: E=58.295+/-0.010 eV, Γ=38-55 meV. Of special theoretical and experimental interest is the determination of the partial and total widths of the three-electron He- 2D resonance, since it overlaps from below the two-electron threshold state He 2s2p 3Po, whose position is at 58.312 eV with a width of 8 meV.

  19. Art care: A multi-modality coronary 3D reconstruction and hemodynamic status assessment software.

    PubMed

    Siogkas, Panagiotis K; Stefanou, Kostas A; Athanasiou, Lambros S; Papafaklis, Michail I; Michalis, Lampros K; Fotiadis, Dimitrios I

    2018-01-01

    Due to the incremental increase of clinical interest in the development of software that allows the 3-dimensional (3D) reconstruction and the functional assessment of the coronary vasculature, several software packages have been developed and are available today. Taking this into consideration, we have developed an innovative suite of software modules that perform 3D reconstruction of coronary arterial segments using different coronary imaging modalities such as IntraVascular UltraSound (IVUS) and invasive coronary angiography images (ICA), Optical Coherence Tomography (OCT) and ICA images, or plain ICA images and can safely and accurately assess the hemodynamic status of the artery of interest. The user can perform automated or manual segmentation of the IVUS or OCT images, visualize in 3D the reconstructed vessel and export it to formats, which are compatible with other Computer Aided Design (CAD) software systems. We employ finite elements to provide the capability to assess the hemodynamic functionality of the reconstructed vessels by calculating the virtual functional assessment index (vFAI), an index that corresponds and has been shown to correlate well to the actual fractional flow reserve (FFR) value. All the modules of the proposed system have been thoroughly validated. In brief, the 3D-QCA module, compared to a successful commercial software of the same genre, presented very good correlation using several validation metrics, with a Pearson's correlation coefficient (R) for the calculated volumes, vFAI, length and minimum lumen diameter of 0.99, 0.99, 0.99 and 0.88, respectively. Moreover, the automatic lumen detection modules for IVUS and OCT presented very high accuracy compared to the annotations by medical experts with the Pearson's correlation coefficient reaching the values of 0.94 and 0.99, respectively. In this study, we have presented a user-friendly software for the 3D reconstruction of coronary arterial segments and the accurate hemodynamic assessment of the severity of existing stenosis.

  20. A comparison of DXA and CT based methods for estimating the strength of the femoral neck in post-menopausal women

    PubMed Central

    Danielson, Michelle E.; Beck, Thomas J.; Karlamangla, Arun S.; Greendale, Gail A.; Atkinson, Elizabeth J.; Lian, Yinjuan; Khaled, Alia S.; Keaveny, Tony M.; Kopperdahl, David; Ruppert, Kristine; Greenspan, Susan; Vuga, Marike; Cauley, Jane A.

    2013-01-01

    Purpose Simple 2-dimensional (2D) analyses of bone strength can be done with dual energy x-ray absorptiometry (DXA) data and applied to large data sets. We compared 2D analyses to 3-dimensional (3D) finite element analyses (FEA) based on quantitative computed tomography (QCT) data. Methods 213 women participating in the Study of Women’s Health across the Nation (SWAN) received hip DXA and QCT scans. DXA BMD and femoral neck diameter and axis length were used to estimate geometry for composite bending (BSI) and compressive strength (CSI) indices. These and comparable indices computed by Hip Structure Analysis (HSA) on the same DXA data were compared to indices using QCT geometry. Simple 2D engineering simulations of a fall impacting on the greater trochanter were generated using HSA and QCT femoral neck geometry; these estimates were benchmarked to a 3D FEA of fall impact. Results DXA-derived CSI and BSI computed from BMD and by HSA correlated well with each other (R= 0.92 and 0.70) and with QCT-derived indices (R= 0.83–0.85 and 0.65–0.72). The 2D strength estimate using HSA geometry correlated well with that from QCT (R=0.76) and with the 3D FEA estimate (R=0.56). Conclusions Femoral neck geometry computed by HSA from DXA data corresponds well enough to that from QCT for an analysis of load stress in the larger SWAN data set. Geometry derived from BMD data performed nearly as well. Proximal femur breaking strength estimated from 2D DXA data is not as well correlated with that derived by a 3D FEA using QCT data. PMID:22810918

  1. Quantifying the tibiofemoral joint space using x-ray tomosynthesis.

    PubMed

    Kalinosky, Benjamin; Sabol, John M; Piacsek, Kelly; Heckel, Beth; Gilat Schmidt, Taly

    2011-12-01

    Digital x-ray tomosynthesis (DTS) has the potential to provide 3D information about the knee joint in a load-bearing posture, which may improve diagnosis and monitoring of knee osteoarthritis compared with projection radiography, the current standard of care. Manually quantifying and visualizing the joint space width (JSW) from 3D tomosynthesis datasets may be challenging. This work developed a semiautomated algorithm for quantifying the 3D tibiofemoral JSW from reconstructed DTS images. The algorithm was validated through anthropomorphic phantom experiments and applied to three clinical datasets. A user-selected volume of interest within the reconstructed DTS volume was enhanced with 1D multiscale gradient kernels. The edge-enhanced volumes were divided by polarity into tibial and femoral edge maps and combined across kernel scales. A 2D connected components algorithm was performed to determine candidate tibial and femoral edges. A 2D joint space width map (JSW) was constructed to represent the 3D tibiofemoral joint space. To quantify the algorithm accuracy, an adjustable knee phantom was constructed, and eleven posterior-anterior (PA) and lateral DTS scans were acquired with the medial minimum JSW of the phantom set to 0-5 mm in 0.5 mm increments (VolumeRad™, GE Healthcare, Chalfont St. Giles, United Kingdom). The accuracy of the algorithm was quantified by comparing the minimum JSW in a region of interest in the medial compartment of the JSW map to the measured phantom setting for each trial. In addition, the algorithm was applied to DTS scans of a static knee phantom and the JSW map compared to values estimated from a manually segmented computed tomography (CT) dataset. The algorithm was also applied to three clinical DTS datasets of osteoarthritic patients. The algorithm segmented the JSW and generated a JSW map for all phantom and clinical datasets. For the adjustable phantom, the estimated minimum JSW values were plotted against the measured values for all trials. A linear fit estimated a slope of 0.887 (R² = 0.962) and a mean error across all trials of 0.34 mm for the PA phantom data. The estimated minimum JSW values for the lateral adjustable phantom acquisitions were found to have low correlation to the measured values (R² = 0.377), with a mean error of 2.13 mm. The error in the lateral adjustable-phantom datasets appeared to be caused by artifacts due to unrealistic features in the phantom bones. JSW maps generated by DTS and CT varied by a mean of 0.6 mm and 0.8 mm across the knee joint, for PA and lateral scans. The tibial and femoral edges were successfully segmented and JSW maps determined for PA and lateral clinical DTS datasets. A semiautomated method is presented for quantifying the 3D joint space in a 2D JSW map using tomosynthesis images. The proposed algorithm quantified the JSW across the knee joint to sub-millimeter accuracy for PA tomosynthesis acquisitions. Overall, the results suggest that x-ray tomosynthesis may be beneficial for diagnosing and monitoring disease progression or treatment of osteoarthritis by providing quantitative images of JSW in the load-bearing knee.

  2. Comparison of biochemical cartilage imaging techniques at 3 T MRI.

    PubMed

    Rehnitz, C; Kupfer, J; Streich, N A; Burkholder, I; Schmitt, B; Lauer, L; Kauczor, H-U; Weber, M-A

    2014-10-01

    To prospectively compare chemical-exchange saturation-transfer (CEST) with delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 mapping to assess the biochemical cartilage properties of the knee. Sixty-nine subjects were prospectively included (median age, 42 years; male/female = 32/37) in three cohorts: 10 healthy volunteers, 40 patients with clinically suspected cartilage lesions, and 19 patients about 1 year after microfracture therapy. T2 mapping, dGEMRIC, and CEST were performed at a 3 T MRI unit using a 15-channel knee coil. Parameter maps were evaluated using region-of-interest analysis of healthy cartilage, areas of chondromalacia and repair tissue. Differentiation of damaged from healthy cartilage was assessed using receiver-operating characteristic (ROC) analysis. Chondromalacia grade 2-3 had significantly higher CEST values (P = 0.001), lower dGEMRIC (T1-) values (P < 0.001) and higher T2 values (P < 0.001) when compared to the normal appearing cartilage. dGEMRIC and T2 mapping correlated moderately negative (Spearman coefficient r = -0.56, P = 0.0018) and T2 mapping and CEST moderately positive (r = 0.5, P = 0.007), while dGEMRIC and CEST did not significantly correlate (r = -0.311, P = 0.07). The repair tissue revealed lower dGEMRIC values (P < 0.001) and higher CEST values (P < 0.001) with a significant negative correlation (r = -0.589, P = 0.01), whereas T2 values were not different (P = 0.54). In healthy volunteers' cartilage, CEST and dGEMRIC showed moderate positive correlation (r = 0.56), however not reaching significance (P = 0.09). ROC-analysis demonstrated non-significant differences of T2 mapping vs CEST (P = 0.14), CEST vs dGEMRIC (P = 0.89), and T2 mapping vs dGEMRIC (P = 0.12). CEST is able to detect normal and damaged cartilage and is non-inferior in distinguishing both when compared to dGEMRIC and T2 mapping. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  3. Prognostic predictive value of preoperative intratumoral 2-deoxy-2-(18F)fluoro-D-glucose uptake heterogeneity in patients with high-grade serous ovarian cancer.

    PubMed

    Liu, Shuai; Feng, Zheng; Jiang, Zhaoxia; Wen, Hao; Xu, Junyan; Pan, Herong; Deng, Yu; Zhang, Lei; Ju, Xingzhu; Chen, Xiaojun; Wu, Xiaohua

    2018-05-16

    This study aimed to explore the clinical and prognostic significance of pretreatment positron-emission tomography/computed tomography (PET/CT) parameters, especially 2-deoxy-2-(F)fluoro-D-glucose-based heterogeneity, in high-grade serous ovarian cancer (HGSC). We retrospectively investigated 56 patients with HGSC who underwent PET/CT before primary surgery at our hospital between January 2010 and June 2015. None of these patients received neoadjuvant chemotherapy. PET/CT parameters, including maximum and mean standardized uptake value (SUVmax and SUVmean), metabolic tumor volume (MTV), total lesion glycolysis (TLG), and intratumoral heterogeneity index (HI), were measured for all patients. Differences of each PET/CT parameter between primary tumors (-P) and omental metastatic lesions (-M) were compared by paired t tests. Progression-free survival (PFS) and overall survival were analyzed by the Kaplan-Meier method and log-rank tests in univariate analyses. Cox regression analyses were used for multivariate analysis. SUVmean-P was higher than SUVmean-M (P=0.001). However, there were no statistical differences of SUVmax, MTV, TLG, or HI between primary and omental lesions. Chemosensitive patients tended to have higher levels of SUVmax-P (P=0.011), MTV-P (P=0.014), TLG-P (P=0.035), and HI-P (P=0.002), respectively. In univariate analyses, higher HI-P was associated with better PFS (P=0.007). However, in multivariate analysis, HI-P was not an independent predictor of PFS (P=0.581). Neither HI-P nor HI-M was the prognostic predictor for overall survival (P=0.078 and 0.063, respectively). 2-Deoxy-2-(F)fluoro-D-glucose-based heterogeneity appears to be a predictive and prognostic factor for patients with HGSC. Parameters of primary tumors have predominant value compared with omental metastatic lesions.

  4. A novel interpolation approach for the generation of 3D-geometric digital bone models from image stacks

    PubMed Central

    Mittag, U.; Kriechbaumer, A.; Rittweger, J.

    2017-01-01

    The authors propose a new 3D interpolation algorithm for the generation of digital geometric 3D-models of bones from existing image stacks obtained by peripheral Quantitative Computed Tomography (pQCT) or Magnetic Resonance Imaging (MRI). The technique is based on the interpolation of radial gray value profiles of the pQCT cross sections. The method has been validated by using an ex-vivo human tibia and by comparing interpolated pQCT images with images from scans taken at the same position. A diversity index of <0.4 (1 meaning maximal diversity) even for the structurally complex region of the epiphysis, along with the good agreement of mineral-density-weighted cross-sectional moment of inertia (CSMI), demonstrate the high quality of our interpolation approach. Thus the authors demonstrate that this interpolation scheme can substantially improve the generation of 3D models from sparse scan sets, not only with respect to the outer shape but also with respect to the internal gray-value derived material property distribution. PMID:28574415

  5. CPHmodels-3.0--remote homology modeling using structure-guided sequence profiles.

    PubMed

    Nielsen, Morten; Lundegaard, Claus; Lund, Ole; Petersen, Thomas Nordahl

    2010-07-01

    CPHmodels-3.0 is a web server predicting protein 3D structure by use of single template homology modeling. The server employs a hybrid of the scoring functions of CPHmodels-2.0 and a novel remote homology-modeling algorithm. A query sequence is first attempted modeled using the fast CPHmodels-2.0 profile-profile scoring function suitable for close homology modeling. The new computational costly remote homology-modeling algorithm is only engaged provided that no suitable PDB template is identified in the initial search. CPHmodels-3.0 was benchmarked in the CASP8 competition and produced models for 94% of the targets (117 out of 128), 74% were predicted as high reliability models (87 out of 117). These achieved an average RMSD of 4.6 A when superimposed to the 3D structure. The remaining 26% low reliably models (30 out of 117) could superimpose to the true 3D structure with an average RMSD of 9.3 A. These performance values place the CPHmodels-3.0 method in the group of high performing 3D prediction tools. Beside its accuracy, one of the important features of the method is its speed. For most queries, the response time of the server is <20 min. The web server is available at http://www.cbs.dtu.dk/services/CPHmodels/.

  6. CFD- and Bernoulli-based pressure drop estimates: A comparison using patient anatomies from heart and aortic valve segmentation of CT images.

    PubMed

    Weese, Jürgen; Lungu, Angela; Peters, Jochen; Weber, Frank M; Waechter-Stehle, Irina; Hose, D Rodney

    2017-06-01

    An aortic valve stenosis is an abnormal narrowing of the aortic valve (AV). It impedes blood flow and is often quantified by the geometric orifice area of the AV (AVA) and the pressure drop (PD). Using the Bernoulli equation, a relation between the PD and the effective orifice area (EOA) represented by the area of the vena contracta (VC) downstream of the AV can be derived. We investigate the relation between the AVA and the EOA using patient anatomies derived from cardiac computed tomography (CT) angiography images and computational fluid dynamic (CFD) simulations. We developed a shape-constrained deformable model for segmenting the AV, the ascending aorta (AA), and the left ventricle (LV) in cardiac CT images. In particular, we designed a structured AV mesh model, trained the model on CT scans, and integrated it with an available model for heart segmentation. The planimetric AVA was determined from the cross-sectional slice with minimum AV opening area. In addition, the AVA was determined as the nonobstructed area along the AV axis by projecting the AV leaflet rims on a plane perpendicular to the AV axis. The flow rate was derived from the LV volume change. Steady-state CFD simulations were performed on the patient anatomies resulting from segmentation. Heart and valve segmentation was used to retrospectively analyze 22 cardiac CT angiography image sequences of patients with noncalcified and (partially) severely calcified tricuspid AVs. Resulting AVAs were in the range of 1-4.5 cm 2 and ejection fractions (EFs) between 20 and 75%. AVA values computed by projection were smaller than those computed by planimetry, and both were strongly correlated (R 2 = 0.995). EOA values computed via the Bernoulli equation from CFD-based PD results were strongly correlated with both AVA values (R 2 = 0.97). EOA values were ∼10% smaller than planimetric AVA values. For EOA values < 2.0 cm 2 , the EOA was up to ∼15% larger than the projected AVA. The presented segmentation algorithm allowed to construct detailed AV models for 22 patient cases. Because of the crown-like 3D structure of the AV, the planimetric AVA is larger than the projected AVA formed by the free edges of the AV leaflets. The AVA formed by the free edges of the AV leaflets was smaller than the EOA for EOA values <2.0cm2. This contradiction with respect to previous studies that reported the EOA to be always smaller or equal to the geometric AVA is explained by the more detailed AV models used within this study. © 2017 American Association of Physicists in Medicine.

  7. Generic Hypersonic Inlet Module Analysis

    NASA Technical Reports Server (NTRS)

    Cockrell, Chares E., Jr.; Huebner, Lawrence D.

    2004-01-01

    A computational study associated with an internal inlet drag analysis was performed for a generic hypersonic inlet module. The purpose of this study was to determine the feasibility of computing the internal drag force for a generic scramjet engine module using computational methods. The computational study consisted of obtaining two-dimensional (2D) and three-dimensional (3D) computational fluid dynamics (CFD) solutions using the Euler and parabolized Navier-Stokes (PNS) equations. The solution accuracy was assessed by comparisons with experimental pitot pressure data. The CFD analysis indicates that the 3D PNS solutions show the best agreement with experimental pitot pressure data. The internal inlet drag analysis consisted of obtaining drag force predictions based on experimental data and 3D CFD solutions. A comparative assessment of each of the drag prediction methods is made and the sensitivity of CFD drag values to computational procedures is documented. The analysis indicates that the CFD drag predictions are highly sensitive to the computational procedure used.

  8. GPU-based prompt gamma ray imaging from boron neutron capture therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Do-Kun; Jung, Joo-Young; Suk Suh, Tae, E-mail: suhsanta@catholic.ac.kr

    Purpose: The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. Methods: To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU).more » Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. Results: The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). Conclusions: The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray image reconstruction using the GPU computation for BNCT simulations.« less

  9. TU-FG-BRB-07: GPU-Based Prompt Gamma Ray Imaging From Boron Neutron Capture Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, S; Suh, T; Yoon, D

    Purpose: The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. Methods: To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU).more » Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. Results: The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). Conclusion: The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray reconstruction using the GPU computation for BNCT simulations.« less

  10. [Observation on the clinical application effects of skin distractor on the treatment of scars].

    PubMed

    Gui, W L; Yang, E; Zhang, H S

    2017-03-20

    Objective: To explore clinical application effects of skin distractor on the treatment of scars and to observe effects of skin distractor with different pull speeds on different parts scars of human body. Methods: One hundred and four patients with scars, conforming to the study criteria, were hospitalized in our unit from January 2014 to June 2015. Patients were divided into 2 mm/d group and 4 mm/d group according to the random number table, with 52 patients in each group. After admission, skin distractors were pasted on scars in face and neck, trunk, and extremities of patients in 2 groups, with inner edges of pasteboards close to outside edges of longer sides of scars. Skin distractors in 2 mm/d group and 4 mm/d group were pulled to scars axis direction as speeds of 2 mm/d and 4 mm/d, respectively. Pull time equals values of pull speeds divided by width of scars. Scars were resected after finishing pulling. Immediately after scars resection, skin distractors were pasted again with inner edges of pasteboards close to outside edges of longer sides of incision and removed when stitches were taken out. Scars of patients were scored by Vancouver Scar Scale (VSS), and Patient and Observer Scar Assessment Scale (POSAS) was used to record scores of patient scar assessment scale (PSAS), observer scar assessment scale (OSAS) and overall scores of patients and observers of scars of patients before and one year after scars resection. Data were processed with χ (2) test, independent samples t test, paired samples t test, independent samples non-parametric rank-sum test and paired samples non-parametric rank-sum test. Results: (1) Scores of all scars of patients in 2 groups before scars resection were close (with t values from -1.384 to 0.622, P values above 0.05), obviously higher than those of one year post scars resection (with t values from 11.085 to 24.835, P values below 0.01). Scores of scars in face and neck, trunk and extremities in 2 groups before scars resection were close (with Z values from -1.651 to -0.035, t values from -1.549 to 0.219, P values above 0.05), significantly higher than those of one year post scar resection (with Z values from -2.992 to -2.555, t values from 8.739 to 19.076, P values below 0.01). (2) Scores of all scars of patients in 2 mm/d group of one year post scars resection were lower than those in 4 mm/d group (with t values from -2.583 to -2.018, P values below 0.05). PSAS scores of scars in face and neck and trunk in 2 mm/d group of one year post scars resection were lower than those in 4 mm/d group (with Z values respectively -2.385 and -2.198, P values below 0.05), other scores of scars in face and neck and trunk of patients in 2 groups of one year post scars resection were close (with Z values from -1.841 to -0.363, P values above 0.05). VSS scores, PSAS scores, OSAS scores, patients' overall scores, and observers' overall scores in 2 mm/d groups were (4.6±0.8), (28±4), (28±4), (4.7±0.7), (4.8±1.4) points, respectively, lower than those in 4 mm/d group[(5.2±0.8), (32±4), (31±6), (5.5±1.2), (5.5±1.0) points, respectively, with t values from -3.712 to -2.105, P <0.05 or P <0.01]. Conclusions: Skin distractor has better effects on the treatment of scars, and treatment effects of skin distractor in extremities pulled by 2 mm/d are better than those pulled by 4 mm/d.

  11. Crown traits of coniferous trees and their relation to shade tolerance can differ with leaf type: a biophysical demonstration using computed tomography scanning data.

    PubMed

    Dutilleul, Pierre; Han, Liwen; Valladares, Fernando; Messier, Christian

    2015-01-01

    Plant light interception and shade tolerance are intrinsically related in that they involve structural, morphological and physiological adaptations to manage light capture for photosynthetic utilization, in order to sustain survival, development and reproduction. At the scale of small-size trees, crown traits related to structural geometry of branching pattern and space occupancy through phyllotaxis can be accurately evaluated in 3D, using computed tomography (CT) scanning data. We demonstrate this by scrutinizing the crowns of 15 potted miniature conifers of different species or varieties, classified in two groups based on leaf type (10 needlelike, 5 scalelike); we also test whether mean values of crown traits measured from CT scanning data and correlations with a shade tolerance index (STI) differ between groups. Seven crown traits, including fractal dimensions (FD1: smaller scales, FD2: larger scales) and leaf areas, were evaluated for all 15 miniature conifers; an average silhouette-to-total-area ratio was also calculated for each of the 10 needlelike-leaf conifers. Between-group differences in mean values are significant (P < 0.05) for STI, FD1, FD2, and the average leaf area displayed (ĀD). Between-group differences in sign and strength of correlations are observed. For example, the correlation between STI and FD1 is negative and significant (P < 0.10) for the needlelike-leaf group, but is positive and significant (P < 0.05) for the miniature conifers with scalelike leaves, which had lower STI and higher FD1 on average in our study; the positive correlation between STI and ĀD is significant (P < 0.05) for the scalelike-leaf group, and very moderate for the needlelike-leaf one. A contrasting physical attachment of the leaves to branches may explain part of the between-group differences. Our findings open new avenues for the understanding of fundamental plant growth processes; the information gained could be included in a multi-scale approach to tree crown modeling.

  12. An energy balance of front crawl.

    PubMed

    Zamparo, P; Pendergast, D R; Mollendorf, J; Termin, A; Minetti, A E

    2005-05-01

    With the aim of computing a complete energy balance of front crawl, the energy cost per unit distance (C = Ev(-1), where E is the metabolic power and v is the speed) and the overall efficiency (eta(o) = W(tot)/C, where W(tot) is the mechanical work per unit distance) were calculated for subjects swimming with and without fins. In aquatic locomotion W(tot) is given by the sum of: (1) W(int), the internal work, which was calculated from video analysis, (2) W(d), the work to overcome hydrodynamic resistance, which was calculated from measures of active drag, and (3) W(k), calculated from measures of Froude efficiency (eta(F)). In turn, eta(F) = W(d)/(W(d) + W(k)) and was calculated by modelling the arm movement as that of a paddle wheel. When swimming at speeds from 1.0 to 1.4 m s(-1), eta(F) is about 0.5, power to overcome water resistance (active body drag x v) and power to give water kinetic energy increase from 50 to 100 W, and internal mechanical power from 10 to 30 W. In the same range of speeds E increases from 600 to 1,200 W and C from 600 to 800 J m(-1). The use of fins decreases total mechanical power and C by the same amount (10-15%) so that eta(o) (overall efficiency) is the same when swimming with or without fins [0.20 (0.03)]. The values of eta(o) are higher than previously reported for the front crawl, essentially because of the larger values of W(tot) calculated in this study. This is so because the contribution of W(int) to W(tot )was taken into account, and because eta(F) was computed by also taking into account the contribution of the legs to forward propulsion.

  13. How to model moon signals using 2-dimensional Gaussian function: Classroom activity for measuring nighttime cloud cover

    NASA Astrophysics Data System (ADS)

    Gacal, G. F. B.; Lagrosas, N.

    2016-12-01

    Nowadays, cameras are commonly used by students. In this study, we use this instrument to look at moon signals and relate these signals to Gaussian functions. To implement this as a classroom activity, students need computers, computer software to visualize signals, and moon images. A normalized Gaussian function is often used to represent probability density functions of normal distribution. It is described by its mean m and standard deviation s. The smaller standard deviation implies less spread from the mean. For the 2-dimensional Gaussian function, the mean can be described by coordinates (x0, y0), while the standard deviations can be described by sx and sy. In modelling moon signals obtained from sky-cameras, the position of the mean (x0, y0) is solved by locating the coordinates of the maximum signal of the moon. The two standard deviations are the mean square weighted deviation based from the sum of total pixel values of all rows/columns. If visualized in three dimensions, the 2D Gaussian function appears as a 3D bell surface (Fig. 1a). This shape is similar to the pixel value distribution of moon signals as captured by a sky-camera. An example of this is illustrated in Fig 1b taken around 22:20 (local time) of January 31, 2015. The local time is 8 hours ahead of coordinated universal time (UTC). This image is produced by a commercial camera (Canon Powershot A2300) with 1s exposure time, f-stop of f/2.8, and 5mm focal length. One has to chose a camera with high sensitivity when operated at nighttime to effectively detect these signals. Fig. 1b is obtained by converting the red-green-blue (RGB) photo to grayscale values. The grayscale values are then converted to a double data type matrix. The last conversion process is implemented for the purpose of having the same scales for both Gaussian model and pixel distribution of raw signals. Subtraction of the Gaussian model from the raw data produces a moonless image as shown in Fig. 1c. This moonless image can be used for quantifying cloud cover as captured by ordinary cameras (Gacal et al, 2016). Cloud cover can be defined as the ratio of number of pixels whose values exceeds 0.07 and the total number of pixels. In this particular image, cloud cover value is 0.67.

  14. Transparency of the Universe to gamma-rays

    NASA Astrophysics Data System (ADS)

    De Angelis, A.; Galanti, G.; Roncadelli, M.

    2013-07-01

    Using the most recent observational data concerning the extragalactic background light and the radio background for a source at an arbitrary redshift in the range zs ≤ 3, we compute the energy E0 of an observed γ-ray photon in the range 10 ≤ E0 ≤ 1013 GeV such that the resulting optical depth τγ(E0, zs) takes the values 1, 2, 3 and 4.6 corresponding to an observed flux dimming of e-1 ≃ 0.37, e-2 ≃ 0.14, e-3 ≃ 0.05 and e-4.6 ≃ 0.01, respectively. Below a distance D ≃ 8 kpc, we find that τγ(E0, DH0/c) < 1 for any value of E0. In the limiting case of a local Universe (zs ≃ 0), we compare our result with the one derived in 1997 by Coppi and Aharonian. The present achievement is of paramount relevance for the planned ground-based detectors like Cherenkov Telescope Array, High Altitude Water Cherenkov Experiment and Hundred Square-km Cosmic ORigin Explorer.

  15. PubChem3D: Shape compatibility filtering using molecular shape quadrupoles

    PubMed Central

    2011-01-01

    Background PubChem provides a 3-D neighboring relationship, which involves finding the maximal shape overlap between two static compound 3-D conformations, a computationally intensive step. It is highly desirable to avoid this overlap computation, especially if it can be determined with certainty that a conformer pair cannot meet the criteria to be a 3-D neighbor. As such, PubChem employs a series of pre-filters, based on the concept of volume, to remove approximately 65% of all conformer neighbor pairs prior to shape overlap optimization. Given that molecular volume, a somewhat vague concept, is rather effective, it leads one to wonder: can the existing PubChem 3-D neighboring relationship, which consists of billions of shape similar conformer pairs from tens of millions of unique small molecules, be used to identify additional shape descriptor relationships? Or, put more specifically, can one place an upper bound on shape similarity using other "fuzzy" shape-like concepts like length, width, and height? Results Using a basis set of 4.18 billion 3-D neighbor pairs identified from single conformer per compound neighboring of 17.1 million molecules, shape descriptors were computed for all conformers. These steric shape descriptors included several forms of molecular volume and shape quadrupoles, which essentially embody the length, width, and height of a conformer. For a given 3-D neighbor conformer pair, the volume and each quadrupole component (Qx, Qy, and Qz) were binned and their frequency of occurrence was examined. Per molecular volume type, this effectively produced three different maps, one per quadrupole component (Qx, Qy, and Qz), of allowed values for the similarity metric, shape Tanimoto (ST) ≥ 0.8. The efficiency of these relationships (in terms of true positive, true negative, false positive and false negative) as a function of ST threshold was determined in a test run of 13.2 billion conformer pairs not previously considered by the 3-D neighbor set. At an ST ≥ 0.8, a filtering efficiency of 40.4% of true negatives was achieved with only 32 false negatives out of 24 million true positives, when applying the separate Qx, Qy, and Qz maps in a series (Qxyz). This efficiency increased linearly as a function of ST threshold in the range 0.8-0.99. The Qx filter was consistently the most efficient followed by Qy and then by Qz. Use of a monopole volume showed the best overall performance, followed by the self-overlap volume and then by the analytic volume. Application of the monopole-based Qxyz filter in a "real world" test of 3-D neighboring of 4,218 chemicals of biomedical interest against 26.1 million molecules in PubChem reduced the total CPU cost of neighboring by between 24-38% and, if used as the initial filter, removed from consideration 48.3% of all conformer pairs at almost negligible computational overhead. Conclusion Basic shape descriptors, such as those embodied by size, length, width, and height, can be highly effective in identifying shape incompatible compound conformer pairs. When performing a 3-D search using a shape similarity cut-off, computation can be avoided by identifying conformer pairs that cannot meet the result criteria. Applying this methodology as a filter for PubChem 3-D neighboring computation, an improvement of 31% was realized, increasing the average conformer pair throughput from 154,000 to 202,000 per second per CPU core. PMID:21774809

  16. Task-based image quality evaluation of iterative reconstruction methods for low dose CT using computer simulations

    NASA Astrophysics Data System (ADS)

    Xu, Jingyan; Fuld, Matthew K.; Fung, George S. K.; Tsui, Benjamin M. W.

    2015-04-01

    Iterative reconstruction (IR) methods for x-ray CT is a promising approach to improve image quality or reduce radiation dose to patients. The goal of this work was to use task based image quality measures and the channelized Hotelling observer (CHO) to evaluate both analytic and IR methods for clinical x-ray CT applications. We performed realistic computer simulations at five radiation dose levels, from a clinical reference low dose D0 to 25% D0. A fixed size and contrast lesion was inserted at different locations into the liver of the XCAT phantom to simulate a weak signal. The simulated data were reconstructed on a commercial CT scanner (SOMATOM Definition Flash; Siemens, Forchheim, Germany) using the vendor-provided analytic (WFBP) and IR (SAFIRE) methods. The reconstructed images were analyzed by CHOs with both rotationally symmetric (RS) and rotationally oriented (RO) channels, and with different numbers of lesion locations (5, 10, and 20) in a signal known exactly (SKE), background known exactly but variable (BKEV) detection task. The area under the receiver operating characteristic curve (AUC) was used as a summary measure to compare the IR and analytic methods; the AUC was also used as the equal performance criterion to derive the potential dose reduction factor of IR. In general, there was a good agreement in the relative AUC values of different reconstruction methods using CHOs with RS and RO channels, although the CHO with RO channels achieved higher AUCs than RS channels. The improvement of IR over analytic methods depends on the dose level. The reference dose level D0 was based on a clinical low dose protocol, lower than the standard dose due to the use of IR methods. At 75% D0, the performance improvement was statistically significant (p < 0.05). The potential dose reduction factor also depended on the detection task. For the SKE/BKEV task involving 10 lesion locations, a dose reduction of at least 25% from D0 was achieved.

  17. Effect of Advection on Evaporative Fluxes and Vapor Isotopic Ratios: The Lake Size Effect

    NASA Astrophysics Data System (ADS)

    Feng, X.; Lauder, A. M.; Kopec, B. G.; Posmentier, E. S.

    2015-12-01

    It has been reported that advection of air from land can be identified hundreds of kilometers off shore. With advection, moisture builds up downwind, and the evaporative flux decreases and isotopic flux ratios increase with distance. If a lake is small relative to the equilibration distance, the fluxes of all water isotopologues averaged over the lake are different from those calculated using models without advection. The magnitude of the discrepancy depends on the lake size; we refer to this as the "lake size effect". In Kangerlussuaq, Greenland, we observed significant horizontal gradients in concentration, δD, and δ18O of vapor up to 5 km along the wind direction. Over a 0.5 km long lake, the observed average gradients were 1380 ppm/km for vapor content, 21‰/km for δD, 2.4‰/km for δ18O, and 5‰/km for d-excess. These gradients decreased with distance from the upwind shore. Over a stretch of another, much larger lake 4-5 km from the upwind shore, we observed gradients of 354 ppm/km, 1.5‰/km, 0.22‰/km and 0.3‰/km, for vapor concentration, δD, δ18O, and d-excess, respectively. These observations were modeled successfully using a two-dimensional (2-D, horizontal and vertical) steady state advection diffusion model. This model also computes evaporative fluxes. Using the model results, we assess the magnitude of the lake size effect and its impact on water balance calculations. Under the condition of our field observations and for lakes less than 500 m along the wind direction, the mean flux δ18O and δD were at least 2‰ lower than the corresponding values from a 1-D model (vertical only). If using biased isotopic flux values for water balance calculations, the lake size effect would lead to an underestimation of the lake I/E (input to evaporation) ratio. For example, if the lake effect is 1‰, the corresponding underestimation of the I/E ratio is about 10% if using δ18O, and less than 2% if using δD for the computation. This argues for advantageous use of δD over δ18O in water balance and paleoclimate studies when the lake size is small or changes significantly over time. Still greater accuracy in water balance assessment can be achieved by using the 2-D model to correct for the lake size effect under the environmental conditions at the location of interest.

  18. Integrating Dimension Reduction and Out-of-Sample Extension in Automated Classification of Ex Vivo Human Patellar Cartilage on Phase Contrast X-Ray Computed Tomography

    PubMed Central

    Nagarajan, Mahesh B.; Coan, Paola; Huber, Markus B.; Diemoz, Paul C.; Wismüller, Axel

    2015-01-01

    Phase contrast X-ray computed tomography (PCI-CT) has been demonstrated as a novel imaging technique that can visualize human cartilage with high spatial resolution and soft tissue contrast. Different textural approaches have been previously investigated for characterizing chondrocyte organization on PCI-CT to enable classification of healthy and osteoarthritic cartilage. However, the large size of feature sets extracted in such studies motivates an investigation into algorithmic feature reduction for computing efficient feature representations without compromising their discriminatory power. For this purpose, geometrical feature sets derived from the scaling index method (SIM) were extracted from 1392 volumes of interest (VOI) annotated on PCI-CT images of ex vivo human patellar cartilage specimens. The extracted feature sets were subject to linear and non-linear dimension reduction techniques as well as feature selection based on evaluation of mutual information criteria. The reduced feature set was subsequently used in a machine learning task with support vector regression to classify VOIs as healthy or osteoarthritic; classification performance was evaluated using the area under the receiver-operating characteristic (ROC) curve (AUC). Our results show that the classification performance achieved by 9-D SIM-derived geometric feature sets (AUC: 0.96 ± 0.02) can be maintained with 2-D representations computed from both dimension reduction and feature selection (AUC values as high as 0.97 ± 0.02). Thus, such feature reduction techniques can offer a high degree of compaction to large feature sets extracted from PCI-CT images while maintaining their ability to characterize the underlying chondrocyte patterns. PMID:25710875

  19. Computer-Aided Recognition of Facial Attributes for Fetal Alcohol Spectrum Disorders.

    PubMed

    Valentine, Matthew; Bihm, Dustin C J; Wolf, Lior; Hoyme, H Eugene; May, Philip A; Buckley, David; Kalberg, Wendy; Abdul-Rahman, Omar A

    2017-12-01

    To compare the detection of facial attributes by computer-based facial recognition software of 2-D images against standard, manual examination in fetal alcohol spectrum disorders (FASD). Participants were gathered from the Fetal Alcohol Syndrome Epidemiology Research database. Standard frontal and oblique photographs of children were obtained during a manual, in-person dysmorphology assessment. Images were submitted for facial analysis conducted by the facial dysmorphology novel analysis technology (an automated system), which assesses ratios of measurements between various facial landmarks to determine the presence of dysmorphic features. Manual blinded dysmorphology assessments were compared with those obtained via the computer-aided system. Areas under the curve values for individual receiver-operating characteristic curves revealed the computer-aided system (0.88 ± 0.02) to be comparable to the manual method (0.86 ± 0.03) in detecting patients with FASD. Interestingly, cases of alcohol-related neurodevelopmental disorder (ARND) were identified more efficiently by the computer-aided system (0.84 ± 0.07) in comparison to the manual method (0.74 ± 0.04). A facial gestalt analysis of patients with ARND also identified more generalized facial findings compared to the cardinal facial features seen in more severe forms of FASD. We found there was an increased diagnostic accuracy for ARND via our computer-aided method. As this category has been historically difficult to diagnose, we believe our experiment demonstrates that facial dysmorphology novel analysis technology can potentially improve ARND diagnosis by introducing a standardized metric for recognizing FASD-associated facial anomalies. Earlier recognition of these patients will lead to earlier intervention with improved patient outcomes. Copyright © 2017 by the American Academy of Pediatrics.

  20. Accuracy evaluation of an X-ray microtomography system.

    PubMed

    Fernandes, Jaquiel S; Appoloni, Carlos R; Fernandes, Celso P

    2016-06-01

    Microstructural parameter evaluation of reservoir rocks is of great importance to petroleum production companies. In this connection, X-ray computed microtomography (μ-CT) has proven to be a quite useful method for the assessment of rocks, as it provides important microstructural parameters, such as porosity, permeability, pore size distribution and porous phase of the sample. X-ray computed microtomography is a non-destructive technique that enables the reuse of samples already measured and also yields 2-D cross-sectional images of the sample as well as volume rendering. This technique offers an additional advantage, as it does not require sample preparation, of reducing the measurement time, which is approximately one to three hours, depending on the spatial resolution used. Although this technique is extensively used, accuracy verification of measurements is hard to obtain because the existing calibrated samples (phantoms) have large volumes and are assessed in medical CT scanners with millimeter spatial resolution. Accordingly, this study aims to determine the accuracy of an X-ray computed microtomography system using a Skyscan 1172 X-ray microtomograph. To accomplish this investigation, it was used a nylon thread set with known appropriate diameter inserted into a glass tube. The results for porosity size and phase distribution by X-ray microtomography were very close to the geometrically calculated values. The geometrically calculated porosity and the porosity determined by the methodology using the μ-CT was 33.4±3.4% and 31.0±0.3%, respectively. The outcome of this investigation was excellent. It was also observed a small variability in the results along all 401 sections of the analyzed image. Minimum and maximum porosity values between the cross sections were 30.9% and 31.1%, respectively. A 3-D image representing the actual structure of the sample was also rendered from the 2-D images. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Short communication; Formula for the calculation of ground temperature at 1 M depth in Turkey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tezcan, A.K.

    1992-06-01

    This paper reports that the formula has been found by using the yearly averages of the temperatures at 1 m depth measured in 193 meteorological stations, distributed all over Turkey. It has thus become possible to determine the regional temperature value at 1 m depth at any point in Turkey, if the latitude, longitude and elevation are known. The values, calculated by the formula, can contribute to geothermal exploration in Turkey by providing values that can be compared with the observed ones, and, by becoming second values for the calculation of geothermal gradients where only single downhole temperatures are available.more » The formula has been evolved by expressing the temperatures as the linear function of latitude (La), longitude (Lo) and elevation (H): T = a + b [center dot] La + c [center dot] Lo + d [center dot] H. The derived four least square equations are a [center dot] n + b [center dot] [Sigma](La) + c [center dot] [Sigma](lo) + d [center dot] [Sigma]H = [Sigma]T a [center dot] [Sigma](La) + b [center dot] [Sigma](La)[sup 2] + c [center dot] [Sigma](La)(Lo) + d [center dot] [Sigma]H(La) =[Sigma]T(La) a [center dot] [Sigma](Lo) + b [center dot] [Sigma](La)(Lo) + c [center dot] [Sigma](Lo)[sup 2] + d [center dot] [Sigma]H(Lo) = [Sigma]T(Lo) a[center dot] [Sigma]H + b [center dot] [Sigma]H(La) + c [center dot] [Sigma](Lo) + d [center dot] [Sigma]H[sup 2] = [Sigma]TH where n is the number of data sets. The calculation of sigma values and the solution of the set of equations have been performed by means of a personal computer. The resulting formula is: T = 57.487 [minus] 1.078 La + 0.102 Lo [minus] 0.00488H where latitude and longitude are expressed in degrees, and elevation in meters. The regional value at Ankara (latitude 39.9[degrees], longitude 32.9[degrees], elevation 894 m) is calculated as 13.5[degrees]C (the measured value at 1 m depth is 14.6[degrees]C) and at Adana.« less

  2. Measured and Computed Hypersonic Aerodynamic/Aeroheating Characteristics for an Elliptically Blunted Flared Cylinder

    NASA Technical Reports Server (NTRS)

    Greene, Francis A.; Buck, Gregory M.; Wood, William A.

    2001-01-01

    Computational and experimental hypersonic aerodynamic forces and moments and aeroheating levels for Kistler Aerospace Corporation's baseline orbiter vehicle at incidence are presented. Experimental data were measured in ground-based facilities at the Langley Research Center and predictions were performed using the Langley Aerothermodynamic Upwind Relaxation Algorithm code. The test parameters were incidence (-4 to 24 degrees), freestream Mach number (6 to 10),freestream ratio o specific heats (1.2 to 1.4), and freestream Reynolds number (0.5 to 8.0 million per foot). The effects of these parameters on aerodynamic characteristics, as well as the effects of Reynolds number on measured heating levels are discussed. Good agreement between computational and experimental aerodynamic and aeroheating values were observed over the wide range of test parameters examined. Reynolds number and ratio of specific heats were observed to significantly alter the trim L/D value. At Mach 6, laminar flow was observed along the entire windward centerline tip to the flare for all angles and Reynolds numbers tested. Flow over the flare transitioned from laminar to transitional/turbulent between 4 and 8 million per foot at 8 and 12 degrees angle of attack, and near 4 million per foot at 16 degrees angle of attack.

  3. Contrast-enhanced time-resolved 4D MRA of congenital heart and vessel anomalies: image quality and diagnostic value compared with 3D MRA.

    PubMed

    Vogt, Florian M; Theysohn, Jens M; Michna, Dariusz; Hunold, Peter; Neudorf, Ulrich; Kinner, Sonja; Barkhausen, Jörg; Quick, Harald H

    2013-09-01

    To evaluate time-resolved interleaved stochastic trajectories (TWIST) contrast-enhanced 4D magnetic resonance angiography (MRA) and compare it with 3D FLASH MRA in patients with congenital heart and vessel anomalies. Twenty-six patients with congenital heart and vessel anomalies underwent contrast-enhanced MRA with both 3D FLASH and 4D TWIST MRA. Images were subjectively evaluated regarding total image quality, artefacts, diagnostic value and added diagnostic value of 4D dynamic imaging. Quantitative comparison included signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and vessel sharpness measurements. Three-dimensional FLASH MRA was judged to be significantly better in terms of image quality (4.0 ± 0.6 vs 3.4 ± 0.6, P < 0.05) and artefacts (3.8 ± 0.4 vs 3.3 ± 0.5, P < 0.05); no difference in diagnostic value was found (4.2 ± 0.4 vs 4.0 ± 0.4); important additional functional information was found in 21/26 patients. SNR and CNR were higher in the pulmonary trunk in 4D TWIST, but slightly higher in the systemic arteries in 3D FLASH. No difference in vessel sharpness delineation was found. Although image quality was inferior compared with 3D FLASH MRA, 4D TWIST MRA yields robust images and added diagnostic value through dynamic acquisition was found. Thus, 4D TWIST MRA is an attractive alternative to 3D FLASH MRA. • New magnetic resonance angiography (MRA) techniques are increasingly introduced for congenital cardiovascular problems. • Time-resolved angiography with interleaved stochastic trajectories (TWIST) is an example. • Four-dimensional TWIST MRA provided inferior image quality compared to 3D FLASH MRA but without significant difference in vessel sharpness. • Four-dimensional TWIST MRA gave added diagnostic value.

  4. The electric dipole moments in the ground states of gold oxide, AuO, and gold sulfide, AuS.

    PubMed

    Zhang, Ruohan; Yu, Yuanqin; Steimle, Timothy C; Cheng, Lan

    2017-02-14

    The B 2 Σ - - X 2 Π 3/2 (0,0) bands of a cold molecular beam sample of gold monoxide, AuO, and gold monosulfide, AuS, have been recorded at high resolution both field free and in the presence of a static electric field. The observed electric field induced splittings and shifts were analyzed to produce permanent electric dipole moments, μ→ el , of 2.94±0.06 D and 2.22±0.05 D for the X 2 Π 3/2 (v = 0) states of AuO and AuS, respectively. A molecular orbital correlation diagram is used to rationalize the trend in ground state μ→ el values for AuX (X = F, Cl, O, and S) molecules. The experimentally determined μ→ el are compared to those computed at the coupled-cluster singles and doubles (CCSD) level augmented with a perturbative inclusion of triple excitations (CCSD(T)) level of theory.

  5. The Benefit of Web- and Computer-Based Interventions for Stress: A Systematic Review and Meta-Analysis

    PubMed Central

    Ebert, David Daniel; Lehr, Dirk; Cuijpers, Pim; Berking, Matthias; Nobis, Stephanie; Riper, Heleen

    2017-01-01

    Background Stress has been identified as one of the major public health issues in this century. New technologies offer opportunities to provide effective psychological interventions on a large scale. Objective The aim of this study is to investigate the efficacy of Web- and computer-based stress-management interventions in adults relative to a control group. Methods A meta-analysis was performed, including 26 comparisons (n=4226). Cohen d was calculated for the primary outcome level of stress to determine the difference between the intervention and control groups at posttest. Analyses of the effect on depression, anxiety, and stress in the following subgroups were also conducted: risk of bias, theoretical basis, guidance, and length of the intervention. Available follow-up data (1-3 months, 4-6 months) were assessed for the primary outcome stress. Results The overall mean effect size for stress at posttest was Cohen d=0.43 (95% CI 0.31-0.54). Significant, small effects were found for depression (Cohen d=0.34, 95% CI 0.21-0.48) and anxiety (Cohen d=0.32, 95% CI 0.17-0.47). Subgroup analyses revealed that guided interventions (Cohen d=0.64, 95% CI 0.50-0.79) were more effective than unguided interventions (Cohen d=0.33, 95% CI 0.20-0.46; P=.002). With regard to the length of the intervention, short interventions (≤4 weeks) showed a small effect size (Cohen d=0.33, 95% CI 0.22-0.44) and medium-long interventions (5-8 weeks) were moderately effective (Cohen d=0.59; 95% CI 0.45-0.74), whereas long interventions (≥9 weeks) produced a nonsignificant effect (Cohen d=0.21, 95% CI –0.05 to 0.47; P=.006). In terms of treatment type, interventions based on cognitive behavioral therapy (CBT) and third-wave CBT (TWC) showed small-to-moderate effect sizes (CBT: Cohen d=0.40, 95% CI 0.19-0.61; TWC: Cohen d=0.53, 95% CI 0.35-0.71), and alternative interventions produced a small effect size (Cohen d=0.24, 95% CI 0.12-0.36; P=.03). Early evidence on follow-up data indicates that Web- and computer-based stress-management interventions can sustain their effects in terms of stress reduction in a small-to-moderate range up to 6 months. Conclusions These results provide evidence that Web- and computer-based stress-management interventions can be effective and have the potential to reduce stress-related mental health problems on a large scale. PMID:28213341

  6. The influence of computational strategy on prediction of mechanical stress in carotid atherosclerotic plaques: comparison of 2D structure-only, 3D structure-only, one-way and fully coupled fluid-structure interaction analyses.

    PubMed

    Huang, Yuan; Teng, Zhongzhao; Sadat, Umar; Graves, Martin J; Bennett, Martin R; Gillard, Jonathan H

    2014-04-11

    Compositional and morphological features of carotid atherosclerotic plaques provide complementary information to luminal stenosis in predicting clinical presentations. However, they alone cannot predict cerebrovascular risk. Mechanical stress within the plaque induced by cyclical changes in blood pressure has potential to assess plaque vulnerability. Various modeling strategies have been employed to predict stress, including 2D and 3D structure-only, 3D one-way and fully coupled fluid-structure interaction (FSI) simulations. However, differences in stress predictions using different strategies have not been assessed. Maximum principal stress (Stress-P1) within 8 human carotid atherosclerotic plaques was calculated based on geometry reconstructed from in vivo computerized tomography and high resolution, multi-sequence magnetic resonance images. Stress-P1 within the diseased region predicted by 2D and 3D structure-only, and 3D one-way FSI simulations were compared to 3D fully coupled FSI analysis. Compared to 3D fully coupled FSI, 2D structure-only simulation significantly overestimated stress level (94.1 kPa [65.2, 117.3] vs. 85.5 kPa [64.4, 113.6]; median [inter-quartile range], p=0.0004). However, when slices around the bifurcation region were excluded, stresses predicted by 2D structure-only simulations showed a good correlation (R(2)=0.69) with values obtained from 3D fully coupled FSI analysis. 3D structure-only model produced a small yet statistically significant stress overestimation compared to 3D fully coupled FSI (86.8 kPa [66.3, 115.8] vs. 85.5 kPa [64.4, 113.6]; p<0.0001). In contrast, one-way FSI underestimated stress compared to 3D fully coupled FSI (78.8 kPa [61.1, 100.4] vs. 85.5 kPa [64.4, 113.7]; p<0.0001). A 3D structure-only model seems to be a computationally inexpensive yet reasonably accurate approximation for stress within carotid atherosclerotic plaques with mild to moderate luminal stenosis as compared to fully coupled FSI analysis. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. f1: a code to compute Appell's F1 hypergeometric function

    NASA Astrophysics Data System (ADS)

    Colavecchia, F. D.; Gasaneo, G.

    2004-02-01

    In this work we present the FORTRAN code to compute the hypergeometric function F1( α, β1, β2, γ, x, y) of Appell. The program can compute the F1 function for real values of the variables { x, y}, and complex values of the parameters { α, β1, β2, γ}. The code uses different strategies to calculate the function according to the ideas outlined in [F.D. Colavecchia et al., Comput. Phys. Comm. 138 (1) (2001) 29]. Program summaryTitle of the program: f1 Catalogue identifier: ADSJ Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADSJ Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: none Computers: PC compatibles, SGI Origin2∗ Operating system under which the program has been tested: Linux, IRIX Programming language used: Fortran 90 Memory required to execute with typical data: 4 kbytes No. of bits in a word: 32 No. of bytes in distributed program, including test data, etc.: 52 325 Distribution format: tar gzip file External subprograms used: Numerical Recipes hypgeo [W.H. Press et al., Numerical Recipes in Fortran 77, Cambridge Univ. Press, 1996] or chyp routine of R.C. Forrey [J. Comput. Phys. 137 (1997) 79], rkf45 [L.F. Shampine and H.H. Watts, Rep. SAND76-0585, 1976]. Keywords: Numerical methods, special functions, hypergeometric functions, Appell functions, Gauss function Nature of the physical problem: Computing the Appell F1 function is relevant in atomic collisions and elementary particle physics. It is usually the result of multidimensional integrals involving Coulomb continuum states. Method of solution: The F1 function has a convergent-series definition for | x|<1 and | y|<1, and several analytic continuations for other regions of the variable space. The code tests the values of the variables and selects one of the precedent cases. In the convergence region the program uses the series definition near the origin of coordinates, and a numerical integration of the third-order differential parametric equation for the F1 function. Also detects several special cases according to the values of the parameters. Restrictions on the complexity of the problem: The code is restricted to real values of the variables { x, y}. Also, there are some parameter domains that are not covered. These usually imply differences between integer parameters that lead to negative integer arguments of Gamma functions. Typical running time: Depends basically on the variables. The computation of Table 4 of [F.D. Colavecchia et al., Comput. Phys. Comm. 138 (1) (2001) 29] (64 functions) requires approximately 0.33 s in a Athlon 900 MHz processor.

  8. Multifidelity-CMA: a multifidelity approach for efficient personalisation of 3D cardiac electromechanical models.

    PubMed

    Molléro, Roch; Pennec, Xavier; Delingette, Hervé; Garny, Alan; Ayache, Nicholas; Sermesant, Maxime

    2018-02-01

    Personalised computational models of the heart are of increasing interest for clinical applications due to their discriminative and predictive abilities. However, the simulation of a single heartbeat with a 3D cardiac electromechanical model can be long and computationally expensive, which makes some practical applications, such as the estimation of model parameters from clinical data (the personalisation), very slow. Here we introduce an original multifidelity approach between a 3D cardiac model and a simplified "0D" version of this model, which enables to get reliable (and extremely fast) approximations of the global behaviour of the 3D model using 0D simulations. We then use this multifidelity approximation to speed-up an efficient parameter estimation algorithm, leading to a fast and computationally efficient personalisation method of the 3D model. In particular, we show results on a cohort of 121 different heart geometries and measurements. Finally, an exploitable code of the 0D model with scripts to perform parameter estimation will be released to the community.

  9. Transactions of the Army Conference on Applied Mathematics and Computing (6th) Held in Boulder, Colorado on 31 May - 3 June 1988

    DTIC Science & Technology

    1989-02-01

    North American algebraists, in academic mathematics departments, appear to have computer anxiety or computation anxiety . Conferences and...the Heaviside function of S[4,51. H(S)[(p+ Vov] =0 (1) D H(S)[ HRv + Vp = 0 (2) Dt where D 8 a -- = +3- (3) We nondimensionalize the equations by using

  10. Automated Breast Density Computation in Digital Mammography and Digital Breast Tomosynthesis: Influence on Mean Glandular Dose and BIRADS Density Categorization.

    PubMed

    Castillo-García, Maria; Chevalier, Margarita; Garayoa, Julia; Rodriguez-Ruiz, Alejandro; García-Pinto, Diego; Valverde, Julio

    2017-07-01

    The study aimed to compare the breast density estimates from two algorithms on full-field digital mammography (FFDM) and digital breast tomosynthesis (DBT) and to analyze the clinical implications. We selected 561 FFDM and DBT examinations from patients without breast pathologies. Two versions of a commercial software (Quantra 2D and Quantra 3D) calculated the volumetric breast density automatically in FFDM and DBT, respectively. Other parameters such as area breast density and total breast volume were evaluated. We compared the results from both algorithms using the Mann-Whitney U non-parametric test and the Spearman's rank coefficient for data correlation analysis. Mean glandular dose (MGD) was calculated following the methodology proposed by Dance et al. Measurements with both algorithms are well correlated (r ≥ 0.77). However, there are statistically significant differences between the medians (P < 0.05) of most parameters. The volumetric and area breast density median values from FFDM are, respectively, 8% and 77% higher than DBT estimations. Both algorithms classify 35% and 55% of breasts into BIRADS (Breast Imaging-Reporting and Data System) b and c categories, respectively. There are no significant differences between the MGD calculated using the breast density from each algorithm. DBT delivers higher MGD than FFDM, with a lower difference (5%) for breasts in the BIRADS d category. MGD is, on average, 6% higher than values obtained with the breast glandularity proposed by Dance et al. Breast density measurements from both algorithms lead to equivalent BIRADS classification and MGD values, hence showing no difference in clinical outcomes. The median MGD values of FFDM and DBT examinations are similar for dense breasts (BIRADS d category). Published by Elsevier Inc.

  11. Single versus triple daily activation of the distractor: no significant effects of frequency of distraction on bone regenerate quantity and architecture.

    PubMed

    Djasim, Urville Mardijanto; Wolvius, Eppo Bonne; Van Neck, Johan Wilhelm; Van Wamel, Annemieke; Weinans, Harrie; Van Der Wal, Karel George Hendrik

    2008-04-01

    To study the effect of two different frequencies of distraction on the quantity and architecture of bone regenerate using micro-computed tomography, and to determine whether radiographic and ultrasonographic bone-fill scores provide reliable predictive value for the amount of new bone in the distraction area. Twenty-six skeletally mature rabbits underwent three full days of latency, after which midface distraction was started. Low-frequency group (n=12): a distraction rate of 0.9 mm/d achieved by one daily activation for 11 days to create a 10mm distraction gap. High-frequency group (n=12): idem, but three daily activations were used instead of one. Control group (n=2) underwent no distraction. After 21 days of consolidation, bone-fill in the distraction area was assessed by means of ultrasonography and radiography. Micro-computed tomography was used to quantify new bone formation and bone architecture. Relative bone volume (BV/TV) showed a tendency towards a difference (P=0.09) between the low and high-frequency groups. No significant differences were found for bone architecture. No significant correlation between BV/TV values and bone-fill scores was found. An increase in rhythm from one to three activations daily does not create significantly more bone. Bone-fill score values provided no reliable predictive value for the amount of new bone formation.

  12. Population of 224 realistic human subject-based computational breast phantoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, David W.; Wells, Jered R., E-mail: jered.wells@duke.edu; Sturgeon, Gregory M.

    Purpose: To create a database of highly realistic and anatomically variable 3D virtual breast phantoms based on dedicated breast computed tomography (bCT) data. Methods: A tissue classification and segmentation algorithm was used to create realistic and detailed 3D computational breast phantoms based on 230 + dedicated bCT datasets from normal human subjects. The breast volume was identified using a coarse three-class fuzzy C-means segmentation algorithm which accounted for and removed motion blur at the breast periphery. Noise in the bCT data was reduced through application of a postreconstruction 3D bilateral filter. A 3D adipose nonuniformity (bias field) correction was thenmore » applied followed by glandular segmentation using a 3D bias-corrected fuzzy C-means algorithm. Multiple tissue classes were defined including skin, adipose, and several fractional glandular densities. Following segmentation, a skin mask was produced which preserved the interdigitated skin, adipose, and glandular boundaries of the skin interior. Finally, surface modeling was used to produce digital phantoms with methods complementary to the XCAT suite of digital human phantoms. Results: After rejecting some datasets due to artifacts, 224 virtual breast phantoms were created which emulate the complex breast parenchyma of actual human subjects. The volume breast density (with skin) ranged from 5.5% to 66.3% with a mean value of 25.3% ± 13.2%. Breast volumes ranged from 25.0 to 2099.6 ml with a mean value of 716.3 ± 386.5 ml. Three breast phantoms were selected for imaging with digital compression (using finite element modeling) and simple ray-tracing, and the results show promise in their potential to produce realistic simulated mammograms. Conclusions: This work provides a new population of 224 breast phantoms based on in vivo bCT data for imaging research. Compared to previous studies based on only a few prototype cases, this dataset provides a rich source of new cases spanning a wide range of breast types, volumes, densities, and parenchymal patterns.« less

  13. Population of 224 realistic human subject-based computational breast phantoms

    PubMed Central

    Erickson, David W.; Wells, Jered R.; Sturgeon, Gregory M.; Dobbins, James T.; Segars, W. Paul; Lo, Joseph Y.

    2016-01-01

    Purpose: To create a database of highly realistic and anatomically variable 3D virtual breast phantoms based on dedicated breast computed tomography (bCT) data. Methods: A tissue classification and segmentation algorithm was used to create realistic and detailed 3D computational breast phantoms based on 230 + dedicated bCT datasets from normal human subjects. The breast volume was identified using a coarse three-class fuzzy C-means segmentation algorithm which accounted for and removed motion blur at the breast periphery. Noise in the bCT data was reduced through application of a postreconstruction 3D bilateral filter. A 3D adipose nonuniformity (bias field) correction was then applied followed by glandular segmentation using a 3D bias-corrected fuzzy C-means algorithm. Multiple tissue classes were defined including skin, adipose, and several fractional glandular densities. Following segmentation, a skin mask was produced which preserved the interdigitated skin, adipose, and glandular boundaries of the skin interior. Finally, surface modeling was used to produce digital phantoms with methods complementary to the XCAT suite of digital human phantoms. Results: After rejecting some datasets due to artifacts, 224 virtual breast phantoms were created which emulate the complex breast parenchyma of actual human subjects. The volume breast density (with skin) ranged from 5.5% to 66.3% with a mean value of 25.3% ± 13.2%. Breast volumes ranged from 25.0 to 2099.6 ml with a mean value of 716.3 ± 386.5 ml. Three breast phantoms were selected for imaging with digital compression (using finite element modeling) and simple ray-tracing, and the results show promise in their potential to produce realistic simulated mammograms. Conclusions: This work provides a new population of 224 breast phantoms based on in vivo bCT data for imaging research. Compared to previous studies based on only a few prototype cases, this dataset provides a rich source of new cases spanning a wide range of breast types, volumes, densities, and parenchymal patterns. PMID:26745896

  14. Koopman Mode Decomposition Methods in Dynamic Stall: Reduced Order Modeling and Control

    DTIC Science & Technology

    2015-11-10

    the flow phenomena by separating them into individual modes. The technique of Proper Orthogonal Decomposition (POD), see [ Holmes : 1998] is a popular...sampled values h(k), k = 0,…,2M-1, of the exponential sum 1. Solve the following linear system where 2. Compute all zeros zj  D, j = 1,…,M...of the Prony polynomial i.e., calculate all eigenvalues of the associated companion matrix and form fj = log zj for j = 1,…,M, where log is the

  15. Theoretical estimates of equilibrium sulfur isotope effects in aqueous sulfur systems: Highlighting the role of isomers in the sulfite and sulfoxylate systems

    NASA Astrophysics Data System (ADS)

    Eldridge, D. L.; Guo, W.; Farquhar, J.

    2016-12-01

    We present theoretical calculations for all three isotope ratios of sulfur (33S/32S, 34S/32S, 36S/32S) at the B3LYP/6-31+G(d,p) level of theory for aqueous sulfur compounds modeled in 30-40H2O clusters spanning the range of sulfur oxidation state (Sn, n = -2 to +6) for estimating equilibrium fractionation factors in aqueous systems. Computed 34β values based on major isotope (34S/32S) reduced partition function ratios (RPFRs) scale to a first order with sulfur oxidation state and coordination, where 34β generally increase with higher oxidation state and increasing coordination of the sulfur atom. Exponents defining mass dependent relationships based on β values (x/34κ = ln(xβ)/ln(34β), x = 33 or 36) conform to tight ranges over a wide range of temperature for all aqueous compounds (33/34κ ≈ 0.5148-0.5159, 36/34κ ≈ 1.89-1.90 from T ⩾ 0 °C). The exponents converge near a singular value for all compounds at the high temperature limit (33/34κT→∞ = 0.51587 ± 0.00003 and 36/34κT→∞ = 1.8905 ± 0.0002; 1 s.d. of all computed compounds), and typically follow trends based on oxidation state and coordination similar to those seen in 34β values at lower temperatures. Theoretical equilibrium fractionation factors computed from these β-values are compared to experimental constraints for HSO3-T(aq)/SO2(g, aq), SO2(aq)/SO2(g), H2S(aq)/H2S(g), H2S(aq)/HS-(aq), SO42-(aq)/H2ST(aq), S2O32-(aq) (intramolecular), and S2O32-(aq)/H2ST(aq), and generally agree within a reasonable estimation of uncertainties. We make predictions of fractionation factors where other constraints are unavailable. Isotope partitioning of the isomers of protonated compounds in the sulfite and sulfoxylate systems depend strongly on whether protons are bound to either sulfur or oxygen atoms. The magnitude of the HSO3-T/SO32- major isotope (34S/32S) fractionation factor is predicted to increase with temperature from 0 to 70 °C due to the combined effects of the large magnitude (HS)O3-/SO32- fractionation factor (1000ln34α(HS)bisulfite-sulfite = 19.9‰, 25 °C) relative to the (HO)SO2-/SO32- fractionation factor (1000ln34α(HO)bisulfite-sulfite = -2.2‰, 25 °C), and the increased stability of the (HS)O3- isomer with increasing temperature. We argue that isomerization phenomenon should be considered in models of the sulfur cycle, including models that describe the overall sulfur isotope fractionations associated with microbial metabolism (e.g., microbial sulfate reduction).

  16. Effect of Two Polishing Systems on Surface Roughness, Topography, and Flexural Strength of a Monolithic Lithium Disilicate Ceramic.

    PubMed

    Mohammadibassir, Mahshid; Rezvani, Mohammad Bagher; Golzari, Hossein; Moravej Salehi, Elham; Fahimi, Mohammad Amin; Kharazi Fard, Mohammad Javad

    2017-03-08

    To evaluate the effect of overglazing and two polishing procedures on flexural strength and quality and quantity of surface roughness of a monolithic lithium disilicate ceramic computer-aided design (CAD) after grinding. This in vitro study was conducted on 52 partially crystalized bar-shaped specimens (16 × 4 × 1.6 mm) of monolithic lithium disilicate ceramic. The specimens were wet polished with 600-, 800-, and 1200-grit silicon carbide papers for 15 seconds using a grinding/polishing machine at a speed of 300 rpm. Then, the specimens were crystalized and glaze-fired in one step simultaneously and randomly divided into four groups of 13: (I) Glazing group (control); (II) Grinding-glazing group, subjected to grinding with red band finishing diamond bur (46 μm) followed by glazing; (III) Grinding-D+Z group, subjected to grinding and then polishing by coarse, medium, and fine diamond rubber points (D+Z); and (IV) Grinding-OptraFine group, subjected to grinding and then polishing with a two-step diamond rubber polishing system followed by a final polishing step with an OptraFine HP brush and diamond polishing paste. The surface roughness (Ra and Rz) values (μm) were measured by a profilometer, and the mean values were compared using one-way ANOVA and Tamhane's test (post hoc comparison). One specimen of each group was evaluated under a scanning electron microscope (SEM) for surface topography. The three-point flexural strength values of the bars were measured using a universal testing machine at a 0.5 mm/min crosshead speed and recorded. The data were analyzed using one-way ANOVA and Tamhane's test (α = 0.05). Statistically significant differences were noted among the experimental groups for Ra, Rz (p < 0.0001), and flexural strength values (p < 0.009). The lowest Ra and Rz values were found in the grinding-OptraFine group (0.465 ± 0.153), which were significantly lower than those in glazing (p < 0.03) and grinding-glazing (p < 0.001) groups. The Ra and Rz values were not significantly different between the two polishing systems (p = 0.23 and p = 0.25, respectively). The highest flexural strength was found in the glazing group (283.350 ± 49.854 MPa) without significant differences compared to grinding-glazing (p = 0.98) and grinding-OptraFine groups (p = 0.86). The lowest flexural strength was found in grinding-D+Z group (225.070 ± 17.299), which was significantly different from the value in glazing (p < 0.03) and grinding-glazing (p < 0.04) groups. SEM analysis of polished surfaces revealed regular morphology with some striations. The OptraFine system created smoother and more uniform surfaces in terms of quantity (p < 0.03 for Ra, p < 0.01 for Rz) and quality of roughness compared to glazing. The flexural strength of lithium disilicate ceramic after polishing with the OptraFine system was similar to that after glazing (p = 0.86). Despite similar surface roughness after polishing with the two systems, the D+Z system reduced the flexural strength of ceramic (p < 0.03). © 2017 by the American College of Prosthodontists.

  17. Colonic polyps: application value of computer-aided detection in computed tomographic colonography.

    PubMed

    Zhang, Hui-Mao; Guo, Wei; Liu, Gui-Feng; An, Dong-Hong; Gao, Shuo-Hui; Sun, Li-Bo; Yang, Hai-Shan

    2011-02-01

    Colonic polyps are frequently encountered in clinics. Computed tomographic colonography (CTC), as a painless and quick detection, has high values in clinics. In this study, we evaluated the application value of computer-aided detection (CAD) in CTC detection of colonic polyps in the Chinese population. CTC was performed with a GE 64-row multidetector computed tomography (MDCT) scanner. Data of 50 CTC patients (39 patients positive for at least one polyp of ≥ 0.5 cm in size and the other 11 patients negative by endoscopic detection) were retrospectively reviewed first without computer-aided detection (CAD) and then with CAD by four radiologists (two were experienced and another two inexperienced) blinded to colonoscopy findings. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of detected colonic polyps, as well as the areas under the ROC curves (Az value) with and without CAD were calculated. CAD increased the overall sensitivity, specificity, positive predictive value, negative predictive value and accuracy of the colonic polyps detected by experienced and inexperienced readers. The sensitivity in detecting small polyps (5 - 9 mm) with CAD in experienced and inexperienced readers increased from 82% and 44% to 93% and 82%, respectively (P > 0.05 and P < 0.001). With the use of CAD, the overall false positive rate and false negative rate for the detection of polyps by experienced and inexperienced readers decreased in different degrees. Among 13 sessile polyps not detected by CAD, two were ≥ 1.0 cm, eleven were 5 - 9 mm in diameter, and nine were flat-shaped lesions. The application of CAD in combination with CTC can increase the ability to detect colonic polyps, particularly for inexperienced readers. However, CAD is of limited value for the detection of flat polyps.

  18. Calcium/Vitamin D Supplementation and Coronary Artery Calcification

    PubMed Central

    Manson, JoAnn E.; Allison, Matthew A.; Carr, J. Jeffrey; Langer, Robert D.; Cochrane, Barbara B.; Hendrix, Susan L.; Hsia, Judith; Hunt, Julie R.; Lewis, Cora E.; Margolis, Karen L.; Robinson, Jennifer G.; Rodabough, Rebecca J.; Thomas, Asha M.

    2010-01-01

    Objectives Coronary artery calcified plaque is a marker for atheromatous plaque burden and predicts future risk of cardiovascular events. The relationship between calcium plus vitamin D supplementation and coronary artery calcium (CAC) has not been previously assessed in a randomized trial setting. We compared coronary artery calcium scores among women randomized to calcium/vitamin D supplementation versus placebo following trial completion. Methods In an ancillary substudy of women randomized to calcium carbonate (1000 mg of elemental calcium daily) plus vitamin D3 (400 IU daily) versus placebo, nested within the Women’s Health Initiative trial of estrogen among women with hysterectomy, we measured CAC with cardiac computed tomography in 754 women aged 50–59 years at randomization. Imaging for CAC was performed at 28 of 40 centers following a mean of 7 years of treatment and scans were read centrally. Coronary artery calcium scores were measured by a central reading center with masking to randomization assignments. Results Post-trial CAC measurements were similar in women randomized to calcium/vitamin D supplementation (calcium/D) and those receiving placebo. The mean CAC score was 91.6 for calcium/D and 100.5 for placebo (rank test p-value=0.74). After adjustment for coronary risk factors, multivariate odds ratios for increasing CAC score cutpoints (CAC >0, ≥10, and ≥100) for calcium/D vs placebo were 0.92 (95% confidence interval, 0.64–1.34), 1.29 (0.88–1.87), and 0.90 (0.56–1.44), respectively. Corresponding odds ratios among women with >50% adherence to study pills and for higher levels of CAC (>300), were similar. Conclusions Treatment with moderate doses of calcium plus vitamin D3 did not appear to alter coronary artery calcified plaque burden among postmenopausal women. PMID:20551849

  19. A correlated ab initio study of the X2A1 and A2E states of MgCH3

    NASA Technical Reports Server (NTRS)

    Woon, D. E.

    1996-01-01

    The X2A1 and A2E states of the MgCH3 radical have been studied with correlation consistent basis sets and the coupled cluster method RCCSD(T) in order to compare with two recent experimental efforts [M. A. Anderson and L. M. Ziurys, Astrophys. J. 452, L157 (1995); R. Rubino, J. M. Williamson, and T. A. Miller, J. Chem. Phys. 103, 5964 (1995)]. The best computed values [RCCSD(T)/cc-pCVTZ] for the X2A1 state are (experimental results in parentheses): Ae = 160.433 GHz, Be = 10.948 GHz (B0 = 11.008 GHz), and Mue = 1.011 D. The Mg-CH3 bond is weak, 26.3 kcal/mol. Values for the A2E state are Ae = 154.648 GHz (A0 = 149.666 GHz), Be = 10.87 GHz (B0 = 10.932 GHz), and Mue = 1.022 D. The excitation energy (Te) for the A2E <-- X2A1 transition is 19 999 cm-1 (T00 = 20 030 cm-1). A brief discussion of bonding trends in Mg-containing radials is included.

  20. Dosimetric study of mandible examinations performed with three cone-beam computed tomography scanners.

    PubMed

    Khoury, Helen J; Andrade, Marcos E; Araujo, Max Well; Brasileiro, Izabela V; Kramer, Richard; Huda, Amir

    2015-07-01

    The objective of this work was to evaluate the air kerma-area product (PKA) and the skin absorbed dose in the region of the eyes, salivary glands and thyroid of the patient from mandible examinations performed with three cone-beam computed tomography (CBCT) scanners, i.e. i-CAT classic, Gendex CB-500 and PreXion 3D. For the dosimetric evaluation, an anthropomorphic head phantom (model RS-250) was used to simulate an adult patient. The CBCT examinations were performed using standard and high-resolution protocols for mandible acquisitions for adult patients. During the phantom's exposure, the PKA was measured using an ionising chamber and the absorbed doses to the skin in the region of the eyes, thyroid and salivary glands were estimated using thermoluminescence dosemeters (TLDs) positioned on the phantom's surface. The PKA values estimated with the CBCT scanners varied from 26 to 138 µGy m(2). Skin absorbed doses in the region of the eyes varied from 0.07 to 0.34 mGy; at the parotid glands, from 1.31 to 5.93 mGy; at the submandibular glands, from 1.41 to 6.86 mGy; and at the thyroid, from 0.18 to 2.45 mGy. PKA and absorbed doses showed the highest values for the PreXion 3D scanner due to the use of the continuous exposure mode and a high current-time product. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Correlation of fresh muscle firmness with sensory characteristics of pork loins destined for a quality focused market.

    PubMed

    Arkfeld, E K; Mancini, S; Fields, B; Dilger, A C; Boler, D D

    2015-10-01

    Production of pork for quality-driven export markets offers economic incentive. Pork processors use subjective firmness as a sorting tool for loins intended for high-quality export. The objectives of this study were to determine 1) durometer efficacy in muscle, 2) if firmness on one portion of the loin is indicative of other locations, 3) if 1 d firmness is related to export quality traits, and 4) if variation in firmness is explained by mechanistic measures. Subjective firmness scores (1 = extremely soft and 5 = extremely firm) were determined by a trained individual 1 d (initial time point) postmortem. Loins (North American Meat Processors number 414 Canadian back; = 154) were wet aged for 28 d at 1.7°C. On d 28, a panel of 4 individuals assigned firmness scores on the ventral side of the loin at the area of the 10th rib, the anterior half, and the posterior half of the loin. Durometer readings were collected at the area of the 10th rib on the dorsal and ventral side of the loin. Spearman correlation coefficients were computed in SAS (version 9.3) to account for nonnormality of categorical data. Subjective firmness measurements at d 28 at the 10th rib and on the anterior portion of the loin were not correlated ( ≥ 0.21) with whole loin durometer readings on the dorsal or ventral portion of the loin or the average of the whole loin values. Subjective firmness (d 28) at the 10th rib accounted for 38.44 ( = 0.620) and 48.30% ( = 0.695) of the variation in firmness at the anterior portion of the loin and the posterior portion of the loin, respectively ( ≤ 0.05). One-day subjective firmness measurements were correlated with 28-d Warner-Bratzler shear force measurements ( = 0.174, = 0.03) but were not significantly correlated with sensory characteristics ( ≥ 0.08). Purge tended to be correlated with 1 d firmness ( = 0.136, = 0.10); however, drip and cooking loss, 24-h and 28-d pH, and soluble and insoluble collagen content were not correlated ( ≥ 0.34). Firmness measurements collected in the production facility (1 d) were negatively correlated with iodine value (IV; = -0.199, = 0.02), yet no 28-d subjective firmness measurements were correlated with IV ( ≥ 0.33). When loins not achieving export standards are removed from the population, 1 d firmness was not correlated to export quality or sensory characteristics (d 28). Differences in firmness were not explained by mechanistic measures. Inconsistencies among subjective and objective firmness measurements suggest that the durometer may not be an appropriate way to determine firmness.

  2. Integrating micro CT indices, CT imaging and computational modelling to assess the mechanical performance of fluoride treated bone.

    PubMed

    Sreenivasan, D; Watson, M; Callon, K; Dray, M; Das, R; Grey, A; Cornish, J; Fernandez, J

    2013-12-01

    In this study we evaluate the influence of low-dose fluoride treatment on 23 patient biopsies. Computational finite element (FE) models of each biopsy were subjected to a range of loads including compression, shear and torsion. The modelling framework was validated against three 3D printed models with known material properties subjected to compression till failure using an Instron machine. The primary outcomes from this study were that mechanical strength was not significantly correlated to low-dose (<10 mg/day) of fluoride levels (one-way ANOVA, P-values of 0.78, 0.69 and 0.62 for compression, shear and torsion, respectively). However, when bulk bone material properties were derived from DXA bone mineral density (BMD) from each patient's proximal femur a non-significant linear decline in mechanical strength with increase in fluoride was predicted. When the same material property was used for all bones (to evaluate bone architecture influence) then mechanical strength showed a characteristic concave upwards trend, consistent with the variation of micro CT derived percentage bone volume (BV/TV). The secondary outcomes from this study were that in compression, BV/TV was observed to be a strong surrogate measure for mechanical strength (R(2) = 0.83), while bone surface density (R(2)=0.6), trabecular thickness (R(2) = 0.5) and intersection surface (R(2) = 0.6) also explained the variation of mechanical strength well. However, trabecular separation and trabecular number were mildly correlated with mechanical strength (R(2) of 0.31 and 0.35, respectively). Compression was the loading mode most strongly correlated to micro CT indices. Material properties adapted from the proximal femur reduced the CT index correlations by up to 58% indicating that bulk density from a near proximity is a poor representation of specific localised density. Substituting the 3D micro CT indices with 2D histomorphometric data decreased correlations by at least 33% indicating that structural identification on a plane is not representative of the full 3D architecture necessary for a complete bone strength analysis. The presented computational framework may be used to assess the roles that bone architecture and loading modes play in bone quality, and which micro CT indices are good surrogate measures for mechanical strength. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  3. Influence of source batch S{sub K} dispersion on dosimetry for prostate cancer treatment with permanent implants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuñez-Cumplido, E., E-mail: ejnc-mccg@hotmail.com; Hernandez-Armas, J.; Perez-Calatayud, J.

    2015-08-15

    Purpose: In clinical practice, specific air kerma strength (S{sub K}) value is used in treatment planning system (TPS) permanent brachytherapy implant calculations with {sup 125}I and {sup 103}Pd sources; in fact, commercial TPS provide only one S{sub K} input value for all implanted sources and the certified shipment average is typically used. However, the value for S{sub K} is dispersed: this dispersion is not only due to the manufacturing process and variation between different source batches but also due to the classification of sources into different classes according to their S{sub K} values. The purpose of this work is tomore » examine the impact of S{sub K} dispersion on typical implant parameters that are used to evaluate the dose volume histogram (DVH) for both planning target volume (PTV) and organs at risk (OARs). Methods: The authors have developed a new algorithm to compute dose distributions with different S{sub K} values for each source. Three different prostate volumes (20, 30, and 40 cm{sup 3}) were considered and two typical commercial sources of different radionuclides were used. Using a conventional TPS, clinically accepted calculations were made for {sup 125}I sources; for the palladium, typical implants were simulated. To assess the many different possible S{sub K} values for each source belonging to a class, the authors assigned an S{sub K} value to each source in a randomized process 1000 times for each source and volume. All the dose distributions generated for each set of simulations were assessed through the DVH distributions comparing with dose distributions obtained using a uniform S{sub K} value for all the implanted sources. The authors analyzed several dose coverage (V{sub 100} and D{sub 90}) and overdosage parameters for prostate and PTV and also the limiting and overdosage parameters for OARs, urethra and rectum. Results: The parameters analyzed followed a Gaussian distribution for the entire set of computed dosimetries. PTV and prostate V{sub 100} and D{sub 90} variations ranged between 0.2% and 1.78% for both sources. Variations for the overdosage parameters V{sub 150} and V{sub 200} compared to dose coverage parameters were observed and, in general, variations were larger for parameters related to {sup 125}I sources than {sup 103}Pd sources. For OAR dosimetry, variations with respect to the reference D{sub 0.1cm{sup 3}} were observed for rectum values, ranging from 2% to 3%, compared with urethra values, which ranged from 1% to 2%. Conclusions: Dose coverage for prostate and PTV was practically unaffected by S{sub K} dispersion, as was the maximum dose deposited in the urethra due to the implant technique geometry. However, the authors observed larger variations for the PTV V{sub 150}, rectum V{sub 100}, and rectum D{sub 0.1cm{sup 3}} values. The variations in rectum parameters were caused by the specific location of sources with S{sub K} value that differed from the average in the vicinity. Finally, on comparing the two sources, variations were larger for {sup 125}I than for {sup 103}Pd. This is because for {sup 103}Pd, a greater number of sources were used to obtain a valid dose distribution than for {sup 125}I, resulting in a lower variation for each S{sub K} value for each source (because the variations become averaged out statistically speaking)« less

  4. Robust Control of Multivariable and Large Scale Systems.

    DTIC Science & Technology

    1988-03-23

    D, and let A E [0, 1]. We need to show that h ((1 - A)D1 + AD2 ) < (1 - A)h(D 1 ) + Ah(D 2) Define f:R-+R by f(t) := h((1 - t)D 1 + tD 2 ) = ebt...SVD -S M = 3UV * + U2E2 V2 *. (13.11) In this setting, / is any singular value of M, not necessarily &(M), but none of the singular values in E 2 should...a)f (x) -afr(y)] and let A be the largest value in [0, 1] that achieves #3. Obviously, since /3 > 0, A E (0, 1). Define tD := (1 - A)x + Ay. Hence f

  5. Gamma-Ray Holdup Measurements of U-235, Np-237, and Am-241 Content in the C and D Out-gassing Ovens in the Deactivation and Decommissioning Activities in 321-M

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RAYMOND, DEWBERRY

    2004-09-16

    The Analytical Development Section of Savannah River National Laboratory (SRNL) was requested by the Facilities Disposition Projects (FDP) to determine the holdup of enriched uranium in the 321-M facility as part of an overall deactivation project of the facility. The 321-M facility was used to fabricate enriched uranium fuel assemblies, lithium-aluminum target tubes, neptunium assemblies, and miscellaneous components for the production reactors. The results of the holdup assays are essential for determining compliance with the Waste Acceptance Criteria, Material Control and Accountability, and to meet criticality safety controls. This report covers holdup measurements in the C and D out-gassing ovensmore » that were used to remove gas entrained in billet assembly material prior to the billets being extruded into rods by the extrusion press. A portable high purity germanium (HPGe) detection system and a portable sodium iodide (NaI) detection system were used to determine highly enriched uranium (HEU) holdup and to determine holdup of Np-237 and Am-241 that were observed in these components. The HPGe detector was run by an EG and G Dart (TM) system that contains the high voltage power supply and signal processing electronics. A personal computer with Gamma-Vision software was used to control the Dart (TM) MCA and provide space to store and manipulate multiple 4096-channel spectra. The NaI detector was run with a Canberra NaI plus MCA card that converts a personal computer to a full function multichannel analyzer and with Canberra Genie-2000 acquisition and analysis software. The measured Np-237 and Am-241 contents were especially important in these components because their presence is unusual and unexpected in 321-M. It was important to obtain a measured value of these two species to disposition the out-gassing ovens and to determine whether a separate waste stream was necessary for release of these contaminated components to the E-Area Solid Waste Vault. The reported values for Np-237 are (17 plus or minus 7) mg in oven C and less than 0.5 mg in oven D. The reported values for Am-241 are (1.3 plus or minus 0.2) in oven C and less than 400 ng in oven D. Our results indicate an upper limit of U-235 content of 0.2 g for oven C and (0.105 plus or minus 0.048) g in oven D. This report discusses the methodology, non-destructive assay (NDA) measurements, and results of the holdup measured for each of the three actinide species in these out-gassing ovens.« less

  6. Early Dose Response to Yttrium-90 Microsphere Treatment of Metastatic Liver Cancer by a Patient-Specific Method Using Single Photon Emission Computed Tomography and Positron Emission Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Janice M.; Department of Radiation Oncology, Wayne State University, Detroit, MI; Wong, C. Oliver

    2009-05-01

    Purpose: To evaluate a patient-specific single photon emission computed tomography (SPECT)-based method of dose calculation for treatment planning of yttrium-90 ({sup 90}Y) microsphere selective internal radiotherapy (SIRT). Methods and Materials: Fourteen consecutive {sup 90}Y SIRTs for colorectal liver metastasis were retrospectively analyzed. Absorbed dose to tumor and normal liver tissue was calculated by partition methods with two different tumor/normal liver vascularity ratios: an average 3:1 and a patient-specific ratio derived from pretreatment technetium-99m macroaggregated albumin SPECT. Tumor response was quantitatively evaluated from fluorine-18 fluoro-2-deoxy-D-glucose positron emission tomography scans. Results: Positron emission tomography showed a significant decrease in total tumor standardizedmore » uptake value (average, 52%). There was a significant difference in the tumor absorbed dose between the average and specific methods (p = 0.009). Response vs. dose curves fit by linear and linear-quadratic modeling showed similar results. Linear fit r values increased for all tumor response parameters with the specific method (+0.20 for mean standardized uptake value). Conclusion: Tumor dose calculated with the patient-specific method was more predictive of response in liver-directed {sup 90}Y SIRT.« less

  7. A Fast Infrared Radiative Transfer Model for Overlapping Clouds

    NASA Technical Reports Server (NTRS)

    Niu, Jianguo; Yang, Ping; Huang, Huang-Lung; Davies, James E.; Li, Jun; Baum, Bryan A.; Hu, Yong X.

    2006-01-01

    A fast infrared radiative transfer model (FIRTM2) appropriate for application to both single-layered and overlapping cloud situations is developed for simulating the outgoing infrared spectral radiance at the top of the atmosphere (TOA). In FIRTM2 a pre-computed library of cloud reflectance and transmittance values is employed to account for one or two cloud layers, whereas the background atmospheric optical thickness due to gaseous absorption can be computed from a clear-sky radiative transfer model. FIRTM2 is applicable to three atmospheric conditions: 1) clear-sky, 2) single-layered ice or water cloud, and 3) two simultaneous cloud layers in a column (e.g., ice cloud overlying water cloud). Moreover, FIRTM2 outputs the derivatives (i.e., Jacobians) of the TOA brightness temperature with respect to cloud optical thickness and effective particle size. Sensitivity analyses have been carried out to assess the performance of FIRTM2 for two spectral regions, namely the longwave (LW) band (587.3 - 1179.5/cm) and the short-to-medium wave (SMW) band (1180.1 - 2228.9/cm). The assessment is carried out in terms of brightness temperature differences (BTD) between FIRTM2 and the well-known discrete ordinates radiative transfer model (DISORT), henceforth referred to as BTD (F-D). The BTD (F-D) values for single-layered clouds are generally less than 0.8 K. For the case of two cloud layers (specifically ice cloud over water cloud), the BTD(F-D) values are also generally less than 0.8 K except for the SMW band for the case of a very high altitude (>15 km) cloud comprised of small ice particles. Note that for clear-sky atmospheres, FIRTM2 reduces to the clear-sky radiative transfer model that is incorporated into FIRTM2, and the errors in this case are essentially those of the clear-sky radiative transfer model.

  8. 26 CFR 1.148-5A - Yield and valuation of investments.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... For this purpose, present value is computed using the taxable discount rate used by the parties to compute the commission or, if not readily ascertainable, a reasonable taxable discount rate. [T.D. 8538...

  9. The effect of decreasing computed tomography dosage on radiostereometric analysis (RSA) accuracy at the glenohumeral joint.

    PubMed

    Fox, Anne-Marie V; Kedgley, Angela E; Lalone, Emily A; Johnson, James A; Athwal, George S; Jenkyn, Thomas R

    2011-11-10

    Standard, beaded radiostereometric analysis (RSA) and markerless RSA often use computed tomography (CT) scans to create three-dimensional (3D) bone models. However, ethical concerns exist due to risks associated with CT radiation exposure. Therefore, the aim of this study was to investigate the effect of decreasing CT dosage on RSA accuracy. Four cadaveric shoulder specimens were scanned using a normal-dose CT protocol and two low-dose protocols, where the dosage was decreased by 89% and 98%. 3D computer models of the humerus and scapula were created using each CT protocol. Bi-planar fluoroscopy was used to image five different static glenohumeral positions and two dynamic glenohumeral movements, of which a total of five static and four dynamic poses were selected for analysis. For standard RSA, negligible differences were found in bead (0.21±0.31mm) and bony landmark (2.31±1.90mm) locations when the CT dosage was decreased by 98% (p-values>0.167). For markerless RSA kinematic results, excellent agreement was found between the normal-dose and lowest-dose protocol, with all Spearman rank correlation coefficients greater than 0.95. Average root mean squared errors of 1.04±0.68mm and 2.42±0.81° were also found at this reduced dosage for static positions. In summary, CT dosage can be markedly reduced when performing shoulder RSA to minimize the risks of radiation exposure. Standard RSA accuracy was negligibly affected by the 98% CT dose reduction and for markerless RSA, the benefits of decreasing CT dosage to the subject outweigh the introduced errors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Microphysical and optical properties of aerosol particles in urban zone during ESCOMPTE

    NASA Astrophysics Data System (ADS)

    Mallet, M.; Roger, J. C.; Despiau, S.; Dubovik, O.; Putaud, J. P.

    2003-10-01

    Microphysical and optical properties of the main aerosol species on a peri-urban site have been investigated during the ESCOMPTE experiment. Ammonium sulfate (AS), nitrate (N), black carbon (BC), particulate organic matter (POM), sea salt (SS) and mineral aerosol (D) size distributions have been used, associated with their refractive index, to compute, from the Mie theory, the key radiative aerosol properties as the extinction coefficient Kext, the mass extinction efficiencies σext, the single scattering albedo ω0 and the asymmetry parameter g at the wavelength of 550 nm. Optical computations show that 90% of the light extinction is due to anthropogenic aerosol and only 10% is due to natural aerosol (SS and D). 44±6% of the extinction is due to (AS) and 40±6% to carbonaceous particles (20±4% to BC and 21±4% to POM). Nitrate aerosol has a weak contribution of 5±2%. Computations of the mass extinction efficiencies σext, single scattering albedo ω0 and asymmetry parameter g indicate that the optical properties of the anthropogenic aerosol are often quite different from those yet published and generally used in global models. For example, the (AS) mean specific mass extinction presents a large difference with the value classically adopted at low relative humidity ( h<60%) (2.6±0.5 instead of 6 m 2 g -1 at 550 nm). The optical properties of the total aerosol layer, including all the aerosol species, indicate a mean observed single-scattering albedo ω0=0.85±0.05, leading to an important absorption of the solar radiation and an asymmetry parameter g=0.59±0.05 which are in a reasonably good agreements with the AERONET retrieval of ω0 (=0.86±0.05) and g (=0.64±0.05) at this wavelength.

  11. Quantify patient-specific coronary material property and its impact on stress/strain calculations using in vivo IVUS data and 3D FSI models: a pilot study

    PubMed Central

    Guo, Xiaoya; Zhu, Jian; Maehara, Akiko; Monoly, David; Samady, Habib; Wang, Liang; Billiar, Kristen L.; Zheng, Jie; Yang, Chun; Mintz, Gary S.; Giddens, Don P.; Tang, Dalin

    2016-01-01

    Computational models have been used to calculate plaque stress and strain for plaque progression and rupture investigations. An intravascular ultrasound (IVUS)-based modeling approach is proposed to quantify in vivo vessel material properties for more accurate stress/strain calculations. In vivo Cine IVUS and VH-IVUS coronary plaque data were acquired from one patient with informed consent obtained. Cine IVUS data and 3D thin-slice models with axial stretch were used to determine patient-specific vessel material properties. Twenty full 3D fluid–structure interaction models with ex vivo and in vivo material properties and various axial and circumferential shrink combinations were constructed to investigate the material stiffness impact on stress/strain calculations. The approximate circumferential Young’s modulus over stretch ratio interval [1.0, 1.1] for an ex vivo human plaque sample and two slices (S6 and S18) from our IVUS data were 1631, 641, and 346 kPa, respectively. Average lumen stress/strain values from models using ex vivo, S6 and S18 materials with 5 % axial shrink and proper circumferential shrink were 72.76, 81.37, 101.84 kPa and 0.0668, 0.1046, and 0.1489, respectively. The average cap strain values from S18 material models were 150–180 % higher than those from the ex vivo material models. The corresponding percentages for the average cap stress values were 50–75 %. Dropping axial and circumferential shrink consideration led to stress and strain over-estimations. In vivo vessel material properties may be considerably softer than those from ex vivo data. Material stiffness variations may cause 50–75 % stress and 150–180 % strain variations. PMID:27561649

  12. Comparison of the accuracy of cone beam computed tomography and medical computed tomography: implications for clinical diagnostics with guided surgery.

    PubMed

    Abboud, Marcus; Calvo-Guirado, Jose Luis; Orentlicher, Gary; Wahl, Gerhard

    2013-01-01

    This study compared the accuracy of cone beam computed tomography (CBCT) and medical-grade CT in the context of evaluating the diagnostic value and accuracy of fiducial marker localization for reference marker-based guided surgery systems. Cadaver mandibles with attached radiopaque gutta-percha markers, as well as glass balls and composite cylinders of known dimensions, were measured manually with a highly accurate digital caliper. The objects were then scanned using a medical-grade CT scanner (Philips Brilliance 64) and five different CBCT scanners (Sirona Galileos, Morita 3D Accuitomo 80, Vatech PaX-Reve3D, 3M Imtech Iluma, and Planmeca ProMax 3D). The data were then imported into commercially available software, and measurements were made of the scanned markers and objects. CT and CBCT measurements were compared to each other and to the caliper measurements. The difference between the CBCT measurements and the caliper measurements was larger than the difference between the CT measurements and the caliper measurements. Measurements of the cadaver mandible and the geometric reference markers were highly accurate with CT. The average absolute errors of the human mandible measurements were 0.03 mm for CT and 0.23 mm for CBCT. The measurement errors of the geometric objects based on CT ranged between 0.00 and 0.12 mm, compared to an error range between 0.00 and 2.17 mm with the CBCT scanners. CT provided the most accurate images in this study, closely followed by one CBCT of the five tested. Although there were differences in the distance measurements of the hard tissue of the human mandible between CT and CBCT, these differences may not be of clinical significance for most diagnostic purposes. The fiducial marker localization error caused by some CBCT scanners may be a problem for guided surgery systems.

  13. Clinical value of whole body fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography in the detection of metastatic bladder cancer.

    PubMed

    Yang, Zhongyi; Pan, Lingling; Cheng, Jingyi; Hu, Silong; Xu, Junyan; Ye, Dingwei; Zhang, Yingjian

    2012-07-01

    To investigate the value of whole-body fluorine-18 2-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography for the detection of metastatic bladder cancer. From December 2006 to August 2010, 60 bladder cancer patients (median age 60.5 years old, range 32-96) underwent whole body positron emission tomography/computed tomography positron emission tomography/computed tomography. The diagnostic accuracy was assessed by performing both organ-based and patient-based analyses. Identified lesions were further studied by biopsy or clinically followed for at least 6 months. One hundred and thirty-four suspicious lesions were identified. Among them, 4 primary cancers (2 pancreatic cancers, 1 colonic and 1 nasopharyngeal cancer) were incidentally detected, and the patients could be treated on time. For the remaining 130 lesions, positron emission tomography/computed tomography detected 118 true positive lesions (sensitivity = 95.9%). On the patient-based analysis, the overall sensitivity and specificity resulted to be 87.1% and 89.7%, respectively. There was no difference of sensitivity and specificity in patients with or without adjuvant treatment in terms of detection of metastatic sites by positron emission tomography/computed tomography. Compared with conventional imaging modality, positron emission tomography/computed tomography correctly changed the management in 15 patients (25.0%). Positron emission tomography/computed tomography has excellent sensitivity and specificity in the detection of metastatic bladder cancer and it provides additional diagnostic information compared to standard imaging techniques. © 2012 The Japanese Urological Association.

  14. Mechanical and magneto-electronic properties of half-metallic ferromagnetism in Ti-doped ZnSe and CdSe alloys: Ab initio study

    NASA Astrophysics Data System (ADS)

    El Amine Monir, Mohammed; Ullah, Hayat; Baltach, Hadj; Gulbahar Ashiq, M.; Khenata, R.

    2017-11-01

    In this article we have studied the structural, elastic, electronic and magnetic properties of Zn1-xTixSe and Cd1-xTixSe alloys at (x = 0.25, 0.50, 0.75) using first principles density functional theory calculations with local spin density approximation (LSDA) and generalized gradient approximation plus Hubbard parameter (GGA+U) as exchange-correlation potential. The physical properties of both alloys were investigated in the zinc-blend phase. The structural parameters at equilibrium are consistent with experimental and earlier theoretical predictions. The elastic constants are also computed and compared with the literature. The DOS curves of Zn1-xTixSe and Cd1-xTixSe alloys for all the concentrations show the existence of hybridization among Ti (3d) and Se (4p) states. The calculated exchange constants N0α(s-d) and N0β (p-d) are useful to determine the contribution in the valence band and conduction band and are also shows the magnetic character of these alloys. In addition, the p-d hybridization in the PDOS reduces local magnetic moment of Ti from its free space charge of 2 μB and results small magnetic moments on the nonmagnetic Zn, Cd and Se sites. The calculated negative values of formation energy (Ef) reveal that all the Zn1-xTixSe and Cd1-xTixSe alloys are thermodynamically stables. A larger/Smaller value of Curie temperature (TC) for all the Zn1-xTixSe and Cd1-xTixSe alloys shows the strong/low interaction among the magnetic atoms respectively.

  15. Accuracy and precision of a custom camera-based system for 2D and 3D motion tracking during speech and nonspeech motor tasks

    PubMed Central

    Feng, Yongqiang; Max, Ludo

    2014-01-01

    Purpose Studying normal or disordered motor control requires accurate motion tracking of the effectors (e.g., orofacial structures). The cost of electromagnetic, optoelectronic, and ultrasound systems is prohibitive for many laboratories, and limits clinical applications. For external movements (lips, jaw), video-based systems may be a viable alternative, provided that they offer high temporal resolution and sub-millimeter accuracy. Method We examined the accuracy and precision of 2D and 3D data recorded with a system that combines consumer-grade digital cameras capturing 60, 120, or 240 frames per second (fps), retro-reflective markers, commercially-available computer software (APAS, Ariel Dynamics), and a custom calibration device. Results Overall mean error (RMSE) across tests was 0.15 mm for static tracking and 0.26 mm for dynamic tracking, with corresponding precision (SD) values of 0.11 and 0.19 mm, respectively. The effect of frame rate varied across conditions, but, generally, accuracy was reduced at 240 fps. The effect of marker size (3 vs. 6 mm diameter) was negligible at all frame rates for both 2D and 3D data. Conclusion Motion tracking with consumer-grade digital cameras and the APAS software can achieve sub-millimeter accuracy at frame rates that are appropriate for kinematic analyses of lip/jaw movements for both research and clinical purposes. PMID:24686484

  16. Changes in Monkey Crystalline Lens Spherical Aberration During Simulated Accommodation in a Lens Stretcher

    PubMed Central

    Maceo Heilman, Bianca; Manns, Fabrice; de Castro, Alberto; Durkee, Heather; Arrieta, Esdras; Marcos, Susana; Parel, Jean-Marie

    2015-01-01

    Purpose. The purpose of this study was to quantify accommodation-induced changes in the spherical aberration of cynomolgus monkey lenses. Methods. Twenty-four lenses from 20 cynomolgus monkeys (Macaca fascicularis; 4.4–16.0 years of age; postmortem time 13.5 ± 13.0 hours) were mounted in a lens stretcher. Lens spherical aberration was measured in the unstretched (accommodated) and stretched (relaxed) states with a laser ray tracing system that delivered 51 equally spaced parallel rays along 1 meridian of the lens over the central 6-mm optical zone. A camera mounted below the lens was used to measure the ray height at multiple positions along the optical axis. For each entrance ray, the change in ray height with axial position was fitted with a third-order polynomial. The effective paraxial focal length and Zernike spherical aberration coefficients corresponding to a 6-mm pupil diameter were extracted from the fitted values. Results. The unstretched lens power decreased with age from 59.3 ± 4.0 diopters (D) for young lenses to 45.7 ± 3.1 D for older lenses. The unstretched lens shifted toward less negative spherical aberration with age, from −6.3 ± 0.7 μm for young lenses to −5.0 ± 0.5 μm for older lenses. The power and spherical aberration of lenses in the stretched state were independent of age, with values of 33.5 ± 3.4 D and −2.6 ± 0.5 μm, respectively. Conclusions. Spherical aberration is negative in cynomolgus monkey lenses and becomes more negative with accommodation. These results are in good agreement with the predicted values using computational ray tracing in a lens model with a reconstructed gradient refractive index. The spherical aberration of the unstretched lens becomes less negative with age. PMID:25670492

  17. Changes in monkey crystalline lens spherical aberration during simulated accommodation in a lens stretcher.

    PubMed

    Maceo Heilman, Bianca; Manns, Fabrice; de Castro, Alberto; Durkee, Heather; Arrieta, Esdras; Marcos, Susana; Parel, Jean-Marie

    2015-02-10

    The purpose of this study was to quantify accommodation-induced changes in the spherical aberration of cynomolgus monkey lenses. Twenty-four lenses from 20 cynomolgus monkeys (Macaca fascicularis; 4.4-16.0 years of age; postmortem time 13.5 ± 13.0 hours) were mounted in a lens stretcher. Lens spherical aberration was measured in the unstretched (accommodated) and stretched (relaxed) states with a laser ray tracing system that delivered 51 equally spaced parallel rays along 1 meridian of the lens over the central 6-mm optical zone. A camera mounted below the lens was used to measure the ray height at multiple positions along the optical axis. For each entrance ray, the change in ray height with axial position was fitted with a third-order polynomial. The effective paraxial focal length and Zernike spherical aberration coefficients corresponding to a 6-mm pupil diameter were extracted from the fitted values. The unstretched lens power decreased with age from 59.3 ± 4.0 diopters (D) for young lenses to 45.7 ± 3.1 D for older lenses. The unstretched lens shifted toward less negative spherical aberration with age, from -6.3 ± 0.7 μm for young lenses to -5.0 ± 0.5 μm for older lenses. The power and spherical aberration of lenses in the stretched state were independent of age, with values of 33.5 ± 3.4 D and -2.6 ± 0.5 μm, respectively. Spherical aberration is negative in cynomolgus monkey lenses and becomes more negative with accommodation. These results are in good agreement with the predicted values using computational ray tracing in a lens model with a reconstructed gradient refractive index. The spherical aberration of the unstretched lens becomes less negative with age. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  18. Molecular tracing of white muscardine in the silkworm, Bombyx mori (Linn.) II. Silkworm white muscardine is not caused by artificial release or natural epizootic of Beauveria bassiana in China.

    PubMed

    Chen, Xue; Huang, Cui; He, Lingmin; Zhang, Shengli; Li, Zengzhi

    2015-02-01

    The fungal pathogen Beauveria bassiana causes serious economic losses in sericulture. Its origin is usually attributed to the release of B. bassiana insecticides against pine caterpillars (Dendrolimus punctuatus). In the present study, 488 B. bassiana isolates obtained from silkworm (Bombyx mori) collected from 13 Chinese provinces, and 327 B. bassiana isolates obtained from D. punctatus collected from 9 provinces, were analyzed for population genetic structure using the ISSR technique based on genetic distance. A UPGMA dendrogram clustered them into three independent clades: two B. mori clades and one D. punctatus clade. A 3-D principal component analysis further divided them into two completely independent host groups, revealing high host-specificity. This suggested that white muscardine occurring in B. mori populations throughout southern China was not caused by any B. bassiana strain either naturally prevailing in D. punctatus populations or by any strain artificially released as a fungal insecticide against D. punctatus. We further investigated the genetic differentiation coefficient Gst and gene flow between B. mori-pathogenic and D. punctatus-pathogenic B. bassiana isolates from across China and from five provinces inhabited by both B. mori and D. punctatus. The Gst value across China was computed as 0.410, while the values of the five provinces ranged from 0.508 to 0.689; all above 0.25, which is the threshold for significant genetic differentiation. This suggests that B. bassiana strains isolated from the two different hosts maintained their respective heredity without a convergent homogenization trend, and reduces the possibility that the host range of the caterpillar isolates could expand and enhance their virulence in B. mori. These findings indicate that the use of B. bassiana does not threaten the safety of sericulture. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Infrared Laser Stark Spectroscopy and AB Initio Computations of the OH\\cdotsCO Complex

    NASA Astrophysics Data System (ADS)

    Liang, Tao; Raston, Paul; Douberly, Gary

    2014-06-01

    Following the sequential pick-up of OH and CO by helium nanodroplets, the infrared depletion spectrum is measured in the fundamental OH stretching region. Although several potentially accessible minima exist on the associated OH + CO reactive potential energy surface [e.g. J. Ma, J. Li, and H. Guo, J. Phys. Chem. Lett. 3 (2012) 2482], such as the weakly bound OH-OC dimer and the chemically bound HOCO molecule, we only observe the weakly bound OH-CO dimer. The rovibrational spectrum of this complex displays narrow (0.02 cm-1) Lorentzian shaped peaks with spacings that are characteristic of a linear complex with unquenched electronic angular momentum, similar to what was previously observed in the gas phase [M.I. Lester, B.V. Pond, D.T. Anderson, L.B. Harding, and A.F. Wagner, J. Chem. Phys. 113 (2000) 9889]. Analogous spectra involving OD were collected, for which we also only observe the OD-CO isomer. From the Stark spectra, the dipole moments for OH-CO are determined to be 1.85(3) and 1.89(3) D for v=0 and v=1, respectively, while the analogous dipole moments for OD-CO are determined to be 1.88(8) and 1.94(5) D. The computed equilibrium ground state dipole moment at the CCSD(T)/Def2-TZVPD level of theory is 2.185 D, in disagreement with experiment. The role of vibrational averaging is investigated via the solution of a three-dimensional vibrational Schrödinger equation, which is constructed in internal bond-angle coordinates. The computed expectation value of the ground state dipole moment is in excellent agreement with experiment, indicating a floppy molecular complex.

  20. A study of the effect of in-line and perpendicular magnetic fields on beam characteristics of electron guns in medical linear accelerators.

    PubMed

    Constantin, Dragoş E; Fahrig, Rebecca; Keall, Paul J

    2011-07-01

    Using magnetic resonance imaging (MRI) for real-time guidance during radiotherapy is an active area of research and development. One aspect of the problem is the influence of the MRI scanner, modeled here as an external magnetic field, on the medical linear accelerator (linac) components. The present work characterizes the behavior of two medical linac electron guns with external magnetic fields for in-line and perpendicular orientations of the linac with respect to the MRI scanner. Two electron guns, Litton L-2087 and Varian VTC6364, are considered as representative models for this study. Emphasis was placed on the in-line design approach in which case the MRI scanner and the linac axes of symmetry coincide and assumes no magnetic shielding of the linac. For the in-line case, the magnetic field from a 0.5 T open MRI (GE Signa SP) magnet with a 60 cm gap between its poles was computed and used in full three dimensional (3D) space charge simulations, whereas for the perpendicular case the magnetic field was constant. For the in-line configuration, it is shown that the electron beam is not deflected from the axis of symmetry of the gun and the primary beam current does not vanish even at very high values of the magnetic field, e.g., 0.16 T. As the field strength increases, the primary beam current has an initial plateau of constant value after which its value decreases to a minimum corresponding to a field strength of approximately 0.06 T. After the minimum is reached, the current starts to increase slowly. For the case when the beam current computation is performed at the beam waist position the initial plateau ends at 0.016 T for Litton L-2087 and at 0.012 T for Varian VTC6364. The minimum value of the primary beam current is 27.5% of the initial value for Litton L-2087 and 22.9% of the initial value for Varian VTC6364. The minimum current is reached at 0.06 and 0.062 T for Litton L-2087 and Varian VTC6364, respectively. At 0.16 T the beam current increases to 40.2 and 31.4% from the original value of the current for Litton L-2087 and Varian VTC6364, respectively. In contrast, for the case when the electron gun is perpendicular to the magnetic field, the electron beam is deflected from the axis of symmetry even at small values of the magnetic field. As the strength of the magnetic field increases, so does the beam deflection, leading to a sharp decrease of the primary beam current which vanishes at about 0.007 T for Litton L-2087 and at 0.006 T for Varian VTC6364, respectively. At zero external field, the beam rms emittance computed at beam waist is 1.54 and 1.29n-mm-mrad for Litton L-2087 and Varian VTC6364, respectively. For the inline configuration, there are two particular values of the external field where the beam rms emittance reaches a minimum. Litton L-2087 rms emittance reaches a minimum of 0.72n and 2.01 n-mm-mrad at 0.026 and 0.132 T, respectively. Varian VTC6364 rms emittance reaches a minimum of 0.34n and 0.35n-mm-mrad at 0.028 and 0.14 T, respectively. Beam radius dependence on the external field is shown for the in-line configuration for both electron guns. 3D space charge simulation of two electron guns, Litton L-2087 and Varian VTC6364, were performed for in-line and perpendicular external magnetic fields. A consistent behavior of Pierce guns in external magnetic fields was proven. For the in-line configuration, the primary beam current does not vanish but a large reduction of beam current (up to 77.1%) is observed at higher field strengths; the beam directionality remains unchanged. It was shown that for a perpendicular configuration the current vanishes due to beam bending under the action of the Lorentz force. For in-line configuration it was determined that the rms beam emittance reaches two minima for relatively high values of the external magnetic field.

  1. A study of the effect of in-line and perpendicular magnetic fields on beam characteristics of electron guns in medical linear accelerators

    PubMed Central

    Constantin, Dragoş E.; Fahrig, Rebecca; Keall, Paul J.

    2011-01-01

    Purpose: Using magnetic resonance imaging (MRI) for real-time guidance during radiotherapy is an active area of research and development. One aspect of the problem is the influence of the MRI scanner, modeled here as an external magnetic field, on the medical linear accelerator (linac) components. The present work characterizes the behavior of two medical linac electron guns with external magnetic fields for in-line and perpendicular orientations of the linac with respect to the MRI scanner. Methods: Two electron guns, Litton L-2087 and Varian VTC6364, are considered as representative models for this study. Emphasis was placed on the in-line design approach in which case the MRI scanner and the linac axes of symmetry coincide and assumes no magnetic shielding of the linac. For the in-line case, the magnetic field from a 0.5 T open MRI (GE Signa SP) magnet with a 60 cm gap between its poles was computed and used in full three dimensional (3D) space charge simulations, whereas for the perpendicular case the magnetic field was constant. Results: For the in-line configuration, it is shown that the electron beam is not deflected from the axis of symmetry of the gun and the primary beam current does not vanish even at very high values of the magnetic field, e.g., 0.16 T. As the field strength increases, the primary beam current has an initial plateau of constant value after which its value decreases to a minimum corresponding to a field strength of approximately 0.06 T. After the minimum is reached, the current starts to increase slowly. For the case when the beam current computation is performed at the beam waist position the initial plateau ends at 0.016 T for Litton L-2087 and at 0.012 T for Varian VTC6364. The minimum value of the primary beam current is 27.5% of the initial value for Litton L-2087 and 22.9% of the initial value for Varian VTC6364. The minimum current is reached at 0.06 and 0.062 T for Litton L-2087 and Varian VTC6364, respectively. At 0.16 T the beam current increases to 40.2 and 31.4% from the original value of the current for Litton L-2087 and Varian VTC6364, respectively. In contrast, for the case when the electron gun is perpendicular to the magnetic field, the electron beam is deflected from the axis of symmetry even at small values of the magnetic field. As the strength of the magnetic field increases, so does the beam deflection, leading to a sharp decrease of the primary beam current which vanishes at about 0.007 T for Litton L-2087 and at 0.006 T for Varian VTC6364, respectively. At zero external field, the beam rms emittance computed at beam waist is 1.54 and 1.29π-mm-mrad for Litton L-2087 and Varian VTC6364, respectively. For the in-line configuration, there are two particular values of the external field where the beam rms emittance reaches a minimum. Litton L-2087 rms emittance reaches a minimum of 0.72π and 2.01π-mm-mrad at 0.026 and 0.132 T, respectively. Varian VTC6364 rms emittance reaches a minimum of 0.34π and 0.35π-mm-mrad at 0.028 and 0.14 T, respectively. Beam radius dependence on the external field is shown for the in-line configuration for both electron guns. Conclusions: 3D space charge simulation of two electron guns, Litton L-2087 and Varian VTC6364, were performed for in-line and perpendicular external magnetic fields. A consistent behavior of Pierce guns in external magnetic fields was proven. For the in-line configuration, the primary beam current does not vanish but a large reduction of beam current (up to 77.1%) is observed at higher field strengths; the beam directionality remains unchanged. It was shown that for a perpendicular configuration the current vanishes due to beam bending under the action of the Lorentz force. For in-line configuration it was determined that the rms beam emittance reaches two minima for relatively high values of the external magnetic field. PMID:21859019

  2. Feasibility of Intravoxel Incoherent Motion for Differentiating Benign and Malignant Thyroid Nodules.

    PubMed

    Tan, Hui; Chen, Jun; Zhao, Yi Ling; Liu, Jin Huan; Zhang, Liang; Liu, Chang Sheng; Huang, Dongjie

    2018-06-13

    This study aimed to preliminarily investigate the feasibility of intravoxel incoherent motion (IVIM) theory in the differential diagnosis of benign and malignant thyroid nodules. Forty-five patients with 56 confirmed thyroid nodules underwent preoperative routine magnetic resonance imaging and IVIM diffusion-weighted imaging. The histopathologic diagnosis was confirmed by surgery. Apparent diffusion coefficient (ADC), perfusion fraction f, diffusivity D, and pseudo-diffusivity D* were quantified. Independent samples t test of IVIM-derived metrics were conducted between benign and malignant nodules. Receiver-operating characteristic analyses were performed to determine the optimal thresholds as well as the sensitivity and specificity for differentiating. Significant intergroup difference was observed in ADC, D, D*, and f (p < 0.001). Malignant tumors featured significantly lower ADC, D and D* values and a higher f value than that of benign nodules. The ADC, D, and D* could distinguish the benign from malignant thyroid nodules, and parameter f differentiate the malignant tumors from benign nodules. The values of the area under the curve for parameter ADC, D, and D* were 0.784 (p = 0.001), 0.795 (p = 0.001), and 0.850 (p < 0.001), separately, of which the area under the curve of f value was the maximum for identifying the malignant from benign nodules, which was 0.841 (p < 0.001). This study suggested that ADC and IVIM-derived metrics, including D, D*, and f, could potentially serve as noninvasive predictors for the preoperative differentiating of thyroid nodules, and f value performed best in identifying the malignant from benign nodules among these parameters. Copyright © 2018 Academic Radiology. Published by Elsevier Inc. All rights reserved.

  3. Reactive carbon-chain molecules: synthesis of 1-diazo-2,4-pentadiyne and spectroscopic characterization of triplet pentadiynylidene (H-C[triple bond]C-:C-C[triple bond]C-H).

    PubMed

    Bowling, Nathan P; Halter, Robert J; Hodges, Jonathan A; Seburg, Randal A; Thomas, Phillip S; Simmons, Christopher S; Stanton, John F; McMahon, Robert J

    2006-03-15

    1-Diazo-2,4-pentadiyne (6a), along with both monodeuterio isotopomers 6b and 6c, has been synthesized via a route that proceeds through diacetylene, 2,4-pentadiynal, and 2,4-pentadiynal tosylhydrazone. Photolysis of diazo compounds 6a-c (lambda > 444 nm; Ar or N2, 10 K) generates triplet carbenes HC5H (1) and HC5D (1-d), which have been characterized by IR, EPR, and UV/vis spectroscopy. Although many resonance structures contribute to the resonance hybrid for this highly unsaturated carbon-chain molecule, experiment and theory reveal that the structure is best depicted in terms of the dominant resonance contributor of penta-1,4-diyn-3-ylidene (diethynylcarbene, H-C[triple bond]C-:C-C[triple bond]C-H). Theory predicts an axially symmetric (D(infinity h)) structure and a triplet electronic ground state for 1 (CCSD(T)/ANO). Experimental IR frequencies and isotope shifts are in good agreement with computed values. The triplet EPR spectrum of 1 (absolute value(D/hc) = 0.6157 cm(-1), absolute value(E/hc) = 0.0006 cm(-1)) is consistent with an axially symmetric structure, and the Curie law behavior confirms that the triplet state is the ground state. The electronic absorption spectrum of 1 exhibits a weak transition near 400 nm with extensive vibronic coupling. Chemical trapping of triplet HC5H (1) in an O2-doped matrix affords the carbonyl oxide 16 derived exclusively from attack at the central carbon.

  4. Discriminating between benign and malignant breast tumors using 3D convolutional neural network in dynamic contrast enhanced-MR images

    NASA Astrophysics Data System (ADS)

    Li, Jing; Fan, Ming; Zhang, Juan; Li, Lihua

    2017-03-01

    Convolutional neural networks (CNNs) are the state-of-the-art deep learning network architectures that can be used in a range of applications, including computer vision and medical image analysis. It exhibits a powerful representation learning mechanism with an automated design to learn features directly from the data. However, the common 2D CNNs only use the two dimension spatial information without evaluating the correlation between the adjoin slices. In this study, we established a method of 3D CNNs to discriminate between malignant and benign breast tumors. To this end, 143 patients were enrolled which include 66 benign and 77 malignant instances. The MRI images were pre-processed for noise reduction and breast tumor region segmentation. Data augmentation by spatial translating, rotating and vertical and horizontal flipping is applied to the cases to reduce possible over-fitting. A region-of-interest (ROI) and a volume-of-interest (VOI) were segmented in 2D and 3D DCE-MRI, respectively. The enhancement ratio for each MR series was calculated for the 2D and 3D images. The results for the enhancement ratio images in the two series are integrated for classification. The results of the area under the ROC curve(AUC) values are 0.739 and 0.801 for 2D and 3D methods, respectively. The results for 3D CNN which combined 5 slices for each enhancement ratio images achieved a high accuracy(Acc), sensitivity(Sens) and specificity(Spec) of 0.781, 0.744 and 0.823, respectively. This study indicates that 3D CNN deep learning methods can be a promising technology for breast tumor classification without manual feature extraction.

  5. Principal Component Analysis in Construction of 3D Human Knee Joint Models Using a Statistical Shape Model Method

    PubMed Central

    Tsai, Tsung-Yuan; Li, Jing-Sheng; Wang, Shaobai; Li, Pingyue; Kwon, Young-Min; Li, Guoan

    2013-01-01

    The statistical shape model (SSM) method that uses 2D images of the knee joint to predict the 3D joint surface model has been reported in literature. In this study, we constructed a SSM database using 152 human CT knee joint models, including the femur, tibia and patella and analyzed the characteristics of each principal component of the SSM. The surface models of two in vivo knees were predicted using the SSM and their 2D bi-plane fluoroscopic images. The predicted models were compared to their CT joint models. The differences between the predicted 3D knee joint surfaces and the CT image-based surfaces were 0.30 ± 0.81 mm, 0.34 ± 0.79 mm and 0.36 ± 0.59 mm for the femur, tibia and patella, respectively (average ± standard deviation). The computational time for each bone of the knee joint was within 30 seconds using a personal computer. The analysis of this study indicated that the SSM method could be a useful tool to construct 3D surface models of the knee with sub-millimeter accuracy in real time. Thus it may have a broad application in computer assisted knee surgeries that require 3D surface models of the knee. PMID:24156375

  6. Regulation of NF-κB oscillation by spatial parameters in true intracellular space (TiCS)

    NASA Astrophysics Data System (ADS)

    Ohshima, Daisuke; Sagara, Hiroshi; Ichikawa, Kazuhisa

    2013-10-01

    Transcription factor NF-κB is activated by cytokine stimulation, viral infection, or hypoxic environment leading to its translocation to the nucleus. The nuclear NF-κB is exported from the nucleus to the cytoplasm again, and by repetitive import and export, NF-κB shows damped oscillation with the period of 1.5-2.0 h. Oscillation pattern of NF-κB is thought to determine the gene expression profile. We published a report on a computational simulation for the oscillation of nuclear NF-κB in a 3D spherical cell, and showed the importance of spatial parameters such as diffusion coefficient and locus of translation for determining the oscillation pattern. Although the value of diffusion coefficient is inherent to protein species, its effective value can be modified by organelle crowding in intracellular space. Here we tested this possibility by computer simulation. The results indicate that the effective value of diffusion coefficient is significantly changed by the organelle crowding, and this alters the oscillation pattern of nuclear NF-κB.

  7. Unconditional reference values for the amniotic fluid index measurement between 26w0d and 41w6d of gestation in low-risk pregnancies.

    PubMed

    Peixoto, Alberto Borges; Caldas, Taciana Mara Rodrigues da Cunha; Martins, Wellington P; Da Silva Costa, Fabricio; Araujo Júnior, Edward

    2016-10-01

    To establish reference values for the amniotic fluid index (AFI) measurement between 26w0d and 41w6d of gestation in a Brazilian population. We performed a cross-sectional study with 1984 low-risk singleton pregnant women between 26w0d and 41w6d of gestation. AFI was measured according to the technique proposed by Phelan et al. Maternal abdomen was divided into four quadrants using the umbilicus and linea nigra as landmarks. Single vertical pocket in each quadrant was measured and the AFI was generated by the sum of these four values without umbilical cord or fetal parts. All ultrasound exams were performed by only two experienced examiners. AFI was expressed as median, interquartile range, mean and ranges in each gestational age (GA) interval. Polynomial regressions were performed to obtain the best fit with adjustment by the determination coefficient (R(2)). Mean of AFI ranged from 14.0 ± 4.1 cm (range, 9.7-14.0) at 26w0d to 8.3 ± 4.7 cm (range, 1.9-16.5) at 41w6d, respectively. The best polynomial regression fit curve was a first-degree: AFI = 16.29-0.125*GA (R(2) = 0.01). According the scatterplot, AFI values practically did not vary with advancing GA. Reference values for the AFI measurement between 26w0d and 41w6d of gestation in a low-risk Brazilian population were established.

  8. Impact of dosimetric and clinical parameters on clinical side effects in cervix cancer patients treated with 3D pulse-dose-rate intracavitary brachytherapy.

    PubMed

    Levitchi, Mihai; Charra-Brunaud, Claire; Quetin, Philippe; Haie-Meder, Christine; Kerr, Christine; Castelain, Bernard; Delannes, Martine; Thomas, Laurence; Desandes, Emmanuel; Peiffert, Didier

    2012-06-01

    To assess the association between dosimetric/clinical parameters and gastrointestinal/urinary grade 2-4 side effects in cervix cancer patients treated with 3D pulse dose rate brachytherapy. Three hundred and fifty-two patients received brachytherapy associated with external-beam radiotherapy (EBRT) for 266 of them; 236 patients underwent surgery. The doses for the most exposed 2, and 0.1 cm(3) (D(2cc) and D(0.1cc)) volumes of the rectum and bladder as well as bladder ICRU point dose (D(ICRU)) were converted into isoeffective doses in 2-Gy fractions. The clinical parameters analyzed were: age, smoking habits, arteritis, diabetes, previous pelvic surgery, FIGO stage, nodal status, pathology, pelvic surgery, EBRT and chemotherapy. Side effects were prospectively assessed using the CTCAEv3.0. Cutoff dose levels were defined separately for patients treated with EBRT and brachytherapy (Group 1) and with preoperative brachytherapy (Group 2). The median follow-up was 23.4months. In Group 1 a significant predictive value of rectum D(0.1cc) and D(2cc), bladder D(0.1cc) and D(ICRU) for gastrointestinal and urinary toxicity was found using as cutoff 83, 68, 109 and 68Gy(α)(/)(β)(3). In Group 2 a significant predictive value of bladder D(0.1cc), D(2cc) and D(ICRU) for urinary toxicity was found using as cutoff 141, 91 and 67Gy(α)(/)(β)(3), but not for the rectum D(0.1cc) and D(2cc); smoking had a significant predictive value on urinary toxicity. For patients treated with brachytherapy and EBRT, rectum D(0.1cc) and D(2cc) and bladder D(0.1cc) and D(ICRU) had a predictive value for toxicity. For patients treated with preoperative brachytherapy, bladder D(0.1cc), D(2cc) and D(ICRU) and smoking had a predictive value for urinary toxicity. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. Modeling of flow-induced shear stress applied on 3D cellular scaffolds: Implications for vascular tissue engineering.

    PubMed

    Lesman, Ayelet; Blinder, Yaron; Levenberg, Shulamit

    2010-02-15

    Novel tissue-culture bioreactors employ flow-induced shear stress as a means of mechanical stimulation of cells. We developed a computational fluid dynamics model of the complex three-dimensional (3D) microstructure of a porous scaffold incubated in a direct perfusion bioreactor. Our model was designed to predict high shear-stress values within the physiological range of those naturally sensed by vascular cells (1-10 dyne/cm(2)), and will thereby provide suitable conditions for vascular tissue-engineering experiments. The model also accounts for cellular growth, which was designed as an added cell layer grown on all scaffold walls. Five model variants were designed, with geometric differences corresponding to cell-layer thicknesses of 0, 50, 75, 100, and 125 microm. Four inlet velocities (0.5, 1, 1.5, and 2 cm/s) were applied to each model. Wall shear-stress distribution and overall pressure drop calculations were then used to characterize the relation between flow rate, shear stress, cell-layer thickness, and pressure drop. The simulations showed that cellular growth within 3D scaffolds exposes cells to elevated shear stress, with considerably increasing average values in correlation to cell growth and inflow velocity. Our results provide in-depth analysis of the microdynamic environment of cells cultured within 3D environments, and thus provide advanced control over tissue development in vitro. 2009 Wiley Periodicals, Inc.

  10. Assessment of Myocardial Infarct Size by Three-Dimensional and Two-Dimensional Speckle Tracking Echocardiography: A Comparative Study to Single Photon Emission Computed Tomography.

    PubMed

    Wang, Qiushuang; Huang, Dangsheng; Zhang, Liwei; Shen, Dong; Ouyang, Qiaohong; Duan, Zhongxiang; An, Xiuzhi; Zhang, Meiqing; Zhang, Chunhong; Yang, Feifei; Zhi, Guang

    2015-10-01

    To compare three-dimensional (3D) and two-dimensional (2D) speckle tracking echocardiography (STE) techniques in the assessment of left ventricular function and myocardial infarct size (MIS). Thirty-two patients diagnosed with ST elevation myocardial infarction and 18 healthy control patients underwent 2D echocardiography, 3D echocardiography, and single photon emission computed tomography (SPECT). 3D left ventricular global area strain (GAS), 2D and 3D global longitudinal strain (GLS), global radial strain (GRS) as well as global circumferential strain (GCS) were analyzed to correlate with myocardial infarct size detected by SPECT. 2D and 3D left ventricular ejection fraction (LVEF) as well as 2D and 3D wall motion score index (WMSI) also were measured using conventional echocardiography. The 2D-GLS values were significantly higher than that of 3D-GLS, while 2D-GCS and GRS were significantly lower than 3D-GCS and GRS, respectively. However, no significant differences in LVEF and WMSI could be observed between 2D and 3D echocardiography. Myocardial strain indices, LVEF, and WMSI using 2D and 3D echocardiography also had good correlations with MIS as measured by SPECT. ROC curve analysis showed that the 3D and 2D myocardial indices, LVEF, and WMSI could distinguish between small and large MIS, while 2D-GLS had the highest AUC. The 2D and 3D myocardial strain indices correlated well with MIS by SPECT. Among them, the 2D-GLS showed the highest diagnostic value, while 3D-GRS and GCS had better diagnostic value than 2D-GRS and GCS. © 2015, Wiley Periodicals, Inc.

  11. Analysis of bite marks in foodstuffs by computer tomography (cone beam CT)--3D reconstruction.

    PubMed

    Marques, Jeidson; Musse, Jamilly; Caetano, Catarina; Corte-Real, Francisco; Corte-Real, Ana Teresa

    2013-12-01

    The use of three-dimensional (3D) analysis of forensic evidence is highlighted in comparison with traditional methods. This three-dimensional analysis is based on the registration of the surface from a bitten object. The authors propose to use Cone Beam Computed Tomography (CBCT), which is used in dental practice, in order to study the surface and interior of bitten objects and dental casts of suspects. In this study, CBCT is applied to the analysis of bite marks in foodstuffs, which may be found in a forensic case scenario. 6 different types of foodstuffs were used: chocolate, cheese, apple, chewing gum, pizza and tart (flaky pastry and custard). The food was bitten into and dental casts of the possible suspects were made. The dental casts and bitten objects were registered using an x-ray source and the CBCT equipment iCAT® (Pennsylvania, EUA). The software InVivo5® (Anatomage Inc, EUA) was used to visualize and analyze the tomographic slices and 3D reconstructions of the objects. For each material an estimate of its density was assessed by two methods: HU values and specific gravity. All the used materials were successfully reconstructed as good quality 3D images. The relative densities of the materials in study were compared. Amongst the foodstuffs, the chocolate had the highest density (median value 100.5 HU and 1,36 g/cm(3)), while the pizza showed to have the lowest (median value -775 HU and 0,39 g/cm(3)), on both scales. Through tomographic slices and three-dimensional reconstructions it was possible to perform the metric analysis of the bite marks in all the foodstuffs, except for the pizza. These measurements could also be obtained from the dental casts. The depth of the bite mark was also successfully determined in all the foodstuffs except for the pizza. Cone Beam Computed Tomography has the potential to become an important tool for forensic sciences, namely for the registration and analysis of bite marks in foodstuffs that may be found in a crime scene.

  12. Evapotranspiration from marsh and open-water sites at Upper Klamath Lake, Oregon, 2008--2010

    USGS Publications Warehouse

    Stannard, David I.; Gannett, Marshall W.; Polette, Danial J.; Cameron, Jason M.; Waibel, M. Scott; Spears, J. Mark

    2013-01-01

    Water allocation in the Upper Klamath Basin has become difficult in recent years due to the increase in occurrence of drought coupled with continued high water demand. Upper Klamath Lake is a central component of water distribution, supplying water downstream to the Klamath River, supplying water for irrigation diversions, and providing habitat for various species within the lake and surrounding wetlands. Evapotranspiration (ET) is a major component of the hydrologic budget of the lake and wetlands, and yet estimates of ET have been elusive—quantified only as part of a lumped term including other substantial water-budget components. To improve understanding of ET losses from the lake and wetlands, measurements of ET were made from May 2008 through September 2010. The eddy-covariance method was used to monitor ET at two wetland sites continuously during this study period and the Bowen-ratio energy-balance method was used to monitor open-water lake evaporation at two sites during the warmer months of the 3 study years. Vegetation at one wetland site (the bulrush site) consists of a virtual monoculture of hardstem bulrush (formerly Scirpus acutus, now Schoenoplectus acutus), and at the other site (the mixed site) consists of a mix of about 70 percent bulrush, 15 percent cattail (Typha latifolia), and 15 percent wocus (Nuphar polysepalum). Measured ET at these two sites was very similar (means were ±2.5 percent) and mean wetland ET is computed as a 70 to 30 percent weighted average of the bulrush and mixed sites, respectively, based on community-type distribution estimated from satellite imagery. Biweekly means of wetland ET typically vary from maximum values of around 6 to 7 millimeters per day during midsummer, to minimum values of less than 1 mm/d during midwinter. This strong annual signal primarily reflects life-cycle changes in the wetland vegetation, and the annual variation of radiative input to the surface and resulting temperature. The perennial vegetation begins each growing season submerged, emerges from the dead litter mat around late May or early June, reaches a maximum height of about 2.2 meters (m) during summer, senesces in October, and subsequently lodges over, contributing to the dead litter mat from previous years. Hydroperiods last about 5 to 6 months, typically beginning in January or February and ending in July or August, and have a minor influence on the annual ET cycle. These hydroperiods result from lake levels that typically vary about 1.3 m, from around 0.6 to 0.9 m above the wetland surface, to around 0.4 to 0.7 m below the wetland surface. An estimate of 3-year annual wetland ET, made by substituting early- and late-season data measured during 2009 for the missing periods in early 2008 and late 2010, is 0.938 meter per year (m/yr). Daily values of alfalfa-based reference ET (ETr) were retrieved from the Bureau of Reclamation AgriMet Web site (http://www.usbr.gov/pn/agrimet/index.html) and are aggregated into biweekly, annual, and 3-year values (for consistency, the 3-year values are also computed using substitute data from 2009 for early 2008 and late 2010). These ETr values are computed from weather data measured at the nearby Agency Lake weather station (AGKO), and are based on the assumption that the alfalfa crop is green and vigorous year-round. The 3-year value of ETr is 1.145 m/yr, about 22 percent greater than wetland ET. A comparison of 2008–2010 alfalfa and pasture growing season actual ET with wetland ET is made using data from the more distant Klamath Falls AgriMet weather station (KFLO) because actual alfalfa and pasture ET are not computed for the AGKO site. During the 190-day average alfalfa growing season, wetland ET (0.779 m) is about 7 percent less than alfalfa ET (0.838 m). During the 195-day average pasture growing season, wetland ET (0.789 m) is about 18 percent greater than pasture ET (0.671 m). Assuming alfalfa and pasture ET are equal to wetland ET during the non-growing season, annual estimates become 0.997 m, 0.938 m, and 0.820 m from alfalfa, wetland, and pasture, respectively. Wetland crop coefficients (Kc=ET/ETr) are computed at daily, biweekly, and annual time steps. Approximate formulas are given to estimate daily values of growing season Kc, thereby allowing computation of daily growing season ET using ETr from the AGKO weather station. Biweekly values of growing season Kc are computed from ensemble average values of ET and ETr during the 3 study period growing seasons, and a single, mean Kc is computed for the non-growing season. Together, these provide relatively accurate estimates of biweekly ET during the study (RMSE=0.396 and 0.347 mm/d, r2 = 62 and 0.971 at the bulrush and mixed sites, respectively). A fourth-order polynomial fit of the biweekly growing season values to day of year provides a more automated form of ET computation. Measured ET at the bulrush wetland site during the current study compares very closely with growing-season ET estimated during a study in 1997 at nearly the same location. During the earlier study, ET was measured four times, using eddy covariance for 1- to 2-day periods, and was estimated between measurement periods using a Penman-Monteith model, calibrated to the measurements. Differences between time series of ET from the two studies are similar to interannual differences within the current study. Compared to the 1997 study, the current study measured larger ET rates in early summer and smaller rates in late summer, resulting in very similar growing-season totals. A study conducted in 2000 estimated ET from nearby fallowed cropland, using the Bowen-ratio energy balance method supplemented with Priestley-Taylor and crop-coefficient ET modeling. Seasonal timing of ET from three different crop types varied considerably, but growing-season totals were remarkably similar, at 0.435 ± 0.009 m. Wetland ET measured during the current study, evaluated over the same growing season was 0.718 m, or about 65 percent greater than the fallowed cropland ET. Open-water evaporation from Upper Klamath Lake was measured at two locations during the warmer months of 2008–2010 using the Bowen-ratio energy balance method. Measured rates were in general agreement with those measured in 2003 using the same method. Open-water evaporation and wetland ET were nearly equal during late June through early August, when wetland vegetation was green and abundant. As expected, open-water evaporation consistently exceeded wetland ET during late summer, as wetland ET responded to vegetation senescence while open water evaporation responded to extra available energy in the form of heat previously stored in the lake. Overall, open-water evaporation was 20 percent greater than wetland ET during the same period.

  13. Comparison of synchrotron radiation and conventional x-ray microcomputed tomography for assessing trabecular bone microarchitecture of human femoral heads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chappard, Christine; Basillais, Armelle; Benhamou, Laurent

    Microcomputed tomography ({mu}CT) produces three-dimensional (3D) images of trabecular bone. We compared conventional {mu}CT (C{mu}CT) with a polychromatic x-ray cone beam to synchrotron radiation (SR) {mu}CT with a monochromatic parallel beam for assessing trabecular bone microarchitecture of 14 subchondral femoral head specimens from patients with osteoarthritis (n=10) or osteoporosis (n=4). SR{mu}CT images with a voxel size of 10.13 {mu}m were reconstructed from 900 2D radiographic projections (angular step, 0.2 deg. ). C{mu}CT images with a voxel size of 10.77 {mu}m were reconstructed from 205, 413, and 825 projections obtained using angular steps of 0.9 deg., 0.45 deg., and 0.23 deg.,more » respectively. A single threshold was used to binarize the images. We computed bone volume/tissue volume (BV/TV), bone surface/bone volume (BS/BV), trabecular number (Tb.N), trabecular thickness (Tb.Th and Tb.Th*), trabecular spacing (Tb.Sp), degree of anisotropy (DA), and Euler density. With the 0.9 deg. angular step, all C{mu}CT values were significantly different from SR{mu}CT values. With the 0.23 deg. and 0.45 deg. rotation steps, BV/TV, Tb.Th, and BS/BV by C{mu}CT differed significantly from the values by SR{mu}CT. The error due to slice matching (visual site matching {+-}10 slices) was within 1% for most parameters. Compared to SR{mu}CT, BV/TV, Tb.Sp, and Tb.Th by C{mu}CT were underestimated, whereas Tb.N and Tb.Th* were overestimated. A Bland and Altman plot showed no bias for Tb.N or DA. Bias was -0.8{+-}1.0%, +5.0{+-}1.1 {mu}m, -5.9{+-}6.3 {mu}m, and -5.7{+-}29.1 {mu}m for BV/TV, Tb.Th*, Tb.Th, and Tb.Sp, respectively, and the differences did not vary over the range of values. Although systematic differences were noted between SR{mu}CT and C{mu}CT values, correlations between the techniques were high and the differences would probably not change the discrimination between study groups. C{mu}CT provides a reliable 3D assessment of human defatted bone when working at the 0.23 deg. or 0.45 deg. rotation step; the 0.9 deg. rotation step may be insufficiently accurate for morphological bone analysis.« less

  14. SU-E-T-602: Patient-Specific Online Dose Verification Based On Transmission Detector Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thoelking, J; Yuvaraj, S; Jens, F

    Purpose: Intensity modulated radiotherapy requires a comprehensive quality assurance program in general and ideally independent verification of dose delivery. Since conventional 2D detector arrays allow only pre-treatment verification, there is a debate concerning the need of online dose verification. This study presents the clinical performance, including dosimetric plan verification in 2D as well as in 3D and the error detection abilities of a new transmission detector (TD) for online dose verification of 6MV photon beam. Methods: To validate the dosimetric performance of the new device, dose reconstruction based on TD measurements were compared to a conventional pre-treatment verification method (reference)more » and treatment planning system (TPS) for 18 IMRT and VMAT treatment plans. Furthermore, dose reconstruction inside the patient based on TD read-out was evaluated by comparing various dose volume indices and 3D gamma evaluations against independent dose computation and TPS. To investigate the sensitivity of the new device, different types of systematic and random errors for leaf positions and linac output were introduced in IMRT treatment sequences. Results: The 2D gamma index evaluation of transmission detector based dose reconstruction showed an excellent agreement for all IMRT and VMAT plans compared to reference measurements (99.3±1.2)% and TPS (99.1±0.7)%. Good agreement was also obtained for 3D dose reconstruction based on TD read-out compared to dose computation (mean gamma value of PTV = 0.27±0.04). Only a minimal dose underestimation within the target volume was observed when analyzing DVH indices (<1%). Positional errors in leaf banks larger than 1mm and errors in linac output larger than 2% could clearly identified with the TD. Conclusion: Since 2D and 3D evaluations for all IMRT and VMAT treatment plans were in excellent agreement with reference measurements and dose computation, the new TD is suitable to qualify for routine treatment plan verification. Funding Support, Disclosures, and Conflict of Interest: COIs: Frank Lohr: Elekta: research grant, travel grants, teaching honoraria IBA: research grant, travel grants, teaching honoraria, advisory board C-Rad: board honoraria, travel grants Frederik Wenz: Elekta: research grant, teaching honoraria, consultant, advisory board Zeiss: research grant, teaching honoraria, patent Hansjoerg Wertz: Elekta: research grant, teaching honoraria IBA: research grant.« less

  15. Physical Fitness Percentiles of German Children Aged 9–12 Years: Findings from a Longitudinal Study

    PubMed Central

    Golle, Kathleen; Muehlbauer, Thomas; Wick, Ditmar; Granacher, Urs

    2015-01-01

    Background Generating percentile values is helpful for the identification of children with specific fitness characteristics (i.e., low or high fitness level) to set appropriate fitness goals (i.e., fitness/health promotion and/or long-term youth athlete development). Thus, the aim of this longitudinal study was to assess physical fitness development in healthy children aged 9–12 years and to compute sex- and age-specific percentile values. Methods Two-hundred and forty children (88 girls, 152 boys) participated in this study and were tested for their physical fitness. Physical fitness was assessed using the 50-m sprint test (i.e., speed), the 1-kg ball push test, the triple hop test (i.e., upper- and lower- extremity muscular power), the stand-and-reach test (i.e., flexibility), the star run test (i.e., agility), and the 9-min run test (i.e., endurance). Age- and sex-specific percentile values (i.e., P10 to P90) were generated using the Lambda, Mu, and Sigma method. Adjusted (for change in body weight, height, and baseline performance) age- and sex-differences as well as the interactions thereof were expressed by calculating effect sizes (Cohen’s d). Results Significant main effects of Age were detected for all physical fitness tests (d = 0.40–1.34), whereas significant main effects of Sex were found for upper-extremity muscular power (d = 0.55), flexibility (d = 0.81), agility (d = 0.44), and endurance (d = 0.32) only. Further, significant Sex by Age interactions were observed for upper-extremity muscular power (d = 0.36), flexibility (d = 0.61), and agility (d = 0.27) in favor of girls. Both, linear and curvilinear shaped curves were found for percentile values across the fitness tests. Accelerated (curvilinear) improvements were observed for upper-extremity muscular power (boys: 10–11 yrs; girls: 9–11 yrs), agility (boys: 9–10 yrs; girls: 9–11 yrs), and endurance (boys: 9–10 yrs; girls: 9–10 yrs). Tabulated percentiles for the 9-min run test indicated that running distances between 1,407–1,507 m, 1,479–1,597 m, 1,423–1,654 m, and 1,433–1,666 m in 9- to 12-year-old boys and 1,262–1,362 m, 1,329–1,434 m, 1,392–1,501 m, and 1,415–1,526 m in 9- to 12-year-old girls correspond to a “medium” fitness level (i.e., P40 to P60) in this population. Conclusions The observed differences in physical fitness development between boys and girls illustrate that age- and sex-specific maturational processes might have an impact on the fitness status of healthy children. Our statistical analyses revealed linear (e.g., lower-extremity muscular power) and curvilinear (e.g., agility) models of fitness improvement with age which is indicative of timed and capacity-specific fitness development pattern during childhood. Lastly, the provided age- and sex-specific percentile values can be used by coaches for talent identification and by teachers for rating/grading of children’s motor performance. PMID:26544848

  16. Three-dimensional quantification of vorticity and helicity from 3D cine PC-MRI using finite-element interpolations.

    PubMed

    Sotelo, Julio; Urbina, Jesús; Valverde, Israel; Mura, Joaquín; Tejos, Cristián; Irarrazaval, Pablo; Andia, Marcelo E; Hurtado, Daniel E; Uribe, Sergio

    2018-01-01

    We propose a 3D finite-element method for the quantification of vorticity and helicity density from 3D cine phase-contrast (PC) MRI. By using a 3D finite-element method, we seamlessly estimate velocity gradients in 3D. The robustness and convergence were analyzed using a combined Poiseuille and Lamb-Ossen equation. A computational fluid dynamics simulation was used to compared our method with others available in the literature. Additionally, we computed 3D maps for different 3D cine PC-MRI data sets: phantom without and with coarctation (18 healthy volunteers and 3 patients). We found a good agreement between our method and both the analytical solution of the combined Poiseuille and Lamb-Ossen. The computational fluid dynamics results showed that our method outperforms current approaches to estimate vorticity and helicity values. In the in silico model, we observed that for a tetrahedral element of 2 mm of characteristic length, we underestimated the vorticity in less than 5% with respect to the analytical solution. In patients, we found higher values of helicity density in comparison to healthy volunteers, associated with vortices in the lumen of the vessels. We proposed a novel method that provides entire 3D vorticity and helicity density maps, avoiding the used of reformatted 2D planes from 3D cine PC-MRI. Magn Reson Med 79:541-553, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  17. The numerical modelling of falling film thickness flow on horizontal tubes

    NASA Astrophysics Data System (ADS)

    Hassan, I. A.; Sadikin, A.; Isa, N. Mat

    2017-04-01

    This paper presents a computational modelling of water falling film flowing over horizontal tubes. The objective of this study is to use numerical predictions for comparing the film thickness along circumferential direction of tube on 2-D CFD models. The results are then validated with a theoretical result in previous literatures. A comprehensive design of 2-D models have been developed according to the real application and actual configuration of the falling film evaporator as well as previous experimental parameters. A computational modelling of the water falling film is presented with the aid of Ansys Fluent software. The Volume of Fluid (VOF) technique is adapted in this analysis since its capabilities of determining the film thickness on tubes surface is highly reliable. The numerical analysis is carried out under influence of ambient pressures at temperature of 27 °C. Three types of CFD numerical models were analyzed in this simulation with inter tube spacing of 30 mm, 20 mm and 10 mm respectively. The use of a numerical simulation tool on water falling film has resulted in a detailed investigation of film thickness. Based on the numerical simulated results, it is found that the average values of water film thickness for each model are 0.53 mm, 0.58 mm, and 0.63 mm.

  18. Automatic Intensity-based 3D-to-2D Registration of CT Volume and Dual-energy Digital Radiography for the Detection of Cardiac Calcification

    PubMed Central

    Chen, Xiang; Gilkeson, Robert; Fei, Baowei

    2013-01-01

    We are investigating three-dimensional (3D) to two-dimensional (2D) registration methods for computed tomography (CT) and dual-energy digital radiography (DR) for the detection of coronary artery calcification. CT is an established tool for the diagnosis of coronary artery diseases (CADs). Dual-energy digital radiography could be a cost-effective alternative for screening coronary artery calcification. In order to utilize CT as the “gold standard” to evaluate the ability of DR images for the detection and localization of calcium, we developed an automatic intensity-based 3D-to-2D registration method for 3D CT volumes and 2D DR images. To generate digital rendering radiographs (DRR) from the CT volumes, we developed three projection methods, i.e. Gaussian-weighted projection, threshold-based projection, and average-based projection. We tested normalized cross correlation (NCC) and normalized mutual information (NMI) as similarity measurement. We used the Downhill Simplex method as the search strategy. Simulated projection images from CT were fused with the corresponding DR images to evaluate the localization of cardiac calcification. The registration method was evaluated by digital phantoms, physical phantoms, and clinical data sets. The results from the digital phantoms show that the success rate is 100% with mean errors of less 0.8 mm and 0.2 degree for both NCC and NMI. The registration accuracy of the physical phantoms is 0.34 ± 0.27 mm. Color overlay and 3D visualization of the clinical data show that the two images are registered well. This is consistent with the improvement of the NMI values from 0.20 ± 0.03 to 0.25 ± 0.03 after registration. The automatic 3D-to-2D registration method is accurate and robust and may provide a useful tool to evaluate the dual-energy DR images for the detection of coronary artery calcification. PMID:24386527

  19. Automatic Intensity-based 3D-to-2D Registration of CT Volume and Dual-energy Digital Radiography for the Detection of Cardiac Calcification.

    PubMed

    Chen, Xiang; Gilkeson, Robert; Fei, Baowei

    2007-03-03

    We are investigating three-dimensional (3D) to two-dimensional (2D) registration methods for computed tomography (CT) and dual-energy digital radiography (DR) for the detection of coronary artery calcification. CT is an established tool for the diagnosis of coronary artery diseases (CADs). Dual-energy digital radiography could be a cost-effective alternative for screening coronary artery calcification. In order to utilize CT as the "gold standard" to evaluate the ability of DR images for the detection and localization of calcium, we developed an automatic intensity-based 3D-to-2D registration method for 3D CT volumes and 2D DR images. To generate digital rendering radiographs (DRR) from the CT volumes, we developed three projection methods, i.e. Gaussian-weighted projection, threshold-based projection, and average-based projection. We tested normalized cross correlation (NCC) and normalized mutual information (NMI) as similarity measurement. We used the Downhill Simplex method as the search strategy. Simulated projection images from CT were fused with the corresponding DR images to evaluate the localization of cardiac calcification. The registration method was evaluated by digital phantoms, physical phantoms, and clinical data sets. The results from the digital phantoms show that the success rate is 100% with mean errors of less 0.8 mm and 0.2 degree for both NCC and NMI. The registration accuracy of the physical phantoms is 0.34 ± 0.27 mm. Color overlay and 3D visualization of the clinical data show that the two images are registered well. This is consistent with the improvement of the NMI values from 0.20 ± 0.03 to 0.25 ± 0.03 after registration. The automatic 3D-to-2D registration method is accurate and robust and may provide a useful tool to evaluate the dual-energy DR images for the detection of coronary artery calcification.

  20. Automatic intensity-based 3D-to-2D registration of CT volume and dual-energy digital radiography for the detection of cardiac calcification

    NASA Astrophysics Data System (ADS)

    Chen, Xiang; Gilkeson, Robert; Fei, Baowei

    2007-03-01

    We are investigating three-dimensional (3D) to two-dimensional (2D) registration methods for computed tomography (CT) and dual-energy digital radiography (DR) for the detection of coronary artery calcification. CT is an established tool for the diagnosis of coronary artery diseases (CADs). Dual-energy digital radiography could be a cost-effective alternative for screening coronary artery calcification. In order to utilize CT as the "gold standard" to evaluate the ability of DR images for the detection and localization of calcium, we developed an automatic intensity-based 3D-to-2D registration method for 3D CT volumes and 2D DR images. To generate digital rendering radiographs (DRR) from the CT volumes, we developed three projection methods, i.e. Gaussian-weighted projection, threshold-based projection, and average-based projection. We tested normalized cross correlation (NCC) and normalized mutual information (NMI) as similarity measurement. We used the Downhill Simplex method as the search strategy. Simulated projection images from CT were fused with the corresponding DR images to evaluate the localization of cardiac calcification. The registration method was evaluated by digital phantoms, physical phantoms, and clinical data sets. The results from the digital phantoms show that the success rate is 100% with mean errors of less 0.8 mm and 0.2 degree for both NCC and NMI. The registration accuracy of the physical phantoms is 0.34 +/- 0.27 mm. Color overlay and 3D visualization of the clinical data show that the two images are registered well. This is consistent with the improvement of the NMI values from 0.20 +/- 0.03 to 0.25 +/- 0.03 after registration. The automatic 3D-to-2D registration method is accurate and robust and may provide a useful tool to evaluate the dual-energy DR images for the detection of coronary artery calcification.

  1. Three-dimensional printing enhances preparation for repair of double outlet right ventricular surgery.

    PubMed

    Zhao, Liyun; Zhou, Sijie; Fan, Taibing; Li, Bin; Liang, Weijie; Dong, Haoju

    2018-01-01

    To assess the clinical value of three-dimensional (3D) printing technology for treatment strategies for complex double outlet right ventricle (DORV). Twenty-five patients with complex double outlet right ventricle were enrolled in this study. The patients were divided into two groups: 3D printing group (eight patients) and a non-3-D printing control group (17 patients). The cardiac images of patients in the 3D printing group were transformed to Digital Imaging and Communications and were segmented and reconstructed to create a heart model. No cardiac models were created in the control group. A Pearson coefficient analysis was used to assess the correlation between measurements of 3D printed models and computed tomography angiography (CTA) data. Pre-operative assessment and planning were performed with 3D printed models, and then operative time and recovery time were compared between the two groups. There was good correlation (r = 0.977) between 3D printed models and CTA data. Patients in the 3D printing group had shorter aortic cross-clamp time (102.88 vs 127.76 min, P = 0.094) and cardiopulmonary bypass time (151.63 vs 184.24 min; P = 0.152) than patients in the control group. Patients with 3D printed models had significantly lower mechanical ventilation time (56.43 vs 96.76 h, P = 0.040) and significantly shorter intensive care unit time (99.04 vs 166.94 h, P = 0.008) than patients in the control group. 3D printed models can accurately demonstrate anatomic structures and are useful for pre-operative treatment strategies in DORV. © 2018 Wiley Periodicals, Inc.

  2. Computer Center Harris 1600 Operator’s Guide.

    DTIC Science & Technology

    1982-06-01

    RECIPIENT’S CATALOG NUMBER CMLD-82-15 Vb /9 7 ’ 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED Computer Center Harris 1600 Operator’s Guide...AD-AIAA 077 DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE--ETC F/G. 5/9 COMPUTER CENTER HARRIS 1600 OPEAATOR’S GUIDE.dU) M JUN 62 D A SOMMER...20084 COMPUTER CENTER HARRIS 1600 OPERATOR’s GUIDE by David V. Sommer & Sharon E. Good APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED ’-.7 SJ0 o 0

  3. Tactile sensor is useful for estimating liver hardness and liver fibrosis compared with ultrasonography and computed tomography.

    PubMed

    Suzuki, Satoshi; Watanabe, Yohei; Yazawa, Takashi; Ishigame, Teruhide; Sassa, Motoki; Monma, Tomoyuki; Takawa, Tadashi; Kumamoto, Kensuke; Nakamura, Izumi; Ohoki, Shinji; Hatakeyama, Yuichi; Sakuma, Hiroshi; Ono, Toshiyuki; Omata, Sadao; Takenoshita, Seiichi

    2014-01-01

    We examined whether conventional ultrasonography (US) and computed tomography (CT) were useful to evaluate liver hardness and hepatic fibrosis by comparing the results with those obtained by a tactile sensor using rats with liver fibrosis. We used 44 Wistar rats in which liver fibrosis was induced by intraperitoneal administration of thioacetamide. The CT and US values of each liver were measured before laparotomy. After laparotomy, a tactile sensor was used to measure liver hardness. We prepared Azan stained sections of each excised liver specimen and calculated the degree of liver fibrosis (HFI: hepatic fibrosis index) by computed color image analysis. The stiffness values and HFI showed a positive correlation (r=0.690, p<0.001), as did the tactile values and HFI (r=0.709, p<0.001).In addition, the stiffness and tactile values correlated positively with each other (r=0.814, p<0.001). There was no correlation between the CT values and HFI, as well as no correlation between the US values and HFI. We confirmed that it was difficult to evaluate liver hardness and HFI by CT or US examination, and considered that, at present, a tactile sensor is useful method for evaluating HFI.

  4. Sedation and mechanical hypoalgesia after sublingual administration of detomidine hydrochloride gel to donkeys.

    PubMed

    Lizarraga, Ignacio; Castillo-Alcala, Fernanda; Varner, Kelley M; Robinson, Lauren S

    2016-07-01

    OBJECTIVE To compare sedative and mechanical hypoalgesic effects of sublingual administration of 2 doses of detomidine gel to donkeys. DESIGN Randomized blinded controlled trial. ANIMALS 6 healthy castrated male donkeys. PROCEDURES In a crossover study design, donkeys received each of the following sublingual treatments 1 week apart in a randomly assigned order: 1 mL of molasses (D0) or detomidine hydrochloride gel at 20 μg/kg (9 μg/lb; D20) or 40 μg/kg (18 μg/lb; D40). Sedation score (SS), head height above the ground (HHAG), and mechanical nociceptive threshold (MNT) were assessed before and for 180 minutes after treatment. Areas under the effect change-versus-time curves (AUCs) from 0 to 30, 30 to 60, 60 to 120, and 120 to 180 minutes after administration were computed for SS, HHAG, and MNT and compared among treatments. RESULTS D20 and D40 resulted in greater SS AUCs from 60 to 120 minutes and smaller HHAG AUCs from 30 through 180 minutes than did D0. The D40 resulted in smaller HHAG AUCs from 60 to 120 minutes than did D20. Compared with D0 values, MNT AUCs from 60 to 120 minutes were higher for D20, whereas MNT AUCs from 30 through 180 minutes were higher for D40. CONCLUSIONS AND CLINICAL RELEVANCE D20 and D40 induced sedation and mechanical hypoalgesia in donkeys by > 30 minutes after administration, but only sedation was dose dependent. Sublingual administration of detomidine gel at 40 μg/kg may be useful for sedation of standing donkeys prior to potentially painful minor procedures.

  5. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The Apollo implementation of PLOT3D uses some of the capabilities of Apollo's 3-dimensional graphics hardware, but does not take advantage of the shading and hidden line/surface removal capabilities of the Apollo DN10000. Although this implementation does not offer a capability for putting text on plots, it does support the use of a mouse to translate, rotate, or zoom in on views. The version 3.6b+ Apollo implementations of PLOT3D (ARC-12789) and PLOT3D/TURB3D (ARC-12785) were developed for use on Apollo computers running UNIX System V with BSD 4.3 extensions and the graphics library GMR3D Version 2.0. The standard distribution media for each of these programs is a 9-track, 6250 bpi magnetic tape in TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: 1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, and Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); 2) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC-12777, ARC-12781); 3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstations (ARC-12783, ARC-12782). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are trademarks of Hewlett-Packard, Incorporated. UNIX is a registered trademark of AT&T.

  6. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The Apollo implementation of PLOT3D uses some of the capabilities of Apollo's 3-dimensional graphics hardware, but does not take advantage of the shading and hidden line/surface removal capabilities of the Apollo DN10000. Although this implementation does not offer a capability for putting text on plots, it does support the use of a mouse to translate, rotate, or zoom in on views. The version 3.6b+ Apollo implementations of PLOT3D (ARC-12789) and PLOT3D/TURB3D (ARC-12785) were developed for use on Apollo computers running UNIX System V with BSD 4.3 extensions and the graphics library GMR3D Version 2.0. The standard distribution media for each of these programs is a 9-track, 6250 bpi magnetic tape in TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: 1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, and Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); 2) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC-12777, ARC-12781); 3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstations (ARC-12783, ARC-12782). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are trademarks of Hewlett-Packard, Incorporated. UNIX is a registered trademark of AT&T.

  7. On the decay of stratified wake: A numerical study

    NASA Astrophysics Data System (ADS)

    Chongsiripinyo, Karu; Sarkar, Sutanu

    2017-11-01

    In stratified fluids, wakes are longer lived with a significant reduction of mean velocity defect. G.R. Spedding (1997) and K.A. Brucker & S. Sarkar (2010) quantify decay rates in 3 phases, namely a near-wake (NW), a non-equilibrium (NEQ), and a quasi-two-dimensional (Q2D) region. Given U0 x-m , where U0 is centerline mean defect velocity and m is a decay rate, both studies observe mNW 2 / 3 , mNEQ 1 / 4 , and mQ 2 D 3 / 4 . Here, U∞, D, and N are the free-stream velocity, length scale of a wake generator, and constant background buoyancy frequency, respectively. However, M. Bonnier and O. Eiff (2002) observe mNEQ = 0.38 in their experiment and K. Chongsiripinyo and S. Sarkar (TSFP10) find mNEQ = 0.4 in their simulation. In the far wake, M. Bonnier and O. Eiff (2002) obtain mQ 2 D = 0.9 close to the value of m = 0.88 from Spedding et al. (1996) at similar flow conditions. Due to the lack of consistency, more evidence is required. The present study utilizes advantages of both body-inclusive (BI) and temporal-model (TF) simulations to not only resolve near-body statistics, but also to reduce computational expense needed. Decay rates of mean velocity defect and turbulence dissipation will be presented.

  8. "Let's get physical": advantages of a physical model over 3D computer models and textbooks in learning imaging anatomy.

    PubMed

    Preece, Daniel; Williams, Sarah B; Lam, Richard; Weller, Renate

    2013-01-01

    Three-dimensional (3D) information plays an important part in medical and veterinary education. Appreciating complex 3D spatial relationships requires a strong foundational understanding of anatomy and mental 3D visualization skills. Novel learning resources have been introduced to anatomy training to achieve this. Objective evaluation of their comparative efficacies remains scarce in the literature. This study developed and evaluated the use of a physical model in demonstrating the complex spatial relationships of the equine foot. It was hypothesized that the newly developed physical model would be more effective for students to learn magnetic resonance imaging (MRI) anatomy of the foot than textbooks or computer-based 3D models. Third year veterinary medicine students were randomly assigned to one of three teaching aid groups (physical model; textbooks; 3D computer model). The comparative efficacies of the three teaching aids were assessed through students' abilities to identify anatomical structures on MR images. Overall mean MRI assessment scores were significantly higher in students utilizing the physical model (86.39%) compared with students using textbooks (62.61%) and the 3D computer model (63.68%) (P < 0.001), with no significant difference between the textbook and 3D computer model groups (P = 0.685). Student feedback was also more positive in the physical model group compared with both the textbook and 3D computer model groups. Our results suggest that physical models may hold a significant advantage over alternative learning resources in enhancing visuospatial and 3D understanding of complex anatomical architecture, and that 3D computer models have significant limitations with regards to 3D learning. © 2013 American Association of Anatomists.

  9. Improved measurement of the absolute branching fraction of $$D^{+}\\rightarrow \\bar{K}^0 \\mu ^{+}\

    DOE PAGES

    Ablikim, M.; Achasov, M. N.; Ai, X. C.; ...

    2016-07-04

    Here, by analyzing 2.93 fb -1 of data collected at √s = 3.773 GeV with the BESIII detector, we measure the absolute branching fraction B(D + → K¯ 0μ +ν μ) = (8.72 ± 0.07 stat. ± 0.18 sys.)%, which is consistent with previous measurements within uncertainties but with significantly improved precision. Combining the Particle Data Group values of B(D 0 → K -μ +ν μ), B(D + → K¯ 0e +ν e), and the lifetimes of the D 0 and D + mesons with the value of B(D + → K¯ 0μ +ν μ) measured in this work, wemore » determine the following ratios of partial widths: Γ(D 0 → K -μ +ν μ)/Γ(D + → K¯ 0μ +ν μ) = 0.963 ± 0.044 and Γ(D + → K¯ 0μ +ν μ)/Γ(D + → K¯ 0e +ν e) = 0.988 ± 0.033.« less

  10. The Effect of Uniaxial Stress on the Donor Polarizabilities of Phosphorus and Antimony-Doped Silicon.

    NASA Astrophysics Data System (ADS)

    Tan, Hock Siew

    This thesis reports piezocapacitance measurements on high purity Si, Si:P and Si:Sb with a uniaxial tensile stress along either the {100} or the {110 } axis and an electric field along the {001} axis from T = 4.2 K to 1.1 K. Dielectric constant values were obtained from the capacitance data after applying various corrections. The donor concentration-dependence of the dielectric constant was investigated for Si:P from N(,D) = 6.8 x 10('16) cm('-3) to. N(,D) = 1.9 x 10('18) cm('-3). The high purity Si data was essential for extracting the donor contribution to the doped-Si data. A value of 11.40 (+OR-) 0.06 is obtained for the static dielectric constant (epsilon)(,h)(T (--->) 0) of pure Si. The variation of (epsilon)(,h,zz) is linear with the applied stress (sigma)(,s) along the {110} axis up to. 610 Kg cm('-2), with (1/(epsilon)(,h,zz))(DELTA)(epsilon)(,h,zz)/(DELTA)(sigma)(,s)(110) = -(3.37 (+OR-) 0.07) x 10('-7) Kg('-1) cm('2). For the temperature variation of (epsilon)(,h), a value of (1/(epsilon)(,h))d(epsilon)(,h)/dT = (1.12 (+OR-) 0.05) x 10('-4) K('-1) is obtained at T = 4.2 K, which decreases as T (--->) 0 K. A minimum in the stress-dependent dielectric constant (epsilon)(N(,D),x(,100)) data (x is the reduced valley strain along either the {100} or the {110 } axis) was always observed for every sample stressed along a {100} axis. Except possibly at T = 4.2 K, a minimum in (epsilon)(N(,D),x(,100)) was not observed for the samples stressed along the axes. The values of the stress-dependent donor polarizability (alpha)(,D)(x) were calculated from the (epsilon)(N(,D),x) data employing the. Clausius-Mossotti relationship. The stress-dependent behavior of (alpha)(,D)(x) and the corresponding (epsilon)(N(,D),x) are very similar. The magnitudes of the initial slopes (beta)(,100) and (beta)(,110) of (alpha)(,D) (x)/(alpha)(,D)(0) and the positions of the minimum x(,100)('min) are characteristic of the particular donor. For P donor, (beta)(,100) = -0.13 (+OR-) 0.01, x(,100)('min) (DBLTURN) 0.6 (+OR-) 0.1 and for the Sb, (beta)(,100) = -0.07 (+OR-) 0.01 and x(,100)('min) =. 0.9 (+OR-) 0.2 in the dilute N(,D) region. While (beta)(,100) and (beta)(,110) are insensitive to the variation of N(,D), x(,100)('min) seems to decrease slightly with increasing N(,D). In general, the effects due to the valley repopulation and the variation of the Bohr radius with stress are not adequate in explaining the stress-dependent data quantitatively. The data, however, can be fit to the theory if the valley-orbit coupling parameter (DELTA)(,c) is written as a power series in x. A simple extrapolation procedure was employed to obtain the zero-stress (alpha)(,D)(N(,D)) as T (--->) 0 K. The values of (alpha)(,D)(N(,D),x = 0) obtained for the dilute limit are (1.2 (+OR-) 0.2) x 10('5) (ANGSTROM)('3) for P and (1.9 (+OR-) 0.6) x 10('5) (ANGSTROM)('3) for Sb. The (alpha)(,D)(N(,D),x = 0) data show an enhancement with increasing N(,D), but the enhancement is smaller than the value inferred from the data of other. workers. The Bohr radii inferred from the dilute limit (alpha)(,D)(N(,D),x = 0) and a theory of (alpha)(,D)(N(,D) = 0) are 14.8 (ANGSTROM) for P and 17 (ANGSTROM) for Sb. These lead to values for the Mott criterion of 0.23 (+OR-) 0.01 and 0.25 (+OR-) 0.01 for Si:P and Si:Sb respectively. The stress-dependent AC conductivity data (sigma)(x) of samples with dilute N(,D) are consistent with the corresponding stress-dependent (alpha)(,D)(x) data. A qualitative explanation is given for the (sigma)(x) behavior of the samples with large N(,D). The frequency-dependent data at both small and large values of N(,D) are also briefly discussed.

  11. Accuracy evaluation of dental models manufactured by CAD/CAM milling method and 3D printing method.

    PubMed

    Jeong, Yoo-Geum; Lee, Wan-Sun; Lee, Kyu-Bok

    2018-06-01

    To evaluate the accuracy of a model made using the computer-aided design/computer-aided manufacture (CAD/CAM) milling method and 3D printing method and to confirm its applicability as a work model for dental prosthesis production. First, a natural tooth model (ANA-4, Frasaco, Germany) was scanned using an oral scanner. The obtained scan data were then used as a CAD reference model (CRM), to produce a total of 10 models each, either using the milling method or the 3D printing method. The 20 models were then scanned using a desktop scanner and the CAD test model was formed. The accuracy of the two groups was compared using dedicated software to calculate the root mean square (RMS) value after superimposing CRM and CAD test model (CTM). The RMS value (152±52 µm) of the model manufactured by the milling method was significantly higher than the RMS value (52±9 µm) of the model produced by the 3D printing method. The accuracy of the 3D printing method is superior to that of the milling method, but at present, both methods are limited in their application as a work model for prosthesis manufacture.

  12. Reticulo-rumen temperature as a predictor of calving time in primiparous and parous Holstein females.

    PubMed

    Costa, J B G; Ahola, J K; Weller, Z D; Peel, R K; Whittier, J C; Barcellos, J O J

    2016-06-01

    The objective of this research was to define and analyze drops in reticulo-rumen temperature (Trr) as an indicator of calving time in Holstein females. Data were collected from 111 primiparous and 150 parous Holstein females between November 2012 and March 2013. Between -15 and -5 d relative to anticipated calving date, each female received an orally administered temperature sensing reticulo-rumen bolus that collected temperatures hourly. Daily mean Trr was calculated from d -5 to 0 relative to using all Trr values (A-Trr) or only Trr values ≥37.7°C (W-Trr) not altered by water intake. To identify a Trr drop, 2 methodologies for computing the baseline temperature were used. Generalized linear models (GLM) were used to estimate the probability of calving within the next 12 or 24 h for primiparous, parous, and all females, based on the size of the Trr drop. For all GLM, a large drop in Trr corresponded with a large estimated probability of calving. The predictive power of the GLM was assessed using receiver-operating characteristic (ROC) curves. The ROC curve analyses showed that all models, regardless of methodology in calculation of the baseline or tested category (primiparous or parous), were able to predict calving; however, area under the ROC curve values, an indication of prediction quality, were greater for methods predicting calving within 24 h. Further comparisons between GLM for primiparous and parous, and using baseline 1 and 2, provide insight on the differences in predictive performance. Based on the GLM, Trr drops of 0.2, 0.3, and 0.4°C were identified as useful indicators of parturition and further analyzed using sensitivity, specificity, and diagnostic odds ratios. Based on sensitivity, specificity, and diagnostic odds ratios, the best indicator of calving was an average Trr drop ≥0.2°C, regardless of methodology used to compute the baseline or category of animal evaluated. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Can Subclinical Rickets Cause SCFE? A Prospective, Pilot Study.

    PubMed

    Arkader, Alexandre; Woon, Regina P; Gilsanz, Vicente

    2015-01-01

    Slipped capital femoral epiphysis (SCFE) is a common disorder of the growing hip; however, its etiology remains unknown. Vitamin D (25-OH) is a major regulator of bone homeostasis and calcium metabolism. Vitamin D deficiency is one of the major causes of rickets, and rickets has been associated with SCFE. Increased body mass index (BMI) has been linked to SCFE and obese children are known to have lower vitamin D levels. Therefore, we hypothesize that children who develop SCFE may have subclinical rickets predisposing them to the development of physeal disease. This was a pilot, prospective study designed to determine the relationship between vitamin D, bone, muscle, and fat in patients with SCFE. We enrolled 20 consecutive patients with idiopathic SCFE aged 9 to 14 years. Upon diagnosis, vitamin D, PTH, T4, and thyroid-stimulating hormone blood levels were obtained. A single-slice computed tomography was used to measure cortical bone density (CBD) of the femur. Demographics, BMI, and the results obtained were compared to generate a relationship between vitamin D levels and SCFE. Twenty patients were enrolled, 13 males and 7 females, at an average age of 12 years (range, 9 to 14 y), and mean BMI% was 93.9 (range, 81.3 to 99.5). There were 15 stable and 5 unstable SCFE. Overall, mean and SD values for vitamin D, 25-OH were within the normal range (43.9 ± 13.5). We found no difference in values in vitamin D between nonobese (BMI < 95%) and obese (BMI ≥ 95%) subjects (34.8 ± 16.8 vs. 51.6 ± 22.4, P = 0.144). Moreover, we found no difference in CBD between these 2 groups (1126 ± 33.1 vs. 1147 ± 41.2, P = 0.333). There was no relation between blood values of vitamin D and measures of CBD. Although obese children are known to have lower levels of vitamin D and a higher prevalence of SCFE, we found no correlation between low vitamin D and the development of SCFE in this subset of patients.

  14. PLOT3D/AMES, SGI IRIS VERSION (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. In each of these areas, the IRIS implementation of PLOT3D offers advanced features which aid visualization efforts. Shading and hidden line/surface removal can be used to enhance depth perception and other aspects of the graphical displays. A mouse can be used to translate, rotate, or zoom in on views. Files for several types of output can be produced. Two animation options are even offered: creation of simple animation sequences without the need for other software; and, creation of files for use in GAS (Graphics Animation System, ARC-12379), an IRIS program which offers more complex rendering and animation capabilities and can record images to digital disk, video tape, or 16-mm film. The version 3.6b+ SGI implementations of PLOT3D (ARC-12783) and PLOT3D/TURB3D (ARC-12782) were developed for use on Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstations. These programs are each distributed on one .25 inch magnetic tape cartridge in IRIS TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, and Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); (2) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC-12777,ARC-12781); (3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are trademarks of Hewlett-Packard, Incorporated. UNIX is a registered trademark of AT&T.

  15. PLOT3D/AMES, SGI IRIS VERSION (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. In each of these areas, the IRIS implementation of PLOT3D offers advanced features which aid visualization efforts. Shading and hidden line/surface removal can be used to enhance depth perception and other aspects of the graphical displays. A mouse can be used to translate, rotate, or zoom in on views. Files for several types of output can be produced. Two animation options are even offered: creation of simple animation sequences without the need for other software; and, creation of files for use in GAS (Graphics Animation System, ARC-12379), an IRIS program which offers more complex rendering and animation capabilities and can record images to digital disk, video tape, or 16-mm film. The version 3.6b+ SGI implementations of PLOT3D (ARC-12783) and PLOT3D/TURB3D (ARC-12782) were developed for use on Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstations. These programs are each distributed on one .25 inch magnetic tape cartridge in IRIS TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, and Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); (2) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC-12777,ARC-12781); (3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are trademarks of Hewlett-Packard, Incorporated. UNIX is a registered trademark of AT&T.

  16. Inactivation of Escherichia coli O157:H7 and Salmonella by gamma irradiation of alfalfa seed intended for production of food sprouts.

    PubMed

    Thayer, Donald W; Rajkowski, Kathleen T; Boyd, Glenn; Cooke, Peter H; Soroka, Douglas S

    2003-02-01

    Inonizing irradiation was determined to be a suitable method for the inactivation of Salmonella and Escherichia coli O157:H7 on alfalfa seed to be used in the production of food sprouts. The radiation D (dose resulting in a 90% reduction of viable CFU) values for the inactivation of Salmonella and E. coli O157:H7 on alfalfa seeds were higher than the D-values for their inactivation on meat or poultry. The average D-value for the inactivation of Salmonella on alfalfa seeds was 0.97 +/- 0.03 kGy; the D-values for cocktails of meat isolates and for vegetable-associated isolates were not significantly different. The D-values for nonoutbreak and outbreak isolates of E. coli O157:H7 on alfalfa seeds were 0.55 +/- 0.01 and 0.60 +/- 0.01 kGy, respectively. It was determined that the relatively high D-values were not due to the low moisture content or the low water activity of the seed. The D-values for Salmonella on alfalfa seeds from two different sources did not differ significantly, even though there were significant differences in seed size and water activity. The increased moisture content of the seed after artificial inoculation did not significantly alter the D-value for the inactivation of Salmonella. The results of this study demonstrate that 3.3- and 2-log inactivations can be achieved with a 2-kGy dose of ionizing radiation, which will permit satisfactory commercial yields of sprouts from alfalfa seed contaminated with E. coli O157:H7 and Salmonella, respectively.

  17. D-Dimer and prothrombin fragment 1 + 2 in urine and plasma in patients with clinically suspected venous thromboembolism.

    PubMed

    Wexels, Fredrik; Seljeflot, Ingebjørg; Pripp, Are H; Dahl, Ola E

    2016-06-01

    Increased levels of urine prothrombin fragment 1 + 2 was recently reported to be associated with imaging-verified venous thromboembolism. In this study we evaluated the relationship between plasma D-dimer and plasma and urine prothrombin fragment 1 + 2 in patients with suspected venous thromboembolism. Urine and blood samples were collected from patients with suspected pulmonary embolism or deep vein thrombosis. The samples were analysed with commercially available ELISA kits. The diagnosis of venous thromboembolism was verified with contrast-enhanced computer tomography of the pulmonary arteries or lower extremity deep vein compression ultrasound and venography as appropriate. Venous thromboembolism was diagnosed in 150 of 720 patients. Significantly higher levels of plasma D-dimer and prothrombin fragment 1 + 2 in plasma and urine were found in those with imaging-confirmed venous thromboembolism versus those without (P < 0.001). The correlation between the three biomarkers was statistically significant (range of rs values 0.45-0.65, P < 0.001). Plasma D-dimer had the highest diagnostic accuracy followed by prothrombin fragment 1 + 2 in plasma. Further development of ELISA analyses for urine testing of prothrombin fragment 1 + 2 may improve its diagnostic accuracy.

  18. Accuracy Assessment of Three-dimensional Surface Reconstructions of In vivo Teeth from Cone-beam Computed Tomography

    PubMed Central

    Sang, Yan-Hui; Hu, Hong-Cheng; Lu, Song-He; Wu, Yu-Wei; Li, Wei-Ran; Tang, Zhi-Hui

    2016-01-01

    Background: The accuracy of three-dimensional (3D) reconstructions from cone-beam computed tomography (CBCT) has been particularly important in dentistry, which will affect the effectiveness of diagnosis, treatment plan, and outcome in clinical practice. The aims of this study were to assess the linear, volumetric, and geometric accuracy of 3D reconstructions from CBCT and to investigate the influence of voxel size and CBCT system on the reconstructions results. Methods: Fifty teeth from 18 orthodontic patients were assigned to three groups as NewTom VG 0.15 mm group (NewTom VG; voxel size: 0.15 mm; n = 17), NewTom VG 0.30 mm group (NewTom VG; voxel size: 0.30 mm; n = 16), and VATECH DCTPRO 0.30 mm group (VATECH DCTPRO; voxel size: 0.30 mm; n = 17). The 3D reconstruction models of the teeth were segmented from CBCT data manually using Mimics 18.0 (Materialise Dental, Leuven, Belgium), and the extracted teeth were scanned by 3Shape optical scanner (3Shape A/S, Denmark). Linear and volumetric deviations were separately assessed by comparing the length and volume of the 3D reconstruction model with physical measurement by paired t-test. Geometric deviations were assessed by the root mean square value of the imposed 3D reconstruction and optical models by one-sample t-test. To assess the influence of voxel size and CBCT system on 3D reconstruction, analysis of variance (ANOVA) was used (α = 0.05). Results: The linear, volumetric, and geometric deviations were −0.03 ± 0.48 mm, −5.4 ± 2.8%, and 0.117 ± 0.018 mm for NewTom VG 0.15 mm group; −0.45 ± 0.42 mm, −4.5 ± 3.4%, and 0.116 ± 0.014 mm for NewTom VG 0.30 mm group; and −0.93 ± 0.40 mm, −4.8 ± 5.1%, and 0.194 ± 0.117 mm for VATECH DCTPRO 0.30 mm group, respectively. There were statistically significant differences between groups in terms of linear measurement (P < 0.001), but no significant difference in terms of volumetric measurement (P = 0.774). No statistically significant difference were found on geometric measurement between NewTom VG 0.15 mm and NewTom VG 0.30 mm groups (P = 0.999) while a significant difference was found between VATECH DCTPRO 0.30 mm and NewTom VG 0.30 mm groups (P = 0.006). Conclusions: The 3D reconstruction from CBCT data can achieve a high linear, volumetric, and geometric accuracy. Increasing voxel resolution from 0.30 to 0.15 mm does not result in increased accuracy of 3D tooth reconstruction while different systems can affect the accuracy. PMID:27270544

  19. Quality of life in asthma patients.

    PubMed

    Ferreira, Lara Noronha; Brito, Ulisses; Ferreira, Pedro Lopes

    2010-01-01

    In this paper we present a study whose main aim is the measurement of the Health Related Quality of Life (HRQoL) of patients with asthma and the presentation of a first draft of normative values as measured by the SF-6D for asthma patients. In addition, we investigate how far non-disease-specific HRQoL measures can distinguish groups in terms of sociodemographic characteristics. The Portuguese versions of the EQ-5D, SF-6D, AQLQ(S) and ACQ were administered using personal interviews to a representative sample of the Portuguese population with asthma. Most of the individuals did not report significant problems in the dimensions used, with the exception of the physical functioning, where individuals reported moderate limitations. The mean utility value was 0.86. Male gender, young, single, individuals with high educational attainment level, employed, individuals with high income and those residing in urban areas reported higher utility levels. As expected, those who were in a severe stadium of the disease reported lower mean utility levels than those who were in a less severe stadium of the disease. Normative values for the SF-6D were computed for patients with asthma by gender, age, marital status, educational attainment level, employment status, area of residence and average monthly net income. The preference-based measures used in this study distinguish patient groups with asthma in terms of socio- demographic groups. The normative values can be used in economic evaluation and clinical studies as they incorporate patients' preferences and translate the value attributed to patients' health state.

  20. Theoretical studies of the potential surface for the F - H2 greater than HF + H reaction

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Walch, Stephen, P.; Langhoff, Stephen R.; Taylor, Peter R.; Jaffe, Richard L.

    1987-01-01

    The F + H2 yields HF + H potential energy hypersurface was studied in the saddle point and entrance channel regions. Using a large (5s 5p 3d 2f 1g/4s 3p 2d) atomic natural orbital basis set, a classical barrier height of 1.86 kcal/mole was obtained at the CASSCF/multireference CI level (MRCI) after correcting for basis set superposition error and including a Davidson correction (+Q) for higher excitations. Based upon an analysis of the computed results, the true classical barrier is estimated to be about 1.4 kcal/mole. The location of the bottleneck on the lowest vibrationally adiabatic potential curve was also computed and the translational energy threshold determined from a one-dimensional tunneling calculation. Using the difference between the calculated and experimental threshold to adjust the classical barrier height on the computed surface yields a classical barrier in the range of 1.0 to 1.5 kcal/mole. Combining the results of the direct estimates of the classical barrier height with the empirical values obtained from the approximation calculations of the dynamical threshold, it is predicted that the true classical barrier height is 1.4 + or - 0.4 kcal/mole. Arguments are presented in favor of including the relatively large +Q correction obtained when nine electrons are correlated at the CASSCF/MRCI level.

  1. Probing voltage sensing domain of KCNQ2 channel as a potential target to combat epilepsy: a comparative study.

    PubMed

    Mehta, Pakhuri; Srivastava, Shubham; Choudhary, Bhanwar Singh; Sharma, Manish; Malik, Ruchi

    2017-12-01

    Multidrug resistance along with side-effects of available anti-epileptic drugs and unavailability of potent and effective agents in submicromolar quantities presents the biggest therapeutic challenges in anti-epileptic drug discovery. The molecular modeling techniques allow us to identify agents with novel structures to match the continuous urge for its discovery. KCNQ2 channel represents one of the validated targets for its therapy. The present study involves identification of newer anti-epileptic agents by means of a computer-aided drug design adaptive protocol involving both structure-based virtual screening of Asinex library using homology model of KCNQ2 and 3D-QSAR based virtual screening with docking analysis, followed by dG bind and ligand efficiency calculations with ADMET studies, of which 20 hits qualified all the criterions. The best ligands of both screenings with least potential for toxicity predicted computationally were then taken for molecular dynamic simulations. All the crucial amino acid interactions were observed in hits of both screenings such as Glu130, Arg207, Arg210 and Phe137. Robustness of docking protocol was analyzed through Receiver operating characteristic (ROC) curve values 0.88 (Area under curve AUC = 0.87) in Standard Precision and 0.84 (AUC = 0.82) in Extra Precision modes. Novelty analysis indicates that these compounds have not been reported previously as anti-epileptic agents.

  2. Reaction-Diffusion-Delay Model for EPO/TNF-α Interaction in articular cartilage lesion abatement

    PubMed Central

    2012-01-01

    Background Injuries to articular cartilage result in the development of lesions that form on the surface of the cartilage. Such lesions are associated with articular cartilage degeneration and osteoarthritis. The typical injury response often causes collateral damage, primarily an effect of inflammation, which results in the spread of lesions beyond the region where the initial injury occurs. Results and discussion We present a minimal mathematical model based on known mechanisms to investigate the spread and abatement of such lesions. The first case corresponds to the parameter values listed in Table 1, while the second case has parameter values as in Table 2. In particular we represent the "balancing act" between pro-inflammatory and anti-inflammatory cytokines that is hypothesized to be a principal mechanism in the expansion properties of cartilage damage during the typical injury response. We present preliminary results of in vitro studies that confirm the anti-inflammatory activities of the cytokine erythropoietin (EPO). We assume that the diffusion of cytokines determine the spatial behavior of injury response and lesion expansion so that a reaction diffusion system involving chemical species and chondrocyte cell state population densities is a natural way to represent cartilage injury response. We present computational results using the mathematical model showing that our representation is successful in capturing much of the interesting spatial behavior of injury associated lesion development and abatement in articular cartilage. Further, we discuss the use of this model to study the possibility of using EPO as a therapy for reducing the amount of inflammation induced collateral damage to cartilage during the typical injury response. Table 1 Model Parameter Values for Results in Figure 5 Table of Parameter Values Corresponding to Simulations in Figure 5 Parameter Value Units Reason D R 0.1 c m 2 day Determined from [13] D M 0.05 c m 2 day Determined from [13] D F 0.05 c m 2 day Determined from [13] D P 0.005 c m 2 day Determined from [13] δ R 0.01 1 day Approximated δ M 0.6 1 day Approximated δ F 0.6 1 day Approximated δ P 0.0087 1 day Approximated δ U 0.0001 1 day Approximated σ R 0.0001 micromolar ⋅ c m 2 day ⋅ cells Approximated σ M 0.00001 micromolar ⋅ c m 2 day ⋅ cells Approximated σ F 0.0001 micromolar ⋅ c m 2 day ⋅ cells Approximated σ P 0 micromolar ⋅ c m 2 day ⋅ cells Case with no anti-inflammatory response Λ 10 micromolar Approximated λ R 10 micromolar Approximated λ M 10 micromolar Approximated λ F 10 micromolar Approximated λ P 10 micromolar Approximated α 0 1 day Case with no anti-inflammatory response β 1 100 1 day Approximated Β 2 50 1 day Approximated γ 10 1 day Approximated ν 0.5 1 day Approximated μ S A 1 1 day Approximated μ D N 0.5 1 day Approximated τ 1 0.5 days Taken from [5] τ 2 1 days Taken from [5] Table 2 Model Parameter Values for Results in Figure 6 Table of Parameter Values Corresponding to Simulations in Figure 6 Parameter Value Units Reason D R 0.1 c m 2 day Determined from [13] D M 0.05 c m 2 day Determined from [13] D F 0.05 c m 2 day Determined from [13] DP 0.005 c m 2 day Determined from [13] δ R 0.01 1 day Approximated δ M 0.6 1 day Approximated δ F 0.6 1 day Approximated δ P 0.0087 1 day Approximated δ U 0.0001 1 day Approximated σ R 0.0001 micromolar ⋅ c m 2 day ⋅ cells Approximated σ M 0.00001 micromolar ⋅ c m 2 day ⋅ cells Approximated σ F 0.0001 micromolar ⋅ c m 2 day ⋅ cells Approximated σ P 0.001 micromolar ⋅ c m 2 day ⋅ cells Approximated Λ 10 micromolar Approximated λ R 10 micromolar Approximated λ M 10 micromolar Approximated λ F 10 micromolar Approximated λ P 10 micromolar Approximated α 10 1 day Approximated β 1 100 1 day Approximated β 2 50 1 day Approximated γ 10 1 day Approximated ν 0.5 1 day Approximated μ S A 1 1 day Approximated μ D N 0.5 1 day Approximated τ 1 0.5 days Taken from [5] τ 2 1 days Taken from [5] Conclusions The mathematical model presented herein suggests that not only are anti-inflammatory cy-tokines, such as EPO necessary to prevent chondrocytes signaled by pro-inflammatory cytokines from entering apoptosis, they may also influence how chondrocytes respond to signaling by pro-inflammatory cytokines. Reviewers This paper has been reviewed by Yang Kuang, James Faeder and Anna Marciniak-Czochra. PMID:22353555

  3. Risk factors for keratinocyte skin cancer in patients diagnosed with melanoma, a large retrospective study.

    PubMed

    Espinosa, Pablo; Pfeiffer, Ruth M; García-Casado, Zaida; Requena, Celia; Landi, Maria Teresa; Kumar, Rajiv; Nagore, Eduardo

    2016-01-01

    Melanoma survivors are at an increased risk of developing other malignancies, including keratinocyte skin cancer (KSC). While it is known that many risk factors for melanoma also impact risk of KSC in the general population, no previous study has investigated risk factors for KSC development in melanoma patients. We assessed associations of personal and clinical characteristics, including skin phenotype and variations in the melanocortin 1 receptor (MC1R) gene, with KSC risk in melanoma patients. We used prospective follow-up information on 1200 patients treated for melanoma at the Instituto Valenciano de Oncología, Spain, between 2000 and 2011. We computed hazard ratios and 95% confidence intervals (CIs) for the association of clinical, personal and genetic characteristics with risk of KSC, squamous cell carcinoma (SCC), or basal cell carcinoma (BCC) from Cox proportional hazard models. Five-year cumulative incidence based on competing risk models of SCC, BCC or KSC overall was computed using multivariate subdistribution hazard models. To assess predictive performance of the models, we computed areas under the receiver-operating characteristic curves (AUCs, discriminatory power) using cross-validation. Median follow-up was 57.2 months; a KSC was detected in 163 patients (13.6%). In multivariable Cox models, age, sex, sunburns, chronic sun exposure, past personal history of non-melanoma skin cancer or other non-cutaneous neoplasia, and the MC1R variants p.D294H and p.R163Q were significantly associated with KSC risk. A cumulative incidence model including age, sex, personal history of KSC, and of other non-cutaneous neoplasia had an AUC of 0.76 (95% CI: 0.71-0.80). When p.D294H and p.R163Q variants were added to the model, the AUC increased to 0.81 (95% CI: 0.77-0.84) (p-value for difference <0.0001). In addition to age, sex, skin characteristics, and sun exposure, p.R163Q and p.D294H MC1R variants significantly increased KSC risk among melanoma patients. Our findings may help identify patients who could benefit most from preventive measures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Vitamin C: an experimental and theoretical study on the gas-phase structure and ion energetics of protonated ascorbic acid.

    PubMed

    Ricci, Andreina; Pepi, Federico; Cimino, Paola; Troiani, Anna; Garzoli, Stefania; Salvitti, Chiara; Di Rienzo, Brunella; Barone, Vincenzo

    2016-12-01

    In order to investigate the gas-phase mechanisms of the acid catalyzed degradation of ascorbic acid (AA) to furan, we undertook a mass spectrometric (ESI/TQ/MS) and theoretical investigation at the B3LYP/6-31 + G(d,p) level of theory. The gaseous reactant species, the protonated AA, [C 6 H 8 O 6 ]H + , were generated by electrospray ionization of a 10 -3  M H 2 O/CH 3 OH (1 : 1) AA solution. In order to structurally characterize the gaseous [C 6 H 8 O 6 ]H + ionic reactants, we estimated the proton affinity and the gas-phase basicity of AA by the extended Cooks's kinetic method and by computational methods at the B3LYP/6-31 + G(d,p) level of theory. As expected, computational results identify the carbonyl oxygen atom (O2) of AA as the preferred protonation site. From the experimental proton affinity of 875.0 ± 12 kJ mol -1 and protonation entropy ΔS p 108.9 ± 2 J mol -1  K -1 , a gas-phase basicity value of AA of 842.5 ± 12 kJ mol -1 at 298 K was obtained, which is in agreement with the value issuing from quantum mechanical computations. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Use of D(acid)-, D(bile)-, z(acid)-, and z(bile)-values in evaluating Bifidobacteria with regard to stomach pH and bile salt sensitivity.

    PubMed

    Jia, Li; Shigwedha, Nditange; Mwandemele, Osmund D

    2010-01-01

    The survival of bifidobacteria in simulated conditions of the gastrointestinal (GI) tract was studied based on the D- and z-value concept. Some Bifidobacterium spp. are probiotics that improve microbial balance in the human GI tract. Because they are sensitive to low pH and bile salt concentrations, their viability in the GI tract is limited. The D- and z-value approach was therefore adopted as a result of observing constant log-cell reduction (90%) when Bifidobacterium spp. were exposed to these 2 different stressing factors. Survivals of one strain each or 4 species of Bifidobacterium was studied at pH between 3.0 and 4.5 and in ox-bile between 0.15% and 0.60% for times up to 41 h. From the D(acid)- and D(bile)-values, the order of resistance to acid and bile was B. bifidum > B. infantis > B. longum > B. adolescentis. While the former 3 strains retained high cell viability at pH 3.5 (>5.5 log CFU/mL after 5 h) and at elevated bile salt concentration of 0.6% (>4.5 log CFU/mL after 3 h), B. adolescentis was less resistant (<3.4 log CFU/mL). The z(acid)- and z(bile)-values calculated from the D(acid)- and D(bile)-values ranged from 1.11 to 1.55 pH units and 0.40% to 0.49%, respectively. The results suggest that the D(acid)-, D(bile)-, z(acid)-, and z(bile)-value approach could be more appropriate than the screening and selection method in evaluating survival of probiotic bacteria, and in measuring their tolerance or resistance to gastric acidity and the associated bile salt concentration in the small intestine. The evaluation of the tolerance of bifidobacteria to bile salts and low pH has been made possible by use of D- and z-value concept. The calculated z(acid)- and z(bile)-values were all fairly similar for the strains used and suggest the effect of increasing the bile salt concentration or decreasing the pH on the D(acid)- and D(bile)-values. This approach would be useful for predicting the suitability of bifidobacteria and other lactic acid bacteria (LAB) as probiotics for use in real-life situations.

  6. Steady flow of smooth, inelastic particles on a bumpy inclined plane: Hard and soft particle simulations

    NASA Astrophysics Data System (ADS)

    Tripathi, Anurag; Khakhar, D. V.

    2010-04-01

    We study smooth, slightly inelastic particles flowing under gravity on a bumpy inclined plane using event-driven and discrete-element simulations. Shallow layers (ten particle diameters) are used to enable simulation using the event-driven method within reasonable computational times. Steady flows are obtained in a narrow range of angles (13°-14.5°) ; lower angles result in stopping of the flow and higher angles in continuous acceleration. The flow is relatively dense with the solid volume fraction, ν≈0.5 , and significant layering of particles is observed. We derive expressions for the stress, heat flux, and dissipation for the hard and soft particle models from first principles. The computed mean velocity, temperature, stress, dissipation, and heat flux profiles of hard particles are compared to soft particle results for different values of stiffness constant (k) . The value of stiffness constant for which results for hard and soft particles are identical is found to be k≥2×106mg/d , where m is the mass of a particle, g is the acceleration due to gravity, and d is the particle diameter. We compare the simulation results to constitutive relations obtained from the kinetic theory of Jenkins and Richman [J. T. Jenkins and M. W. Richman, Arch. Ration. Mech. Anal. 87, 355 (1985)] for pressure, dissipation, viscosity, and thermal conductivity. We find that all the quantities are very well predicted by kinetic theory for volume fractions ν<0.5 . At higher densities, obtained for thicker layers ( H=15d and H=20d ), the kinetic theory does not give accurate prediction. Deviations of the kinetic theory predictions from simulation results are relatively small for dissipation and heat flux and most significant deviations are observed for shear viscosity and pressure. The results indicate the range of applicability of soft particle simulations and kinetic theory for dense flows.

  7. Dimension-six matrix elements for meson mixing and lifetimes from sum rules

    NASA Astrophysics Data System (ADS)

    Kirk, M.; Lenz, A.; Rauh, T.

    2017-12-01

    The hadronic matrix elements of dimension-six Δ F = 0, 2 operators are crucial inputs for the theory predictions of mixing observables and lifetime ratios in the B and D system. We determine them using HQET sum rules for three-point correlators. The results of the required three-loop computation of the correlators and the one-loop computation of the QCD-HQET matching are given in analytic form. For mixing matrix elements we find very good agreement with recent lattice results and comparable theoretical uncertainties. For lifetime matrix elements we present the first ever determination in the D meson sector and the first determination of Δ B = 0 matrix elements with uncertainties under control — superseeding preliminary lattice studies stemming from 2001 and earlier. With our state-of-the-art determination of the bag parameters we predict: τ( B +)/ τ( B d 0 ) = 1.082 - 0.026 + 0.022 , τ( B s 0 )/ τ( B d 0 ) = 0.9994 ± 0.0025, τ( D +)/ τ( D 0) = 2. 7 - 0.8 + 0.7 and the mixing-observables in the B s and B d system, in good agreement with the most recent experimental averages.

  8. Linear scaling relationships and volcano plots in homogeneous catalysis – revisiting the Suzuki reaction† †Electronic supplementary information (ESI) available: Detailed derivation of the linear scaling relationships and construction of the volcano plots as well as comparisons of computed values using PBE0-dDsC and M06 functionals is included. See DOI: 10.1039/c5sc02910d Click here for additional data file.

    PubMed Central

    Busch, Michael; Wodrich, Matthew D.

    2015-01-01

    Linear free energy scaling relationships and volcano plots are common tools used to identify potential heterogeneous catalysts for myriad applications. Despite the striking simplicity and predictive power of volcano plots, they remain unknown in homogeneous catalysis. Here, we construct volcano plots to analyze a prototypical reaction from homogeneous catalysis, the Suzuki cross-coupling of olefins. Volcano plots succeed both in discriminating amongst different catalysts and reproducing experimentally known trends, which serves as validation of the model for this proof-of-principle example. These findings indicate that the combination of linear scaling relationships and volcano plots could serve as a valuable methodology for identifying homogeneous catalysts possessing a desired activity through a priori computational screening. PMID:28757966

  9. Thoracoscopic anatomical lung segmentectomy using 3D computed tomography simulation without tumour markings for non-palpable and non-visualized small lung nodules.

    PubMed

    Kato, Hirohisa; Oizumi, Hiroyuki; Suzuki, Jun; Hamada, Akira; Watarai, Hikaru; Sadahiro, Mitsuaki

    2017-09-01

    Although wedge resection can be curative for small lung tumours, tumour marking is sometimes required for resection of non-palpable or visually undetectable lung nodules as a method for identification of tumours. Tumour marking sometimes fails and occasionally causes serious complications. We have performed many thoracoscopic segmentectomies using 3D computed tomography simulation for undetectable small lung tumours without any tumour markings. The aim of this study was to investigate whether thoracoscopic segmentectomy planned with 3D computed tomography simulation could precisely remove non-palpable and visually undetectable tumours. Between January 2012 and March 2016, 58 patients underwent thoracoscopic segmentectomy using 3D computed tomography simulation for non-palpable, visually undetectable tumours. Surgical outcomes were evaluated. A total of 35, 14 and 9 patients underwent segmentectomy, subsegmentectomy and segmentectomy combined with adjacent subsegmentectomy, respectively. All tumours were correctly resected without tumour marking. The median tumour size and distance from the visceral pleura was 14 ± 5.2 mm (range 5-27 mm) and 11.6 mm (range 1-38.8 mm), respectively. Median values related to the procedures were operative time, 176 min (range 83-370 min); blood loss, 43 ml (range 0-419 ml); duration of chest tube placement, 1 day (range 1-8 days); and postoperative hospital stay, 5 days (range 3-12 days). Two cases were converted to open thoracotomy due to bleeding. Three cases required pleurodesis for pleural fistula. No recurrences occurred during the mean follow-up period of 44.4 months (range 5-53 months). Thoracoscopic segmentectomy using 3D computed tomography simulation was feasible and could be performed to resect undetectable tumours with no tumour markings. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  10. Influence of scanner, powder application, and adjustments on CAD-CAM crown misfit.

    PubMed

    Prudente, Marcel S; Davi, Letícia R; Nabbout, Kemilly O; Prado, Célio J; Pereira, Leandro M; Zancopé, Karla; Neves, Flávio D

    2018-03-01

    The manufacturers of computer-aided design and computer-aided manufacturing (CAD-CAM) systems emphasize that new technologies can improve the marginal fit of dental crowns. However, data supporting this claim are limited. The purpose of this in vitro study was to investigate the differences among the following fabrication methods on the marginal discrepancy of dental crowns: intraoral optical scanners, powder application, and adjustments of intaglio surface. A single human premolar was fixed on a typodont and prepared to receive crowns prepared by the CEREC CAD-CAM system. Three fabrication techniques were used: digital scans using the CEREC Bluecam scanner with titanium dioxide powder (TDP), digital scans using the CEREC Omnicam scanner without TDP, and digital scans using the Omnicam scanner with TDP. Five experimental groups (n=10) were designated: Bluecam (group B), Bluecam with adjustments (group BA), Omnicam (group O), Omnicam with adjustments (group OA), and Omnicam with TDP (group OP). The specimens were scanned using microcomputed tomography to measure the vertical, horizontal, and internal fit and volumetric 3-dimensional (3D) internal fit values of each luting space. The paired t test was used to evaluate mean marginal fit change after adjustments within the same group. One-way analysis of variance and post hoc tests were used to compare groups B, O, and OP (α=.05). Mean vertical fit values ±standard deviations of group B=29.5 ±13.2 μm; BA=26.9 ±7.7 μm; O=149.4 ±64.4 μm; OA=49.4 ±12.7 μm; and OP=33.0 ±8.3 μm. Adjustments in the intaglio surface and TDP application statistically influenced the vertical fit of group O (P<.001). The percentage of vertical fit values <75 μm in group B=89.3%, BA=92.7%, O=31.0%, OA=73.5%, and OP=92.0%. Mean horizontal fit values for group B=56.2 ±21.5 μm; 85.8 ±44.4 μm for group BA; 77.5 ±11.8 μm for group O; 102.5 ±16.2 μm for group OA; and 91.4 ±19.4 μm for group OP. Results from group B were significantly different from those of the other test groups (P<.05). The percentages of horizontal misfit were 61.2% in group B; 73.5% in group BA; 88.1% in group O; 92.4% in group OA; and 85.0% in group OP. Volumetric 3D internal fit values in group B were 9.4 ±1.3 mm 3 ; 10.7 ±1.0 mm 3 in group BA; 11.8 ±2.1 mm 3 in group O; 11.0 ±1.3 mm 3 in group OA; and 9.6 ±0.9 mm 3 in group OP. The overall results from groups B and OP were better than those of group O, with regard to vertical misfit and volumetric 3D internal fit. Different intraoral optical scanners, powder application, and internal adjustments influenced the marginal discrepancy of crowns. Crowns fabricated using the Omnicam system had significantly higher vertical discrepancy and volumetric 3D internal fit than those fabricated using the Bluecam scanner with TDP. Adjustments of the intaglio surface improved the vertical fit of crowns made using the Omnicam scanner; however, TDP application before Omnicam scanning improved the vertical fit as well as the volumetric 3D internal fit value of the luting space of crowns. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  11. Early tumor shrinkage is independently associated with improved overall survival among patients with metastatic renal cell carcinoma: a validation study using the COMPARZ cohort.

    PubMed

    Grünwald, Viktor; Dietrich, Marion; Pond, Gregory R

    2018-04-13

    Early tumor shrinkage (eTS) has prognostic value in metastatic renal cell carcinoma (mRCC). We aimed to validate the role of eTS in first line treatment from the COMPARZ study (NCT00720941). 1100 patients treated with sunitinib or pazopanib were analyzed for tumor response according to RECIST 1.0. eTS was defined as tumor shrinkage by ≥ 10%. A landmark analysis was performed on day (d) 42 and 90 and Cox proportional hazards regression was computed for the prognostic effect of eTS. In patients with eTS median OS was 34.1 [CI 95% 28.4; not reached (NR)] and 33.6 (CI 95% 30.1; NR) months (mo) at d 42 and 90, respectively, compared to 19.6 (CI 95% 14.0; 28.9) and 15.1 (CI 95% 12.4; 18.7) mo for patients without eTS. There was no interaction between type of treatment and eTS (d 42 p = 0.79; d 90 p = 0.37). eTS ≥ 10% remained an independent prognostic marker in multivariable analyses at both d 42 and 90. Similar results were found for eTS at the 42 and 90 days landmarks. eTS ≥ 10% has prognostic relevance in mRCC and reflects a putative tool to guide future clinical treatment.

  12. An image-guided planning system for endosseous oral implants.

    PubMed

    Verstreken, K; Van Cleynenbreugel, J; Martens, K; Marchal, G; van Steenberghe, D; Suetens, P

    1998-10-01

    A preoperative planning system for oral implant surgery was developed which takes as input computed tomographies (CT's) of the jaws. Two-dimensional (2-D) reslices of these axial CT slices orthogonal to a curve following the jaw arch are computed and shown together with three-dimensional (3-D) surface rendered models of the bone and computer-aided design (CAD)-like implant models. A technique is developed for scanning and visualizing an eventual existing removable prosthesis together with the bone structures. Evaluation of the planning done with the system shows a difference between 2-D and 3-D planning methods. Validation studies measure the benefits of the 3-D approach by comparing plans made in 2-D mode only with those further adjusted using the full 3-D visualization capabilities of the system. The benefits of a 3-D approach are then evident where a prosthesis is involved in the planning. For the majority of the patients, clinically important adjustments and optimizations to the 2-D plans are made once the 3-D visualization is enabled, effectively resulting in a better plan. The alterations are related to bone quality and quantity (p < 0.05), biomechanics (p < 0.005), and esthetics (p < 0.005), and are so obvious that the 3-D plan stands out clearly (p < 0.005). The improvements often avoid complications such as mandibular nerve damage, sinus perforations, fenestrations, or dehiscences.

  13. Hot air impingement on a flat plate using Large Eddy Simulation (LES) technique

    NASA Astrophysics Data System (ADS)

    Plengsa-ard, C.; Kaewbumrung, M.

    2018-01-01

    Impinging hot gas jets to a flat plate generate very high heat transfer coefficients in the impingement zone. The magnitude of heat transfer prediction near the stagnation point is important and accurate heat flux distribution are needed. This research studies on heat transfer and flow field resulting from a single hot air impinging wall. The simulation is carried out using computational fluid dynamics (CFD) commercial code FLUENT. Large Eddy Simulation (LES) approach with a subgrid-scale Smagorinsky-Lilly model is present. The classical Werner-Wengle wall model is used to compute the predicted results of velocity and temperature near walls. The Smagorinsky constant in the turbulence model is set to 0.1 and is kept constant throughout the investigation. The hot gas jet impingement on the flat plate with a constant surface temperature is chosen to validate the predicted heat flux results with experimental data. The jet Reynolds number is equal to 20,000 and a fixed jet-to-plate spacing of H/D = 2.0. Nusselt number on the impingement surface is calculated. As predicted by the wall model, the instantaneous computed Nusselt number agree fairly well with experimental data. The largest values of calculated Nusselt number are near the stagnation point and decrease monotonically in the wall jet region. Also, the contour plots of instantaneous values of wall heat flux on a flat plate are captured by LES simulation.

  14. Evaluation of artifacts generated by zirconium implants in cone-beam computed tomography images.

    PubMed

    Vasconcelos, Taruska Ventorini; Bechara, Boulos B; McMahan, Clyde Alex; Freitas, Deborah Queiroz; Noujeim, Marcel

    2017-02-01

    To evaluate zirconium implant artifact production in cone beam computed tomography images obtained with different protocols. One zirconium implant was inserted in an edentulous mandible. Twenty scans were acquired with a ProMax 3D unit (Planmeca Oy, Helsinki, Finland), with acquisition settings ranging from 70 to 90 peak kilovoltage (kVp) and voxel sizes of 0.32 and 0.16 mm. A metal artifact reduction (MAR) tool was activated in half of the scans. An axial slice through the middle region of the implant was selected for each dataset. Gray values (mean ± standard deviation) were measured in two regions of interest, one close to and the other distant from the implant (control area). The contrast-to-noise ratio was also calculated. Standard deviation decreased with greater kVp and when the MAR tool was used. The contrast-to-noise ratio was significantly higher when the MAR tool was turned off, except for low resolution with kVp values above 80. Selection of the MAR tool and greater kVp resulted in an overall reduction of artifacts in images acquired with low resolution. Although zirconium implants do produce image artifacts in cone-bean computed tomography scans, the setting that best controlled artifact generation by zirconium implants was 90 kVp at low resolution and with the MAR tool turned on. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Numerical computation of gravitational field of general extended body and its application to rotation curve study of galaxies

    NASA Astrophysics Data System (ADS)

    Fukushima, Toshio

    2017-06-01

    Reviewed are recently developed methods of the numerical integration of the gravitational field of general two- or three-dimensional bodies with arbitrary shape and mass density distribution: (i) an axisymmetric infinitely-thin disc (Fukushima 2016a, MNRAS, 456, 3702), (ii) a general infinitely-thin plate (Fukushima 2016b, MNRAS, 459, 3825), (iii) a plane-symmetric and axisymmetric ring-like object (Fukushima 2016c, AJ, 152, 35), (iv) an axisymmetric thick disc (Fukushima 2016d, MNRAS, 462, 2138), and (v) a general three-dimensional body (Fukushima 2016e, MNRAS, 463, 1500). The key techniques employed are (a) the split quadrature method using the double exponential rule (Takahashi and Mori, 1973, Numer. Math., 21, 206), (b) the precise and fast computation of complete elliptic integrals (Fukushima 2015, J. Comp. Appl. Math., 282, 71), (c) Ridder's algorithm of numerical differentiaion (Ridder 1982, Adv. Eng. Softw., 4, 75), (d) the recursive computation of the zonal toroidal harmonics, and (e) the integration variable transformation to the local spherical polar coordinates. These devices succesfully regularize the Newton kernel in the integrands so as to provide accurate integral values. For example, the general 3D potential is regularly integrated as Φ (\\vec{x}) = - G \\int_0^∞ ( \\int_{-1}^1 ( \\int_0^{2π} ρ (\\vec{x}+\\vec{q}) dψ ) dγ ) q dq, where \\vec{q} = q (√{1-γ^2} cos ψ, √{1-γ^2} sin ψ, γ), is the relative position vector referred to \\vec{x}, the position vector at which the potential is evaluated. As a result, the new methods can compute the potential and acceleration vector very accurately. In fact, the axisymmetric integration reproduces the Miyamoto-Nagai potential with 14 correct digits. The developed methods are applied to the gravitational field study of galaxies and protoplanetary discs. Among them, the investigation on the rotation curve of M33 supports a disc-like structure of the dark matter with a double-power-law surface mass density distribution. Fortran 90 subroutines to execute these methods and their test programs and sample outputs are available from the author's WEB site: https://www.researchgate.net/profile/Toshio_Fukushima/

  16. Intravoxel Incoherent Motion MR Imaging in the Head and Neck: Correlation with Dynamic Contrast-Enhanced MR Imaging and Diffusion-Weighted Imaging.

    PubMed

    Xu, Xiao Quan; Choi, Young Jun; Sung, Yu Sub; Yoon, Ra Gyoung; Jang, Seung Won; Park, Ji Eun; Heo, Young Jin; Baek, Jung Hwan; Lee, Jeong Hyun

    2016-01-01

    To investigate the correlation between perfusion- and diffusion-related parameters from intravoxel incoherent motion (IVIM) and those from dynamic contrast-enhanced MR imaging (DCE-MRI) and diffusion-weighted imaging in tumors and normal muscles of the head and neck. We retrospectively enrolled 20 consecutive patients with head and neck tumors with MR imaging performed using a 3T MR scanner. Tissue diffusivity (D), pseudo-diffusion coefficient (D(*)), and perfusion fraction (f) were derived from bi-exponential fitting of IVIM data obtained with 14 different b-values in three orthogonal directions. We investigated the correlation between D, f, and D(*) and model-free parameters from the DCE-MRI (wash-in, Tmax, Emax, initial AUC60, whole AUC) and the apparent diffusion coefficient (ADC) value in the tumor and normal masseter muscle using a whole volume-of-interest approach. Pearson's correlation test was used for statistical analysis. No correlation was found between f or D(*) and any of the parameters from the DCE-MRI in all patients or in patients with squamous cell carcinoma (p > 0.05). The ADC was significantly correlated with D values in the tumors (p < 0.001, r = 0.980) and muscles (p = 0.013, r = 0.542), despite its significantly higher value than D. The difference between ADC and D showed significant correlation with f values in the tumors (p = 0.017, r = 0.528) and muscles (p = 0.003, r = 0.630), but no correlation with D(*) (p > 0.05, respectively). Intravoxel incoherent motion shows no significant correlation with model-free perfusion parameters derived from the DCE-MRI but is feasible for the analysis of diffusivity in both tumors and normal muscles of the head and neck.

  17. Establishment of a high-resolution 2-D reference map of human spermatozoal proteins from 12 fertile sperm-bank donors.

    PubMed

    Li, Ling-Wei; Fan, Li-Qing; Zhu, Wen-Bing; Nien, Hong-Chuan; Sun, Bo-Lan; Luo, Ke-Li; Liao, Ting-Ting; Tang, Le; Lu, Guang-Xiu

    2007-05-01

    To extend the analysis of the proteome of human spermatozoa and establish a 2-D gel electrophoresis (2-DE) reference map of human spermatozoal proteins in a pH range of 3.5-9.0. In order to reveal more protein spots, immobilized pH gradient strips (24 cm) of broad range of pH 3-10 and the narrower range of pH 6-9, as well as different overlapping narrow range pH immobilized pH gradient (IPG) strips, including 3.5-4.5, 4.0-5.0, 4.5-5.5, 5.0-6.0 and 5.5-6.7, were used. After 2-DE, several visually identical spots between the different pH range 2-D gel pairs were cut from the gels and confirmed by mass spectrometry and used as landmarks for computer analysis. The 2-D reference map with pH value from 3.5 to 9.0 was synthesized by using the ImageMaster analysis software. The overlapping spots were excluded, so that every spot was counted only once. A total of 3872 different protein spots were identified from the reference map, an approximately 3-fold increase compared to the broad range pH 3-10 IPG strip (1306 spots). The present 2-D pattern is a high resolution 2-D reference map for human fertile spermatozoal protein spots. A comprehensive knowledge of the protein composition of human spermatozoa is very meaningful in studying dysregulation of male fertility.

  18. Topics in two-body hadronic decays of D mesons

    NASA Astrophysics Data System (ADS)

    El Aaoud, El Hassan

    We have carried out an analysis of helicity and partial- wave amplitudes for the decay of D mesons to two vector mesons V 1V2, D --> V1V2. In particular we have studied the Cabibbo-favored decays D+s --> ρφ and D --> K*ρ in the factorization approximation using several models for the form factors. All the models, with the exception of one, generate partial-wave amplitudes with the hierarchy |S| > |P| > | D|. Even though in most models the D-wave amplitude is an order of magnitude smaller than the S-wave amplitude, its effect on the longitudinal polarization could be as large as 30%. Due to a misidentification of the partial-wave amplitudes in terms of the Lorentz structures in the relevant literature, we cast doubt on the veracity of the listed data for the decay D --> K*ρ, particularly the partial-wave branching ratios. We have also investigated the effect of the isospin ½, JP = 0+ resonant state K*0 (1950) on the decays D0 --> K¯0η and D0 --> K¯0η' as a function of the branching ratio sum r = Br( K*0 (1950) --> K¯0η) + Br( K*0 (1950) --> K¯0η ') and the coupling constants gK*0 K0h , and gK*0 K0h' . We have used a factorized input for the D 0 --> K*0 (1950) weak transition through a πK loop. We estimated both on- and off-shell contributions from the loop. Our calculation shows that the off-shell effects are significant. For r >= 30% a fit to the decay amplitude |A(D 0 --> K¯0η' )| was possible, but the amplitude A(D 0 --> K¯0η) remained at its factorized value and hence a branching ratio too low compared to data. For small values of r, r <= 18%, we were able to fit |A(D0 --> K¯0η)|, and despite the fact that | A(D0 --> K¯ 0η') | could be raised by almost 100% over its factorized value, it still falls short of its experimental value. A simultaneous fit to both amplitudes |(A(D0 --> K¯0η')| and | A(D0 --> K¯ 0η| was not possible. We have also determined the strong phase of the resonant amplitudes for both decays.

  19. Multiplexing in the primate motion pathway.

    PubMed

    Huk, Alexander C

    2012-06-01

    This article begins by reviewing recent work on 3D motion processing in the primate visual system. Some of these results suggest that 3D motion signals may be processed in the same circuitry already known to compute 2D motion signals. Such "multiplexing" has implications for the study of visual cortical circuits and neural signals. A more explicit appreciation of multiplexing--and the computations required for demultiplexing--may enrich the study of the visual system by emphasizing the importance of a structured and balanced "encoding/decoding" framework. In addition to providing a fresh perspective on how successive stages of visual processing might be approached, multiplexing also raises caveats about the value of "neural correlates" for understanding neural computation.

  20. pyNS: an open-source framework for 0D haemodynamic modelling.

    PubMed

    Manini, Simone; Antiga, Luca; Botti, Lorenzo; Remuzzi, Andrea

    2015-06-01

    A number of computational approaches have been proposed for the simulation of haemodynamics and vascular wall dynamics in complex vascular networks. Among them, 0D pulse wave propagation methods allow to efficiently model flow and pressure distributions and wall displacements throughout vascular networks at low computational costs. Although several techniques are documented in literature, the availability of open-source computational tools is still limited. We here present python Network Solver, a modular solver framework for 0D problems released under a BSD license as part of the archToolkit ( http://archtk.github.com ). As an application, we describe patient-specific models of the systemic circulation and detailed upper extremity for use in the prediction of maturation after surgical creation of vascular access for haemodialysis.

  1. 26 CFR 1.927(d)-1 - Other definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... that is unpaid on the day after the end of the normal payment period, over (B) The present value, as of... rate for the present value computation is simple interest at the short-term monthly Federal rate... period. The present value of a payment is calculated as follows: EC14NO91.143 P=present value of a...

  2. A comparison of individual and social time trade-off values for health states in the general population.

    PubMed

    Burström, Kristina; Johannesson, Magnus; Diderichsen, Finn

    2006-05-01

    This study aimed to compare directly elicited individual time trade-off (TTO) values in a general population sample with the social values derived using the UK EQ-5D index tariff. In the Stockholm County 1998 postal Public Health Survey (n=4950, 20-88 years), the EQ-5D self-classifier, a TTO and a rating scale (RS) question were included (n=2549 for all three questions). The mean TTO (EQ-5D) value was 0.943 (0.890) in the youngest age-group and 0.699 (0.733) in the oldest age-group. The difference between TTO and EQ-5D values was greater in more severe health status groups was. The same equation as for the UK EQ-5D index tariff was estimated for TTO and RS and resulted in significant and consistent coefficients for nearly all dimensions. The coefficients for moderate problems were closer to the EQ-5D index tariff than the coefficients for severe problems. Age was also significant after controlling for the EQ-5D dimensions (p<0.05). The results suggest that individual and social TTO values differ systematically and that the difference is greater the more severe the health status is. The social EQ-5D index tariff may also underestimate the severity in health status at older ages; age appears to correlate with additional health problems not captured by the EQ-5D classification.

  3. Validity of computational hemodynamics in human arteries based on 3D time-of-flight MR angiography and 2D electrocardiogram gated phase contrast images

    NASA Astrophysics Data System (ADS)

    Yu, Huidan (Whitney); Chen, Xi; Chen, Rou; Wang, Zhiqiang; Lin, Chen; Kralik, Stephen; Zhao, Ye

    2015-11-01

    In this work, we demonstrate the validity of 4-D patient-specific computational hemodynamics (PSCH) based on 3-D time-of-flight (TOF) MR angiography (MRA) and 2-D electrocardiogram (ECG) gated phase contrast (PC) images. The mesoscale lattice Boltzmann method (LBM) is employed to segment morphological arterial geometry from TOF MRA, to extract velocity profiles from ECG PC images, and to simulate fluid dynamics on a unified GPU accelerated computational platform. Two healthy volunteers are recruited to participate in the study. For each volunteer, a 3-D high resolution TOF MRA image and 10 2-D ECG gated PC images are acquired to provide the morphological geometry and the time-varying flow velocity profiles for necessary inputs of the PSCH. Validation results will be presented through comparisons of LBM vs. 4D Flow Software for flow rates and LBM simulation vs. MRA measurement for blood flow velocity maps. Indiana University Health (IUH) Values Fund.

  4. Prediction of drug transport processes using simple parameters and PLS statistics. The use of ACD/logP and ACD/ChemSketch descriptors.

    PubMed

    Osterberg, T; Norinder, U

    2001-01-01

    A method of modelling and predicting biopharmaceutical properties using simple theoretically computed molecular descriptors and multivariate statistics has been investigated for several data sets related to solubility, IAM chromatography, permeability across Caco-2 cell monolayers, human intestinal perfusion, brain-blood partitioning, and P-glycoprotein ATPase activity. The molecular descriptors (e.g. molar refractivity, molar volume, index of refraction, surface tension and density) and logP were computed with ACD/ChemSketch and ACD/logP, respectively. Good statistical models were derived that permit simple computational prediction of biopharmaceutical properties. All final models derived had R(2) values ranging from 0.73 to 0.95 and Q(2) values ranging from 0.69 to 0.86. The RMSEP values for the external test sets ranged from 0.24 to 0.85 (log scale).

  5. A Mobile Decision Aid for Determining Detection Probabilities for Acoustic Targets

    DTIC Science & Technology

    2002-08-01

    propagation mobile application . Personal Computer Memory Card International Association, an organization of some 500 companies that has developed a...SENSOR: lHuman and possible outputs, it was felt that for a mobile application , the interface and number of output parameters should be kept simple...value could be computed on the server and transmitted back to the mobile application for display. FUTURE CAPABILITIES 2-D/3-D Displays The full ABFA

  6. Computational and Experimental Unsteady Pressures for Alternate SLS Booster Nose Shapes

    NASA Technical Reports Server (NTRS)

    Braukmann, Gregory J.; Streett, Craig L.; Kleb, William L.; Alter, Stephen J.; Murphy, Kelly J.; Glass, Christopher E.

    2015-01-01

    Delayed Detached Eddy Simulation (DDES) predictions of the unsteady transonic flow about a Space Launch System (SLS) configuration were made with the Fully UNstructured Three-Dimensional (FUN3D) flow solver. The computational predictions were validated against results from a 2.5% model tested in the NASA Ames 11-Foot Transonic Unitary Plan Facility. The peak C(sub p,rms) value was under-predicted for the baseline, Mach 0.9 case, but the general trends of high C(sub p,rms) levels behind the forward attach hardware, reducing as one moves away both streamwise and circumferentially, were captured. Frequency of the peak power in power spectral density estimates was consistently under-predicted. Five alternate booster nose shapes were assessed, and several were shown to reduce the surface pressure fluctuations, both as predicted by the computations and verified by the wind tunnel results.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapet, Olivier, E-mail: olivier.chapet@chu-lyon.fr; Udrescu, Corina; Department of Medical Physics, Centre Hospitalier Lyon Sud, Pierre Benite

    Purpose: The aim of this study was to evaluate the contribution of an injection of hyaluronic acid (HA) between the rectum and the prostate for reducing the dose to the rectal wall in a hypofractionated irradiation for prostate cancer. Methods and Materials: In a phase 2 study, 10 cc of HA was injected between the rectum and prostate. For 16 patients, the same intensity modulated radiation therapy plan (62 Gy in 20 fractions) was optimized on 2 computed tomography scans: CT1 (before injection) and CT2 (after injection). Rectal parameters were compared: dose to 2.5 cc (D2.5), 5 cc (D5), 10more » cc (D10), 15 cc (D15), and 20 cc (D20) of rectal wall and volume of rectum covered by the 90% isodose line (V90), 80% (V80), 70% (V70), 60% (V60), and 50% (V50). Results: The mean V90, V80, V70, V60, and V50 values were reduced by 73.8% (P<.0001), 55.7% (P=.0003), 43.0% (P=.007), 34% (P=.002), and 25% (P=.036), respectively. The average values of D2.5, D5, D10, D15, and D20 were reduced by 8.5 Gy (P<.0001), 12.3 Gy (P<.0001), 8.4 Gy (P=.005), 3.7 Gy (P=.026), and 1.2 Gy (P=.25), respectively. Conclusions: The injection of HA significantly limited radiation doses to the rectal wall.« less

  8. Use of visible and near-infrared spectroscopy to predict pork longissimus lean color stability.

    PubMed

    King, D A; Shackelford, S D; Wheeler, T L

    2011-12-01

    This study evaluated the use of visible and near-infrared (VISNIR) spectroscopy to predict lean color stability in pork loin chops. Spectra were collected immediately after and approximately 1 h after rib removal on 1,208 loins. Loins were aged for 14 d before a 2.54-cm chop was placed in simulated retail display. Spectra were collected on aged loins immediately after removal from the vacuum package and on chops 10 min after cutting. Instrumental color measurements [L*, a*, b*, hue angle, chroma, and E (overall color change)] were determined on d 0, 1, 7, 11, and 14 of display. Principal components analysis of display d 0 and 14 values of these traits identified a factor (first principal component; PC1) explaining 67% of the variance that was related to color change. Partial least squares regression was used to develop 3 models to predict PC1 values by using VISNIR spectra collected in the plant, on aged loins, and on chops. Loins with predicted PC1 values less than 0 were classified as having a stable color, whereas values greater than 0 were classified as having a labile lean color. Loins classified as stable by the in-plant model had smaller (P < 0.05) L* values than those classified as labile. Hue angle and ΔE values were less (P < 0.05) and a* and chroma values were greater (P < 0.05) after d 7 of display in loins predicted to have a stable color than in loins predicted to have a labile lean color. Similarly, chops from loins classified as stable using the aged loin model had smaller (P < 0.05) L* values than those from loins classified as labile. Furthermore, loins predicted to be stable had smaller (P < 0.05) hue angle and ΔE values and greater (P < 0.05) a* and chroma values after d 7 of display than did loins predicted to be labile. Results for the chop model were similar to those from the 2 loin models. Chops predicted to have a stable lean color had smaller (P < 0.05) L* values than did those predicted to have a labile lean color. Chops classified as stable had smaller (P < 0.05) hue angle and ΔE values and greater (P < 0.05) a* and chroma values after d 7 of display compared with chops classified as labile. All 3 models effectively segregated chops based on color stability, particularly with regard to redness. Regardless of the model being used, d 14 display values for a*, hue angle, and ΔE in loins classified as stable were similar to the d 7 values of loins classified as labile. Thus, these results suggest that VISNIR spectroscopy would be an effective technology for sorting pork loins with regard to lean color stability.

  9. A high deuterium abundance at redshift z = 0.7.

    PubMed

    Webb, J K; Carswell, R F; Lanzetta, K M; Ferlet, R; Lemoine, M; Vidal-Madjar, A; Bowen, D V

    1997-07-17

    Of the light elements, the primordial abundance of deuterium relative to hydrogen, (D/H)p, provides the most sensitive diagnostic for the cosmological mass density parameter, omegaB. Recent high-redshift D/H measurements are highly discrepant, although this may reflect observational uncertainties. The larger primordial D/H values imply a low omegaB (requiring the Universe to be dominated by non-baryonic matter), and cause problems for galactic chemical evolution models, which have difficulty in reproducing the steep decline in D/H to the present-day values. Conversely, the lower D/H values measured at high redshift imply an omegaB greater than that derived from 7Li and 4He abundance measurements, and may require a deuterium-abundance evolution that is too low to easily explain. Here we report the first measurement of D/H at intermediate redshift (z = 0.7010), in a gas cloud selected to minimize observational uncertainties. Our analysis yields a value of D/H ((2.0 +/- 0.5) x 10[-4]) which is at the upper end of the range of values measured at high redshifts. This finding, together with other independent observations, suggests that there may be inhomogeneity in (D/H)p of at least a factor of ten.

  10. Evaluation of a global algorithm for wavefront reconstruction for Shack-Hartmann wave-front sensors and thick fundus reflectors.

    PubMed

    Liu, Tao; Thibos, Larry; Marin, Gildas; Hernandez, Martha

    2014-01-01

    Conventional aberration analysis by a Shack-Hartmann aberrometer is based on the implicit assumption that an injected probe beam reflects from a single fundus layer. In fact, the biological fundus is a thick reflector and therefore conventional analysis may produce errors of unknown magnitude. We developed a novel computational method to investigate this potential failure of conventional analysis. The Shack-Hartmann wavefront sensor was simulated by computer software and used to recover by two methods the known wavefront aberrations expected from a population of normally-aberrated human eyes and bi-layer fundus reflection. The conventional method determines the centroid of each spot in the SH data image, from which wavefront slopes are computed for least-squares fitting with derivatives of Zernike polynomials. The novel 'global' method iteratively adjusted the aberration coefficients derived from conventional centroid analysis until the SH image, when treated as a unitary picture, optimally matched the original data image. Both methods recovered higher order aberrations accurately and precisely, but only the global algorithm correctly recovered the defocus coefficients associated with each layer of fundus reflection. The global algorithm accurately recovered Zernike coefficients for mean defocus and bi-layer separation with maximum error <0.1%. The global algorithm was robust for bi-layer separation up to 2 dioptres for a typical SH wavefront sensor design. For 100 randomly generated test wavefronts with 0.7 D axial separation, the retrieved mean axial separation was 0.70 D with standard deviations (S.D.) of 0.002 D. Sufficient information is contained in SH data images to measure the dioptric thickness of dual-layer fundus reflection. The global algorithm is superior since it successfully recovered the focus value associated with both fundus layers even when their separation was too small to produce clearly separated spots, while the conventional analysis misrepresents the defocus component of the wavefront aberration as the mean defocus for the two reflectors. Our novel global algorithm is a promising method for SH data image analysis in clinical and visual optics research for human and animal eyes. © 2013 The Authors Ophthalmic & Physiological Optics © 2013 The College of Optometrists.

  11. IFCPT S-Duct Grid-Adapted FUN3D Computations for the Third Propulsion Aerodynamics Works

    NASA Technical Reports Server (NTRS)

    Davis, Zach S.; Park, M. A.

    2017-01-01

    Contributions of the unstructured Reynolds-averaged Navier-Stokes code, FUN3D, to the 3rd AIAA Propulsion Aerodynamics Workshop are described for the diffusing IFCPT S-Duct. Using workshop-supplied grids, results for the baseline S-Duct, baseline S-Duct with Aerodynamic Interface Plane (AIP) rake hardware, and baseline S-Duct with flow control devices are compared with experimental data and results computed with output-based, off-body grid adaptation in FUN3D. Due to the absence of influential geometry components, total pressure recovery is overpredicted on the baseline S-Duct and S-Duct with flow control vanes when compared to experimental values. An estimate for the exact value of total pressure recovery is derived for these cases given an infinitely refined mesh. When results from output-based mesh adaptation are compared with those computed on workshop-supplied grids, a considerable improvement in predicting total pressure recovery is observed. By including more representative geometry, output-based mesh adaptation compares very favorably with experimental data in terms of predicting the total pressure recovery cost-function; whereas, results computed using the workshop-supplied grids are underpredicted.

  12. The V1.0 ’Pushpin’ Nixel 2-D Self-Assembling Display Array

    DTIC Science & Technology

    2004-08-01

    H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. Knight, R. Nagpal , E. Rauch, G. J. Sussntan, and R. Weiss Amorphous Computing Communications...November 2003. [9] R. Nagpal , Organizing a Global Coordinate System from Local Information on an Amorphous Computer, Massachusetts Institute

  13. Statistical properties of the Strehl ratio as a function of pupil diameter and level of adaptive optics correction following atmospheric propagation.

    PubMed

    Shellan, Jeffrey B

    2004-08-01

    The propagation of an optical beam through atmospheric turbulence produces wave-front aberrations that can reduce the power incident on an illuminated target or degrade the image of a distant target. The purpose of the work described here was to determine by computer simulation the statistical properties of the normalized on-axis intensity--defined as (D/r0)2 SR--as a function of D/r0 and the level of adaptive optics (AO) correction, where D is the telescope diameter, r0 is the Fried coherence diameter, and SR is the Strehl ratio. Plots were generated of (D/r0)2 (SR) and sigmaSR/(SR), where (SR) and sigma(SR) are the mean and standard deviation, respectively, of the SR versus D/r0 for a wide range of both modal and zonal AO correction. The level of modal correction was characterized by the number of Zernike radial modes that were corrected. The amount of zonal AO correction was quantified by the number of actuators on the deformable mirror and the resolution of the Hartmann wave-front sensor. These results can be used to determine the optimum telescope diameter, in units of r0, as a function of the AO design. For the zonal AO model, we found that maximum on-axis intensity was achieved when the telescope diameter was sized so that the actuator spacing was equal to approximately 2r0. For modal correction, we found that the optimum value of D/r0 (maximum mean on-axis intensity) was equal to 1.79Nr + 2.86, where Nr is the highest Zernike radial mode corrected.

  14. Extraction of diffuse correlation spectroscopy flow index by integration of Nth-order linear model with Monte Carlo simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, Yu; Lin, Yu; Yu, Guoqiang, E-mail: guoqiang.yu@uky.edu

    2014-05-12

    Conventional semi-infinite solution for extracting blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements may cause errors in estimation of BFI (αD{sub B}) in tissues with small volume and large curvature. We proposed an algorithm integrating Nth-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in tissue for the extraction of αD{sub B}. The volume and geometry of the measured tissue were incorporated in the Monte Carlo simulation, which overcome the semi-infinite restrictions. The algorithm was tested using computer simulations on four tissue models with varied volumes/geometries and applied on an in vivo strokemore » model of mouse. Computer simulations shows that the high-order (N ≥ 5) linear algorithm was more accurate in extracting αD{sub B} (errors < ±2%) from the noise-free DCS data than the semi-infinite solution (errors: −5.3% to −18.0%) for different tissue models. Although adding random noises to DCS data resulted in αD{sub B} variations, the mean values of errors in extracting αD{sub B} were similar to those reconstructed from the noise-free DCS data. In addition, the errors in extracting the relative changes of αD{sub B} using both linear algorithm and semi-infinite solution were fairly small (errors < ±2.0%) and did not rely on the tissue volume/geometry. The experimental results from the in vivo stroke mice agreed with those in simulations, demonstrating the robustness of the linear algorithm. DCS with the high-order linear algorithm shows the potential for the inter-subject comparison and longitudinal monitoring of absolute BFI in a variety of tissues/organs with different volumes/geometries.« less

  15. Three-dimensional transvaginal sonographic assessment of uterine volume as preoperative predictor of need to morcellate in women undergoing laparoscopic hysterectomy.

    PubMed

    Gerges, B; Mongelli, M; Casikar, I; Bignardi, T; Condous, G

    2017-08-01

    In light of recent statements from the United States Food and Drug Administration warning against the use of power morcellation of uterine leiomyomas during laparoscopy, we sought to evaluate the use of preoperative two- (2D) and three- (3D) dimensional transvaginal ultrasound (US) assessment of uterine volume to predict the need for morcellation in women undergoing laparoscopic hysterectomy (LH). This was a prospective observational study performed between October 2008 and November 2011 in a tertiary referral laparoscopic unit. All women scheduled to undergo LH were included and underwent detailed preoperative transvaginal US. Uterine volumes were calculated using 2D-US measurements (ellipsoid formula), and using Virtual Organ Computer-aided AnaLysis (VOCAL™) having acquired 3D-US volumes of the uterus. Age, parity, need to morcellate and final uterine dry weight at histology were recorded. The estimated uterine volumes were then incorporated into a previously published logistic regression model to predict the need to morcellate for both nulliparous and parous women. The probability threshold cut-off of 0.14 (95% sensitivity) was evaluated in terms of sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and likelihood ratios (LRs). The performance of the models incorporating 2D- and 3D-US calculations were compared with 2D- and 3D-US-generated volumes alone, using receiver-operating characteristics (ROC) curves. Of 76 women who underwent LH during the study period, 79% (n = 60) had complete background and 3D-US data. Their mean age was 43.7 years, 91.7% were parous and 35% underwent morcellation. The greatest uterine volume that did not require morcellation was 404 mL estimated using 3D-US, which corresponded to a uterine volume of 688.8 mL using 2D-US. The smallest uterine volume that required morcellation was 118.9 mL using 3D-US, which corresponded to a uterine volume of 123.4 mL using 2D-US. The 3D-US uterine volume for parous women with a sensitivity of 95% based on ROC-curve analysis was approximately 120 mL, which equated to a predicted probability of morcellation cut-off of 0.14. For this cut-off, specificity was 55.00%, PPV was 51.35%, NPV was 95.65%, LR+ was 2.11 and LR- was 0.09. Areas under the ROC curves for the morcellation logistic regression model were 0.769 (95% CI, 0.653-0.886) and 0.586 (95% CI, 0.419-0.753) using uterine volumes obtained by 3D-US and by 2D-US, respectively, and they were 0.938 (95% CI, 0.879-0.996) and 0.815 (95% CI, 0.681-0.948) using 3D-US and 2D-US volumes alone. The need to morcellate can be predicted preoperatively using 3D-US uterine volumes obtained by transvaginal US with a fair degree of accuracy. Uteri with volumes smaller than 120 mL at 3D-US are very unlikely to require morcellation. The incorporation of 3D-US-estimated uterine volume into the previously published logistic regression model does not seem to confer any significant improvement when compared with 3D-US uterine volume alone to predict the need to morcellate in women undergoing total LH. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd.

  16. String theory of the Regge intercept.

    PubMed

    Hellerman, S; Swanson, I

    2015-03-20

    Using the Polchinski-Strominger effective string theory in the covariant gauge, we compute the mass of a rotating string in D dimensions with large angular momenta J, in one or two planes, in fixed ratio, up to and including first subleading order in the large J expansion. This constitutes a first-principles calculation of the value for the order-J(0) contribution to the mass squared of a meson on the leading Regge trajectory in planar QCD with bosonic quarks. For open strings with Neumann boundary conditions, and for closed strings in D≥5, the order-J(0) term in the mass squared is exactly calculated by the semiclassical approximation. This term in the expansion is universal and independent of the details of the theory, assuming only D-dimensional Poincaré invariance and the absence of other infinite-range excitations on the string world volume, beyond the Nambu-Goldstone bosons.

  17. Anomalous dimensions of spinning operators from conformal symmetry

    NASA Astrophysics Data System (ADS)

    Gliozzi, Ferdinando

    2018-01-01

    We compute, to the first non-trivial order in the ɛ-expansion of a perturbed scalar field theory, the anomalous dimensions of an infinite class of primary operators with arbitrary spin ℓ = 0, 1, . . . , including as a particular case the weakly broken higher-spin currents, using only constraints from conformal symmetry. Following the bootstrap philosophy, no reference is made to any Lagrangian, equations of motion or coupling constants. Even the space dimensions d are left free. The interaction is implicitly turned on through the local operators by letting them acquire anomalous dimensions. When matching certain four-point and five-point functions with the corresponding quantities of the free field theory in the ɛ → 0 limit, no free parameter remains. It turns out that only the expected discrete d values are permitted and the ensuing anomalous dimensions reproduce known results for the weakly broken higher-spin currents and provide new results for the other spinning operators.

  18. Numerical Simulations of Single and Multiple Scattering by Fractal Ice Clusters

    NASA Technical Reports Server (NTRS)

    Dlugach, Janna M.; Mishchenko, Michael I.; Mackowski, Daniel W.

    2011-01-01

    We consider the scattering model in the form of a vertically and horizontally homogeneous particulate slab of an arbitrary optical thickness composed of widely separated fractal aggregates built of small spherical ice monomers. The aggregates are generated by applying three different approaches, including simulated cluster-cluster aggregation (CCA) and diffusion-limited aggregation (DLA) procedures. Having in mind radar remote-sensing applications, we report and analyze the results of computations of the backscattering circular polarization ratio obtained using efficient superposition T-matrix and vector radiative-transfer codes. The computations have been performed at a wavelength of 12.6 cm for fractal aggregates with the following characteristics: monomer refractive index m=1.78+i0.003, monomer radius r=1 cm, monomer packing density p=0.2, overall aggregate radii R in the range 4<=R<=10 cm and fractal dimensions D(sub f) 2.5 and 3. We show that for aggregates generated with simulated CCA and DLA procedures, the respective values of the backscattering circular polarization ratio differ weakly for D(sub f) 2.5, but the differences can increase somewhat for D(sub f)3, especially in case of an optically semi-infinite medium. For aggregates with a spheroidal overall shape, the dependence of the circular polarization ratio on the cluster morphology can be quite significant and increases with increasing the aspect ratio of the circumscribing spheroid.

  19. 2D Magnetic Texture Analysis of Co-Cu Films

    NASA Astrophysics Data System (ADS)

    Bayirli, Mehmet; Karaagac, Oznur; Kockar, Hakan; Alper, Mursel

    2017-05-01

    The magnetic textures for the produced magnetic materials are important concepts in accordance with technical applications. Therefore, the aim of this article is to determine 2D magnetic textures of electrodeposited Co-Cu films by the measurement of hysteresis loops at the incremented angles. For that, Co-Cu films were deposited with different Co2+ in the electrolyte. In addition, the easy-axis orientation in the films from the squareness values of the angles, Mp(β) obtained by the hysteresis loops have been numerically studied using the Fourier series analysis. The differences observed in the magnetic easy-axis distributions were attributed to changes of the incorporation of Co in the films with the change of Co2+ in the electrolyte. The coefficients of Fourier series (A0 and A2n ) were also computed for 2D films. It is seen that a systematic and small decrease in A0 and an obvious decrease in A2n (n=1) were observed with increasing incorporated Co in the films. Results imply that interactions cause slightly demagnetization effect accordance with higher incorporation of Co in the films. Furthermore, the crystal structure of the Co-Cu films analysed by X-ray diffraction revealed that the films have dominantly face-centred cubic structure. Film contents analysed by energy-dispersive X-ray spectroscopy and film morphologies observed by scanning electron microscope also support the magnetic texture analysis results found by numerical computation.

  20. Relationship between crystal structure and thermo-mechanical properties of kaolinite clay: Beyond standard density functional theory

    DOE PAGES

    Weck, Philippe F.; Kim, Eunja; Jove-Colon, Carlos F.

    2015-03-04

    In this study, the structural, mechanical and thermodynamic properties of 1 : 1 layered dioctahedral kaolinite clay, with ideal Al 2Si 2O 5(OH) 4 stoichiometry, were investigated using density functional theory corrected for dispersion interactions (DFT-D2). The bulk moduli of 56.2 and 56.0 GPa predicted at 298 K using the Vinet and Birch–Murnaghan equations of state, respectively, are in good agreement with the recent experimental value of 59.7 GPa reported for well-crystallized samples. The isobaric heat capacity computed for uniaxial deformation of kaolinite along the stacking direction reproduces calorimetric data within 0.7–3.0% from room temperature up to its thermal stabilitymore » limit.« less

  1. Magnetic Resonance Fingerprinting with short relaxation intervals.

    PubMed

    Amthor, Thomas; Doneva, Mariya; Koken, Peter; Sommer, Karsten; Meineke, Jakob; Börnert, Peter

    2017-09-01

    The aim of this study was to investigate a technique for improving the performance of Magnetic Resonance Fingerprinting (MRF) in repetitive sampling schemes, in particular for 3D MRF acquisition, by shortening relaxation intervals between MRF pulse train repetitions. A calculation method for MRF dictionaries adapted to short relaxation intervals and non-relaxed initial spin states is presented, based on the concept of stationary fingerprints. The method is applicable to many different k-space sampling schemes in 2D and 3D. For accuracy analysis, T 1 and T 2 values of a phantom are determined by single-slice Cartesian MRF for different relaxation intervals and are compared with quantitative reference measurements. The relevance of slice profile effects is also investigated in this case. To further illustrate the capabilities of the method, an application to in-vivo spiral 3D MRF measurements is demonstrated. The proposed computation method enables accurate parameter estimation even for the shortest relaxation intervals, as investigated for different sampling patterns in 2D and 3D. In 2D Cartesian measurements, we achieved a scan acceleration of more than a factor of two, while maintaining acceptable accuracy: The largest T 1 values of a sample set deviated from their reference values by 0.3% (longest relaxation interval) and 2.4% (shortest relaxation interval). The largest T 2 values showed systematic deviations of up to 10% for all relaxation intervals, which is discussed. The influence of slice profile effects for multislice acquisition is shown to become increasingly relevant for short relaxation intervals. In 3D spiral measurements, a scan time reduction of 36% was achieved, maintaining the quality of in-vivo T1 and T2 maps. Reducing the relaxation interval between MRF sequence repetitions using stationary fingerprint dictionaries is a feasible method to improve the scan efficiency of MRF sequences. The method enables fast implementations of 3D spatially resolved MRF. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Three-Dimensional Eyeball and Orbit Volume Modification After LeFort III Midface Distraction.

    PubMed

    Smektala, Tomasz; Nysjö, Johan; Thor, Andreas; Homik, Aleksandra; Sporniak-Tutak, Katarzyna; Safranow, Krzysztof; Dowgierd, Krzysztof; Olszewski, Raphael

    2015-07-01

    The aim of our study was to evaluate orbital volume modification with LeFort III midface distraction in patients with craniosynostosis and its influence on eyeball volume and axial diameter modification. Orbital volume was assessed by the semiautomatic segmentation method based on deformable surface models and on 3-dimensional (3D) interaction with haptics. The eyeball volumes and diameters were automatically calculated after manual segmentation of computed tomographic scans with 3D slicer software. The mean, minimal, and maximal differences as well as the standard deviation and intraclass correlation coefficient (ICC) for intraobserver and interobserver measurements reliability were calculated. The Wilcoxon signed rank test was used to compare measured values before and after surgery. P < 0.05 was considered statistically significant. Intraobserver and interobserver ICC for haptic-aided semiautomatic orbital volume measurements were 0.98 and 0.99, respectively. The intraobserver and interobserver ICC values for manual segmentation of the eyeball volume were 0.87 and 0.86, respectively. The orbital volume increased significantly after surgery: 30.32% (mean, 5.96  mL) for the left orbit and 31.04% (mean, 6.31  mL) for the right orbit. The mean increase in eyeball volume was 12.3%. The mean increases in the eyeball axial dimensions were 7.3%, 9.3%, and 4.4% for the X-, Y-, and Z-axes, respectively. The Wilcoxon signed rank test showed that preoperative and postoperative eyeball volumes, as well as the diameters along the X- and Y-axes, were statistically significant. Midface distraction in patients with syndromic craniostenosis results in a significant increase (P < 0.05) in the orbit and eyeball volumes. The 2 methods (haptic-aided semiautomatic segmentation and manual 3D slicer segmentation) are reproducible techniques for orbit and eyeball volume measurements.

  3. [Evaluation of the resolving power of different angles in MPR images of 16DAS-MDCT].

    PubMed

    Kimura, Mikio; Usui, Junshi; Nozawa, Takeo

    2007-03-20

    In this study, we evaluated the resolving power of three-dimensional (3D) multiplanar reformation (MPR) images with various angles by using 16 data acquisition system multi detector row computed tomography (16DAS-MDCT) . We reconstructed the MPR images using data with a 0.75 mm slice thickness of the axial image in this examination. To evaluate resolving power, we used an original new phantom (RC phantom) that can be positioned at any slice angle in MPR images. We measured the modulation transfer function (MTF) by using the methods of measuring pre-sampling MTF, and used Fourier transform of image data of the square wave chart. The scan condition and image reconstruction condition that were adopted in this study correspond to the condition that we use for three-dimensional computed tomographic angiography (3D-CTA) examination of the head in our hospital. The MTF of MPR images showed minimum values at slice angles in parallel with the axial slice, and showed maximum values at the sagittal slice and coronal slice angles that are parallel to the Z-axis. With an oblique MPR image, MTF did not change with angle changes in the oblique sagittal slice plane, but in the oblique coronal slice plane, MTF increased as the tilt angle increased from the axial plane to the Z plane. As a result, we could evaluate the resolving power of a head 3D image by measuring the MTF of the axial image and sagittal image or the coronal image.

  4. Assimilation of surface NO2 and O3 observations into the SILAM chemistry transport model

    NASA Astrophysics Data System (ADS)

    Vira, J.; Sofiev, M.

    2014-08-01

    This paper describes assimilation of trace gas observations into the chemistry transport model SILAM using the 3D-Var method. Assimilation results for year 2012 are presented for the prominent photochemical pollutants ozone (O3) and nitrogen dioxide (NO2). Both species are covered by the Airbase observation database, which provides the observational dataset used in this study. Attention is paid to the background and observation error covariance matrices, which are obtained primarily by iterative application of a posteriori diagnostics. The diagnostics are computed separately for two months representing summer and winter conditions, and further disaggregated by time of day. This allows deriving background and observation error covariance definitions which include both seasonal and diurnal variation. The consistency of the obtained covariance matrices is verified using χ2 diagnostics. The analysis scores are computed for a control set of observation stations withheld from assimilation. Compared to a free-running model simulation, the correlation coefficient for daily maximum values is improved from 0.8 to 0.9 for O3 and from 0.53 to 0.63 for NO2.

  5. PLOT3D/AMES, UNIX SUPERCOMPUTER AND SGI IRIS VERSION (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. In addition to providing the advantages of performing complex calculations on a supercomputer, the Supercomputer/IRIS implementation of PLOT3D offers advanced 3-D, view manipulation, and animation capabilities. Shading and hidden line/surface removal can be used to enhance depth perception and other aspects of the graphical displays. A mouse can be used to translate, rotate, or zoom in on views. Files for several types of output can be produced. Two animation options are available. Simple animation sequences can be created on the IRIS, or,if an appropriately modified version of ARCGRAPH (ARC-12350) is accesible on the supercomputer, files can be created for use in GAS (Graphics Animation System, ARC-12379), an IRIS program which offers more complex rendering and animation capabilities and options for recording images to digital disk, video tape, or 16-mm film. The version 3.6b+ Supercomputer/IRIS implementations of PLOT3D (ARC-12779) and PLOT3D/TURB3D (ARC-12784) are suitable for use on CRAY 2/UNICOS, CONVEX, and ALLIANT computers with a remote Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstation. These programs are distributed on .25 inch magnetic tape cartridges in IRIS TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstations (ARC-12783, ARC-12782); (2) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC12777, ARC-12781); (3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 - which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo, DN10000, and GMR3D are trademarks of Hewlett-Packard, Incorporated. System V is a trademark of Bell Labs, Incorporated. BSD4.3 is a trademark of the University of California at Berkeley. UNIX is a registered trademark of AT&T.

  6. PLOT3D/AMES, UNIX SUPERCOMPUTER AND SGI IRIS VERSION (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. In addition to providing the advantages of performing complex calculations on a supercomputer, the Supercomputer/IRIS implementation of PLOT3D offers advanced 3-D, view manipulation, and animation capabilities. Shading and hidden line/surface removal can be used to enhance depth perception and other aspects of the graphical displays. A mouse can be used to translate, rotate, or zoom in on views. Files for several types of output can be produced. Two animation options are available. Simple animation sequences can be created on the IRIS, or,if an appropriately modified version of ARCGRAPH (ARC-12350) is accesible on the supercomputer, files can be created for use in GAS (Graphics Animation System, ARC-12379), an IRIS program which offers more complex rendering and animation capabilities and options for recording images to digital disk, video tape, or 16-mm film. The version 3.6b+ Supercomputer/IRIS implementations of PLOT3D (ARC-12779) and PLOT3D/TURB3D (ARC-12784) are suitable for use on CRAY 2/UNICOS, CONVEX, and ALLIANT computers with a remote Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstation. These programs are distributed on .25 inch magnetic tape cartridges in IRIS TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstations (ARC-12783, ARC-12782); (2) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC12777, ARC-12781); (3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 - which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo, DN10000, and GMR3D are trademarks of Hewlett-Packard, Incorporated. System V is a trademark of Bell Labs, Incorporated. BSD4.3 is a trademark of the University of California at Berkeley. UNIX is a registered trademark of AT&T.

  7. Health-related utility values of patients with primary Sjögren's syndrome and its predictors.

    PubMed

    Lendrem, Dennis; Mitchell, Sheryl; McMeekin, Peter; Bowman, Simon; Price, Elizabeth; Pease, Colin T; Emery, Paul; Andrews, Jacqueline; Lanyon, Peter; Hunter, John; Gupta, Monica; Bombardieri, Michele; Sutcliffe, Nurhan; Pitzalis, Costantino; McLaren, John; Cooper, Annie; Regan, Marian; Giles, Ian; Isenberg, David; Vadivelu, Saravanan; Coady, David; Dasgupta, Bhaskar; McHugh, Neil; Young-Min, Steven; Moots, Robert; Gendi, Nagui; Akil, Mohammed; Griffiths, Bridget; Ng, Wan-Fai

    2014-07-01

    EuroQoL-5 dimension (EQ-5D) is a standardised preference-based tool for measurement of health-related quality of life and EQ-5D utility values can be converted to quality-adjusted life years (QALYs) to aid cost-utility analysis. This study aimed to evaluate the EQ-5D utility values of 639 patients with primary Sjögren's syndrome (PSS) in the UK. Prospective data collected using a standardised pro forma were compared with UK normative data. Relationships between utility values and the clinical and laboratory features of PSS were explored. The proportion of patients with PSS reporting any problem in mobility, self-care, usual activities, pain/discomfort and anxiety/depression were 42.2%, 16.7%, 56.6%, 80.6% and 49.4%, respectively, compared with 5.4%, 1.6%, 7.9%, 30.2% and 15.7% for the UK general population. The median EQ-5D utility value was 0.691 (IQR 0.587-0.796, range -0.239 to 1.000) with a bimodal distribution. Bivariate correlation analysis revealed significant correlations between EQ-5D utility values and many clinical features of PSS, but most strongly with pain, depression and fatigue (R values>0.5). After adjusting for age and sex differences, multiple regression analysis identified pain and depression as the two most important predictors of EQ-5D utility values, accounting for 48% of the variability. Anxiety, fatigue and body mass index were other statistically significant predictors, but they accounted for <5% in variability. This is the first report on the EQ-5D utility values of patients with PSS. These patients have significantly impaired utility values compared with the UK general population. EQ-5D utility values are significantly related to pain and depression scores in PSS. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  8. Effects of the 3D bone-to-implant contact and bone stiffness on the initial stability of a dental implant: micro-CT and resonance frequency analyses.

    PubMed

    Hsu, J T; Huang, H L; Tsai, M T; Wu, A Y J; Tu, M G; Fuh, L J

    2013-02-01

    This study investigated the effects of bone stiffness (elastic modulus) and three-dimensional (3D) bone-to-implant contact ratio (BIC%) on the primary stabilities of dental implants using micro-computed tomography (micro-CT) and resonance frequency analyses. Artificial sawbone models with five values of elastic modulus (137, 123, 47.5, 22, and 12.4 MPa) comprising two types of trabecular structure (solid-rigid and cellular-rigid) were investigated for initial implant stability quotient (ISQ), measured using the wireless Osstell resonance frequency analyzer. Bone specimens were attached to 2 mm fibre-filled epoxy sheets mimicking the cortical shell. ISQ was measured after placing a dental implant into the bone specimen. Each bone specimen with an implant was subjected to micro-CT scanning to calculate the 3D BIC% values. The similarity of the cellular type of artificial bone to the trabecular structure might make it more appropriate for obtaining accurate values of primary implant stability than solid-bone blocks. For the cellular-rigid bone models, the ISQ increased with the elastic modulus of cancellous bone. The regression correlation coefficient was 0.96 for correlations of the ISQ with the elasticity of cancellous bone and with the 3D BIC%. The initial implant stability was moderately positively correlated with the elasticity of cancellous bone and with the 3D BIC%. Copyright © 2012 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  9. Impact of mineralization on carbon dioxide migration in term of critical value of fault permeability.

    NASA Astrophysics Data System (ADS)

    Alshammari, A.; Brantley, D.; Knapp, C. C.; Lakshmi, V.

    2017-12-01

    In this study, multi chemical components ((H2O, H2S) will be injected with supercritical carbon dioxide in onshore part of South Georgia Rift (SGR) Basin model. Chemical reaction expected issue between these components to produce stable mineral of carbonite rocks by the time. The 3D geological model has been extracted from petrel software and computer modelling group (CMG) package software has been used to build simulation model explain the effect of mineralization on fault permeability that control on plume migration critically between (0-0.05 m Darcy). The expected results will be correlated with single component case (CO2 only) to evaluate the importance the mineralization on CO2 plume migration in structure and stratigraphic traps and detect the variation of fault leakage in case of critical values (low permeability). The results will also, show us the ratio of every trapped phase in (SGR) basin reservoir model.

  10. Modeling demographic response to constant temperature in Hypera postica (Coleoptera: Curculionidae).

    PubMed

    Zahiri, Babak; Fathipour, Yaghoub; Khanjani, Mohammad; Moharramipour, Saeid; Zalucki, Myron P

    2010-04-01

    Alfalfa weevil, Hypera postica (Gyllenhal) (Coleoptera: Curculionidae), is among the most destructive pests of alfalfa, Medicago sativa L., in the world. Survivorship and fecundity schedules of H. postica were investigated to characterize the population growth potential of the weevil at six constant temperatures: 11.5, 14.0, 19.0, 24.0, 29.0, and 31.5 degrees C. Preoviposition period, oviposition period and female longevity significantly decreased with rising temperature within the temperature range tested. At the respective temperatures adult female lived an average of 294.2, 230.2, 163.6, 141.0, 84.10, and 32.9 d, with average lifetime progeny production of 470, 814, 2209, 3619, 2656, and 338 eggs per female. The net reproductive rates (R0) were 86.9, 288.0, 869.7, 1,479.7, 989.8, and 107.8 females per female, respectively. Mean daily fecundity (Mx) was modeled as a function of time by using both Enkegaard and Analytis models. Survivorship data (l(x)) of adult females were summarized and compared using the shape and scale parameters of the Weibull frequency distribution model across the temperature range tested. Life table entropy values within the range 14.0-31.5 degrees C (H < 0.5) indicates Slobodkin's type I survivorship curve; however, the value of 0.806 at 11.5 degrees C (H > 0.5) corresponds to type III. As temperature increased, the r(m) exhibited an asymmetrical dome-shaped pattern, with a maximum value of 0.114 females per female per d at 29.0 degrees C. The r(m)-temperature relation of weevils was modeled and critical temperatures (T(Min), T(Opt), and T(Max)) for intrinsic rate of increase of the weevil were computed as 8.83, 30.61, and 32.14 degrees C and 5.72, 29.94, and 32.12 degrees C by using Analytis/Allahyari and Analytis/Briere-2 models, respectively.

  11. [Comparison of keratometric values and corneal eccentricity of myopia, hyperopia and emmetropia].

    PubMed

    Benes, P; Synek, S; Petrová, S

    2011-01-01

    The aim of this work is to compare the findings of keratometric values and their differences at various ametropias. The eccentricity of the cornea in the sense compared to the possible influence of refraction of the eye is topographically observed. Groups of myopia, hyperopia and emmetropia are always represented 100 subjects, i.e. 600 eyes. The results of these measurements are mutually compared and statistically processed. The studied cohort a total of 300 clients enrolled. To measure the steepest (r1) and flattest meridian (r2) and to determine corneal eccentricity was used autorefraktokeratometer with Placido disc (KR 8100P, Topcon, Japan). The obtained data were processed with appropriate software and statistically evaluated. Group A consisted of 100 myopes (n = 200), 35 men and 65 women, average age 37.3 +/- 18.7 years (min. 10 years, max. 87 years). Objective refractive error - sphere: - 2.9 +/- 2.27 D (min.-0.25 D, -14.5 D max), cylinder: -0.88 +/- 0.75 D (min. -0.25 D, up to -5.0 D). Keratametry in this group is as follows: radius of curvature of the cornea in the front area of the steepest meridian 7.62 +/- 0.28 mm (min. 6.96 mm, max. 8.44 mm) and the flattest meridian is 7.76 +/- 0.3 mm (min. 7.08 mm, max 8.75 mm). The mean eccentricity was 0.37 +/- 0.12 (min 0.00, max. 0.79). Group B consisting of 100 hyperopic subjects (n = 200), 40 men and 60 women, average age 61.6 +/- 15 years (min. 21 years, max 88 years). Objective refraction in this group -sphere: +2.71 +/- 1.6 D (at least +0.25 D, up to +9.0 D), cylinder: -1.0 +/- 0.9 D (min. -0.25 D, max. -5.75 D).Corneal surface curvature in two main sections according keratometric measurement looks as follows: the steepest meridian is 7.67 +/- 0.29 mm (min. 6.99 mm, max. 8.62 mm), the flattest meridian then 7.81 +/- 0.29 mm (min. 7.10 mm, max. 8.70 mm). The value of the median eccentricity for these hundred hyperopes is 0.37 +/- 0.14 (min. 0.00; max 0.86). The third group C consists of 100 emetropic subjects (n = 200), then clients without refractive errors who achieve without corrective aids Vmin = 1.0. This group is composed of 42 men and 58 women, mean age 41.4 +/- 17.8 years (min. 3 years, max. 82 years). Measured values of objective refraction - sphere: +0.32 +/- 0.47 D (at least -1.75 D, up to +1.5 D), cylinder: -0.28 +/- 0.45 D (min. -1.25 D, up to +1.25 D). Keratometry values measured at the corneal surface in two perpendicular cross-section are: steepest meridian corresponds to the radius of curvature of 7.72 +/- 0.26 mm (min. 6.91 mm, max. 8.32 mm), the flattest meridian reaches values 7.83 +/- 0.25 mm (min. 7.10 mm, max. 8.53 mm). The median eccentricity is represented by the observed values of 0.36 +/- 0.11 (min 0.00; max. 0.57). Due to the validity of the results from the groups as unsuitable respondents with corneal astigmatism greater than -1.0 D were subsequently eliminated. Keratometry as well as topography is one of the fundamental methods of measuring corneal front surface. Their proportions are essential for the proper parameters selection, especially with contact lenses as one of the possible means intended to correct refractive errors. The study subjects were not included in any load condition cornea, purulent conjunctivitis, blepharitis, after refractive surgery or other eye symptoms.

  12. [Clinical Values of Combined Detection of CRP and D-D for AL Patients Complicated with DIC].

    PubMed

    Ji, Xue-Hong

    2015-12-01

    To explore the clinical values of the combined detection of C-reactive protein (CRP) and D-dimer (D-D) for acute leukemia (AL) patients complicated with disseminated intravascular coagulation (DIC). Among 52 cases of AL, 20 cases of AL complicated with DIC were selected as AL+DIC group, 32 cases of AL were selected as AL group, 30 healthy volunteers were used as control group; the detected values of CRP and D-D in 3 groups were compared. The CRP and D-D levels in AL+DIC group were significantly higher than those in AL and control groups (P < 0.05); the CRP and D-D levels in AL group were significatly higher than those in control group (P < 0.05). The D-D level and complicated DIC rate in patients with CRP < 10 mg/L were significantly lower than those in patients with CRP 10-100 and >100 mg/L (P <0.05), while the D-D level and complicated DIC rate in patients with 10-100 mg/L were significantly lower than those in patients with CRP > 100 mg/L (P <0.05). After treatment of patients, the CRP and D-D levels in AL and AL+DIC groups were obviously reduced as compared with levels of these 2 groups before treatment (P <0.05); the CRP and D-D levels in AL+DIC after treatment were significantly higher than those in AL group (P <0.05). The combined detection of CRP and D-D possesses a higher reference value for diagnosis and differentiation of AL and AL complicated with DIC, thus also has an important role in evaluation of therapeutic efficacy of AL.

  13. PLOT3D/AMES, GENERIC UNIX VERSION USING DISSPLA (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The UNIX/DISSPLA implementation of PLOT3D supports 2-D polygons as well as 2-D and 3-D lines, but does not support graphics features requiring 3-D polygons (shading and hidden line removal, for example). Views can be manipulated using keyboard commands. This version of PLOT3D is potentially able to produce files for a variety of output devices; however, site-specific capabilities will vary depending on the device drivers supplied with the user's DISSPLA library. The version 3.6b+ UNIX/DISSPLA implementations of PLOT3D (ARC-12788) and PLOT3D/TURB3D (ARC-12778) were developed for use on computers running UNIX SYSTEM 5 with BSD 4.3 extensions. The standard distribution media for each ofthese programs is a 9track, 6250 bpi magnetic tape in TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); (2) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D (ARC-12783, ARC-12782); (3) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC-12777, ARC-12781); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are trademarks of Hewlett-Packard, Incorporated. System 5 is a trademark of Bell Labs, Incorporated. BSD4.3 is a trademark of the University of California at Berkeley. UNIX is a registered trademark of AT&T.

  14. PLOT3D/AMES, GENERIC UNIX VERSION USING DISSPLA (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The UNIX/DISSPLA implementation of PLOT3D supports 2-D polygons as well as 2-D and 3-D lines, but does not support graphics features requiring 3-D polygons (shading and hidden line removal, for example). Views can be manipulated using keyboard commands. This version of PLOT3D is potentially able to produce files for a variety of output devices; however, site-specific capabilities will vary depending on the device drivers supplied with the user's DISSPLA library. The version 3.6b+ UNIX/DISSPLA implementations of PLOT3D (ARC-12788) and PLOT3D/TURB3D (ARC-12778) were developed for use on computers running UNIX SYSTEM 5 with BSD 4.3 extensions. The standard distribution media for each ofthese programs is a 9track, 6250 bpi magnetic tape in TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); (2) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D (ARC-12783, ARC-12782); (3) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC-12777, ARC-12781); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are trademarks of Hewlett-Packard, Incorporated. System 5 is a trademark of Bell Labs, Incorporated. BSD4.3 is a trademark of the University of California at Berkeley. UNIX is a registered trademark of AT&T.

  15. Implant Bed Preparation with an Erbium, Chromium Doped Yttrium Scandium Gallium Garnet (Er,Cr: YSGG) Laser Using Stereolithographic Surgical Guide

    PubMed Central

    Seymen, Gülin; Turgut, Zeynep; Berk, Gizem; Bodur, Ayşen

    2013-01-01

    Background: Implant bed preparation with laser is taken into consideration owing to the increased interest in use of lasers in hard tissue surgery. The purpose of this study is to determine the deviations in the position and inclination between the planned and prepared implant beds with Erbium, Chromium doped Yttrium Scandium Gallium Garnet (Er,Cr:YSGG) laser using stereolithographic (SLA) surgical guides. Methods: After 3-dimensional (3D) imaging of six sheep lower jaws, computed tomography (CT) images were transformed into 3D models. Locations of implant beds were determined on these models. Two implant beds in each half jaw were prepared with an Er,Cr:YSGG laser system and a conventional drilling method using a total of 12 SLA surgical guides. A new CT was taken to analyze the deviation values between planned and prepared implant beds. Finally, a software program was used to superimpose the images on 3D models, then the laser and conventional drilling groups were compared. Results: Differences of mean angular deviations between the planned and prepared implant beds were 5.17±4.91° in the laser group and 2.02±1.94° in the conventional drilling group.The mean coronal deviation values were found to be 0.48±0.25 mm and 0.23±0.14 mm in the laser group and conventional drilling group, respectively. While the mean deviation at the apex between the planned and prepared implant beds were 0.70±0.26 mm and 0.26±0.08 ,the mean vertical deviations were 0.06±0.15 mm and 0.02±0.05 mm for the laser group and the conventional drilling group, respectively. Conclusion: It is possible to prepare an implant bed properly with the aid of Er,Cr:YSGGlaser by using SLA surgical guide. PMID:25606303

  16. PLOT3D/AMES, DEC VAX VMS VERSION USING DISSPLA (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P. G.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The VAX/VMS/DISSPLA implementation of PLOT3D supports 2-D polygons as well as 2-D and 3-D lines, but does not support graphics features requiring 3-D polygons (shading and hidden line removal, for example). Views can be manipulated using keyboard commands. This version of PLOT3D is potentially able to produce files for a variety of output devices; however, site-specific capabilities will vary depending on the device drivers supplied with the user's DISSPLA library. If ARCGRAPH (ARC-12350) is installed on the user's VAX, the VMS/DISSPLA version of PLOT3D can also be used to create files for use in GAS (Graphics Animation System, ARC-12379), an IRIS program capable of animating and recording images on film. The version 3.6b+ VMS/DISSPLA implementations of PLOT3D (ARC-12777) and PLOT3D/TURB3D (ARC-12781) were developed for use on VAX computers running VMS Version 5.0 and DISSPLA Version 11.0. The standard distribution media for each of these programs is a 9-track, 6250 bpi magnetic tape in DEC VAX BACKUP format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, and Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); (2) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D (ARC-12783, ARC12782); (3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are trademarks of Hewlett-Packard, Incorporated. UNIX is a registered trademark of AT&T.

  17. PLOT3D/AMES, DEC VAX VMS VERSION USING DISSPLA (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The VAX/VMS/DISSPLA implementation of PLOT3D supports 2-D polygons as well as 2-D and 3-D lines, but does not support graphics features requiring 3-D polygons (shading and hidden line removal, for example). Views can be manipulated using keyboard commands. This version of PLOT3D is potentially able to produce files for a variety of output devices; however, site-specific capabilities will vary depending on the device drivers supplied with the user's DISSPLA library. If ARCGRAPH (ARC-12350) is installed on the user's VAX, the VMS/DISSPLA version of PLOT3D can also be used to create files for use in GAS (Graphics Animation System, ARC-12379), an IRIS program capable of animating and recording images on film. The version 3.6b+ VMS/DISSPLA implementations of PLOT3D (ARC-12777) and PLOT3D/TURB3D (ARC-12781) were developed for use on VAX computers running VMS Version 5.0 and DISSPLA Version 11.0. The standard distribution media for each of these programs is a 9-track, 6250 bpi magnetic tape in DEC VAX BACKUP format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, and Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); (2) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D (ARC-12783, ARC12782); (3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are trademarks of Hewlett-Packard, Incorporated. UNIX is a registered trademark of AT&T.

  18. Optimal prosthesis sizing in transcatheter aortic valve implantation by exclusive use of three-dimensional transoesophageal echocardiography.

    PubMed

    Kretzschmar, Daniel; Lauten, Alexander; Goebel, Bjoern; Doenst, Torsten; Poerner, Tudor C; Ferrari, Markus; Figulla, Hans R; Hamadanchi, Ali

    2016-03-01

    The assessment of aortic annular size is critical, and inappropriate sizing is thought to be a main reason of paravalvular aortic regurgitation. Multidetector computed tomograph is associated with the risk of contrast nephropathy. For optimal evaluation of the complex structure of the aortic annulus, three-dimensional (3D)-methods should be used. We therefore sought to determine the value of 3D-transoesophageal echocardiography (3D-TEE) for appropriate sizing. Hundred and one patients (mean age 81·4 years) with symptomatic aortic valve stenosis (AS) and high surgical risk profile (mean log. EuroScore 28·8%) being scheduled for transcatheter aortic valve implantation (TAVI) were included. 2D- and 3D-TEE were performed before the procedure to evaluate the aortic annulus diameter. Maximum, minimum and mean (max diameter + min diameter/2) annulus diameters were 24·7, 23·1 and 23. 9 mm in 3D-TEE and compared to 22·6 mm in 2D-TEE (P<0·001; 0·07; <0·001). The interobserver variability for 3D-TEE was low with a mean difference of 0·18 mm compared to 2D-TEE with 0·59 mm. The application of 3D-TEE caused a change of prosthesis size selection in 40% of patients compared to 2D-TEE. In this study, we implanted three different types of catheter-mounted valves (Edwards-SAPIEN(™) XT valve, CoreValve(™) and JenaValve(™) ). Final angiography confirmed valve competence (mild insufficiency) in 91%, and there was no aortic regurgitation greater than moderate in the follow-up echocardiographic evaluation. Assessment of aortic annulus dimensions for TAVI size selection can safely be performed with 3D-TEE only. Based on our results with significantly higher annulus diameter compared to 2D-TEE, we recommend 3D-TEE to reduce prosthesis undersizing. © 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  19. An Improved Computing Method for 3D Mechanical Connectivity Rates Based on a Polyhedral Simulation Model of Discrete Fracture Network in Rock Masses

    NASA Astrophysics Data System (ADS)

    Li, Mingchao; Han, Shuai; Zhou, Sibao; Zhang, Ye

    2018-06-01

    Based on a 3D model of a discrete fracture network (DFN) in a rock mass, an improved projective method for computing the 3D mechanical connectivity rate was proposed. The Monte Carlo simulation method, 2D Poisson process and 3D geological modeling technique were integrated into a polyhedral DFN modeling approach, and the simulation results were verified by numerical tests and graphical inspection. Next, the traditional projective approach for calculating the rock mass connectivity rate was improved using the 3D DFN models by (1) using the polyhedral model to replace the Baecher disk model; (2) taking the real cross section of the rock mass, rather than a part of the cross section, as the test plane; and (3) dynamically searching the joint connectivity rates using different dip directions and dip angles at different elevations to calculate the maximum, minimum and average values of the joint connectivity at each elevation. In a case study, the improved method and traditional method were used to compute the mechanical connectivity rate of the slope of a dam abutment. The results of the two methods were further used to compute the cohesive force of the rock masses. Finally, a comparison showed that the cohesive force derived from the traditional method had a higher error, whereas the cohesive force derived from the improved method was consistent with the suggested values. According to the comparison, the effectivity and validity of the improved method were verified indirectly.

  20. Right Ventricular Strain, Torsion, and Dyssynchrony in Healthy Subjects using 3D Spiral Cine DENSE Magnetic Resonance Imaging

    PubMed Central

    Suever, Jonathan D; Wehner, Gregory J; Jing, Linyuan; Powell, David K; Hamlet, Sean M; Grabau, Jonathan D; Mojsejenko, Dimitri; Andres, Kristin N; Haggerty, Christopher M; Fornwalt, Brandon K

    2017-01-01

    Mechanics of the left ventricle (LV) are important indicators of cardiac function. The role of right ventricular (RV) mechanics is largely unknown due to the technical limitations of imaging its thin wall and complex geometry and motion. By combining 3D Displacement Encoding with Stimulated Echoes (DENSE) with a post-processing pipeline that includes a local coordinate system, it is possible to quantify RV strain, torsion, and synchrony. In this study, we sought to characterize RV mechanics in 50 healthy individuals and compare these values to their LV counterparts. For each cardiac frame, 3D displacements were fit to continuous and differentiable radial basis functions, allowing for the computation of the 3D Cartesian Lagrangian strain tensor at any myocardial point. The geometry of the RV was extracted via a surface fit to manually delineated endocardial contours. Throughout the RV, a local coordinate system was used to transform from a Cartesian strain tensor to a polar strain tensor. It was then possible to compute peak RV torsion as well as peak longitudinal and circumferential strain. A comparable analysis was performed for the LV. Dyssynchrony was computed from the standard deviation of regional activation times. Global circumferential strain was comparable between the RV and LV (−18.0% for both) while longitudinal strain was greater in the RV (−18.1% vs. −15.7%). RV torsion was comparable to LV torsion (6.2 vs. 7.1 degrees, respectively). Regional activation times indicated that the RV contracted later but more synchronously than the LV. 3D spiral cine DENSE combined with a post–processing pipeline that includes a local coordinate system can resolve both the complex geometry and 3D motion of the RV. PMID:28055859

  1. Computational analysis of TRAPPC9: candidate gene for autosomal recessive non-syndromic mental retardation.

    PubMed

    Khattak, Naureen Aslam; Mir, Asif

    2014-01-01

    Mental retardation (MR)/ intellectual disability (ID) is a neuro-developmental disorder characterized by a low intellectual quotient (IQ) and deficits in adaptive behavior related to everyday life tasks such as delayed language acquisition, social skills or self-help skills with onset before age 18. To date, a few genes (PRSS12, CRBN, CC2D1A, GRIK2, TUSC3, TRAPPC9, TECR, ST3GAL3, MED23, MAN1B1, NSUN1) for autosomal-recessive forms of non syndromic MR (NS-ARMR) have been identified and established in various families with ID. The recently reported candidate gene TRAPPC9 was selected for computational analysis to explore its potentially important role in pathology as it is the only gene for ID reported in more than five different familial cases worldwide. YASARA (12.4.1) was utilized to generate three dimensional structures of the candidate gene TRAPPC9. Hybrid structure prediction was employed. Crystal Structure of a Conserved Metalloprotein From Bacillus Cereus (3D19-C) was selected as best suitable template using position-specific iteration-BLAST. Template (3D19-C) parameters were based on E-value, Z-score and resolution and quality score of 0.32, -1.152, 2.30°A and 0.684 respectively. Model reliability showed 93.1% residues placed in the most favored region with 96.684 quality factor, and overall 0.20 G-factor (dihedrals 0.06 and covalent 0.39 respectively). Protein-Protein docking analysis demonstrated that TRAPPC9 showed strong interactions of the amino acid residues S(253), S(251), Y(256), G(243), D(131) with R(105), Q(425), W(226), N(255), S(233), its functional partner 1KBKB. Protein-protein interacting residues could facilitate the exploration of structural and functional outcomes of wild type and mutated TRAPCC9 protein. Actively involved residues can be used to elucidate the binding properties of the protein, and to develop drug therapy for NS-ARMR patients.

  2. A Method for the Evaluation of Thousands of Automated 3D Stem Cell Segmentations

    PubMed Central

    Bajcsy, Peter; Simon, Mylene; Florczyk, Stephen; Simon, Carl G.; Juba, Derek; Brady, Mary

    2016-01-01

    There is no segmentation method that performs perfectly with any data set in comparison to human segmentation. Evaluation procedures for segmentation algorithms become critical for their selection. The problems associated with segmentation performance evaluations and visual verification of segmentation results are exaggerated when dealing with thousands of 3D image volumes because of the amount of computation and manual inputs needed. We address the problem of evaluating 3D segmentation performance when segmentation is applied to thousands of confocal microscopy images (z-stacks). Our approach is to incorporate experimental imaging and geometrical criteria, and map them into computationally efficient segmentation algorithms that can be applied to a very large number of z-stacks. This is an alternative approach to considering existing segmentation methods and evaluating most state-of-the-art algorithms. We designed a methodology for 3D segmentation performance characterization that consists of design, evaluation and verification steps. The characterization integrates manual inputs from projected surrogate “ground truth” of statistically representative samples and from visual inspection into the evaluation. The novelty of the methodology lies in (1) designing candidate segmentation algorithms by mapping imaging and geometrical criteria into algorithmic steps, and constructing plausible segmentation algorithms with respect to the order of algorithmic steps and their parameters, (2) evaluating segmentation accuracy using samples drawn from probability distribution estimates of candidate segmentations, and (3) minimizing human labor needed to create surrogate “truth” by approximating z-stack segmentations with 2D contours from three orthogonal z-stack projections and by developing visual verification tools. We demonstrate the methodology by applying it to a dataset of 1253 mesenchymal stem cells. The cells reside on 10 different types of biomaterial scaffolds, and are stained for actin and nucleus yielding 128 460 image frames (on average 125 cells/scaffold × 10 scaffold types × 2 stains × 51 frames/cell). After constructing and evaluating six candidates of 3D segmentation algorithms, the most accurate 3D segmentation algorithm achieved an average precision of 0.82 and an accuracy of 0.84 as measured by the Dice similarity index where values greater than 0.7 indicate a good spatial overlap. A probability of segmentation success was 0.85 based on visual verification, and a computation time was 42.3 h to process all z-stacks. While the most accurate segmentation technique was 4.2 times slower than the second most accurate algorithm, it consumed on average 9.65 times less memory per z-stack segmentation. PMID:26268699

  3. Integrated modeling of temperature and rotation profiles in JET ITER-like wall discharges

    NASA Astrophysics Data System (ADS)

    Rafiq, T.; Kritz, A. H.; Kim, Hyun-Tae; Schuster, E.; Weiland, J.

    2017-10-01

    Simulations of 78 JET ITER-like wall D-D discharges and 2 D-T reference discharges are carried out using the TRANSP predictive integrated modeling code. The time evolved temperature and rotation profiles are computed utilizing the Multi-Mode anomalous transport model. The discharges involve a broad range of conditions including scans over gyroradius, collisionality, and values of q95. The D-T reference discharges are selected in anticipation of the D-T experimental campaign planned at JET in 2019. The simulated temperature and rotation profiles are compared with the corresponding experimental profiles in the radial range from the magnetic axis to the ρ = 0.9 flux surface. The comparison is quantified by calculating the RMS deviations and Offsets. Overall, good agreement is found between the profiles produced in the simulations and the experimental data. It is planned that the simulations obtained using the Multi-Mode model will be compared with the simulations using the TGLF model. Research supported in part by the US, DoE, Office of Sciences.

  4. Extension of a three-dimensional viscous wing flow analysis

    NASA Technical Reports Server (NTRS)

    Weinberg, Bernard C.; Chen, Shyi-Yaung; Thoren, Stephen J.; Shamroth, Stephen J.

    1990-01-01

    Three-dimensional unsteady viscous effects can significantly influence the performance of fixed and rotary wing aircraft. These effects are important in both flows about helicopter rotors in forward flight and flows about 3-D (swept and tapered) supercritical wings. A computational procedure for calculating such flow field is developed, and therefore would be of great value in the design process as well as in understanding the corresponding flow phenomena. The procedure is based upon an alternating direction technique employing the Linearized Block Implicit method for solving 3-D viscous flow problems. In order to demonstrate the viability of this method, 2-D and 3-D problems are computed. These include the flow over a 2-D NACA 0012 airfoil under steady and oscillating conditions, and the steady, skewed, 3-D flow on a flat plate. Although actual 3-D flows over wings were not obtained, the ground work was laid for considering such flows. The description of the computational procedure and results are given.

  5. A Large Sample Procedure for Testing Coefficients of Ordinal Association: Goodman and Kruskal's Gamma and Somers' d ba and d ab

    ERIC Educational Resources Information Center

    Berry, Kenneth J.; And Others

    1977-01-01

    A FORTRAN program, GAMMA, computes Goodman and Kruskal's coefficient of ordinal association, gamma, and Somer's coefficient. The program also provides associated standard errors, standard scores, and probability values. (Author/JKS)

  6. Programmable Calculator Use in Undergraduate Dynamics, Vibrations, and Elementary Structures Courses.

    ERIC Educational Resources Information Center

    Cutchins, M. A.

    1982-01-01

    Presents programmable calculator solutions to selected problems, including area moments of inertia and principal values, the 2-D principal stress problem, C.G. and pitch inertia computations, 3-D eigenvalue problems, 3 DOF vibrations, and a complex flutter determinant. (SK)

  7. Multichannel calculation of the very narrow Ds0 *(2317) and the very broad D0 *(2300-2400)

    NASA Astrophysics Data System (ADS)

    Rupp, G.; van Beveren, E.

    2007-03-01

    The narrow D s0 * (2317) and broad D 0 * (2300-2400) charmed scalar mesons and their radial excitations are described in a coupled-channel quark model that also reproduces the properties of the light scalar nonet. All two-meson channels containing ground-state pseudoscalars and vectors are included. The parameters are chosen fixed at published values, except for the overall coupling constant λ, which is fine-tuned to reproduce the D s0 * (2317) mass, and a damping constant α for subthreshold contributions. Variations of λ and D 0 * (2300-2400) pole postions are studied for different α values. Calculated cross-sections for S-wave DK and Dπ scattering, as well as resonance pole positions, are given for the value of α that fits the light scalars. The thus predicted radially excited state D s0 *‧(2850), with a width of about 50MeV, seems to have been observed already.

  8. Dosimetric and radiobiological consequences of computed tomography-guided adaptive strategies for intensity modulated radiation therapy of the prostate.

    PubMed

    Battista, Jerry J; Johnson, Carol; Turnbull, David; Kempe, Jeff; Bzdusek, Karl; Van Dyk, Jacob; Bauman, Glenn

    2013-12-01

    To examine a range of scenarios for image-guided adaptive radiation therapy of prostate cancer, including different schedules for megavoltage CT imaging, patient repositioning, and dose replanning. We simulated multifraction dose distributions with deformable registration using 35 sets of megavoltage CT scans of 13 patients. We computed cumulative dose-volume histograms, from which tumor control probabilities and normal tissue complication probabilities (NTCPs) for rectum were calculated. Five-field intensity modulated radiation therapy (IMRT) with 18-MV x-rays was planned to achieve an isocentric dose of 76 Gy to the clinical target volume (CTV). The differences between D95, tumor control probability, V70Gy, and NTCP for rectum, for accumulated versus planned dose distributions, were compared for different target volume sizes, margins, and adaptive strategies. The CTV D95 for IMRT treatment plans, averaged over 13 patients, was 75.2 Gy. Using the largest CTV margins (10/7 mm), the D95 values accumulated over 35 fractions were within 2% of the planned value, regardless of the adaptive strategy used. For tighter margins (5 mm), the average D95 values dropped to approximately 73.0 Gy even with frequent repositioning, and daily replanning was necessary to correct this deficit. When personalized margins were applied to an adaptive CTV derived from the first 6 treatment fractions using the STAPLE (Simultaneous Truth and Performance Level Estimation) algorithm, target coverage could be maintained using a single replan 1 week into therapy. For all approaches, normal tissue parameters (rectum V(70Gy) and NTCP) remained within acceptable limits. The frequency of adaptive interventions depends on the size of the CTV combined with target margins used during IMRT optimization. The application of adaptive target margins (<5 mm) to an adaptive CTV determined 1 week into therapy minimizes the need for subsequent dose replanning. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. A broadband fast multipole accelerated boundary element method for the three dimensional Helmholtz equation.

    PubMed

    Gumerov, Nail A; Duraiswami, Ramani

    2009-01-01

    The development of a fast multipole method (FMM) accelerated iterative solution of the boundary element method (BEM) for the Helmholtz equations in three dimensions is described. The FMM for the Helmholtz equation is significantly different for problems with low and high kD (where k is the wavenumber and D the domain size), and for large problems the method must be switched between levels of the hierarchy. The BEM requires several approximate computations (numerical quadrature, approximations of the boundary shapes using elements), and these errors must be balanced against approximations introduced by the FMM and the convergence criterion for iterative solution. These different errors must all be chosen in a way that, on the one hand, excess work is not done and, on the other, that the error achieved by the overall computation is acceptable. Details of translation operators for low and high kD, choice of representations, and BEM quadrature schemes, all consistent with these approximations, are described. A novel preconditioner using a low accuracy FMM accelerated solver as a right preconditioner is also described. Results of the developed solvers for large boundary value problems with 0.0001 less, similarkD less, similar500 are presented and shown to perform close to theoretical expectations.

  10. Investigations of flowfields found in typical combustor geometries

    NASA Technical Reports Server (NTRS)

    Lilley, D. G.

    1984-01-01

    Studies are concerned with experimental and theoretical research on 2-D axisymmetric geometries under low speed, nonreacting, turbulent, swirling flow conditions. The flow enters the test section and proceeds into a larger chamber (the linear expansion ratio D/d = 2, 1.5 and 1) via a sudden or gradual expansion (side wall angle alpha = 90 and 45 degrees). A weak or strong nozzle (of area ratio A/a = 2 and 4) may be positioned downstream at x/D = 2 to form a contraction exit to the test section. Inlet swirl vanes are adjustable to a variety of vane angles with values of theta = 0, 38, 45, 60 and 70 degrees being emphasized. The objective is to determine the effect of these parameters on isothermal flow field patterns, time mean velocities and turbulence quantities, and to establish an improved simulation in the form of a computer prediction code equipped with a suitable turbulence model. The goal of the on going research is to perform experiments and complementary computations with the idea of doing the necessary type of research that will yield improved calculation capability. This involves performing experiments where time mean turbulence quantities are measured and taking input conditions and running an existing prediction code for a variety of test cases so as to compare predictions against experiment.

  11. Crown traits of coniferous trees and their relation to shade tolerance can differ with leaf type: a biophysical demonstration using computed tomography scanning data

    PubMed Central

    Dutilleul, Pierre; Han, Liwen; Valladares, Fernando; Messier, Christian

    2015-01-01

    Plant light interception and shade tolerance are intrinsically related in that they involve structural, morphological and physiological adaptations to manage light capture for photosynthetic utilization, in order to sustain survival, development and reproduction. At the scale of small-size trees, crown traits related to structural geometry of branching pattern and space occupancy through phyllotaxis can be accurately evaluated in 3D, using computed tomography (CT) scanning data. We demonstrate this by scrutinizing the crowns of 15 potted miniature conifers of different species or varieties, classified in two groups based on leaf type (10 needlelike, 5 scalelike); we also test whether mean values of crown traits measured from CT scanning data and correlations with a shade tolerance index (STI) differ between groups. Seven crown traits, including fractal dimensions (FD1: smaller scales, FD2: larger scales) and leaf areas, were evaluated for all 15 miniature conifers; an average silhouette-to-total-area ratio was also calculated for each of the 10 needlelike-leaf conifers. Between-group differences in mean values are significant (P < 0.05) for STI, FD1, FD2, and the average leaf area displayed (ĀD). Between-group differences in sign and strength of correlations are observed. For example, the correlation between STI and FD1 is negative and significant (P < 0.10) for the needlelike-leaf group, but is positive and significant (P < 0.05) for the miniature conifers with scalelike leaves, which had lower STI and higher FD1 on average in our study; the positive correlation between STI and ĀD is significant (P < 0.05) for the scalelike-leaf group, and very moderate for the needlelike-leaf one. A contrasting physical attachment of the leaves to branches may explain part of the between-group differences. Our findings open new avenues for the understanding of fundamental plant growth processes; the information gained could be included in a multi-scale approach to tree crown modeling. PMID:25852721

  12. The Left Atrio-Vertebral Ratio: a new simple means for assessing left atrial enlargement on Computed Tomography.

    PubMed

    Montillet, Marie; Baqué-Juston, Marie; Tasu, Jean-Pierre; Bertrand, Sandra; Berthier, Frédéric; Zarqane, Naïma; Brunner, Philippe

    2018-03-01

    The purpose of this study is to describe a new method to quickly estimate left atrial enlargement (LAE) on Computed Tomography. Left atrial (LA) volume was assessed with a 3D-threshold Hounsfield unit detection technique, including left atrial appendage and excluding pulmonary venous confluence, in 201 patients with ECG-gated 128-slice dual-source CT and indexed to body surface area. LA and vertebral axial diameter and area were measured at the bottom level of the right inferior pulmonary vein ostium. Ratio of LA diameter and surface on vertebra (LAVD and LAVA) were compared to LA volume. In accordance with the literature, a cutoff value of 78 ml/m 2 was chosen for maximal normal LA volume. 18% of LA was enlarged. The best cutoff values for LAE assessment were 2.5 for LAVD (AUC: 0.65; 95% CI: 0.58-0.73; sensitivity: 57%; specificity: 71%), and 3 for LAVA (AUC: 0.78; 95% CI: 0.72-0.84; sensitivity: 67%; specificity: 79%), with higher accuracy for LAVA (P=0.015). Inter-observer and intra-observer variability were either good or excellent for LAVD and LAVA (respective intraclass coefficients: 0.792 and 0.910; 0.912 and 0.937). A left atrium area superior to three times the vertebral area indicates LAE with high specificity. • Left atrial enlargement is a frequent condition associated with poor cardiac outcome. • Left atrial enlargement is highly time-consuming to diagnose on CT. • The left atrio-vertebral ratio quickly assesses left atrial enlargement. • A left atrial area > three times vertebral area is highly specific.

  13. Financial Analysis for R&D Decisions.

    ERIC Educational Resources Information Center

    Carter, Robert

    1997-01-01

    Using personal computer spreadsheet software, standard corporate financial analysis can help university research administrators communicate the value of research and development to sponsors and other stakeholders; balance projects, technologies, or categories of research; and continually assess the value of investing in ongoing projects. It also…

  14. Prognostic Importance of Low Admission Serum Creatinine Concentration for Mortality in Hospitalized Patients.

    PubMed

    Thongprayoon, Charat; Cheungpasitporn, Wisit; Kittanamongkolchai, Wonngarm; Harrison, Andrew M; Kashani, Kianoush

    2017-05-01

    The study objective was to assess the association between low serum creatinine value at admission and in-hospital mortality in hospitalized patients. This was a retrospective single-center cohort study conducted at a tertiary referral hospital. All hospitalized adult patients between 2011 and 2013 who had an admission creatinine value available were identified for inclusion in this study. Admission creatinine value was categorized into 7 groups: ≤0.4, 0.5 to 0.6, 0.7 to 0.8, 0.9 to 1.0, 1.1 to 1.2, 1.3 to 1.4, and ≥1.5 mg/dL. The primary outcome was in-hospital mortality. Logistic regression analysis was performed to obtain the odds ratio of in-hospital mortality for the various admission creatinine levels, using a creatinine value of 0.7 to 0.8 mg/dL as the reference group in the analysis of all patients and female patients and of 0.9 to 1.0 mg/dL in the analysis of male patients because it was associated with the lowest in-hospital mortality. Of 73,994 included patients, 973 (1.3%) died in the hospital. The association between different categories of admission creatinine value and in-hospital mortality assumed a U-shaped distribution, with both low and high creatinine values associated with higher in-hospital mortality. After adjustment for age, sex, ethnicity, principal diagnosis, and comorbid conditions, very low creatinine value (≤0.4 mg/dL) was significantly associated with increased mortality (odds ratio, 3.29; 95% confidence interval, 2.08-5.00), exceeding the risk related to a markedly increased creatinine value of ≥1.5 mg/dL (odds ratio, 2.56; 95% confidence interval, 2.07-3.17). The association remained significant in the subgroup analysis of male and female patients. Low creatinine value at admission is independently associated with increased in-hospital mortality in hospitalized patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Computational estimation of the influence of the main body-to-iliac limb length ratio on the displacement forces acting on an aortic endograft. Theoretical application to Bolton Treovance® Abdominal Stent-Graft.

    PubMed

    Georgakarakos, E; Xenakis, A; Georgiadis, G S; Argyriou, C; Manopoulos, C; Tsangaris, S; Lazarides, M K

    2014-10-01

    The influence of the relative iliac limb length of an endograft (EG) on the displacements forces (DF) predisposing to adverse effects are under-appreciated in the literature. Therefore, we conducted a computational study to estimate the magnitude of the DF acting over an entire reconstructed EG and its counterparts for a range of main body-to-iliac limb length (L1/L2) ratios. A customary bifurcated 3D model was computationally created and meshed using the commercially available ANSYS ICEM (Ansys Inc., Canonsburg, PA, USA) software. Accordingly, Fluid Structure Interaction was used to estimate the DF. The total length of the EG was kept constant, while the L1/L2 ratio ranged from 0.3 to 1.5. The increase in L1/L2 slightly affected the DF on the EG (ranging from 3.8 to 4.1 N) and its bifurcation (4.0 to 4.6 N). However, the forces exerted at the iliac sites were strongly affected by the L1/L2 values (ranging from 0.9 to 2.2 N), showing a parabolic pattern with a minimum for 0.6 ratio. It is suggested that the hemodynamic effect of the relative limb lengths should not be considered negligible. A high main body-to-iliac limb length ratio seems to favor hemodynamically a low bifurcation but it attenuates the main body-iliac limbs modular stability. Further clinical studies should investigate the relevant value of these findings. The Bolton Treovance(®) device is presented as a representative, improved stent-graft design that takes into account these hemodynamic parameters in order to achieve a promising, improved clinical performance.

  16. High Resolution Infrared Spectroscopy of [1.1.1] Propellane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkpatrick, Robynne W.; Masiello, Tony; Jariyasopit, Narumol

    2008-01-08

    The infrared spectrum of [1.1.1]propellane has been recorded at high resolution (0.002 cm-1) with individual rovibrational lines resolved for the first time. This initial report presents the ground state constants for this molecule determined from the analysis of five of the eight infrared-allowed fundamentals v 9(e'), v 10(e'), v 12(e'), v 14(a 2''), v 15(a 2''), as well as of several combination bands. In nearly all cases it was found that the upper states of the transitions exhibit some degree of perturbation but, by use of the combination difference method, the assigned frequencies provided over 4000 consistent ground state differencemore » values. Analysis of these gave for the parameters of the ground state the following values, in cm -1: B 0 = 0.28755833(14), D J = 1.1313(5)x10 -7, D JK = -1.2633(7)x10 -7, H J = 0.72(4)x10 -13, H JK = -2.24(13)x10 -13, and H KJ = 2.25(15)x10 -13, where the numbers in parentheses indicate twice the uncertainties in the last quoted digit(s) of the parameters. Gaussian ab initio calculations, especially with the computed anharmonic corrections to some of the spectroscopic parameters, assisted in the assignments of the bands and also provided information on the electron distribution in the bridge-head carbon-carbon bond.« less

  17. IL-10 combined with procalcitonin improves early prediction of complications of febrile neutropenia in hematological patients.

    PubMed

    Vänskä, Matti; Koivula, Irma; Jantunen, Esa; Hämäläinen, Sari; Purhonen, Anna-Kaisa; Pulkki, Kari; Juutilainen, Auni

    2012-12-01

    Early diagnosis of complicated course in febrile neutropenia is cumbersome due to the non-specificity of clinical and laboratory signs of severe infection. This prospective study included 100 adult hematological patients with febrile neutropenia after intensive chemotherapy at the onset of fever (d0) and for 3 days (d1-d3) thereafter. The study aim was to find early predictors for complicated course of febrile neutropenia, defined as bacteremia or septic shock. Interleukin 6 (IL-6), interleukin 10 (IL-10), procalcitonin (PCT) and C-reactive protein (CRP) all predicted complicated course of febrile neutropenia on d0, but only PCT was predictive throughout the study period. For IL-10 on d0-1 with cut-off 37 ng/L, sensitivity was 0.71, specificity 0.82, positive predictive value 0.52 and negative predictive value 0.92. For PCT on d0-1 with cut-off 0.13 μg/L, the respective measures were 0.95, 0.53, 0.36, and 0.98. For the combination of IL-10 and PCT on d0-1 with the same cut-offs, specificity improved to 0.85 and positive predictive value to 0.56. In conclusion, the present study confirms the high negative predictive value of PCT and provides new evidence for IL-10 as an early predictor for complicated course of febrile neutropenia in hematological patients. Combining IL-10 with PCT improves the early prediction for complicated course of febrile neutropenia. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Strangeness contribution to the proton spin from lattice QCD.

    PubMed

    Bali, Gunnar S; Collins, Sara; Göckeler, Meinulf; Horsley, Roger; Nakamura, Yoshifumi; Nobile, Andrea; Pleiter, Dirk; Rakow, P E L; Schäfer, Andreas; Schierholz, Gerrit; Zanotti, James M

    2012-06-01

    We compute the strangeness and light-quark contributions Δs, Δu, and Δd to the proton spin in n(f)=2 lattice QCD at a pion mass of about 285 MeV and at a lattice spacing a≈0.073 fm, using the nonperturbatively improved Sheikholeslami-Wohlert Wilson action. We carry out the renormalization of these matrix elements, which involves mixing between contributions from different quark flavors. Our main result is the small negative value Δs(MS)(√(7.4) GeV)=-0.020(10)(4) of the strangeness contribution to the nucleon spin. The second error is an estimate of the uncertainty, due to the missing extrapolation to the physical point.

  19. SU-F-T-233: Evaluation of Treatment Delivery Parameters Using High Resolution ELEKTA Log Files

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kabat, C; Defoor, D; Alexandrian, A

    2016-06-15

    Purpose: As modern linacs have become more technologically advanced with the implementation of IGRT and IMRT with HDMLCs, a requirement for more elaborate tracking techniques to monitor components’ integrity is paramount. ElektaLog files are generated every 40 milliseconds, which can be analyzed to track subtle changes and provide another aspect of quality assurance. This allows for constant monitoring of fraction consistency in addition to machine reliability. With this in mind, it was the aim of the study to evaluate if ElektaLog files can be utilized for linac consistency QA. Methods: ElektaLogs were reviewed for 16 IMRT patient plans with >16more » fractions. Logs were analyzed by creating fluence maps from recorded values of MLC locations, jaw locations, and dose per unit time. Fluence maps were then utilized to calculate a 2D gamma index with a 2%–2mm criteria for each fraction. ElektaLogs were also used to analyze positional errors for MLC leaves and jaws, which were used to compute an overall error for the MLC banks, Y-jaws, and X-jaws by taking the root-meansquare value of the individual recorded errors during treatment. Additionally, beam on time was calculated using the number of ElektaLog file entries within the file. Results: The average 2D gamma for all 16 patient plans was found to be 98.0±2.0%. Recorded gamma index values showed an acceptable correlation between fractions. Average RMS values for MLC leaves and the jaws resulted in a leaf variation of roughly 0.3±0.08 mm and jaw variation of about 0.15±0.04 mm, both of which fall within clinical tolerances. Conclusion: The use of ElektaLog files for day-to-day evaluation of linac integrity and patient QA can be utilized to allow for reliable analysis of system accuracy and performance.« less

  20. Evaluation of different mathematical models and different b-value ranges of diffusion-weighted imaging in peripheral zone prostate cancer detection using b-value up to 4500 s/mm2

    PubMed Central

    Feng, Zhaoyan; Min, Xiangde; Margolis, Daniel J. A.; Duan, Caohui; Chen, Yuping; Sah, Vivek Kumar; Chaudhary, Nabin; Li, Basen; Ke, Zan; Zhang, Peipei; Wang, Liang

    2017-01-01

    Objectives To evaluate the diagnostic performance of different mathematical models and different b-value ranges of diffusion-weighted imaging (DWI) in peripheral zone prostate cancer (PZ PCa) detection. Methods Fifty-six patients with histologically proven PZ PCa who underwent DWI-magnetic resonance imaging (MRI) using 21 b-values (0–4500 s/mm2) were included. The mean signal intensities of the regions of interest (ROIs) placed in benign PZs and cancerous tissues on DWI images were fitted using mono-exponential, bi-exponential, stretched-exponential, and kurtosis models. The b-values were divided into four ranges: 0–1000, 0–2000, 0–3200, and 0–4500 s/mm2, grouped as A, B, C, and D, respectively. ADC, , D*, f, DDC, α, Dapp, and Kapp were estimated for each group. The adjusted coefficient of determination (R2) was calculated to measure goodness-of-fit. Receiver operating characteristic curve analysis was performed to evaluate the diagnostic performance of the parameters. Results All parameters except D* showed significant differences between cancerous tissues and benign PZs in each group. The area under the curve values (AUCs) of ADC were comparable in groups C and D (p = 0.980) and were significantly higher than those in groups A and B (p< 0.05 for all). The AUCs of ADC and Kapp in groups B and C were similar (p = 0.07 and p = 0.954), and were significantly higher than the other parameters (p< 0.001 for all). The AUCs of ADC in group D was slightly higher than Kapp (p = 0.002), and both were significantly higher than the other parameters (p< 0.001 for all). Conclusions ADC derived from conventional mono-exponential high b-value (3200 s/mm2) models is an optimal parameter for PZ PCa detection. PMID:28199367

  1. Exploring the influence of texture and composition on the thermal transport properties of mudstones

    NASA Astrophysics Data System (ADS)

    Kenderes, S. M.; Hofmeister, A. M.; Merriman, J. D.; Whittington, A. G.

    2017-12-01

    The thermal history of sedimentary basins depends strongly on the thermal transport properties of the rocks within the basin. Mudstones are compositionally diverse, varying both chemically and with modal mineralogy, which are known to affect the thermal transport properties of earth materials. To explore the influence of composition and texture on the thermal transport properties of mudstones, we have measured the thermal diffusivity (D) and isobaric heat capacity (CP) of 12 mudstones using the contact-free laser flash analysis (LFA) and differential scanning calorimetry (DSC). At 20°C, D values of the shales range from 0.318 to 1.214 mm2·s-1 and CP values range from 799 to 918 J·kg-1·°C-1 and at 300°C, D values range from 0.227 to 0.582 mm2·s-1 and CP values range from 1095 to 1344 J·kg-1·°C-1. The mudstones with the highest D values, and lowest CP values are green micaceous or calcareous siltstones respectively, whereas the mudstones with the lowest D values, and highest CP values are black, claystones with 9% organic carbon. This suggests that organic carbon content and, to a lesser extent, the grainsize influence the thermal transport properties of these rocks. The lower D values and higher CP values cause organic rich claystones to absorb and transmit heat differently than other types of mudstones. This is especially true at lower temperatures, where the difference in D values is much greater than at higher temperatures. Additionally, when compared to other sedimentary rocks, shales generally have lower D values and higher CP values. These results also highlight the necessity of using rock type specific values in heat transport numerical models.

  2. Estimating EQ-5D values from the Oswestry Disability Index and numeric rating scales for back and leg pain.

    PubMed

    Carreon, Leah Y; Bratcher, Kelly R; Das, Nandita; Nienhuis, Jacob B; Glassman, Steven D

    2014-04-15

    Cross-sectional cohort. The purpose of this study is to determine whether the EuroQOL-5D (EQ-5D) can be derived from commonly available low back disease-specific health-related quality of life measures. The Oswestry Disability Index (ODI) and numeric rating scales (0-10) for back pain (BP) and leg pain (LP) are widely used disease-specific measures in patients with lumbar degenerative disorders. Increasingly, the EQ-5D is being used as a measure of utility due to ease of administration and scoring. The EQ-5D, ODI, BP, and LP were prospectively collected in 14,544 patients seen in clinic for lumbar degenerative disorders. Pearson correlation coefficients for paired observations from multiple time points between ODI, BP, LP, and EQ-5D were determined. Regression modeling was done to compute the EQ-5D score from the ODI, BP, and LP. The mean age was 53.3 ± 16.4 years and 41% were male. Correlations between the EQ-5D and the ODI, BP, and LP were statistically significant (P < 0.0001) with correlation coefficients of -0.77, -0.50, and -0.57, respectively. The regression equation: [0.97711 + (-0.00687 × ODI) + (-0.01488 × LP) + (-0.01008 × BP)] to predict EQ-5D, had an R2 of 0.61 and a root mean square error of 0.149. The model using ODI alone had an R2 of 0.57 and a root mean square error of 0.156. The model using the individual ODI items had an R2 of 0.64 and a root mean square error of 0.143. The correlation coefficient between the observed and estimated EQ-5D score was 0.78. There was no statistically significant difference between the actual EQ-5D (0.553 ± 0.238) and the estimated EQ-5D score (0.553 ± 0.186) using the ODI, BP, and LP regression model. However, rounding off the coefficients to less than 5 decimal places produced less accurate results. Unlike previous studies showing a robust relationship between low back-specific measures and the Short Form-6D, a similar relationship was not seen between the ODI, BP, LP, and the EQ-5D. Thus, the EQ-5D cannot be accurately estimated from the ODI, BP, and LP. 2.

  3. Three-Dimensional Assessment of Temporomandibular Joint Using MRI-CBCT Image Registration

    PubMed Central

    Lagravere, Manuel; Boulanger, Pierre; Jaremko, Jacob L.; Major, Paul W.

    2017-01-01

    Purpose To introduce a new approach to reconstruct a 3D model of the TMJ using magnetic resonance imaging (MRI) and cone-beam computed tomography (CBCT) registered images, and to evaluate the intra-examiner reproducibility values of reconstructing the 3D models of the TMJ. Methods MRI and CBCT images of five patients (10 TMJs) were obtained. Multiple MRIs and CBCT images were registered using a mutual information based algorithm. The articular disc, condylar head and glenoid fossa were segmented at two different occasions, at least one-week apart, by one investigator, and 3D models were reconstructed. Differences between the segmentation at two occasions were automatically measured using the surface contours (Average Perpendicular Distance) and the volume overlap (Dice Similarity Index) of the 3D models. Descriptive analysis of the changes at 2 occasions, including means and standard deviation (SD) were reported to describe the intra-examiner reproducibility. Results The automatic segmentation of the condyle revealed maximum distance change of 1.9±0.93 mm, similarity index of 98% and root mean squared distance of 0.1±0.08 mm, and the glenoid fossa revealed maximum distance change of 2±0.52 mm, similarity index of 96% and root mean squared distance of 0.2±0.04 mm. The manual segmentation of the articular disc revealed maximum distance change of 3.6±0.32 mm, similarity index of 80% and root mean squared distance of 0.3±0.1 mm. Conclusion The MRI-CBCT registration provides a reliable tool to reconstruct 3D models of the TMJ’s soft and hard tissues, allows quantification of the articular disc morphology and position changes with associated differences of the condylar head and glenoid fossa, and facilitates measuring tissue changes over time. PMID:28095486

  4. Three-Dimensional Assessment of Temporomandibular Joint Using MRI-CBCT Image Registration.

    PubMed

    Al-Saleh, Mohammed A Q; Punithakumar, Kumaradevan; Lagravere, Manuel; Boulanger, Pierre; Jaremko, Jacob L; Major, Paul W

    2017-01-01

    To introduce a new approach to reconstruct a 3D model of the TMJ using magnetic resonance imaging (MRI) and cone-beam computed tomography (CBCT) registered images, and to evaluate the intra-examiner reproducibility values of reconstructing the 3D models of the TMJ. MRI and CBCT images of five patients (10 TMJs) were obtained. Multiple MRIs and CBCT images were registered using a mutual information based algorithm. The articular disc, condylar head and glenoid fossa were segmented at two different occasions, at least one-week apart, by one investigator, and 3D models were reconstructed. Differences between the segmentation at two occasions were automatically measured using the surface contours (Average Perpendicular Distance) and the volume overlap (Dice Similarity Index) of the 3D models. Descriptive analysis of the changes at 2 occasions, including means and standard deviation (SD) were reported to describe the intra-examiner reproducibility. The automatic segmentation of the condyle revealed maximum distance change of 1.9±0.93 mm, similarity index of 98% and root mean squared distance of 0.1±0.08 mm, and the glenoid fossa revealed maximum distance change of 2±0.52 mm, similarity index of 96% and root mean squared distance of 0.2±0.04 mm. The manual segmentation of the articular disc revealed maximum distance change of 3.6±0.32 mm, similarity index of 80% and root mean squared distance of 0.3±0.1 mm. The MRI-CBCT registration provides a reliable tool to reconstruct 3D models of the TMJ's soft and hard tissues, allows quantification of the articular disc morphology and position changes with associated differences of the condylar head and glenoid fossa, and facilitates measuring tissue changes over time.

  5. The depth estimation of 3D face from single 2D picture based on manifold learning constraints

    NASA Astrophysics Data System (ADS)

    Li, Xia; Yang, Yang; Xiong, Hailiang; Liu, Yunxia

    2018-04-01

    The estimation of depth is virtual important in 3D face reconstruction. In this paper, we propose a t-SNE based on manifold learning constraints and introduce K-means method to divide the original database into several subset, and the selected optimal subset to reconstruct the 3D face depth information can greatly reduce the computational complexity. Firstly, we carry out the t-SNE operation to reduce the key feature points in each 3D face model from 1×249 to 1×2. Secondly, the K-means method is applied to divide the training 3D database into several subset. Thirdly, the Euclidean distance between the 83 feature points of the image to be estimated and the feature point information before the dimension reduction of each cluster center is calculated. The category of the image to be estimated is judged according to the minimum Euclidean distance. Finally, the method Kong D will be applied only in the optimal subset to estimate the depth value information of 83 feature points of 2D face images. Achieving the final depth estimation results, thus the computational complexity is greatly reduced. Compared with the traditional traversal search estimation method, although the proposed method error rate is reduced by 0.49, the number of searches decreases with the change of the category. In order to validate our approach, we use a public database to mimic the task of estimating the depth of face images from 2D images. The average number of searches decreased by 83.19%.

  6. Validation of DYSTOOL for unsteady aerodynamic modeling of 2D airfoils

    NASA Astrophysics Data System (ADS)

    González, A.; Gomez-Iradi, S.; Munduate, X.

    2014-06-01

    From the point of view of wind turbine modeling, an important group of tools is based on blade element momentum (BEM) theory using 2D aerodynamic calculations on the blade elements. Due to the importance of this sectional computation of the blades, the National Renewable Wind Energy Center of Spain (CENER) developed DYSTOOL, an aerodynamic code for 2D airfoil modeling based on the Beddoes-Leishman model. The main focus here is related to the model parameters, whose values depend on the airfoil or the operating conditions. In this work, the values of the parameters are adjusted using available experimental or CFD data. The present document is mainly related to the validation of the results of DYSTOOL for 2D airfoils. The results of the computations have been compared with unsteady experimental data of the S809 and NACA0015 profiles. Some of the cases have also been modeled using the CFD code WMB (Wind Multi Block), within the framework of a collaboration with ACCIONA Windpower. The validation has been performed using pitch oscillations with different reduced frequencies, Reynolds numbers, amplitudes and mean angles of attack. The results have shown a good agreement using the methodology of adjustment for the value of the parameters. DYSTOOL have demonstrated to be a promising tool for 2D airfoil unsteady aerodynamic modeling.

  7. Dusty plasma ring model

    NASA Astrophysics Data System (ADS)

    Sheridan, T. E.

    2009-12-01

    A model of a dusty plasma (Yukawa) ring is presented. We consider n identical particles confined in a two-dimensional (2D) annular potential well and interacting through a Debye (i.e. Yukawa or screened Coulomb) potential. Equilibrium configurations are computed versus n, the Debye shielding parameter and the trap radius. When the particle separation exceeds a critical value the particles form a 1D chain with a ring topology. Below the critical separation the zigzag instability gives a 2D configuration. Computed critical separations are shown to agree well with a theoretical prediction for the zigzag threshold. Normal mode spectra for 1D rings are computed and found to be in excellent agreement with the longitudinal and transverse dispersion relations for unbounded straight chains. When the longitudinal and transverse dispersion relations intersect we observe a resonance due to the finite curvature of the ring.

  8. Dynamics of road traffic noise in Bhadrak city, India.

    PubMed

    Swain, Bijay Kumar; Panda, Santosh Kumar; Goswami, Shreerup

    2012-11-01

    Road traffic noise assessed in 13 different squares of major intersection points in Bhadrak city during four different specified times i.e. 7-10 a.m., 11 a.m.-2 p.m., 3-6 p.m. and 7-10 p.m.. Road traffic was found to be the most important source of community noise at the studied sites. The noise levels of all the 13 squares were found to be beyond the permissible limit [70 dB (A)] during day time. Leq (equivalent noise level) values ranged from 93.4 to 100.5; 91.5 to 100.6; 95.1 to 107.3 and 97.3 to 106.3 dB during 7-10 a.m., 11 a.m.-2 p.m., 3-6 p.m. and 7-10 p.m. respectively. LNP values range from 115.7 to 127.7; 114.2 to 129.8; 118.2 to 138.2 and 120.7 to 135 dB, while TNI values range from 134.3 to 154.7; 130.7 to 157.9; 136.7 to 168.2 and 137.2 to 165 dB during 7-10 a.m., 11 a.m.-2 p.m., 3-6 p.m. and 7-10 p.m. respectively. Reprehensibly, even minimum LNP and TNI values are more than 114 and 130 dB respectively. Analysis of variance also computed for investigated squares at the peak hour i.e. 7-10 p.m. to infer the level of significance. The observed value of F (0.47) was less than the tabulated values and was not significant at both 5 and 1% levels of significance. Thus, the noise levels of different squares did not differ significantly at their peak hours. A preliminary public health survey carried out based on questionnaire method amongst 202 local inhabitants reveal the degree of annoyance due to road traffic noise.

  9. Boundary modelling of the stellarator Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Renner, H.; Strumberger, E.; Kisslinger, J.; Nührenberg, J.; Wobig, H.

    1997-02-01

    To justify the design of the divertor plates in W7-X the magnetic fields of finite-β HELIAS equilibria for the so-called high-mirror case have been computed for various average β-values up to < β > = 0.04 with the NEMEC free-boundary equilibrium code [S.P. Hirshman, W.I. van Rij and W.I. Merkel, Comput. Phys. Commun. 43 (1986) 143] in combination with the newly developed MFBE (magnetic field solver for finite-beta equilibria) code. In a second study the unloading of the target plates by radiation was investigated. The B2 code [B.J. Braams, Ph.D. Thesis, Rijksuniversiteit Utrecht (1986)] was applied for the first time to stellarators to provide of a self-consistent modelling of the SOL including effects of neutrals and impurities.

  10. Infrared laser Stark spectroscopy of hydroxymethoxycarbene in 4He nanodroplets

    DOE PAGES

    Broderick, Bernadette M.; Moradi, Christopher P.; Douberly, Gary E.

    2015-09-07

    Hydroxymethoxycarbene, CH 3OCOH, was produced via pyrolysis of monomethyl oxalate and subsequently isolated in 4He nanodroplets. Infrared laser spectroscopy reveals two rotationally resolved a,b-hybrid bands in the OH-stretch region, which are assigned to trans, trans- and cis, trans-rotamers. Stark spectroscopy of the trans, trans-OH stretch band provides the a-axis inertial component of the dipole moment, namely μ a = 0.62(7) D. Here, the computed equilibrium dipole moment agrees well with the expectation value determined from experiment, consistent with a semi-rigid CH 3OCOH backbone computed via a potential energy scan at the B3LYP/cc-pVTZ level of theory, which reveals substantial conformer interconversionmore » barriers of ≈17 kcal/mol.« less

  11. Dynamic Modeling of the Human Coagulation Cascade Using Reduced Order Effective Kinetic Models (Open Access)

    DTIC Science & Technology

    2015-03-16

    shaded region around each total sensitivity value was the maximum uncertainty in that value estimated by the Sobol method. 2.4. Global Sensitivity...Performance We conducted a global sensitivity analysis, using the variance-based method of Sobol , to estimate which parameters controlled the...Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. 69. Sobol , I. Global sensitivity indices for nonlinear

  12. Diffusion coefficients of Mg isotopes in MgSiO3 and Mg2SiO4 melts calculated by first-principles molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohui; Qi, Yuhan; Zheng, Daye; Zhou, Chen; He, Lixin; Huang, Fang

    2018-02-01

    The mass dependence of diffusion coefficient (D) can be described in the form of Di/Dj = (mj/mi)β, where m denotes masses of isotope i and j, and β is an empirical parameter as used to quantify the diffusive transport of isotopes. Recent advances in computation techniques allow theoretically calculation of β values. Here, we apply first-principles Born-Oppenheimer molecular dynamics (MD) and pseudo-isotope method (taking mj/mi = 1/24, 6/24, 48/24, 120/24) to estimate β for MgSiO3 and Mg2SiO4 melts. Our calculation shows that β values for Mg calculated with 24Mg and different pseudo Mg isotopes are identical, indicating the reliability of the pseudo-isotope method. For MgSiO3 melt, β is 0.272 ± 0.005 at 4000 K and 0 GPa, higher than the value calculated using classical MD simulations (0.135). For Mg2SiO4 melt, β is 0.184 ± 0.006 at 2300 K, 0.245 ± 0.007 at 3000 K, and 0.257 ± 0.012 at 4000 K. Notably, β values of MgSiO3 and Mg2SiO4 melts are significantly higher than the value in basalt-rhyolite melts determined by chemical diffusion experiments (0.05). Our results suggest that β values are not sensitive to the temperature if it is well above the liquidus, but can be significantly smaller when the temperature is close to the liquidus. The small difference of β between silicate liquids with simple compositions of MgSiO3 and Mg2SiO4 suggests that the β value may depend on the chemical composition of the melts. This study shows that first-principles MD provide a promising tool to estimate β of silicate melts.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devpura, S; Li, H; Liu, C

    Purpose: To correlate dose distributions computed using six algorithms for recurrent early stage non-small cell lung cancer (NSCLC) patients treated with stereotactic body radiotherapy (SBRT), with outcome (local failure). Methods: Of 270 NSCLC patients treated with 12Gyx4, 20 were found to have local recurrence prior to the 2-year time point. These patients were originally planned with 1-D pencil beam (1-D PB) algorithm. 4D imaging was performed to manage tumor motion. Regions of local failures were determined from follow-up PET-CT scans. Follow-up CT images were rigidly fused to the planning CT (pCT), and recurrent tumor volumes (Vrecur) were mapped to themore » pCT. Dose was recomputed, retrospectively, using five algorithms: 3-D PB, collapsed cone convolution (CCC), anisotropic analytical algorithm (AAA), AcurosXB, and Monte Carlo (MC). Tumor control probability (TCP) was computed using the Marsden model (1,2). Patterns of failure were classified as central, in-field, marginal, and distant for Vrecur ≥95% of prescribed dose, 95–80%, 80–20%, and ≤20%, respectively (3). Results: Average PTV D95 (dose covering 95% of the PTV) for 3-D PB, CCC, AAA, AcurosXB, and MC relative to 1-D PB were 95.3±2.1%, 84.1±7.5%, 84.9±5.7%, 86.3±6.0%, and 85.1±7.0%, respectively. TCP values for 1-D PB, 3-D PB, CCC, AAA, AcurosXB, and MC were 98.5±1.2%, 95.7±3.0, 79.6±16.1%, 79.7±16.5%, 81.1±17.5%, and 78.1±20%, respectively. Patterns of local failures were similar for 1-D and 3D PB plans, which predicted that the majority of failures occur in centraldistal regions, with only ∼15% occurring distantly. However, with convolution/superposition and MC type algorithms, the majority of failures (65%) were predicted to be distant, consistent with the literature. Conclusion: Based on MC and convolution/superposition type algorithms, average PTV D95 and TCP were ∼15% lower than the planned 1-D PB dose calculation. Patterns of failure results suggest that MC and convolution/superposition type algorithms predict different outcomes for patterns of failure relative to PB algorithms. Work supported in part by Varian Medical Systems, Palo Alto, CA.« less

  14. German Value Set for the EQ-5D-5L.

    PubMed

    Ludwig, Kristina; Graf von der Schulenburg, J-Matthias; Greiner, Wolfgang

    2018-06-01

    The objective of this study was to develop a value set for EQ-5D-5L based on the societal preferences of the German population. As the first country to do so, the study design used the improved EQ-5D-5L valuation protocol 2.0 developed by the EuroQol Group, including a feedback module as internal validation and a quality control process that was missing in the first wave of EQ-5D-5L valuation studies. A representative sample of the general German population (n = 1158) was interviewed using a composite time trade-off and a discrete choice experiment under close quality control. Econometric modeling was used to estimate values for all 3125 possible health states described by EQ-5D-5L. The value set was based on a hybrid model including all available information from the composite time trade-off and discrete choice experiment valuations without any exclusions due to data issues. The final German value set was constructed from a combination of a conditional logit model for the discrete choice experiment data and a censored at -1 Tobit model for the composite time trade-off data, correcting for heteroskedasticity. The value set had logically consistent parameter estimates (p < 0.001 for all coefficients). The predicted EQ-5D-5L index values ranged from -0.661 to 1. This study provided values for the health states of the German version of EQ-5D-5L representing the preferences of the German population. The study successfully employed for the first time worldwide the improved protocol 2.0. The value set enables the use of the EQ-5D-5L instrument in economic evaluations and in clinical studies.

  15. Development and validation of a computational model of the knee joint for the evaluation of surgical treatments for osteoarthritis

    PubMed Central

    Mootanah, R.; Imhauser, C.W.; Reisse, F.; Carpanen, D.; Walker, R.W.; Koff, M.F.; Lenhoff, M.W.; Rozbruch, S.R.; Fragomen, A.T.; Dewan, Z.; Kirane, Y.M.; Cheah, Pamela A.; Dowell, J.K.; Hillstrom, H.J.

    2014-01-01

    A three-dimensional (3D) knee joint computational model was developed and validated to predict knee joint contact forces and pressures for different degrees of malalignment. A 3D computational knee model was created from high-resolution radiological images to emulate passive sagittal rotation (full-extension to 65°-flexion) and weight acceptance. A cadaveric knee mounted on a six-degree-of-freedom robot was subjected to matching boundary and loading conditions. A ligament-tuning process minimised kinematic differences between the robotically loaded cadaver specimen and the finite element (FE) model. The model was validated by measured intra-articular force and pressure measurements. Percent full scale error between EE-predicted and in vitro-measured values in the medial and lateral compartments were 6.67% and 5.94%, respectively, for normalised peak pressure values, and 7.56% and 4.48%, respectively, for normalised force values. The knee model can accurately predict normalised intra-articular pressure and forces for different loading conditions and could be further developed for subject-specific surgical planning. PMID:24786914

  16. Development and validation of a computational model of the knee joint for the evaluation of surgical treatments for osteoarthritis.

    PubMed

    Mootanah, R; Imhauser, C W; Reisse, F; Carpanen, D; Walker, R W; Koff, M F; Lenhoff, M W; Rozbruch, S R; Fragomen, A T; Dewan, Z; Kirane, Y M; Cheah, K; Dowell, J K; Hillstrom, H J

    2014-01-01

    A three-dimensional (3D) knee joint computational model was developed and validated to predict knee joint contact forces and pressures for different degrees of malalignment. A 3D computational knee model was created from high-resolution radiological images to emulate passive sagittal rotation (full-extension to 65°-flexion) and weight acceptance. A cadaveric knee mounted on a six-degree-of-freedom robot was subjected to matching boundary and loading conditions. A ligament-tuning process minimised kinematic differences between the robotically loaded cadaver specimen and the finite element (FE) model. The model was validated by measured intra-articular force and pressure measurements. Percent full scale error between FE-predicted and in vitro-measured values in the medial and lateral compartments were 6.67% and 5.94%, respectively, for normalised peak pressure values, and 7.56% and 4.48%, respectively, for normalised force values. The knee model can accurately predict normalised intra-articular pressure and forces for different loading conditions and could be further developed for subject-specific surgical planning.

  17. Mortality and rebleeding following variceal haemorrhage in liver cirrhosis and periportal fibrosis.

    PubMed

    Mohammed, Sara Elfadil Abbas; Abdo, Abdelmunem Eltayeb; Mudawi, Hatim Mohamed Yousif

    2016-11-08

    To investigate mortality and rebleeding rate and identify associated risk factors at 6 wk and 5 d following acute variceal haemorrhage in patients with liver cirrhosis and schistosomal periportal fibrosis. This is a prospective study conducted during the period from March to December 2014. Patients with portal hypertension presenting with acute variceal haemorrhage secondary to either liver cirrhosis (group A) or schistosomal periportal fibroses (group B) presenting within 24 h of the onset of the bleeding were enrolled in the study and followed for a period of 6 wk. Analysis of data was done by Microsoft Excel and comparison between groups was done by Statistical Package of Social Sciences version 20 to calculate means and find the levels of statistical differences and define the mortality rates, the P value of < 0.05 was considered to be significant. A total of 94 patients were enrolled in the study. Thirty-two patients (34%) had liver cirrhosis (group A) and 62 (66%) patients had periportal fibrosis (group B). Mortality: The 6-wk and 5-d mortality were 53% and 16% respectively in group A compared to 10% and 0% in group B ( P value < 0.000 and < 0.004). In group A; a Child-Turcotte-Pugh class C and rebleeding within 5 d were significantly associated with 5-d mortality ( P value < 0.029 and < 0.049 respectively) and Child- Turcotte-Pugh class C was also a significant risk factor for 6-wk mortality ( P value < 0.018). In group B; mortality was significantly associated with rebleeding within the 6-wk follow-up period and requirement for blood transfusion on admission ( P value < 0.005 and < 0.049). Rebleeding: The 6-wk and 5-d rebleeding rate in group A were 56% and 25% respectively compared to 32% and 3% in group B ( P value < 0.015 and < 0.002). Clinical presentation with encephalopathy was a significant risk factor for 5 d rebleeding in group A ( P value < 0.005) while grade III periportal fibrosis and requirement for blood transfusion on admission were significant risk factors for 6-wk rebleeding in group B ( P value < 0.004 and < 0.02). The 6-wk and 5-d mortality and rebleeding rate were significantly higher in patients with liver cirrhosis compared to patients with schistosomal periportal fibrosis.

  18. Intermolecular dissociation energies of dispersively bound complexes of aromatics with noble gases and nitrogen

    NASA Astrophysics Data System (ADS)

    Knochenmuss, Richard; Sinha, Rajeev K.; Leutwyler, Samuel

    2018-04-01

    We measured accurate intermolecular dissociation energies D0 of the supersonic jet-cooled complexes of 1-naphthol (1NpOH) with the noble gases Ne, Ar, Kr, and Xe and with N2, using the stimulated-emission pumping resonant two-photon ionization method. The ground-state values D0(S0) for the 1NpOHṡS complexes with S= Ar, Kr, Xe, and N2 were bracketed to be within ±3.5%; they are 5.67 ± 0.05 kJ/mol for S = Ar, 7.34 ± 0.07 kJ/mol for S = Kr, 10.8 ± 0.28 kJ/mol for S = Xe, 6.67 ± 0.08 kJ/mol for isomer 1 of the 1NpOHṡN2 complex, and 6.62 ± 0.22 kJ/mol for the corresponding isomer 2. For S = Ne, the upper limit is D0 < 3.36 kJ/mol. The dissociation energies increase by 1%-5% upon S0 → S1 excitation of the complexes. Three dispersion-corrected density functional theory (DFT-D) methods (B97-D3, B3LYP-D3, and ωB97X-D) predict that the most stable form of these complexes involves dispersive binding to the naphthalene "face." A more weakly bound edge isomer is predicted in which the S moiety is H-bonded to the OH group of 1NpOH; however, no edge isomers were observed experimentally. The B97-D3 calculated dissociation energies D0(S0) of the face complexes with Ar, Kr, and N2 agree with the experimental values within <5%, but the D0(S0) for Xe is 12% too low. The B3LYP-D3 and ωB97X-D calculated D0(S0) values exhibit larger deviations to both larger and smaller dissociation energies. For comparison to 1-naphthol, we calculated the D0(S0) of the carbazole complexes with S = Ne, Ar, Kr, Xe, and N2 using the same DFT-D methods. The respective experimental values have been previously determined to be within <2%. Again, the B97-D3 results are in the best overall agreement with experiment.

  19. Quantification of instantaneous flow rate and dynamically changing effective orifice area using a geometry independent three-dimensional digital color Doppler method: An in vitro study mimicking mitral regurgitation.

    PubMed

    Li, Xiaokui; Wanitkun, Suthep; Li, Xiang-Ning; Hashimoto, Ikuo; Mori, Yoshiki; Rusk, Rosemary A; Hicks, Shannon E; Sahn, David J

    2002-10-01

    Our study was intended to test the accuracy of a 3-dimensional (3D) digital color Doppler flow convergence (FC) method for assessing the effective orifice area (EOA) in a new dynamic orifice model mimicking a variety of mitral regurgitation. FC surface area methods for detecting EOA have been reported to be useful for quantifying the severity of valvular regurgitation. With our new 3D digital direct FC method, all raw velocity data are available and variable Nyquist limits can be selected for computation of direct FC surface area for computing instantaneous flow rate and temporal change of EOA. A 7.0-MHz multiplane transesophageal probe from an ultrasound system (ATL HDI 5000) was linked and controlled by a computer workstation to provide 3D images. Three differently shaped latex orifices (zigzag, arc, and straight slit, each with cutting-edge length of 1 cm) were used to mimic the dynamic orifice of mitral regurgitation. 3D FC surface computation was performed on parallel slices through the 3D data set at aliasing velocities (14-48 cm/s) selected to maximize the regularity and minimize lateral dropout of the visualized 3D FC at 5 points per cardiac cycle. Using continuous wave velocity for each, 3D-calculated EOA was compared with EOA determined by using continuous wave Doppler and the flow rate from a reference ultrasonic flow meter. Simultaneous digital video images were also recorded to define the actual orifice size for 9 stroke volumes (15-55 mL/beat with maximum flow rates 45-182 mL/s). Over the 9 pulsatile flow states and 3 orifices, 3D FC EOAs (0.05-0.63 cm(2)) from different phases of the cardiac cycle in each pump setting correlated well with reference EOA (r = 0.89-0.92, SEE = 0.027-0.055cm(2)) and they also correlated well with digital video images of the actual orifice peak (r = 0.97-0.98, SEE = 0.016-0.019 cm(2)), although they were consistently smaller, as expected by the contraction coefficient. The digital 3D FC method can accurately predict flow rate, and, thus, EOA (in conjunction with continuous wave Doppler), because it allows direct FC surface measurement despite temporal variability of FC shape.

  20. Atmospheric Transmittance/Radiance: Computer Code LOWTRAN 5

    DTIC Science & Technology

    1980-02-21

    D. 0. 0 4 DNODD *• : 000.1 • 10 -7o. S0 C O EL4 ? • 4 ....5. 40...... ..... 4..........*............ ........ S....... * RMODEL.7 * 0. 071 4’. 2...while the receiver was a Golay cell mounted at the focus of a 76-cm diameter 80. Arnold, D.H., Lake, D. B., and Sanders, R. (1970) Comparative Measui

  1. Construct validity of SF-6D health state utility values in an employed population.

    PubMed

    Baxter, Siyan; Sanderson, Kristy; Venn, Alison; Otahal, Petr; Palmer, Andrew J

    2015-04-01

    Health utility values permit cost utility analysis in workplace health promotion; however, utility measures of working populations have not been validated. To investigate construct validity of SF-6D health utility in a public service workforce. SF-12v2 Health Survey was administered to 3,408 randomly selected public service employees in Australia in 2010. SF-12 scores were converted to SF-6D health utility values. Associations and correlates of SF-6D with health, socio-demographic and work characteristics [comorbidities, body mass index (BMI), Kessler-10 psychological distress (K10), education, salary, effort-reward imbalance (ERI), absenteeism] were explored. Ceiling effects were analysed. Nationally representative employee SF-6D values from the Household, Income and Labour Dynamics in Australia (HILDA) survey (n = 11,234) were compared. All analyses were stratified by sex. Mean (SE) age was 45.7 (0.35) males; 44.5 (0.22) females. Females represented 72 % of the sample. Mean (SE) health utility 0.792 (0.004); 0.771 (0.003) was higher in males. SF-6D demonstrated both a significant inverse association (p < 0.01) and negative correlations (female; male) with K10 (r = -0.63; r = -0.66), comorbidity count (r = -0.40; r = -0.33), ERI (r = -0.37; r = -0.34) and absenteeism (p < 0.005, r = -0.25; r = -0.21). Mean (SE) SF-6D in HILDA was 0.792 (0.002); 0.775 (0.003) males; females. Correlates and associations in all samples were similar. The general employed demonstrated a significant inverse association with age and positive association with salary. SF-6D was independent of BMI. Psychological distress, comorbidity, effort-reward imbalance and absenteeism are negatively associated with employee health. SF-6D is a valid measure of perceived health states in working populations.

  2. Performance of the SRK/T formula using A-Scan ultrasound biometry after phacoemulsification in eyes with short and long axial lengths.

    PubMed

    Karabela, Yunus; Eliacik, Mustafa; Kaya, Faruk

    2016-07-08

    The SRK/T formula is one of the third generation IOL calculation formulas. The purpose of this study was to evaluate the performance of the SRK/T formula in predicting a target refraction ±1.0D in short and long eyes using ultrasound biometry after phacoemulsification. The present study was a retrospective analysis, which included 38 eyes with an AL < 22.0 mm (short AL), and 62 eyes ≥24.6 mm (long AL) that underwent uncomplicated phacoemulsification. Preoperative AL was measured by ultrasound biometry and SRK/T formula was used for IOL calculation. Three different IOLs were implanted in the capsular bag. The prediction error was defined as the difference between the achieved postoperative refraction, and attempted predicted target refraction. Statistical analysis was performed with SPSS V21. In short ALs, the mean age was 65.13 ± 9.49 year, the mean AL was 21.55 ± 0.45 mm, the mean K1 and K2 were 45.76 ± 1.77D and 46.09 ± 1.61D, the mean IOL power was 23.96 ± 1.92D, the mean attempted (predicted) value was 0.07 ± 0.26D, the mean achieved value was 0.07 ± 0.63 D, the mean PE was 0.01 ± 0.60D, and the MAE was 0.51 ± 0.31D. A significant positive relationship with AL and K1, K2, IOL power and a strong negative relationship with PE and achieved postoperative was found. In long ALs, the mean age was 64.05 ± 7.31 year, the mean AL was 25.77 ± 1.64 mm, the mean K1 and K2 were 42.20 ± 1.57D and 42.17 ± 1.68D, the mean IOL power was 15.79 ± 5.17D, the mean attempted value was -0.434 ± 0.315D, the mean achieved value was -0.42 ± 0.96D, the mean PE was -0.004 ± 0.93D, the MAE was 0.68 ± 0.62D. A significant positive relationship with AL and K1, K2 and a significant positive relationship with PE and achieved value, otherwise a negative relationship with AL and IOL power was found. There was a little tendency towards hyperopic for short ALs and myopic for long ALs. The majority of eyes (94.74 %) for short ALs and (70.97 %) for long ALs were within ±1 D of the predicted refractive error. No significant relationship with PE and IOL types, AL, K1, K2, IOL power, and attempted value, besides with MAE and AL, K1, K2, age, attempted, achieved value were found in both groups. The SRK/T formula performs well and shows good predictability in eyes with short and long axial lengths.

  3. Evaluation of the impact of carotid artery bifurcation angle on hemodynamics by use of computational fluid dynamics: a simulation and volunteer study.

    PubMed

    Saho, Tatsunori; Onishi, Hideo

    2016-07-01

    In this study, we evaluated the hemodynamics of carotid artery bifurcation with various geometries using simulated and volunteer models based on magnetic resonance imaging (MRI). Computational fluid dynamics (CFD) was analyzed by use of OpenFOAM. The velocity distribution, streamline, and wall shear stress (WSS) were evaluated in a simulated model with known bifurcation angles (30°, 40°, 50°, 60°, derived from patients' data) and in three-dimensional (3D) healthy volunteer models. Separated flow was observed at the outer side of the bifurcation, and large bifurcation models represented upstream transfer of the point. Local WSS values at the outer bifurcation [both simulated (<30 Pa) and volunteer (<50 Pa) models] were lower than those in the inner region (>100 Pa). The bifurcation angle had a significant negative correlation with the WSS value (p<0.05). The results of this study show that the carotid artery bifurcation angle is related to the WSS value. This suggests that hemodynamic stress can be estimated based on the carotid artery geometry. The construction of a clinical database for estimation of developing atherosclerosis is warranted.

  4. SU-E-T-72: A Retrospective Correlation Analysis On Dose-Volume Control Points and Treatment Outcomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, A; Nohadani, O; Refaat, T

    2015-06-15

    Purpose: To quantify correlation between dose-volume control points and treatment outcomes. Specifically, two outcomes are analyzed: occurrence of radiation induced dysphagia and target complications. The results inform the treatment planning process when competing dose-volume criteria requires relaxations. Methods: 32 patients, treated with whole-field sequential intensity modulated radiation therapy during 2009–2010 period, are considered for this study. Acute dysphagia that is categorized into 3 grades is observed on all patients. 3 patients are observed in grade 1, 17 patients in grade 2, and 12 patients in grade 3. Ordinal logistic regression is employed to establish correlations between grades of dysphagia andmore » dose to cervico-thoracic esophagus. Particularly, minimum (Dmin), mean (Dmean), and maximum (Dmax) dose control points are analyzed. Additionally, target complication, which includes local-regional recurrence and/or distant metastasis, is observed on 4 patients. Binary logistic regression is used to quantify correlation between target complication and four dose control points. Namely, ICRU recommended dose control points, D2, D50, D95, and D98 are analyzed. Results: For correlation with dysphagia, Dmin on cervico-thoracic esophagus is statistically significant (p-value = 0.005). Additionally, Dmean on cervico-thoracic esophagus is also significant in association with dysphagia (p-value = 0.012). However, no correlation was observed between Dmax and dysphagia (p-value = 0.263). For target complications, D50 on the target is a statistically significant dose control point (p-value = 0.032). No correlations were observed between treatment complications and D2 (p-value = 0.866), D95 (p-value = 0.750), and D98 (p-value = 0.710) on the target. Conclusion: Significant correlations are observed between radiation induced dysphagia and Dmean (and Dmin) to cervico-thoracic esophagus. Additionally, correlation between target complications and median dose to target (D50) is observed. Quantification of these correlations can inform treatment planners when any competing objectives requires relaxation of target D50 or Dmean (or Dmin) to cervico-thoracic esophagus.« less

  5. Successful learning of surgical liver anatomy in a computer-based teaching module.

    PubMed

    Nickel, Felix; Hendrie, Jonathan D; Bruckner, Thomas; Kowalewski, Karl F; Kenngott, Hannes G; Müller-Stich, Beat P; Fischer, Lars

    2016-12-01

    To analyze factors influencing the learning of surgical liver anatomy in a computer-based teaching module (TM). Medical students in their third to fifth year of training (N [Formula: see text] 410) participated in three randomized trials, each with a different primary hypothesis, comparing two- (2D) and three-dimensional (3D) presentation modes in a TM for surgical liver anatomy. Computed tomography images were presented according to the study and allocation group. Students had to answer eleven questions on surgical liver anatomy and four evaluative questions. Scores and time taken to answer the questions were automatically recorded. Since the three studies used the same 15 questions in the TM, a pooled analysis was performed to compare learning factors across studies. 3D groups had higher scores (7.5 ± 1.7 vs. 5.6 ± 2.0; p < 0.001) and needed less time (503.5 ± 187.4 vs. 603.1 ± 246.7 s; p < 0.001) than 2D groups. Intensive training improved scores in 2D (p < 0.001). Men gave more correct answers than women, independent of presentation mode (7.2 ± 2.0 vs. 6.5 ± 2.1; p [Formula: see text] 0.003). An overall association was found between having fun and higher scores in 11 anatomical questions (p < 0.001). In subgroup analysis, 3D groups had more fun than 2D groups (84.7 vs. 65.1 %; p < 0.001). If given the option, more students in the 2D groups (58.9 %) would have preferred a 3D presentation than students in the 3D group (35.9 %) would have preferred 2D (p  < 0.001). 3D was superior to 2D for learning of surgical liver anatomy. With training 2D showed similar results. Fun and gender were relevant factors for learning success.

  6. Correlation of local failure with measures of dose insufficiency in the high-dose single-fraction treatment of bony metastases.

    PubMed

    Lovelock, D Michael; Zhang, Zhigang; Jackson, Andrew; Keam, Jennifer; Bekelman, Justin; Bilsky, Mark; Lis, Eric; Yamada, Yoshiya

    2010-07-15

    In the setting of high-dose single-fraction image-guided radiotherapy of spine metastases, the delivered dose is hypothesized to be a significant factor in local control. We investigated the dependence of local control on measures of dose insufficiency. The minimum doses received by the hottest 100%, 98%, and 95% (D(min), D(98), and D(95)) of the gross target volume (GTV) were computed for 91 consecutively treated lesions observed in 79 patients. Prescribed doses of 18-24 Gy were delivered in a single fraction. The spinal cord and cauda equina were constrained to a maximum dose of 12-14 Gy and 16 Gy, respectively. A rank-sum test was used to assess the differences between radiographic local failure and local control. With a median follow-up of 18 months, seven local failures have occurred. The distributions of GTV D(min), D(98), and D(95) for treatments resulting in local failure were found to be statistically different from the corresponding distributions of the patient group as a whole. Taking no account of histology, p values calculated for D(min), D(98), and D(95) were 0.004, 0.012, and 0.031, respectively. No correlations between local failure and target volume or between local failure and anatomic location were found. The results indicate that D(min), D(98), and D(95) may be important risk factors for local failure. No local failures in any histology were observed when D(min) was >15 Gy, suggesting that this metric may be an important predictor of local control. Copyright 2010 Elsevier Inc. All rights reserved.

  7. Four-dimensional dose evaluation using deformable image registration in radiotherapy for liver cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoon Jung, Sang; Min Yoon, Sang; Ho Park, Sung

    2013-01-15

    Purpose: In order to evaluate the dosimetric impact of respiratory motion on the dose delivered to the target volume and critical organs during free-breathing radiotherapy, a four-dimensional dose was evaluated using deformable image registration (DIR). Methods: Four-dimensional computed tomography (4DCT) images were acquired for 11 patients who were treated for liver cancer. Internal target volume-based treatment planning and dose calculation (3D dose) were performed using the end-exhalation phase images. The four-dimensional dose (4D dose) was calculated based on DIR of all phase images from 4DCT to the planned image. Dosimetric parameters from the 4D dose, were calculated and compared withmore » those from the 3D dose. Results: There was no significant change of the dosimetric parameters for gross tumor volume (p > 0.05). The increase D{sub mean} and generalized equivalent uniform dose (gEUD) for liver were by 3.1%{+-} 3.3% (p= 0.003) and 2.8%{+-} 3.3% (p= 0.008), respectively, and for duodenum, they were decreased by 15.7%{+-} 11.2% (p= 0.003) and 15.1%{+-} 11.0% (p= 0.003), respectively. The D{sub max} and gEUD for stomach was decreased by 5.3%{+-} 5.8% (p= 0.003) and 9.7%{+-} 8.7% (p= 0.003), respectively. The D{sub max} and gEUD for right kidney was decreased by 11.2%{+-} 16.2% (p= 0.003) and 14.9%{+-} 16.8% (p= 0.005), respectively. For left kidney, D{sub max} and gEUD were decreased by 11.4%{+-} 11.0% (p= 0.003) and 12.8%{+-} 12.1% (p= 0.005), respectively. The NTCP values for duodenum and stomach were decreased by 8.4%{+-} 5.8% (p= 0.003) and 17.2%{+-} 13.7% (p= 0.003), respectively. Conclusions: The four-dimensional dose with a more realistic dose calculation accounting for respiratory motion revealed no significant difference in target coverage and potentially significant change in the physical and biological dosimetric parameters in normal organs during free-breathing treatment.« less

  8. Three-Dimensional Computed Tomography (3–D CT) for Evaluation and Management of Children with Complex Chest Wall Anomalies: Useful Information or Just Pretty Pictures?

    PubMed Central

    Calloway, E. Hollin; Chhotani, Ali N.; Lee, Yueh Z.; Phillips, J. Duncan

    2013-01-01

    Purpose Shaded Surface Display (SSD) technology, with 3-D CT reconstruction, has been reported in a few small series of patients with congenital or acquired chest wall deformities. SSD images are visually attractive and educational, but many institutions are hesitant to utilize these secondary to cost and image data storage concerns. This study was designed to assess the true value of SSD to the patient, family, and operating surgeon, in the evaluation and management of these children. Methods Following IRB approval, we performed a retrospective review of records of 82 patients with chest wall deformities, evaluated with SSD, from 2002 to 2009. SSD usefulness, when compared with routine 2-D CT, was graded on a strict numerical scale from 0 (added no value besides education for the patient/family) to 3 (critical for surgical planning and patient management). Results There were 56 males and 26 females. Median age was 15.3 years (range: 0.6–41.1). Deformities included 56 pectus excavatum, 19 pectus carinatum, and 8 other/mixed deformities. 6 patients also had acquired asphyxiating thoracic dystrophy (AATD). Eleven (13%) had previous chest wall reconstructive surgery. In 25 (30%) patients, SSD was useful or critical. Findings underappreciated on 2-D images included: sternal abnormalities (29), rib abnormalities (28), and heterotopic calcifications (7). SSD changed or influenced operation choice (4), clarified bone versus soft tissue (3), helped clarify AATD (3), and aided in rib graft evaluation (2). Point biserial correlation coefficient analysis (Rpb) displayed significance for SSD usefulness in patients with previous chest repair surgery (Rpb=0.48, p≤0.001), AATD (Rpb=0.34, p=0.001), pectus carinatum (Rpb=0.27, p=0.008), and females (Rpb=0.19, p=0.044). Conclusions Shaded Surface Display, when used to evaluate children and young adults with congenital or acquired chest wall deformities, provides useful or critical information for surgical planning and patient management in almost 1/3 of patients, especially those requiring a second operation, with acquired asphyxiating thoracic dystrophy, pectus carinatum, and females. PMID:21496531

  9. Analysis of the Pre-stack Split-Step Migration Operator Using Ritz Values

    NASA Astrophysics Data System (ADS)

    Kaplan, S. T.; Sacchi, M. D.

    2009-05-01

    The Born approximation for the acoustic wave-field is often used as a basis for developing algorithms in seismic imaging (migration). The approximation is linear, and, as such, can be written as a matrix-vector multiplication (Am=d). In the seismic imaging problem, d is seismic data (the recorded wave-field), and we aim to find the seismic reflectivity m (a representation of earth structure and properties) so that Am=d is satisfied. This is the often studied inverse problem of seismic migration, where given A and d, we solve for m. This can be done in a least-squares sense, so that the equation of interest is, AHAm = AHd. Hence, the solution m is largely dependent on the properties of AHA. The imaging Jacobian J provides an approximation to AHA, so that J-1AHA is, in a broad sense, better behaved then AHA. We attempt to quantify this last statement by providing an analysis of AHA and J-1AHA using their Ritz values, and for the particular case where A is built using a pre-stack split-step migration algorithm. Typically, one might try to analyze the behaviour of these matrices using their eigenvalue spectra. The difficulty in the analysis of AHA and J-1AHA lie in their size. For example, a subset of the relatively small Marmousi data set makes AHA a complex valued matrix with, roughly, dimensions of 45 million by 45 million (requiring, in single-precision, about 16 Peta-bytes of computer memory). In short, the size of the matrix makes its eigenvalues difficult to compute. Instead, we compute the leading principal minors of similar tridiagonal matrices, Bk=Vk-1AHAVk and Ck = Uk-1 J-1 AHAUk. These can be constructed using, for example, the Lanczos decomposition. Up to some value of k it is feasible to compute the eigenvalues of Bk and Ck which, in turn, are the Ritz values of, respectively, AHA and J-1 AHA, and may allow us to make quantitative statements about their behaviours.

  10. In Silico Exploration of 1,7-Diazacarbazole Analogs as Checkpoint Kinase 1 Inhibitors by Using 3D QSAR, Molecular Docking Study, and Molecular Dynamics Simulations.

    PubMed

    Gao, Xiaodong; Han, Liping; Ren, Yujie

    2016-05-05

    Checkpoint kinase 1 (Chk1) is an important serine/threonine kinase with a self-protection function. The combination of Chk1 inhibitors and anti-cancer drugs can enhance the selectivity of tumor therapy. In this work, a set of 1,7-diazacarbazole analogs were identified as potent Chk1 inhibitors through a series of computer-aided drug design processes, including three-dimensional quantitative structure-activity relationship (3D-QSAR) modeling, molecular docking, and molecular dynamics simulations. The optimal QSAR models showed significant cross-validated correlation q² values (0.531, 0.726), fitted correlation r² coefficients (higher than 0.90), and standard error of prediction (less than 0.250). These results suggested that the developed models possess good predictive ability. Moreover, molecular docking and molecular dynamics simulations were applied to highlight the important interactions between the ligand and the Chk1 receptor protein. This study shows that hydrogen bonding and electrostatic forces are key interactions that confer bioactivity.

  11. Non-exchangeability of running vs. other exercise in their association with adiposity, and its implications for public health recommendations.

    PubMed

    Williams, Paul T

    2012-01-01

    Current physical activity recommendations assume that different activities can be exchanged to produce the same weight-control benefits so long as total energy expended remains the same (exchangeability premise). To this end, they recommend calculating energy expenditure as the product of the time spent performing each activity and the activity's metabolic equivalents (MET), which may be summed to achieve target levels. The validity of the exchangeability premise was assessed using data from the National Runners' Health Study. Physical activity dose was compared to body mass index (BMI) and body circumferences in 33,374 runners who reported usual distance run and pace, and usual times spent running and other exercises per week. MET hours per day (METhr/d) from running was computed from: a) time and intensity, and b) reported distance run (1.02 MET • hours per km). When computed from time and intensity, the declines (slope±SE) per METhr/d were significantly greater (P<10(-15)) for running than non-running exercise for BMI (slopes±SE, male: -0.12 ± 0.00 vs. 0.00±0.00; female: -0.12 ± 0.00 vs. -0.01 ± 0.01 kg/m(2) per METhr/d) and waist circumference (male: -0.28 ± 0.01 vs. -0.07±0.01; female: -0. 31±0.01 vs. -0.05 ± 0.01 cm per METhr/d). Reported METhr/d of running was 38% to 43% greater when calculated from time and intensity than distance. Moreover, the declines per METhr/d run were significantly greater when estimated from reported distance for BMI (males: -0.29 ± 0.01; females: -0.27 ± 0.01 kg/m(2) per METhr/d) and waist circumference (males: -0.67 ± 0.02; females: -0.69 ± 0.02 cm per METhr/d) than when computed from time and intensity (cited above). The exchangeability premise was not supported for running vs. non-running exercise. Moreover, distance-based running prescriptions may provide better weight control than time-based prescriptions for running or other activities. Additional longitudinal studies and randomized clinical trials are required to verify these results prospectively.

  12. Correlation between Colon Transit Time Test Value and Initial Maintenance Dose of Laxative in Children with Chronic Functional Constipation.

    PubMed

    Kim, Mock Ryeon; Park, Hye Won; Son, Jae Sung; Lee, Ran; Bae, Sun Hwan

    2016-09-01

    To evaluate the correlation between colon transit time (CTT) test value and initial maintenance dose of polyethylene glycol (PEG) 4000 or lactulose. Of 415 children with chronic functional constipation, 190 were enrolled based on exclusion criteria using the CTT test, defecation diary, and clinical chart. The CTT test was performed with prior disimpaction. The laxative dose for maintenance was determined on the basis of the defecation diary and clinical chart. The Shapiro-Wilk test and Pearson's and Spearman's correlations were used for statistical analysis. The overall group median value and interquartile range of the CTT test was 43.8 (31.8) hours. The average PEG 4000 dose for maintenance in the overall group was 0.68±0.18 g/kg/d; according to age, the dose was 0.73±0.16 g/kg/d (<8 years), 0.53±0.12 g/kg/d (8 to <12 years), and 0.36±0.05 g/kg/d (12 to 15 years). The dose of lactulose was 1.99±0.43 mL/kg/d (<8 years) or 1.26±0.25 mL/kg/d (8 to <12 years). There was no significant correlation between CTT test value and initial dose of laxative, irrespective of the subgroup (encopresis, abnormal CTT test subtype) for either laxative. Even in the largest group (overall, n=109, younger than 8 years and on PEG 4000), the correlation was weak (Pearson's correlation coefficient [R]=0.268, p =0.005). Within the abnormal transit group, subgroup (n=73, younger than 8 years and on PEG 4000) correlation was weak (R=0.267, p =0.022). CTT test value cannot predict the initial maintenance dose of PEG 4000 or lactulose with linear correlation.

  13. Factors influencing optical 3D scanning of vinyl polysiloxane impression materials.

    PubMed

    DeLong, R; Pintado, M R; Ko, C C; Hodges, J S; Douglas, W H

    2001-06-01

    Future growth in dental practice lies in digital imaging enhancing many chairside procedures and functions. This revolution requires the fast, accurate, and 3D digitizing of clinical records. One such clinical record is the chairside impression. This study investigated how surface angle and surface roughness affect the digitizing of vinyl polysiloxane impression materials. Seventeen vinyl polysiloxane impression materials were digitized with a white light optical digitizing system. Each sample was digitized at 3 different angles: 0 degrees, 22.5 degrees, and 45 degrees, and 2 digitizer camera f-stops. The digitized images were rendered on a computer monitor using custom software developed under NIH/NIDCR grant DE12225. All the 3D images were rotated to the 0 degrees position, cropped using Corel Photo-Paint 8 (Corel Corp, Ottawa, Ontario, Canada), then saved in the TIFF file format. The impression material area that was successfully digitized was calculated as a percentage of the total sample area, using Optimas 5.22 image processing software (Media Cybernetics, LP, Silver Spring, MD). The dependent variable was a Performance Value calculated for each material by averaging the percentage of area that digitized over the 3 angles. New samples with smooth and rough surfaces were made using the 7 impression materials with the largest Performance Values. These samples were tested as before, but with the additional angle of 60 degrees. Silky-Rock die stone (Whip Mix Corp, Louisville, KY) was used as a control. The Performance Values for the 17 impression materials ranged from 0% to 100%. The Performance Values for the 7 best materials were equivalent to the control at f/11 out to a surface angle of 45 degrees; however, only Examix impression material (GC America Inc, Alsip, IL) was equivalent to the control at f/11/\\16. At the 60 degrees surface angle with f/11/\\16, the Performance Values were 0% for all the impression materials, whereas that for the control was 90%. The difference in the Performance Values for the smooth and rough surface textures was 7%, which was not significant. The digitizing performance of vinyl polysiloxane impression materials is highly material and surface angle-dependent and is significantly lower than the die stone control when angles to 60 degrees are included. It is affected to a lesser extent by surface texture. Copyright 2001 by The American College of Prosthodontists.

  14. An application of the SF-6D to create heath values in Portuguese working age adults.

    PubMed

    Ferreira, Lara Noronha; Ferreira, Pedro Lopes; Pereira, Luís Nobre; Brazier, John

    2008-01-01

    This study describes the health-related quality of life (HRQOL) of the Portuguese working age population and investigates sociodemographic differences. Subjects randomly selected from the working age population (n=2,459) were assessed using the SF-36v2 and converted into the preference-based SF-6D. The mean SF-6D utility value was 0.70 (range 0.63-0.73). The mean utility value was lower for the lower educational level than for the highest. Women, people living in rural areas and older adults reported lower levels of utility values. Non-parametric tests showed that health utility values were significantly related to employment; unskilled manual workers reported utility values lower than non-manual workers. For different diseases, mean utility values ranged from 0.58 (sexual diseases) to 0.66 (hepatic conditions). Cluster analysis was adopted to classify individuals into three groups according to their answers to the SF-6D dimensions. Multinomial logit regression was used to detect sociodemographic characteristics affecting the probability of following each cluster pattern. This study yielded normative data by age and gender for the SF-6D. The authors conclude that SF-6D is an effective tool for measuring HRQOL in the community so that different population groups can be compared. The preference-based measure used seems to discriminate adequately across sociodemographic differences. These results allow a better understanding of the impact of sociodemographic variables on the burden of illness perception.

  15. Dual-energy imaging method to improve the image quality and the accuracy of dose calculation for cone-beam computed tomography.

    PubMed

    Men, Kuo; Dai, Jianrong; Chen, Xinyuan; Li, Minghui; Zhang, Ke; Huang, Peng

    2017-04-01

    To improve the image quality and accuracy of dose calculation for cone-beam computed tomography (CT) images through implementation of a dual-energy cone-beam computed tomography method (DE-CBCT), and evaluate the improvement quantitatively. Two sets of CBCT projections were acquired using the X-ray volumetric imaging (XVI) system on a Synergy (Elekta, Stockholm, Sweden) system with 120kV (high) and 70kV (low) X-rays, respectively. Then, the electron density relative to water (relative electron density (RED)) of each voxel was calculated using a projection-based dual-energy decomposition method. As a comparison, single-energy cone-beam computed tomography (SE-CBCT) was used to calculate RED with the Hounsfield unit-RED calibration curve generated by a CIRS phantom scan with identical imaging parameters. The imaging dose was measured with a dosimetry phantom. The image quality was evaluated quantitatively using a Catphan 503 phantom with the evaluation indices of the reproducibility of the RED values, high-contrast resolution (MTF 50% ), uniformity, and signal-to-noise ratio (SNR). Dose calculation of two simulated volumetric-modulated arc therapy plans using an Eclipse treatment-planning system (Varian Medical Systems, Palo Alto, CA, USA) was performed on an Alderson Rando Head and Neck (H&N) phantom and a Pelvis phantom. Fan-beam planning CT images for the H&N and Pelvis phantom were set as the reference. A global three-dimensional gamma analysis was used to compare dose distributions with the reference. The average gamma values for targets and OAR were analyzed with paired t-tests between DE-CBCT and SE-CBCT. In two scans (H&N scan and body scan), the imaging dose of DE-CBCT increased by 1.0% and decreased by 1.3%. It had a better reproducibility of the RED values (mean bias: 0.03 and 0.07) compared with SE-CBCT (mean bias: 0.13 and 0.16). It also improved the image uniformity (57.5% and 30.1%) and SNR (9.7% and 2.3%), but did not affect the MTF 50% . Gamma analyses of the 3D dose distribution with criteria of 1%/1mm showed a pass rate of 99.0-100% and 85.3-97.6% for DE-CBCT and 73.5-99.1% and 80.4-92.7% for SE-CBCT. The average gamma values were reduced significantly by DE-CBCT (p< 0.05). Gamma index maps showed that matching of the dose distribution between CBCT-based and reference was improved by DE-CBCT. DE-CBCT can achieve both better image quality and higher accuracy of dose calculation, and could be applied to adaptive radiotherapy. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  16. WE-G-18C-09: Separating Perfusion and Diffusion Components From Diffusion Weighted MRI of Rectum Tumors Based On Intravoxel Incoherent Motion (IVIM) Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyagi, N; Wengler, K; Mazaheri, Y

    2014-06-15

    Purpose: Pseudodiffusion arises from the microcirculation of blood in the randomly oriented capillary network and contributes to the signal decay acquired using a multi-b value diffusion weighted (DW)-MRI sequence. This effect is more significant at low b-values and should be properly accounted for in apparent diffusion coefficient (ADC) calculations. The purpose of this study was to separate perfusion and diffusion component based on a biexponential and a segmented monoexponential model using IVIM analysis Methods. The signal attenuation is modeled as S(b) = S0[(1−f)exp(−bD) + fexp(−bD*)]. Fitting the biexponetial decay leads to the quantification of D, the true diffusion coefficient, D*,more » the pseudodiffusion coefficient, and f, the perfusion fraction. A nonlinear least squares fit and two segmented monoexponential models were used to derive the values for D, D*,‘and f. In the segmented approach b = 200 s/mm{sup 2} was used as the cut-off value for calculation of D. DW-MRI's of a rectum cancer patient were acquired before chemotherapy, before radiation therapy (RT), and 4 weeks into RT and were investigated as an example case. Results: Mean ADC for the tumor drawn on the DWI cases was 0.93, 1.0 and 1.13 10{sup −3}×mm{sup 2}/s before chemotherapy, before RT and 4 weeks into RT. The mean (D.10{sup −3} × mm{sup 2}/s, D* 10{sup −3} × mm{sup 2}/s, and f %) based on biexponential fit was (0.67, 18.6, and 27.2%), (0.72, 17.7, and 28.9%) and (0.83,15.1, and 30.7%) at these time points. The mean (D, D* f) based on segmented fit was (0.72, 10.5, and 12.1%), (0.72, 8.2, and 17.4%) and (.82, 8.1, 16.5%) Conclusion: ADC values are typically higher than true diffusion coefficients. For tumors with significant perfusion effect, ADC should be analyzed at higher b-values or separated from the perfusion component. Biexponential fit overestimates the perfusion fraction because of increased sensitivity to noise at low b-values.« less

  17. Measurement of CP Violation in B^{0}→D^{+}D^{-} Decays.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Archilli, F; d'Argent, P; Arnau Romeu, J; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Babuschkin, I; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Baszczyk, M; Batozskaya, V; Batsukh, B; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Bellee, V; Belloli, N; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Betti, F; Bettler, M-O; van Beuzekom, M; Bezshyiko, Ia; Bifani, S; Billoir, P; Bird, T; Birnkraut, A; Bitadze, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Boettcher, T; Bondar, A; Bondar, N; Bonivento, W; Borgheresi, A; Borghi, S; Borisyak, M; Borsato, M; Bossu, F; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britsch, M; Britton, T; Brodzicka, J; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Campora Perez, D H; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cavallero, G; Cenci, R; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S-F; Chobanova, V; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombs, G; Coquereau, S; Corti, G; Corvo, M; Costa Sobral, C M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Da Cunha Marinho, F; Dall'Occo, E; Dalseno, J; David, P N Y; Davis, A; De Aguiar Francisco, O; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Serio, M; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Demmer, M; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dungs, K; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Déléage, N; Easo, S; Ebert, M; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; Elsasser, Ch; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Farley, N; Farry, S; Fay, R; Fazzini, D; Ferguson, D; Fernandez Albor, V; Fernandez Prieto, A; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fini, R A; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Franco Lima, V; Frank, M; Frei, C; Fu, J; Furfaro, E; Färber, C; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garcia Martin, L M; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gizdov, K; Gligorov, V V; Golubkov, D; Golutvin, A; Gomes, A; Gorelov, I V; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Griffith, P; Grillo, L; Gruberg Cazon, B R; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Göbel, C; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hatch, M; He, J; Head, T; Heister, A; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hombach, C; Hopchev, H; Hulsbergen, W; Humair, T; Hushchyn, M; Hussain, N; Hutchcroft, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; Jiang, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Kariuki, J M; Karodia, S; Kecke, M; Kelsey, M; Kenyon, I R; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Koliiev, S; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Kosmyntseva, A; Kozachuk, A; Kozeiha, M; Kravchuk, L; Kreplin, K; Kreps, M; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Leflat, A; Lefrançois, J; Lefèvre, R; Lemaitre, F; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Maltsev, T; Manca, G; Mancinelli, G; Manning, P; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurin, B; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Minard, M-N; Mitzel, D S; Mogini, A; Molina Rodriguez, J; Monroy, I A; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A B; Mountain, R; Muheim, F; Mulder, M; Mussini, M; Müller, D; Müller, J; Müller, K; Müller, V; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Oldeman, R; Onderwater, C J G; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Pais, P R; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parker, W; Parkes, C; Passaleva, G; Pastore, A; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petrov, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pistone, A; Piucci, A; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Pomery, G J; Popov, A; Popov, D; Popovici, B; Poslavskii, S; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Raven, G; Redi, F; Reichert, S; Dos Reis, A C; Remon Alepuz, C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Rogozhnikov, A; Roiser, S; Rollings, A; Romanovskiy, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rudolph, M S; Ruf, T; Ruiz Valls, P; Saborido Silva, J J; Sadykhov, E; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schellenberg, M; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schubert, K; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Simone, S; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefko, P; Stefkova, S; Steinkamp, O; Stemmle, S; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Sun, L; Sutcliffe, W; Swientek, K; Syropoulos, V; Szczekowski, M; Szumlak, T; T'Jampens, S; Tayduganov, A; Tekampe, T; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, E; van Tilburg, J; Tilley, M J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Toriello, F; Tournefier, E; Tourneur, S; Trabelsi, K; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tully, A; Tuning, N; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valassi, A; Valat, S; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Venkateswaran, A; Vernet, M; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Volkov, V; Vollhardt, A; Voneki, B; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Vázquez Sierra, C; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Wark, H M; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wright, S; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zarebski, K A; Zavertyaev, M; Zhang, L; Zhang, Y; Zhang, Y; Zhelezov, A; Zheng, Y; Zhokhov, A; Zhu, X; Zhukov, V; Zucchelli, S

    2016-12-23

    The CP violation observables S and C in the decay channel B^{0}→D^{+}D^{-} are determined from a sample of proton-proton collisions at center-of-mass energies of 7 and 8 TeV, collected by the LHCb experiment and corresponding to an integrated luminosity of 3  fb^{-1}. The observable S describes CP violation in the interference between mixing and the decay amplitude, and C parametrizes direct CP violation in the decay. The following values are obtained from a flavor-tagged, decay-time-dependent analysis: S=-0.54_{-0.16}^{+0.17}(stat)±0.05(syst), C=0.26_{-0.17}^{+0.18}(stat)±0.02(syst). These values provide evidence for CP violation at a significance level of 4.0 standard deviations. The phase shift due to higher-order standard model corrections is constrained to a small value of Δϕ=-0.16_{-0.21}^{+0.19}  rad.

  18. Electronic structure and dissociation curves for the ground states of Tl/sub 2/ and Tl/sub 2//sup +/ from relativistic effective potential calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christiansen, P.A.; Pitzer, K.S.

    The dissociation curves for the ground states of Tl/sub 2/ and Tl/sub 2//sup +/ were computed using a generalization of the molecular relativistic ..omega..--..omega.. coupling formalism of Lee, Ermler, and Pitzer. Relativistic effects, as represented by the Dirac equation, were introduced using effective potentials generated from atomic Dirac--nFock wave functions using a generalization of the improved effective potential formulation of Christiansen, Lee, and Pitzer. Our calculations show that the ground state of Tl/sub 2//sup +/ is 1/2/sub g/ with computed D/sub e/ and R/sub e/ values of 0.58 eV and 3.84 A. For Tl/sub 2/ we find that the groundmore » state is 0/sub u//sup -/ but the 0/sub g//sup +/ and the 1/sub u/ states are only slightly higher in energy; the potential curves for these states are repulsive to about 3.5 A and then essentially flat beyond that radius. While corrections for correlation will increase D/sub e/ somewhat, Tl/sub 2/ is only weakly bound in any of these states which dissociate to normal atoms. The cause is undoubtedly related to the large spin-orbit splitting between the 6p/sub 1/2/ and 6p/sub 3/2/ thallium spinors.« less

  19. Malocclusion Class II division 1 skeletal and dental relationships measured by cone-beam computed tomography.

    PubMed

    Xu, Yiling; Oh, Heesoo; Lagravère, Manuel O

    2017-09-01

    The purpose of this study was to locate traditionally-used landmarks in two-dimensional (2D) images and newly-suggested ones in three-dimensional (3D) images (cone-beam computer tomographies [CBCTs]) and determine possible relationships between them to categorize patients with Class II-1 malocclusion. CBCTs from 30 patients diagnosed with Class II-1 malocclusion were obtained from the University of Alberta Graduate Orthodontic Program database. The reconstructed images were downloaded and visualized using the software platform AVIZO ® . Forty-two landmarks were chosen and the coordinates were then obtained and analyzed using linear and angular measurements. Ten images were analyzed three times to determine the reliability and measurement error of each landmark using Intra-Class Correlation coefficient (ICC). Descriptive statistics were done using the SPSS statistical package to determine any relationships. ICC values were excellent for all landmarks in all axes, with the highest measurement error of 2mm in the y-axis for the Gonion Left landmark. Linear and angular measurements were calculated using the coordinates of each landmark. Descriptive statistics showed that the linear and angular measurements used in the 2D images did not correlate well with the 3D images. The lowest standard deviation obtained was 0.6709 for S-GoR/N-Me, with a mean of 0.8016. The highest standard deviation was 20.20704 for ANS-InfraL, with a mean of 41.006. The traditional landmarks used for 2D malocclusion analysis show good reliability when transferred to 3D images. However, they did not reveal specific skeletal or dental patterns when trying to analyze 3D images for malocclusion. Thus, another technique should be considered when classifying 3D CBCT images for Class II-1malocclusion. Copyright © 2017 CEO. Published by Elsevier Masson SAS. All rights reserved.

  20. Enhanced Diagnostic Capability for Glaucoma of 3-Dimensional versus 2-Dimensional Neuroretinal Rim Parameters Using Spectral Domain Optical Coherence Tomography

    PubMed Central

    Fan, Kenneth Chen; Tsikata, Edem; Khoueir, Ziad; Simavli, Huseyin; Guo, Rong; DeLuna, Regina; Pandit, Sumir; Que, Christian John; de Boer, Johannes F.; Chen, Teresa C.

    2017-01-01

    Purpose To compare the diagnostic capability of 3-dimensional (3D) neuroretinal rim parameters with existing 2-dimensional (2D) neuroretinal and retinal nerve fiber layer (RNFL) thickness rim parameters using spectral domain optical coherence tomography (SD-OCT) volume scans Materials and Methods Design Institutional prospective pilot study. Study population 65 subjects (35 open angle glaucoma patients, 30 normal patients). Observation procedures One eye of each subject was included. SD-OCT was used to obtain 2D retinal nerve fiber layer (RNFL) thickness values and five neuroretinal rim parameters [i.e. 3D minimum distance band (MDB) thickness, 3D Bruch’s membrane opening-minimum rim width (BMO-MRW), 3D rim volume, 2D rim area, and 2D rim thickness]. Main outcome measures Area under the receiver operating characteristic (AUROC) curve values, sensitivity, specificity. Results Comparing all 3D with all 2D parameters, 3D rim parameters (MDB, BMO-MRW, rim volume) generally had higher AUROC curve values (range 0.770–0.946) compared to 2D parameters (RNFL thickness, rim area, rim thickness; range 0.678–0.911). For global region analyses, all 3D rim parameters (BMO-MRW, rim volume, MDB) were equal to or better than 2D parameters (RNFL thickness, rim area, rim thickness; p-values from 0.023–1.0). Among the three 3D rim parameters (MDB, BMO-MRW, and rim volume), there were no significant differences in diagnostic capability (false discovery rate > 0.05 at 95% specificity). Conclusion 3D neuroretinal rim parameters (MDB, BMO-MRW, and rim volume) demonstrated better diagnostic capability for primary and secondary open angle glaucomas compared to 2D neuroretinal parameters (rim area, rim thickness). Compared to 2D RNFL thickness, 3D neuroretinal rim parameters have the same or better diagnostic capability. PMID:28234677

  1. Should regional ventilation function be considered during radiation treatment planning to prevent radiation-induced complications?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan, Fujun; Jeudy, Jean; D’Souza, Warren

    Purpose: To investigate the incorporation of pretherapy regional ventilation function in predicting radiation fibrosis (RF) in stage III nonsmall cell lung cancer (NSCLC) patients treated with concurrent thoracic chemoradiotherapy. Methods: Thirty-seven patients with stage III NSCLC were retrospectively studied. Patients received one cycle of cisplatin–gemcitabine, followed by two to three cycles of cisplatin–etoposide concurrently with involved-field thoracic radiotherapy (46–66 Gy; 2 Gy/fraction). Pretherapy regional ventilation images of the lung were derived from 4D computed tomography via a density change–based algorithm with mass correction. In addition to the conventional dose–volume metrics (V{sub 20}, V{sub 30}, V{sub 40}, and mean lung dose),more » dose–function metrics (fV{sub 20}, fV{sub 30}, fV{sub 40}, and functional mean lung dose) were generated by combining regional ventilation and radiation dose. A new class of metrics was derived and referred to as dose–subvolume metrics (sV{sub 20}, sV{sub 30}, sV{sub 40}, and subvolume mean lung dose); these were defined as the conventional dose–volume metrics computed on the functional lung. Area under the receiver operating characteristic curve (AUC) values and logistic regression analyses were used to evaluate these metrics in predicting hallmark characteristics of RF (lung consolidation, volume loss, and airway dilation). Results: AUC values for the dose–volume metrics in predicting lung consolidation, volume loss, and airway dilation were 0.65–0.69, 0.57–0.70, and 0.69–0.76, respectively. The respective ranges for dose–function metrics were 0.63–0.66, 0.61–0.71, and 0.72–0.80 and for dose–subvolume metrics were 0.50–0.65, 0.65–0.75, and 0.73–0.85. Using an AUC value = 0.70 as cutoff value suggested that at least one of each type of metrics (dose–volume, dose–function, dose–subvolume) was predictive for volume loss and airway dilation, whereas lung consolidation cannot be accurately predicted by any of the metrics. Logistic regression analyses showed that dose–function and dose–subvolume metrics were significant (P values ≤ 0.02) in predicting volume airway dilation. Likelihood ratio test showed that when combining dose–function and/or dose–subvolume metrics with dose–volume metrics, the achieved improvements of prediction accuracy on volume loss and airway dilation were significant (P values ≤ 0.04). Conclusions: The authors’ results demonstrated that the inclusion of regional ventilation function improved accuracy in predicting RF. In particular, dose–subvolume metrics provided a promising method for preventing radiation-induced pulmonary complications.« less

  2. Determinants of time trade-off valuations for EQ-5D-5L health states: data from the Canadian EQ-5D-5L valuation study.

    PubMed

    Sayah, Fatima Al; Bansback, Nick; Bryan, Stirling; Ohinmaa, Arto; Poissant, Lise; Pullenayegum, Eleanor; Xie, Feng; Johnson, Jeffrey A

    2016-07-01

    Previous studies suggest that population subgroups have different perceptions of health, as well as different preferences for hypothetical health states. To identify determinants of health states preferences elicited using time trade-off (TTO) for the 5-level EQ-5D questionnaire (EQ-5D-5L) in Canada. Data were from the Canadian EQ-5D-5L Valuation Study, which took place in Edmonton, Hamilton, Montreal, and Vancouver. Each respondent valued 10 of 86 hypothetical health states during an in-person interview using a computer-based TTO exercise. The TTO scores were the dependent variable and explanatory variables including age, sex, marital status, education, employment, annual household income, ethnicity, country of birth, dwelling, study site, health literacy, number of chronic conditions, previous experience with illness, and self-rated health. Average [standard deviation (SD)] age of respondents (N = 1209) was 48 (17) years, and 45 % were male. In multivariable linear regression models with random effects, adjusted for severity of health states and inconsistencies in valuations, older age [unstandardized regression coefficient (β) = -0.077], male sex (β = 0.042), being married (β = 0.069), and urban dwelling (β = -0.055) were significantly associated with health states scores. Additionally, participants from Edmonton (β = -0.124) and Vancouver (β = -0.156), but not those from Hamilton, had significantly lower TTO scores than those from Montreal. Socio-demographic characteristics were the main determinants of preferences for EQ-5D-5L health states in this study. Interestingly, preferences were significantly lower in western Canadian cities compared to eastern ones, bringing into question whether a single preference algorithm is suitable for use in all parts of Canada.

  3. High-Resolution Three-Dimensional Computed Tomography for Assessing Complications Related to Intrathecal Drug Delivery.

    PubMed

    Morgalla, Matthias; Fortunato, Marcos; Azam, Ala; Tatagiba, Marcos; Lepski, Guillherme

    2016-07-01

    The assessment of the functionality of intrathecal drug delivery (IDD) systems remains difficult and time-consuming. Catheter-related problems are still very common, and sometimes difficult to diagnose. The aim of the present study is to investigate the accuracy of high-resolution three-dimensional computed tomography (CT) in order to detect catheter-related pump dysfunction. An observational, retrospective investigation. Academic medical center in Germany. We used high-resolution three dimensional (3D) computed tomography with volume rendering technique (VRT) or fluoroscopy and conventional axial-CT to assess IDD-related complications in 51 patients from our institution who had IDD systems implanted for the treatment of chronic pain or spasticity. Twelve patients (23.5%) presented a total of 22 complications. The main type of complication in our series was catheter-related (50%), followed by pump failure, infection, and inappropriate refilling. Fluoroscopy and conventional CT were used in 12 cases. High-resolution 3D CT VRT scan was used in 35 instances with suspected yet unclear complications. Using 3D-CT (VRT) the sensitivity was 58.93% - 100% (CI 95%) and the specificity 87.54% - 100% (CI 95%).The positive predictive value was 58.93% - 100% (CI 95%) and the negative predictive value: 87.54% - 100% (CI 95%).Fluoroscopy and axial CT as a combined diagnostic tool had a sensitivity of 8.3% - 91.7% (CI 95%) and a specificity of 62.9% - 100% (CI 95%). The positive predictive value was 19.29% - 100% (CI 95%) and the negative predictive value: 44.43% - 96.89% (CI 95%). This study is limited by its observational design and the small number of cases. High-resolution 3D CT VRT is a non- invasive method that can identify IDD-related complications with more precision than axial CT and fluoroscopy.

  4. Image-Based 3D Treatment Planning for Vaginal Cylinder Brachytherapy: Dosimetric Effects of Bladder Filling on Organs at Risk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hung, Jennifer; Shen Sui; De Los Santos, Jennifer F.

    2012-07-01

    Purpose: To investigate the dosimetric effects of bladder filling on organs at risk (OARs) using three-dimensional image-based treatment planning for vaginal cylinder brachytherapy. Methods and Materials: Twelve patients with endometrial or cervical cancer underwent postoperative high-dose rate vaginal cylinder brachytherapy. For three-dimensional planning, patients were simulated by computed tomography with an indwelling catheter in place (empty bladder) and with 180 mL of sterile water instilled into the bladder (full bladder). The bladder, rectum, sigmoid, and small bowel (OARs) were contoured, and a prescription dose was generated for 10 to 35 Gy in 2 to 5 fractions at the surface ormore » at 5 mm depth. For each OAR, the volume dose was defined by use of two different criteria: the minimum dose value in a 2.0-cc volume receiving the highest dose (D{sub 2cc}) and the dose received by 50% of the OAR volume (D{sub 50%}). International Commission on Radiation Units and Measurements (ICRU) bladder and rectum point doses were calculated for comparison. The cylinder-to-bowel distance was measured using the shortest distance from the cylinder apex to the contoured sigmoid or small bowel. Statistical analyses were performed with paired t tests. Results: Mean bladder and rectum D{sub 2cc} values were lower than their respective ICRU doses. However, differences between D{sub 2cc} and ICRU doses were small. Empty vs. full bladder did not significantly affect the mean cylinder-to-bowel distance (0.72 vs. 0.92 cm, p = 0.08). In contrast, bladder distention had appreciable effects on bladder and small bowel volume dosimetry. With a full bladder, the mean small bowel D{sub 2cc} significantly decreased from 677 to 408 cGy (p = 0.004); the mean bladder D{sub 2cc} did not increase significantly (1,179 cGy vs. 1,246 cGy, p = 0.11). Bladder distention decreased the mean D{sub 50%} for both the bladder (441 vs. 279 cGy, p = 0.001) and the small bowel (168 vs. 132 cGy, p = 0.001). Rectum and sigmoid volume doses were not affected by bladder filling. Conclusions: In high-dose rate vaginal cylinder brachytherapy, treatment with a distended bladder preferentially reduces high dose to the small bowel around the vaginal cuff without a significant change in dose to the bladder, rectum, or sigmoid.« less

  5. Corneal curvature, pachymetry, and endothelial cell density in Marfan syndrome.

    PubMed

    Konradsen, Tiina R; Koivula, Annemari; Kugelberg, Maria; Zetterström, Charlotta

    2012-06-01

    To evaluate corneal curvature, pachymetry, and endothelial cell density (ECD) in Marfan syndrome (MFS). A case-control study in which K values, pachymetry, and ECD were compared in 39 MFS eyes and 40 control eyes matched for age and refraction was conducted. MFS eyes with lens subluxation also were compared with eyes without subluxation. The mean K(med) value in MFS eyes was lower than in the control eyes, 42.2 ± 1.9 versus 43.4 ± 1.4 dioptres (D), respectively (p = 0.02). Fifteen MFS eyes (38%) and three control eyes (8%) had K(med) values below 41.5 D (p = 0.0012). MFS eyes had generally more corneal astigmatism than control eyes, 1.1 ± 0.9 versus 0.8 ± 0.4 D (p = 0.035), and MFS eyes with lens subluxation had more corneal astigmatism than those without, 1.6 ± 1.1 versus 0.6 ± 0.3 D (p = 0.0002). Nine MFS eyes with corneal astigmatism exceeding 1.5 D also had a subluxated lens. No eyes had keratoconus. The mean pachymetry value was lower in MFS eyes compared to the controls, 485 ± 54.5 versus 514 ± 37.3 μm (p = 0.007); 24 MFS eyes (62%) and 10 control eyes (25%) had measurements below 500 μm (p = 0.01). The mean ECD values were similar in MFS and control eyes, 2815 ± 430 versus 2858 ± 458 cells/mm(2) (p = 0.66). The mean K value, pachymetry, and ECD values did not differ between MFS eyes with and without lens subluxation. Decreased K values and pachymetry could indicate MFS regardless of subluxation. High corneal astigmatism is associated with subluxation in MFS. Subluxation should be identified in MFS eyes with high corneal astigmatism. © 2010 The Authors. Journal compilation © 2010 Acta Ophthalmol.

  6. Computer-assisted sperm analysis of fresh epididymal cat spermatozoa and the impact of cool storage (4 degrees C) on sperm quality.

    PubMed

    Filliers, M; Rijsselaere, T; Bossaert, P; De Causmaecker, V; Dewulf, J; Pope, C E; Van Soom, A

    2008-12-01

    Epididymal cat sperm is commonly used for in vitro fertilization. Because of the high variability in preparation protocols and methods of evaluation, sperm quality may vary considerably between experiments and laboratories. The aims of the present study were (1) to describe an epididymal sperm preparation protocol to produce clean, highly motile samples using density gradient centrifugation, (2) to provide reference values of computer-assisted semen analysis (CASA) parameters of fresh epididymal cat sperm after density gradient centrifugation and (3) to investigate the effect of cool storage on various spermatozoa characteristics. After slicing the epididymides, viable and motile sperm cells were isolated using Percoll centrifugation. Sperm motility parameters were subsequently assessed using CASA in experiment 1. In experiment 2, fresh (day 0) sperm samples were evaluated for motility parameters (HTR) and stained for assessment of acrosomal status (FITC-PSA), morphology (eosin/nigrosin (E/N)), membrane integrity (E/N and SYBR((R))14-PI) and DNA fragmentation (TUNEL). After addition of a Tris-glucose-citrate diluent containing 20% egg yolk, samples were cooled to 4 degrees C and reassessed on d1, d3, d5, d7 and d10. Cool storage impaired most motility and velocity parameters: MOT, PMOT, VAP, VSL, VCL, BCF, RAPID and the percentage of normal spermatozoa showed a decrease over time (P<0.05) as compared to fresh samples. In contrast, STR, ALH, membrane integrity, DNA fragmentation and the percentage of acrosome intact spermatozoa were not affected by cool storage. However, the influence of cool storage of cat spermatozoa on subsequent in vitro embryo development and quality after IVF requires further investigation.

  7. Accuracy Evaluation of a Stereolithographic Surgical Template for Dental Implant Insertion Using 3D Superimposition Protocol.

    PubMed

    Cristache, Corina Marilena; Gurbanescu, Silviu

    2017-01-01

    of this study was to evaluate the accuracy of a stereolithographic template, with sleeve structure incorporated into the design, for computer-guided dental implant insertion in partially edentulous patients. Sixty-five implants were placed in twenty-five consecutive patients with a stereolithographic surgical template. After surgery, digital impression was taken and 3D inaccuracy of implants position at entry point, apex, and angle deviation was measured using an inspection tool software. Mann-Whitney U test was used to compare accuracy between maxillary and mandibular surgical guides. A p value < .05 was considered significant. Mean (and standard deviation) of 3D error at the entry point was 0.798 mm (±0.52), at the implant apex it was 1.17 mm (±0.63), and mean angular deviation was 2.34 (±0.85). A statistically significant reduced 3D error was observed at entry point p = .037, at implant apex p = .008, and also in angular deviation p = .030 in mandible when comparing to maxilla. The surgical template used has proved high accuracy for implant insertion. Within the limitations of the present study, the protocol for comparing a digital file (treatment plan) with postinsertion digital impression may be considered a useful procedure for assessing surgical template accuracy, avoiding radiation exposure, during postoperative CBCT scanning.

  8. Higher rank ABJM Wilson loops from matrix models

    DOE PAGES

    Cookmeyer, Jonathan; Liu, James T.; Pando Zayas, Leopoldo A.

    2016-11-21

    We compute the vacuum expectation values of 1/6 supersymmetric Wilson loops in higher dimensional representations of the gauge group in ABJM theory. We then present results for the m-symmetric and m-antisymmetric representations by exploiting standard matrix model techniques. At leading order, in the saddle point approximation, our expressions reproduce holographic results from both D6 and D2 branes corresponding to the antisymmetric and symmetric representations, respectively. We also compute 1/N corrections to the leading saddle point results.

  9. Sensitivity and specificity of cone beam computed tomography in thin bony structures in maxillofacial surgery – A clinical trial.

    PubMed

    Thönissen, P; Ermer, M A; Schmelzeisen, R; Gutwald, R; Metzger, M C; Bittermann, G

    2015-09-01

    Cone-Beam Computed Tomography (CBCT) has become widely used in dentistry and maxillofacial surgery. Accuracy, sensitivity and specificity of thin bony structures below 0.5 mm have been subject of some in vitro studies. This prospective in vivo study investigates the correlation between preoperative CBCT-imaging and intraoperative clinical examination of thin bony structures. We hereby present results from daily clinical routine. A total number of 80 sites in 64 patients has been examined to differentiate between preoperative 3D imaging and clinical measurements on cystic lesions in maxilla and mandible. Different CBCT-devices with a voxel size ranging from 0.08 mm to 0.4 mm were used. Overall-specificity found for detecting thin bony structures of the human jaw is 13.89%, overall sensitivity is 100%, positive predictive value (PPV) is 58.67% and negative predictive value (NPV) is 100%. Image quality is the key to make use of additional information CBCT provides and depends on spatial, temporal and contrast resolution. CBCT does not depict reliably thin bony structures of the jaw, even if high voxel resolution is used. In selected cases using high resolution protocols should be considered despite affecting the patient with higher doses of radiation. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  10. Reliability and validity of the EQ-5D-3L for Kashin-Beck disease in China.

    PubMed

    Fang, Hua; Farooq, Umer; Wang, Dimiao; Yu, Fangfang; Younus, Mohammad Imran; Guo, Xiong

    2016-01-01

    Kashin-Beck Disease (KBD) is an endemic osteoarthropathy in areas which extend from the North-East to the South-West of China. Most of the patients with KBD suffer multiple dysfunctions in major joints causing decreased health status. However because of their low education level and unique living habits, it is hard to find tools to measure the health-related quality of life (HRQOL). European quality of life (EQ-5D-3L) patient-reported instrument is widely used to measure HRQOL. This study aimed to establish the validity and reliability of the Chinese version of the EQ-5D-3L for evaluating HRQOL of KBD individuals in rural area. 368 individuals who were suffering from KBD were recruited through stratified multistage random sampling from Shaanxi province, China. The EQ-5D-3L and the WHOQOL-BREF were administrated in each individual by face to face interview. Test-retest reliability was assessed at 10-14 days intervals. The test-retest reliability was measured by calculating the Kappa coefficients for EQ-5D-3L five dimensions. For the EQ VAS, the intraclass correlation coefficient (ICC) was computed. Convergent and divergent analysis, construct validity was established using Spearman's rank correlation between the EQ-5D-3L and the WHOQOL-BREF. Known groups' validity was examined by comparing groups with a priori expected differences in health-related quality of life (HRQOL). For 362 individuals (98%), comprehensive data of all the EQ-5D-3L dimensions were available. Kappa values of the EQ-5D-3L five items ranged from 0.324 to 0.554. ICC of the EQ VAS was 0.497. For convergent validity, the three items (self-care, usual activity, and mobility) of EQ-5D-3L, index scores, and VAS showed moderate correlations with the physical health domain of the WHOQOL-BREF (r absolute value ranged from 0.339 to 0.475). For divergent validity, the 5 items of EQ-5D-3L showed weak or no correlations with environment and social relationship domains of WHOQOL-BREF. The Chinese EQ-5D-3L clearly demarcated between groups which were reporting severe disease degree, poorer general health, more number of painful joints with worse HRQOL. The EQ-5D-3L Chinese Version demonstrated fair to moderate levels of test-retest reliability and adequate construct validity in KBD individuals in China.

  11. Anomaly of strings of 6d {N}=(1,0) theories

    NASA Astrophysics Data System (ADS)

    Shimizu, Hiroyuki; Tachikawa, Yuji

    2016-11-01

    We obtain the anomaly polynomial of strings of general 6d {N}=(1,0) theories in terms of anomaly inflow. Our computation sheds some light on the reason why the simplest 6d {N}=(1,0) theory has E 8 flavor symmetry, and also partially explains a curious numerology in F-theory.

  12. Pharmacophore Modelling and 4D-QSAR Study of Ruthenium(II) Arene Complexes as Anticancer Agents (Inhibitors) by Electron Conformational- Genetic Algorithm Method.

    PubMed

    Yavuz, Sevtap Caglar; Sabanci, Nazmiye; Saripinar, Emin

    2018-01-01

    The EC-GA method was employed in this study as a 4D-QSAR method, for the identification of the pharmacophore (Pha) of ruthenium(II) arene complex derivatives and quantitative prediction of activity. The arrangement of the computed geometric and electronic parameters for atoms and bonds of each compound occurring in a matrix is known as the electron-conformational matrix of congruity (ECMC). It contains the data from HF/3-21G level calculations. Compounds were represented by a group of conformers for each compound rather than a single conformation, known as fourth dimension to generate the model. ECMCs were compared within a certain range of tolerance values by using the EMRE program and the responsible pharmacophore group for ruthenium(II) arene complex derivatives was found. For selecting the sub-parameter which had the most effect on activity in the series and the calculation of theoretical activity values, the non-linear least square method and genetic algorithm which are included in the EMRE program were used. In addition, compounds were classified as the training and test set and the accuracy of the models was tested by cross-validation statistically. The model for training and test sets attained by the optimum 10 parameters gave highly satisfactory results with R2 training= 0.817, q 2=0.718 and SEtraining=0.066, q2 ext1 = 0.867, q2 ext2 = 0.849, q2 ext3 =0.895, ccctr = 0.895, ccctest = 0.930 and cccall = 0.905. Since there is no 4D-QSAR research on metal based organic complexes in the literature, this study is original and gives a powerful tool to the design of novel and selective ruthenium(II) arene complexes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Fast Noncircular 2D-DOA Estimation for Rectangular Planar Array

    PubMed Central

    Xu, Lingyun; Wen, Fangqing

    2017-01-01

    A novel scheme is proposed for direction finding with uniform rectangular planar array. First, the characteristics of noncircular signals and Euler’s formula are exploited to construct a new real-valued rectangular array data. Then, the rotational invariance relations for real-valued signal space are depicted in a new way. Finally the real-valued propagator method is utilized to estimate the pairing two-dimensional direction of arrival (2D-DOA). The proposed algorithm provides better angle estimation performance and can discern more sources than the 2D propagator method. At the same time, it has very close angle estimation performance to the noncircular propagator method (NC-PM) with reduced computational complexity. PMID:28417926

  14. Temperature dependence and GABA modulation of (TH)triazolam binding in the rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Earle, M.E.; Concas, A.; Wamsley, J.K.

    1987-07-27

    The hypnotic triazolam (TZ), a triazolobenzodiazepine displays a short physiological half life and has been used for the treatment of insomnia related to anxiety states. The authors major objectives were the direct measurement of the temperature dependence and the gamma-aminobutyric acid (GABA) effect of (TH)TZ binding in the rat brain. Saturation studies showed a shift to lower affinity with increasing temperatures (K/sub d/ = 0.27 +/- 08 nM at 0C; K/sub d/ = 1.96 +/- 0.85 nM at 37C) while the B/sub max/ values remained unchanged (1220 +/- 176 fmoles/mg protein at 0C and 1160 +/- 383 fmoles/mg protein atmore » 37C). Saturation studies of (TH)TZ binding in the presence or absence of GABA (100 M) showed a GABA-shift. At 0C the K/sub d/ values were (K/sub d/ = 0.24 +/- 0.03 nM/-GABA; K/sub d/ = 0.16 +/- 0.04/+GABA) and at 37C the K/sub d/ values were (K/sub d/ = 1.84 +/- 0.44 nM/-GABA; K/sub d/ = 0.95 +/- 0.29 nM/+GABA). In contrast to reported literature, the authors findings show that TZ interacts with benzodiazepine receptors with a temperature dependence and GABA-shift consistent with predicted behavior for benzodiazepine agonists. 20 references, 3 tables.« less

  15. A study of the effect of in-line and perpendicular magnetic fields on beam characteristics of electron guns in medical linear accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constantin, Dragos E.; Fahrig, Rebecca; Keall, Paul J.

    Purpose: Using magnetic resonance imaging (MRI) for real-time guidance during radiotherapy is an active area of research and development. One aspect of the problem is the influence of the MRI scanner, modeled here as an external magnetic field, on the medical linear accelerator (linac) components. The present work characterizes the behavior of two medical linac electron guns with external magnetic fields for in-line and perpendicular orientations of the linac with respect to the MRI scanner. Methods: Two electron guns, Litton L-2087 and Varian VTC6364, are considered as representative models for this study. Emphasis was placed on the in-line design approachmore » in which case the MRI scanner and the linac axes of symmetry coincide and assumes no magnetic shielding of the linac. For the in-line case, the magnetic field from a 0.5 T open MRI (GE Signa SP) magnet with a 60 cm gap between its poles was computed and used in full three dimensional (3D) space charge simulations, whereas for the perpendicular case the magnetic field was constant. Results: For the in-line configuration, it is shown that the electron beam is not deflected from the axis of symmetry of the gun and the primary beam current does not vanish even at very high values of the magnetic field, e.g., 0.16 T. As the field strength increases, the primary beam current has an initial plateau of constant value after which its value decreases to a minimum corresponding to a field strength of approximately 0.06 T. After the minimum is reached, the current starts to increase slowly. For the case when the beam current computation is performed at the beam waist position the initial plateau ends at 0.016 T for Litton L-2087 and at 0.012 T for Varian VTC6364. The minimum value of the primary beam current is 27.5% of the initial value for Litton L-2087 and 22.9% of the initial value for Varian VTC6364. The minimum current is reached at 0.06 and 0.062 T for Litton L-2087 and Varian VTC6364, respectively. At 0.16 T the beam current increases to 40.2 and 31.4% from the original value of the current for Litton L-2087 and Varian VTC6364, respectively. In contrast, for the case when the electron gun is perpendicular to the magnetic field, the electron beam is deflected from the axis of symmetry even at small values of the magnetic field. As the strength of the magnetic field increases, so does the beam deflection, leading to a sharp decrease of the primary beam current which vanishes at about 0.007 T for Litton L-2087 and at 0.006 T for Varian VTC6364, respectively. At zero external field, the beam rms emittance computed at beam waist is 1.54 and 1.29{pi}-mm-mrad for Litton L-2087 and Varian VTC6364, respectively. For the in-line configuration, there are two particular values of the external field where the beam rms emittance reaches a minimum. Litton L-2087 rms emittance reaches a minimum of 0.72{pi} and 2.01{pi}-mm-mrad at 0.026 and 0.132 T, respectively. Varian VTC6364 rms emittance reaches a minimum of 0.34{pi} and 0.35{pi}-mm-mrad at 0.028 and 0.14 T, respectively. Beam radius dependence on the external field is shown for the in-line configuration for both electron guns. Conclusions: 3D space charge simulation of two electron guns, Litton L-2087 and Varian VTC6364, were performed for in-line and perpendicular external magnetic fields. A consistent behavior of Pierce guns in external magnetic fields was proven. For the in-line configuration, the primary beam current does not vanish but a large reduction of beam current (up to 77.1%) is observed at higher field strengths; the beam directionality remains unchanged. It was shown that for a perpendicular configuration the current vanishes due to beam bending under the action of the Lorentz force. For in-line configuration it was determined that the rms beam emittance reaches two minima for relatively high values of the external magnetic field.« less

  16. 26 CFR 1.382-1 - Table of contents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... certain issuances of stock. (1) Introduction. (2) Small issuance exception. (i) In general. (ii) Small...) Adjustments for stock splits and similar transactions. (D) Exception. (iv) Short taxable years. (3) Other...) Computation of value. (c) Short taxable year. (d) Successive ownership changes and absorption of a section 382...

  17. Dynamic Estimation of Rigid Motion from Perspective Views via Recursive Identification of Exterior Differential Systems with Parameters on a Topological Manifold

    DTIC Science & Technology

    1994-02-15

    0. Faugeras. Three dimensional vision, a geometric viewpoint. MIT Press, 1993. [19] 0 . D. Faugeras and S. Maybank . Motion from point mathces...multiplicity of solutions. Int. J. of Computer Vision, 1990. 1201 0.D. Faugeras, Q.T. Luong, and S.J. Maybank . Camera self-calibration: theory and...Kalrnan filter-based algorithms for estimating depth from image sequences. Int. J. of computer vision, 1989. [41] S. Maybank . Theory of

  18. Vertical bone measurements from cone beam computed tomography images using different software packages.

    PubMed

    Vasconcelos, Taruska Ventorini; Neves, Frederico Sampaio; Moraes, Lívia Almeida Bueno; Freitas, Deborah Queiroz

    2015-01-01

    This article aimed at comparing the accuracy of linear measurement tools of different commercial software packages. Eight fully edentulous dry mandibles were selected for this study. Incisor, canine, premolar, first molar and second molar regions were selected. Cone beam computed tomography (CBCT) images were obtained with i-CAT Next Generation. Linear bone measurements were performed by one observer on the cross-sectional images using three different software packages: XoranCat®, OnDemand3D® and KDIS3D®, all able to assess DICOM images. In addition, 25% of the sample was reevaluated for the purpose of reproducibility. The mandibles were sectioned to obtain the gold standard for each region. Intraclass coefficients (ICC) were calculated to examine the agreement between the two periods of evaluation; the one-way analysis of variance performed with the post-hoc Dunnett test was used to compare each of the software-derived measurements with the gold standard. The ICC values were excellent for all software packages. The least difference between the software-derived measurements and the gold standard was obtained with the OnDemand3D and KDIS3D (-0.11 and -0.14 mm, respectively), and the greatest, with the XoranCAT (+0.25 mm). However, there was no statistical significant difference between the measurements obtained with the different software packages and the gold standard (p> 0.05). In conclusion, linear bone measurements were not influenced by the software package used to reconstruct the image from CBCT DICOM data.

  19. Development and calibration of a dietary nitrate and nitrite database in the NIH–AARP Diet and Health Study

    PubMed Central

    Inoue-Choi, Maki; Virk-Baker, Mandeep K; Aschebrook-Kilfoy, Briseis; Cross, Amanda J; Subar, Amy F; Thompson, Frances E; Sinha, Rashmi; Ward, Mary H

    2016-01-01

    Objective Nitrate and nitrite are probable human carcinogens when ingested under conditions that increase the formation of N-nitroso compounds. There have been limited efforts to develop US databases of dietary nitrate and nitrite for standard FFQ. Here we describe the development of a dietary nitrate and nitrite database and its calibration. Design We analysed data from a calibration study of 1942 members of the NIH–AARP (NIH–AARP, National Institutes of Health–AARP) Diet and Health Study who reported all foods and beverages consumed on the preceding day in two non-consecutive 24 h dietary recalls (24HR) and completed an FFQ. Based on a literature review, we developed a database of nitrate and nitrite contents for foods reported on these 24HR and for food category line items on the FFQ. We calculated daily nitrate and nitrite intakes for both instruments, and used a measurement error model to compute correlation coefficients and attenuation factors for the FFQ-based intake estimates using 24HR-based values as reference data. Results FFQ-based median nitrate intake was 68·9 and 74·1 mg/d, and nitrite intake was 1·3 and 1·0 mg/d, in men and women, respectively. These values were similar to 24HR-based intake estimates. Energy-adjusted correlation coefficients between FFQ- and 24HR-based values for men and women respectively were 0·59 and 0·57 for nitrate and 0·59 and 0·58 for nitrite; energy-adjusted attenuation factors were 0·59 and 0·57 for nitrate and 0·47 and 0·38 for nitrite. Conclusions The performance of the FFQ in assessing dietary nitrate and nitrite intakes is comparable to that for many other macro- and micronutrients. PMID:26626817

  20. SU-E-J-154: Image Quality Assessment of Contrast-Enhanced 4D-CT for Pancreatic Adenocarcinoma in Radiotherapy Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, W; Xue, M; Patel, K

    2015-06-15

    Purpose: This study presents quantitative and qualitative assessment of the image qualities in contrast-enhanced (CE) 3D-CT, 4D-CT and CE 4D-CT to identify feasibility for replacing the clinical standard simulation with a single CE 4D-CT for pancreatic adenocarcinoma (PDA) in radiotherapy simulation. Methods: Ten PDA patients were enrolled and underwent three CT scans: a clinical standard pair of CE 3D-CT immediately followed by a 4D-CT, and a CE 4D-CT one week later. Physicians qualitatively evaluated the general image quality and regional vessel definitions and gave a score from 1 to 5. Next, physicians delineated the contours of the tumor (T) andmore » the normal pancreatic parenchyma (P) on the three CTs (CE 3D-CT, 50% phase for 4D-CT and CE 4D-CT), then high density areas were automatically removed by thresholding at 500 HU and morphological operations. The pancreatic tumor contrast-to-noise ratio (CNR), signal-tonoise ratio (SNR) and conspicuity (C, absolute difference of mean enhancement levels in P and T) were computed to quantitatively assess image quality. The Wilcoxon rank sum test was used to compare these quantities. Results: In qualitative evaluations, CE 3D-CT and CE 4D-CT scored equivalently (4.4±0.4 and 4.3±0.4) and both were significantly better than 4D-CT (3.1±0.6). In quantitative evaluations, the C values were higher in CE 4D-CT (28±19 HU, p=0.19 and 0.17) than the clinical standard pair of CE 3D-CT and 4D-CT (17±12 and 16±17 HU, p=0.65). In CE 3D-CT and CE 4D-CT, mean CNR (1.8±1.4 and 1.8±1.7, p=0.94) and mean SNR (5.8±2.6 and 5.5±3.2, p=0.71) both were higher than 4D-CT (CNR: 1.1±1.3, p<0.3; SNR: 3.3±2.1, p<0.1). The absolute enhancement levels for T and P were higher in CE 4D-CT (87, 82 HU) than in CE 3D-CT (60, 56) and 4DCT (53, 70). Conclusions: The individually optimized CE 4D-CT is feasible and achieved comparable image qualities to the clinical standard simulation. This study was supported in part by Philips Healthcare.« less

  1. Temperature Dependence of O2(b1Σ ^+g, v = 0 and 1) Relative Yield in O(1D) + O2 Energy Transfer

    NASA Astrophysics Data System (ADS)

    Kostko, O.; Raj, S.; Campbell, K.; Pejakovic, D. A.; Kalogerakis, K.

    2011-12-01

    Energy transfer from excited O(1D) atoms to ground-state O2(X3Σ ^-g) leads to production of O2 in the first two vibrational levels of the O2 (b1Σ ^+g) state: O(1D) + O2 -> O(3P) + O2(b1Σ ^+g, v = 0, 1). Subsequent radiative decay of O2(b1Σ ^+g, v = 0, 1) to the ground state results in the Atmospheric Band emission, a prominent feature of the terrestrial airglow. The relative yield for production of O2(b1Σ ^+g, v = 0 and 1) in the above process, k1/k0, is an important parameter in modeling of the observed Atmospheric Band emission intensities. Recent measurements at room temperature have shown that production of O2(b1Σ ^+g, v = 1) dominates that of O2(b1Σ ^+g, v = 0), with k1/k0 having a value of approximately 3.5 [1]. In the laboratory experiments, the output of a pulsed fluorine laser at 157 nm is used to photodissociate molecular oxygen in an O2/N2 mixture flowing through a heated gas cell. Photodissociation of O2 produces a ground-state O(3P) atom and an excited O(1D) atom. O(1D) rapidly transfers energy to the remaining O2 to produce O2(b1Σ ^+g, v = 0, 1). The populations of O2(b1Σ ^+g, v = 0 and 1) are monitored by observing emissions in the O2(b--X) 0--0 and 1--0 bands at 762 and 688 nm, respectively. The value of k1/k0 is extracted from the time-dependent O2(b1Σ ^+g, v = 0 and 1) fluorescence signals using computer simulations. We will present measurements on the temperature dependence of k1/k0 and discuss their atmospheric significance. This work was supported by the US National Science Foundation (NSF) Aeronomy Program under grant AGS-0937317. The fluorine laser was purchased under grant ATM-0216583 from the NSF Major Research Instrumentation Program. S. Raj and K. M. Campbell participated in a Research Experiences for Undergraduates (REU) site, co-funded by the Division of Physics of the NSF and the Department of Defense in partnership with the NSF REU program under grant PHY-1002892. [1] K. S. Kalogerakis, D. A. Pejaković, R. A. Copeland, T. G. Slanger (2005), Relative Yield of O2(b1Σ ^+g, v = 0 and 1) in O(1D) + O2 Collisions, Eos Trans. AGU, 86(52), Fall Meet. Suppl., Abstract SA11A-0220.

  2. Molecular structure, vibrational spectroscopic, first order hyperpolarizability and HOMO-LUMO studies of 7-amino-8-oxo-3-vinyl-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid

    NASA Astrophysics Data System (ADS)

    Ramalingam, M.; Sethuraman, V.; Sundaraganesan, N.

    2011-02-01

    The FT-IR and FT-Raman spectra of 7-amino-8-oxo-3-vinyl-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid (7AVCA) were recorded in the region 4000-400 cm -1 and 3500-10 cm -1, respectively. Quantum chemical calculations of energies, geometrical structure and vibrational wavenumbers were carried out by ab initio HF and density functional theoretical methods invoking 6-311G(d,p) basis set. The differences between the observed and scaled wavenumber values of most of the fundamentals are very small. The electric dipole moment ( μ) and the first order hyperpolarizability ( β0) values have been computed quantum mechanically. The calculated results show that 7AVCA may have microscopic nonlinear optical (NLO) behavior with non-zero values. A detailed interpretation of the FT-IR and FT-Raman spectra of 7AVCA is reported. The theoretical IR and Raman spectra of 7AVCA have also been constructed. The calculated HOMO and LUMO energies show that the charge transfer occurs within the molecule.

  3. Molecular structure, vibrational spectroscopic, first order hyperpolarizability and HOMO-LUMO studies of 7-amino-8-oxo-3-vinyl-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid.

    PubMed

    Ramalingam, M; Sethuraman, V; Sundaraganesan, N

    2011-02-01

    The FT-IR and FT-Raman spectra of 7-amino-8-oxo-3-vinyl-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid (7AVCA) were recorded in the region 4000-400 cm(-1) and 3500-10 cm(-1), respectively. Quantum chemical calculations of energies, geometrical structure and vibrational wavenumbers were carried out by ab initio HF and density functional theoretical methods invoking 6-311G(d,p) basis set. The differences between the observed and scaled wavenumber values of most of the fundamentals are very small. The electric dipole moment (μ) and the first order hyperpolarizability (β0) values have been computed quantum mechanically. The calculated results show that 7AVCA may have microscopic nonlinear optical (NLO) behavior with non-zero values. A detailed interpretation of the FT-IR and FT-Raman spectra of 7AVCA is reported. The theoretical IR and Raman spectra of 7AVCA have also been constructed. The calculated HOMO and LUMO energies show that the charge transfer occurs within the molecule. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Echinococcus granulosus: absorption of cycloleucine and alpha-aminoisobutyric acid by protoscoleces.

    PubMed

    Jeffs, S A; Arme, C

    1986-02-01

    Protoscoleces of Echinococcus granulosus absorb the amino acids cycloleucine and alpha-aminoisobutyric acid (AIB) by a combination of mediated uptake and diffusion. After correcting for the latter, values for Kt and Vmax of 0.124 mM and 0.947 nmoles/mg protein/2 min for cycloleucine were calculated; corresponding values for AIB were 0.039 mM and 0.139 nmoles/mg protein/2 min. Both amino acids were accumulated against a concentration gradient and a comparison of Kt and Ki values determined in mutual inhibition experiments suggested that both cycloleucine and AIB share a common uptake locus (loci). Cycloleucine uptake was pH-dependent and could be inhibited by a variety of other amino acids. Neither D- nor L-proline inhibited cycloleucine absorption but D-methionine, D-alanine, D-leucine, D-valine and D-serine were much more effective inhibitors than their L-counterparts.

  5. Development of Reduced-Order Models for Aeroelastic and Flutter Prediction Using the CFL3Dv6.0 Code

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Bartels, Robert E.

    2002-01-01

    A reduced-order model (ROM) is developed for aeroelastic analysis using the CFL3D version 6.0 computational fluid dynamics (CFD) code, recently developed at the NASA Langley Research Center. This latest version of the flow solver includes a deforming mesh capability, a modal structural definition for nonlinear aeroelastic analyses, and a parallelization capability that provides a significant increase in computational efficiency. Flutter results for the AGARD 445.6 Wing computed using CFL3D v6.0 are presented, including discussion of associated computational costs. Modal impulse responses of the unsteady aerodynamic system are then computed using the CFL3Dv6 code and transformed into state-space form. Important numerical issues associated with the computation of the impulse responses are presented. The unsteady aerodynamic state-space ROM is then combined with a state-space model of the structure to create an aeroelastic simulation using the MATLAB/SIMULINK environment. The MATLAB/SIMULINK ROM is used to rapidly compute aeroelastic transients including flutter. The ROM shows excellent agreement with the aeroelastic analyses computed using the CFL3Dv6.0 code directly.

  6. Diffusion in Jammed Particle Packs.

    PubMed

    Bolintineanu, Dan S; Grest, Gary S; Lechman, Jeremy B; Silbert, Leonardo E

    2015-08-21

    Using random walk simulations we explore diffusive transport through monodisperse sphere packings over a range of packing fractions ϕ in the vicinity of the jamming transition at ϕ(c). Various diffusion properties are computed over several orders of magnitude in both time and packing pressure. Two well-separated regimes of normal "Fickian" diffusion, where the mean squared displacement is linear in time, are observed. The first corresponds to diffusion inside individual spheres, while the latter is the long-time bulk diffusion. The intermediate anomalous diffusion regime and the long-time value of the diffusion coefficient are both shown to be controlled by particle contacts, which in turn depend on proximity to ϕ(c). The time required to recover normal diffusion t* scales as (ϕ-ϕ(c))(-0.5) and the long-time diffusivity D(∞)∼(ϕ-ϕ(c))0.5, or D(∞)∼1/t*. It is shown that the distribution of mean first passage times associated with the escape of random walkers between neighboring particles controls both t* and D(∞) in the limit ϕ→ϕ(c).

  7. Improving the lean muscle color of dark-cutting beef by aging, antioxidant-enhancement, and modified atmospheric packaging.

    PubMed

    Wills, K M; Mitacek, R M; Mafi, G G; VanOverbeke, D L; Jaroni, D; Jadeja, R; Ramanathan, R

    2017-12-01

    The objective was to evaluate the effects of wet-aging, rosemary-enhancement, and modified atmospheric packaging on the color of dark-cutting beef during simulated retail display. No-roll dark-cutting strip loins ( = 12; pH > 6.0) were selected from a commercial packing plant within 3 d postharvest. Using a balanced incomplete block design, dark-cutting loins were sectioned in half, and assigned to 1 of 3 aging periods: 7, 14, or 21 d. After respective aging, each aged section was divided into 3 equal parts, and randomly assigned to 1 of 3 enhancement treatments: nonenhanced dark-cutting, dark-cutter enhanced with 0.1% rosemary, and dark-cutter enhanced with 0.2% rosemary. Following enhancement, steaks were randomly assigned to 1 of 3 packaging treatments: high-oxygen modified atmospheric packaging (HiOx-MAP; 80% O and 20% CO), carbon monoxide modified atmospheric packaging (CO-MAP; 0.4% CO, 69.6% N, and 30% CO), and polyvinyl chloride overwrap (PVC; 20% O). Instrumental and visual color measurements were recorded during 5 d simulated retail display. Lipid oxidation was determined utilizing the thiobarbituric acid reactive substances (TBARS) method. There was a significant packaging × enhancement × display time interaction for values and chroma ( 0.001). On d 0 of display, dark-cutting steaks enhanced with 0.1% and 0.2% rosemary and packaged in HiOx-MAP had greater ( 0.001) values and chroma than other dark-cutting packaging/enhancement treatments. A significant packaging × enhancement × display time interaction resulted for values ( 0.001). Dark-cutting steaks enhanced with 0.2% rosemary and packaged in HiOx-MAP was lighter ( 0.001; greater values) than other dark-cutting treatments on d 5 of display. There were no differences ( 0.34) in discoloration scores on d 5 among different dark-cutting treatments when steaks were packaged in HiOx- and CO-MAP. There was an aging period × enhancement × packaging interaction ( < 0.0033) for lipid oxidation. On d 0 of display, there were no differences ( 0.54) in TBARS values between different aging periods and enhancement treatments. Dark-cutting steaks enhanced with 0.2% rosemary had lower ( 0.001) TBARS values than 0.1% rosemary on d 5 when aged for 21 d and in HiOx-MAP. The results suggest that rosemary enhancement with CO- or HiOx-MAP has the potential to improve the surface color of dark-cutting beef.

  8. On computing Laplace's coefficients and their derivatives.

    NASA Astrophysics Data System (ADS)

    Gerasimov, I. A.; Vinnikov, E. L.

    The algorithm of computing Laplace's coefficients and their derivatives is proposed with application of recurrent relations. The A.G.M.-method is used for the calculation of values L0(0), L0(1). The FORTRAN-program corresponding to the algorithm is given. The precision control was provided with numerical integrating by Simpsons method. The behavior of Laplace's coefficients and their third derivatives whith varying indices K, n for fixed values of the α-parameter is presented graphically.

  9. Estimating EQ-5D values from the Neck Disability Index and numeric rating scales for neck and arm pain.

    PubMed

    Carreon, Leah Y; Bratcher, Kelly R; Das, Nandita; Nienhuis, Jacob B; Glassman, Steven D

    2014-09-01

    The Neck Disability Index (NDI) and numeric rating scales (0 to 10) for neck pain and arm pain are widely used cervical spine disease-specific measures. Recent studies have shown that there is a strong relationship between the SF-6D and the NDI such that using a simple linear regression allows for the estimation of an SF-6D value from the NDI alone. Due to ease of administration and scoring, the EQ-5D is increasingly being used as a measure of utility in the clinical setting. The purpose of this study is to determine if the EQ-5D values can be estimated from commonly available cervical spine disease-specific health-related quality of life measures, much like the SF-6D. The EQ-5D, NDI, neck pain score, and arm pain score were prospectively collected in 3732 patients who presented to the authors' clinic with degenerative cervical spine disorders. Correlation coefficients for paired observations from multiple time points between the NDI, neck pain and arm pain scores, and EQ-5D were determined. Regression models were built to estimate the EQ-5D values from the NDI, neck pain, and arm pain scores. The mean age of the 3732 patients was 53.3 ± 12.2 years, and 43% were male. Correlations between the EQ-5D and the NDI, neck pain score, and arm pain score were statistically significant (p < 0.0001), with correlation coefficients of -0.77, -0.62, and -0.50, respectively. The regression equation 0.98947 + (-0.00705 × NDI) + (-0.00875 × arm pain score) + (-0.00877 × neck pain score) to predict EQ-5D had an R-square of 0.62 and a root mean square error (RMSE) of 0.146. The model using NDI alone had an R-square of 0.59 and a RMSE of 0.150. The model using the individual NDI items had an R-square of 0.46 and an RMSE of 0.172. The correlation coefficient between the observed and estimated EQ-5D scores was 0.79. There was no statistically significant difference between the actual EQ-5D score (0.603 ± 0.235) and the estimated EQ-5D score (0.603 ± 0.185) using the NDI, neck pain score, and arm pain score regression model. However, rounding off the coefficients to fewer than 5 decimal places produced less accurate results. The regression model estimating the EQ-5D from the NDI, neck pain score, and arm pain score accounted for 60% of the variability of the EQ-5D with a relatively large RMSE. This regression model may not be sufficient to accurately or reliably estimate actual EQ-5D values.

  10. Segmentation of bone structures in 3D CT images based on continuous max-flow optimization

    NASA Astrophysics Data System (ADS)

    Pérez-Carrasco, J. A.; Acha-Piñero, B.; Serrano, C.

    2015-03-01

    In this paper an algorithm to carry out the automatic segmentation of bone structures in 3D CT images has been implemented. Automatic segmentation of bone structures is of special interest for radiologists and surgeons to analyze bone diseases or to plan some surgical interventions. This task is very complicated as bones usually present intensities overlapping with those of surrounding tissues. This overlapping is mainly due to the composition of bones and to the presence of some diseases such as Osteoarthritis, Osteoporosis, etc. Moreover, segmentation of bone structures is a very time-consuming task due to the 3D essence of the bones. Usually, this segmentation is implemented manually or with algorithms using simple techniques such as thresholding and thus providing bad results. In this paper gray information and 3D statistical information have been combined to be used as input to a continuous max-flow algorithm. Twenty CT images have been tested and different coefficients have been computed to assess the performance of our implementation. Dice and Sensitivity values above 0.91 and 0.97 respectively were obtained. A comparison with Level Sets and thresholding techniques has been carried out and our results outperformed them in terms of accuracy.

  11. Thermal inactivation of H5N1 high pathogenicity avian influenza virus in naturally infected chicken meat.

    PubMed

    Thomas, Colleen; Swayne, David E

    2007-03-01

    Thermal inactivation of the H5N1 high pathogenicity avian influenza (HPAI) virus strain A/chicken/Korea/ES/2003 (Korea/03) was quantitatively measured in thigh and breast meat harvested from infected chickens. The Korea/03 titers were recorded as the mean embryo infectious dose (EID50) and were 10(8.0) EID50/g in uncooked thigh samples and 10(7.5) EID50/g in uncooked breast samples. Survival curves were constructed for Korea/03 in chicken thigh and breast meat at 1 degrees C intervals for temperatures of 57 to 61 degrees C. Although some curves had a slightly biphasic shape, a linear model provided a fair-to-good fit at all temperatures, with R2 values of 0.85 to 0.93. Stepwise linear regression revealed that meat type did not contribute significantly to the regression model and generated a single linear regression equation for z-value calculations and D-value predictions for Korea/03 in both meat types. The z-value and the upper limit of the 95% confidence interval for the z-value were 4.64 and 5.32 degrees C, respectively. From the lowest temperature to the highest, the predicted D-values and the upper limits of their 95% prediction intervals (conservative D-values) for 57 to 61 degrees C were 241.2 and 321.1 s, 146.8 and 195.4 s, 89.3 and 118.9 s, 54.4 and 72.4 s, and 33.1 and 44.0 s. D-values and conservative D-values predicted for higher temperatures were 0.28 and 0.50 s for 70 degrees C and 0.041 and 0.073 s for 73.9 degrees C. Calculations with the conservative D-values predicted that cooking chicken meat according to current U.S. Department of Agriculture Food Safety and Inspection Service time-temperature guidelines will inactivate Korea/03 in a heavily contaminated meat sample, such as those tested in this study, with a large margin of safety.

  12. An estimate of the PH3, CH3D, and GeH4 abundances on Jupiter from the Voyager IRIS data at 4.5 microns

    NASA Technical Reports Server (NTRS)

    Drossart, P.; Encrenaz, T.; Combes, M.; Kunde, V.; Hanel, R.

    1982-01-01

    No evidence is found for large scale phosphine abundance variations over Jovian latitudes between -30 and +30 deg, in PH3, CH3D, and GeH4 abundances derived from the 2100-2250/cm region of the Voyager 1 IRIS spectra. The PH3/H2 value of (4.5 + or - 1.5) X 10 to the -7th derived from atmospheric regions corresponding to 170-200 K is 0.75 + or - 0.25 times the solar value, and suggests that the PH3/H2 ratio on Jupiter decreases with atmospheric pressure upon comparison with other PH3 determinations at 10 microns. In the 200-250 K region, CH3D/H2 and GeH4/H2 ratios of 2.0 X 10 to the -7th and 1.0 X 10 to the -9th, respectively, are derived within a factor of 2.0. Assuming a C/H value of 0.001, as derived from Voyager, the CH3D/H2 ratio obtained in this study implies a D/H ratio of 0.000018. This is in agreement with the interstellar medium value.

  13. The p-Value You Can't Buy.

    PubMed

    Demidenko, Eugene

    2016-01-02

    There is growing frustration with the concept of the p -value. Besides having an ambiguous interpretation, the p- value can be made as small as desired by increasing the sample size, n . The p -value is outdated and does not make sense with big data: Everything becomes statistically significant. The root of the problem with the p- value is in the mean comparison. We argue that statistical uncertainty should be measured on the individual, not the group, level. Consequently, standard deviation (SD), not standard error (SE), error bars should be used to graphically present the data on two groups. We introduce a new measure based on the discrimination of individuals/objects from two groups, and call it the D -value. The D -value can be viewed as the n -of-1 p -value because it is computed in the same way as p while letting n equal 1. We show how the D -value is related to discrimination probability and the area above the receiver operating characteristic (ROC) curve. The D -value has a clear interpretation as the proportion of patients who get worse after the treatment, and as such facilitates to weigh up the likelihood of events under different scenarios. [Received January 2015. Revised June 2015.].

  14. Failure Processes in Embedded Monolayer Graphene under Axial Compression

    PubMed Central

    Androulidakis, Charalampos; Koukaras, Emmanuel N.; Frank, Otakar; Tsoukleri, Georgia; Sfyris, Dimitris; Parthenios, John; Pugno, Nicola; Papagelis, Konstantinos; Novoselov, Kostya S.; Galiotis, Costas

    2014-01-01

    Exfoliated monolayer graphene flakes were embedded in a polymer matrix and loaded under axial compression. By monitoring the shifts of the 2D Raman phonons of rectangular flakes of various sizes under load, the critical strain to failure was determined. Prior to loading care was taken for the examined area of the flake to be free of residual stresses. The critical strain values for first failure were found to be independent of flake size at a mean value of –0.60% corresponding to a yield stress up to -6 GPa. By combining Euler mechanics with a Winkler approach, we show that unlike buckling in air, the presence of the polymer constraint results in graphene buckling at a fixed value of strain with an estimated wrinkle wavelength of the order of 1–2 nm. These results were compared with DFT computations performed on analogue coronene/PMMA oligomers and a reasonable agreement was obtained. PMID:24920340

  15. UV/vis, 1H, and 13C NMR spectroscopic studies to determine mangiferin p Ka values

    NASA Astrophysics Data System (ADS)

    Gómez-Zaleta, Berenice; Ramírez-Silva, María Teresa; Gutiérrez, Atilano; González-Vergara, Enrique; Güizado-Rodríguez, Marisol; Rojas-Hernández, Alberto

    2006-07-01

    The acid constants of mangiferin (a natural xanthonoid) in aqueous solution were determined through an UV/vis spectroscopic study employing the SQUAD program as a computational tool. A NMR study complements the p Ka values assignment and evidences a H-bridge presence on 1-C. The chemical model used was consistent with the experimental data obtained. The p Ka values determined with this procedure were as follows: H 4(MGF) = H 3(MGF) - + H +, pK(6-H) = 6.52 ± 0.06; H 3(MGF) - = H 2(MGF) 2- + H +, pK(3-H) = 7.97 ± 0.06; H 2(MGF) 2- = H(MGF) 3- + H +, pK(7-H) = 9.44 ± 0.04; H(MGF) 3- = (MGF) 4- + H +, pK(1-H) = 12.10 ± 0.01; where it has been considered mangiferin C 19H 18O 11 as H 4(MGF). Mangiferin UV/vis spectral behavior, stability study in aqueous solution as well as NMR spectroscopy studies: one-dimensional 1H, 13C, 2D correlated 1H/ 13C performed by (g)-HSQC and (g)-HMBC methods; are also presented. p Ka values determination of H 4(MGF) in aqueous solution is a necessary contribution to subsequent pharmacokinetic study, and a step towards the understanding of its biological effects.

  16. Using a Nondirect Product Basis to Compute J > 0 Rovibrational States of H3+

    NASA Astrophysics Data System (ADS)

    Jaquet, Ralph; Carrington, Tucker

    2013-10-01

    We have used a Lanczos algorithm with a nondirect product basis to compute energy levels of H3+ with J values as large as 46. Energy levels computed on the potential surface of M. Pavanello, et al. (J. Chem. Phys. 2012, 136, 184303) agree well with previous calculations for low J values.

  17. Importance of contact lens power and thickness in oxygen transmissibility.

    PubMed

    Lira, Madalena; Pereira, Clara; Real Oliveira, M Elisabete C D; Castanheira, Elisabete M S

    2015-04-01

    The aim of this work was to study the central and peripheral thickness of several contact lenses (CL) with different powers and analyze how thickness variation affects CL oxygen transmissibility. Four daily disposable and five monthly or biweekly CL were studied. The powers of each CL were: the maximum negative power of each brand; -6.00 D; -3.00 D; zero power (-0.25 D or -0.50 D), +3.00 D and +6.00 D. Central and peripheral thicknesses were measured with an electronic thickness gauge. Each lens was measured five times (central and 3mm paracentral) and the mean value was considered. Using the values of oxygen permeability given by the manufacturers and the measured thicknesses, the variation of oxygen transmissibility with lens power was determined. For monthly or biweekly lenses, central thickness changed between 0.061 ± 0.002 mm and 0.243 ± 0.002 mm, and peripheral thickness varied between 0.084 ± 0.002 mm and 0.231 ± 0.015 mm. Daily disposable lenses showed central values ranging between 0.056 ± 0.0016 mm and 0.205 ± 0.002 mm and peripheral values between 0.108 ± 0.05 and 0.232 ± 0.011 mm. Oxygen transmissibility (in units) of monthly or biweekly CL ranged between 39.4 ± 0.3 and 246.0 ± 14.4 and for daily disposable lenses the values range between 9.5 ± 0.5 and 178.1 ± 5.1. The central and peripheral thicknesses change significantly when considering the CL power and this has a significant impact on the oxygen transmissibility. Eyecare practitioners must have this fact in account when high power plus or minus lenses are fitted or when continuous wear is considered. Copyright © 2014 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  18. The R.E.D. tools: advances in RESP and ESP charge derivation and force field library building.

    PubMed

    Dupradeau, François-Yves; Pigache, Adrien; Zaffran, Thomas; Savineau, Corentin; Lelong, Rodolphe; Grivel, Nicolas; Lelong, Dimitri; Rosanski, Wilfried; Cieplak, Piotr

    2010-07-28

    Deriving atomic charges and building a force field library for a new molecule are key steps when developing a force field required for conducting structural and energy-based analysis using molecular mechanics. Derivation of popular RESP charges for a set of residues is a complex and error prone procedure because it depends on numerous input parameters. To overcome these problems, the R.E.D. Tools (RESP and ESP charge Derive, ) have been developed to perform charge derivation in an automatic and straightforward way. The R.E.D. program handles chemical elements up to bromine in the periodic table. It interfaces different quantum mechanical programs employed for geometry optimization and computing molecular electrostatic potential(s), and performs charge fitting using the RESP program. By defining tight optimization criteria and by controlling the molecular orientation of each optimized geometry, charge values are reproduced at any computer platform with an accuracy of 0.0001 e. The charges can be fitted using multiple conformations, making them suitable for molecular dynamics simulations. R.E.D. allows also for defining charge constraints during multiple molecule charge fitting, which are used to derive charges for molecular fragments. Finally, R.E.D. incorporates charges into a force field library, readily usable in molecular dynamics computer packages. For complex cases, such as a set of homologous molecules belonging to a common family, an entire force field topology database is generated. Currently, the atomic charges and force field libraries have been developed for more than fifty model systems and stored in the RESP ESP charge DDataBase. Selected results related to non-polarizable charge models are presented and discussed.

  19. Influence of spore moisture content on the dry-heat resistance of Bacillus subtilis var. niger.

    PubMed

    Angelotti, R; Maryanski, J H; Butler, T F; Peeler, J T; Campbell, J E

    1968-05-01

    The dry-heat resistance of Bacillus subtilis var. niger spores located in or on various materials was determined as D and z values in the range of 105 through 160 C. The systems tested included spores located on steel and paper strips, spores located between stainless-steel washers mated together under 150 inch-lb and 12 inch-lb of torque, and spores encapsulated in methylmethacrylate and epoxy plastics. D values for a given temperature varied with the test system. High D values were observed for the systems in which spores were encapsulated or under heavy torque, whereas lower D values were observed for the steel and paper strip systems and the lightly torqued system. Similar z values were obtained for the plastic and steel strip systems (z(D) = 21 C), but an unusually low z for spores on paper (z(D) = 12.9 C) and an unusually high z for spores on steel washers mated at 150 inch-lb of torque (z(D) = 32 C) were observed. The effect of spore moisture content on the D value of spores encapsulated in water-impermeable plastic was determined, and maximal resistance was observed for spores with a water activity (a(w)) of 0.2 to 0.4. Significantly decreased D values were observed for spores with moisture contents below a(w) 0.2 or above a(w) 0.4. The data indicate that the important factors to be considered when measuring the dry heat resistance of spores are (i) the initial moisture content of the spore, (ii) the rate of spore desiccation during heating, (iii) the water retention capacity of the material in or on which spores are located, and (iv) the relative humidity of the system at the test temperature.

  20. Determination of decimal reduction time (D value) of chemical agents used in hospitals for disinfection purposes

    PubMed Central

    Mazzola, Priscila Gava; Penna, Thereza Christina Vessoni; da S Martins, Alzira M

    2003-01-01

    Background Prior to the selection of disinfectants for low, intermediate and high (sterilizing) levels, the decimal reduction time, D-value, for the most common and persistent bacteria identified at a health care facility should be determined. Methods The D-value was determined by inoculating 100 mL of disinfecting solution with 1 mL of a bacterial suspension (104 – 105 CFU/mL for vegetative and spore forms). At regular intervals, 1 mL aliquots of this mixture were transferred to 8 mL of growth media containing a neutralizing agent, and incubated at optimal conditions for the microorganism. Results The highest D-values for various bacteria were determined for the following solutions: (i) 0.1% sodium dichloroisocyanurate (pH 7.0) – E. coli and A. calcoaceticus (D = 5.9 min); (ii) sodium hypochlorite (pH 7.0) at 0.025% for B. stearothermophilus (D = 24 min), E. coli and E. cloacae (D = 7.5 min); at 0.05% for B. stearothermophilus (D = 9.4 min) and E. coli (D = 6.1 min) and 0.1% for B. stearothermophilus (D = 3.5 min) and B. subtilis (D = 3.2 min); (iii) 2.0% glutaraldehyde (pH 7.4) – B. stearothermophilus, B. subtilis (D = 25 min) and E. coli (D = 7.1 min); (iv) 0.5% formaldehyde (pH 6.5) – B. subtilis (D = 11.8 min), B. stearothermophilus (D = 10.9 min) and A. calcoaceticus (D = 5.2 min); (v) 2.0% chlorhexidine (pH 6.2) – B. stearothermophilus (D = 9.1 min), and at 0.4% for E. cloacae (D = 8.3 min); (vi) 1.0% Minncare® (peracetic acid and hydrogen peroxide, pH 2.3) – B. stearothermophilus (D = 9.1 min) and E. coli (D = 6.7 min). Conclusions The suspension studies were an indication of the disinfectant efficacy on a surface. The data in this study reflect the formulations used and may vary from product to product. The expected effectiveness from the studied formulations showed that the tested agents can be recommended for surface disinfection as stated in present guidelines and emphasizes the importance and need to develop routine and novel programs to evaluate product utility. PMID:14563217

Top