Asteroid orbital inversion using uniform phase-space sampling
NASA Astrophysics Data System (ADS)
Muinonen, K.; Pentikäinen, H.; Granvik, M.; Oszkiewicz, D.; Virtanen, J.
2014-07-01
We review statistical inverse methods for asteroid orbit computation from a small number of astrometric observations and short time intervals of observations. With the help of Markov-chain Monte Carlo methods (MCMC), we present a novel inverse method that utilizes uniform sampling of the phase space for the orbital elements. The statistical orbital ranging method (Virtanen et al. 2001, Muinonen et al. 2001) was set out to resolve the long-lasting challenges in the initial computation of orbits for asteroids. The ranging method starts from the selection of a pair of astrometric observations. Thereafter, the topocentric ranges and angular deviations in R.A. and Decl. are randomly sampled. The two Cartesian positions allow for the computation of orbital elements and, subsequently, the computation of ephemerides for the observation dates. Candidate orbital elements are included in the sample of accepted elements if the χ^2-value between the observed and computed observations is within a pre-defined threshold. The sample orbital elements obtain weights based on a certain debiasing procedure. When the weights are available, the full sample of orbital elements allows the probabilistic assessments for, e.g., object classification and ephemeris computation as well as the computation of collision probabilities. The MCMC ranging method (Oszkiewicz et al. 2009; see also Granvik et al. 2009) replaces the original sampling algorithm described above with a proposal probability density function (p.d.f.), and a chain of sample orbital elements results in the phase space. MCMC ranging is based on a bivariate Gaussian p.d.f. for the topocentric ranges, and allows for the sampling to focus on the phase-space domain with most of the probability mass. In the virtual-observation MCMC method (Muinonen et al. 2012), the proposal p.d.f. for the orbital elements is chosen to mimic the a posteriori p.d.f. for the elements: first, random errors are simulated for each observation, resulting in a set of virtual observations; second, corresponding virtual least-squares orbital elements are derived using the Nelder-Mead downhill simplex method; third, repeating the procedure two times allows for a computation of a difference for two sets of virtual orbital elements; and, fourth, this orbital-element difference constitutes a symmetric proposal in a random-walk Metropolis-Hastings algorithm, avoiding the explicit computation of the proposal p.d.f. In a discrete approximation, the allowed proposals coincide with the differences that are based on a large number of pre-computed sets of virtual least-squares orbital elements. The virtual-observation MCMC method is thus based on the characterization of the relevant volume in the orbital-element phase space. Here we utilize MCMC to map the phase-space domain of acceptable solutions. We can make use of the proposal p.d.f.s from the MCMC ranging and virtual-observation methods. The present phase-space mapping produces, upon convergence, a uniform sampling of the solution space within a pre-defined χ^2-value. The weights of the sampled orbital elements are then computed on the basis of the corresponding χ^2-values. The present method resembles the original ranging method. On one hand, MCMC mapping is insensitive to local extrema in the phase space and efficiently maps the solution space. This is somewhat contrary to the MCMC methods described above. On the other hand, MCMC mapping can suffer from producing a small number of sample elements with small χ^2-values, in resemblance to the original ranging method. We apply the methods to example near-Earth, main-belt, and transneptunian objects, and highlight the utilization of the methods in the data processing and analysis pipeline of the ESA Gaia space mission.
NASA Technical Reports Server (NTRS)
Ko, William L.; Olona, Timothy; Muramoto, Kyle M.
1990-01-01
Different finite element models previously set up for thermal analysis of the space shuttle orbiter structure are discussed and their shortcomings identified. Element density criteria are established for the finite element thermal modelings of space shuttle orbiter-type large, hypersonic aircraft structures. These criteria are based on rigorous studies on solution accuracies using different finite element models having different element densities set up for one cell of the orbiter wing. Also, a method for optimization of the transient thermal analysis computer central processing unit (CPU) time is discussed. Based on the newly established element density criteria, the orbiter wing midspan segment was modeled for the examination of thermal analysis solution accuracies and the extent of computation CPU time requirements. The results showed that the distributions of the structural temperatures and the thermal stresses obtained from this wing segment model were satisfactory and the computation CPU time was at the acceptable level. The studies offered the hope that modeling the large, hypersonic aircraft structures using high-density elements for transient thermal analysis is possible if a CPU optimization technique was used.
Satellite Orbit Theory for a Small Computer.
1983-12-15
them across the pass. . Both sets of interpolating polynomials are finally used to provide osculating orbital elements at arbitrary times during the...polyno-iials are established for themt across the mass. Both sets of inter- polating polynomials are finally used to provide osculating orbital elements ...high Drecisicn orbital elements at epoch, a correspond ing set of initial mean eleme-nts must be determined for the samianalytical model. It is importan
A Survey of Uncontrolled Satellite reentry and Impact Prediction
1993-09-23
NORAD produces " element sets " which are mean values of the orbital elements that have been obtained by removing the periodic orbital variations in a...Final Element Set --a listing of the final orbit parameters. The eccentricity and mean motion data from the listing were used in the investigation...yielded altitude and orbital elements as a function of time. Computer run results for these simulations were extremely long and therefore the decision was
NASA Technical Reports Server (NTRS)
Ko, William L.; Olona, Timothy
1987-01-01
The effect of element size on the solution accuracies of finite-element heat transfer and thermal stress analyses of space shuttle orbiter was investigated. Several structural performance and resizing (SPAR) thermal models and NASA structural analysis (NASTRAN) structural models were set up for the orbiter wing midspan bay 3. The thermal model was found to be the one that determines the limit of finite-element fineness because of the limitation of computational core space required for the radiation view factor calculations. The thermal stresses were found to be extremely sensitive to a slight variation of structural temperature distributions. The minimum degree of element fineness required for the thermal model to yield reasonably accurate solutions was established. The radiation view factor computation time was found to be insignificant compared with the total computer time required for the SPAR transient heat transfer analysis.
NASA Technical Reports Server (NTRS)
Axelrad, Penina; Speed, Eden; Leitner, Jesse A. (Technical Monitor)
2002-01-01
This report summarizes the efforts to date in processing GPS measurements in High Earth Orbit (HEO) applications by the Colorado Center for Astrodynamics Research (CCAR). Two specific projects were conducted; initialization of the orbit propagation software, GEODE, using nominal orbital elements for the IMEX orbit, and processing of actual and simulated GPS data from the AMSAT satellite using a Doppler-only batch filter. CCAR has investigated a number of approaches for initialization of the GEODE orbit estimator with little a priori information. This document describes a batch solution approach that uses pseudorange or Doppler measurements collected over an orbital arc to compute an epoch state estimate. The algorithm is based on limited orbital element knowledge from which a coarse estimate of satellite position and velocity can be determined and used to initialize GEODE. This algorithm assumes knowledge of nominal orbital elements, (a, e, i, omega, omega) and uses a search on time of perigee passage (tau(sub p)) to estimate the host satellite position within the orbit and the approximate receiver clock bias. Results of the method are shown for a simulation including large orbital uncertainties and measurement errors. In addition, CCAR has attempted to process GPS data from the AMSAT satellite to obtain an initial estimation of the orbit. Limited GPS data have been received to date, with few satellites tracked and no computed point solutions. Unknown variables in the received data have made computations of a precise orbit using the recovered pseudorange difficult. This document describes the Doppler-only batch approach used to compute the AMSAT orbit. Both actual flight data from AMSAT, and simulated data generated using the Satellite Tool Kit and Goddard Space Flight Center's Flight Simulator, were processed. Results for each case and conclusion are presented.
A Method for Calculating the Mean Orbits of Meteor Streams
NASA Astrophysics Data System (ADS)
Voloshchuk, Yu. I.; Kashcheev, B. L.
An examination of the published catalogs of orbits of meteor streams and of a large number of works devoted to the selection of streams, their analysis and interpretation, showed that elements of stream orbits are calculated, as a rule, as arithmetical (sometimes, weighed) sample means. On the basis of these means, a search for parent bodies, a study of the evolution of swarms generating these streams, an analysis of one-dimensional and multidimensional distributions of these elements, etc., are performed. We show that systematic errors in the estimates of elements of the mean orbits are present in each of the catalogs. These errors are caused by the formal averaging of orbital elements over the sample, while ignoring the fact that they represent not only correlated, but dependent quantities, with nonlinear, in most cases, interrelations between them. Numerous examples are given of such inaccuracies, in particular, the cases where the "mean orbit of the stream" recorded by ground-based techniques does not cross the Earth's orbit. We suggest the computation algorithm, in which the averaging over the sample is carried out at the initial stage of the calculation of the mean orbit, and only for the variables required for subsequent calculations. After this, the known astrometric formulas are used to sequentially calculate all other parameters of the stream, considered now as a standard orbit. Variance analysis is used to estimate the errors in orbital elements of the streams, in the case that their orbits are obtained by averaging the orbital elements of meteoroids forming the stream, without taking into account their interdependence. The results obtained in this analysis indicate the behavior of systematic errors in the elements of orbits of meteor streams. As an example, the effect of the incorrect computation method on the distribution of elements of the stream orbits close to the orbits of asteroids of the Apollo, Aten, and Amor groups (AAA asteroids) is examined.
Spacecraft Pointing and Position Control,
1981-11-01
GEOSTATIONARY ELEMENTS As the classical set of Keplerian elements (a,e,i,a,Q, M ) is inappropriate for geosta- tionary orbits because the angular...instead of E., the set E + AE (34) - a - -LP(t 0 is obtained. Since the orbital element vector has to be computed for each measurement time, a simple orbit ...depends on the stiffness terms effected by kinematic coupling with the orbit rate 0o and the set gain K The x-component of the disturbance torque, this
SPECTROSCOPIC ORBITS FOR 15 LATE-TYPE STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willmarth, Daryl W.; Abt, Helmut A.; Fekel, Francis C.
2016-08-01
Spectroscopic orbital elements are determined for 15 stars with periods from 8 to 6528 days with six orbits computed for the first time. Improved astrometric orbits are computed for two stars and one new orbit is derived. Visual orbits were previously determined for four stars, four stars are members of multiple systems, and five stars have Hipparcos “G” designations or have been resolved by speckle interferometry. For the nine binaries with previous spectroscopic orbits, we determine improved or comparable elements. For HD 28271 and HD 200790, our spectroscopic results support the conclusions of previous authors that the large values of their massmore » functions and lack of detectable secondary spectrum argue for the secondary in each case being a pair of low-mass dwarfs. The orbits given here may be useful in combination with future interferometric and Gaia satellite observations.« less
Orbiter subsystem hardware/software interaction analysis. Volume 8: Forward reaction control system
NASA Technical Reports Server (NTRS)
Becker, D. D.
1980-01-01
The results of the orbiter hardware/software interaction analysis for the AFT reaction control system are presented. The interaction between hardware failure modes and software are examined in order to identify associated issues and risks. All orbiter subsystems and interfacing program elements which interact with the orbiter computer flight software are analyzed. The failure modes identified in the subsystem/element failure mode and effects analysis are discussed.
OSMEAN - OSCULATING/MEAN CLASSICAL ORBIT ELEMENTS CONVERSION (HP9000/7XX VERSION)
NASA Technical Reports Server (NTRS)
Guinn, J. R.
1994-01-01
OSMEAN is a sophisticated FORTRAN algorithm that converts between osculating and mean classical orbit elements. Mean orbit elements are advantageous for trajectory design and maneuver planning since they can be propagated very quickly; however, mean elements cannot describe the exact orbit at any given time. Osculating elements will enable the engineer to give an exact description of an orbit; however, computation costs are significantly higher due to the numerical integration procedure required for propagation. By calculating accurate conversions between osculating and mean orbit elements, OSMEAN allows the engineer to exploit the advantages of each approach for the design and planning of orbital trajectories and maneuver planning. OSMEAN is capable of converting mean elements to osculating elements or vice versa. The conversion is based on modelling of all first order aspherical and lunar-solar gravitation perturbations as well as a second-order aspherical term based on the second degree central body zonal perturbation. OSMEAN is written in FORTRAN 77 for HP 9000 series computers running HP-UX (NPO-18796) and DEC VAX series computers running VMS (NPO-18741). The HP version requires 388K of RAM for execution and the DEC VAX version requires 254K of RAM for execution. Sample input and output are listed in the documentation. Sample input is also provided on the distribution medium. The standard distribution medium for the HP 9000 series version is a .25 inch streaming magnetic IOTAMAT tape cartridge in UNIX tar format. It is also available on a .25 inch streaming magnetic tape cartridge in UNIX tar format or on a 3.5 inch diskette in UNIX tar format. The standard distribution medium for the DEC VAX version is a 1600 BPI 9-track magnetic tape in DEC VAX BACKUP format. It is also available on a TK50 tape cartridge in DEC VAX BACKUP format. OSMEAN was developed on a VAX 6410 in 1989, and was ported to the HP 9000 series platform in 1991. It is a copyrighted work with all copyright vested in NASA.
OSMEAN - OSCULATING/MEAN CLASSICAL ORBIT ELEMENTS CONVERSION (VAX VMS VERSION)
NASA Technical Reports Server (NTRS)
Guinn, J. R.
1994-01-01
OSMEAN is a sophisticated FORTRAN algorithm that converts between osculating and mean classical orbit elements. Mean orbit elements are advantageous for trajectory design and maneuver planning since they can be propagated very quickly; however, mean elements cannot describe the exact orbit at any given time. Osculating elements will enable the engineer to give an exact description of an orbit; however, computation costs are significantly higher due to the numerical integration procedure required for propagation. By calculating accurate conversions between osculating and mean orbit elements, OSMEAN allows the engineer to exploit the advantages of each approach for the design and planning of orbital trajectories and maneuver planning. OSMEAN is capable of converting mean elements to osculating elements or vice versa. The conversion is based on modelling of all first order aspherical and lunar-solar gravitation perturbations as well as a second-order aspherical term based on the second degree central body zonal perturbation. OSMEAN is written in FORTRAN 77 for HP 9000 series computers running HP-UX (NPO-18796) and DEC VAX series computers running VMS (NPO-18741). The HP version requires 388K of RAM for execution and the DEC VAX version requires 254K of RAM for execution. Sample input and output are listed in the documentation. Sample input is also provided on the distribution medium. The standard distribution medium for the HP 9000 series version is a .25 inch streaming magnetic IOTAMAT tape cartridge in UNIX tar format. It is also available on a .25 inch streaming magnetic tape cartridge in UNIX tar format or on a 3.5 inch diskette in UNIX tar format. The standard distribution medium for the DEC VAX version is a 1600 BPI 9-track magnetic tape in DEC VAX BACKUP format. It is also available on a TK50 tape cartridge in DEC VAX BACKUP format. OSMEAN was developed on a VAX 6410 in 1989, and was ported to the HP 9000 series platform in 1991. It is a copyrighted work with all copyright vested in NASA.
Autonomous orbital navigation using Kepler's equation
NASA Technical Reports Server (NTRS)
Boltz, F. W.
1974-01-01
A simple method of determining the six elements of elliptic satellite orbits has been developed for use aboard manned and unmanned spacecraft orbiting the earth, moon, or any planet. The system requires the use of a horizon sensor or other device for determining the local vertical, a precision clock or timing device, and Apollo-type navigation equipment including an inertial measurement unit (IMU), a digital computer, and a coupling data unit. The three elements defining the in-plane motion are obtained from simultaneous measurements of central angle traversed around the planet and elapsed flight time using a linearization of Kepler's equation about a reference orbit. It is shown how Kalman filter theory may also be used to determine the in-plane orbital elements. The three elements defining the orbit orientation are obtained from position angles in celestial coordinates derived from the IMU with the spacecraft vertically oriented after alignment of the IMU to a known inertial coordinate frame.
Techniques of orbital decay and long-term ephemeris prediction for satellites in earth orbit
NASA Technical Reports Server (NTRS)
Barry, B. F.; Pimm, R. S.; Rowe, C. K.
1971-01-01
In the special perturbation method, Cowell and variation-of-parameters formulations of the motion equations are implemented and numerically integrated. Variations in the orbital elements due to drag are computed using the 1970 Jacchia atmospheric density model, which includes the effects of semiannual variations, diurnal bulge, solar activity, and geomagnetic activity. In the general perturbation method, two-variable asymptotic series and automated manipulation capabilities are used to obtain analytical solutions to the variation-of-parameters equations. Solutions are obtained considering the effect of oblateness only and the combined effects of oblateness and drag. These solutions are then numerically evaluated by means of a FORTRAN program in which an updating scheme is used to maintain accurate epoch values of the elements. The atmospheric density function is approximated by a Fourier series in true anomaly, and the 1970 Jacchia model is used to periodically update the Fourier coefficients. The accuracy of both methods is demonstrated by comparing computed orbital elements to actual elements over time spans of up to 8 days for the special perturbation method and up to 356 days for the general perturbation method.
Transuranic Computational Chemistry.
Kaltsoyannis, Nikolas
2018-02-26
Recent developments in the chemistry of the transuranic elements are surveyed, with particular emphasis on computational contributions. Examples are drawn from molecular coordination and organometallic chemistry, and from the study of extended solid systems. The role of the metal valence orbitals in covalent bonding is a particular focus, especially the consequences of the stabilization of the 5f orbitals as the actinide series is traversed. The fledgling chemistry of transuranic elements in the +II oxidation state is highlighted. Throughout, the symbiotic interplay of experimental and computational studies is emphasized; the extraordinary challenges of experimental transuranic chemistry afford computational chemistry a particularly valuable role at the frontier of the periodic table. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Precessional quantities for the Earth over 10 Myr
NASA Technical Reports Server (NTRS)
Laskar, Jacques
1992-01-01
The insolation parameters of the Earth depend on its orbital parameters and on the precession and obliquity. Until 1988, the usually adopted solution for paleoclimate computation consisted in (Bretagnon, 1974) for the orbital elements of the Earth, which was completed by (Berger, 1976) for the computation of the precession and obliquity of the Earth. In 1988, I issued a solution for the orbital elements of the Earth, which was obtained in a new manner, gathering huge analytical computations and numerical integration (Laskar, 1988). In this solution, which will be denoted La88, the precession and obliquity quantities necessary for paleoclimate computations were integrated at the same time, which insure good consistency of the solutions. Unfortunately, due to various factors, this latter solution for the precession and obliquity was not widely distributed (Berger, Loutre, Laskar, 1988). On the other side, the orbital part of the solution La88 for the Earth, was used in (Berger and Loutre, 1991) to derive another solution for precession and obliquity, aimed to climate computations. I also issued a new solution (La90) which presents some slight improvements with respect to the previous one (Laskar, 1990). As previously, this solution contains orbital, precessional, and obliquity variables. The main features of this new solution are discussed.
Towards a global model of spin-orbit coupling in the halocarbenes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nyambo, Silver; Karshenas, Cyrus; Reid, Scott A., E-mail: scott.reid@marquette.edu, E-mail: dawesr@mst.edu
We report a global analysis of spin-orbit coupling in the mono-halocarbenes, CH(D)X, where X = Cl, Br, and I. These are model systems for examining carbene singlet-triplet energy gaps and spin-orbit coupling. Over the past decade, rich data sets collected using single vibronic level emission spectroscopy and stimulated emission pumping spectroscopy have yielded much information on the ground vibrational level structure and clearly demonstrated the presence of perturbations involving the low-lying triplet state. To model these interactions globally, we compare two approaches. First, we employ a diabatic treatment of the spin-orbit coupling, where the coupling matrix elements are written inmore » terms of a purely electronic spin-orbit matrix element which is independent of nuclear coordinates, and an integral representing the overlap of the singlet and triplet vibrational wavefunctions. In this way, the structures, harmonic frequencies, and normal mode displacements from ab initio calculations were used to calculate the vibrational overlaps of the singlet and triplet state levels, including the full effects of Duschinsky mixing. These calculations have allowed many new assignments to be made, particularly for CHI, and provided spin-orbit coupling parameters and values for the singlet-triplet gaps. In a second approach, we have computed and fit full geometry dependent spin-orbit coupling surfaces and used them to compute matrix elements without the product form approximation. Those matrix elements were used in similar fits varying the anharmonic constants and singlet-triplet gap to reproduce the experimental levels. The derived spin-orbit parameters for carbenes CHX (X = Cl, Br, and I) show an excellent linear correlation with the atomic spin-orbit constant of the corresponding halogen, indicating that the spin-orbit coupling in the carbenes is consistently around 14% of the atomic value.« less
NASA Technical Reports Server (NTRS)
Chin, M. M.; Goad, C. C.; Martin, T. V.
1972-01-01
A computer program for the estimation of orbit and geodetic parameters is presented. The areas in which the program is operational are defined. The specific uses of the program are given as: (1) determination of definitive orbits, (2) tracking instrument calibration, (3) satellite operational predictions, and (4) geodetic parameter estimation. The relationship between the various elements in the solution of the orbit and geodetic parameter estimation problem is analyzed. The solution of the problems corresponds to the orbit generation mode in the first case and to the data reduction mode in the second case.
Luboz, Vincent; Chabanas, Matthieu; Swider, Pascal; Payan, Yohan
2005-08-01
This paper addresses an important issue raised for the clinical relevance of Computer-Assisted Surgical applications, namely the methodology used to automatically build patient-specific finite element (FE) models of anatomical structures. From this perspective, a method is proposed, based on a technique called the mesh-matching method, followed by a process that corrects mesh irregularities. The mesh-matching algorithm generates patient-specific volume meshes from an existing generic model. The mesh regularization process is based on the Jacobian matrix transform related to the FE reference element and the current element. This method for generating patient-specific FE models is first applied to computer-assisted maxillofacial surgery, and more precisely, to the FE elastic modelling of patient facial soft tissues. For each patient, the planned bone osteotomies (mandible, maxilla, chin) are used as boundary conditions to deform the FE face model, in order to predict the aesthetic outcome of the surgery. Seven FE patient-specific models were successfully generated by our method. For one patient, the prediction of the FE model is qualitatively compared with the patient's post-operative appearance, measured from a computer tomography scan. Then, our methodology is applied to computer-assisted orbital surgery. It is, therefore, evaluated for the generation of 11 patient-specific FE poroelastic models of the orbital soft tissues. These models are used to predict the consequences of the surgical decompression of the orbit. More precisely, an average law is extrapolated from the simulations carried out for each patient model. This law links the size of the osteotomy (i.e. the surgical gesture) and the backward displacement of the eyeball (the consequence of the surgical gesture).
NASA Technical Reports Server (NTRS)
Becker, D. D.
1980-01-01
The orbiter subsystems and interfacing program elements which interact with the orbiter computer flight software are analyzed. The failure modes identified in the subsystem/element failure mode and effects analysis are examined. Potential interaction with the software is examined through an evaluation of the software requirements. The analysis is restricted to flight software requirements and excludes utility/checkout software. The results of the hardware/software interaction analysis for the forward reaction control system are presented.
Calculation of precision satellite orbits with nonsingular elements /VOP formulation/
NASA Technical Reports Server (NTRS)
Velez, C. E.; Cefola, P. J.; Long, A. C.; Nimitz, K. S.
1974-01-01
Review of some results obtained in an effort to develop efficient, high-precision trajectory computation processes for artificial satellites by optimum selection of the form of the equations of motion of the satellite and the numerical integration method. In particular, the matching of a Gaussian variation-of-parameter (VOP) formulation is considered which is expressed in terms of equinoctial orbital elements and partially decouples the motion of the orbital frame from motion within the orbital frame. The performance of the resulting orbit generators is then compared with the popular classical Cowell/Gauss-Jackson formulation/integrator pair for two distinctly different orbit types - namely, the orbit of the ATS satellite at near-geosynchronous conditions and the near-circular orbit of the GEOS-C satellite at 1000 km.
Simulation of Hypervelocity Impact on Aluminum-Nextel-Kevlar Orbital Debris Shields
NASA Technical Reports Server (NTRS)
Fahrenthold, Eric P.
2000-01-01
An improved hybrid particle-finite element method has been developed for hypervelocity impact simulation. The method combines the general contact-impact capabilities of particle codes with the true Lagrangian kinematics of large strain finite element formulations. Unlike some alternative schemes which couple Lagrangian finite element models with smooth particle hydrodynamics, the present formulation makes no use of slidelines or penalty forces. The method has been implemented in a parallel, three dimensional computer code. Simulations of three dimensional orbital debris impact problems using this parallel hybrid particle-finite element code, show good agreement with experiment and good speedup in parallel computation. The simulations included single and multi-plate shields as well as aluminum and composite shielding materials. at an impact velocity of eleven kilometers per second.
ORBIT: A Code for Collective Beam Dynamics in High-Intensity Rings
NASA Astrophysics Data System (ADS)
Holmes, J. A.; Danilov, V.; Galambos, J.; Shishlo, A.; Cousineau, S.; Chou, W.; Michelotti, L.; Ostiguy, J.-F.; Wei, J.
2002-12-01
We are developing a computer code, ORBIT, specifically for beam dynamics calculations in high-intensity rings. Our approach allows detailed simulation of realistic accelerator problems. ORBIT is a particle-in-cell tracking code that transports bunches of interacting particles through a series of nodes representing elements, effects, or diagnostics that occur in the accelerator lattice. At present, ORBIT contains detailed models for strip-foil injection, including painting and foil scattering; rf focusing and acceleration; transport through various magnetic elements; longitudinal and transverse impedances; longitudinal, transverse, and three-dimensional space charge forces; collimation and limiting apertures; and the calculation of many useful diagnostic quantities. ORBIT is an object-oriented code, written in C++ and utilizing a scripting interface for the convenience of the user. Ongoing improvements include the addition of a library of accelerator maps, BEAMLINE/MXYZPTLK; the introduction of a treatment of magnet errors and fringe fields; the conversion of the scripting interface to the standard scripting language, Python; and the parallelization of the computations using MPI. The ORBIT code is an open source, powerful, and convenient tool for studying beam dynamics in high-intensity rings.
NASA Astrophysics Data System (ADS)
Heintz, W. D.
1981-04-01
Micrometer observations in 1979-1980 permitted the computation of substantially revised or new orbital elements for 15 visual pairs. They include the bright stars 52 Ari and 78 UMa (in the UMa cluster), four faint dK pairs, and the probable triple ADS 16185. Ephemerides for equator of data are listed in a table along with the orbital elements of the binaries. The measured positions and their residuals are listed in a second table. The considered binaries include ADS 896, 2336, 6315, 7054, 7629, 8092, 8555, 8739, 13987, 16185, Rst 1658, 3906, 3972, 4529, and Jsp 691.
Satellite Orbit Under Influence of a Drag - Analytical Approach
NASA Astrophysics Data System (ADS)
Martinović, M. M.; Šegan, S. D.
2017-12-01
The report studies some changes in orbital elements of the artificial satellites of Earth under influence of atmospheric drag. In order to develop possibilities of applying the results in many future cases, an analytical interpretation of the orbital element perturbations is given via useful, but very long expressions. The development is based on the TD88 air density model, recently upgraded with some additional terms. Some expressions and formulae were developed by the computer algebra system Mathematica and tested in some hypothetical cases. The results have good agreement with iterative (numerical) approach.
Orbital theory in terms of KS elements with luni-solar perturbations
NASA Astrophysics Data System (ADS)
Sellamuthu, Harishkumar; Sharma, Ram
2016-07-01
Precise orbit computation of Earth orbiting satellites is essential for efficient mission planning of planetary exploration, navigation and satellite geodesy. The third-body perturbations of the Sun and the Moon predominantly affect the satellite motion in the high altitude and elliptical orbits, where the effect of atmospheric drag is negligible. The physics of the luni-solar gravity effect on Earth satellites have been studied extensively over the years. The combined luni-solar gravitational attraction will induce a cumulative effect on the dynamics of satellite orbits, which mainly oscillates the perigee altitude. Though accurate orbital parameters are computed by numerical integration with respect to complex force models, analytical theories are highly valued for the manifold of solutions restricted to relatively simple force models. During close approach, the classical equations of motion in celestial mechanics are almost singular and they are unstable for long-term orbit propagation. A new singularity-free analytical theory in terms of KS (Kustaanheimo and Stiefel) regular elements with respect to luni-solar perturbation is developed. These equations are regular everywhere and eccentric anomaly is the independent variable. Plataforma Solar de Almería (PSA) algorithm and a Fourier series algorithm are used to compute the accurate positions of the Sun and the Moon, respectively. Numerical studies are carried out for wide range of initial parameters and the analytical solutions are found to be satisfactory when compared with numerically integrated values. The symmetrical nature of the equations allows only two of the nine equations to be solved for computing the state vectors and the time. Only a change in the initial conditions is required to solve the other equations. This theory will find multiple applications including on-board software packages and for mission analysis purposes.
NASA Astrophysics Data System (ADS)
Tupa, Peter R.; Quirin, S.; DeLeo, G. G.; McCluskey, G. E., Jr.
2007-12-01
We present a modified Fourier transform approach to determine the orbital parameters of detached visual binary stars. Originally inspired by Monet (ApJ 234, 275, 1979), this new method utilizes an iterative routine of refining higher order Fourier terms in a manner consistent with Keplerian motion. In most cases, this approach is not sensitive to the starting orbital parameters in the iterative loop. In many cases we have determined orbital elements even with small fragments of orbits and noisy data, although some systems show computational instabilities. The algorithm was constructed using the MAPLE mathematical software code and tested on artificially created orbits and many real binary systems, including Gliese 22 AC, Tau 51, and BU 738. This work was supported at Lehigh University by NSF-REU grant PHY-9820301.
Simple satellite orbit propagator
NASA Astrophysics Data System (ADS)
Gurfil, P.
2008-06-01
An increasing number of space missions require on-board autonomous orbit determination. The purpose of this paper is to develop a simple orbit propagator (SOP) for such missions. Since most satellites are limited by the available processing power, it is important to develop an orbit propagator that will use limited computational and memory resources. In this work, we show how to choose state variables for propagation using the simplest numerical integration scheme available-the explicit Euler integrator. The new state variables are derived by the following rationale: Apply a variation-of-parameters not on the gravity-affected orbit, but rather on the gravity-free orbit, and teart the gravity as a generalized force. This ultimately leads to a state vector comprising the inertial velocity and a modified position vector, wherein the product of velocity and time is subtracted from the inertial position. It is shown that the explicit Euler integrator, applied on the new state variables, becomes a symplectic integrator, preserving the Hamiltonian and the angular momentum (or a component thereof in the case of oblateness perturbations). The main application of the proposed propagator is estimation of mean orbital elements. It is shown that the SOP is capable of estimating the mean elements with an accuracy that is comparable to a high-order integrator that consumes an order-of-magnitude more computational time than the SOP.
View of MISSE-8 taken during a session of EVA
2011-07-12
ISS028-E-016111 (12 July 2011) --- This close-up image, recorded during a July 12 spacewalk, shows the Materials on International Space Station Experiment - 8 (MISSE-8). The experiment package is a test bed for materials and computing elements attached to the outside of the orbiting complex. These materials and computing elements are being evaluated for the effects of atomic oxygen, ultraviolet, direct sunlight, radiation, and extremes of heat and cold. This experiment allows the development and testing of new materials and computing elements that can better withstand the rigors of space environments. Results will provide a better understanding of the durability of various materials and computing elements when they are exposed to the space environment, with applications in the design of future spacecraft.
Computer Controlled Optical Surfacing With Orbital Tool Motion
NASA Astrophysics Data System (ADS)
Jones, Robert A.
1985-11-01
Asymmetric aspheric optical surfaces are very difficult to fabricate using classical techniques and laps the same size as the workpiece. Opticians can produce such surfaces by hand grinding and polishing, using small laps with orbital tool motion. However, this is a time consuming process unsuitable for large optical elements.
Computation of Asteroid Proper Elements: Recent Advances
NASA Astrophysics Data System (ADS)
Knežević, Z.
2017-12-01
The recent advances in computation of asteroid proper elements are briefly reviewed. Although not representing real breakthroughs in computation and stability assessment of proper elements, these advances can still be considered as important improvements offering solutions to some practical problems encountered in the past. The problem of getting unrealistic values of perihelion frequency for very low eccentricity orbits is solved by computing frequencies using the frequency-modified Fourier transform. The synthetic resonant proper elements adjusted to a given secular resonance helped to prove the existence of Astraea asteroid family. The preliminary assessment of stability with time of proper elements computed by means of the analytical theory provides a good indication of their poorer performance with respect to their synthetic counterparts, and advocates in favor of ceasing their regular maintenance; the final decision should, however, be taken on the basis of more comprehensive and reliable direct estimate of their individual and sample average deviations from constancy.
The Prediction of the Motion of Atens, Apollos and Amors over Long Intervals of Time
NASA Astrophysics Data System (ADS)
Wlodarczyk, I.
2002-01-01
Equations of motion of 930 Atens, Apollos and Amors (AAA) were integrated 300,000 years forward using RA15 Everhart method (Everhart, 1974). The Osterwinter model of Solar System was used (Osterwinter and Cohen, 1972). The differences in mean anomaly between unchanged and changed orbits were calculated. The changed orbits were constructed by adding or subtracting to the starting orbital elements one after the other errors of determination of orbital elements. When the differences in mean anomaly were greater than 360 deg. then computations were stopped. In almost all cases after about 1000 years in forwards or backwards integrations differences in mean anomaly between neighbors orbits growth rapidly. It denotes that it is impossible to predict behavior of asteroids outside this time. This time I have called time of stability.
View of MISSE-8 taken during a session of EVA
2011-07-12
ISS028-E-016107 (12 July 2011) --- This medium close-up image, recorded during a July 12 spacewalk, shows the Materials on International Space Station Experiment - 8 (MISSE-8). The experiment package is a test bed for materials and computing elements attached to the outside of the orbiting complex. These materials and computing elements are being evaluated for the effects of atomic oxygen, ultraviolet, direct sunlight, radiation, and extremes of heat and cold. This experiment allows the development and testing of new materials and computing elements that can better withstand the rigors of space environments. Results will provide a better understanding of the durability of various materials and computing elements when they are exposed to the space environment, with applications in the design of future spacecraft.
NASA's hypersonic fluid and thermal physics program (Aerothermodynamics)
NASA Technical Reports Server (NTRS)
Graves, R. A.; Hunt, J. L.
1985-01-01
This survey paper gives an overview of NASA's hypersonic fluid and thermal physics program (recently renamed aerothermodynamics). The purpose is to present the elements of, example results from, and rationale and projection for this program. The program is based on improving the fundamental understanding of aerodynamic and aerothermodynamic flow phenomena over hypersonic vehicles in the continuum, transitional, and rarefied flow regimes. Vehicle design capabilities, computational fluid dynamics, computational chemistry, turbulence modeling, aerothermal loads, orbiter flight data analysis, orbiter experiments, laser photodiagnostics, and facilities are discussed.
Finite-element reentry heat-transfer analysis of space shuttle Orbiter
NASA Technical Reports Server (NTRS)
Ko, William L.; Quinn, Robert D.; Gong, Leslie
1986-01-01
A structural performance and resizing (SPAR) finite-element thermal analysis computer program was used in the heat-transfer analysis of the space shuttle orbiter subjected to reentry aerodynamic heating. Three wing cross sections and one midfuselage cross section were selected for the thermal analysis. The predicted thermal protection system temperatures were found to agree well with flight-measured temperatures. The calculated aluminum structural temperatures also agreed reasonably well with the flight data from reentry to touchdown. The effects of internal radiation and of internal convection were found to be significant. The SPAR finite-element solutions agreed reasonably well with those obtained from the conventional finite-difference method.
NASA Astrophysics Data System (ADS)
da Silva Fernandes, S.; das Chagas Carvalho, F.; Bateli Romão, J. V.
2018-04-01
A numerical-analytical procedure based on infinitesimal canonical transformations is developed for computing optimal time-fixed low-thrust limited power transfers (no rendezvous) between coplanar orbits with small eccentricities in an inverse-square force field. The optimization problem is formulated as a Mayer problem with a set of non-singular orbital elements as state variables. Second order terms in eccentricity are considered in the development of the maximum Hamiltonian describing the optimal trajectories. The two-point boundary value problem of going from an initial orbit to a final orbit is solved by means of a two-stage Newton-Raphson algorithm which uses an infinitesimal canonical transformation. Numerical results are presented for some transfers between circular orbits with moderate radius ratio, including a preliminary analysis of Earth-Mars and Earth-Venus missions.
NASA Technical Reports Server (NTRS)
Bjorkman, W. S.; Uphoff, C. W.
1973-01-01
This Parameter Estimation Supplement describes the PEST computer program and gives instructions for its use in determination of lunar gravitation field coefficients. PEST was developed for use in the RAE-B lunar orbiting mission as a means of lunar field recovery. The observations processed by PEST are short-arc osculating orbital elements. These observations are the end product of an orbit determination process obtained with another program. PEST's end product it a set of harmonic coefficients to be used in long-term prediction of the lunar orbit. PEST employs some novel techniques in its estimation process, notably a square batch estimator and linear variational equations in the orbital elements (both osculating and mean) for measurement sensitivities. The program's capabilities are described, and operating instructions and input/output examples are given. PEST utilizes MAESTRO routines for its trajectory propagation. PEST's program structure and subroutines which are not common to MAESTRO are described. Some of the theoretical background information for the estimation process, and a derivation of linear variational equations for the Method 7 elements are included.
NASA Technical Reports Server (NTRS)
Smith, S. D.
1984-01-01
All of the elements used in the Reacting and Multi-Phase (RAMP2) computer code are described in detail. The code can be used to model the dominant phenomena which affect the prediction of liquid and solid rocket nozzle and orbital plume flow fields.
A standard library for modeling satellite orbits on a microcomputer
NASA Astrophysics Data System (ADS)
Beutel, Kenneth L.
1988-03-01
Introductory students of astrodynamics and the space environment are required to have a fundamental understanding of the kinematic behavior of satellite orbits. This thesis develops a standard library that contains the basic formulas for modeling earth orbiting satellites. This library is used as a basis for implementing a satellite motion simulator that can be used to demonstrate orbital phenomena in the classroom. Surveyed are the equations of orbital elements, coordinate systems and analytic formulas, which are made into a standard method for modeling earth orbiting satellites. The standard library is written in the C programming language and is designed to be highly portable between a variety of computer environments. The simulation draws heavily on the standards established by the library to produce a graphics-based orbit simulation program written for the Apple Macintosh computer. The simulation demonstrates the utility of the standard library functions but, because of its extensive use of the Macintosh user interface, is not portable to other operating systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maurice, Rémi, E-mail: remi.maurice@subatech.in2p3.fr; Montavon, Gilles; Réal, Florent
2015-03-07
The nature of chemical bonds in heavy main-group diatomics is discussed from the viewpoint of effective bond orders, which are computed from spin–orbit wave functions resulting from spin–orbit configuration interaction calculations. The reliability of the relativistic correlated wave functions obtained in such two-step spin–orbit coupling frameworks is assessed by benchmark studies of the spectroscopic constants with respect to either experimental data, or state-of-the-art fully relativistic correlated calculations. The I{sub 2}, At{sub 2}, IO{sup +}, and AtO{sup +} species are considered, and differences and similarities between the astatine and iodine elements are highlighted. In particular, we demonstrate that spin–orbit coupling weakensmore » the covalent character of the bond in At{sub 2} even more than electron correlation, making the consideration of spin–orbit coupling compulsory for discussing chemical bonding in heavy (6p) main group element systems.« less
Optimal solar sail planetocentric trajectories
NASA Technical Reports Server (NTRS)
Sackett, L. L.
1977-01-01
The analysis of solar sail planetocentric optimal trajectory problem is described. A computer program was produced to calculate optimal trajectories for a limited performance analysis. A square sail model is included and some consideration is given to a heliogyro sail model. Orbit to a subescape point and orbit to orbit transfer are considered. Trajectories about the four inner planets can be calculated and shadowing, oblateness, and solar motion may be included. Equinoctial orbital elements are used to avoid the classical singularities, and the method of averaging is applied to increase computational speed. Solution of the two-point boundary value problem which arises from the application of optimization theory is accomplished with a Newton procedure. Time optimal trajectories are emphasized, but a penalty function has been considered to prevent trajectories which intersect a planet's surface.
Effects of solar radiation on the orbits of small particles
NASA Technical Reports Server (NTRS)
Lyttleton, R. A.
1976-01-01
A modification of the Robertson (1937) equations of particle motion in the presence of solar radiation is developed which allows for partial reflection of sunlight as a result of rapid and varying particle rotations caused by interaction with the solar wind. The coefficients and forces in earlier forms of the equations are compared with those in the present equations, and secular rates of change of particle orbital elements are determined. Orbital dimensions are calculated in terms of time, probable sizes and densities of meteoric and cometary particles are estimated, and times of infall to the sun are computed for a particle moving in an almost circular orbit and a particle moving in an elliptical orbit of high eccentricity. Changes in orbital elements are also determined for particles from a long-period sun-grazing comet. The results show that the time of infall to the sun from a highly eccentric orbit is substantially shorter than from a circular orbit with a radius equal to the mean distance in the eccentric orbit. The possibility is considered that the free orbital kinetic energy of particles drawn into the sun may be the energy source for the solar corona.
Universal algorithms and programs for calculating the motion parameters in the two-body problem
NASA Technical Reports Server (NTRS)
Bakhshiyan, B. T.; Sukhanov, A. A.
1979-01-01
The algorithms and FORTRAN programs for computing positions and velocities, orbital elements and first and second partial derivatives in the two-body problem are presented. The algorithms are applicable for any value of eccentricity and are convenient for computing various navigation parameters.
The application of nonlinear programming and collocation to optimal aeroassisted orbital transfers
NASA Astrophysics Data System (ADS)
Shi, Y. Y.; Nelson, R. L.; Young, D. H.; Gill, P. E.; Murray, W.; Saunders, M. A.
1992-01-01
Sequential quadratic programming (SQP) and collocation of the differential equations of motion were applied to optimal aeroassisted orbital transfers. The Optimal Trajectory by Implicit Simulation (OTIS) computer program codes with updated nonlinear programming code (NZSOL) were used as a testbed for the SQP nonlinear programming (NLP) algorithms. The state-of-the-art sparse SQP method is considered to be effective for solving large problems with a sparse matrix. Sparse optimizers are characterized in terms of memory requirements and computational efficiency. For the OTIS problems, less than 10 percent of the Jacobian matrix elements are nonzero. The SQP method encompasses two phases: finding an initial feasible point by minimizing the sum of infeasibilities and minimizing the quadratic objective function within the feasible region. The orbital transfer problem under consideration involves the transfer from a high energy orbit to a low energy orbit.
A new method to compute lunisolar perturbations in satellite motions
NASA Technical Reports Server (NTRS)
Kozai, Y.
1973-01-01
A new method to compute lunisolar perturbations in satellite motion is proposed. The disturbing function is expressed by the orbital elements of the satellite and the geocentric polar coordinates of the moon and the sun. The secular and long periodic perturbations are derived by numerical integrations, and the short periodic perturbations are derived analytically. The perturbations due to the tides can be included in the same way. In the Appendix, the motion of the orbital plane for a synchronous satellite is discussed; it is concluded that the inclination cannot stay below 7 deg.
Kinetic energy classification and smoothing for compact B-spline basis sets in quantum Monte Carlo
NASA Astrophysics Data System (ADS)
Krogel, Jaron T.; Reboredo, Fernando A.
2018-01-01
Quantum Monte Carlo calculations of defect properties of transition metal oxides have become feasible in recent years due to increases in computing power. As the system size has grown, availability of on-node memory has become a limiting factor. Saving memory while minimizing computational cost is now a priority. The main growth in memory demand stems from the B-spline representation of the single particle orbitals, especially for heavier elements such as transition metals where semi-core states are present. Despite the associated memory costs, splines are computationally efficient. In this work, we explore alternatives to reduce the memory usage of splined orbitals without significantly affecting numerical fidelity or computational efficiency. We make use of the kinetic energy operator to both classify and smooth the occupied set of orbitals prior to splining. By using a partitioning scheme based on the per-orbital kinetic energy distributions, we show that memory savings of about 50% is possible for select transition metal oxide systems. For production supercells of practical interest, our scheme incurs a performance penalty of less than 5%.
Computational strategies for tire monitoring and analysis
NASA Technical Reports Server (NTRS)
Danielson, Kent T.; Noor, Ahmed K.; Green, James S.
1995-01-01
Computational strategies are presented for the modeling and analysis of tires in contact with pavement. A procedure is introduced for simple and accurate determination of tire cross-sectional geometric characteristics from a digitally scanned image. Three new strategies for reducing the computational effort in the finite element solution of tire-pavement contact are also presented. These strategies take advantage of the observation that footprint loads do not usually stimulate a significant tire response away from the pavement contact region. The finite element strategies differ in their level of approximation and required amount of computer resources. The effectiveness of the strategies is demonstrated by numerical examples of frictionless and frictional contact of the space shuttle Orbiter nose-gear tire. Both an in-house research code and a commercial finite element code are used in the numerical studies.
Cao, Zhanli; Li, Zhendong; Wang, Fan; Liu, Wenjian
2017-02-01
The spin-separated exact two-component (X2C) relativistic Hamiltonian [sf-X2C+so-DKHn, J. Chem. Phys., 2012, 137, 154114] is combined with the equation-of-motion coupled-cluster method with singles and doubles (EOM-CCSD) for the treatment of spin-orbit splittings of open-shell molecular systems. Scalar relativistic effects are treated to infinite order from the outset via the spin-free part of the X2C Hamiltonian (sf-X2C), whereas the spin-orbit couplings (SOC) are handled at the CC level via the first-order Douglas-Kroll-Hess (DKH) type of spin-orbit operator (so-DKH1). Since the exponential of single excitations, i.e., exp(T 1 ), introduces sufficient spin orbital relaxations, the inclusion of SOC at the CC level is essentially the same in accuracy as the inclusion of SOC from the outset in terms of the two-component spinors determined variationally by the sf-X2C+so-DKH1 Hamiltonian, but is computationally more efficient. Therefore, such an approach (denoted as sf-X2C-EOM-CCSD(SOC)) can achieve uniform accuracy for the spin-orbit splittings of both light and heavy elements. For light elements, the treatment of SOC can even be postponed until the EOM step (denoted as sf-X2C-EOM(SOC)-CCSD), so as to further reduce the computational cost. To reveal the efficacy of sf-X2C-EOM-CCSD(SOC) and sf-X2C-EOM(SOC)-CCSD, the spin-orbit splittings of the 2 Π states of monohydrides up to the sixth row of the periodic table are investigated. The results show that sf-X2C-EOM-CCSD(SOC) predicts very accurate results (within 5%) for elements up to the fifth row, whereas sf-X2C-EOM(SOC)-CCSD is useful only for light elements (up to the third row but with some exceptions). For comparison, the sf-X2C-S-TD-DFT-SOC approach [spin-adapted open-shell time-dependent density functional theory, Mol. Phys., 2013, 111, 3741] is applied to the same systems. The overall accuracy (1-10%) is satisfactory.
Multimodal registration via spatial-context mutual information.
Yi, Zhao; Soatto, Stefano
2011-01-01
We propose a method to efficiently compute mutual information between high-dimensional distributions of image patches. This in turn is used to perform accurate registration of images captured under different modalities, while exploiting their local structure otherwise missed in traditional mutual information definition. We achieve this by organizing the space of image patches into orbits under the action of Euclidean transformations of the image plane, and estimating the modes of a distribution in such an orbit space using affinity propagation. This way, large collections of patches that are equivalent up to translations and rotations are mapped to the same representative, or "dictionary element". We then show analytically that computing mutual information for a joint distribution in this space reduces to computing mutual information between the (scalar) label maps, and between the transformations mapping each patch into its closest dictionary element. We show that our approach improves registration performance compared with the state of the art in multimodal registration, using both synthetic and real images with quantitative ground truth.
Computations of M sub 2 and K sub 1 ocean tidal perturbations in satellite elements
NASA Technical Reports Server (NTRS)
Estes, R. H.
1974-01-01
Semi-analytic perturbation equations for the influence of M2 and K1 ocean tidal constituents on satellite motion are expanded into multi-dimensional Fourier series and calculations made for the BE-C satellite. Perturbation in the orbital elements are compared to those of the long period solid earth tides.
Ab initio relativistic effective potentials with spin--orbit operators. III. Rb through Xe
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaJohn, L.A.; Christiansen, P.A.; Ross, R.B.
A refined version of the ''shape consistent'' effective potential procedure of Christiansen, Lee, and Pitzer was used to compute averaged relativistic effective potentials (AREP) and spin--orbit operators for the elements Rb through Xe. Particular attention was given to the partitioning of the core and valence space and, where appropriate, more than one set of potentials is provided. These are tabulated in analytic form. Gaussian basis sets with contraction coefficients for the lowest energy state of each atom are given. The reliability of the transition metal AREPs was examined by comparing computed atomic excitation energies with accurate all-electron relativistic values. Themore » spin--orbit operators were tested in calculations on selected atoms.« less
Non-numeric computation for high eccentricity orbits. [Earth satellite orbit perturbation
NASA Technical Reports Server (NTRS)
Sridharan, R.; Renard, M. L.
1975-01-01
Geocentric orbits of large eccentricity (e = 0.9 to 0.95) are significantly perturbed in cislunar space by the sun and moon. The time-history of the height of perigee, subsequent to launch, is particularly critical. The determination of 'launch windows' is mostly concerned with preventing the height of perigee from falling below its low initial value before the mission lifetime has elapsed. Between the extremes of high accuracy digital integration of the equations of motion and of using an approximate, but very fast, stability criteria method, this paper is concerned with the developement of a method of intermediate complexity using non-numeric computation. The computer is used as the theory generator to generalize Lidov's theory using six osculating elements. Symbolic integration is completely automatized and the output is a set of condensed formulae well suited for repeated applications in launch window analysis. Examples of applications are given.
Orbital Solutions and Absolute Elements of the Eclipsing Binary YY Ceti
NASA Astrophysics Data System (ADS)
Williamon, Richard M.; Sowell, James R.
2012-05-01
YY Cet is a 10.5 mag semidetached variable with a 19 hr orbital period. The Wilson-Devinney program is used to simultaneously solve two new sets of UBV light curves together with preexisting photometry and single-line radial velocity measurements . The system has the lower-mass component completely filling its Roche lobe. The resulting masses are M1 = 1.78 ± 0.19 M⊙ and M2 = 0.92 ± 0.10 M⊙, and the radii are R1 = 2.08 ± 0.08 R⊙ and R2 = 1.62 ± 0.06 R⊙. Its computed distance is 534 ± 28 pc. Light- and velocity-curve parameters, orbital elements, and absolute dimensions are presented. A study of published TOM observations indicates that the period changed around 1999.
On the Determination of the Orbits of Comets
NASA Astrophysics Data System (ADS)
Englefield, Henry
2013-06-01
Preface; 1. General view of the method; 2. On the motion of the point of intersection of the radius vector and cord; 3. On the comparison of the parabolic cord with the space which answers to the mean velocity of the earth in the same time; 4. Of the reduction of the second longitude of the comet; 5. On the proportion of the three curtate distances of the comet from the earth; 6. Of the graphical declination of the orbit of the earth; 7. Of the numerical quantities to be prepared for the construction or computation of the comet's orbit; 8. Determination of the distances of the comet from the earth and the sun; 9. Determination of the elements of the orbit from the determined distances; 10. Determination of the place of the comet from the earth and sun; 11. Determination of the distances of the comet from the earth and sun; 12. Determination of the comet's orbit; 13. Determination of the place of the comet; 14. Application of the graphical method to the comet of 1769; 15. Application of the distances found; 16. Determination of the place of the comet, for another given time; 17. Application of the trigonometrical method to the comet of 1769; 18. Determination of the elements of the orbit of the comet of 1769; Example of the graphical operation for the orbit of the comet of 1769; Example of the trigonometrical operation for the orbit of the comet of 1769; Conclusion; La Place's general method for determining the orbits of comets; Determination of the two elements of the orbit; Application of La Place's method of finding the approximate perihelion distance; Application of La Place's method for correcting the orbit of a comet, to the comet of 1769; Explanation and use of the tables; Tables; Appendix; Plates.
Optimal multiple-pass aeroassisted plane change
NASA Technical Reports Server (NTRS)
Vinh, Nguyen X.; Ma, Der-Ming
1990-01-01
This paper presents the exact dimensionless equation of motion and the necessary conditions for the computation of the optimal trajectories of a hypervelocity vehicle flying through a non-rotating spherical planetary atmosphere. Numerical solution is then presented for the case when the vehicle makes several passages through the atmosphere near the perigee of its orbit. While the orbit is slowly contracting, aerodynamic maneuver is performed to obtain the maximum plane change. Several plots were presented to show the optimal variations of the lift coefficient and the bank angle and the various elements of the orbit.
The long-term motion of comet Halley
NASA Technical Reports Server (NTRS)
Yeomans, D. K.; Kiang, T.
1981-01-01
The orbital motion of comet Halley is numerically integrated back to 1404 BC. Starting with an orbit based on the 1759, 1682, and 1607 observations of the comet, the integration was run back in time with full planetary perturbations and nongravitational forces taken into account at each 0.5 day time-step. Small empirical corrections were made to the computed perihelion passage time in 837 and to the osculating orbital eccentricity in 800. In nine cases, the perihelion passage times calculated by Kiang (1971) from Chinese observations have been redetermined, and osculating orbital elements are given at each apparition from 1910 back to 1404 BC.
SeaTrack: Ground station orbit prediction and planning software for sea-viewing satellites
NASA Technical Reports Server (NTRS)
Lambert, Kenneth S.; Gregg, Watson W.; Hoisington, Charles M.; Patt, Frederick S.
1993-01-01
An orbit prediction software package (Sea Track) was designed to assist High Resolution Picture Transmission (HRPT) stations in the acquisition of direct broadcast data from sea-viewing spacecraft. Such spacecraft will be common in the near future, with the launch of the Sea viewing Wide Field-of-view Sensor (SeaWiFS) in 1994, along with the continued Advanced Very High Resolution Radiometer (AVHRR) series on NOAA platforms. The Brouwer-Lyddane model was chosen for orbit prediction because it meets the needs of HRPT tracking accuracies, provided orbital elements can be obtained frequently (up to within 1 week). Sea Track requires elements from the U.S. Space Command (NORAD Two-Line Elements) for the satellite's initial position. Updated Two-Line Elements are routinely available from many electronic sources (some are listed in the Appendix). Sea Track is a menu-driven program that allows users to alter input and output formats. The propagation period is entered by a start date and end date with times in either Greenwich Mean Time (GMT) or local time. Antenna pointing information is provided in tabular form and includes azimuth/elevation pointing angles, sub-satellite longitude/latitude, acquisition of signal (AOS), loss of signal (LOS), pass orbit number, and other pertinent pointing information. One version of Sea Track (non-graphical) allows operation under DOS (for IBM-compatible personal computers) and UNIX (for Sun and Silicon Graphics workstations). A second, graphical, version displays orbit tracks, and azimuth-elevation for IBM-compatible PC's, but requires a VGA card and Microsoft FORTRAN.
Computation of Asteroid Proper Elements on the Grid
NASA Astrophysics Data System (ADS)
Novakovic, B.; Balaz, A.; Knezevic, Z.; Potocnik, M.
2009-12-01
A procedure of gridification of the computation of asteroid proper orbital elements is described. The need to speed up the time consuming computations and make them more efficient is justified by the large increase of observational data expected from the next generation all sky surveys. We give the basic notion of proper elements and of the contemporary theories and methods used to compute them for different populations of objects. Proper elements for nearly 70,000 asteroids are derived since the beginning of use of the Grid infrastructure for the purpose. The average time for the catalogs update is significantly shortened with respect to the time needed with stand-alone workstations. We also present basics of the Grid computing, the concepts of Grid middleware and its Workload management system. The practical steps we undertook to efficiently gridify our application are described in full detail. We present the results of a comprehensive testing of the performance of different Grid sites, and offer some practical conclusions based on the benchmark results and on our experience. Finally, we propose some possibilities for the future work.
Analysis of the possible cause of break up of PSLV-C3/PS4 stage
NASA Astrophysics Data System (ADS)
Bandyopadhyay, P.; Sharma, R.; Adimurthy, V.
On 19t h December 2001 the orbiting spent PS4 stage of PSLV -C3 had undergone a break up. Following this event, the Two Line Element (TLE) sets of more than 300 debris pieces from the upper stage are available in public domain by January 2002. These TLE sets are the major input used in this study. Here the velocity components imparted on the fragments are evaluated by a new approach, which is less sensitive to the errors in the TLE sets. In Ref-1, the normal, radial and tangential components of fragment velocity additions are estimated from the differences in semi-major axis, eccentricity and inclination with respect to those of parent object. Unfortunately, when the parent orbit has small eccentricity or the break up occurs near either apogee or perigee, as it is likely in the case of PSLV-C3/PS4, the computation of radial component of velocity increment becomes close to a singular point and hence prone to errors because of imperfect orbital element data. In Ref-2, velocity increments are estimated from semi-major axis, eccentricity, inclination, and right ascension of ascending node and true anomaly of fragments as well as parent at the time of break up. It is very difficult to obtain true anomaly of fragments at the time of break up by propagating the element sets of debris pieces backward in time owing to uncertainties in orbital elements and drag parameters. Moreover, whenever the apogee of fragment orbit, computed from the TLE sets, becomes less than the perigee of parent orbit, this method does not yield any solution for radial component of velocity increment. The authors have estimated three components of velocity addition, utilizing relations involving the differences in semi-major axis, eccentricity and inclination and argument of perigee (Ref- 3) in a particular combination and sequence, which avoids the singularity in the computation. With this approach, the characteristics of velocity additions are similar in all the three directions and velocity addition histograms in these three directions are almost symmetric about zero. These results are pointer to the possibility of fragmentation from explosion in PSLV-C3/PS4 stage. It is also estimated that about 75 % of the total number of debris pieces from this break up would decay by the end 2002. References: (1) Nicholas L. Johnson &Darren S. McKnight, Artificial Space Debris, Orbit Foundation, 1987. (2) James G Miller, Velocity Distribution of Satellite Breakups, AAS 99-445, 1999. (3) Meirovitch L., Methods of Analytical Dynamics , McGraw Hill Company, 1970.
Kinetic energy classification and smoothing for compact B-spline basis sets in quantum Monte Carlo
Krogel, Jaron T.; Reboredo, Fernando A.
2018-01-25
Quantum Monte Carlo calculations of defect properties of transition metal oxides have become feasible in recent years due to increases in computing power. As the system size has grown, availability of on-node memory has become a limiting factor. Saving memory while minimizing computational cost is now a priority. The main growth in memory demand stems from the B-spline representation of the single particle orbitals, especially for heavier elements such as transition metals where semi-core states are present. Despite the associated memory costs, splines are computationally efficient. In this paper, we explore alternatives to reduce the memory usage of splined orbitalsmore » without significantly affecting numerical fidelity or computational efficiency. We make use of the kinetic energy operator to both classify and smooth the occupied set of orbitals prior to splining. By using a partitioning scheme based on the per-orbital kinetic energy distributions, we show that memory savings of about 50% is possible for select transition metal oxide systems. Finally, for production supercells of practical interest, our scheme incurs a performance penalty of less than 5%.« less
Kinetic energy classification and smoothing for compact B-spline basis sets in quantum Monte Carlo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krogel, Jaron T.; Reboredo, Fernando A.
Quantum Monte Carlo calculations of defect properties of transition metal oxides have become feasible in recent years due to increases in computing power. As the system size has grown, availability of on-node memory has become a limiting factor. Saving memory while minimizing computational cost is now a priority. The main growth in memory demand stems from the B-spline representation of the single particle orbitals, especially for heavier elements such as transition metals where semi-core states are present. Despite the associated memory costs, splines are computationally efficient. In this paper, we explore alternatives to reduce the memory usage of splined orbitalsmore » without significantly affecting numerical fidelity or computational efficiency. We make use of the kinetic energy operator to both classify and smooth the occupied set of orbitals prior to splining. By using a partitioning scheme based on the per-orbital kinetic energy distributions, we show that memory savings of about 50% is possible for select transition metal oxide systems. Finally, for production supercells of practical interest, our scheme incurs a performance penalty of less than 5%.« less
2004-06-01
equinoctial elements , because both sets of orbital elements reference the equinoctial coordinate system. In fact, to...spacecraft position and velocity vectors, or an element set , which represents the orbit using scalar quantities and angle measurements called orbital ...common element sets used to describe elliptical orbits (including circular orbits ) are Keplerian elements , also called classical orbital
Implementing a 50x50 Gravity Field Model in an Orbit Determination System
1993-06-01
orbital element set , sometimes better known as the Keplerian orbital element set . Another set is the equinoctial element set , which removes singularity...Conference. San Diego, California. August 1976. [8] Cefola, Paul. Equinoctial Orbit Elements - Application to Artificial Satellite Orbits . AIAA Paper...251 A.2 Classical Orbital Elements ......................................................... 251 A.3
Analysis of the orbit of the Centaur asteroid 2009 HW77
NASA Astrophysics Data System (ADS)
Wlodarczyk, I.; Cernis, K.; Eglitis, I.
2011-12-01
We present the time evolution of orbital elements of the Centaur asteroid 2009 HW77, discovered by KC and IE, forwards and backwards in time over a 10-Myr period. The dynamical behaviour is analysed using three software packages: the ORBFIT, the SWIFT and the MERCURY integrators. Changes in the orbital elements of 2009 HW77 clones are calculated using the classification of Horner et al. It is shown that close approaches to the giant planets significantly change the asteroid orbit. Our computations made with the SWIFT software and with the MERCURY software give similar results. The half-life is about 5 Myr in both the forward and backward integrations. Moreover, our computations suggest that the Centaur asteroid will be temporarily locked as a periodic asteroid connected with Jupiter with a Tisserand parameter smaller than 3. Hence it is dynamically similar to the Jupiter Family Comets. The mean duration in this state is about 82 kyr, but the behaviour and lifetime depend on whether capture occurs after a few hundred thousand years or a few hundred million years. Several clones of this dynamically interesting Centaur asteroid are temporarily locked up to four times as periodic asteroids connected with Jupiter, after which they are ejected from the Solar system. According to Bailey and Malhotra, asteroid 2009 HW77 may belong to the diffusing class of Centaurs, which can evolve into Jupiter Family Comets.
Modeling radiation forces acting on TOPEX/Poseidon for precision orbit determination
NASA Technical Reports Server (NTRS)
Marshall, J. A.; Luthcke, S. B.; Antreasian, P. G.; Rosborough, G. W.
1992-01-01
Geodetic satellites such as GEOSAT, SPOT, ERS-1, and TOPEX/Poseidon require accurate orbital computations to support the scientific data they collect. Until recently, gravity field mismodeling was the major source of error in precise orbit definition. However, albedo and infrared re-radiation, and spacecraft thermal imbalances produce in combination no more than a 6-cm radial root-mean-square (RMS) error over a 10-day period. This requires the development of nonconservative force models that take the satellite's complex geometry, attitude, and surface properties into account. For TOPEX/Poseidon, a 'box-wing' satellite form was investigated that models the satellite as a combination of flat plates arranged in a box shape with a connected solar array. The nonconservative forces acting on each of the eight surfaces are computed independently, yielding vector accelerations which are summed to compute the total aggregate effect on the satellite center-of-mass. In order to test the validity of this concept, 'micro-models' based on finite element analysis of TOPEX/Poseidon were used to generate acceleration histories in a wide variety of orbit orientations. These profiles are then compared to the box-wing model. The results of these simulations and their implication on the ability to precisely model the TOPEX/Poseidon orbit are discussed.
Halogen atom effect on the photophysical properties of substituted aza-BODIPY derivatives.
De Simone, B C; Mazzone, G; Pirillo, J; Russo, N; Sicilia, E
2017-01-18
The influence of halogen atom substitution (Br and I), in different amounts and positions in an aza-BODIPY skeleton, on the photophysical properties of some aza-BODIPY derivatives has been investigated by using density functional theory and its time-dependent extension. The heavy atom effect on excitation energies, singlet-triplet energy gaps and spin-orbit matrix elements has been considered. The maximum absorption within the therapeutic window has been confirmed for all the aza-BODIPY derivatives. The feasible intersystem spin crossing pathways for the population of the lowest triplet state, that will depend on the values of the spin-orbit matrix elements, the energy gap as well as the orbital composition of the involved states have been found to most likely involve the S 1 and T 1 or T 2 states. The outcomes of computations support the potential therapeutic use of these compounds as photosensitizers in photodynamic therapy.
Round-trip missions to low delta-V asteroids and implications for material retrieval
NASA Technical Reports Server (NTRS)
Bender, D. F.; Dunbar, R. S.; Ross, D. J.
1979-01-01
Low-delta-V asteroids are to be found among those which have perihelia near 1 AU. From the 50 known asteroids with perihelia less than 1.5 AU, 10 candidates for asteroid retrieval missions were selected on the basis of low eccentricity and inclination. To estimate the ranges of orbital elements for which capture in earth orbit may be feasible, a survey was made of 180 deg transfer from a set of orbits having elements near those of the earth to the earth. For 2 of the 10 low-delta-V asteroids and for an additional one with elements more earth-like than any yet known, direct ballistic round trips in the 1980's were computed. A stay time of several months at the asteroid was used. The results show that the total delta V, including that for rendezvous with earth upon return, for the known asteroids is above 14 km/sec. But if asteroids are found similar to the strawman considered, the total delta V could be as low as 10 km/sec.
Nonlinear feedback guidance law for aero-assisted orbit transfer maneuvers
NASA Technical Reports Server (NTRS)
Menon, P. K. A.
1992-01-01
Aero-assisted orbit transfer vehicles have the potential for significantly reducing the fuel requirements in certain classes of orbit transfer operations. Development of a nonlinear feedback guidance law for performing aero-assisted maneuvers that accomplish simultaneous change of all the orbital elements with least vehicle acceleration magnitude is discussed. The analysis is based on a sixth order nonlinear point-mass vehicle model with lift, bank angle, thrust and drag modulation as the control variables. The guidance law uses detailed vehicle aerodynamic and the atmosphere models in the feedback loop. Higher-order gravitational harmonics, planetary atmosphere rotation and ambient winds are included in the formulation. Due to modest computational requirements, the guidance law is implementable on-board an orbit transfer vehicle. The guidance performance is illustrated for three sets of boundary conditions.
User's guide to the UTIL-ODRC tape processing program. [for the Orbital Data Reduction Center
NASA Technical Reports Server (NTRS)
Juba, S. M. (Principal Investigator)
1981-01-01
The UTIL-ODRC computer compatible tape processing program, its input/output requirements, and its interface with the EXEC 8 operating system are described. It is a multipurpose orbital data reduction center (ODRC) tape processing program enabling the user to create either exact duplicate tapes and/or tapes in SINDA/HISTRY format. Input data elements for PRAMPT/FLOPLT and/or BATCH PLOT programs, a temperature summary, and a printed summary can also be produced.
Dynamics of Flexible MLI-type Debris for Accurate Orbit Prediction
2014-09-01
sets usually are classical orbital elements , or Keplerian elements illustrated in Fig. 3. Fig. 3. Orbital elements ... elements in Table 2, for 10 orbits . Orbit of the objects is simulated by equation (3.9) and set the initial equation in Table 2. Gravitational...depending upon the parameters selected and the orbit to be propagated. For this reason, other sets of elements were defined and used in the
Discrete Roughness Effects on Shuttle Orbiter at Mach 6
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Hamilton, H. Harris, II
2002-01-01
Discrete roughness boundary layer transition results on a Shuttle Orbiter model in the NASA Langley Research Center 20-Inch Mach 6 Air Tunnel have been reanalyzed with new boundary layer calculations to provide consistency for comparison to other published results. The experimental results were previously obtained utilizing the phosphor thermography system to monitor the status of the boundary layer via global heat transfer images of the Orbiter windward surface. The size and location of discrete roughness elements were systematically varied along the centerline of the 0.0075-scale model at an angle of attack of 40 deg and the boundary layer response recorded. Various correlative approaches were attempted, with the roughness transition correlations based on edge properties providing the most reliable results. When a consistent computational method is used to compute edge conditions, transition datasets for different configurations at several angles of attack have been shown to collapse to a well-behaved correlation.
NASA Astrophysics Data System (ADS)
Perov, N. I.
1985-02-01
A physical-geometrical method for computing the orbits of earth satellites on the basis of an inadequate number of angular observations (N3) was developed. Specifically, a new method has been developed for calculating the elements of Keplerian orbits of unidentified artificial satellites using two angular observations (alpha sub k, S sub k, k = 1). The first section gives procedures for determining the topocentric distance to AES on the basis of one optical observation. This is followed by description of a very simple method for determining unperturbed orbits using two satellite position vectors and a time interval which is applicable even in the case of antiparallel AED position vectors, a method designated the R sub 2 iterations method.
Modeling and analysis of the space shuttle nose-gear tire with semianalytic finite elements
NASA Technical Reports Server (NTRS)
Kim, Kyun O.; Noor, Ahmed K.; Tanner, John A.
1990-01-01
A computational procedure is presented for the geometrically nonlinear analysis of aircraft tires. The Space Shuttle Orbiter nose gear tire was modeled by using a two-dimensional laminated anisotropic shell theory with the effects of variation in material and geometric parameters included. The four key elements of the procedure are: (1) semianalytic finite elements in which the shell variables are represented by Fourier series in the circumferential direction and piecewise polynominals in the meridional direction; (2) a mixed formulation with the fundamental unknowns consisting of strain parameters, stress-resultant parameters, and generalized displacements; (3) multilevel operator splitting to effect successive simplifications, and to uncouple the equations associated with different Fourier harmonics; and (4) multilevel iterative procedures and reduction techniques to generate the response of the shell. Numerical results of the Space Shuttle Orbiter nose gear tire model are compared with experimental measurements of the tire subjected to inflation loading.
ASAP- ARTIFICIAL SATELLITE ANALYSIS PROGRAM
NASA Technical Reports Server (NTRS)
Kwok, J.
1994-01-01
The Artificial Satellite Analysis Program (ASAP) is a general orbit prediction program which incorporates sufficient orbit modeling accuracy for mission design, maneuver analysis, and mission planning. ASAP is suitable for studying planetary orbit missions with spacecraft trajectories of reconnaissance (flyby) and exploratory (mapping) nature. Sample data is included for a geosynchronous station drift cycle study, a Venus radar mapping strategy, a frozen orbit about Mars, and a repeat ground trace orbit. ASAP uses Cowell's method in the numerical integration of the equations of motion. The orbital mechanics calculation contains perturbations due to non-sphericity (up to a 40 X 40 field) of the planet, lunar and solar effects, and drag and solar radiation pressure. An 8th order Runge-Kutta integration scheme with variable step size control is used for efficient propagation. The input includes the classical osculating elements, orbital elements of the sun relative to the planet, reference time and dates, drag coefficient, gravitational constants, and planet radius, rotation rate, etc. The printed output contains Cartesian coordinates, velocity, equinoctial elements, and classical elements for each time step or event step. At each step, selected output is added to a plot file. The ASAP package includes a program for sorting this plot file. LOTUS 1-2-3 is used in the supplied examples to graph the results, but any graphics software package could be used to process the plot file. ASAP is not written to be mission-specific. Instead, it is intended to be used for most planetary orbiting missions. As a consequence, the user has to have some basic understanding of orbital mechanics to provide the correct input and interpret the subsequent output. ASAP is written in FORTRAN 77 for batch execution and has been implemented on an IBM PC compatible computer operating under MS-DOS. The ASAP package requires a math coprocessor and a minimum of 256K RAM. This program was last updated in 1988 with version 2.03. IBM PC is a registered trademark of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation. Lotus and 1-2-3 are registered trademarks of Lotus Development Corporation.
CAMELOT: Computational-Analytical Multi-fidElity Low-thrust Optimisation Toolbox
NASA Astrophysics Data System (ADS)
Di Carlo, Marilena; Romero Martin, Juan Manuel; Vasile, Massimiliano
2018-03-01
Computational-Analytical Multi-fidElity Low-thrust Optimisation Toolbox (CAMELOT) is a toolbox for the fast preliminary design and optimisation of low-thrust trajectories. It solves highly complex combinatorial problems to plan multi-target missions characterised by long spirals including different perturbations. To do so, CAMELOT implements a novel multi-fidelity approach combining analytical surrogate modelling and accurate computational estimations of the mission cost. Decisions are then made using two optimisation engines included in the toolbox, a single-objective global optimiser, and a combinatorial optimisation algorithm. CAMELOT has been applied to a variety of case studies: from the design of interplanetary trajectories to the optimal de-orbiting of space debris and from the deployment of constellations to on-orbit servicing. In this paper, the main elements of CAMELOT are described and two examples, solved using the toolbox, are presented.
Smart active pilot-in-the-loop systems
NASA Astrophysics Data System (ADS)
Thomas, Segun
1995-04-01
Representation of on-orbit microgravity environment in a 1-g environment is a continuing problem in space engineering analysis, procedures development and crew training. A way of adequately depicting weightlessness in the performance of on-orbit tasks is by a realistic (or real-time) computer based representation that provides the look, touch, and feel of on-orbit operation. This paper describes how a facility, the Systems Engineering Simulator at the Johnson Space Center, is utilizing recent advances in computer processing power and multi- processing capability to intelligently represent all systems, sub-systems and environmental elements associated with space flight operations. It first describes the computer hardware and interconnection between processors; the computer software responsible for task scheduling, health monitoring, sub-system and environment representation; control room and crew station. It then describes, the mathematical models that represent the dynamics of contact between the Mir and the Space Shuttle during the upcoming US and Russian Shuttle/Mir space mission. Results are presented comparing the response of the smart, active pilot-in-the-loop system to non-time critical CRAY model. A final example of how these systems are utilized is given in the development that supported the highly successful Hubble Space Telescope repair mission.
NASA Technical Reports Server (NTRS)
Singh, Sudeep K.; Lindenmoyer, Alan J.
1989-01-01
Results are presented from a preliminary control/structure interaction study of the Space Station, the Assembly Work Platform, and the STS orbiter dynamics coupled with the orbiter and station control systems. The first three Space Station assembly flight configurations and their finite element representations are illustrated. These configurations are compared in terms of control authority in each axis and propellant usage. The control systems design parameters during assembly are computed. Although the rigid body response was acceptable with the orbiter Primary Reaction Control System, the flexible body response showed large structural deflections and loads. It was found that severe control/structure interaction occurred if the stiffness of the Assembly Work Platform was equal to that of the station truss. Also, the response of the orbiter Vernier Reaction Control System to small changes in inertia properties is examined.
NASA Technical Reports Server (NTRS)
Klumpar, D. M. (Principal Investigator)
1981-01-01
Progress is reported in reading MAGSAT tapes in modeling procedure developed to compute the magnetic fields at satellite orbit due to current distributions in the ionosphere. The modeling technique utilizes a linear current element representation of the large-scale space-current system.
Finite-element 3D simulation tools for high-current relativistic electron beams
NASA Astrophysics Data System (ADS)
Humphries, Stanley; Ekdahl, Carl
2002-08-01
The DARHT second-axis injector is a challenge for computer simulations. Electrons are subject to strong beam-generated forces. The fields are fully three-dimensional and accurate calculations at surfaces are critical. We describe methods applied in OmniTrak, a 3D finite-element code suite that can address DARHT and the full range of charged-particle devices. The system handles mesh generation, electrostatics, magnetostatics and self-consistent particle orbits. The MetaMesh program generates meshes of conformal hexahedrons to fit any user geometry. The code has the unique ability to create structured conformal meshes with cubic logic. Organized meshes offer advantages in speed and memory utilization in the orbit and field solutions. OmniTrak is a versatile charged-particle code that handles 3D electric and magnetic field solutions on independent meshes. The program can update both 3D field solutions from the calculated beam space-charge and current-density. We shall describe numerical methods for orbit tracking on a hexahedron mesh. Topics include: 1) identification of elements along the particle trajectory, 2) fast searches and adaptive field calculations, 3) interpolation methods to terminate orbits on material surfaces, 4) automatic particle generation on multiple emission surfaces to model space-charge-limited emission and field emission, 5) flexible Child law algorithms, 6) implementation of the dual potential model for 3D magnetostatics, and 7) assignment of charge and current from model particle orbits for self-consistent fields.
Documentary table-top view of a comparison of the General Purpose Computers.
1988-09-13
S88-47513 (Aug 1988) --- The current and future versions of general purpose computers for Space Shuttle orbiters are represented in this frame. The two boxes on the left (AP101B) represent the current GPC configuration, with the input-output processor at far left and the central processing unit at its side. The upgraded version combines both elements in a single unit (far right, AP101S).
Precise satellite orbit determination with particular application to ERS-1
NASA Astrophysics Data System (ADS)
Fernandes, Maria Joana Afonso Pereira
The motivation behind this study is twofold. First to assess the accuracy of ERS-1 long arc ephemerides using state of the art models. Second, to develop improved methods for determining precise ERS-1 orbits using either short or long arc techniques. The SATAN programs, for the computation of satellite orbits using laser data were used. Several facilities were added to the original programs: the processing of PRARE range and altimeter data, and a number of algorithms that allow more flexible solutions by adjusting a number of additional parameters. The first part of this study, before the launch of ERS-1, was done with SEAS AT data. The accuracy of SEASAT orbits computed with PRARE simulated data has been determined. The effect of temporal distribution of tracking data along the arc and the extent to which altimetry can replace range data have been investigated. The second part starts with the computation of ERS-1 long arc solutions using laser data. Some aspects of modelling the two main forces affecting ERS-l's orbit are investigated. With regard to the gravitational forces, the adjustment of a set of geopotential coefficients has been considered. With respect to atmospheric drag, extensive research has been carried out on determining the influence on orbit accuracy of the measurements of solar fluxes (P10.7 indices) and geomagnetic activity (Kp indices) used by the atmospheric model in the computation of atmospheric density at satellite height. Two new short arc methods have been developed: the Constrained and the Bayesian method. Both methods are dynamic and consist of solving for the 6 osculating elements. Using different techniques, both methods overcome the problem of normal matrix ill- conditioning by constraining the solution. The accuracy and applicability of these methods are discussed and compared with the traditional non-dynamic TAR method.
Comet and asteroid hazard to the terrestrial planets
NASA Astrophysics Data System (ADS)
Ipatov, S. I.; Mather, J. C.
2004-01-01
We estimated the rate of comet and asteroid collisions with the terrestrial planets by calculating the orbits of 13,000 Jupiter-crossing objects (JCOs) and 1300 resonant asteroids and computing the probabilities of collisions based on random-phase approximations and the orbital elements sampled with a 500 years step. The Bulirsh-Stoer and a symplectic orbit integrator gave similar results for orbital evolution, but may give different collision probabilities with the Sun. A small fraction of former JCOs reached orbits with aphelia inside Jupiter's orbit and some reached Apollo orbits with semi-major axes less than 2 AU, Aten orbits and inner-Earth orbits (with aphelia less than 0.983 AU) and remained there for millions of years. Though less than 0.1% of the total, these objects were responsible for most of the collision probability of former JCOs with Earth and Venus. We conclude that a significant fraction of near-Earth objects could be extinct comets that came from the trans-Neptunian region or most of such comets disintegrated during their motion in near-Earth object orbits.
A New Orbit for the Eclipsing Binary V577 Oph
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffery, Elizabeth J.; Barnes, Thomas G. III; Montemayor, Thomas J.
Pulsating stars in eclipsing binary systems are unique objects for providing constraints on stellar models. To fully leverage the information available from the binary system, full orbital radial velocity curves must be obtained. We report 23 radial velocities for components of the eclipsing binary V577 Oph, whose primary star is a δ Sct variable. The velocities cover a nearly complete orbit and a time base of 20 years. We computed orbital elements for the binary and compared them to the ephemeris computed by Creevey et al. The comparison shows marginally different results. In particular, a change in the systemic velocitymore » by −2 km s{sup −1} is suggested by our results. We compare this systemic velocity difference to that expected due to reflex motion of the binary in response to the third body in the system. The systemic velocity difference is consistent with reflex motion, given our mass determination for the eclipsing binary and the orbital parameters determined by Volkov and Volkova for the three-body orbit. We see no evidence for the third body in our spectra, but we do see strong interstellar Na D lines that are consistent in strength with the direction and expected distance of V577 Oph.« less
Arrieta-Camacho, Juan José; Biegler, Lorenz T
2005-12-01
Real time optimal guidance is considered for a class of low thrust spacecraft. In particular, nonlinear model predictive control (NMPC) is utilized for computing the optimal control actions required to transfer a spacecraft from a low Earth orbit to a mission orbit. The NMPC methodology presented is able to cope with unmodeled disturbances. The dynamics of the transfer are modeled using a set of modified equinoctial elements because they do not exhibit singularities for zero inclination and zero eccentricity. The idea behind NMPC is the repeated solution of optimal control problems; at each time step, a new control action is computed. The optimal control problem is solved using a direct method-fully discretizing the equations of motion. The large scale nonlinear program resulting from the discretization procedure is solved using IPOPT--a primal-dual interior point algorithm. Stability and robustness characteristics of the NMPC algorithm are reviewed. A numerical example is presented that encourages further development of the proposed methodology: the transfer from low-Earth orbit to a molniya orbit.
Space-Shuttle Emulator Software
NASA Technical Reports Server (NTRS)
Arnold, Scott; Askew, Bill; Barry, Matthew R.; Leigh, Agnes; Mermelstein, Scott; Owens, James; Payne, Dan; Pemble, Jim; Sollinger, John; Thompson, Hiram;
2007-01-01
A package of software has been developed to execute a raw binary image of the space shuttle flight software for simulation of the computational effects of operation of space shuttle avionics. This software can be run on inexpensive computer workstations. Heretofore, it was necessary to use real flight computers to perform such tests and simulations. The package includes a program that emulates the space shuttle orbiter general- purpose computer [consisting of a central processing unit (CPU), input/output processor (IOP), master sequence controller, and buscontrol elements]; an emulator of the orbiter display electronics unit and models of the associated cathode-ray tubes, keyboards, and switch controls; computational models of the data-bus network; computational models of the multiplexer-demultiplexer components; an emulation of the pulse-code modulation master unit; an emulation of the payload data interleaver; a model of the master timing unit; a model of the mass memory unit; and a software component that ensures compatibility of telemetry and command services between the simulated space shuttle avionics and a mission control center. The software package is portable to several host platforms.
Metrics in Keplerian orbits quotient spaces
NASA Astrophysics Data System (ADS)
Milanov, Danila V.
2018-03-01
Quotient spaces of Keplerian orbits are important instruments for the modelling of orbit samples of celestial bodies on a large time span. We suppose that variations of the orbital eccentricities, inclinations and semi-major axes remain sufficiently small, while arbitrary perturbations are allowed for the arguments of pericentres or longitudes of the nodes, or both. The distance between orbits or their images in quotient spaces serves as a numerical criterion for such problems of Celestial Mechanics as search for common origin of meteoroid streams, comets, and asteroids, asteroid families identification, and others. In this paper, we consider quotient sets of the non-rectilinear Keplerian orbits space H. Their elements are identified irrespective of the values of pericentre arguments or node longitudes. We prove that distance functions on the quotient sets, introduced in Kholshevnikov et al. (Mon Not R Astron Soc 462:2275-2283, 2016), satisfy metric space axioms and discuss theoretical and practical importance of this result. Isometric embeddings of the quotient spaces into R^n, and a space of compact subsets of H with Hausdorff metric are constructed. The Euclidean representations of the orbits spaces find its applications in a problem of orbit averaging and computational algorithms specific to Euclidean space. We also explore completions of H and its quotient spaces with respect to corresponding metrics and establish a relation between elements of the extended spaces and rectilinear trajectories. Distance between an orbit and subsets of elliptic and hyperbolic orbits is calculated. This quantity provides an upper bound for the metric value in a problem of close orbits identification. Finally the invariance of the equivalence relations in H under coordinates change is discussed.
Software package for modeling spin-orbit motion in storage rings
NASA Astrophysics Data System (ADS)
Zyuzin, D. V.
2015-12-01
A software package providing a graphical user interface for computer experiments on the motion of charged particle beams in accelerators, as well as analysis of obtained data, is presented. The software package was tested in the framework of the international project on electric dipole moment measurement JEDI (Jülich Electric Dipole moment Investigations). The specific features of particle spin motion imply the requirement to use a cyclic accelerator (storage ring) consisting of electrostatic elements, which makes it possible to preserve horizontal polarization for a long time. Computer experiments study the dynamics of 106-109 particles in a beam during 109 turns in an accelerator (about 1012-1015 integration steps for the equations of motion). For designing an optimal accelerator structure, a large number of computer experiments on polarized beam dynamics are required. The numerical core of the package is COSY Infinity, a program for modeling spin-orbit dynamics.
A satellite relative motion model including J_2 and J_3 via Vinti's intermediary
NASA Astrophysics Data System (ADS)
Biria, Ashley D.; Russell, Ryan P.
2018-03-01
Vinti's potential is revisited for analytical propagation of the main satellite problem, this time in the context of relative motion. A particular version of Vinti's spheroidal method is chosen that is valid for arbitrary elliptical orbits, encapsulating J_2, J_3, and generally a partial J_4 in an orbit propagation theory without recourse to perturbation methods. As a child of Vinti's solution, the proposed relative motion model inherits these properties. Furthermore, the problem is solved in oblate spheroidal elements, leading to large regions of validity for the linearization approximation. After offering several enhancements to Vinti's solution, including boosts in accuracy and removal of some singularities, the proposed model is derived and subsequently reformulated so that Vinti's solution is piecewise differentiable. While the model is valid for the critical inclination and nonsingular in the element space, singularities remain in the linear transformation from Earth-centered inertial coordinates to spheroidal elements when the eccentricity is zero or for nearly equatorial orbits. The new state transition matrix is evaluated against numerical solutions including the J_2 through J_5 terms for a wide range of chief orbits and separation distances. The solution is also compared with side-by-side simulations of the original Gim-Alfriend state transition matrix, which considers the J_2 perturbation. Code for computing the resulting state transition matrix and associated reference frame and coordinate transformations is provided online as supplementary material.
NASA Astrophysics Data System (ADS)
Marchand, R.; Purschke, D.; Samson, J.
2013-03-01
Understanding the physics of interaction between satellites and the space environment is essential in planning and exploiting space missions. Several computer models have been developed over the years to study this interaction. In all cases, simulations are carried out in the reference frame of the spacecraft and effects such as charging, the formation of electrostatic sheaths and wakes are calculated for given conditions of the space environment. In this paper we present a program used to compute magnetic fields and a number of space plasma and space environment parameters relevant to Low Earth Orbits (LEO) spacecraft-plasma interaction modeling. Magnetic fields are obtained from the International Geophysical Reference Field (IGRF) and plasma parameters are obtained from the International Reference Ionosphere (IRI) model. All parameters are computed in the spacecraft frame of reference as a function of its six Keplerian elements. They are presented in a format that can be used directly in most spacecraft-plasma interaction models. Catalogue identifier: AENY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENY_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 270308 No. of bytes in distributed program, including test data, etc.: 2323222 Distribution format: tar.gz Programming language: FORTRAN 90. Computer: Non specific. Operating system: Non specific. RAM: 7.1 MB Classification: 19, 4.14. External routines: IRI, IGRF (included in the package). Nature of problem: Compute magnetic field components, direction of the sun, sun visibility factor and approximate plasma parameters in the reference frame of a Low Earth Orbit satellite. Solution method: Orbit integration, calls to IGRF and IRI libraries and transformation of coordinates from geocentric to spacecraft frame reference. Restrictions: Low Earth orbits, altitudes between 150 and 2000 km. Running time: Approximately two seconds to parameterize a full orbit with 1000 points.
The eclipsing binary CW Eridani. [three-color photoelectric observation
NASA Technical Reports Server (NTRS)
Chen, K.-Y.
1975-01-01
Results of three-color photoelectric observations of CW Eridani are presented which were made with a 30-inch telescope over the three-year period from 1970 to 1973. The times of minima are computed, solutions of the light curves are obtained, and theoretical light curves are computed from the solutions. The period is determined to be 2.72837 days, and the orbital and photoelectric elements are derived from solutions based on the idealized Russell model.
NASA Astrophysics Data System (ADS)
Mokhtari, P.; Rezaei, G.; Zamani, A.
2017-06-01
In this paper, electronic structure of a two dimensional elliptic quantum dot under the influence of external electric and magnetic fields are studied in the presence of Rashba and Dresselhaus spin-orbit interactions. This investigation is done computationally and to do this, at first, the effective Hamiltonian of the system by considering the spin-orbit coupling is demonstrated in the presence of applied electric and magnetic fields and afterwards the Schrödinger equation is solved using the finite difference approach. Utilizing finite element method, eigenvalues and eigenstates of the system are calculated and the effect of the external fields, the size of the dot as well as the strength of Rashba spin-orbit interaction are studied. Our results indicate that, Spin-orbit interactions, external fields and the dot size have a great influence on the electronic structure of the system.
NASA Technical Reports Server (NTRS)
Colombo, O. L.
1984-01-01
The nature of the orbit error and its effect on the sea surface heights calculated with satellite altimetry are explained. The elementary concepts of celestial mechanics required to follow a general discussion of the problem are included. Consideration of errors in the orbits of satellites with precisely repeating ground tracks (SEASAT, TOPEX, ERS-1, POSEIDON, amongst past and future altimeter satellites) are detailed. The theoretical conclusions are illustrated with the numerical results of computer simulations. The nature of the errors in this type of orbits is such that this error can be filtered out by using height differences along repeating (overlapping) passes. This makes them particularly valuable for the study and monitoring of changes in the sea surface, such as tides. Elements of tidal theory, showing how these principles can be combined with those pertinent to the orbit error to make direct maps of the tides using altimetry are presented.
NASA Technical Reports Server (NTRS)
Klumpar, D. M. (Principal Investigator)
1982-01-01
The status of the initial testing of the modeling procedure developed to compute the magnetic fields at satellite orbit due to current distributions in the ionosphere and magnetosphere is reported. The modeling technique utilizes a linear current element representation of the large scale space-current system.
Boundaries on Range-Range Constrained Admissible Regions for Optical Space Surveillance
NASA Astrophysics Data System (ADS)
Gaebler, J. A.; Axelrad, P.; Schumacher, P. W., Jr.
We propose a new type of admissible-region analysis for track initiation in multi-satellite problems when apparent angles measured at known stations are the only observable. The goal is to create an efficient and parallelizable algorithm for computing initial candidate orbits for a large number of new targets. It takes at least three angles-only observations to establish an orbit by traditional means. Thus one is faced with a problem that requires N-choose-3 sets of calculations to test every possible combination of the N observations. An alternative approach is to reduce the number of combinations by making hypotheses of the range to a target along the observed line-of-sight. If realistic bounds on the range are imposed, consistent with a given partition of the space of orbital elements, a pair of range possibilities can be evaluated via Lambert’s method to find candidate orbits for that that partition, which then requires Nchoose- 2 times M-choose-2 combinations, where M is the average number of range hypotheses per observation. The contribution of this work is a set of constraints that establish bounds on the range-range hypothesis region for a given element-space partition, thereby minimizing M. Two effective constraints were identified, which together, constrain the hypothesis region in range-range space to nearly that of the true admissible region based on an orbital partition. The first constraint is based on the geometry of the vacant orbital focus. The second constraint is based on time-of-flight and Lagrange’s form of Kepler’s equation. A complete and efficient parallelization of the problem is possible on this approach because the element partitions can be arbitrary and can be handled independently of each other.
Computer Controlled Optical Surfacing With Orbital Tool Motion
NASA Astrophysics Data System (ADS)
Jones, Robert A.
1985-10-01
Asymmetric aspheric optical surfaces are very difficult to fabricate using classical techniques and laps the same size as the workpiece. Opticians can produce such surfaces by grinding and polishing, using small laps with orbital tool motion. However, hand correction is a time consuming process unsuitable for large optical elements. Itek has developed Computer Controlled Optical Surfacing (CCOS) for fabricating such aspheric optics. Automated equipment moves a nonrotating orbiting tool slowly over the workpiece surface. The process corrects low frequency surface errors by figuring. The velocity of the tool assembly over the workpiece surface is purposely varied. Since the amount of material removal is proportional to the polishing or grinding time, accurate control over material removal is achieved. The removal of middle and high frequency surface errors is accomplished by pad smoothing. For a soft pad material, the pad will compress to fit the workpiece surface producing greater pressure and more removal at the surface high areas. A harder pad will ride on only the high regions resulting in removal only for those locations.
NASA Technical Reports Server (NTRS)
Prabhu, Ramadas K.
1996-01-01
This paper presents the results of a computational flow analysis of the McDonnell Douglas single-stage-to-orbit vehicle concept designated as the 24U. This study was made to determine the aerodynamic characteristics of the vehicle with and without body flaps over an angle of attack range of 20-40 deg. Computations were made at a flight Mach number of 20 at 200,000 ft. altitude with equilibrium air, and a Mach number of 6 with CF4 gas. The software package FELISA (Finite Element Langley imperial College Sawansea Ames) was used for all the computations. The FELISA software consists of unstructured surface and volume grid generators, and inviscid flow solvers with (1) perfect gas option for subsonic, transonic, and low supersonic speeds, and (2) perfect gas, equilibrium air, and CF4 options for hypersonic speeds. The hypersonic flow solvers with equilibrium air and CF4 options were used in the present studies. Results are compared with other computational results and hypersonic CF4 tunnel test data.
Ongoing data reduction, theoretical studies and supporting research in magnetospheric physics
NASA Technical Reports Server (NTRS)
Scarf, F. L.; Greenstadt, E. W.
1984-01-01
Data from ISEE-3, Pioneer Venus Orbiter, and Voyager 1 and 2 were analyzed. The predictability of local shock macrostructure at ISEE-1, at the Earth's bow shock, from solar wind measurements made up-stream by ISEE-3, was conducted using computer graphic format. Morphology of quasi-parallel shock was reviewed. The review attempted to interrelate various measurements and computations involving the q-parallel structure and foreshock elements connected to it. A new classification for q-parallel morphology was suggested.
Optimal Orbit Maneuvers with Electrodynamic Tethers
2006-06-01
orbital elements , which completely describe a unique orbit ; equinoctial elements are not employed but left for future iterations of the formulation...periods in the maneuver. Follow on work, uch as the transformation of this state vector from classical orbital elements to the quinoctial set of...
Searching for continuous gravitational wave sources in binary systems
NASA Astrophysics Data System (ADS)
Dhurandhar, Sanjeev V.; Vecchio, Alberto
2001-06-01
We consider the problem of searching for continuous gravitational wave (cw) sources orbiting a companion object. This issue is of particular interest because the Low mass x-ray binaries (LMXB's), and among them Sco X-1, the brightest x-ray source in the sky, might be marginally detectable with ~2 y coherent observation time by the Earth-based laser interferometers expected to come on line by 2002 and clearly observable by the second generation of detectors. Moreover, several radio pulsars, which could be deemed to be cw sources, are found to orbit a companion star or planet, and the LIGO-VIRGO-GEO600 network plans to continuously monitor such systems. We estimate the computational costs for a search launched over the additional five parameters describing generic elliptical orbits (up to e<~0.8) using match filtering techniques. These techniques provide the optimal signal-to-noise ratio and also a very clear and transparent theoretical framework. Since matched filtering will be implemented in the final and the most computationally expensive stage of the hierarchical strategies, the theoretical framework provided here can be used to determine the computational costs. In order to disentangle the computational burden involved in the orbital motion of the cw source from the other source parameters (position in the sky and spin down) and reduce the complexity of the analysis, we assume that the source is monochromatic (there is no intrinsic change in its frequency) and its location in the sky is exactly known. The orbital elements, on the other hand, are either assumed to be completely unknown or only partly known. We provide ready-to-use analytical expressions for the number of templates required to carry out the searches in the astrophysically relevant regions of the parameter space and how the computational cost scales with the ranges of the parameters. We also determine the critical accuracy to which a particular parameter must be known, so that no search is needed for it; we provide rigorous statements, based on the geometrical formulation of data analysis, concerning the size of the parameter space so that a particular neutron star is a one-filter target. This result is formulated in a completely general form, independent of the particular kind of source, and can be applied to any class of signals whose waveform can be accurately predicted. We apply our theoretical analysis to Sco X-1 and the 44 neutron stars with binary companions which are listed in the most updated version of the radio pulsar catalog. For up to ~3 h of coherent integration time, Sco X-1 will need at most a few templates; for 1 week integration time the number of templates rapidly rises to ~=5×106. This is due to the rather poor measurements available today of the projected semi-major axis and the orbital phase of the neutron star. If, however, the same search is to be carried out with only a few filters, then more refined measurements of the orbital parameters are called for-an improvement of about three orders of magnitude in the accuracy is required. Further, we show that the five NS's (radio pulsars) for which the upper limits on the signal strength are highest require no more than a few templates each and can be targeted very cheaply in terms of CPU time. Blind searches of the parameter space of orbital elements are, in general, completely un-affordable for present or near future dedicated computational resources, when the coherent integration time is of the order of the orbital period or longer. For wide binary systems, when the observation covers only a fraction of one orbit, the computational burden reduces enormously, and becomes affordable for a significant region of the parameter space.
Trajectory Optimization for Spacecraft Collision Avoidance
2013-09-01
Modified Set of Equinoctial Orbit Elements . AAS/AIAA 91-524," in Astrodynamics Specialist Conference, Durango, CO, 1991. [18] D. E. Kirk...these singularities, the COE are not necessarily the best set of states for numerical analysis. 2.3.3 Equinoctial Orbital Elements A third method of...completely defining an orbit is by the use of the Equinoctial Orbital Elements . This element set maintains the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Yunlong; Zhang, Yong; Liu, Wenjian, E-mail: liuwjbdf@gmail.com
2014-10-28
Both kinetically balanced (KB) and kinetically unbalanced (KU) rotational London orbitals (RLO) are proposed to resolve the slow basis set convergence in relativistic calculations of nuclear spin-rotation (NSR) coupling tensors of molecules containing heavy elements [Y. Xiao and W. Liu, J. Chem. Phys. 138, 134104 (2013)]. While they perform rather similarly, the KB-RLO Ansatz is clearly preferred as it ensures the correct nonrelativistic limit even with a finite basis. Moreover, it gives rise to the same “direct relativistic mapping” between nuclear magnetic resonance shielding and NSR coupling tensors as that without using the London orbitals [Y. Xiao, Y. Zhang, andmore » W. Liu, J. Chem. Theory Comput. 10, 600 (2014)].« less
Systems design and analysis of the microwave radiometer spacecraft
NASA Technical Reports Server (NTRS)
Garrett, L. B.
1981-01-01
Systems design and analysis data were generated for microwave radiometer spacecraft concept using the Large Advanced Space Systems (LASS) computer aided design and analysis program. Parametric analyses were conducted for perturbations off the nominal-orbital-altitude/antenna-reflector-size and for control/propulsion system options. Optimized spacecraft mass, structural element design, and on-orbit loading data are presented. Propulsion and rigid-body control systems sensitivities to current and advanced technology are established. Spacecraft-induced and environmental effects on antenna performance (surface accuracy, defocus, and boresight off-set) are quantified and structured material frequencies and modal shapes are defined.
Optimum satellite relay positions with application to a TDRS-1 Indian Ocean relay
NASA Technical Reports Server (NTRS)
Jackson, A. H.; Christopher, P.
1994-01-01
An Indian Ocean satellite relay is examined. The relay satellite position is optimized by minimizing the sum of downlink and satellite to satellite link losses. Osculating orbital elements are used for fast intensive orbital computation. Integrated Van Vleck gaseous attenuation and a Crane rain model are used for downlink attenuation. Circular polarization losses on the satellite to satellite link are found dynamically. Space to ground link antenna pointing losses are included as a function of yaw ans spacecraft limits. Relay satellite positions between 90 to 100 degrees East are found attractive for further study.
NASA Astrophysics Data System (ADS)
Sokova, I. A.; Sokov, E. N.; Roschina, E. A.; Rastegaev, D. A.; Kiselev, A. A.; Balega, Yu. Yu.; Gorshanov, D. L.; Malogolovets, E. V.; Dyachenko, V. V.; Maksimov, A. F.
2014-07-01
In this paper we present the orbital elements of Linus satellite of 22 Kalliope asteroid. Orbital element determination is based on the speckle interferometry data obtained with the 6-m BTA telescope operated by SAO RAS. We processed 9 accurate positions of Linus orbiting around the main component of 22 Kalliope between 10 and 16 December, 2011. In order to determine the orbital elements of the Linus we have applied the direct geometric method. The formal errors are about 5 mas. This accuracy makes it possible to study the variations of the Linus orbital elements influenced by different perturbations over the course of time. Estimates of six classical orbital elements, such as the semi-major axis of the Linus orbit a = 1109 ± 6 km, eccentricity e = 0.016 ± 0.004, inclination i = 101° ± 1° to the ecliptic plane and others, are presented in this work.
Collision for Li++He System. I. Potential Curves and Non-Adiabatic Coupling Matrix Elements
NASA Astrophysics Data System (ADS)
Yoshida, Junichi; O-Ohata, Kiyosi
1984-02-01
The potential curves and the non-adiabatic coupling matrix elements for the Li++He collision system were computed. The SCF molecular orbitals were constructed with the CGTO atomic bases centered on each nucleus and the center of mass of two nuclei. The SCF and CI calculations were done at various internuclear distances in the range of 0.1˜25.0 a.u. The potential energies and the wavefunctions were calculated with good approximation over whole internuclear distance. The non-adiabatic coupling matrix elements were calculated with the tentative method in which the ETF are approximately taken into account.
NASA Astrophysics Data System (ADS)
Mendez, Rene A.; Claveria, Ruben M.; Orchard, Marcos E.; Silva, Jorge F.
2017-11-01
We present orbital elements and mass sums for 18 visual binary stars of spectral types B to K (five of which are new orbits) with periods ranging from 20 to more than 500 yr. For two double-line spectroscopic binaries with no previous orbits, the individual component masses, using combined astrometric and radial velocity data, have a formal uncertainty of ˜ 0.1 {M}⊙ . Adopting published photometry and trigonometric parallaxes, plus our own measurements, we place these objects on an H-R diagram and discuss their evolutionary status. These objects are part of a survey to characterize the binary population of stars in the Southern Hemisphere using the SOAR 4 m telescope+HRCAM at CTIO. Orbital elements are computed using a newly developed Markov chain Monte Carlo (MCMC) algorithm that delivers maximum-likelihood estimates of the parameters, as well as posterior probability density functions that allow us to evaluate the uncertainty of our derived parameters in a robust way. For spectroscopic binaries, using our approach, it is possible to derive a self-consistent parallax for the system from the combined astrometric and radial velocity data (“orbital parallax”), which compares well with the trigonometric parallaxes. We also present a mathematical formalism that allows a dimensionality reduction of the feature space from seven to three search parameters (or from 10 to seven dimensions—including parallax—in the case of spectroscopic binaries with astrometric data), which makes it possible to explore a smaller number of parameters in each case, improving the computational efficiency of our MCMC code. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).
Satellite orbital conjunction reports assessing threatening encounters in space (SOCRATES)
NASA Astrophysics Data System (ADS)
Kelso, T. S.; Alfano, S.
2006-05-01
While many satellite operators are aware of the possibility of a collision between their satellite and another object in earth orbit, most seem unaware of the frequency of near misses occurring each day. Until recently, no service existed to advise satellite operators of an impending conjunction of a satellite payload with another satellite, putting the responsibility for determining these occurrences squarely on the satellite operator's shoulders. This problem has been further confounded by the lack of a timely, comprehensive data set of satellite orbital element sets and computationally efficient tools to provide predictions using industry-standard software. As a result, hundreds of conjunctions within 1 km occur each week, with little or no intervention, putting billions of dollars of space hardware at risk, along with their associated missions. As a service to the satellite operator community, the Center for Space Standards & Innovation (CSSI) offers SOCRATES-Satellite Orbital Conjunction Reports Assessing Threatening Encounters in Space. Twice each day, CSSI runs a list of all satellite payloads on orbit against a list of all objects on orbit using the catalog of all unclassified NORAD two-line element sets to look for conjunctions over the next seven days. The runs are made using STK/CAT-Satellite Tool Kit's Conjunction Analysis Tools-together with the NORAD SGP4 propagator in STK. This paper will discuss how SOCRATES works and how it can help satellite operators avoid undesired close approaches through advanced mission planning.
NASA Astrophysics Data System (ADS)
Gorbunova, I.; Khabibullin, R.; Chernyakin, S.; Starinova, O.
2016-04-01
This paper discusses the research of functioning of different construction types for the spacecraft with a solar sail. Two types of the solar sail are considered, such as frame-type and rotary-type. The research is performed by means of application of the computer-assisted design system. The movement simulation of the spacecraft center mass and the forces acting on the solar sail is described. The finite element models of the two solar sail constructions are developed and compared.
NASA Astrophysics Data System (ADS)
Bennett, J.; Gehly, S.
2016-09-01
This paper presents results from a preliminary method for extracting more orbital information from low rate passive optical tracking data. An improvement in the accuracy of the observation data yields more accurate and reliable orbital elements. A comparison between the orbit propagations from the orbital element generated using the new data processing method is compared with the one generated from the raw observation data for several objects. Optical tracking data collected by EOS Space Systems, located on Mount Stromlo, Australia, is fitted to provide a new orbital element. The element accuracy is determined from a comparison between the predicted orbit and subsequent tracking data or reference orbit if available. The new method is shown to result in a better orbit prediction which has important implications in conjunction assessments and the Space Environment Research Centre space object catalogue. The focus is on obtaining reliable orbital solutions from sparse data. This work forms part of the collaborative effort of the Space Environment Management Cooperative Research Centre which is developing new technologies and strategies to preserve the space environment (www.serc.org.au).
NASA Technical Reports Server (NTRS)
Bond, Victor R.; Fraietta, Michael F.
1991-01-01
In 1961, Sperling linearized and regularized the differential equations of motion of the two-body problem by changing the independent variable from time to fictitious time by Sundman's transformation (r = dt/ds) and by embedding the two-body energy integral and the Laplace vector. In 1968, Burdet developed a perturbation theory which was uniformly valid for all types of orbits using a variation of parameters approach on the elements which appeared in Sperling's equations for the two-body solution. In 1973, Bond and Hanssen improved Burdet's set of differential equations by embedding the total energy (which is a constant when the potential function is explicitly dependent upon time.) The Jacobian constant was used as an element to replace the total energy in a reformulation of the differential equations of motion. In the process, another element which is proportional to a component of the angular momentum was introduced. Recently trajectories computed during numerical studies of atmospheric entry from circular orbits and low thrust beginning in near-circular orbits exhibited numerical instability when solved by the method of Bond and Gottlieb (1989) for long time intervals. It was found that this instability was due to secular terms which appear on the righthand sides of the differential equations of some of the elements. In this paper, this instability is removed by the introduction of another vector integral called the delta integral (which replaces the Laplace Vector) and another scalar integral which removes the secular terms. The introduction of these integrals requires a new derivation of the differential equations for most of the elements. For this rederivation, the Lagrange method of variation of parameters is used, making the development more concise. Numerical examples of this improvement are presented.
Software package for modeling spin–orbit motion in storage rings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zyuzin, D. V., E-mail: d.zyuzin@fz-juelich.de
2015-12-15
A software package providing a graphical user interface for computer experiments on the motion of charged particle beams in accelerators, as well as analysis of obtained data, is presented. The software package was tested in the framework of the international project on electric dipole moment measurement JEDI (Jülich Electric Dipole moment Investigations). The specific features of particle spin motion imply the requirement to use a cyclic accelerator (storage ring) consisting of electrostatic elements, which makes it possible to preserve horizontal polarization for a long time. Computer experiments study the dynamics of 10{sup 6}–10{sup 9} particles in a beam during 10{supmore » 9} turns in an accelerator (about 10{sup 12}–10{sup 15} integration steps for the equations of motion). For designing an optimal accelerator structure, a large number of computer experiments on polarized beam dynamics are required. The numerical core of the package is COSY Infinity, a program for modeling spin–orbit dynamics.« less
Trajectory Control and Optimization for Responsive Spacecraft
2012-03-22
Orbital Elements and Local-Vertical-Local-Horizontal Frame 10 2.3 Equinoctial Frame with respect to ECI Frame [17] . . . . . . . . . 14 3.1...position and velocity, classical orbital elements , and equinoctial elements . These methods are detailed in the following sections. 2.1.1 Inertial Position...trajectory. However, if the singularities are unavoidable equinoctial orbital elements could be used. 2.1.3 Equinoctial Elements . Equinoctial
1987-01-01
for highly eccentric orbits . The real data is in the form of North American Defense Command (NORAD) element sets and actual observa- tions. Data are...the performance of the Semianalytical Satellite Theory for high eccentricity orbits . When elements sets were used as inputs to the DC, comparisons...Operational Orbit Elements ...................... 54 2.* NSSC 9829 Element Set Edits.................. .. .......... . 55 3. Force Models Used for NSSC
FSD- FLEXIBLE SPACECRAFT DYNAMICS
NASA Technical Reports Server (NTRS)
Fedor, J. V.
1994-01-01
The Flexible Spacecraft Dynamics and Control program (FSD) was developed to aid in the simulation of a large class of flexible and rigid spacecraft. FSD is extremely versatile and can be used in attitude dynamics and control analysis as well as in-orbit support of deployment and control of spacecraft. FSD has been used to analyze the in-orbit attitude performance and antenna deployment of the RAE and IMP class satellites, and the HAWKEYE, SCATHA, EXOS-B, and Dynamics Explorer flight programs. FSD is applicable to inertially-oriented spinning, earth oriented, or gravity gradient stabilized spacecraft. The spacecraft flexibility is treated in a continuous manner (instead of finite element) by employing a series of shape functions for the flexible elements. Torsion, bending, and three flexible modes can be simulated for every flexible element. FSD can handle up to ten tubular elements in an arbitrary orientation. FSD is appropriate for studies involving the active control of pointed instruments, with options for digital PID (proportional, integral, derivative) error feedback controllers and control actuators such as thrusters and momentum wheels. The input to FSD is in four parts: 1) Orbit Construction FSD calculates a Keplerian orbit with environmental effects such as drag, magnetic torque, solar pressure, thermal effects, and thruster adjustments; or the user can supply a GTDS format orbit tape for a particular satellite/time-span; 2) Control words - for options such as gravity gradient effects, control torques, and integration ranges; 3) Mathematical descriptions of spacecraft, appendages, and control systems- including element geometry, properties, attitudes, libration damping, tip mass inertia, thermal expansion, magnetic tracking, and gimbal simulation options; and 4) Desired state variables to output, i.e., geometries, bending moments, fast Fourier transform plots, gimbal rotation, filter vectors, etc. All FSD input is of free format, namelist construction. FSD is written in FORTRAN 77, PASCAL, and MACRO assembler for batch execution and has been implemented on a DEC VAX series computer operating under VMS. The PASCAL and MACRO routines (in addition to the FORTRAN program) are supplied as both source and object code, so the PASCAL compiler is not required for implementation. This program was last updated in 1985.
Short- and Long-Term Propagation of Spacecraft Orbits
NASA Technical Reports Server (NTRS)
Smith, John C., Jr.; Sweetser, Theodore; Chung, Min-Kun; Yen, Chen-Wan L.; Roncoli, Ralph B.; Kwok, Johnny H.; Vincent, Mark A.
2008-01-01
The Planetary Observer Planning Software (POPS) comprises four computer programs for use in designing orbits of spacecraft about planets. These programs are the Planetary Observer High Precision Orbit Propagator (POHOP), the Planetary Observer Long-Term Orbit Predictor (POLOP), the Planetary Observer Post Processor (POPP), and the Planetary Observer Plotting (POPLOT) program. POHOP and POLOP integrate the equations of motion to propagate an initial set of classical orbit elements to a future epoch. POHOP models shortterm (one revolution) orbital motion; POLOP averages out the short-term behavior but requires far less processing time than do older programs that perform long-term orbit propagations. POPP postprocesses the spacecraft ephemeris created by POHOP or POLOP (or optionally can use a less accurate internal ephemeris) to search for trajectory-related geometric events including, for example, rising or setting of a spacecraft as observed from a ground site. For each such event, POPP puts out such user-specified data as the time, elevation, and azimuth. POPLOT is a graphics program that plots data generated by POPP. POPLOT can plot orbit ground tracks on a world map and can produce a variety of summaries and generic ordinate-vs.-abscissa plots of any POPP data.
Using periodic orbits to compute chaotic transport rates between resonance zones.
Sattari, Sulimon; Mitchell, Kevin A
2017-11-01
Transport properties of chaotic systems are computable from data extracted from periodic orbits. Given a sufficient number of periodic orbits, the escape rate can be computed using the spectral determinant, a function that incorporates the eigenvalues and periods of periodic orbits. The escape rate computed from periodic orbits converges to the true value as more and more periodic orbits are included. Escape from a given region of phase space can be computed by considering only periodic orbits that lie within the region. An accurate symbolic dynamics along with a corresponding partitioning of phase space is useful for systematically obtaining all periodic orbits up to a given period, to ensure that no important periodic orbits are missing in the computation. Homotopic lobe dynamics (HLD) is an automated technique for computing accurate partitions and symbolic dynamics for maps using the topological forcing of intersections of stable and unstable manifolds of a few periodic anchor orbits. In this study, we apply the HLD technique to compute symbolic dynamics and periodic orbits, which are then used to find escape rates from different regions of phase space for the Hénon map. We focus on computing escape rates in parameter ranges spanning hyperbolic plateaus, which are parameter intervals where the dynamics is hyperbolic and the symbolic dynamics does not change. After the periodic orbits are computed for a single parameter value within a hyperbolic plateau, periodic orbit continuation is used to compute periodic orbits over an interval that spans the hyperbolic plateau. The escape rates computed from a few thousand periodic orbits agree with escape rates computed from Monte Carlo simulations requiring hundreds of billions of orbits.
Wanyura, Hubert; Kowalczyk, Piotr; Bossak, Maciej; Samolczyk-Wanyura, Danuta; Stopa, Zygmunt
2012-01-01
The craniofacial skeleton remains not fully recognised as far as its mechanical resistance properties are concerned. Heretofore, the only available information on the mechanism of cranial bone fractures came from clinical observations, since the clinical evaluation in a living individual is practically impossible. It seems crucial to implement computer methods of virtual research into clinical practice. Such methods, which have long been used in the technical sciences, may either confirm or disprove previous observations. The aim of the study was to identify the areas of stress concentrations caused by external loads, which can lead to cranio-orbital fractures (COF), by the finite element method (FEM). For numerical analysis, a three-dimensional commercially available geometrical model of the skull was used which was imported into software of FEM. Computations were performed with ANSYS 12.1 Static Structural module. The loads were applied laterally to the frontal squama, the zygomatic process and partly to the upper orbital rim to locate dangerous concentration of stresses potentially resulting in COF. Changes in the area of force application revealed differences in values, quality and the extent of the stress distribution. Depending on the area of force application the following parameters would change: the value and area of stresses characteristic of COF. The distribution of stresses obtained in this study allowed definition of both the locations most vulnerable to fracture and sites from which fractures may originate or propagate.
Dissociative recombination of O2(+), NO(+) and N2(+)
NASA Technical Reports Server (NTRS)
Guberman, S. L.
1983-01-01
A new L(2) approach for the calculation of the threshold molecular capture width needed for the determination of DR cross sections was developed. The widths are calculated with Fermi's golden rule by substituting Rydberg orbitals for the free electron continuum coulomb orbital. It is shown that the calculated width converges exponentially as the effective principal quantum number of the Rydberg orbital increases. The threshold capture width is then easily obtained. Since atmospheric recombination involves very low energy electrons, the threshold capture widths are essential to the calculation of DR cross sections for the atmospheric species studied here. The approach described makes use of bound state computer codes already in use. A program that collects width matrix elements over CI wavefunctions for the initial and final states is described.
The First Row Anomaly and Recoupled Pair Bonding in the Halides of the Late p-Block Elements
2012-01-01
The dramatic differences between the properties of molecules formed from the late p-block elements of the first row of the periodic table (N–F) and those of the corresponding elements in subsequent rows is well recognized as the first row anomaly. Certain properties of the atoms, such as the relative energies and spatial extents of the ns and np orbitals, can explain some of these differences, but not others. In this Account, we summarize the results of our recent computational studies of the halides of the late p-block elements. Our studies point to a single underlying cause for many of these differences: the ability of the late p-block elements in the second and subsequent rows of the periodic table to form recoupled pair bonds and recoupled pair bond dyads with very electronegative ligands. Recoupled pair bonds form when an electron in a singly occupied ligand orbital recouples the pair of electrons in a doubly occupied lone pair orbital on the central atom, leading to a central atom-ligand bond. Recoupled pair bond dyads occur when a second ligand forms a bond with the orbital left over from the initial recoupled pair bond. Recoupled pair bonds and recoupled pair bond dyads enable the late p-block elements to form remarkably stable hypervalent compounds such as PF5 and SF6 and lead to unexpected excited states in smaller halides of the late p-block elements such as SF and SF2. Recoupled pair bonding also causes the Fn–1X–F bond energies to oscillate dramatically once the normal valences of the central atoms have been satisfied. In addition, recoupled pair bonding provides a lower-energy pathway for inversion in heavily fluorinated compounds (PF3 and PF2H, but not PH2F and PH3) and leads to unusual intermediates and products in reactions involving halogens and late p-block element compounds, such as (CH3)2S + F2. Although this Account focuses on the halides of the second row, late p-block elements, recoupled pair bonds and recoupled pair bond dyads are important in the chemistry of p-block elements beyond the second row (As, Se, and Br) and for compounds of these elements with other very electronegative ligands, such as OH and O. Knowledge of recoupled pair bonding is thus critical to understanding the properties and reactivity of molecules containing the late p-block elements beyond the first row. PMID:23151313
The first row anomaly and recoupled pair bonding in the halides of the late p-block elements.
Dunning, Thom H; Woon, David E; Leiding, Jeff; Chen, Lina
2013-02-19
The dramatic differences between the properties of molecules formed from the late p-block elements of the first row of the periodic table (N-F) and those of the corresponding elements in subsequent rows is well recognized as the first row anomaly. Certain properties of the atoms, such as the relative energies and spatial extents of the ns and np orbitals, can explain some of these differences, but not others. In this Account, we summarize the results of our recent computational studies of the halides of the late p-block elements. Our studies point to a single underlying cause for many of these differences: the ability of the late p-block elements in the second and subsequent rows of the periodic table to form recoupled pair bonds and recoupled pair bond dyads with very electronegative ligands. Recoupled pair bonds form when an electron in a singly occupied ligand orbital recouples the pair of electrons in a doubly occupied lone pair orbital on the central atom, leading to a central atom-ligand bond. Recoupled pair bond dyads occur when a second ligand forms a bond with the orbital left over from the initial recoupled pair bond. Recoupled pair bonds and recoupled pair bond dyads enable the late p-block elements to form remarkably stable hypervalent compounds such as PF(5) and SF(6) and lead to unexpected excited states in smaller halides of the late p-block elements such as SF and SF(2). Recoupled pair bonding also causes the F(n-1)X-F bond energies to oscillate dramatically once the normal valences of the central atoms have been satisfied. In addition, recoupled pair bonding provides a lower-energy pathway for inversion in heavily fluorinated compounds (PF(3) and PF(2)H, but not PH(2)F and PH(3)) and leads to unusual intermediates and products in reactions involving halogens and late p-block element compounds, such as (CH(3))(2)S + F(2). Although this Account focuses on the halides of the second row, late p-block elements, recoupled pair bonds and recoupled pair bond dyads are important in the chemistry of p-block elements beyond the second row (As, Se, and Br) and for compounds of these elements with other very electronegative ligands, such as OH and O. Knowledge of recoupled pair bonding is thus critical to understanding the properties and reactivity of molecules containing the late p-block elements beyond the first row.
Finite element solution of low bond number sloshing
NASA Technical Reports Server (NTRS)
Wohlen, R. L.; Park, A. C.; Warner, D. M.
1975-01-01
The dynamics of liquid propellant in a low Bond number environment which are critical to the design of spacecraft systems with respect to orbital propellant transfer and attitude control system were investigated. Digital computer programs were developed for the determination of liquid free surface equilibrium shape, lateral slosh natural vibration mode shapes, and frequencies for a liquid in a container of arbitrary axisymmetric shape with surface tension forces the same order of magnitude as acceleration forces. A finite volume element representation of the liquid was used for the vibration analysis. The liquid free surface equilibrium shapes were computed for several tanks at various contact angles and ullage volumes. A configuration was selected for vibration analysis and lateral slosh mode shapes and natural frequencies were obtained. Results are documented.
NASA Astrophysics Data System (ADS)
Pang, Rui; Deng, Bei; Shi, Xingqiang; Zheng, Xiaohong
2018-04-01
Nanostructures with giant magnetic anisotropy energies (MAEs) are desired in designing miniaturized magnetic storage and quantum computing devices. Previous works focused mainly on materials or elements with d electrons. Here, by taking Bi–X(X = In, Tl, Ge, Sn, Pb) adsorbed on nitrogenized divacancy of graphene and Bi atoms adsorbed on MgO(100) as examples, through ab initio and model calculations, we propose that special p-element dimers and single-adatoms on symmetry-matched substrates possess giant atomic MAEs of 72–200 meV, and has room temperature structural stability. The huge MAEs originate from the p-orbital degeneracy around the Fermi level in a symmetry-matched surface ligand field and the lifting of this degeneracy when spin–orbit interaction (SOI) is taken into account. Especially, we developed a simplified quantum mechanical model for the design principles of giant MAEs of supported magnetic adatoms and dimers. Thus, our discoveries and mechanisms provide a new paradigm to design giant atomic MAE of p electrons in supported nanostructures.
2007-11-01
Keywords Orbital elements · Osculating elements · Mars · Natural satellites · Natural satellites’ orbits · Deimos · Equinoctial precession · The...theory of orbits about a precessing and nutating oblate planet, in terms of osculating elements defined in a frame associated with the equator of...solar-gravity-perturbed satellite orbiting an oblate planet subject to nonuniform equinoctial precession. This nonuniformity of precession is caused by
Computing Rydberg Electron Transport Rates Using Periodic Orbits
NASA Astrophysics Data System (ADS)
Sattari, Sulimon; Mitchel, Kevin
2017-04-01
Electron transport rates in chaotic atomic systems are computable from classical periodic orbits. This technique allows for replacing a Monte Carlo simulation launching millions of orbits with a sum over tens or hundreds of properly chosen periodic orbits using a formula called the spectral determiant. A firm grasp of the structure of the periodic orbits is required to obtain accurate transport rates. We apply a technique called homotopic lobe dynamics (HLD) to understand the structure of periodic orbits to compute the ionization rate in a classically chaotic atomic system, namely the hydrogen atom in strong parallel electric and magnetic fields. HLD uses information encoded in the intersections of stable and unstable manifolds of a few orbits to compute relevant periodic orbits in the system. All unstable periodic orbits are computed up to a given period, and the ionization rate computed from periodic orbits converges exponentially to the true value as a function of the period used. Using periodic orbit continuation, the ionization rate is computed over a range of electron energy and magnetic field values. The future goal of this work is to semiclassically compute quantum resonances using periodic orbits.
A simple method to design non-collision relative orbits for close spacecraft formation flying
NASA Astrophysics Data System (ADS)
Jiang, Wei; Li, JunFeng; Jiang, FangHua; Bernelli-Zazzera, Franco
2018-05-01
A set of linearized relative motion equations of spacecraft flying on unperturbed elliptical orbits are specialized for particular cases, where the leader orbit is circular or equatorial. Based on these extended equations, we are able to analyze the relative motion regulation between a pair of spacecraft flying on arbitrary unperturbed orbits with the same semi-major axis in close formation. Given the initial orbital elements of the leader, this paper presents a simple way to design initial relative orbital elements of close spacecraft with the same semi-major axis, thus preventing collision under non-perturbed conditions. Considering the mean influence of J 2 perturbation, namely secular J 2 perturbation, we derive the mean derivatives of orbital element differences, and then expand them to first order. Thus the first order expansion of orbital element differences can be added to the relative motion equations for further analysis. For a pair of spacecraft that will never collide under non-perturbed situations, we present a simple method to determine whether a collision will occur when J 2 perturbation is considered. Examples are given to prove the validity of the extended relative motion equations and to illustrate how the methods presented can be used. The simple method for designing initial relative orbital elements proposed here could be helpful to the preliminary design of the relative orbital elements between spacecraft in a close formation, when collision avoidance is necessary.
NASA Technical Reports Server (NTRS)
Escher, William J. D.; Herr, Paul N.; Stephenson, Frank W., Jr.
1990-01-01
NASA's Civil Space Technology Initiative encompasses among its major elements the Earth-to-Orbit Propulsion Program (ETOPP) for future launch vehicles, which is budgeted to the extent of $20-30 million/year for the development of essential technologies. ETOPP technologies include, in addition to advanced materials and processes and design/analysis computational tools, the advanced systems-synthesis technologies required for definition of highly reliable LH2 and hydrocarbon fueled rocket engines to be operated at significantly reduced levels of risk and cost relative to the SSME. Attention is given to the technology-transfer services of ETOPP.
Orbital design strategy for domestic communication satellite systems.
NASA Technical Reports Server (NTRS)
Ramji, S.; Sawitz, P.
1973-01-01
Review of some of the considerations pertinent to efficient orbit utilization in the design of domestic communications satellite systems. A strategy is developed to efficiently locate a heterogeneous system of satellites within the available arc and provide room for future growth. A practical design is illustrated, using a computer simulation model, for the placement of 25 satellites within 73% of the available arc employing frequency and polarization coordination techniques. A number of widely variable factors that influence satellite spacing are examined. These factors include such critical system elements as telephony and television interference noise limits, frequency plan coordination, polarization plan coordination, ground antenna diameter, signal protection ratio, and satellite station keeping.
Mars Relay Lander and Orbiter Overflight Profile Estimation
NASA Technical Reports Server (NTRS)
Wallick, Michael N.; Allard, Daniel A.; Gladden, Roy E.; Peterson, Corey L.
2012-01-01
This software allows science and mission operations to view graphs of geometric overflights of satellites and landers within the Mars (or other planetary) networks. It improves on the MaROS Web interface within any modern Web browser, in that it adds new capabilities to the MaROS suite. The profile for an overflight is an important element for selecting communication/ overflight opportunities between the landers and orbiters within the Mars network. Unfortunately, determining these estimates is very computationally expensive and difficult to compute by hand. This software allows the user to select different overflights (via the existing MaROS Web interface) and specify the smoothness of the estimation. Estimates for the geometric relationship between a lander and an orbiter are determined based upon the orbital conditions of the orbiter at the moment the orbiter rises above the horizon from the perspective of the lander. It utilizes 2-body orbital equations to propagate the trajectory through the duration of the view period, and returns profiles that represent the range between the two vehicles, and the elevation and azimuth angles of the orbiter as measured from the lander s position. The algorithms assume a 2-body relationship with an ideal, spherical planetary body, so therefore can see errors less than 2% at polar landing sites on Mars. These algorithms are being implemented to provide rough estimates rapidly for the geometry of a geometric view period where more complete data is unavailable, such as for planning purposes. While other software for this task exists, each at the time of this reporting has been contained within a much more complicated package. This tool allows science and mission operations to view the estimates with a few clicks of the mouse.
NASA Technical Reports Server (NTRS)
Muszynska, A.
1985-01-01
In rotating machinery dynamics an orbit (Lissajous curve) represents the dynamic path of the shaft centerline motion during shaft rotation and resulting precession. The orbit can be observed with an oscilloscope connected to XY promixity probes. The orbits can also be simulated by a computer. The software for HP computer simulates orbits for two cases: (1) Symmetric orbit with four frequency components with different radial amplitudes and relative phase angles; and (2) Nonsymmetric orbit with two frequency components with two different vertical/horizontal amplitudes and two different relative phase angles. Each orbit carries a Keyphasor mark (one-per-turn reference). The frequencies, amplitudes, and phase angles, as well as number of time steps for orbit computation, have to be chosen and introduced to the computer by the user. The orbit graphs can be observed on the computer screen.
Recent advances at NASA in calculating the electronic spectra of diatomic molecules
NASA Technical Reports Server (NTRS)
Whiting, Ellis E.; Paterson, John A.
1988-01-01
Advanced entry vehicles, such as the proposed Aero-assisted Orbital Transfer Vehicle, provide new and challenging problems for spectroscopy. Large portions of the flow field about such vehicles will be characterized by chemical and thermal nonequilibrium. Only by considering the actual overlap of the atomic and rotational lines emitted by the species present can the impact of radiative transport within the flow field be assessed correctly. To help make such an assessment, a new computer program is described that can generate high-resolution, line-by-line spectra for any spin-allowed transitions in diatomic molecules. The program includes the matrix elements for the rotational energy and distortion to the fourth order; the spin-orbit, spin-spin, and spin-rotation interactions to first order; and the lambda splitting by a perturbation calculation. An overview of the Computational Chemistry Branch at Ames Research Center is also presented.
A Machine Learns to Predict the Stability of Tightly Packed Planetary Systems
NASA Astrophysics Data System (ADS)
Tamayo, Daniel; Silburt, Ari; Valencia, Diana; Menou, Kristen; Ali-Dib, Mohamad; Petrovich, Cristobal; Huang, Chelsea X.; Rein, Hanno; van Laerhoven, Christa; Paradise, Adiv; Obertas, Alysa; Murray, Norman
2016-12-01
The requirement that planetary systems be dynamically stable is often used to vet new discoveries or set limits on unconstrained masses or orbital elements. This is typically carried out via computationally expensive N-body simulations. We show that characterizing the complicated and multi-dimensional stability boundary of tightly packed systems is amenable to machine-learning methods. We find that training an XGBoost machine-learning algorithm on physically motivated features yields an accurate classifier of stability in packed systems. On the stability timescale investigated (107 orbits), it is three orders of magnitude faster than direct N-body simulations. Optimized machine-learning classifiers for dynamical stability may thus prove useful across the discipline, e.g., to characterize the exoplanet sample discovered by the upcoming Transiting Exoplanet Survey Satellite. This proof of concept motivates investing computational resources to train algorithms capable of predicting stability over longer timescales and over broader regions of phase space.
Evolution of the Edgeworth-Kuiper Belt and Kuiperoidal Dust
NASA Astrophysics Data System (ADS)
Ozernoy, L. M.; Ipatov, S. I.
Evolution of orbits of Edgeworth-Kuiper belt objects (EKBOs) under the gravitational influence of the giant planets has been studied by a number of authors (e.g., Duncan & Levison; Budd; Ozernoy, Gorkavyi & Taidakova). Here we show that the gravitational interactions of EKBOs can also play a certain role in their orbital evolution. For instance, during the last 4 Gyr as many as several percents of EKBOs could change their semimajor axes by more than 1 AU due to close encounters with other EKBOs. Even small variations in orbital elements of EKBOs caused by their mutual collisions coupled with the mutual gravitational influence can cause large variations in the orbital elements due to the gravitational influence of planets. About 6% of Neptune-crossers can reach the orbit of the Earth, with the average time in Earth-crossing orbits of about 5× 103 yr. The portion of former EKBOs now moving in Earth-crossing orbits can exceed 20% of all Earth-crossers. Evaporation of the volatile material from the EKBOs surfaces, due to mutual EKBO collisions, along with the Solar wind and the heating by the Sun, are the sources of the dust in the outer Solar system. The evolution and structure of the interplanetary dust cloud computed, in some approximations, by Gorkavyi, Ozernoy, Mather, & Taidakova offers a preliminary 3-D physical model of the cloud, which includes three dust components (asteroidal, cometary, and kuiperoidal), which is fairly consistent with the available data of Pioneer and Voyager dust detectors and contribution of the zodiacal light into the COBE/DIRBE data. We acknowledge support of this work by NASA grant NAG5-10776, the Russian Federal Program ``Astronomy'' (section 1.9.4.1), RFBR (01-02-17540), and INTAS (00-240).
2015-04-22
This simulated image shows how a cloud of glitter in geostationary orbit would be illuminated and controlled by two laser beams. As the cloud orbits Earth, grains scatter the sun's light at different angles like many tiny prisms, similar to how rainbows are produced from light being dispersed by water droplets. That is why the project concept is called "Orbiting Rainbows." The cloud functions like a reflective surface, allowing the exoplanet (displayed in the bottom right) to be imaged. The orbit path is shown in the top right. On the bottom left, Earth's image is seen behind the cloud. To image an exoplanet, the cloud would need to have a diameter of nearly 98 feet (30 meters). This simulation confines the cloud to a 3.3 x 3.3 x 3.3 foot volume (1 x 1 x 1 meter volume) to simplify the computations. The elements of the orbiting telescope are not to scale. Orbiting Rainbows is currently in Phase II development through the NASA Innovative Advanced Concepts (NIAC) Program. It was one of five technology proposals chosen for continued study in 2014. In the current phase, Orbiting Rainbows researchers are conducting small-scale ground experiments to demonstrate how granular materials can be manipulated using lasers and simulations of how the imaging system would behave in orbit. http://photojournal.jpl.nasa.gov/catalog/PIA19318
NASA Astrophysics Data System (ADS)
Deleflie, Florent; Wailliez, Sébastien; Portmann, Christophe; Gilles, M.; Vienne, Alain; Berthier, J.; Valk, St; Hautesserres, Denis; Martin, Thierry; Fraysse, Hubert
To perform an orbit modelling accurate enough to provide a good estimate of the lifetime of a satellite, or to ensure the stability of a disposal orbit through centuries, we built a new orbit propagator based on the theory of mean orbital motion. It is named SECS-SD2 , for Simplified and Extended CODIOR Software -Space Debris Dedicated . The CODIOR software propagates numerically averaged equations of motion, with a typical integration step size on the order of a few hours, and was originally written in classical orbital elements. The so-called Space Debris -dedicated version is written in orbital elements suitable for orbits with small eccentricities and inclinations, so as to characterize the main dynamic properties of the motion within the LEO, MEO, and GEO regions. The orbital modelling accounts for the very first terms of the geopotential, the perturbations induced by the luni-solar attraction, the solar radiation pressure, and the atmospheric drag (using classical models). The new software was designed so as to ensure short computation times, even over periods of decades or centuries. This paper aims first at describing and validating the main functionalities of the software: we explain how the simplified averaged equations of motion were built, we show how we get sim-plified luni-solar ephemerides without using any huge file for orbit propagations over centuries, and we show how we averaged and simulated the solar flux. We show as well how we expressed short periodic terms to be added to the mean equations of motion, in order to get orbital ele-ments comparable to those deduced from the classical numerical integration of the oscultating equations of motion. The second part of the paper sheds light on some dynamical properties of space debris flying in the LEO and GEO regions, which were obtained from the new software. Knowing that each satellite in the LEO region is now supposed to re-enter the atmosphere within a period of 25 years, we estimated in various dynamical configurations the lifetime of LEO objects depending on their initial conditions of motion, on the solar flux models applied through decades, and on the atmospheric density models and also the satellite area-to-mass ratio. In the GEO region, we investigated the dynamical reasons that can cause space debris re-entering the GEO-protected region after the passivation of a disposal spacecraft.
Experimental Control of Thermocapillary Convection in a Liquid Bridge
NASA Technical Reports Server (NTRS)
Petrov, Valery; Schatz, Michael F.; Muehlner, Kurt A.; VanHook, Stephen J.; McCormick, W. D.; Swift, Jack B.; Swinney, Harry L.
1996-01-01
We demonstrate the stabilization of an isolated unstable periodic orbit in a liquid bridge convection experiment. A model independent, nonlinear control algorithm uses temperature measurements near the liquid interface to compute control perturbations which are applied by a thermoelectric element. The algorithm employs a time series reconstruction of a nonlinear control surface in a high dimensional phase space to alter the system dynamics.
On Universal Elements, and Conversion Procedures to and from Position and Velocity
1989-07-01
Abstract. An element set is advocated that is familiar (in traditional terms), and yet applicable to all types of orbit without loss of ,: ... accuracy...A Set of Universally Applicable Elements We seek to define a set of universally applicable elements for motion in unperturbed orbits about a centre...respect to 4 , and denote it by , If a particular element set can be chosen that covers every type of orbit , then in principle we regard these elements
An exact solution for orbit view-periods from a station on a tri-axial ellipsoidal planet
NASA Technical Reports Server (NTRS)
Tang, C. C. H.
1986-01-01
This paper presents the concise exact solution for predicting view-periods to be observed from a masked or unmasked tracking station on a tri-axial ellipsoidal surface. The new exact approach expresses the azimuth and elevation angles of a spacecraft in terms of the station-centered geodetic topocentric coordinates in an elegantly concise manner. A simple and efficient algorithm is developed to avoid costly repetitive computations in searching for neighborhoods near the rise and set times of each satellite orbit for each station. Only one search for each orbit is necessary for each station. Sample results indicate that the use of an assumed spherical earth instead of an 'actual' tri-axial ellipsoidal earth could introduce an error up to a few minutes in a view-period prediction for circular orbits of low or medium altitude. For an elliptical orbit of high eccentricity and long period, the maximum error could be even larger. The analytic treatment and the efficient algorithm are designed for geocentric orbits, but they should be applicable to interplanetary trajectories by an appropriate coordinates transformation at each view-period calculation. This analysis can be accomplished only by not using the classical orbital elements.
An exact solution for orbit view-periods from a station on a tri-axial ellipsoidal planet
NASA Astrophysics Data System (ADS)
Tang, C. C. H.
1986-08-01
This paper presents the concise exact solution for predicting view-periods to be observed from a masked or unmasked tracking station on a tri-axial ellipsoidal surface. The new exact approach expresses the azimuth and elevation angles of a spacecraft in terms of the station-centered geodetic topocentric coordinates in an elegantly concise manner. A simple and efficient algorithm is developed to avoid costly repetitive computations in searching for neighborhoods near the rise and set times of each satellite orbit for each station. Only one search for each orbit is necessary for each station. Sample results indicate that the use of an assumed spherical earth instead of an 'actual' tri-axial ellipsoidal earth could introduce an error up to a few minutes in a view-period prediction for circular orbits of low or medium altitude. For an elliptical orbit of high eccentricity and long period, the maximum error could be even larger. The analytic treatment and the efficient algorithm are designed for geocentric orbits, but they should be applicable to interplanetary trajectories by an appropriate coordinates transformation at each view-period calculation. This analysis can be accomplished only by not using the classical orbital elements.
Przybytek, Michal; Helgaker, Trygve
2013-08-07
We analyze the accuracy of the Coulomb energy calculated using the Gaussian-and-finite-element-Coulomb (GFC) method. In this approach, the electrostatic potential associated with the molecular electronic density is obtained by solving the Poisson equation and then used to calculate matrix elements of the Coulomb operator. The molecular electrostatic potential is expanded in a mixed Gaussian-finite-element (GF) basis set consisting of Gaussian functions of s symmetry centered on the nuclei (with exponents obtained from a full optimization of the atomic potentials generated by the atomic densities from symmetry-averaged restricted open-shell Hartree-Fock theory) and shape functions defined on uniform finite elements. The quality of the GF basis is controlled by means of a small set of parameters; for a given width of the finite elements d, the highest accuracy is achieved at smallest computational cost when tricubic (n = 3) elements are used in combination with two (γ(H) = 2) and eight (γ(1st) = 8) Gaussians on hydrogen and first-row atoms, respectively, with exponents greater than a given threshold (αmin (G)=0.5). The error in the calculated Coulomb energy divided by the number of atoms in the system depends on the system type but is independent of the system size or the orbital basis set, vanishing approximately like d(4) with decreasing d. If the boundary conditions for the Poisson equation are calculated in an approximate way, the GFC method may lose its variational character when the finite elements are too small; with larger elements, it is less sensitive to inaccuracies in the boundary values. As it is possible to obtain accurate boundary conditions in linear time, the overall scaling of the GFC method for large systems is governed by another computational step-namely, the generation of the three-center overlap integrals with three Gaussian orbitals. The most unfavorable (nearly quadratic) scaling is observed for compact, truly three-dimensional systems; however, this scaling can be reduced to linear by introducing more effective techniques for recognizing significant three-center overlap distributions.
Radiation pressure and air drag effects on the orbit of the balloon satellite 1963 30D
NASA Technical Reports Server (NTRS)
Slowey, J. W.
1974-01-01
Computed orbits of the balloon satellite 1963 30D are given every 2 days over an interval of 456 days near the beginning of the satellite's lifetime and an interval of 824 days near the end of its lifetime. The effects of radiation pressure on the satellite are examined in some detail. It is found that the variations in all the elements can be represented by use of a single parameter to specify the effect of diffuse reflection from the satellite's surface, and that this parameter remains constant, or nearly so, during the entire 7-year lifetime. Success in obtaining a consistent representation of the radiation-pressure effects is ascribed to the inclusion of the effects of terrestrial radiation pressure, using a model for the earth's albedo that includes seasonal and latitudinal variations. Anomalous effects in the orbital acceleration, as well as in the other elements, are represented quite well by including a small force at right angle to the solar direction and by allowing this to rotate about the solar direction. This implies that the satellite is aspherical, that it is rotating, and that the axis of rotation precesses.
Moncho, Salvador; Autschbach, Jochen
2010-12-01
The NMR nuclear shielding tensors for the series LaX(3), with X = F, Cl, Br and I, have been computed using two-component relativistic density functional theory based on the zeroth-order regular approximation (ZORA). A detailed analysis of the inverse halogen dependence (IHD) of the La shielding was performed via decomposition of the shielding tensor elements into contributions from localized and delocalized molecular orbitals. Both spin-orbit and paramagnetic shielding terms are important, with the paramagnetic terms being dominant. Major contributions to the IHD can be attributed to the La-X bonding orbitals, as well as to trends associated with the La core and halogen lone pair orbitals, the latter being related to X-La π donation. An 'orbital rotation' model for the in-plane π acceptor f orbital of La helps to rationalize the significant magnitude of deshielding associated with the in-plane π donation. The IHD goes along with a large increase in the shielding tensor anisotropy as X becomes heavier, which can be associated with trends for the covalency of the La-X bonds, with a particularly effective transfer of spin-orbit coupling induced spin density from iodine to La in LaI(3). Copyright © 2010 John Wiley & Sons, Ltd.
Gradient-based stochastic estimation of the density matrix
NASA Astrophysics Data System (ADS)
Wang, Zhentao; Chern, Gia-Wei; Batista, Cristian D.; Barros, Kipton
2018-03-01
Fast estimation of the single-particle density matrix is key to many applications in quantum chemistry and condensed matter physics. The best numerical methods leverage the fact that the density matrix elements f(H)ij decay rapidly with distance rij between orbitals. This decay is usually exponential. However, for the special case of metals at zero temperature, algebraic decay of the density matrix appears and poses a significant numerical challenge. We introduce a gradient-based probing method to estimate all local density matrix elements at a computational cost that scales linearly with system size. For zero-temperature metals, the stochastic error scales like S-(d+2)/2d, where d is the dimension and S is a prefactor to the computational cost. The convergence becomes exponential if the system is at finite temperature or is insulating.
Many-core computing for space-based stereoscopic imaging
NASA Astrophysics Data System (ADS)
McCall, Paul; Torres, Gildo; LeGrand, Keith; Adjouadi, Malek; Liu, Chen; Darling, Jacob; Pernicka, Henry
The potential benefits of using parallel computing in real-time visual-based satellite proximity operations missions are investigated. Improvements in performance and relative navigation solutions over single thread systems can be achieved through multi- and many-core computing. Stochastic relative orbit determination methods benefit from the higher measurement frequencies, allowing them to more accurately determine the associated statistical properties of the relative orbital elements. More accurate orbit determination can lead to reduced fuel consumption and extended mission capabilities and duration. Inherent to the process of stereoscopic image processing is the difficulty of loading, managing, parsing, and evaluating large amounts of data efficiently, which may result in delays or highly time consuming processes for single (or few) processor systems or platforms. In this research we utilize the Single-Chip Cloud Computer (SCC), a fully programmable 48-core experimental processor, created by Intel Labs as a platform for many-core software research, provided with a high-speed on-chip network for sharing information along with advanced power management technologies and support for message-passing. The results from utilizing the SCC platform for the stereoscopic image processing application are presented in the form of Performance, Power, Energy, and Energy-Delay-Product (EDP) metrics. Also, a comparison between the SCC results and those obtained from executing the same application on a commercial PC are presented, showing the potential benefits of utilizing the SCC in particular, and any many-core platforms in general for real-time processing of visual-based satellite proximity operations missions.
NASA Astrophysics Data System (ADS)
Parvathi, S. P.; Ramanan, R. V.
2018-06-01
An iterative analytical trajectory design technique that includes perturbations in the departure phase of the interplanetary orbiter missions is proposed. The perturbations such as non-spherical gravity of Earth and the third body perturbations due to Sun and Moon are included in the analytical design process. In the design process, first the design is obtained using the iterative patched conic technique without including the perturbations and then modified to include the perturbations. The modification is based on, (i) backward analytical propagation of the state vector obtained from the iterative patched conic technique at the sphere of influence by including the perturbations, and (ii) quantification of deviations in the orbital elements at periapsis of the departure hyperbolic orbit. The orbital elements at the sphere of influence are changed to nullify the deviations at the periapsis. The analytical backward propagation is carried out using the linear approximation technique. The new analytical design technique, named as biased iterative patched conic technique, does not depend upon numerical integration and all computations are carried out using closed form expressions. The improved design is very close to the numerical design. The design analysis using the proposed technique provides a realistic insight into the mission aspects. Also, the proposed design is an excellent initial guess for numerical refinement and helps arrive at the four distinct design options for a given opportunity.
Near Hartree-Fock quality GTO basis sets for the first- and third-row atoms
NASA Technical Reports Server (NTRS)
Partridge, Harry
1989-01-01
Energy-optimized Gaussian-type-orbital (GTO) basis sets of accuracy approaching that of numerical Hartree-Fock computations are compiled for the elements of the first and third rows of the periodic table. The methods employed in calculating the sets are explained; the applicability of the sets to electronic-structure calculations is discussed; and the results are presented in tables and briefly characterized.
NASA Astrophysics Data System (ADS)
Vermeer, M.
1981-07-01
A program was designed to replace AIMLASER for the generation of aiming predictions, to achieve a major saving in computing time, and to keep the program small enough for use even on small systems. An approach was adopted that incorporated the numerical integration of the orbit through a pass, limiting the computation of osculating elements to only one point per pass. The numerical integration method which is fourth order in delta t in the cumulative error after a given time lapse is presented. Algorithms are explained and a flowchart and listing of the program are provided.
NASA Technical Reports Server (NTRS)
1974-01-01
Studies were conducted to develop appropriate space shuttle electrical power distribution and control (EPDC) subsystem simulation models and to apply the computer simulations to systems analysis of the EPDC. A previously developed software program (SYSTID) was adapted for this purpose. The following objectives were attained: (1) significant enhancement of the SYSTID time domain simulation software, (2) generation of functionally useful shuttle EPDC element models, and (3) illustrative simulation results in the analysis of EPDC performance, under the conditions of fault, current pulse injection due to lightning, and circuit protection sizing and reaction times.
The development of the Canadian Mobile Servicing System Kinematic Simulation Facility
NASA Technical Reports Server (NTRS)
Beyer, G.; Diebold, B.; Brimley, W.; Kleinberg, H.
1989-01-01
Canada will develop a Mobile Servicing System (MSS) as its contribution to the U.S./International Space Station Freedom. Components of the MSS will include a remote manipulator (SSRMS), a Special Purpose Dexterous Manipulator (SPDM), and a mobile base (MRS). In order to support requirements analysis and the evaluation of operational concepts related to the use of the MSS, a graphics based kinematic simulation/human-computer interface facility has been created. The facility consists of the following elements: (1) A two-dimensional graphics editor allowing the rapid development of virtual control stations; (2) Kinematic simulations of the space station remote manipulators (SSRMS and SPDM), and mobile base; and (3) A three-dimensional graphics model of the space station, MSS, orbiter, and payloads. These software elements combined with state of the art computer graphics hardware provide the capability to prototype MSS workstations, evaluate MSS operational capabilities, and investigate the human-computer interface in an interactive simulation environment. The graphics technology involved in the development and use of this facility is described.
Orbiter Flying Qualities (OFQ) Workstation user's guide
NASA Technical Reports Server (NTRS)
Myers, Thomas T.; Parseghian, Zareh; Hogue, Jeffrey R.
1988-01-01
This project was devoted to the development of a software package, called the Orbiter Flying Qualities (OFQ) Workstation, for working with the OFQ Archives which are specially selected sets of space shuttle entry flight data relevant to flight control and flying qualities. The basic approach to creation of the workstation software was to federate and extend commercial software products to create a low cost package that operates on personal computers. Provision was made to link the workstation to large computers, but the OFQ Archive files were also converted to personal computer diskettes and can be stored on workstation hard disk drives. The primary element of the workstation developed in the project is the Interactive Data Handler (IDH) which allows the user to select data subsets from the archives and pass them to specialized analysis programs. The IDH was developed as an application in a relational database management system product. The specialized analysis programs linked to the workstation include a spreadsheet program, FREDA for spectral analysis, MFP for frequency domain system identification, and NIPIP for pilot-vehicle system parameter identification. The workstation also includes capability for ensemble analysis over groups of missions.
A computer graphics system for visualizing spacecraft in orbit
NASA Technical Reports Server (NTRS)
Eyles, Don E.
1989-01-01
To carry out unanticipated operations with resources already in space is part of the rationale for a permanently manned space station in Earth orbit. The astronauts aboard a space station will require an on-board, spatial display tool to assist the planning and rehearsal of upcoming operations. Such a tool can also help astronauts to monitor and control such operations as they occur, especially in cases where first-hand visibility is not possible. A computer graphics visualization system designed for such an application and currently implemented as part of a ground-based simulation is described. The visualization system presents to the user the spatial information available in the spacecraft's computers by drawing a dynamic picture containing the planet Earth, the Sun, a star field, and up to two spacecraft. The point of view within the picture can be controlled by the user to obtain a number of specific visualization functions. The elements of the display, the methods used to control the display's point of view, and some of the ways in which the system can be used are described.
Ruffato, Gianluca; Rossi, Roberto; Massari, Michele; Mafakheri, Erfan; Capaldo, Pietro; Romanato, Filippo
2017-12-21
In this paper, we present the design, fabrication and optical characterization of computer-generated holograms (CGH) encoding information for light beams carrying orbital angular momentum (OAM). Through the use of a numerical code, based on an iterative Fourier transform algorithm, a phase-only diffractive optical element (PO-DOE) specifically designed for OAM illumination has been computed, fabricated and tested. In order to shape the incident beam into a helicoidal phase profile and generate light carrying phase singularities, a method based on transmission through high-order spiral phase plates (SPPs) has been used. The phase pattern of the designed holographic DOEs has been fabricated using high-resolution Electron-Beam Lithography (EBL) over glass substrates coated with a positive photoresist layer (polymethylmethacrylate). To the best of our knowledge, the present study is the first attempt, in a comprehensive work, to design, fabricate and characterize computer-generated holograms encoding information for structured light carrying OAM and phase singularities. These optical devices appear promising as high-security optical elements for anti-counterfeiting applications.
Kinetic-energy matrix elements for atomic Hylleraas-CI wave functions.
Harris, Frank E
2016-05-28
Hylleraas-CI is a superposition-of-configurations method in which each configuration is constructed from a Slater-type orbital (STO) product to which is appended (linearly) at most one interelectron distance rij. Computations of the kinetic energy for atoms by this method have been difficult due to the lack of formulas expressing these matrix elements for general angular momentum in terms of overlap and potential-energy integrals. It is shown here that a strategic application of angular-momentum theory, including the use of vector spherical harmonics, enables the reduction of all atomic kinetic-energy integrals to overlap and potential-energy matrix elements. The new formulas are validated by showing that they yield correct results for a large number of integrals published by other investigators.
NASA Technical Reports Server (NTRS)
1985-01-01
Technology payoffs of representative ground based (Phase 1) and space based (Phase 2) mid lift/drag ratio aeroassisted orbit transfer vehicles (AOTV) were assessed and prioritized. A narrative summary of the cost estimates and work breakdown structure/dictionary for both study phases is presented. Costs were estimated using the Grumman Space Programs Algorithm for Cost Estimating (SPACE) computer program and results are given for four AOTV configurations. The work breakdown structure follows the standard of the joint government/industry Space Systems Cost Analysis Group (SSCAG). A table is provided which shows cost estimates for each work breakdown structure element.
1980-02-12
planet across the limb of the Sun at the end of a transit. Elements of an Orbit - See orbital elements . Elevation - The height of a point on the...That component of libration due to variations in the geometric position of the Earth relative to the Moon. 71 ś" Orbital Elements - The quantities which...completely describe the size, shape, and orientation of an object’s orbit as well as its location in it. The classical set consists of the semi-major
Above the cloud computing: applying cloud computing principles to create an orbital services model
NASA Astrophysics Data System (ADS)
Straub, Jeremy; Mohammad, Atif; Berk, Josh; Nervold, Anders K.
2013-05-01
Large satellites and exquisite planetary missions are generally self-contained. They have, onboard, all of the computational, communications and other capabilities required to perform their designated functions. Because of this, the satellite or spacecraft carries hardware that may be utilized only a fraction of the time; however, the full cost of development and launch are still bone by the program. Small satellites do not have this luxury. Due to mass and volume constraints, they cannot afford to carry numerous pieces of barely utilized equipment or large antennas. This paper proposes a cloud-computing model for exposing satellite services in an orbital environment. Under this approach, each satellite with available capabilities broadcasts a service description for each service that it can provide (e.g., general computing capacity, DSP capabilities, specialized sensing capabilities, transmission capabilities, etc.) and its orbital elements. Consumer spacecraft retain a cache of service providers and select one utilizing decision making heuristics (e.g., suitability of performance, opportunity to transmit instructions and receive results - based on the orbits of the two craft). The two craft negotiate service provisioning (e.g., when the service can be available and for how long) based on the operating rules prioritizing use of (and allowing access to) the service on the service provider craft, based on the credentials of the consumer. Service description, negotiation and sample service performance protocols are presented. The required components of each consumer or provider spacecraft are reviewed. These include fully autonomous control capabilities (for provider craft), a lightweight orbit determination routine (to determine when consumer and provider craft can see each other and, possibly, pointing requirements for craft with directional antennas) and an authentication and resource utilization priority-based access decision making subsystem (for provider craft). Two prospective uses for the proposed system are presented: Earth-orbiting applications and planetary science applications. A mission scenario is presented for both uses to illustrate system functionality and operation. The performance of the proposed system is compared to traditional self-contained spacecraft performance, both in terms of task performance (e.g., how well / quickly / etc. was a given task performed) and task performance as a function of cost. The integration of the proposed service provider model is compared to other control architectures for satellites including traditional scripted control, top-down multi-tier autonomy and bottom-up multi-tier autonomy.
Gunina, Anastasia O.; Krylov, Anna I.
2016-11-14
We apply high-level ab initio methods to describe the electronic structure of small clusters of ammonia and dimethylether (DME) doped with sodium, which provide a model for solvated electrons. We investigate the effect of the solvent and cluster size on the electronic states. We consider both energies and properties, with a focus on the shape of the electronic wave function and the related experimental observables such as photoelectron angular distributions. The central quantity in modeling photoionization experiments is the Dyson orbital, which describes the difference between the initial N-electron and final (N-1)-electron states of a system. Dyson orbitals enter themore » expression of the photoelectron matrix element, which determines total and partial photoionization cross-sections. We compute Dyson orbitals for the Na(NH3)n and Na(DME)m clusters using correlated wave functions (obtained with equation-of-motion coupled-cluster model for electron attachment with single and double substitutions) and compare them with more approximate Hartree-Fock and Kohn-Sham orbitals. As a result, we also analyze the effect of correlation and basis sets on the shapes of Dyson orbitals and the experimental observables.« less
Update on orbital reconstruction.
Chen, Chien-Tzung; Chen, Yu-Ray
2010-08-01
Orbital trauma is common and frequently complicated by ocular injuries. The recent literature on orbital fracture is analyzed with emphasis on epidemiological data assessment, surgical timing, method of approach and reconstruction materials. Computed tomographic (CT) scan has become a routine evaluation tool for orbital trauma, and mobile CT can be applied intraoperatively if necessary. Concomitant serious ocular injury should be carefully evaluated preoperatively. Patients presenting with nonresolving oculocardiac reflex, 'white-eyed' blowout fracture, or diplopia with a positive forced duction test and CT evidence of orbital tissue entrapment require early surgical repair. Otherwise, enophthalmos can be corrected by late surgery with a similar outcome to early surgery. The use of an endoscope-assisted approach for orbital reconstruction continues to grow, offering an alternative method. Advances in alloplastic materials have improved surgical outcome and shortened operating time. In this review of modern orbital reconstruction, several controversial issues such as surgical indication, surgical timing, method of approach and choice of reconstruction material are discussed. Preoperative fine-cut CT image and thorough ophthalmologic examination are key elements to determine surgical indications. The choice of surgical approach and reconstruction materials much depends on the surgeon's experience and the reconstruction area. Prefabricated alloplastic implants together with image software and stereolithographic models are significant advances that help to more accurately reconstruct the traumatized orbit. The recent evolution of orbit reconstruction improves functional and aesthetic results and minimizes surgical complications.
A Comparison of Nonlinear Filters for Orbit Determination and Estimation
1986-06-01
Com- mand uses a nonlinear least squares filter for element set maintenance for all objects orbiting the Earth (3). These objects, including active...initial state vector is the singularly averaged classical orbital element set provided by SPACECOM/DOA. The state vector in this research consists of...GSF (G) - - 26.0 36.7 GSF(A) 32.1 77.4 38.8 59.6 The Air Force Space Command is responsible for main- taining current orbital element sets for about
On the accuracy of ERS-1 orbit predictions
NASA Technical Reports Server (NTRS)
Koenig, Rolf; Li, H.; Massmann, Franz-Heinrich; Raimondo, J. C.; Rajasenan, C.; Reigber, C.
1993-01-01
Since the launch of ERS-1, the D-PAF (German Processing and Archiving Facility) provides regularly orbit predictions for the worldwide SLR (Satellite Laser Ranging) tracking network. The weekly distributed orbital elements are so called tuned IRV's and tuned SAO-elements. The tuning procedure, designed to improve the accuracy of the recovery of the orbit at the stations, is discussed based on numerical results. This shows that tuning of elements is essential for ERS-1 with the currently applied tracking procedures. The orbital elements are updated by daily distributed time bias functions. The generation of the time bias function is explained. Problems and numerical results are presented. The time bias function increases the prediction accuracy considerably. Finally, the quality assessment of ERS-1 orbit predictions is described. The accuracy is compiled for about 250 days since launch. The average accuracy lies in the range of 50-100 ms and has considerably improved.
2006-03-01
Owens J. “A Set of Modified Equinoctial Orbit Elements ,” Celestial Mechanics, 36 :409–419 (1985). 35. Wie B. Space Vehicle Dynamics and Control...14 MEE modified equinoctial elements . . . . . . . . . . . . . . . . . . . . . . . 14 TLE two-line element set ...satellite [32]. Vallado’s model will be incorporated into this thesis. 2.3.3 Modified Equinoctial Orbital Elements . For most astrodynamics problems, one of
Four Classical Methods for Determining Planetary Elliptic Elements: A Comparison
NASA Astrophysics Data System (ADS)
Celletti, Alessandra; Pinzari, Gabriella
2005-09-01
The discovery of the asteroid Ceres by Piazzi in 1801 motivated the development of a mathematical technique proposed by Gauss, (Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic Sections, 1963) which allows to recover the orbit of a celestial body starting from a minimum of three observations. Here we compare the method proposed by Gauss (Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic Sections, New York, 1963) with the techniques (based on three observations) developed by Laplace (Collected Works 10, 93 146, 1780) and by Mossotti (Memoria Postuma, 1866). We also consider another method developed by Mossotti (Nuova analisi del problema di determinare le orbite dei corpi celesti, 1816 1818), based on four observations. We provide a theoretical and numerical comparison among the different procedures. As an application, we consider the computation of the orbit of the asteroid Juno.
GTARG - The TOPEX/Poseidon ground track maintenance maneuver targeting program
NASA Technical Reports Server (NTRS)
Shapiro, Bruce E.; Bhat, Ramachandra S.
1993-01-01
GTARG is a computer program used to design orbit maintenance maneuvers for the TOPEX/Poseidon satellite. These maneuvers ensure that the ground track is kept within +/-1 km with of an = 9.9 day exact repeat pattern. Maneuver parameters are determined using either of two targeting strategies: longitude targeting, which maximizes the time between maneuvers, and time targeting, in which maneuvers are targeted to occur at specific intervals. The GTARG algorithm propagates nonsingular mean elements, taking into account anticipated error sigma's in orbit determination, Delta v execution, drag prediction and Delta v quantization. A satellite unique drag model is used which incorporates an approximate mean orbital Jacchia-Roberts atmosphere and a variable mean area model. Maneuver Delta v magnitudes are targeted to precisely maintain either the unbiased ground track itself, or a comfortable (3 sigma) error envelope about the unbiased ground track.
On initial orbit determination
NASA Technical Reports Server (NTRS)
Taff, L. G.
1984-01-01
The classical methods of initial orbit determination are brought together within a larger viewpoint. This new synthesis stresses that all such techniques follow one of three approaches. Either they seek to compute the orbital element set, or its equivalent, by attacking the differential equations of motion (Laplace), the first integrals of the equations of motion (Taff), or the solution itself (Gauss). The particular technique pursued within a given type of approach should depend upon the nature of the observational data, the amount of a priori information one is willing to presume, and the object of the exercise. This might be a binary star system, a moon, a minor planet, or an artificial satellite. The efficacy of some algorithms for each approach is discussed briefly. Unfortunately, none of them work very well. Extensions of these techniques to radars or laser radars are trivial and have provided no new insights into the overall problem.
Preentry communication design elements for outer planets atmospheric entry probe
NASA Technical Reports Server (NTRS)
1976-01-01
Four related tasks are discussed for data transmission from a probe prior to entering the atmosphere of Jupiter to an orbiting spacecraft in a trajectory past the planet: (1) link analysis and design; (2) system conceptual design; (3) Doppler measurement analysis; and (4) an electronically despun antenna. For tasks 1, 3, and 4, an analytical approach was developed and combined with computational capability available to produce quantitative results corresponding to requirements and constraints given by NASA, ARC. One constraint having a major impact on the numerical results of the link analysis was the assumption of a nonsteerable antenna on a spinning orbiter. Other constraints included the interplanetary trajectory and the approach trajectory. Because the Jupiter Orbiter Probe (JOP) program is currently in a state of evolution, all requirements and constraints applied during this study are subject to change. However, the relationships of parameters as developed will remain valid and will aid in planning Jupiter missions.
Effects of damping on mode shapes, volume 2
NASA Technical Reports Server (NTRS)
Gates, R. M.; Merchant, D. H.; Arnquist, J. L.
1977-01-01
Displacement, velocity, and acceleration admittances were calculated for a realistic NASTRAN structural model of space shuttle for three conditions: liftoff, maximum dynamic pressure and end of solid rocket booster burn. The realistic model of the orbiter, external tank, and solid rocket motors included the representation of structural joint transmissibilities by finite stiffness and damping elements. Data values for the finite damping elements were assigned to duplicate overall low-frequency modal damping values taken from tests of similar vehicles. For comparison with the calculated admittances, position and rate gains were computed for a conventional shuttle model for the liftoff condition. Dynamic characteristics and admittances for the space shuttle model are presented.
The Stratospheric Aerosol and Gas Experiment (SAGE III)
NASA Technical Reports Server (NTRS)
Thomason, Larry W.
1998-01-01
Three SAGE III instruments are being built by Ball Aerospace & Technologies Corporation in Boulder, Colorado (USA). SAGE III is a fourth generation instrument that incorporates robust elements of its predecessors [SAM II, SAGE, SAGE II] while incorporating new design elements. The first of these will be launched aboard a Russian Meteor/3M platform in May 1999. SAGE III will add measurements of O2-A band from which density and temperature profiles are retrieved. This feature should improve refraction and Rayleigh computations over earlier. Additionally, the linear array of detectors will permit on-orbit wavelength calibration from observations of the exo-atmospheric solar Fraunhofer spectrum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grimme, Stefan, E-mail: grimme@thch.uni-bonn.de; Bannwarth, Christoph
2016-08-07
The computational bottleneck of the extremely fast simplified Tamm-Dancoff approximated (sTDA) time-dependent density functional theory procedure [S. Grimme, J. Chem. Phys. 138, 244104 (2013)] for the computation of electronic spectra for large systems is the determination of the ground state Kohn-Sham orbitals and eigenvalues. This limits such treatments to single structures with a few hundred atoms and hence, e.g., sampling along molecular dynamics trajectories for flexible systems or the calculation of chromophore aggregates is often not possible. The aim of this work is to solve this problem by a specifically designed semi-empirical tight binding (TB) procedure similar to the wellmore » established self-consistent-charge density functional TB scheme. The new special purpose method provides orbitals and orbital energies of hybrid density functional character for a subsequent and basically unmodified sTDA procedure. Compared to many previous semi-empirical excited state methods, an advantage of the ansatz is that a general eigenvalue problem in a non-orthogonal, extended atomic orbital basis is solved and therefore correct occupied/virtual orbital energy splittings as well as Rydberg levels are obtained. A key idea for the success of the new model is that the determination of atomic charges (describing an effective electron-electron interaction) and the one-particle spectrum is decoupled and treated by two differently parametrized Hamiltonians/basis sets. The three-diagonalization-step composite procedure can routinely compute broad range electronic spectra (0-8 eV) within minutes of computation time for systems composed of 500-1000 atoms with an accuracy typical of standard time-dependent density functional theory (0.3-0.5 eV average error). An easily extendable parametrization based on coupled-cluster and density functional computed reference data for the elements H–Zn including transition metals is described. The accuracy of the method termed sTDA-xTB is first benchmarked for vertical excitation energies of open- and closed-shell systems in comparison to other semi-empirical methods and applied to exemplary problems in electronic spectroscopy. As side products of the development, a robust and efficient valence electron TB method for the accurate determination of atomic charges as well as a more accurate calculation scheme of dipole rotatory strengths within the Tamm-Dancoff approximation is proposed.« less
Charge-density-shear-moduli relationships in aluminum-lithium alloys.
Eberhart, M
2001-11-12
Using the first principles full-potential linear-augmented-Slater-type orbital technique, the energies and charge densities of aluminum and aluminum-lithium supercells have been computed. The experimentally observed increase in aluminum's shear moduli upon alloying with lithium is argued to be the result of predictable changes to aluminum's total charge density, suggesting that simple rules may allow the alloy designer to predict the effects of dilute substitutional elements on alloy elastic response.
Semianalytic Satellite Theory (SST): Mathematical Algorithms
1994-01-01
orbital state of a satellite with an equinoctial element set (a,,. •a 6...applied to a wide variety of orbit element sets . The equinoctial elements were chosen for SST because the variational equations for the equinoctial ...Shaver, 1980]. 2.1.1 Definition of the Equinoctial Elements There are six elements in the equinoctial element set : a, = a sernimajor axis a2 = h a3 =
Study of hypervelocity meteoroid impact on orbital space stations
NASA Technical Reports Server (NTRS)
Leimbach, K. R.; Prozan, R. J.
1973-01-01
Structural damage resulting in hypervelocity impact of a meteorite on a spacecraft is discussed. Of particular interest is the backside spallation caused by such a collision. To treat this phenomenon two numerical schemes were developed in the course of this study to compute the elastic-plastic flow fracture of a solid. The numerical schemes are a five-point finite difference scheme and a four-node finite element scheme. The four-node finite element scheme proved to be less sensitive to the type of boundary conditions and loadings. Although further development work is needed to improve the program versatility (generalization of the network topology, secondary storage for large systems, improving of the coding to reduce the run time, etc.), the basic framework is provided for a utilitarian computer program which may be used in a wide variety of situations. Analytic results showing the program output are given for several test cases.
Transforming Mean and Osculating Elements Using Numerical Methods
NASA Technical Reports Server (NTRS)
Ely, Todd A.
2010-01-01
Mean element propagation of perturbed two body orbits has as its mathematical basis averaging theory of nonlinear dynamical systems. Averaged mean elements define the long-term evolution characteristics of an orbit. Using averaging theory, a near identity transformation can be found that transforms the mean elements back to the osculating elements that contain short period terms in addition to the secular and long period mean elements. The ability to perform the conversion is necessary so that orbit design conducted in mean elements can be converted back into osculating results. In the present work, this near identity transformation is found using the Fast Fourier Transform. An efficient method is found that is capable of recovering the osculating elements to first order
1988-12-01
Conversion of the Geopotential into the Modified Orbital Elements 83 Appendix C: Useful Derivatives for the Geopotential Calculations 87 Appendix D...replaced by two equinoctial elements , h and k (from a coordinate system with singularities at i = x and for rectilinear orbits ). Also, for long term 3...0. 10 and 0.55 i 15.5) a more well behaved set of variables will be used: two of the equinoctial elements , h and k. These elements eliminate the
R & D GTDS SST: Code Flowcharts and Input
1995-01-01
trajectory from a given set of initial conditions Typical output is in the form of a printer le of Cartesian coordinates and Keplerian orbital ... orbiting the Earth The input data specied for an EPHEM run are i Initial elements and epoch ii Orbit generator selection iii Conversion of osculating...discussed ELEMENT sets coordinate system reference central body and rst components of initial state ELEMENT sets the second
Rolling Element Bearing Stiffness Matrix Determination (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Y.; Parker, R.
2014-01-01
Current theoretical bearing models differ in their stiffness estimates because of different model assumptions. In this study, a finite element/contact mechanics model is developed for rolling element bearings with the focus of obtaining accurate bearing stiffness for a wide range of bearing types and parameters. A combined surface integral and finite element method is used to solve for the contact mechanics between the rolling elements and races. This model captures the time-dependent characteristics of the bearing contact due to the orbital motion of the rolling elements. A numerical method is developed to determine the full bearing stiffness matrix corresponding tomore » two radial, one axial, and two angular coordinates; the rotation about the shaft axis is free by design. This proposed stiffness determination method is validated against experiments in the literature and compared to existing analytical models and widely used advanced computational methods. The fully-populated stiffness matrix demonstrates the coupling between bearing radial, axial, and tilting bearing deflections.« less
NASA Astrophysics Data System (ADS)
Raj, Xavier James
2016-07-01
Accurate orbit prediction of an artificial satellite under the influence of air drag is one of the most difficult and untraceable problem in orbital dynamics. The orbital decay of these satellites is mainly controlled by the atmospheric drag effects. The effects of the atmosphere are difficult to determine, since the atmospheric density undergoes large fluctuations. The classical Newtonian equations of motion, which is non linear is not suitable for long-term integration. Many transformations have emerged in the literature to stabilize the equations of motion either to reduce the accumulation of local numerical errors or allowing the use of large integration step sizes, or both in the transformed space. One such transformation is known as KS transformation by Kustaanheimo and Stiefel, who regularized the nonlinear Kepler equations of motion and reduced it into linear differential equations of a harmonic oscillator of constant frequency. The method of KS total energy element equations has been found to be a very powerful method for obtaining numerical as well as analytical solution with respect to any type of perturbing forces, as the equations are less sensitive to round off and truncation errors. The uniformly regular KS canonical equations are a particular canonical form of the KS differential equations, where all the ten KS Canonical elements αi and βi are constant for unperturbed motion. These equations permit the uniform formulation of the basic laws of elliptic, parabolic and hyperbolic motion. Using these equations, developed analytical solution for short term orbit predictions with respect to Earth's zonal harmonic terms J2, J3, J4. Further, these equations were utilized to include the canonical forces and analytical theories with air drag were developed for low eccentricity orbits (e < 0.2) with different atmospheric models. Using uniformly regular KS canonical elements developed analytical theory for high eccentricity (e > 0.2) orbits by assuming the atmosphere to be oblate only. In this paper a new non-singular analytical theory is developed for the motion of high eccentricity satellite orbits with oblate diurnally varying atmosphere in terms of the uniformly regular KS canonical elements. The analytical solutions are generated up to fourth-order terms using a new independent variable and c (a small parameter dependent on the flattening of the atmosphere). Due to symmetry, only two of the nine equations need to be solved analytically to compute the state vector and change in energy at the end of each revolution. The theory is developed on the assumption that density is constant on the surfaces of spheroids of fixed ellipticity ɛ (equal to the Earth's ellipticity, 0.00335) whose axes coincide with the Earth's axis. Numerical experimentation with the analytical solution for a wide range of perigee height, eccentricity, and orbital inclination has been carried out up to 100 revolutions. Comparisons are made with numerically integrated values and found that they match quite well. Effectiveness of the present analytical solutions will be demonstrated by comparing the results with other analytical solutions in the literature.
NASA Astrophysics Data System (ADS)
Diego, P.; Bertello, I.; Candidi, M.; Mura, A.; Coco, I.; Vannaroni, G.; Ubertini, P.; Badoni, D.
2017-11-01
The floating potential variability of the Electric Field Detector (EFD) probes, on board the Chinese Seismo-Electromagnetic Satellite (CSES), has been modeled, and the effects of several structural and environmental elements have been determined. The expected floating potentials of the probes are computed considering the ambient ionospheric plasma parameter variations. In addition, the ion collection variability, due to the different probe attitudes along the orbit, and its effect on each floating potential, are considered. Particular attention is given to the analysis of the shadow produced by the stubs, in order to determine the artificial electric field introduced by instrumental effects which has to be subtracted from the real measurements. The modulation of the altered electric field, due to the effect on shadowing of the ion drift, as measured by the ESA satellite Swarm A in a similar orbit, is also modeled. Such simulations are made in preparation of real EFD data analysis performed during the upcoming flight of CSES.
PyEphem: Astronomical Ephemeris for Python
NASA Astrophysics Data System (ADS)
Rhodes, Brandon Craig
2011-12-01
PyEphem provides scientific-grade astronomical computations for the Python programming language. Given a date and location on the Earth’s surface, it can compute the positions of the Sun and Moon, of the planets and their moons, and of any asteroids, comets, or earth satellites whose orbital elements the user can provide. Additional functions are provided to compute the angular separation between two objects in the sky, to determine the constellation in which an object lies, and to find the times at which an object rises, transits, and sets on a particular day. The numerical routines that lie behind PyEphem are those from the wonderful XEphem astronomy application, whose author, Elwood Downey, generously gave permission for us to use them as the basis for PyEphem.
Kinetic-energy matrix elements for atomic Hylleraas-CI wave functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, Frank E., E-mail: harris@qtp.ufl.edu
Hylleraas-CI is a superposition-of-configurations method in which each configuration is constructed from a Slater-type orbital (STO) product to which is appended (linearly) at most one interelectron distance r{sub ij}. Computations of the kinetic energy for atoms by this method have been difficult due to the lack of formulas expressing these matrix elements for general angular momentum in terms of overlap and potential-energy integrals. It is shown here that a strategic application of angular-momentum theory, including the use of vector spherical harmonics, enables the reduction of all atomic kinetic-energy integrals to overlap and potential-energy matrix elements. The new formulas are validatedmore » by showing that they yield correct results for a large number of integrals published by other investigators.« less
Empirical Monod-Beuneu relation of spin relaxation revisited for elemental metals
NASA Astrophysics Data System (ADS)
Szolnoki, L.; Kiss, A.; Forró, L.; Simon, F.
2014-03-01
Monod and Beuneu [P. Monod and F. Beuneu, Phys. Rev. B 19, 911 (1979), 10.1103/PhysRevB.19.911] established the validity of the Elliott-Yafet theory for elemental metals through correlating the experimental electron spin resonance linewidth with the so-called spin-orbit admixture coefficients and the momentum-relaxation theory. The spin-orbit admixture coefficients data were based on atomic spin-orbit splitting. We highlight two shortcomings of the previous description: (i) the momentum-relaxation involves the Debye temperature and the electron-phonon coupling whose variation among the elemental metals was neglected, (ii) the Elliott-Yafet theory involves matrix elements of the spin-orbit coupling (SOC), which are however not identical to the SOC induced energy splitting of the atomic levels, even though the two have similar magnitudes. We obtain the empirical spin-orbit admixture parameters for the alkali metals by considering the proper description of the momentum relaxation theory. In addition we present a model calculation, which highlights the difference between the SOC matrix element and energy splitting.
Design of orbital debris shields for oblique hypervelocity impact
NASA Technical Reports Server (NTRS)
Fahrenthold, Eric P.
1994-01-01
A new impact debris propagation code was written to link CTH simulations of space debris shield perforation to the Lagrangian finite element code DYNA3D, for space structure wall impact simulations. This software (DC3D) simulates debris cloud evolution using a nonlinear elastic-plastic deformable particle dynamics model, and renders computationally tractable the supercomputer simulation of oblique impacts on Whipple shield protected structures. Comparison of three dimensional, oblique impact simulations with experimental data shows good agreement over a range of velocities of interest in the design of orbital debris shielding. Source code developed during this research is provided on the enclosed floppy disk. An abstract based on the work described was submitted to the 1994 Hypervelocity Impact Symposium.
Adaptive Fuzzy Systems in Computational Intelligence
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1996-01-01
In recent years, the interest in computational intelligence techniques, which currently includes neural networks, fuzzy systems, and evolutionary programming, has grown significantly and a number of their applications have been developed in the government and industry. In future, an essential element in these systems will be fuzzy systems that can learn from experience by using neural network in refining their performances. The GARIC architecture, introduced earlier, is an example of a fuzzy reinforcement learning system which has been applied in several control domains such as cart-pole balancing, simulation of to Space Shuttle orbital operations, and tether control. A number of examples from GARIC's applications in these domains will be demonstrated.
A 3D Visualization and Analysis Model of the Earth Orbit, Milankovitch Cycles and Insolation.
NASA Astrophysics Data System (ADS)
Kostadinov, Tihomir; Gilb, Roy
2013-04-01
Milankovitch theory postulates that periodic variability of Earth's orbital elements is a major climate forcing mechanism. Although controversies remain, ample geologic evidence supports the major role of the Milankovitch cycles in climate, e.g. glacial-interglacial cycles. There are three Milankovitch orbital parameters: orbital eccentricity (main periodicities of ~100,000 and ~400,000 years), precession (quantified as the longitude of perihelion, main periodicities 19,000-24,000 years) and obliquity of the ecliptic (Earth's axial tilt, main periodicity 41,000 years). The combination of these parameters controls the spatio-temporal patterns of incoming solar radiation (insolation) and the timing of the seasons with respect to perihelion, as well as season duration. The complex interplay of the Milankovitch orbital parameters on various time scales makes assessment and visualization of Earth's orbit and insolation variability challenging. It is difficult to appreciate the pivotal importance of Kepler's laws of planetary motion in controlling the effects of Milankovitch cycles on insolation patterns. These factors also make Earth-Sun geometry and Milankovitch theory difficult to teach effectively. Here, an astronomically precise and accurate Earth orbit visualization model is presented. The model offers 3D visualizations of Earth's orbital geometry, Milankovitch parameters and the ensuing insolation forcings. Both research and educational uses are envisioned for the model, which is developed in Matlab® as a user-friendly graphical user interface (GUI). We present the user with a choice between the Berger et al. (1978) and Laskar et al. (2004) astronomical solutions for eccentricity, obliquity and precession. A "demo" mode is also available, which allows the three Milankovitch parameters to be varied independently of each other (and over much larger ranges than the naturally occurring ones), so the user can isolate the effects of each parameter on orbital geometry, the seasons, and insolation. Users select a calendar date and the Earth is placed in its orbit using Kepler's laws; the calendar can be started on either vernal equinox (March 20) or perihelion (Jan. 3). Global insolation is computed as a function of latitude and day of year, using the chosen Milankovitch parameters. 3D surface plots of insolation and insolation anomalies (with respect to J2000) are then produced. Insolation computations use the model's own orbital geometry with no additional a-priori input other than the Milankovitch parameter solutions. Insolation computations are successfully validated against Laskar et al. (2004) values. The model outputs other relevant parameters as well, e.g. Earth's radius-vector length, solar declination and day length for the chosen date and latitude. Time-series plots of the Milankovitch parameters and EPICA ice core CO2 and temperature data can be produced. Envisioned future developments include computational efficiency improvements, more options for insolation plots on user-chosen spatio-temporal scales, and overlaying additional paleoclimatological proxy data.
NASA Astrophysics Data System (ADS)
Cui, Bin; Huang, Bing; Li, Chong; Zhang, Xiaoming; Jin, Kyung-Hwan; Zhang, Lizhi; Jiang, Wei; Liu, Desheng; Liu, Feng
2017-08-01
Magnetism in solids generally originates from the localized d or f orbitals that are hosted by heavy transition-metal elements. Here, we demonstrate a mechanism for designing a half-metallic f -orbital Dirac fermion from superlight s p elements. Combining first-principles and model calculations, we show that bare and flat-band-sandwiched (FBS) Dirac bands can be created when C20 molecules are deposited into a two-dimensional hexagonal lattice, which are composed of f -molecular orbitals (MOs) derived from s p -atomic orbitals (AOs). Furthermore, charge doping of the FBS Dirac bands induces spontaneous spin polarization, converting the system into a half-metallic Dirac state. Based on this discovery, a model of a spin field effect transistor is proposed to generate and transport 100% spin-polarized carriers. Our finding illustrates a concept to realize exotic quantum states by manipulating MOs, instead of AOs, in orbital-designed molecular crystal lattices.
Observer's Interface for Solar System Target Specification
NASA Astrophysics Data System (ADS)
Roman, Anthony; Link, Miranda; Moriarty, Christopher; Stansberry, John A.
2016-10-01
When observing an asteroid or comet with HST, it has been necessary for the observer to manually enter the target's orbital elements into the Astronomer's Proposal Tool (APT). This allowed possible copy/paste transcription errors from the observer's source of orbital elements data. In order to address this issue, APT has now been improved with the capability to identify targets in and then download orbital elements from JPL Horizons. The observer will first use a target name resolver to choose the intended target from the Horizons database, and then download the orbital elements from Horizons directly into APT. A manual entry option is also still retained if the observer does not wish to use elements from Horizons. This new capability is available for HST observing, and it will also be supported for JWST observing. The poster shows examples of this new interface.
Observer's Interface for Solar System Target Specification
NASA Astrophysics Data System (ADS)
Roman, Anthony; Link, Miranda; Moriarty, Christopher; Stansberry, John A.
2016-01-01
When observing an asteroid or comet with HST, it has been necessary for the observer to manually enter the target's orbital elements into the Astronomer's Proposal Tool (APT). This allowed possible copy/paste transcription errors from the observer's source of orbital elements data. In order to address this issue, APT has now been improved with the capability to identify targets in and then download orbital elements from JPL Horizons. The observer will first use a target name resolver to choose the intended target from the Horizons database, and then download the orbital elements from Horizons directly into APT. A manual entry option is also still retained if the observer does not wish to use elements from Horizons. This new capability is available for HST observing, and it will also be supported for JWST observing. The poster shows examples of this new interface.
Computational models for the berry phase in semiconductor quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabhakar, S., E-mail: rmelnik@wlu.ca; Melnik, R. V. N., E-mail: rmelnik@wlu.ca; Sebetci, A.
2014-10-06
By developing a new model and its finite element implementation, we analyze the Berry phase low-dimensional semiconductor nanostructures, focusing on quantum dots (QDs). In particular, we solve the Schrödinger equation and investigate the evolution of the spin dynamics during the adiabatic transport of the QDs in the 2D plane along circular trajectory. Based on this study, we reveal that the Berry phase is highly sensitive to the Rashba and Dresselhaus spin-orbit lengths.
NASA Technical Reports Server (NTRS)
Palmeri, P.; Quinet, P.; Mendoza, C.; Bautista, M. A.; Witthoeft, M. C.; Kallman, T. R.
2016-01-01
Context. With the recent launching of the Hitomi X-ray space observatory, K lines and edges of chemical elements with low cosmic abundances, namely F, Na, P, Cl, K, Sc, Ti, V, Cr, Mn, Co, Cu and Zn, can be resolved and used to determine important properties of supernova remnants, galaxy clusters and accreting black holes and neutron stars.Aims. The second stage of the present ongoing project involves the computation of the accurate photoabsorption and photoionisation cross sections required to interpret the X-ray spectra of such trace elements.Methods. Depending on target complexity and computer tractability, ground-state cross sections are computed either with the close-coupling Breit-Pauli R-matrix method or with the autostructure atomic structure code in the isolated-resonance approximation. The intermediate-coupling scheme is used whenever possible. In order to determine a realistic K-edge behaviour for each species, both radiative and Auger dampings are taken into account, the latter being included in the R-matrix formalism by means of an optical potential.Results. Photoabsorption and total and partial photoionisation cross sections are reported for isoelectronic sequences with electron numbers 3< or = N< or = 11. The Na sequence (N=11) is used to estimate the contributions from configurations with a 2s hole (i.e. [2s]) and those containing 3d orbitals, which will be crucial when considering sequences with N 11.Conclusions. It is found that the [2s/u] configurations must be included in the target representations of species with N> 11 as they contribute significantly to the monotonic background of the cross section between the L and K edges. Configurations with 3d orbitals are important in rendering an accurate L edge, but they can be practically neglected in the K-edge region.
Mission analysis data for inclined geosynchronous orbits, part 1
NASA Technical Reports Server (NTRS)
Graf, O. F., Jr.; Wang, K. C.
1980-01-01
Data needed for preliminary design of inclined geosynchronous missions are provided. The inertial and Earth fixed coordinate systems are described, as well as orbit parameters and elements. The complete family of geosynchronous orbits is discussed. It is shown that circular inclined geosynchronous orbits comprise only one set in this family. The major orbit perturbation and their separate effects on the geosynchronous orbit are discussed. Detailed information on the orbit perturbation of inclined circular geosynchronous orbits is given, with emphasis on time history data of certain orbital elements. Orbit maintenance delta velocity (V) requirements to counteract the major orbit perturbations are determined in order to provide order of magnitude estimates and to show the effects of orbit inclination on delta V. Some of the considerations in mission design for a multisatellite system, such as a halo orbit constellation, are discussed.
Angles-only navigation for autonomous orbital rendezvous
NASA Astrophysics Data System (ADS)
Woffinden, David C.
The proposed thesis of this dissertation has both a practical element and theoretical component which aim to answer key questions related to the use of angles-only navigation for autonomous orbital rendezvous. The first and fundamental principle to this work argues that an angles-only navigation filter can determine the relative position and orientation (pose) between two spacecraft to perform the necessary maneuvers and close proximity operations for autonomous orbital rendezvous. Second, the implementation of angles-only navigation for on-orbit applications is looked upon with skeptical eyes because of its perceived limitation of determining the relative range between two vehicles. This assumed, yet little understood subtlety can be formally characterized with a closed-form analytical observability criteria which specifies the necessary and sufficient conditions for determining the relative position and velocity with only angular measurements. With a mathematical expression of the observability criteria, it can be used to (1) identify the orbital rendezvous trajectories and maneuvers that ensure the relative position and velocity are observable for angles-only navigation, (2) quantify the degree or level of observability and (3) compute optimal maneuvers that maximize observability. In summary, the objective of this dissertation is to provide both a practical and theoretical foundation for the advancement of autonomous orbital rendezvous through the use of angles-only navigation.
A Scalable O(N) Algorithm for Large-Scale Parallel First-Principles Molecular Dynamics Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osei-Kuffuor, Daniel; Fattebert, Jean-Luc
2014-01-01
Traditional algorithms for first-principles molecular dynamics (FPMD) simulations only gain a modest capability increase from current petascale computers, due to their O(N 3) complexity and their heavy use of global communications. To address this issue, we are developing a truly scalable O(N) complexity FPMD algorithm, based on density functional theory (DFT), which avoids global communications. The computational model uses a general nonorthogonal orbital formulation for the DFT energy functional, which requires knowledge of selected elements of the inverse of the associated overlap matrix. We present a scalable algorithm for approximately computing selected entries of the inverse of the overlap matrix,more » based on an approximate inverse technique, by inverting local blocks corresponding to principal submatrices of the global overlap matrix. The new FPMD algorithm exploits sparsity and uses nearest neighbor communication to provide a computational scheme capable of extreme scalability. Accuracy is controlled by the mesh spacing of the finite difference discretization, the size of the localization regions in which the electronic orbitals are confined, and a cutoff beyond which the entries of the overlap matrix can be omitted when computing selected entries of its inverse. We demonstrate the algorithm's excellent parallel scaling for up to O(100K) atoms on O(100K) processors, with a wall-clock time of O(1) minute per molecular dynamics time step.« less
NASA Astrophysics Data System (ADS)
Bondarenko, Yu. S.; Vavilov, D. E.; Medvedev, Yu. D.
2014-05-01
A universal method of determining the orbits of newly discovered small bodies in the Solar System using their positional observations has been developed. The proposed method suggests determining geocentric distances of a small body by means of an exhaustive search for heliocentric orbital planes and subsequent determination of the distance between the observer and the points at which the chosen plane intersects with the vectors pointing to the object. Further, the remaining orbital elements are determined using the classical Gauss method after eliminating those heliocentric distances that have a fortiori low probabilities. The obtained sets of elements are used to determine the rms between the observed and calculated positions. The sets of elements with the least rms are considered to be most probable for newly discovered small bodies. Afterwards, these elements are improved using the differential method.
Von Neumann entropy in a Rashba-Dresselhaus nanodot; dynamical electronic spin-orbit entanglement
NASA Astrophysics Data System (ADS)
Safaiee, Rosa; Golshan, Mohammad Mehdi
2017-06-01
The main purpose of the present article is to report the characteristics of von Neumann entropy, thereby, the electronic hybrid entanglement, in the heterojunction of two semiconductors, with due attention to the Rashba and Dresselhaus spin-orbit interactions. To this end, we cast the von Neumann entropy in terms of spin polarization and compute its time evolution; with a vast span of applications. It is assumed that gate potentials are applied to the heterojunction, providing a two dimensional parabolic confining potential (forming an isotropic nanodot at the junction), as well as means of controlling the spin-orbit couplings. The spin degeneracy is also removed, even at electronic zero momentum, by the presence of an external magnetic field which, in turn, leads to the appearance of Landau states. We then proceed by computing the time evolution of the corresponding von Neumann entropy from a separable (spin-polarized) initial state. The von Neumann entropy, as we show, indicates that electronic hybrid entanglement does occur between spin and two-dimensional Landau levels. Our results also show that von Neumann entropy, as well as the degree of spin-orbit entanglement, periodically collapses and revives. The characteristics of such behavior; period, amplitude, etc., are shown to be determined from the controllable external agents. Moreover, it is demonstrated that the phenomenon of collapse-revivals' in the behavior of von Neumann entropy, equivalently, electronic hybrid entanglement, is accompanied by plateaus (of great importance in quantum computation schemes) whose durations are, again, controlled by the external elements. Along these lines, we also make a comparison between effects of the two spin-orbit couplings on the entanglement (von Neumann entropy) characteristics. The finer details of the electronic hybrid entanglement, which may be easily verified through spin polarization measurements, are also accreted and discussed. The novel results of the present article, with potent applications in the field of quantum information processing, provide a deeper understanding of the electronic von Neumann entropy and hybrid entanglement that occurs in two-dimensional nanodots.
NASA Technical Reports Server (NTRS)
Sackett, L. L.; Edelbaum, T. N.; Malchow, H. L.
1974-01-01
This manual is a guide for using a computer program which calculates time optimal trajectories for high-and low-thrust geocentric transfers. Either SEP or NEP may be assumed and a one or two impulse, fixed total delta V, initial high thrust phase may be included. Also a single impulse of specified delta V may be included after the low thrust state. The low thrust phase utilizes equinoctial orbital elements to avoid the classical singularities and Kryloff-Boguliuboff averaging to help insure more rapid computation time. The program is written in FORTRAN 4 in double precision for use on an IBM 360 computer. The manual includes a description of the problem treated, input/output information, examples of runs, and source code listings.
USSR and Eastern Europe Scientific Abstracts, Geophysics, Astronomy and Space, Number 392.
1977-03-15
evaluation of the parameters of the observed field. It is proposed that for models formed from a set of elements as described that the problem of...the differential energy spectra for protons during the time of large flares on the sun. [303] IMPROVEMENT OF AES ORBITAL ELEMENTS Moscow...Leningrad, ULUSHSHENIYE ORBITAL’NYKH ELEMENTOV ISZ (Improvement in the Orbital Elements of an Artificial Earth Satellite), Leningrad Forestry Academy
NASA Technical Reports Server (NTRS)
Bainum, P. M.; Reddy, A. S. S. R.; Krishna, R.; James, P. K.
1980-01-01
The dynamics, attitude, and shape control of a large thin flexible square platform in orbit are studied. Attitude and shape control are assumed to result from actuators placed perpendicular to the main surface and one edge and their effect on the rigid body and elastic modes is modelled to first order. The equations of motion are linearized about three different nominal orientations: (1) the platform following the local vertical with its major surface perpendicular to the orbital plane; (2) the platform following the local horizontal with its major surface normal to the local vertical; and (3) the platform following the local vertical with its major surface perpendicular to the orbit normal. The stability of the uncontrolled system is investigated analytically. Once controllability is established for a set of actuator locations, control law development is based on decoupling, pole placement, and linear optimal control theory. Frequencies and elastic modal shape functions are obtained using a finite element computer algorithm, two different approximate analytical methods, and the results of the three methods compared.
Simple control laws for low-thrust orbit transfers
NASA Technical Reports Server (NTRS)
Petropoulos, Anastassios E.
2003-01-01
Two methods are presented by which to determine both a thrust direction and when to apply thrust to effect specified changes in any of the orbit elements except for true anomaly, which is assumed free. The central body is assumed to be a point mass, and the initial and final orbits are assumed closed. Thrust, when on, is of a constant value, and specific impulse is constant. The thrust profiles derived from the two methods are not propellant-optimal, but are based firstly on the optimal thrust directions and location on the osculating orbit for changing each of the orbit elements and secondly on the desired changes in the orbit elements. Two examples of transfers are presented, one in semimajor axis and inclination, and one in semimajor axis and eccentricity. The latter compares favourably with a propellant-optimized transfer between the same orbits. The control laws have few input parameters, but can still capture the complexity of a wide variety of orbit transfers.
Operations analysis (study 2.1): Program manual and users guide for the LOVES computer code
NASA Technical Reports Server (NTRS)
Wray, S. T., Jr.
1975-01-01
Information is provided necessary to use the LOVES Computer Program in its existing state, or to modify the program to include studies not properly handled by the basic model. The Users Guide defines the basic elements assembled together to form the model for servicing satellites in orbit. As the program is a simulation, the method of attack is to disassemble the problem into a sequence of events, each occurring instantaneously and each creating one or more other events in the future. The main driving force of the simulation is the deterministic launch schedule of satellites and the subsequent failure of the various modules which make up the satellites. The LOVES Computer Program uses a random number generator to simulate the failure of module elements and therefore operates over a long span of time typically 10 to 15 years. The sequence of events is varied by making several runs in succession with different random numbers resulting in a Monte Carlo technique to determine statistical parameters of minimum value, average value, and maximum value.
Design of a monitor and simulation terminal (master) for space station telerobotics and telescience
NASA Technical Reports Server (NTRS)
Lopez, L.; Konkel, C.; Harmon, P.; King, S.
1989-01-01
Based on Space Station and planetary spacecraft communication time delays and bandwidth limitations, it will be necessary to develop an intelligent, general purpose ground monitor terminal capable of sophisticated data display and control of on-orbit facilities and remote spacecraft. The basic elements that make up a Monitor and Simulation Terminal (MASTER) include computer overlay video, data compression, forward simulation, mission resource optimization and high level robotic control. Hardware and software elements of a MASTER are being assembled for testbed use. Applications of Neural Networks (NNs) to some key functions of a MASTER are also discussed. These functions are overlay graphics adjustment, object correlation and kinematic-dynamic characterization of the manipulator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Rosa, Robert J.; Nielsen, Eric L.; Blunt, Sarah C.
We present new Gemini Planet Imager observations of the young exoplanet 51 Eridani b that provide further evidence that the companion is physically associated with 51 Eridani. Combining this new astrometric measurement with those reported in the literature, we significantly reduce the posterior probability that 51 Eridani b is an unbound foreground or background T-dwarf in a chance alignment with 51 Eridani to 2 × 10 –7, an order of magnitude lower than previously reported. If 51 Eridani b is indeed a bound object, then we have detected orbital motion of the planet between the discovery epoch and the latest epoch. By implementing a computationally efficient Monte Carlo technique, preliminary constraints are placed on the orbital parameters of the system. The current set of astrometric measurements suggest an orbital semimajor axis ofmore » $${14}_{-3}^{+7}$$ AU, corresponding to a period of $${41}_{-12}^{+35}$$ years (assuming a mass of 1.75 M⊙ for the central star), and an inclination of $${138}_{-13}^{+15}$$ deg. The remaining orbital elements are only marginally constrained by the current measurements. As a result, these preliminary values suggest an orbit that does not share the same inclination as the orbit of the distant M-dwarf binary, GJ 3305, which is a wide physically bound companion to 51 Eridani.« less
De Rosa, Robert J.; Nielsen, Eric L.; Blunt, Sarah C.; ...
2015-11-13
We present new Gemini Planet Imager observations of the young exoplanet 51 Eridani b that provide further evidence that the companion is physically associated with 51 Eridani. Combining this new astrometric measurement with those reported in the literature, we significantly reduce the posterior probability that 51 Eridani b is an unbound foreground or background T-dwarf in a chance alignment with 51 Eridani to 2 × 10 –7, an order of magnitude lower than previously reported. If 51 Eridani b is indeed a bound object, then we have detected orbital motion of the planet between the discovery epoch and the latest epoch. By implementing a computationally efficient Monte Carlo technique, preliminary constraints are placed on the orbital parameters of the system. The current set of astrometric measurements suggest an orbital semimajor axis ofmore » $${14}_{-3}^{+7}$$ AU, corresponding to a period of $${41}_{-12}^{+35}$$ years (assuming a mass of 1.75 M⊙ for the central star), and an inclination of $${138}_{-13}^{+15}$$ deg. The remaining orbital elements are only marginally constrained by the current measurements. As a result, these preliminary values suggest an orbit that does not share the same inclination as the orbit of the distant M-dwarf binary, GJ 3305, which is a wide physically bound companion to 51 Eridani.« less
How can periodic orbits puzzle out the coexistence of terrestrial planets with giant eccentric ones?
NASA Astrophysics Data System (ADS)
Antoniadou, K. I.; Libert, A.-S.
2017-09-01
Hitherto unprecedented detections of exoplanets have been triggered by missions and ground based telescopes. The quest of ``exo-Earths'' has become intriguing and the long-term stability of planetary orbits is a crucial factor for the biosphere to evolve. Planets in mean-motion resonances (MMRs) prompt the investigation of the dynamics in the framework of the three-body problem, where the families of stable periodic orbits constitute the backbone of stability domains in phase space. In this talk, we address the question of the possible coexistence of terrestrial planets with a giant companion on circular or eccentric orbit and explore the extent of the stability regions, when both the eccentricity of the outer giant planet and the semi-major axis of the inner terrestrial one vary, i.e. we investigate both non-resonant and resonant configurations. The families of periodic orbits in the restricted three-body problem are computed for the 3/2, 2/1, 5/2, 3/1, 4/1 and 5/1 MMRs. We then construct maps of dynamical stability (DS-maps) to identify the boundaries of the stability domains where such a coexistence is allowed. Guided by the periodic orbits, we delve into regular motion in phase space and propose the essential values of the orbital elements, in order for such configurations to survive long time spans and hence, for observations to be complemented or revised.
Bischoff, Florian A; Harrison, Robert J; Valeev, Edward F
2012-09-14
We present an approach to compute accurate correlation energies for atoms and molecules using an adaptive discontinuous spectral-element multiresolution representation for the two-electron wave function. Because of the exponential storage complexity of the spectral-element representation with the number of dimensions, a brute-force computation of two-electron (six-dimensional) wave functions with high precision was not practical. To overcome the key storage bottlenecks we utilized (1) a low-rank tensor approximation (specifically, the singular value decomposition) to compress the wave function, and (2) explicitly correlated R12-type terms in the wave function to regularize the Coulomb electron-electron singularities of the Hamiltonian. All operations necessary to solve the Schrödinger equation were expressed so that the reconstruction of the full-rank form of the wave function is never necessary. Numerical performance of the method was highlighted by computing the first-order Møller-Plesset wave function of a helium atom. The computed second-order Møller-Plesset energy is precise to ~2 microhartrees, which is at the precision limit of the existing general atomic-orbital-based approaches. Our approach does not assume special geometric symmetries, hence application to molecules is straightforward.
Specific effects of large asteroids on the orbits of terrestrial planets and the ASETEP database
NASA Astrophysics Data System (ADS)
Aljbaae, S.; Souchay, J.
2012-04-01
The necessity to take into account the perturbations caused by a large number of asteroids on the terrestrial planets is fundamental in the construction of modern numerical ephemeris on the solar system. Therefore about 300 of the largest asteroids were taken into account in recent ephemeris. Yet, the uncertainty on the mass values of the great majority of these asteroids constitutes a crucial and the main limit of accuracy of this ephemeris. Consequently, it is important to conduct a specific and detailed study of their individual effects especially on the terrestrial planets, which are far more affected than the giant planets. This was already done explicitly, but only for Mars and for only two orbital elements (a and λ). We aim both to confirm these previous results and to extend the study to all orbital elements and to the other three terrestrial planets (Mercury, Venus and the Earth), which are priori less affected by asteroid perturbations. Our methodology consists in several steps: we carried out precise computations of the orbital motions of the planets at short (100 y) and longer (1000 y) time scales with numerical integration. For that purpose we included the eight planets and also considered 43 of the most powerful asteroids. These were added to the numerical integrations once separately and once combined to determine their specific effects on the orbital elements of the Earth and the three other terrestrial planets. This procedure also allowed us to assess the spatial geocentric coordinates of the three terrestrial planets. We determined the signal that represents the effects by simple subtraction. Then we systematically analyzed this signal by FFT (fast Fourier transform), and finally we adjusted the signal with a set of sinusoidal components. We analyzed in detail the variations of the six orbital elements a, e, i, Ω, ˜ ω and λ of Mercury, Venus, the Earth-Moon barycenter (EMB) and Mars that are caused by the individual influences of the set of our 43 selected asteroids. We compared our results for Mars with the analytical ones on the semi-major axis and the longitude. The tow studies agree very well. All our results, consisting of 1032 different curves (43 asteroids × 4 planets × 6 orbital elements) and the related tables that provide the fitted Fourier and Poisson components are gathered the ASETEP database (asteroid effect on the terrestrial planets). Moreover, we include in this database the influence of our sample of 43 asteroids on three fundamental parameters: the distance and the bi-dimensional orientation vector (α, δ) from the EMB to each of the other terrestrial planets. This database, which will be regularly updated by taking into account more asteroids with improved mass determinations, constitutes a precious tool for understanding specifically the influence of the large asteroids on the orbital motion of the terrestrial planets, and also for better understanding how modern ephemeris can be improved. Appendices A-C are available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Choudhury, Diptyajit; Angeloski, Aleksandar; Ziah, Haseeb; Buchholz, Hilmar; Landsman, Andre; Gupta, Amitava; Mitra, Tiyasa
Lunar explorations often involve use of a lunar lander , a rover [1],[2] and an orbiter which rotates around the moon with a fixed radius. The orbiters are usually lunar satellites orbiting along a polar orbit to ensure visibility with respect to the rover and the Earth Station although with varying latency. Communication in such deep space missions is usually done using a specialized protocol like Proximity-1[3]. MATLAB simulation of Proximity-1 have been attempted by some contemporary researchers[4] to simulate all features like transmission control, delay etc. In this paper it is attempted to simulate, in real time, the communication between a tracking station on earth (earth station), a lunar orbiter and a lunar rover using concepts of Distributed Real-time Simulation(DRTS).The objective of the simulation is to simulate, in real-time, the time varying communication delays associated with the communicating elements with a facility to integrate specific simulation modules to study different aspects e.g. response due to a specific control command from the earth station to be executed by the rover. The hardware platform comprises four single board computers operating as stand-alone real time systems (developed by MATLAB xPC target and inter-networked using UDP-IP protocol). A time triggered DRTS approach is adopted. The earth station, the orbiter and the rover are programmed as three standalone real-time processes representing the communicating elements in the system. Communication from one communicating element to another constitutes an event which passes a state message from one element to another, augmenting the state of the latter. These events are handled by an event scheduler which is the fourth real-time process. The event scheduler simulates the delay in space communication taking into consideration the distance between the communicating elements. A unique time synchronization algorithm is developed which takes into account the large latencies in space communication. The DRTS setup thus developed serves as an important and inexpensive test bench for trying out remote controlled applications on the rover, for example, from an earth station. The simulation is modular and the system is composable. Each of the processes can be aug-mented with relevant simulation modules that handle the events to simulate specific function-alities. With stringent energy saving requirements on most rovers, such a simulation set up, for example, can be used to design optimal rover movement control strategies from the orbiter in conjunction with autonomous systems on the rover itself. References 1. Lunar and Planetary Department, Moscow University, Lunokhod 1, "http://selena.sai.msu.ru/Home/Spa 2. NASA History Office, Guidelines for Advanced Manned Space Vehicle Program, "http://history.nasa.gov 35ann/AMSVPguidelines/top.htm" 3. Consultative Committee For Space Data Systems, "Proximity-1 Space Link Protocol" CCSDS 211.0-B-1 Blue Book. October 2002. 4. Segui, J. and Jennings, E., "Delay Tolerant Networking-Bundle Protocol Simulation", in Proceedings of the 2nd IEEE International Conference on Space Mission Challenges for Infor-mation Technology, 2006.
Quasi-Tangency Points on the Orbits of a Small Body and a Planet at the Low-Velocity Encounter
NASA Astrophysics Data System (ADS)
Emel'yanenko, N. Yu.
2018-03-01
We propose a method for selecting a low-velocity encounter of a small body with a planet from the evolution of the orbital elements. Polar orbital coordinates of the quasi-tangency point on the orbit of a small body are determined. Rectangular heliocentric coordinates of the quasi-tangency point on the orbit of a planet are determined. An algorithm to search for low-velocity encounters in the evolution of the orbital elements of small bodies is described. The low-velocity encounter of comet 39P/Oterma with Jupiter is considered as an example.
Estimating Small-Body Gravity Field from Shape Model and Navigation Data
NASA Technical Reports Server (NTRS)
Park, Ryan S.; Werner, Robert A.; Bhaskaran, Shyam
2008-01-01
This paper presents a method to model the external gravity field and to estimate the internal density variation of a small-body. We first discuss the modeling problem, where we assume the polyhedral shape and internal density distribution are given, and model the body interior using finite elements definitions, such as cubes and spheres. The gravitational attractions computed from these approaches are compared with the true uniform-density polyhedral attraction and the level of accuracies are presented. We then discuss the inverse problem where we assume the body shape, radiometric measurements, and a priori density constraints are given, and estimate the internal density variation by estimating the density of each finite element. The result shows that the accuracy of the estimated density variation can be significantly improved depending on the orbit altitude, finite-element resolution, and measurement accuracy.
Asteroid families in the Cybele and Hungaria groups
NASA Astrophysics Data System (ADS)
Vinogradova, T.; Shor, V.
2014-07-01
Asteroid families are fragments of some disrupted parent bodies. Planetary perturbations force the primarily close orbits to evolve. One of the main features of the orbit evolution is the long-period variation of the osculating elements, such as the inclination and eccentricity. Proper elements are computed by elimination of short- and long-period perturbations, and, practically, they do not change with time. Therefore, proper elements are important for family-identification procedures. The techniques of proper-element computation have improved over time. More and more accurate dynamical theories are developed. Contrastingly, in this work, an empirical method is proposed for proper-element calculations. The long-term variations of osculating elements manifest themselves very clearly in the distributions of pairs: inclination and longitude of ascending node; eccentricity and longitude of perihelion in the corresponding planes. Both of these dependencies have a nearly sinusoidal form for most asteroid orbits with regular motion of node and perihelion. If these angular parameters librate, then the sinusoids transform to some closed curve. Hence, it is possible to obtain forced elements, as parameters of curves specified above. The proper elements can be calculated by an elimination of the forced ones. The method allows to obtain the proper elements in any region, if there is a sufficient number of asteroids. This fact and the simplicity of the calculations are advantages of the empirical method. The derived proper elements include the short-period perturbations, but their accuracy is sufficient to search for asteroid families. The special techniques have been developed for the identification of the families, but over a long time large discrepancies took place between the lists of families derived by different authors. As late as 1980, a list of 30 reliable families was formed. And now the list by D. Nesvorny includes about 80 robust families. To date, only two families have been found in the most outer part of the main asteroid belt or the Cybele group: Sylvia and Ulla. And the Hungaria group in the most inner part of the belt has always been considered as one family. In this work, the proper elements were calculated by the empirical method for all multi-opposition asteroids in these two zones. As the source of the initial osculating elements, the MPC catalogue (version Feb. 2014) was used. Due to the large set of proper elements used in our work, the families are apparent more clearly. An approach similar to the hierarchical clustering method (HCM) was used for the identification of the families. As a result, five additional families have been found in the Cybele region, associated with (121) Hermione, (643) Scheherezade, (1028) Lydina, (3141) Buchar, and (522) Helga. The small Helga family, including 15 members, is the family in the main belt (3.6--3.7 au) most distant from the Sun. Due to the isolation of this family, its identification is very reliable. As to the Hungaria region, two low-density families have been found additionally: (1453) Fennia and (3854) George. They have inclinations slightly greater than that of the Hungaria family (from 24 to 26 degrees). In contradiction to the predominant C-type of the Hungaria family asteroids, the taxonomy of these families is represented mainly by the S and L types. Most likely, these families are two parts of a single ancient family.
Geosynchronous inclined orbits for high-latitude communications
NASA Astrophysics Data System (ADS)
Fantino, E.; Flores, R. M.; Di Carlo, M.; Di Salvo, A.; Cabot, E.
2017-11-01
We present and discuss a solution to the growing demand for satellite telecommunication coverage in the high-latitude geographical regions (beyond 55°N), where the signal from geostationary satellites is limited or unavailable. We focus on the dynamical issues associated to the design, the coverage, the maintenance and the disposal of a set of orbits selected for the purpose. Specifically, we identify a group of highly inclined, moderately eccentric geosynchronous orbits derived from the Tundra orbit (geosynchronous, eccentric and critically inclined). Continuous coverage can be guaranteed by a constellation of three satellites in equally spaced planes and suitably phased. By means of a high-precision model of the terrestrial gravity field and the relevant environmental perturbations, we study the evolution of these orbits. The effects of the different perturbations on the ground track (which is more important for coverage than the orbital elements themselves) are isolated and analyzed. The physical model and the numerical setup are optimized with respect to computing time and accuracy. We show that, in order to maintain the ground track unchanged, the key parameters are the orbital period and the argument of perigee. Furthermore, corrections to the right ascension of the ascending node are needed in order to preserve the relative orientation of the orbital planes. A station-keeping strategy that minimizes propellant consumption is then devised, and comparisons are made between the cost of a solution based on impulsive maneuvers and one with continuous thrust. Finally, the issue of end-of-life disposal is discussed.
NASA Technical Reports Server (NTRS)
Musen, P.
1973-01-01
The method of expansion of the satellite's perturbations, as caused by the oceanic tides, into Fourier series is discussed. The coefficients of the expansion are purely numerical and peculiar to each particular satellite. Such a method is termed as semi-analytical in celestial mechanics. Gaussian form of the differential equations for variation of elements, with the right hand sides averaged over the orbit of the satellite, is convenient to use with the semi-analytical expansion.
Analytical and experimental vibration studies of a 1/8-scale shuttle orbiter
NASA Technical Reports Server (NTRS)
Pinson, L. D.
1975-01-01
Natural frequencies and mode shapes for four symmetric vibration modes and four antisymmetric modes are compared with predictions based on NASTRAN finite-element analyses. Initial predictions gave poor agreement with test data; an extensive investigation revealed that the major factors influencing agreement were out-of-plane imperfections in fuselage panels and a soft fin-fuselage connection. Computations with a more refined analysis indicated satisfactory frequency predictions for all modes studied, within 11 percent of experimental values.
1993-04-01
are so close together, there is a great deal of mistagged metric data from the SPACETRACK sensors on these objects. The resulting orbital element sets ...including an attempt to combine U.S. Space Command element sets for each Lageos-2 related object in orbit with DSN angle data to determine the actual...Predict error at next observation -Maintain track to minimize reacquistion load -Estimate orbital element sets -Update time for next observation
Tidal Dissipation in a Homogeneous Spherical Body. 1. Methods
2014-11-01
r∗, λ∗, φ∗), a trigonometric transformation (developed by Kaula 1961) enables one to switch to the perturber’s orbital elements r ∗ = (a∗, e∗, i∗,Ω...acquire an asterisk when it appears in a linear combination vlmpq − mθ with the orbital elements of a test body subject to the additional tidal...by Kaula (1964) and marked with asterisk the orbital elements of the tide-raising body. Kaula introduced this notation because within his model he
1988-03-23
observations more often. Using this updated satellite orbital element set , a more accurate space surveillance product is generated by ensuring the time span...position were more accurate, observations could be required less frequently by the spacetrack network, the satellite orbital element set would not need to...of the orbit , one that includes the best model of atmospheric drag, will give the best, or most accurate, element set for a satellite. By maintaining
Accurate and efficient spin integration for particle accelerators
Abell, Dan T.; Meiser, Dominic; Ranjbar, Vahid H.; ...
2015-02-01
Accurate spin tracking is a valuable tool for understanding spin dynamics in particle accelerators and can help improve the performance of an accelerator. In this paper, we present a detailed discussion of the integrators in the spin tracking code GPUSPINTRACK. We have implemented orbital integrators based on drift-kick, bend-kick, and matrix-kick splits. On top of the orbital integrators, we have implemented various integrators for the spin motion. These integrators use quaternions and Romberg quadratures to accelerate both the computation and the convergence of spin rotations.We evaluate their performance and accuracy in quantitative detail for individual elements as well as formore » the entire RHIC lattice. We exploit the inherently data-parallel nature of spin tracking to accelerate our algorithms on graphics processing units.« less
NASA Astrophysics Data System (ADS)
Skokos, C.; Bountis, T.; Antonopoulos, C.
2008-12-01
The recently introduced GALI method is used for rapidly detecting chaos, determining the dimensionality of regular motion and predicting slow diffusion in multi-dimensional Hamiltonian systems. We propose an efficient computation of the GALIk indices, which represent volume elements of k randomly chosen deviation vectors from a given orbit, based on the Singular Value Decomposition (SVD) algorithm. We obtain theoretically and verify numerically asymptotic estimates of GALIs long-time behavior in the case of regular orbits lying on low-dimensional tori. The GALIk indices are applied to rapidly detect chaotic oscillations, identify low-dimensional tori of Fermi-Pasta-Ulam (FPU) lattices at low energies and predict weak diffusion away from quasiperiodic motion, long before it is actually observed in the oscillations.
Unified Planetary Coordinates System: A Searchable Database of Geodetic Information
NASA Technical Reports Server (NTRS)
Becker, K. J.a; Gaddis, L. R.; Soderblom, L. A.; Kirk, R. L.; Archinal, B. A.; Johnson, J. R.; Anderson, J. A.; Bowman-Cisneros, E.; LaVoie, S.; McAuley, M.
2005-01-01
Over the past 40 years, an enormous quantity of orbital remote sensing data has been collected for Mars from many missions and instruments. Unfortunately these datasets currently exist in a wide range of disparate coordinate systems, making it extremely difficult for the scientific community to easily correlate, combine, and compare data from different Mars missions and instruments. As part of our work for the PDS Imaging Node and on behalf of the USGS Astrogeology Team, we are working to solve this problem and to provide the NASA scientific research community with easy access to Mars orbital data in a unified, consistent coordinate system along with a wide variety of other key geometric variables. The Unified Planetary Coordinates (UPC) system is comprised of two main elements: (1) a database containing Mars orbital remote sensing data computed using a uniform coordinate system, and (2) a process by which continual maintainance and updates to the contents of the database are performed.
Sentry: An Automated Close Approach Monitoring System for Near-Earth Objects
NASA Astrophysics Data System (ADS)
Chamberlin, A. B.; Chesley, S. R.; Chodas, P. W.; Giorgini, J. D.; Keesey, M. S.; Wimberly, R. N.; Yeomans, D. K.
2001-11-01
In response to international concern about potential asteroid impacts on Earth, NASA's Near-Earth Object (NEO) Program Office has implemented a new system called ``Sentry'' to automatically update the orbits of all NEOs on a daily basis and compute Earth close approaches up to 100 years into the future. Results are published on our web site (http://neo.jpl.nasa.gov/) and updated orbits and ephemerides made available via the JPL Horizons ephemeris service (http://ssd.jpl.nasa.gov/horizons.html). Sentry collects new and revised astrometric observations from the Minor Planet Center (MPC) via their electronic circulars (MPECs) in near real time as well as radar and optical astrometry sent directly from observers. NEO discoveries and identifications are detected in MPECs and processed appropriately. In addition to these daily updates, Sentry synchronizes with each monthly batch of MPC astrometry and automatically updates all NEO observation files. Daily and monthly processing of NEO astrometry is managed using a queuing system which allows for manual intervention of selected NEOs without interfering with the automatic system. At the heart of Sentry is a fully automatic orbit determination program which handles outlier rejection and ensures convergence in the new solution. Updated orbital elements and their covariances are published via Horizons and our NEO web site, typically within 24 hours. A new version of Horizons, in development, will allow computation of ephemeris uncertainties using covariance data. The positions of NEOs with updated orbits are numerically integrated up to 100 years into the future and each close approach to any perturbing body in our dynamic model (all planets, Moon, Ceres, Pallas, Vesta) is recorded. Significant approaches are flagged for extended analysis including Monte Carlo studies. Results, such as minimum encounter distances and future Earth impact probabilities, are published on our NEO web site.
The VLBI time delay function for synchronous orbits
NASA Technical Reports Server (NTRS)
Rosenbaum, B.
1972-01-01
The VLBI is a satellite tracking technique that to date was applied largely to the tracking of synchronous orbits. These orbits are favorable for VLBI in that the remote satellite range allows continuous viewing from widely separated stations. The primary observable, geometric time delay is the time difference for signal propagation between satellite and baseline terminals. Extraordinary accuracy in angular position data on the satellite can be obtained by observation from baselines of continental dimensions. In satellite tracking though the common objective is to derive orbital elements. A question arises as to how the baseline vector bears on the accuracy of determining the elements. Our approach to this question is to derive an analytic expression for the time delay function in terms of Kepler elements and station coordinates. The analysis, which is for simplicity based on elliptic motion, shows that the resolution for the inclination of the orbital plane depends on the magnitude of the baseline polar component and the resolution for in-plane elements depends on the magnitude of a projected equatorial baseline component.
Dynamics and Control of a Disordered System in Space
NASA Technical Reports Server (NTRS)
Quadrelli, Marco B.
2013-01-01
In this paper, we present some ideas regarding the modeling, dynamics and control aspects of granular spacecraft. Granular spacecraft are complex multibody systems composed of a spatially disordered distribution of a large number of elements, for instance a cloud of N grains in orbit, with N greater than 10(exp 3). These grains can be large (Cubesat-size) or small (mm-size), and can be active, i.e., a fully equipped vehicle capable sensing their own position and attitude, and enabled with propulsion means, or entirely passive. The ultimate objective would be to study the behavior of the single grains and of large ensembles of grains in orbit and to identify ways to guide and control the shape of a cloud composed of these grains so that it can perform a useful function in space, for instance, as an element of an optical imaging system for astrophysical applications. This concept, in which the aperture does not need to be continuous and monolithic, would increase the aperture size several times compared to large NASA observatories such as ATLAST, allowing for a true Terrestrial Planet Imager that would be able to resolve exo-planet details and do meaningful spectroscopy on distant world. In the paper, we address the modeling and autonomous operation of a distributed assembly (the cloud) of large numbers of highly miniaturized space-borne elements (the grains). A multi-scale, multi-physics model is proposed of the dynamics of the cloud in orbit, as well as a control law for cloud shape maintenance, and preliminary simulation studies yield an estimate of the computational effort, indicating a scale factor of approximately N(exp 1.4) as a function of the number of grains. A granular spacecraft can be defined as a collection of a large number of space-borne elements (in the 1000s) designed and controlled such that a desirable collective behavior emerges, either from the interactions among neighboring grains, and/or between the grains and the environment. In this paper, each grain is considered to be a highly miniaturized spacecraft which has limited size and mass, hence it has limited actuation, limited propulsive capability, limited power, limited sensing, limited communication, limited computational resources, limited range of motion, limited lifetime, and may be expendable. The modeling and dynamics of clouds of vehicles is more challenging than with conventional vehicles because we are faced with a probabilistic vehicle composed of a large number of physically disconnected vehicles. First, different scales of motion occur simultaneously in a cloud: translations and rotations of the cloud as a whole (macro-dynamics), relative rotation and translation of one cloud member with respect to another (meso-dynamics), and individual cloud member dynamics (micro-dynamics). Second, the control design needs to be tolerant of the system complexity, of the system architecture (centralized vs. decentralized large scale system control) as well as robust to un-modeled dynamics and noise sources. Figure 1, top left, shows the kinematic parameters of a 1000 element cloud in orbit. The motion of the system is described with respect to a local vertical-local horizontal (LV-LH) orbiting reference frame (x,y,z)=F(sub ORF) of origin O(sub ORF) which rotates with mean motion omega and orbital semi-major axis R(sub 0). The orbital geometry at the initial time is defined in terms of its six orbital elements, and the orbital dynamics equation for point O(sub ORF) is propagated forward in time under the influence of the gravitational field of the primary and other external perturbations, described below. The origin of this frame coincides with the initial position of the center of mass of the system, and the coordinate axes are z along the local vertical, x toward the flight direction, and y in the orbit normal direction. The assumptions we used to model the dynamics are as follows: 1) The inertial frame is fixed at Earth's center. 2) The orbiting Frame ORF follows Keplerian orbit. 3) the cloud system dynamics is referred to ORF. 4) the attitude of each grain uses the principal body frame as body fixed frame. 5) the atmosphere is assumed to be rigidly rotating with the Earth. Regarding the grains forming the cloud: 1) each grain is modeled as a rigid body; 2) a simple attitude estimator provides attitude estimates, 3) a simple guidance logic commands the position and attitude of each grain, 4) a simple local feedback controller based on PD control of local states is used to stabilize the attitude of the vehicle. Regarding the cloud: 1) the cloud as a whole is modeled as an equivalent rigid body in orbit, and 2) an associated graph establishes agent connectivity and enables coupling between modes of motion at the micro and macro scales; 3) a simple guidance and estimation logic is modeled to estimate and command the attitude of this equivalent rigid body; 4) a cloud shape maintenance controller is based on the dynamics of a stable virtual truss in the orbiting frame. Regarding the environmental perturbations acting on the cloud: 1) a non-spherical gravity field including JO (Earth's spherical field) zonal component, J2 (Earth's oblateness) and J3 zonal components is implemented; 2) atmospheric drag is modeled with an exponential model; 3) solar pressure is modeled assuming the Sun is inertially fixed; and 4) the Earth's magnetic field is model using an equivalent dipole model. The equations of motion are written in a referential system with respect to the origin of the orbiting frame and the state is propagated forward in time using an incremental predictor-corrector scheme. A representative cloud with varying number of grains is simulated to identify the limitations in computation time as the number of grains grows. We derive a control law to track a desired surface in the ORF (equivalently to maintain a reference cloud shape) by defining an error from a desired surface shape, and designing a control law that is exponentially stable and reduces the tracking error to zero. Figure 1 (top right) shows a comparison of various requirements for simulation of single spacecraft vs. granular spacecraft, indicating the high degree of complexity that needs to be taken into consideration. The ORF components of control force required by one of the grains is, for this particular case, in the micro-Newton range. However, no attempt has been made yet to reconfigure (or re-orient) the cloud configuration internally, for which forces in the milli-Newton level are expected, depending on the time required to do the reconfiguration. Figure 1, bottom, shows the computation time as a function of the number of grains, indicating an order N(exp 1.43) scaling on a 8 Gb, 1067 MHz RAM MacOSX computer with a 3.06 GHz Intel Core 2 Duo processor. With this metric, the same simulation for a system of N=1000 grains would take 5.4 hours, and 146 hours (i.e., 6 days) for a system with N=10,000 grains. Therefore, efficient ways to simulate this complex system, where not only the time scales of natural system dynamics, but also the sampling times of the Guidance, Navigation, and Control are included, remain to be explored. Additional details on the cloud modeling, dynamics, and control will be described in the paper.
Coupling the nongravitational forces and modified Newton dynamics for cometary orbits
NASA Astrophysics Data System (ADS)
Maquet, Lucie; Pierret, Frédéric
2015-04-01
In recent work [L. Blanchet and J. Novak, Mon. Not. R. Astron. Soc. 412, 2530 (2011); L. Blanchet and J. Novak, Testing MOND in the Solar System (2011); and M. Milgrom, Mon. Not. R. Astron. Soc. 399, 474 (2009)], the authors showed that modified Newton dynamics (MOND) has a non-negligible secular perturbation effect on planets with large semimajor axes (gaseous planets) in the Solar System. Some comets also have a very eccentric orbit with a large semimajor axis (Halley family comets) going far away from the Sun (more than 15 AU) in a low acceleration regime where they would be subject to MOND perturbation. They also approach the Sun very closely (less than 3 AU) and are affected by the sublimation of ices from their nucleus, triggering so-called nongravitational forces. The main goal of this paper is to investigate the effect of MOND perturbation on three comets with various orbital elements (2 P /Encke , 1 P /Halley and 153 P /Ikeya-Zhang ) and then compare it to the nongravitational perturbations. It is motivated by the fact that when fitting an outgassing model for a comet, we have to take into account all of the small perturbing effects to avoid absorbing these effects into the nongravitational parameters. Otherwise, we could derive a completely wrong estimation of the outgassing. For this work, we use six different forms of MOND functions and compute the secular variations of the orbital elements due to MOND and nongravitational perturbations. We show that, for comets with large semimajor axis, the MONDian effects are not negligible compared to the nongravitational perturbations.
Reachable Sets for Multiple Asteroid Sample Return Missions
2005-12-01
reduce the number of feasible asteroid targets. Reachable sets are defined in a reduced classical orbital element space. The boundary of this...Reachable sets are defined in a reduced classical orbital element space. The boundary of this reduced space is obtained by extremizing a family of...aliasing problems. Other coordinate elements , such as equinoctial elements , can provide a set of singularity-free slowly changing variables, but
Grimme, Stefan; Brandenburg, Jan Gerit; Bannwarth, Christoph; Hansen, Andreas
2015-08-07
A density functional theory (DFT) based composite electronic structure approach is proposed to efficiently compute structures and interaction energies in large chemical systems. It is based on the well-known and numerically robust Perdew-Burke-Ernzerhoff (PBE) generalized-gradient-approximation in a modified global hybrid functional with a relatively large amount of non-local Fock-exchange. The orbitals are expanded in Ahlrichs-type valence-double zeta atomic orbital (AO) Gaussian basis sets, which are available for many elements. In order to correct for the basis set superposition error (BSSE) and to account for the important long-range London dispersion effects, our well-established atom-pairwise potentials are used. In the design of the new method, particular attention has been paid to an accurate description of structural parameters in various covalent and non-covalent bonding situations as well as in periodic systems. Together with the recently proposed three-fold corrected (3c) Hartree-Fock method, the new composite scheme (termed PBEh-3c) represents the next member in a hierarchy of "low-cost" electronic structure approaches. They are mainly free of BSSE and account for most interactions in a physically sound and asymptotically correct manner. PBEh-3c yields good results for thermochemical properties in the huge GMTKN30 energy database. Furthermore, the method shows excellent performance for non-covalent interaction energies in small and large complexes. For evaluating its performance on equilibrium structures, a new compilation of standard test sets is suggested. These consist of small (light) molecules, partially flexible, medium-sized organic molecules, molecules comprising heavy main group elements, larger systems with long bonds, 3d-transition metal systems, non-covalently bound complexes (S22 and S66×8 sets), and peptide conformations. For these sets, overall deviations from accurate reference data are smaller than for various other tested DFT methods and reach that of triple-zeta AO basis set second-order perturbation theory (MP2/TZ) level at a tiny fraction of computational effort. Periodic calculations conducted for molecular crystals to test structures (including cell volumes) and sublimation enthalpies indicate very good accuracy competitive to computationally more involved plane-wave based calculations. PBEh-3c can be applied routinely to several hundreds of atoms on a single processor and it is suggested as a robust "high-speed" computational tool in theoretical chemistry and physics.
NASA Astrophysics Data System (ADS)
Rasero Causil, Diego; Ortega López, César; Espitia Rico, Miguel
2018-04-01
Computational calculations of total energy based on density functional theory were used to investigate the structural, electronic, and magnetic properties of the DyB2 compounds in the hexagonal structure. The calculations were carried out by means of the full-potential linearized augmented plane wave (FP-LAPW) method, employing the computational Wien2k package. The local density approximation (LDA) and the generalized gradient approximation (GGA) were used for the electron-electron interactions. Additionally, we used the functional hybrid PBE0 for a better description the electronic and magnetic properties, because the DyB2 compound is a strongly-correlated system. We found that the calculated lattice constant agrees well with the values reported theoretically and experimentally. The density of states (DOS) calculation shows that the compound exhibits a metallic behavior and has magnetic properties, with a total magnetic moment of 5.47 μ0/cell determined mainly by the 4f states of the rare earth elements. The functional PBE0 shows a strong localization of the Dy-4f orbitals.
NASA Technical Reports Server (NTRS)
Prabhu, Ramadas K.; Sutton, Kenneth (Technical Monitor)
2001-01-01
This report documents the results of a computational study done to compute the inviscid longitudinal aerodynamic characteristics of the Space Shuttle Orbiter for Mach numbers 10 and 15 at angles of attack of 40, 50, 55, and 60 degrees. These computations were done to provide limited aerodynamic data in support of the Orbiter contingency abort task. The Orbiter had all the control surfaces in the undeflected position. The unstructured grid software FELISA was used for these computations with the equilibrium air option. Normal and axial force coefficients and pitching moment coefficients were computed. The hinge moment coefficients of the body flap and the inboard and outboard elevons were also computed. These results were compared with Orbiter Air Data Book (OADB) data and those computed using GASP. The comparison with the GASP results showed very good agreement in Cm and Ca at all the points. The computed axial force coefficients were smaller than those computed by GASP. There were noticeable differences between the present results and those in the OADB at angles of attack greater than 50 degrees.
On the Milankovitch orbital elements for perturbed Keplerian motion
NASA Astrophysics Data System (ADS)
Rosengren, Aaron J.; Scheeres, Daniel J.
2014-03-01
We consider sets of natural vectorial orbital elements of the Milankovitch type for perturbed Keplerian motion. These elements are closely related to the two vectorial first integrals of the unperturbed two-body problem; namely, the angular momentum vector and the Laplace-Runge-Lenz vector. After a detailed historical discussion of the origin and development of such elements, nonsingular equations for the time variations of these sets of elements under perturbations are established, both in Lagrangian and Gaussian form. After averaging, a compact, elegant, and symmetrical form of secular Milankovitch-like equations is obtained, which reminds of the structure of canonical systems of equations in Hamiltonian mechanics. As an application of this vectorial formulation, we analyze the motion of an object orbiting about a planet (idealized as a point mass moving in a heliocentric elliptical orbit) and subject to solar radiation pressure acceleration (obeying an inverse-square law). We show that the corresponding secular problem is integrable and we give an explicit closed-form solution.
Infrared Spectroscopy of Symbiotic Stars. II. Orbits for Five S-Type Systems with Two-Year Periods
NASA Astrophysics Data System (ADS)
Fekel, Francis C.; Hinkle, Kenneth H.; Joyce, Richard R.; Skrutskie, Michael F.
2000-12-01
Infrared radial velocities have been used to determine orbital elements for the cool giants of five well-known symbiotic systems, Z And, AG Dra, V443 Her, AX Per, and FG Ser, all of which have orbital periods near the two-year mean period for S-type symbiotics. The new orbits are in general agreement with previous orbits derived from optical velocities. From the combined optical and infrared velocities, improved orbital elements for the five systems have been determined. Each of the orbital periods has been determined solely from the radial-velocity data. The orbits are circular and have quite small mass functions of 0.001-0.03 Msolar. The infrared velocities of AG Dra do not show the large orbital velocity residuals found for its optical radial velocities.
Expansion of the gravitational potential with computerized Poisson series
NASA Technical Reports Server (NTRS)
Broucke, R.
1976-01-01
The paper describes a recursive formulation for the expansion of the gravitational potential valid for both the tesseral and zonal harmonics. The expansion is primarily in rectangular coordinates, but the classical orbit elements or equinoctial orbit elements can be easily substituted. The equations of motion for the zonal harmonics in both classical and equinoctial orbital elements are described in a form which will result in closed-form expressions for the first-order perturbations. In order to achieve this result, the true longitude or true anomaly have to be used as independent variables.
Marcé-Nogué, Jordi; Fortuny, Josep; De Esteban-Trivigno, Soledad; Sánchez, Montserrat; Gil, Lluís; Galobart, Àngel
2015-01-01
For the first time in vertebrate palaeontology, the potential of joining Finite Element Analysis (FEA) and Parametrical Analysis (PA) is used to shed new light on two different cranial parameters from the orbits to evaluate their biomechanical role and evolutionary patterns. The early tetrapod group of Stereospondyls, one of the largest groups of Temnospondyls is used as a case study because its orbits position and size vary hugely within the members of this group. An adult skull of Edingerella madagascariensis was analysed using two different cases of boundary and loading conditions in order to quantify stress and deformation response under a bilateral bite and during skull raising. Firstly, the variation of the original geometry of its orbits was introduced in the models producing new FEA results, allowing the exploration of the ecomorphology, feeding strategy and evolutionary patterns of these top predators. Secondly, the quantitative results were analysed in order to check if the orbit size and position were correlated with different stress patterns. These results revealed that in most of the cases the stress distribution is not affected by changes in the size and position of the orbit. This finding supports the high mechanical plasticity of this group during the Triassic period. The absence of mechanical constraints regarding the orbit probably promoted the ecomorphological diversity acknowledged for this group, as well as its ecological niche differentiation in the terrestrial Triassic ecosystems in clades as lydekkerinids, trematosaurs, capitosaurs or metoposaurs. PMID:26107295
Orbits in the T Tauri triple system observed with SPHERE
NASA Astrophysics Data System (ADS)
Köhler, R.; Kasper, M.; Herbst, T. M.; Ratzka, T.; Bertrang, G. H.-M.
2016-03-01
Aims: We present new astrometric measurements of the components in the T Tauri system and derive new orbits and masses. Methods: T Tauri was observed during the science verification time of the new extreme adaptive optics facility SPHERE at the VLT. We combine the new positions with recalibrated NACO-measurements and data from the literature. Model fits for the orbits of T Tau Sa and Sb around each other and around T Tau N yield orbital elements and individual masses of the stars Sa and Sb. Results: Our new orbit for T Tau Sa/Sb is in good agreement with other recent results, which indicates that enough of the orbit has been observed for a reliable fit. The total mass of T Tau S is 2.65 ± 0.11 M⊙. The mass ratio MSb:MSa is 0.25 ± 0.03, which yields individual masses of MSa = 2.12 ± 0.10 M⊙ and MSb = 0.53 ± 0.06 M⊙. If our current knowledge of the orbital motions is used to compute the position of the southern radio source in the T Tauri system, then we find no evidence of the proposed dramatic change in its path. Based on observations collected at the European Southern Observatory, Chile, proposals number 070.C-0162, 072.C-0593, 074.C-0699, 074.C-0396, 078.C-0386, 380.C-0179, 382.C-0324, 60.A-9363 and 60.A-9364.
Photonic Interrogation and Control of Nano Processes
NASA Technical Reports Server (NTRS)
Jassemnejad, Baha
2003-01-01
My research activities for the summer of 2003 consisted of two projects: One project was concerned with determining a method for predicting the static and dynamic assembly properties of nano-structures using laser tweezers. The other project was to investigate the generation of Laguerre-Gaussian modes using a spatial light modulator incorporated into an optical tweezers system. Concerning the first project, I initially pursued the approach suggested by my NASA colleague Dr. Art Decker. This approach involved mimicking the model of the structure of atomic nucleus for the assembly of 1 to 100 atoms using allowed quadruple transitions induced by orbital angular momentums of a Laguerre- Gaussian (Doughnut) laser mode. After realizing the inaptness of the nuclear model with the nanostructure model as far as the binding forces and transitions were concerned, I focused on using quantum dot modei. This model was not attuned also for the host lattice influences the electronic structure of the quantum dot. Thus one other option that I decided to pursue was the approach of molecular quantum mechanics. In this approach the nanostructure is treated as a large (10-100 nm) molecule constructed from single element or multi-elements. Subsequent to consultation with Dr. Fred Morales, a chemical engineer at NASA GRC, and Dr. David Ball, a computational chemist at Cleveland State University, I acquired a molecular-quantum computation software, Hyperchem 7.0. This software allows simulation of different molecular structures as far as their static and dynamic behaviors are concerned. The time that I spent on this project was about eight weeks. Once this suitable approach was identified, I realized the need to collaborate with a computational quantum chemist to pursue searching for stable nanostructures in the range of 10-100 nm that we can be assembled using laser tweezers. The second project was about generating laser tweezers that possess orbital angular momentum. As shown, we were able to generate laser tweezers modes of different orbital angular momentum using a spatial light modulator incorporated into a laser tweezers system. The motivation for investigating these types of modes stems from being able to spin particles at high speeds and also to orient two particles in separate traps and then join them together. Also, there has been recent intense interest on fundamental physics research on orbital angular momentum of light. The fact that circularly polarized light may have associated with it angular momentum that relates to the spin of individual photons (spin 0 for the plane polarized light, spin +1 for the right-circularly polarized light and spin -1 for the left-circularly polarized light) was first demonstrated by Beth in 1936. Orbital angular momentum is, however, distinct from spin in that the spin angular momentum of light is intrinsically linked to the behavior of the electric field in the light whereas orbital angular momentum is a consequence of inclined wavefronts. In 1992 L. Allen, et al showed that the Laguerre-Gaussian (LG) modes could possess well-defined orbital angular momentum that can exceed 1 planck's constant, i.e. l plancks constant per photon, where l is the azimuthal index of the mode.
Warsaw Catalogue of cometary orbits: 119 near-parabolic comets
NASA Astrophysics Data System (ADS)
Królikowska, Małgorzata
2014-07-01
Context. The dynamical evolution of near-parabolic comets strongly depends on the starting values of the orbital elements derived from the positional observations. In addition, when drawing conclusions about the origin of these objects, it is crucial to control the uncertainties of orbital elements at each stage of the dynamical evolution. Aims: I apply a completely homogeneous approach to determine the cometary orbits and their uncertainties. The resulting catalogue is suitable for the investigation of the origin and future of near-parabolic comets. Methods: First, osculating orbits were determined on the basis of positional data. Second, the dynamical calculations were performed backwards and forwards up to 250 au from the Sun to derive original and future barycentric orbits for each comet. In the present investigation of dynamical evolution, the numerical calculations for a given object start from the swarm of virtual comets constructed using the previously determined osculating (nominal) orbit. In this way, the uncertainties of orbital elements were derived at the end of numerical calculations. Results: Homogeneous sets of orbital elements for osculating, original and future orbits are given. The catalogue of 119 cometary orbits constitutes about 70 per cent of all the first class so-called Oort spike comets discovered during the period 1801-2010 and about 90 per cent of those discovered in 1951-2010, for which observations were completed at the end of 2013. Non-gravitational (NG) orbits are derived for 45 comets, including asymmetric NG solution for six of them. Additionally, the new method for cometary orbit-quality assessment is applied for all these objects. The catalogue is available at http://ssdp.cbk.waw.pl/LPCs and also at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/567/A126
Analysis of on-orbit thermal characteristics of the 15-meter hoop/column antenna
NASA Technical Reports Server (NTRS)
Andersen, Gregory C.; Farmer, Jeffery T.; Garrison, James
1987-01-01
In recent years, interest in large deployable space antennae has led to the development of the 15 meter hoop/column antenna. The thermal environment the antenna is expected to experience during orbit is examined and the temperature distributions leading to reflector surface distortion errors are determined. Two flight orientations corresponding to: (1) normal operation, and (2) use in a Shuttle-attached flight experiment are examined. A reduced element model was used to determine element temperatures at 16 orbit points for both flight orientations. The temperature ranged from a minimum of 188 K to a maximum of 326 K. Based on the element temperatures, orbit position leading to possible worst case surface distortions were determined, and the subsequent temperatures were used in a static finite element analysis to quantify surface control cord deflections. The predicted changes in the control cord lengths were in the submillimeter ranges.
Zhou, Miao; Ming, Wenmei; Liu, Zheng; ...
2014-11-19
For potential applications in spintronics and quantum computing, it is desirable to place a quantum spin Hall insulator [i.e., a 2D topological insulator (TI)] on a substrate while maintaining a large energy gap. Here, we demonstrate a unique approach to create the large-gap 2D TI state on a semiconductor surface, based on first-principles calculations and effective Hamiltonian analysis. We show that when heavy elements with strong spin orbit coupling (SOC) such as Bi and Pb atoms are deposited on a patterned H-Si(111) surface into a hexagonal lattice, they exhibit a 2D TI state with a large energy gap of ≥0.5more » eV. The TI state arises from an intriguing substrate orbital filtering effect that selects a suitable orbital composition around the Fermi level, so that the system can be matched onto a four-band effective model Hamiltonian. Furthermore, it is found that within this model, the SOC gap does not increase monotonically with the increasing strength of SOC. These interesting results may shed new light in future design and fabrication of large-gap topological quantum states.« less
Zhou, Miao; Ming, Wenmei; Liu, Zheng; Wang, Zhengfei; Yao, Yugui; Liu, Feng
2014-11-19
For potential applications in spintronics and quantum computing, it is desirable to place a quantum spin Hall insulator [i.e., a 2D topological insulator (TI)] on a substrate while maintaining a large energy gap. Here, we demonstrate a unique approach to create the large-gap 2D TI state on a semiconductor surface, based on first-principles calculations and effective Hamiltonian analysis. We show that when heavy elements with strong spin orbit coupling (SOC) such as Bi and Pb atoms are deposited on a patterned H-Si(111) surface into a hexagonal lattice, they exhibit a 2D TI state with a large energy gap of ≥ 0.5 eV. The TI state arises from an intriguing substrate orbital filtering effect that selects a suitable orbital composition around the Fermi level, so that the system can be matched onto a four-band effective model Hamiltonian. Furthermore, it is found that within this model, the SOC gap does not increase monotonically with the increasing strength of SOC. These interesting results may shed new light in future design and fabrication of large-gap topological quantum states.
NASA Astrophysics Data System (ADS)
Havu, Vile; Blum, Volker; Scheffler, Matthias
2007-03-01
Numeric atom-centered local orbitals (NAO) are efficient basis sets for all-electron electronic structure theory. The locality of NAO's can be exploited to render (in principle) all operations of the self-consistency cycle O(N). This is straightforward for 3D integrals using domain decomposition into spatially close subsets of integration points, enabling critical computational savings that are effective from ˜tens of atoms (no significant overhead for smaller systems) and make large systems (100s of atoms) computationally feasible. Using a new all-electron NAO-based code,^1 we investigate the quantitative impact of exploiting this locality on two distinct classes of systems: Large light-element molecules [Alanine-based polypeptide chains (Ala)n], and compact transition metal clusters. Strict NAO locality is achieved by imposing a cutoff potential with an onset radius rc, and exploited by appropriately shaped integration domains (subsets of integration points). Conventional tight rc<= 3å have no measurable accuracy impact in (Ala)n, but introduce inaccuracies of 20-30 meV/atom in Cun. The domain shape impacts the computational effort by only 10-20 % for reasonable rc. ^1 V. Blum, R. Gehrke, P. Havu, V. Havu, M. Scheffler, The FHI Ab Initio Molecular Simulations (aims) Project, Fritz-Haber-Institut, Berlin (2006).
NASA Astrophysics Data System (ADS)
Hamilton, Douglas P.
2012-05-01
The Astronomy Workshop (http://janus.astro.umd.edu) is a collection of interactive online educational tools developed for use by students, educators, professional astronomers, and the general public. The more than 20 tools in the Astronomy Workshop are rated for ease-of-use, and have been extensively tested in large university survey courses as well as more specialized classes for undergraduate majors and graduate students. Here we briefly describe the tools most relevant for the Professional Dynamical Astronomer. Solar Systems Visualizer: The orbital motions of planets, moons, and asteroids in the Solar System as well as many of the planets in exoplanetary systems are animated at their correct relative speeds in accurate to-scale drawings. Zoom in from the chaotic outer satellite systems of the giant planets all the way to their innermost ring systems. Orbital Integrators: Determine the orbital evolution of your initial conditions for a number of different scenarios including motions subject to general central forces, the classic three-body problem, and satellites of planets and exoplanets. Zero velocity curves are calculated and automatically included on relevant plots. Orbital Elements: Convert quickly and easily between state vectors and orbital elements with Changing the Elements. Use other routines to visualize your three-dimensional orbit and to convert between the different commonly used sets of orbital elements including the true, mean, and eccentric anomalies. Solar System Calculators: These tools calculate a user-defined mathematical expression simultaneously for all of the Solar System's planets (Planetary Calculator) or moons (Satellite Calculator). Key physical and orbital data are automatically accessed as needed.
Orbital operations study. Volume 1: Mission analysis
NASA Technical Reports Server (NTRS)
Steinwachs, W. L.
1972-01-01
The final report of the orbital operations study and a summary of the 25 elements in the study inventory are presented. Fourteen interfacing activities are defined. Eleven mission models encompassing all potential interfacing element pairs and interfacing activities are included.
Efficient Trajectory Propagation for Orbit Determination Problems
NASA Technical Reports Server (NTRS)
Roa, Javier; Pelaez, Jesus
2015-01-01
Regularized formulations of orbital motion apply a series of techniques to improve the numerical integration of the orbit. Despite their advantages and potential applications little attention has been paid to the propagation of the partial derivatives of the corresponding set of elements or coordinates, required in many orbit-determination scenarios and optimization problems. This paper fills this gap by presenting the general procedure for integrating the state-transition matrix of the system together with the nominal trajectory using regularized formulations and different sets of elements. The main difficulty comes from introducing an independent variable different from time, because the solution needs to be synchronized. The correction of the time delay is treated from a generic perspective not focused on any particular formulation. The synchronization using time-elements is also discussed. Numerical examples include strongly-perturbed orbits in the Pluto system, motivated by the recent flyby of the New Horizons spacecraft, together with a geocentric flyby of the NEAR spacecraft.
Asteroid orbital error analysis: Theory and application
NASA Technical Reports Server (NTRS)
Muinonen, K.; Bowell, Edward
1992-01-01
We present a rigorous Bayesian theory for asteroid orbital error estimation in which the probability density of the orbital elements is derived from the noise statistics of the observations. For Gaussian noise in a linearized approximation the probability density is also Gaussian, and the errors of the orbital elements at a given epoch are fully described by the covariance matrix. The law of error propagation can then be applied to calculate past and future positional uncertainty ellipsoids (Cappellari et al. 1976, Yeomans et al. 1987, Whipple et al. 1991). To our knowledge, this is the first time a Bayesian approach has been formulated for orbital element estimation. In contrast to the classical Fisherian school of statistics, the Bayesian school allows a priori information to be formally present in the final estimation. However, Bayesian estimation does give the same results as Fisherian estimation when no priori information is assumed (Lehtinen 1988, and reference therein).
Exospheric perturbations by radiation pressure. II - Solution for orbits in the ecliptic plane
NASA Technical Reports Server (NTRS)
Chamberlain, J. W.
1980-01-01
A previous study (Chamberlain, 1979) gave solutions for the mean time rates of change of orbital elements of satellite atoms in an exosphere influenced by solar radiation pressure; each element was assumed to behave independently. In the present paper, the instantaneous rates of changes for three elements (e, Omega, and phi = omega + Omega) are integrated simultaneously for the case of the inclination i = 0. The results confirm the validity of using mean rates when the orbits are tighly bound to the planet, and serve as examples to be reproduced by the complicated numerical solutions required for arbitrary inclination. Strongly bound hydrogen atoms perturbed in earth orbit by radiation pressure do not seem a likely cause of the geotail extending in the anti-sun direction. Instead, radiation pressure will cause those particles' orbits to form a broad fan-shaped tail and to deteriorate into the earth's atmosphere.
Space shuttle post-entry and landing analysis. Volume 1: Candidate system evaluations
NASA Technical Reports Server (NTRS)
Crawford, B. S.; Duiven, E. M.
1973-01-01
The general purpose of this study is to aid in the evaluation and design of multi-sensor navigation schemes proposed for the orbiter. The scope of the effort is limited to the post-entry, energy management, and approach and landing mission phases. One candidate system based on conventional navigation aids is illustrated including two DME (Distance Measuring Equipment) stations and ILS (Instrument Landing System) glide slope and localizer antennas. Some key elements of the system not shown are the onboard IMUs (Inertial Measurement Units), altimeters, and a computer. The latter is programmed to mix together (filter) the IMU data and the externally-derived data. A completely automatic, all-weather landing capability is required. Since no air-breathing engines will be carried on orbital flights, there will be no chance to go around and try again following a missed approach.
LACIE performance predictor final operational capability program description, volume 1
NASA Technical Reports Server (NTRS)
1976-01-01
The program EPHEMS computes the orbital parameters for up to two vehicles orbiting the earth for up to 549 days. The data represents a continuous swath about the earth, producing tables which can be used to determine when and if certain land segments will be covered. The program GRID processes NASA's climatology tape to obtain the weather indices along with associated latitudes and longitudes. The program LUMP takes substrata historical data and sample segment ID, crop window, crop window error and statistical data, checks for valid input parameters and generates the segment ID file, crop window file and the substrata historical file. Finally, the System Error Executive (SEE) Program checks YES error and truth data, CAMS error data, and signature extension data for validity and missing elements. A message is printed for each error found.
Computer Aided Ballistic Orbit Classification Around Small Bodies
NASA Astrophysics Data System (ADS)
Villac, Benjamin F.; Anderson, Rodney L.; Pini, Alex J.
2016-09-01
Orbital dynamics around small bodies are as varied as the shapes and dynamical states of these bodies. While various classes of orbits have been analyzed in detail, the global overview of relevant ballistic orbits at particular bodies is not easily computed or organized. Yet, correctly categorizing these orbits will ease their future use in the overall trajectory design process. This paper overviews methods that have been used to organize orbits, focusing on periodic orbits in particular, and introduces new methods based on clustering approaches.
High Fidelity Simulations for Unsteady Flow Through the Orbiter LH2 Feedline Flowliner
NASA Technical Reports Server (NTRS)
Kiris, Cetin C.; Kwak, Dochan; Chan, William; Housman, Jeffrey
2005-01-01
High fidelity computations were carried out to analyze the orbiter M2 feedline flowliner. Various computational models were used to characterize the unsteady flow features in the turbopump, including the orbiter Low-Pressure-Fuel-Turbopump (LPFTP) inducer, the orbiter manifold and a test article used to represent the manifold. Unsteady flow originating from the orbiter LPFTP inducer is one of the major contributors to the high frequency cyclic loading that results in high cycle fatigue damage to the gimbal flowliners just upstream of the LPFTP. The flow fields for the orbiter manifold and representative test article are computed and analyzed for similarities and differences. An incompressible Navier-Stokes flow solver INS3D, based on the artificial compressibility method, was used to compute the flow of liquid hydrogen in each test article.
An Inviscid Computational Study of the Space Shuttle Orbiter and Several Damaged Configurations
NASA Technical Reports Server (NTRS)
Prabhu, Ramadas K.; Merski, N. Ronald (Technical Monitor)
2004-01-01
Inviscid aerodynamic characteristics of the Space Shuttle Orbiter were computed in support of the Columbia Accident Investigation. The unstructured grid software FELISA was used and computations were done using freestream conditions corresponding to those in the NASA Langley 20-Inch Mach 6 CF4 tunnel test section. The angle of attack was held constant at 40 degrees. The baseline (undamaged) configuration and a large number of damaged configurations of the Orbiter were studied. Most of the computations were done on a half model. However, one set of computations was done using the full-model to study the effect of sideslip. The differences in the aerodynamic coefficients for the damaged and the baseline configurations were computed. Simultaneously with the computation reported here, tests were being done on a scale model of the Orbiter in the 20-Inch Mach 6 CF4 tunnel to measure the deltas . The present computations complemented the CF4 tunnel test, and provided aerodynamic coefficients of the Orbiter as well as its components. Further, they also provided details of the flow field.
NASA Technical Reports Server (NTRS)
Steinwachs, W. L.; Patrick, J. W.; Galvin, D. M.; Turkel, S. H.
1972-01-01
The findings of the support operations activity group of the orbital operations study are presented. Element interfaces, alternate approaches, design concepts, operational procedures, functional requirements, design influences, and approach selection are presented. The following areas are considered: (1) crew transfer, (2) cargo transfer, (3) propellant transfer, (4) attached element operations, and (5) attached element transport.
Optimal low thrust geocentric transfer. [mission analysis computer program
NASA Technical Reports Server (NTRS)
Edelbaum, T. N.; Sackett, L. L.; Malchow, H. L.
1973-01-01
A computer code which will rapidly calculate time-optimal low thrust transfers is being developed as a mission analysis tool. The final program will apply to NEP or SEP missions and will include a variety of environmental effects. The current program assumes constant acceleration. The oblateness effect and shadowing may be included. Detailed state and costate equations are given for the thrust effect, oblateness effect, and shadowing. A simple but adequate model yields analytical formulas for power degradation due to the Van Allen radiation belts for SEP missions. The program avoids the classical singularities by the use of equinoctial orbital elements. Kryloff-Bogoliuboff averaging is used to facilitate rapid calculation. Results for selected cases using the current program are given.
Electronic structure, chemical bonding, and geometry of pure and Sr-doped CaCO3.
Stashans, Arvids; Chamba, Gaston; Pinto, Henry
2008-02-01
The electronic structure, chemical bonding, geometry, and effects produced by Sr-doping in CaCO(3) have been studied on the basis of density-functional theory using the VASP simulation package and molecular-orbital theory utilizing the CLUSTERD computer code. Two calcium carbonate structures which occur naturally in anhydrous crystalline forms, calcite and aragonite, were considered in the present investigation. The obtained diagrams of density of states show similar patterns for both materials. The spatial structures are computed and analyzed in comparison to the available experimental data. The electronic properties and atomic displacements because of the trace element Sr-incorporation are discussed in a comparative manner for the two crystalline structures. (c) 2007 Wiley Periodicals, Inc.
Modelling of charged satellite motion in Earth's gravitational and magnetic fields
NASA Astrophysics Data System (ADS)
Abd El-Bar, S. E.; Abd El-Salam, F. A.
2018-05-01
In this work Lagrange's planetary equations for a charged satellite subjected to the Earth's gravitational and magnetic force fields are solved. The Earth's gravity, and magnetic and electric force components are obtained and expressed in terms of orbital elements. The variational equations of orbit with the considered model in Keplerian elements are derived. The solution of the problem in a fully analytical way is obtained. The temporal rate of changes of the orbital elements of the spacecraft are integrated via Lagrange's planetary equations and integrals of the normalized Keplerian motion obtained by Ahmed (Astron. J. 107(5):1900, 1994).
NASA Technical Reports Server (NTRS)
Chesler, L.; Pierce, S.
1971-01-01
Generalized, cyclic, and modified multistep numerical integration methods are developed and evaluated for application to problems of satellite orbit computation. Generalized methods are compared with the presently utilized Cowell methods; new cyclic methods are developed for special second-order differential equations; and several modified methods are developed and applied to orbit computation problems. Special computer programs were written to generate coefficients for these methods, and subroutines were written which allow use of these methods with NASA's GEOSTAR computer program.
Computing Satellite Maneuvers For A Repeating Ground Track
NASA Technical Reports Server (NTRS)
Shapiro, Bruce
1994-01-01
TOPEX/POSEIDON Ground Track Maintenance Maneuver Targeting Program (GTARG) assists in designing maneuvers to maintain orbit of TOPEX/POSEIDON satellite. Targeting strategies used either maximize time between maneuvers or force control band exit to occur at specified intervals. Runout mode allows for ground-track propagation without targeting. GTARG incorporates analytic mean-element propagation algorithm accounting for all perturbations known to cause significant variations in ground track. Perturbations include oblateness of Earth, luni-solar gravitation, drag, thrusts associated with impulsive maneuvers, and unspecified fixed forces acting on satellite in direction along trajectory. Written in VAX-FORTRAN.
Transition probability functions for applications of inelastic electron scattering
Löffler, Stefan; Schattschneider, Peter
2012-01-01
In this work, the transition matrix elements for inelastic electron scattering are investigated which are the central quantity for interpreting experiments. The angular part is given by spherical harmonics. For the weighted radial wave function overlap, analytic expressions are derived in the Slater-type and the hydrogen-like orbital models. These expressions are shown to be composed of a finite sum of polynomials and elementary trigonometric functions. Hence, they are easy to use, require little computation time, and are significantly more accurate than commonly used approximations. PMID:22560709
Performance analysis and simulation of the SPS reference phase control system
NASA Technical Reports Server (NTRS)
Lindsey, W. C.; Chie, C. M.
1980-01-01
The major elements required in the operation of an SPS which employs retrodirectivity as a means of pointing the beam to Earth include the spacetenna, the rectenna, and the pilot signal transmitter. The phase control system is faced with several problems: (1) path delay variations due to imperfect SPS circular orbits; (2) ionospheric effects; (3) initial phase beam forming; (4) beam pointing; (5) beam safing; (6) high power phase noise effects; and (7) interference. The use of SOLARISM, a computer program to select pilot signal parameters and evaluate SPS performance is described.
Design of Optimal Cyclers Using Solar Sails
2002-12-01
more perturbations are desired in the dynamics model (in this case, more nodes should be used). Equinoctial elements provide a set of singularity...the time to complete the whole EME double rendezvous. Setting the intermediate destination at the Mars orbit and the final destination with Earth...it is necessary to know the relative orbital shapes and orientations of the departure and destination planets. The orbital elements of Earth and Mars
NASA Astrophysics Data System (ADS)
Kiefer, F.; Halbwachs, J.-L.; Lebreton, Y.; Soubiran, C.; Arenou, F.; Pourbaix, D.; Famaey, B.; Guillout, P.; Ibata, R.; Mazeh, T.
2018-02-01
The orbital motion of non-contact double-lined spectroscopic binaries (SB2s), with periods of a few tens of days to several years, holds unique, accurate information on individual stellar masses, which only long-term monitoring can unlock. The combination of radial velocity measurements from high-resolution spectrographs and astrometric measurements from high-precision interferometers allows the derivation of SB2 component masses down to the percent precision. Since 2010, we have observed a large sample of SB2s with the SOPHIE spectrograph at the Observatoire de Haute-Provence, aiming at the derivation of orbital elements with sufficient accuracy to obtain masses of components with relative errors as low as 1 per cent when the astrometric measurements of the Gaia satellite are taken into account. In this paper, we present the results from 6 yr of observations of 14 SB2 systems with periods ranging from 33 to 4185 days. Using the TODMOR algorithm, we computed radial velocities from the spectra and then derived the orbital elements of these binary systems. The minimum masses of the 28 stellar components are then obtained with an average sample accuracy of 1.0 ± 0.2 per cent. Combining the radial velocities with existing interferometric measurements, we derived the masses of the primary and secondary components of HIP 61100, HIP 95995 and HIP 101382 with relative errors for components (A,B) of, respectively, (2.0, 1.7) per cent, (3.7, 3.7) per cent and (0.2, 0.1) per cent. Using the CESAM2K stellar evolution code, we constrained the initial He abundance, age and metallicity for HIP 61100 and HIP 95995.
Dynamic Characterization of an Inflatable Concentrator for Solar Thermal Propulsion
NASA Technical Reports Server (NTRS)
Leigh, Larry; Hamidzadeh, Hamid; Tinker, Michael L.; Rodriguez, Pedro I. (Technical Monitor)
2001-01-01
An inflatable structural system that is a technology demonstrator for solar thermal propulsion and other applications is characterized for structural dynamic behavior both experimentally and computationally. The inflatable structure is a pressurized assembly developed for use in orbit to support a Fresnel lens or inflatable lenticular element for focusing sunlight into a solar thermal rocket engine. When the engine temperature reaches a pre-set level, the propellant is injected into the engine, absorbs heat from an exchanger, and is expanded through the nozzle to produce thrust. The inflatable structure is a passively adaptive system in that a regulator and relief valve are utilized to maintain pressure within design limits during the full range of orbital conditions. Modeling and test activities are complicated by the fact that the polyimide film material used for construction of the inflatable is nonlinear, with modulus varying as a function of frequency, temperature, and level of excitation. Modal vibration testing and finite element modeling are described in detail in this paper. The test database is used for validation and modification of the model. This work is highly significant because of the current interest in inflatable structures for space application, and because of the difficulty in accurately modeling such systems.
A Southern Hemisphere radar meteor orbit survey
NASA Technical Reports Server (NTRS)
Baggaley, W. Jack; Steel, Duncan I.; Taylor, Andrew D.
1992-01-01
A meteor radar system has been operated on a routine basis near Christchurch, New Zealand, to determine the orbits of Earth-impacting interplanetary dust and meteoroids. The system sensitivity is +13 visual magnitude, corresponding to approximately 100 micron sized meteoroids. With an orbital precision of 2 degrees in angular elements and 10 percent in orbital energy (1/a), the operation yields an average of 1500 orbits daily with a total to date in excess of 10(exp 5). The use of pc's and automated data reduction permit the large orbital data sets we collect to be routinely reduced. Some illustrative examples are presented of the signal formats/processing and the results of data reduction, giving the individual orbital elements and hence the overall distributions. Current studies include the distribution of dust in the inner solar system; the influx of meteoroids associated with near-Earth asteroids; and the orbital structure existing in comet-produced streams.
Speckle and spectroscopic orbits of the early A-type triple system Eta Virginis
NASA Technical Reports Server (NTRS)
Hartkopf, William I.; Mcalister, Harold A.; Yang, Xinxing; Fekel, Francis C.
1992-01-01
Eta Virginis is a bright (V = 3.89) triple system of composite spectral type A2 IV that has been observed for over a dozen years with both spectroscopy and speckle interferometry. Analysis of the speckle observations results in a long period of 13.1 yr. This period is also detected in residuals from the spectroscopic observations of the 71.7919 day short-period orbit. Elements of the long-period orbit were determined separately using the observations of both techniques. The more accurate elements from the speckle solution have been assumed in a simultaneous spectroscopic determination of the short- and long-period orbital elements. The magnitude difference of the speckle components suggests that lines of the third star should be visible in the spectrum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammeschlag, S.B.; Hughes, S.; O'Reilly, G.V.
Orbital blow-out fractures were experimentally created in eight human cadavers. Each orbit underwent conventional radiographic studies, complex motion tomography, and computed tomographic examinations. A comparison of the three modalities was made. Anatomical correlation was obtained by dissecting the orbits. The significance of medial-wall fractures and enophthalmos is discussed. Limitation of inferior rectus muscle mobility is thought to be a result of muscle kinking associated with orbital fat-pad prolapse at the fracture site, rather than muscle incarceration. Blow-out fractures should be evaluated by computed tomographic computer reformations in the oblique sagittal plane.
S-Boxes Based on Affine Mapping and Orbit of Power Function
NASA Astrophysics Data System (ADS)
Khan, Mubashar; Azam, Naveed Ahmed
2015-06-01
The demand of data security against computational attacks such as algebraic, differential, linear and interpolation attacks has been increased as a result of rapid advancement in the field of computation. It is, therefore, necessary to develop such cryptosystems which can resist current cryptanalysis and more computational attacks in future. In this paper, we present a multiple S-boxes scheme based on affine mapping and orbit of the power function used in Advanced Encryption Standard (AES). The proposed technique results in 256 different S-boxes named as orbital S-boxes. Rigorous tests and comparisons are performed to analyse the cryptographic strength of each of the orbital S-boxes. Furthermore, gray scale images are encrypted by using multiple orbital S-boxes. Results and simulations show that the encryption strength of the orbital S-boxes against computational attacks is better than that of the existing S-boxes.
NASA Technical Reports Server (NTRS)
Goad, Clyde C.; Chadwell, C. David
1993-01-01
GEODYNII is a conventional batch least-squares differential corrector computer program with deterministic models of the physical environment. Conventional algorithms were used to process differenced phase and pseudorange data to determine eight-day Global Positioning system (GPS) orbits with several meter accuracy. However, random physical processes drive the errors whose magnitudes prevent improving the GPS orbit accuracy. To improve the orbit accuracy, these random processes should be modeled stochastically. The conventional batch least-squares algorithm cannot accommodate stochastic models, only a stochastic estimation algorithm is suitable, such as a sequential filter/smoother. Also, GEODYNII cannot currently model the correlation among data values. Differenced pseudorange, and especially differenced phase, are precise data types that can be used to improve the GPS orbit precision. To overcome these limitations and improve the accuracy of GPS orbits computed using GEODYNII, we proposed to develop a sequential stochastic filter/smoother processor by using GEODYNII as a type of trajectory preprocessor. Our proposed processor is now completed. It contains a correlated double difference range processing capability, first order Gauss Markov models for the solar radiation pressure scale coefficient and y-bias acceleration, and a random walk model for the tropospheric refraction correction. The development approach was to interface the standard GEODYNII output files (measurement partials and variationals) with software modules containing the stochastic estimator, the stochastic models, and a double differenced phase range processing routine. Thus, no modifications to the original GEODYNII software were required. A schematic of the development is shown. The observational data are edited in the preprocessor and the data are passed to GEODYNII as one of its standard data types. A reference orbit is determined using GEODYNII as a batch least-squares processor and the GEODYNII measurement partial (FTN90) and variational (FTN80, V-matrix) files are generated. These two files along with a control statement file and a satellite identification and mass file are passed to the filter/smoother to estimate time-varying parameter states at each epoch, improved satellite initial elements, and improved estimates of constant parameters.
High Fidelity Simulations of Unsteady Flow through Turbopumps and Flowliners
NASA Technical Reports Server (NTRS)
Kiris, Cetin C.; Kwak, dochan; Chan, William; Housman, Jeff
2006-01-01
High fidelity computations were carried out to analyze the orbiter LH2 feedline flowliner. Computations were performed on the Columbia platform which is a 10,240-processor supercluster consisting of 20 Altix nodes with 512 processor each. Various computational models were used to characterize the unsteady flow features in the turbopump, including the orbiter Low-Pressure-Fuel-Turbopump (LPFTP) inducer, the orbiter manifold and a test article used to represent the manifold. Unsteady flow originating from the orbiter LPFTP inducer is one of the major contributors to the high frequency cyclic loading that results in high cycle fatigue damage to the gimbal flowliners just upstream of the LPFTP. The flow fields for the orbiter manifold and representative test article are computed and analyzed for similarities and differences. The incompressible Navier-Stokes flow solver INS3D, based on the artificial compressibility method, was used to compute the flow of liquid hydrogen in each test article.
NASA Astrophysics Data System (ADS)
Hamilton, Douglas P.
2013-05-01
Abstract (2,250 Maximum Characters): The Astronomy Workshop (http://janus.astro.umd.edu) is a collection of interactive online educational tools developed for use by students, educators, professional astronomers, and the general public. The more than 20 tools in the Astronomy Workshop are rated for ease-of-use, and have been extensively tested in large university survey courses as well as more specialized classes for undergraduate majors and graduate students. Here we briefly describe the tools most relevant for the Professional Dynamical Astronomer. Solar Systems Visualizer: The orbital motions of planets, moons, and asteroids in the Solar System as well as many of the planets in exoplanetary systems are animated at their correct relative speeds in accurate to-scale drawings. Zoom in from the chaotic outer satellite systems of the giant planets all the way to their innermost ring systems. Orbital Integrators: Determine the orbital evolution of your initial conditions for a number of different scenarios including motions subject to general central forces, the classic three-body problem, and satellites of planets and exoplanets. Zero velocity curves are calculated and automatically included on relevant plots. Orbital Elements: Convert quickly and easily between state vectors and orbital elements with Changing the Elements. Use other routines to visualize your three-dimensional orbit and to convert between the different commonly used sets of orbital elements including the true, mean, and eccentric anomalies. Solar System Calculators: These tools calculate a user-defined mathematical expression simultaneously for all of the Solar System's planets (Planetary Calculator) or moons (Satellite Calculator). Key physical and orbital data are automatically accessed as needed.
Space Vehicle Guidance, Navigation, Control, and Estimation Operations Technologies
2018-03-29
angular position around the ellipse, and the out-of-place amplitude and angular position. These elements are explicitly relatable to the six rectangular...quasi) second order relative orbital elements are explored. One theory uses the expanded solution form and introduces several instantaneous ellipses...In each case, the theory quantifies distortion of the first order relative orbital elements when including second order effects. The new variables are
Site preference of alloying elements in DO22-Ni3V phase: Phase-field and first-principles study
NASA Astrophysics Data System (ADS)
Zhang, Ding-Ni; Shangguan, Qian-Qian; Liu, Fu; Zhang, Ming-Yi
2015-07-01
Site preference of alloying elements in DO22-Ni3V phase was investigated using phase-field and first-principles method. The concentrations of alloying elements on sublattices of DO22-Ni3V phase were quantitatively studied using phase-field model based on microscopic diffusion equations. The phase-field computation results demonstrate that the concentration differences of alloying elements on the NiI and NiII site are attributed to the coordination environment difference. Host atoms Ni and substitutional ternary additions Al prefer to occupy NiI site. Antisite atoms V show site preference on the NiII site. Further reason of site preference of alloying elements on the two different Ni sites were studied using first-principles method to calculate the electronic structure of DO22-Ni3V phase. Calculation of density of states, orbitals population and charge population of the optimized Ni3V structure found that the electronic structures of NiI and NiII sites are different. Electronic structure difference, which is caused by coordination environment difference, is the essential reason for site selectivity behaviors of alloying elements on NiI and NiII sites.
Development of a nondestructive vibration technique for bond assessment of Space Shuttle tiles
NASA Technical Reports Server (NTRS)
Moslehy, Faissal A.
1994-01-01
This final report describes the achievements of the above titled project. The project is funded by NASA-KSC (Grant No. NAG 10-0117) for the period of 1 Jan. to 31 Dec. 1993. The purpose of this project was to develop a nondestructive, noncontact technique based on 'vibration signature' of tile systems to quantify the bond conditions of the thermal protection system) tiles of Space Shuttle orbiters. The technique uses a laser rapid scan system, modal measurements, and finite element modeling. Finite element models were developed for tiles bonded to both clamped and deformable integrated skin-stringer orbiter mid-fuselage. Results showed that the size and location of a disbonded tile can be determined from frequency and mode shape information. Moreover, a frequency response survey was used to quickly identify the disbonded tiles. The finite element results were compared with experimentally determined frequency responses of a 17-tile test panel, where a rapidscan laser system was employed. An excellent degree of correlation between the mathematical simulation and experimental results was realized. An inverse solution for single-tile assemblies was also derived and is being implemented into a computer program that can interact with the modal testing software. The output of the program displays the size and location of disbond. This program has been tested with simulated input (i.e., finite element data), and excellent agreement between predicted and simulated disbonds was shown. Finally, laser vibration imaging and acoustic emission techniques were shown to be well suited for detecting and monitoring the progressive damage in Graphite/Epoxy composite materials.
Micrometeoroid and Orbital Debris Risk Assessment With Bumper 3
NASA Technical Reports Server (NTRS)
Hyde, J.; Bjorkman, M.; Christiansen, E.; Lear, D.
2017-01-01
The Bumper 3 computer code is the primary tool used by NASA for micrometeoroid and orbital debris (MMOD) risk analysis. Bumper 3 (and its predecessors) have been used to analyze a variety of manned and unmanned spacecraft. The code uses NASA's latest micrometeoroid (MEM-R2) and orbital debris (ORDEM 3.0) environment definition models and is updated frequently with ballistic limit equations that describe the hypervelocity impact performance of spacecraft materials. The Bumper 3 program uses these inputs along with a finite element representation of spacecraft geometry to provide a deterministic calculation of the expected number of failures. The Bumper 3 software is configuration controlled by the NASA/JSC Hypervelocity Impact Technology (HVIT) Group. This paper will demonstrate MMOD risk assessment techniques with Bumper 3 used by NASA's HVIT Group. The Permanent Multipurpose Module (PMM) was added to the International Space Station in 2011. A Bumper 3 MMOD risk assessment of this module will show techniques used to create the input model and assign the property IDs. The methodology used to optimize the MMOD shielding for minimum mass while still meeting structural penetration requirements will also be demonstrated.
Constrained orbital intercept-evasion
NASA Astrophysics Data System (ADS)
Zatezalo, Aleksandar; Stipanovic, Dusan M.; Mehra, Raman K.; Pham, Khanh
2014-06-01
An effective characterization of intercept-evasion confrontations in various space environments and a derivation of corresponding solutions considering a variety of real-world constraints are daunting theoretical and practical challenges. Current and future space-based platforms have to simultaneously operate as components of satellite formations and/or systems and at the same time, have a capability to evade potential collisions with other maneuver constrained space objects. In this article, we formulate and numerically approximate solutions of a Low Earth Orbit (LEO) intercept-maneuver problem in terms of game-theoretic capture-evasion guaranteed strategies. The space intercept-evasion approach is based on Liapunov methodology that has been successfully implemented in a number of air and ground based multi-player multi-goal game/control applications. The corresponding numerical algorithms are derived using computationally efficient and orbital propagator independent methods that are previously developed for Space Situational Awareness (SSA). This game theoretical but at the same time robust and practical approach is demonstrated on a realistic LEO scenario using existing Two Line Element (TLE) sets and Simplified General Perturbation-4 (SGP-4) propagator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helmich-Paris, Benjamin, E-mail: b.helmichparis@vu.nl; Visscher, Lucas, E-mail: l.visscher@vu.nl; Repisky, Michal, E-mail: michal.repisky@uit.no
2016-07-07
We present a formulation of Laplace-transformed atomic orbital-based second-order Møller–Plesset perturbation theory (MP2) energies for two-component Hamiltonians in the Kramers-restricted formalism. This low-order scaling technique can be used to enable correlated relativistic calculations for large molecular systems. We show that the working equations to compute the relativistic MP2 energy differ by merely a change of algebra (quaternion instead of real) from their non-relativistic counterparts. With a proof-of-principle implementation we study the effect of the nuclear charge on the magnitude of half-transformed integrals and show that for light elements spin-free and spin-orbit MP2 energies are almost identical. Furthermore, we investigate themore » effect of separation of charge distributions on the Coulomb and exchange energy contributions, which show the same long-range decay with the inter-electronic/atomic distance as for non-relativistic MP2. A linearly scaling implementation is possible if the proper distance behavior is introduced to the quaternion Schwarz-type estimates as for non-relativistic MP2.« less
SOLARIS: Software for planet formation and orbital integrations
NASA Astrophysics Data System (ADS)
Süli software, Á.
2013-11-01
I present SOLARIS a general purpose software package for doing N-body and planet formation simulations. SOLARIS is capable to (i) to follow the orbital evolution of the solar system's major planets and minor bodies, (ii) to study the dynamics of exoplanetary systems, and (iii) to study the early and later phases of planetary formation. The process to bring bodies with different epochs to one common epoch, i.e. synchronization is implemented. Apart from the Newtonian gravitational forces, aerodynamic drag force, and type I and II migration forces are also implemented. The code also includes a nebula model. To speed up the computation, SOLARIS treats particles with different interaction properties. Several two-body events are monitored, such as collision, ejection etc. Arbitrary chemical composition can be assigned to massive bodies and during collisions the new body's composition is based on the mergers. The input is given in XML to define the parameters in a well-structured and flexible way. SOLARIS is designed to be versatile and easy to use, accepting initial conditions in either Cartesian coordinates or Keplerian orbital elements.
New schemes for internally contracted multi-reference configuration interaction
NASA Astrophysics Data System (ADS)
Wang, Yubin; Han, Huixian; Lei, Yibo; Suo, Bingbing; Zhu, Haiyan; Song, Qi; Wen, Zhenyi
2014-10-01
In this work we present a new internally contracted multi-reference configuration interaction (MRCI) scheme by applying the graphical unitary group approach and the hole-particle symmetry. The latter allows a Distinct Row Table (DRT) to split into a number of sub-DRTs in the active space. In the new scheme a contraction is defined as a linear combination of arcs within a sub-DRT, and connected to the head and tail of the DRT through up-steps and down-steps to generate internally contracted configuration functions. The new scheme deals with the closed-shell (hole) orbitals and external orbitals in the same manner and thus greatly simplifies calculations of coupling coefficients and CI matrix elements. As a result, the number of internal orbitals is no longer a bottleneck of MRCI calculations. The validity and efficiency of the new ic-MRCI code are tested by comparing with the corresponding WK code of the MOLPRO package. The energies obtained from the two codes are essentially identical, and the computational efficiencies of the two codes have their own advantages.
Evolution of Binary Supermassive Black Holes in Rotating Nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasskazov, Alexander; Merritt, David
The interaction of a binary supermassive black hole with stars in a galactic nucleus can result in changes to all the elements of the binary’s orbit, including the angles that define its orientation. If the nucleus is rotating, the orientation changes can be large, causing large changes in the binary’s orbital eccentricity as well. We present a general treatment of this problem based on the Fokker–Planck equation for f , defined as the probability distribution for the binary’s orbital elements. First- and second-order diffusion coefficients are derived for the orbital elements of the binary using numerical scattering experiments, and analyticmore » approximations are presented for some of these coefficients. Solutions of the Fokker–Planck equation are then derived under various assumptions about the initial rotational state of the nucleus and the binary hardening rate. We find that the evolution of the orbital elements can become qualitatively different when we introduce nuclear rotation: (1) the orientation of the binary’s orbit evolves toward alignment with the plane of rotation of the nucleus and (2) binary orbital eccentricity decreases for aligned binaries and increases for counteraligned ones. We find that the diffusive (random-walk) component of a binary’s evolution is small in nuclei with non-negligible rotation, and we derive the time-evolution equations for the semimajor axis, eccentricity, and inclination in that approximation. The aforementioned effects could influence gravitational wave production as well as the relative orientation of host galaxies and radio jets.« less
Surrogate assisted multidisciplinary design optimization for an all-electric GEO satellite
NASA Astrophysics Data System (ADS)
Shi, Renhe; Liu, Li; Long, Teng; Liu, Jian; Yuan, Bin
2017-09-01
State-of-the-art all-electric geostationary earth orbit (GEO) satellites use electric thrusters to execute all propulsive duties, which significantly differ from the traditional all-chemical ones in orbit-raising, station-keeping, radiation damage protection, and power budget, etc. Design optimization task of an all-electric GEO satellite is therefore a complex multidisciplinary design optimization (MDO) problem involving unique design considerations. However, solving the all-electric GEO satellite MDO problem faces big challenges in disciplinary modeling techniques and efficient optimization strategy. To address these challenges, we presents a surrogate assisted MDO framework consisting of several modules, i.e., MDO problem definition, multidisciplinary modeling, multidisciplinary analysis (MDA), and surrogate assisted optimizer. Based on the proposed framework, the all-electric GEO satellite MDO problem is formulated to minimize the total mass of the satellite system under a number of practical constraints. Then considerable efforts are spent on multidisciplinary modeling involving geosynchronous transfer, GEO station-keeping, power, thermal control, attitude control, and structure disciplines. Since orbit dynamics models and finite element structural model are computationally expensive, an adaptive response surface surrogate based optimizer is incorporated in the proposed framework to solve the satellite MDO problem with moderate computational cost, where a response surface surrogate is gradually refined to represent the computationally expensive MDA process. After optimization, the total mass of the studied GEO satellite is decreased by 185.3 kg (i.e., 7.3% of the total mass). Finally, the optimal design is further discussed to demonstrate the effectiveness of our proposed framework to cope with the all-electric GEO satellite system design optimization problems. This proposed surrogate assisted MDO framework can also provide valuable references for other all-electric spacecraft system design.
2001 Mars Odyssey Project report
NASA Technical Reports Server (NTRS)
Spencer, D. A.; Gibbs, R. G.; Mase, R. A.; Plaut, J. J.; Saunders, R. S.
2002-01-01
The Mars Odyssey orbiter was launched on April 7, 2001, and arrived at Mars on October 24, 2001. The orbiter carries scientific instruments that will determine surface elemental composition, mineralogy and morphology, and measure the Mars radiation environment from orbit. In addition, the orbiter will serve as a data relay for future surface missions. This paper will present an overview of the Odyssey project, including the key elements of the spacecraft design, mission design and navigation, mission operations, and the science approach. The project's risk management process will be described. Initial findings of the science team will be summarized.
Path-integral invariants in abelian Chern-Simons theory
NASA Astrophysics Data System (ADS)
Guadagnini, E.; Thuillier, F.
2014-05-01
We consider the U(1) Chern-Simons gauge theory defined in a general closed oriented 3-manifold M; the functional integration is used to compute the normalized partition function and the expectation values of the link holonomies. The non-perturbative path-integral is defined in the space of the gauge orbits of the connections which belong to the various inequivalent U(1) principal bundles over M; the different sectors of configuration space are labelled by the elements of the first homology group of M and are characterized by appropriate background connections. The gauge orbits of flat connections, whose classification is also based on the homology group, control the non-perturbative contributions to the mean values. The functional integration is carried out in any 3-manifold M, and the corresponding path-integral invariants turn out to be strictly related with the abelian Reshetikhin-Turaev surgery invariants.
TLE uncertainty estimation using robust weighted differencing
NASA Astrophysics Data System (ADS)
Geul, Jacco; Mooij, Erwin; Noomen, Ron
2017-05-01
Accurate knowledge of satellite orbit errors is essential for many types of analyses. Unfortunately, for two-line elements (TLEs) this is not available. This paper presents a weighted differencing method using robust least-squares regression for estimating many important error characteristics. The method is applied to both classic and enhanced TLEs, compared to previous implementations, and validated using Global Positioning System (GPS) solutions for the GOCE satellite in Low-Earth Orbit (LEO), prior to its re-entry. The method is found to be more accurate than previous TLE differencing efforts in estimating initial uncertainty, as well as error growth. The method also proves more reliable and requires no data filtering (such as outlier removal). Sensitivity analysis shows a strong relationship between argument of latitude and covariance (standard deviations and correlations), which the method is able to approximate. Overall, the method proves accurate, computationally fast, and robust, and is applicable to any object in the satellite catalogue (SATCAT).
NASA Astrophysics Data System (ADS)
Swarnalatha, Kalaiyar; Kamalesu, Subramaniam; Subramanian, Ramasamy
2016-11-01
New Ruthenium complexes I, II and III were synthesized using 5-chlorothiophene-2-carboxylic acid (5TPC), as ligand and the complexes were characterized by elemental analysis, FT-IR, 1H, 13C NMR, and mass spectroscopic techniques. Photophysical and electrochemical studies were carried out and the structures of the synthesized complex were optimized using density functional theory (DFT). The molecular geometry, the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO) energies and Mulliken atomic charges of the molecules are determined at the B3LYP method and standard 6-311++G (d,p) basis set starting from optimized geometry. They possess excellent stabilities and their thermal decomposition temperatures are 185 °C, 180 °C and 200 °C respectively, indicating that the metal complexes are suitable for the fabrication processes of optoelectronic devices.
Computational Aerothermodynamic Simulation Issues on Unstructured Grids
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.; White, Jeffery A.
2004-01-01
The synthesis of physical models for gas chemistry and turbulence from the structured grid codes LAURA and VULCAN into the unstructured grid code FUN3D is described. A directionally Symmetric, Total Variation Diminishing (STVD) algorithm and an entropy fix (eigenvalue limiter) keyed to local cell Reynolds number are introduced to improve solution quality for hypersonic aeroheating applications. A simple grid-adaptation procedure is incorporated within the flow solver. Simulations of flow over an ellipsoid (perfect gas, inviscid), Shuttle Orbiter (viscous, chemical nonequilibrium) and comparisons to the structured grid solvers LAURA (cylinder, Shuttle Orbiter) and VULCAN (flat plate) are presented to show current capabilities. The quality of heating in 3D stagnation regions is very sensitive to algorithm options in general, high aspect ratio tetrahedral elements complicate the simulation of high Reynolds number, viscous flow as compared to locally structured meshes aligned with the flow.
Installation of new Generation General Purpose Computer (GPC) compact unit
NASA Technical Reports Server (NTRS)
1991-01-01
In the Kennedy Space Center's (KSC's) Orbiter Processing Facility (OPF) high bay 2, Spacecraft Electronics technician Ed Carter (right), wearing clean suit, prepares for (26864) and installs (26865) the new Generation General Purpose Computer (GPC) compact IBM unit in Atlantis', Orbiter Vehicle (OV) 104's, middeck avionics bay as Orbiter Systems Quality Control technician Doug Snider looks on. Both men work for NASA contractor Lockheed Space Operations Company. All three orbiters are being outfitted with the compact IBM unit, which replaces a two-unit earlier generation computer.
Observing the Global Water Cycle from Space
NASA Technical Reports Server (NTRS)
Hildebrand, P. H.
2004-01-01
This paper presents an approach to measuring all major components of the water cycle from space. Key elements of the global water cycle are discussed in terms of the storage of water-in the ocean, air, cloud and precipitation, in soil, ground water, snow and ice, and in lakes and rivers, and in terms of the global fluxes of water between these reservoirs. Approaches to measuring or otherwise evaluating the global water cycle are presented, and the limitations on known accuracy for many components of the water cycle are discussed, as are the characteristic spatial and temporal scales of the different water cycle components. Using these observational requirements for a global water cycle observing system, an approach to measuring the global water cycle from space is developed. The capabilities of various active and passive microwave instruments are discussed, as is the potential of supporting measurements from other sources. Examples of space observational systems, including TRMM/GPM precipitation measurement, cloud radars, soil moisture, sea surface salinity, temperature and humidity profiling, other measurement approaches and assimilation of the microwave and other data into interpretative computer models are discussed to develop the observational possibilities. The selection of orbits is then addressed, for orbit selection and antenna size/beamwidth considerations determine the sampling characteristics for satellite measurement systems. These considerations dictate a particular set of measurement possibilities, which are then matched to the observational sampling requirements based on the science. The results define a network of satellite instrumentation systems, many in low Earth orbit, a few in geostationary orbit, and all tied together through a sampling network that feeds the observations into a data-assimilative computer model.
Electronic structure and magnetic properties of dilute U impurities in metals
NASA Astrophysics Data System (ADS)
Mohanta, S. K.; Cottenier, S.; Mishra, S. N.
2016-05-01
The electronic structure and magnetic moment of dilute U impurity in metallic hosts have been calculated from first principles. The calculations have been performed within local density approximation of the density functional theory using Augmented plane wave+local orbital (APW+lo) technique, taking account of spin-orbit coupling and Coulomb correlation through LDA+U approach. We present here our results for the local density of states, magnetic moment and hyperfine field calculated for an isolated U impurity embedded in hosts with sp-, d- and f-type conduction electrons. The results of our systematic study provide a comprehensive insight on the pressure dependence of 5f local magnetism in metallic systems. The unpolarized local density of states (LDOS), analyzed within the frame work of Stoner model suggest the occurrence of local moment for U in sp-elements, noble metals and f-block hosts like La, Ce, Lu and Th. In contrast, U is predicted to be nonmagnetic in most transition metal hosts except in Sc, Ti, Y, Zr, and Hf consistent with the results obtained from spin polarized calculation. The spin and orbital magnetic moments of U computed within the frame of LDA+U formalism show a scaling behavior with lattice compression. We have also computed the spin and orbital hyperfine fields and a detail analysis has been carried out. The host dependent trends for the magnetic moment, hyperfine field and 5f occupation reflect pressure induced change of electronic structure with U valency changing from 3+ to 4+ under lattice compression. In addition, we have made a detailed analysis of the impurity induced host spin polarization suggesting qualitatively different roles of f-band electrons on moment stability. The results presented in this work would be helpful towards understanding magnetism and spin fluctuation in U based alloys.
NASA Technical Reports Server (NTRS)
2004-01-01
Topics include: Embedded Heaters for Joining or Separating Plastic Parts; Curing Composite Materials Using Lower-Energy Electron Beams; Aluminum-Alloy-Matrix/Alumina-Reinforcement Composites; Fibrous-Ceramic/Aerogel Composite Insulating Tiles; Urethane/Silicone Adhesives for Bonding Flexing Metal Parts; Scalable Architecture for Multihop Wireless ad Hoc Networks; Improved Thermoplastic/Iron-Particle Transformer Cores; Cooperative Lander-Surface/Aerial Microflyer Missions for Mars Exploration Dual-Frequency Airborne Scanning Rain Radar Antenna System Eight-Channel Continuous Timer Reduction of Phase Ambiguity in an Offset-QPSK Receiver Ambient-Light-Canceling Camera Using Subtraction of Frames Lightweight, Flexible, Thin, Integrated Solar-Power Packs Windows(Registered Trademark)-Based Software Models Cyclic Oxidation Behavior Software for Analyzing Sequences of Flow-Related Images Improved Ball-and-Socket Docking Mechanism Two-Stage Solenoid Ordered Nanostructures Made Using Chaperonin Polypeptides Low-Temperature Plasma Functionalization of Carbon Nanotubes Improved Cryostat for Cooling a Wide Panel Current Pulses Momentarily Enhance Thermoelectric Cooling Hand-Held Color Meters Based on Interference Filters Calculating Mass Diffusion in High-Pressure Binary Fluids Fresnel Lenses for Wide-Aperture Optical Receivers Increasing Accuracy in Computed Inviscid Boundary Conditions Higher-Order Finite Elements for Computing Thermal Radiation Radar for Monitoring Hurricanes from Geostationary Orbit Time-Transfer System for Two Orbiting Spacecraft
Scalable Track Initiation for Optical Space Surveillance
2012-09-01
orbital elements. Descartes ’ rule of signs tells us the number of positive real roots. If the third coefficient in the quadratic form (3) is...specified intervals of the orbital elements. Assuming that we have real roots in equation (8), we use Descartes ’ rule of signs to determine the number
Accurate potential energy functions, non-adiabatic and spin-orbit couplings in the ZnH(+) system.
Liang, Guiying; Liu, Xiaoting; Zhang, Xiaomei; Xu, Haifeng; Yan, Bing
2016-03-05
A high-level ab initio calculation on the ZnH(+) cation has been carried out with the multi-reference configuration interaction method plus Davison correction (MRCI+Q). The scalar relativistic effect is included by using the Douglas-Kroll-Hess (DKH) method. The calculated potential energy curves (PECs) of the 7 Λ-S states are associated with the dissociation limits of Zn(+)((2)Sg)+H((2)Sg), Zn((1)Sg)+H(+)((1)Sg), and Zn(+)((2)Pu)+H((2)Sg), respectively (The Λ-S state is labeled as (2S+1)Λ, in which Λ is the quantum number for the projection along the internuclear axis of the total electronic orbital angular momentum and S is the total electron spin). The spectroscopic constants of the bound states are determined and in good agreement with the available theoretical and experimental results. The permanent dipole moments (PDMs) of Λ-S states and the spin-orbit (SO) matrix elements between Λ-S states are also computed. The results show that the abrupt changes of the PDMs and SO matrix elements come into being for the reason of the avoided crossing between the states with the same symmetry. In addition, the non-adiabatic couplings matrix elements between Λ-S states are also evaluated. Finally, the spin-orbit couplings (SOCs) for the low-lying states are considered with Breit-Pauli operator. The SOC effect makes the 7 Λ-S states of the ZnH(+) cation split into 12 Ω states (Ω=Λ+Sz, in which Sz is projection of the total electron spin S along the internuclear Z-axis). For the (3)0(+) state, the two energy minima exhibit in the potential, which could be attributed to the formation of the new avoided crossing point. The transition dipole moments (TDMs), Franck-Condon factors, and the radiative lifetimes of the selected transitions (2)0(+)-X0(+), (3)0(+)-X0(+), (2)1-X0(+) and (3)1-X0(+) have been reported. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Williams, Jessica L.; Bhat, Ramachandra S.; You, Tung-Han
2012-01-01
The Soil Moisture Active Passive (SMAP) mission will perform soil moisture content and freeze/thaw state observations from a low-Earth orbit. The observatory is scheduled to launch in October 2014 and will perform observations from a near-polar, frozen, and sun-synchronous Science Orbit for a 3-year data collection mission. At launch, the observatory is delivered to an Injection Orbit that is biased below the Science Orbit; the spacecraft will maneuver to the Science Orbit during the mission Commissioning Phase. The delta V needed to maneuver from the Injection Orbit to the Science Orbit is computed statistically via a Monte Carlo simulation; the 99th percentile delta V (delta V99) is carried as a line item in the mission delta V budget. This paper details the simulation and analysis performed to compute this figure and the delta V99 computed per current mission parameters.
Influence of Spin-Orbit Quenching on the Solvation of Indium in Helium Droplets
NASA Astrophysics Data System (ADS)
Meyer, Ralf; Pototschnig, Johann V.; Ernst, Wolfgang E.; Hauser, Andreas W.
2017-06-01
Recent experimental interest of the collaborating group of M. Koch on the dynamics of electronic excitations of indium in helium droplets triggered a series of computational studies on the group 13 elements Al, Ga and In and their indecisive behavior between wetting and non wetting when placed onto superfluid helium droplets. We employ a combination of multiconfigurational self consistent field calculations (MCSCF) and multireference configuration interaction (MRCI) to calculate the diatomic potentials. Particularly interesting is the case of indium with an Ancilotto parameter λ close to the threshold value of 1.9. As shown by Reho et al. the spin-orbit splitting of metal atoms solvated in helium droplets is subject to a quenching effect. This can drastically change the solvation behavior. In this work we extend the approach presented by Reho et al. to include distance dependent spin-orbit coupling. The resulting potential surfaces are used to calculate the solvation energy of the ground state and the first excited state with orbital-free helium density functional theory. F. Ancilotto, P. B. Lerner and M. W. Cole, Journal of Low Temperature Physics, 1995, 101, 1123-1146 J. H. Reho, U. Merker, M. R. Radcliff, K. K. Lehmann and G. Scoles, The Journal of Physical Chemistry A, 2000, 104, 3620-3626
The population of natural Earth satellites
NASA Astrophysics Data System (ADS)
Granvik, Mikael; Vaubaillon, Jeremie; Jedicke, Robert
2012-03-01
We have for the first time calculated the population characteristics of the Earth’s irregular natural satellites (NESs) that are temporarily captured from the near-Earth-object (NEO) population. The steady-state NES size-frequency and residence-time distributions were determined under the dynamical influence of all the massive bodies in the Solar System (but mainly the Sun, Earth, and Moon) for NEOs of negligible mass. To this end, we compute the NES capture probability from the NEO population as a function of the latter’s heliocentric orbital elements and combine those results with the current best estimates for the NEO size-frequency and orbital distribution. At any given time there should be at least one NES of 1-m diameter orbiting the Earth. The average temporarily-captured orbiter (TCO; an object that makes at least one revolution around the Earth in a co-rotating coordinate system) completes (2.88 ± 0.82) rev around the Earth during a capture event that lasts (286 ± 18) d. We find a small preference for capture events starting in either January or July. Our results are consistent with the single known natural TCO, 2006 RH120, a few-meter diameter object that was captured for about a year starting in June 2006. We estimate that about 0.1% of all meteors impacting the Earth were TCOs.
Asteroid mass estimation using Markov-Chain Monte Carlo techniques
NASA Astrophysics Data System (ADS)
Siltala, Lauri; Granvik, Mikael
2016-10-01
Estimates for asteroid masses are based on their gravitational perturbations on the orbits of other objects such as Mars, spacecraft, or other asteroids and/or their satellites. In the case of asteroid-asteroid perturbations, this leads to a 13-dimensional inverse problem where the aim is to derive the mass of the perturbing asteroid and six orbital elements for both the perturbing asteroid and the test asteroid using astrometric observations. We have developed and implemented three different mass estimation algorithms utilizing asteroid-asteroid perturbations into the OpenOrb asteroid-orbit-computation software: the very rough 'marching' approximation, in which the asteroid orbits are fixed at a given epoch, reducing the problem to a one-dimensional estimation of the mass, an implementation of the Nelder-Mead simplex method, and most significantly, a Markov-Chain Monte Carlo (MCMC) approach. We will introduce each of these algorithms with particular focus on the MCMC algorithm, and present example results for both synthetic and real data. Our results agree with the published mass estimates, but suggest that the published uncertainties may be misleading as a consequence of using linearized mass-estimation methods. Finally, we discuss remaining challenges with the algorithms as well as future plans, particularly in connection with ESA's Gaia mission.
NASA Astrophysics Data System (ADS)
Fekel, Francis C.; Henry, Gregory W.; Tomkin, Jocelyn
2017-09-01
From an extensive number of newly acquired radial velocities we determine the orbital elements for three late-type dwarf systems, HD 96511, HR 7578, and KZ And. The orbital periods are 18.89737 ± 0.00002, 46.81610 ± 0.00006, and 3.0329113 ± 0.0000005 days, respectively, and all three systems are eccentric, although KZ And is just barely so. We have detected lines of the secondary of HD 96511 for the first time. The orbital dimensions (a 1 sin I and a 2 sin I) and minimum masses (m 1 sin3 I and m 2 sin3 I) of the binary components all have accuracies of 0.2% or better. Extensive photometry of the chromospherically active binary HR 7578 confirms a rather long rotation period of 16.446 ± 0.002 days and that the K3 V components do not eclipse. We have estimated the basic properties of the stars in the three systems and compared those results with evolutionary tracks. The results for KZ And that we computed with the revised Hipparcos parallax of van Leeuwen produce inconsistencies. That parallax appears to be too large, and so, instead, we used the original Hipparcos parallax of the common proper motion primary, which improves the results, although some problems remain.
An analytical procedure for evaluating shuttle abort staging aerodynamic characteristics
NASA Technical Reports Server (NTRS)
Meyer, R.
1973-01-01
An engineering analysis and computer code (AERSEP) for predicting Space Shuttle Orbiter - HO Tank longitudinal aerodynamic characteristics during abort separation has been developed. Computed results are applicable at Mach numbers above 2 for angle-of-attack between plus or minus 10 degrees. No practical restrictions on orbiter-tank relative positioning are indicated for tank-under-orbiter configurations. Input data requirements and computer running times are minimal facilitating program use for parametric studies, test planning, and trajectory analysis. In a majority of cases AERSEP Orbiter-Tank interference predictions are as accurate as state-of-the-art estimates for interference-free or isolated-vehicle configurations. AERSEP isolated-orbiter predictions also show excellent correlation with data.
NASA Technical Reports Server (NTRS)
Mullins, N. E.
1972-01-01
The GEODYN Orbit Determination and Geodetic Parameter Estimation System consists of a set of computer programs designed to determine and analyze definitive satellite orbits and their associated geodetic and measurement parameters. This manual describes the Support Programs used by the GEODYN System. The mathematics and programming descriptions are detailed. The operational procedures of each program are presented. GEODYN ancillary analysis programs may be grouped into three different categories: (1) orbit comparison - DELTA (2) data analysis using reference orbits - GEORGE, and (3) pass geometry computations - GROUNDTRACK. All of the above three programs use one or more tapes written by the GEODYN program in either a data reduction or orbit generator run.
NASA Technical Reports Server (NTRS)
Haber, Benjamin M.; Green, Joseph J.
2010-01-01
The GOATS Orbitology Component software was developed to specifically address the concerns presented by orbit analysis tools that are often written as stand-alone applications. These applications do not easily interface with standard JPL first-principles analysis tools, and have a steep learning curve due to their complicated nature. This toolset is written as a series of MATLAB functions, allowing seamless integration into existing JPL optical systems engineering modeling and analysis modules. The functions are completely open, and allow for advanced users to delve into and modify the underlying physics being modeled. Additionally, this software module fills an analysis gap, allowing for quick, high-level mission analysis trades without the need for detailed and complicated orbit analysis using commercial stand-alone tools. This software consists of a series of MATLAB functions to provide for geometric orbit-related analysis. This includes propagation of orbits to varying levels of generalization. In the simplest case, geosynchronous orbits can be modeled by specifying a subset of three orbit elements. The next case is a circular orbit, which can be specified by a subset of four orbit elements. The most general case is an arbitrary elliptical orbit specified by all six orbit elements. These orbits are all solved geometrically, under the basic problem of an object in circular (or elliptical) orbit around a rotating spheroid. The orbit functions output time series ground tracks, which serve as the basis for more detailed orbit analysis. This software module also includes functions to track the positions of the Sun, Moon, and arbitrary celestial bodies specified by right ascension and declination. Also included are functions to calculate line-of-sight geometries to ground-based targets, angular rotations and decompositions, and other line-of-site calculations. The toolset allows for the rapid execution of orbit trade studies at the level of detail required for the early stage of mission concept development.
Integral processing in beyond-Hartree-Fock calculations
NASA Technical Reports Server (NTRS)
Taylor, P. R.
1986-01-01
The increasing rate at which improvements in processing capacity outstrip improvements in input/output performance of large computers has led to recent attempts to bypass generation of a disk-based integral file. The direct self-consistent field (SCF) method of Almlof and co-workers represents a very successful implementation of this approach. This paper is concerned with the extension of this general approach to configuration interaction (CI) and multiconfiguration-self-consistent field (MCSCF) calculations. After a discussion of the particular types of molecular orbital (MO) integrals for which -- at least for most current generation machines -- disk-based storage seems unavoidable, it is shown how all the necessary integrals can be obtained as matrix elements of Coulomb and exchange operators that can be calculated using a direct approach. Computational implementations of such a scheme are discussed.
Yarkovsky-Schach effect on space debris motion
NASA Astrophysics Data System (ADS)
Murawiecka, M.; Lemaitre, A.
2018-02-01
The Yarkovsky-Schach effect is a small perturbation affecting Earth satellites and space debris illuminated by the Sun. It was first applied to the orbit of LAGEOS satellites as an explanation of the residuals in orbital elements. In this work, we carry out several numerical integration tests taking into consideration various orbit and rotation parameters, in order to analyse this effect in a broader context. The semi-major axis variations remain small and depend on the spin axis attitude with respect to the Sun. We show that the force amplitude is maximised for orbits inclined with i ≈ 20-30°. We also observe the influence on other orbital elements, notably on the orbit inclination. However, these effects are clearly observed only on long timescales; in our simulations, we propagated the orbits for 200 y. The Yarkovsky-Schach effect is thus confirmed to have a minuscule magnitude. It should be taken into account in studies requiring high-precision orbit determination, or on expanded timescales.
Analytical method for the effects of the asteroid belt on planetary orbits
NASA Technical Reports Server (NTRS)
Mayo, A. P.
1979-01-01
Analytic expressions are derived for the perturbation of planetary orbits due to a thick constant-density asteroid belt. The derivations include extensions and adaptations of Plakhov's (1968) analytic expressions for the perturbations in five of the orbital elements for closed orbits around Saturn's rings. The equations of Plakhov are modified to include the effect of ring thickness, and additional equations are derived for the perturbations in the sixth orbital element, the mean anomaly. The gravitational potential and orbital perturbations are derived for the asteroid belt with and without thickness, and for a hoop approximation to the belt. The procedures are also applicable to Saturn's rings and the newly discovered rings of Uranus. The effects of the asteroid belt thickness on the gravitational potential coefficients and the orbital motions are demonstrated. Comparisons between the Mars orbital perturbations obtained by using the analytic expressions and those obtained by numerical integration are discussed. The effects of the asteroid belt on earth-based ranging to Mars are also demonstrated.
NASA Astrophysics Data System (ADS)
Li, Rui; Zhang, Hua; Liu, Xiaohua; Zhao, Shutao; Liu, Yadong; Yan, Bing
2018-01-01
Cadmium iodide (CdI), which is a candidate for laser material in chemical lasing, has attracted considerable scientific interest. While the complete picture for electronic structure of CdI is still unclear, particularly for the interactions of excited states. In this paper, high-level configuration interaction method is applied to compute the low-lying electronic states of the lowest two dissociation limits (Cd(1S) + I(2P) and Cd(3P) + I(2P)). To ensure the accuracy, the Davidson correction, core-valence electronic correlations and spin-orbit coupling effects are also taken into account. The potential energy curves of the 14 Λ-S states and 30 Ω states obtained from those Λ-S states are calculated. On the basis of the computed potential energy curves, the spectroscopic constants of bound and quasibound states are determined, most of which have not been reported in existing studies. The calculated values of spin-orbit coupling matrix elements demonstrate that the B2Σ+1/2 state imposes a strong perturbation on ν‧> 0 vibrational level of C2Π1/2, which can explain the weak spectral intensity of C2Π1/2-X2Σ+1/2 observed in previous experiment. The transition dipole moments as well as the lifetimes are evaluated to predict the transition properties of B2Σ+1/2, C2Π1/2 and 22Π3/2 states.
NASA Astrophysics Data System (ADS)
Piron, P.; Delacroix, C.; Huby, E.; Mawet, D.; Karlsson, M.; Ruane, G.; Habraken, S.; Absil, O.; Surdej, J.
2015-09-01
The Annular Groove Phase Mask (AGPM) is a vectorial vortex phase mask. It acts as a half-wave plate with a radial fast axis orientation operating in the mid infrared domain. When placed at the focus of a telescope element provides a continuous helical phase ramp for an on axis sources, which creates the orbital angular momentum. Thanks to that phase, the intensity of the central source is canceled by a down-stream pupil stop, while the off axis sources are not affected. However due to experimental conditions the nulling is hardly perfect. To improve the null, a Mach-Zehnder interferometer containing Dove prisms differently oriented can be proposed to sort out light based on its orbital angular momentum (OAM). Thanks to the differential rotation of the beam, a π phase shift is achieved for the on axis light affected by a non zero OAM. Therefore the contrast between the star and its faint companion is enhanced. Nevertheless, due the Dove prisms birefringence, the performance of the interferometer is relatively poor. To solve this problem, we propose to add a birefringent wave-plate in each arm to compensate this birefringence. In this paper, we will develop the mathematical model of the wave front using the Jones formalism. The performance of the interferometer is at first computed for the simple version without the birefringent plate. Then the effect of the birefringent plate is be mathematically described and the performance is re-computed.
NASA Astrophysics Data System (ADS)
Sterling, Nicholas C.; Kerlin, Austin B.
2016-01-01
We present preliminary results of a study of the photoionization (PI) and recombination properties of low-charge Xe ions. The abundances of neutron(n)-capture elements (atomic number Z > 30) are of interest in planetary nebulae (PNe) since they can be enriched by slow n-capture nucleosynthesis (the ``s-process'') in the progenitor asymptotic giant branch (AGB) stars. Xe is particularly valuable, because it is the most widely-observed ``heavy-s'' species (Z > 40) in PNe. Its abundance relative to lighter n-capture elements can be used to determine s-process neutron exposures, and constrain s-process enrichment patterns as a function of progenitor metallicity. Using the atomic structure code AUTOSTRUCTURE (Badnell 2011, Comp. Phys. Comm., 182, 1528), we have computed multi-configuration Breit-Pauli distorted-wave PI cross sections and radiative recombination (RR) and dielectronic recombination (DR) rate coefficients for neutral through six-times ionized Xe, data which are critically needed for accurate Xe abundance determinations in ionized nebulae. We find good agreement between our computed direct PI cross sections and experimental measurements. Internal uncertainties are estimated for our calculations by using three different configuration interaction expansions for each ion, and by testing the sensitivity of our results to the radial orbital scaling parameters. As found for other n-capture elements (Sterling & Witthoeft 2011, A&A, 529, A147; Sterling 2011, A&A, 533, A62), DR is the dominant recombination mechanism for Xe ions at nebular temperatures (~104 K). Following Sterling et al. (2015, ApJS, 218, 25), these data will be added to nebular modeling codes to compute ionization correction factors for unobserved Xe ions in PNe, which will enable elemental Xe abundances to be determined with much higher accuracy than is currently possible. This work is supported by NSF award AST-1412928.
Numerical model of the evolution of asteroid orbits at the 2:5 resonance
NASA Astrophysics Data System (ADS)
Ipatov, S. I.
1992-12-01
The interrelations of the variations in the orbital elements of asteroids at the 2:5 resonance and in its vicinity are investigated.. These investigations are based on the numerical integration of the complete equations of motion of the three-body problem (sun-Jupiter-asteroid) for 500 model asteroids. The time interval under consideration for most versions of the calculations equaled 10(4) orbital periods of Jupiter. The limits of the variations in the orbital elements and the regions of initial data corresponding to different types of interrelations of the variations in the eccentricity and longitude of perihelion are examined. It is shown that thr 2:5 gap may play a larger role than other gaps in the replenishment of the Apollo and Amor groups. The time over which the argument of perihelion changed by 360 degrees was usually equal to two periods of variation in the orbital inclination. When this interrelation was not found, the time over which the longitude of the ascending node changed by 360 degrees was equal, as a rule, to one period of variation in this inclination. For some asteroids moving along orbits of small eccentricity and inclination, interrelations were found between the periods of variation in four orbital elements: eccentricity, inclination, argument of perihelion, and longitude of the ascending node. For initial inclinations i° = 40° of asteroid orbits, the maximum values of inclinations of some model asteroids reached 160 degrees. Such asteroids could reach the sun or nearly parabolic orbits.
2011-09-01
by a single mean equinoctial element set . EGP Orbit Determination Test Cases Rev 25 14 All of the EGP test cases employ the same observation...the non-singular equinoctial mean elements is more linear and this has positive implications for orbit determination processes based on the semi...by a single mean equinoctial element set . 5. CONCLUSIONS The GTDS Semi-analytical Satellite Theory (DSST) architecture has been extended to
Correlation and transport properties for mixtures at constant pressure and temperature
NASA Astrophysics Data System (ADS)
White, Alexander J.; Collins, Lee A.; Kress, Joel D.; Ticknor, Christopher; Clérouin, Jean; Arnault, Philippe; Desbiens, Nicolas
2017-06-01
Transport properties of mixtures of elements in the dense plasma regime play an important role in natural astrophysical and experimental systems, e.g., inertial confinement fusion. We present a series of orbital-free molecular dynamics simulations on dense plasma mixtures with comparison to a global pseudo ion in jellium model. Hydrogen is mixed with elements of increasingly high atomic number (lithium, carbon, aluminum, copper, and silver) at a fixed temperature of 100 eV and constant pressure set by pure hydrogen at 2 g/cm 3 , namely, 370 Mbars. We compute ionic transport coefficients, such as self-diffusion, mutual diffusion, and viscosity for various concentrations. Small concentrations of the heavy atoms significantly change the density of the plasma and decrease the transport coefficients. The structure of the mixture evidences a strong Coulomb coupling between heavy ions and the appearance of a broad correlation peak at short distances between hydrogen atoms. The concept of an effective one component plasma is used to quantify the overcorrelation of the light element induced by the admixture of a heavy element.
Correlation and transport properties for mixtures at constant pressure and temperature
White, Alexander J.; Collins, Lee A.; Kress, Joel D.; ...
2017-06-02
Transport properties of mixtures of elements in the dense plasma regime play an important role in natural astrophysical and experimental systems, e.g., inertial confinement fusion. In this paper, we present a series of orbital-free molecular dynamics simulations on dense plasma mixtures with comparison to a global pseudo ion in jellium model. Hydrogen is mixed with elements of increasingly high atomic number (lithium, carbon, aluminum, copper, and silver) at a fixed temperature of 100 eV and constant pressure set by pure hydrogen at 2g/cm 3, namely, 370 Mbars. We compute ionic transport coefficients, such as self-diffusion, mutual diffusion, and viscosity formore » various concentrations. Small concentrations of the heavy atoms significantly change the density of the plasma and decrease the transport coefficients. The structure of the mixture evidences a strong Coulomb coupling between heavy ions and the appearance of a broad correlation peak at short distances between hydrogen atoms. Finally, the concept of an effective one component plasma is used to quantify the overcorrelation of the light element induced by the admixture of a heavy element.« less
Correlation and transport properties for mixtures at constant pressure and temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Alexander J.; Collins, Lee A.; Kress, Joel D.
Transport properties of mixtures of elements in the dense plasma regime play an important role in natural astrophysical and experimental systems, e.g., inertial confinement fusion. In this paper, we present a series of orbital-free molecular dynamics simulations on dense plasma mixtures with comparison to a global pseudo ion in jellium model. Hydrogen is mixed with elements of increasingly high atomic number (lithium, carbon, aluminum, copper, and silver) at a fixed temperature of 100 eV and constant pressure set by pure hydrogen at 2g/cm 3, namely, 370 Mbars. We compute ionic transport coefficients, such as self-diffusion, mutual diffusion, and viscosity formore » various concentrations. Small concentrations of the heavy atoms significantly change the density of the plasma and decrease the transport coefficients. The structure of the mixture evidences a strong Coulomb coupling between heavy ions and the appearance of a broad correlation peak at short distances between hydrogen atoms. Finally, the concept of an effective one component plasma is used to quantify the overcorrelation of the light element induced by the admixture of a heavy element.« less
Satellite orbit computation methods
NASA Technical Reports Server (NTRS)
1977-01-01
Mathematical and algorithmical techniques for solution of problems in satellite dynamics were developed, along with solutions to satellite orbit motion. Dynamical analysis of shuttle on-orbit operations were conducted. Computer software routines for use in shuttle mission planning were developed and analyzed, while mathematical models of atmospheric density were formulated.
Wilkes, Donald F.; Purvis, James W.; Miller, A. Keith
1997-01-01
An infinitely variable transmission is capable of operating between a maximum speed in one direction and a minimum speed in an opposite direction, including a zero output angular velocity, while being supplied with energy at a constant angular velocity. Input energy is divided between a first power path carrying an orbital set of elements and a second path that includes a variable speed adjustment mechanism. The second power path also connects with the orbital set of elements in such a way as to vary the rate of angular rotation thereof. The combined effects of power from the first and second power paths are combined and delivered to an output element by the orbital element set. The transmission can be designed to operate over a preselected ratio of forward to reverse output speeds.
1989-01-01
This 1989 artist's rendering shows how a Shuttle-C would look during launch. As envisioned by Marshall Space Flight Center plarners, the Shuttle-C would be an unmanned heavy-lift cargo vehicle derived from Space Shuttle elements. The vehicle would utilize the basic Shuttle propulsion units (Solid Rocket Boosters, Space Shuttle Main Engine, External Tank), but would replace the Orbiter with an unmanned Shuttle-C Cargo Element (SCE). The SCE would have a payload bay lenght of eighty-two feet, compared to sixty feet for the Orbiter cargo bay, and would be able to deliver 170,000 pound payloads to low Earth orbit, more than three times the Orbiter's capacity.
Proper motion and secular variations of Keplerian orbital elements
NASA Astrophysics Data System (ADS)
Butkevich, Alexey G.
2018-05-01
High-precision observations require accurate modelling of secular changes in the orbital elements in order to extrapolate measurements over long time intervals, and to detect deviation from pure Keplerian motion caused, for example, by other bodies or relativistic effects. We consider the evolution of the Keplerian elements resulting from the gradual change of the apparent orbit orientation due to proper motion. We present rigorous formulae for the transformation of the orbit inclination, longitude of the ascending node and argument of the pericenter from one epoch to another, assuming uniform stellar motion and taking radial velocity into account. An approximate treatment, accurate to the second-order terms in time, is also given. The proper motion effects may be significant for long-period transiting planets. These theoretical results are applicable to the modelling of planetary transits and precise Doppler measurements as well as analysis of pulsar and eclipsing binary timing observations.
NASA Astrophysics Data System (ADS)
Bluhm, P.; Jones, M. I.; Vanzi, L.; Soto, M. G.; Vos, J.; Wittenmyer, R. A.; Drass, H.; Jenkins, J. S.; Olivares, F.; Mennickent, R. E.; Vučković, M.; Rojo, P.; Melo, C. H. F.
2016-10-01
We report the discovery of 24 spectroscopic binary companions to giant stars. We fully constrain the orbital solution for 6 of these systems. We cannot unambiguously derive the orbital elements for the remaining stars because the phase coverage is incomplete. Of these stars, 6 present radial velocity trends that are compatible with long-period brown dwarf companions. The orbital solutions of the 24 binary systems indicate that these giant binary systems have a wide range in orbital periods, eccentricities, and companion masses. For the binaries with restricted orbital solutions, we find a range of orbital periods of between ~97-1600 days and eccentricities of between ~0.1-0.4. In addition, we studied the metallicity distribution of single and binary giant stars. We computed the metallicity of a total of 395 evolved stars, 59 of wich are in binary systems. We find a flat distribution for these binary stars and therefore conclude that stellar binary systems, and potentially brown dwarfs, have a different formation mechanism than planets. This result is confirmed by recent works showing that extrasolar planets orbiting giants are more frequent around metal-rich stars. Finally, we investigate the eccentricity as a function of the orbital period. We analyzed a total of 130 spectroscopic binaries, including those presented here and systems from the literature. We find that most of the binary stars with periods ≲30 days have circular orbits, while at longer orbital periods we observe a wide spread in their eccentricities. Based on observations collected at La Silla - Paranal Observatory under programs IDs IDs 085.C-0557, 087.C.0476, 089.C-0524, 090.C-0345, 096.A-9020 and through the Chilean Telescope Time under programs IDs CN2012A-73, CN2012B-47, CN2013A-111, CN2013B-51, CN2014A-52 and CN2015A-48.
Role of spin-orbit coupling in the physical properties of La X3 (X =In , P, Bi) superconductors
NASA Astrophysics Data System (ADS)
Tütüncü, H. M.; Karaca, Ertuǧrul; Uzunok, H. Y.; Srivastava, G. P.
2018-05-01
We report a comprehensive and complementary study on structural, elastic, mechanical, electronic, phonon, and electron-phonon interaction properties of La X3 (X = In, Pb, and Bi) using first-principles density functional calculations within the local density approximation with and without the spin-orbit coupling (SOC). The calculated lattice parameters for these intermetallic compounds with and without SOC are found to differ by less than 2 % from their experimental values. The effect of SOC on the elastic, mechanical, electronic, phonon, and electron-phonon interaction properties is more profound for LaPb3 and LaBi3 containing heavier X elements rather than LaIn3 containing lighter X element. The inclusion of SOC considerably removes the degeneracies of some bands near the Fermi level and makes some phonon branches in LaPb3 and LaBi3 softer and increases the strength of dominant peaks in their Eliashberg spectral functions. Thus the SOC related enhancement of their electron-phonon coupling parameter values can be related to both a softening of their phonon dispersion curves and an increase in their electron-phonon coupling matrix elements. The superconducting transition temperature with SOC is computed to be 0.69 K for LaIn3, 4.23 K for LaPb3, and 6.87 K for LaBi3, which agree very well with the respective measured values of 0.70, 4.18, and 7.30 K.
Direct Density Functional Energy Minimization using an Tetrahedral Finite Element Grid
NASA Astrophysics Data System (ADS)
Vaught, A.; Schmidt, K. E.; Chizmeshya, A. V. G.
1998-03-01
We describe an O(N) (N proportional to volume) technique for solving electronic structure problems using the finite element method (FEM). A real--space tetrahedral grid is used as a basis to represent the electronic density, of a free or periodic system and Poisson's equation is solved as a boundary value problem. Nuclear cusps are treated using a local grid consisting of radial elements. These features facilitate the implementation of complicated energy functionals and permit a direct (constrained) energy minimization with respect to the density. We demonstrate the usefulness of the scheme by calculating the binding trends and polarizabilities of a number of atoms and molecules using a number of recently proposed non--local, orbital--free kinetic energy functionals^1,2. Scaling behavior, computational efficiency and the generalization to band--structure will also be discussed. indent 0 pt øbeylines øbeyspaces skip 0 pt ^1 P. Garcia-Gonzalez, J.E. Alvarellos and E. Chacon, Phys. Rev. B 54, 1897 (1996). ^2 A. J. Thakkar, Phys.Rev.B 46, 6920 (1992).
Morrison, Adrian F; Herbert, John M
2017-06-14
Recently, we introduced an ab initio version of the Frenkel-Davydov exciton model for computing excited-state properties of molecular crystals and aggregates. Within this model, supersystem excited states are approximated as linear combinations of excitations localized on molecular sites, and the electronic Hamiltonian is constructed and diagonalized in a direct-product basis of non-orthogonal configuration state functions computed for isolated fragments. Here, we derive and implement analytic derivative couplings for this model, including nuclear derivatives of the natural transition orbital and symmetric orthogonalization transformations that are part of the approximation. Nuclear derivatives of the exciton Hamiltonian's matrix elements, required in order to compute the nonadiabatic couplings, are equivalent to the "Holstein" and "Peierls" exciton/phonon couplings that are widely discussed in the context of model Hamiltonians for energy and charge transport in organic photovoltaics. As an example, we compute the couplings that modulate triplet exciton transport in crystalline tetracene, which is relevant in the context of carrier diffusion following singlet exciton fission.
NASA Astrophysics Data System (ADS)
Lai, Ian-Lin; Su, Cheng-Chin; Ip, Wing-Huen; Wei, Chen-En; Wu, Jong-Shinn; Lo, Ming-Chung; Liao, Ying; Thomas, Nicolas
2016-03-01
With a combination of the Direct Simulation Monte Carlo (DSMC) calculation and test particle computation, the ballistic transport process of the hydroxyl radicals and oxygen atoms produced by photodissociation of water molecules in the coma of comet 67P/Churyumov-Gerasimenko is modelled. We discuss the key elements and essential features of such simulations which results can be compared with the remote-sensing and in situ measurements of cometary gas coma from the Rosetta mission at different orbital phases of this comet.
NASA Technical Reports Server (NTRS)
Klumpar, D. M. (Principal Investigator)
1982-01-01
Progress made in reducing MAGSAT data and displaying magnetic field perturbations caused primarily by external currents is reported. A periodic and repeatable perturbation pattern is described that arises from external current effects but appears as unique signatures associated with upper middle latitudes on the Earth's surface. Initial testing of the modeling procedure that was developed to compute the magnetic fields at satellite orbit due to current distributions in the ionosphere and magnetosphere is also discussed. The modeling technique utilizes a linear current element representation of the large scale space current system.
NASA Technical Reports Server (NTRS)
Klumpar, D. M. (Principal Investigator)
1982-01-01
Efforts in support of the development of a model of the magnetic fields due to ionospheric and magnetospheric electrical currents are discussed. Specifically, progress made in reading MAGSAT tapes and plotting the deviation of the measured magnetic field components with respect to a spherical harmonic model of the main geomagnetic field is reported. Initial tests of the modeling procedure developed to compute the ionosphere/magnetosphere-induced fields at satellite orbit are also described. The modeling technique utilizes a liner current element representation of the large scale current system.
Automated procedures for sizing aerospace vehicle structures /SAVES/
NASA Technical Reports Server (NTRS)
Giles, G. L.; Blackburn, C. L.; Dixon, S. C.
1972-01-01
Results from a continuing effort to develop automated methods for structural design are described. A system of computer programs presently under development called SAVES is intended to automate the preliminary structural design of a complete aerospace vehicle. Each step in the automated design process of the SAVES system of programs is discussed, with emphasis placed on use of automated routines for generation of finite-element models. The versatility of these routines is demonstrated by structural models generated for a space shuttle orbiter, an advanced technology transport,n hydrogen fueled Mach 3 transport. Illustrative numerical results are presented for the Mach 3 transport wing.
NASA Astrophysics Data System (ADS)
Chen, Zhenhua; Chen, Xun; Wu, Wei
2013-04-01
In this series, the n-body reduced density matrix (n-RDM) approach for nonorthogonal orbitals and their applications to ab initio valence bond (VB) methods are presented. As the first paper of this series, Hamiltonian matrix elements between internally contracted VB wave functions are explicitly provided by means of nonorthogonal orbital based RDM approach. To this end, a more generalized Wick's theorem, called enhanced Wick's theorem, is presented both in arithmetical and in graphical forms, by which the deduction of expressions for the matrix elements between internally contracted VB wave functions is dramatically simplified, and the matrix elements are finally expressed in terms of tensor contractions of electronic integrals and n-RDMs of the reference VB self-consistent field wave function. A string-based algorithm is developed for the purpose of evaluating n-RDMs in an efficient way. Using the techniques presented in this paper, one is able to develop new methods and efficient algorithms for nonorthogonal orbital based many-electron theory much easier than by use of the first quantized formulism.
The multifacet graphically contracted function method. I. Formulation and implementation
NASA Astrophysics Data System (ADS)
Shepard, Ron; Gidofalvi, Gergely; Brozell, Scott R.
2014-08-01
The basic formulation for the multifacet generalization of the graphically contracted function (MFGCF) electronic structure method is presented. The analysis includes the discussion of linear dependency and redundancy of the arc factor parameters, the computation of reduced density matrices, Hamiltonian matrix construction, spin-density matrix construction, the computation of optimization gradients for single-state and state-averaged calculations, graphical wave function analysis, and the efficient computation of configuration state function and Slater determinant expansion coefficients. Timings are given for Hamiltonian matrix element and analytic optimization gradient computations for a range of model problems for full-CI Shavitt graphs, and it is observed that both the energy and the gradient computation scale as O(N2n4) for N electrons and n orbitals. The important arithmetic operations are within dense matrix-matrix product computational kernels, resulting in a computationally efficient procedure. An initial implementation of the method is used to present applications to several challenging chemical systems, including N2 dissociation, cubic H8 dissociation, the symmetric dissociation of H2O, and the insertion of Be into H2. The results are compared to the exact full-CI values and also to those of the previous single-facet GCF expansion form.
The multifacet graphically contracted function method. I. Formulation and implementation.
Shepard, Ron; Gidofalvi, Gergely; Brozell, Scott R
2014-08-14
The basic formulation for the multifacet generalization of the graphically contracted function (MFGCF) electronic structure method is presented. The analysis includes the discussion of linear dependency and redundancy of the arc factor parameters, the computation of reduced density matrices, Hamiltonian matrix construction, spin-density matrix construction, the computation of optimization gradients for single-state and state-averaged calculations, graphical wave function analysis, and the efficient computation of configuration state function and Slater determinant expansion coefficients. Timings are given for Hamiltonian matrix element and analytic optimization gradient computations for a range of model problems for full-CI Shavitt graphs, and it is observed that both the energy and the gradient computation scale as O(N(2)n(4)) for N electrons and n orbitals. The important arithmetic operations are within dense matrix-matrix product computational kernels, resulting in a computationally efficient procedure. An initial implementation of the method is used to present applications to several challenging chemical systems, including N2 dissociation, cubic H8 dissociation, the symmetric dissociation of H2O, and the insertion of Be into H2. The results are compared to the exact full-CI values and also to those of the previous single-facet GCF expansion form.
NASA Technical Reports Server (NTRS)
Head, D. E.; Mitchell, K. L.
1967-01-01
Program computes the thermal environment of a spacecraft in a lunar orbit. The quantities determined include the incident flux /solar and lunar emitted radiation/, total radiation absorbed by a surface, and the resulting surface temperature as a function of time and orbital position.
Coulomb matrix elements in multi-orbital Hubbard models.
Bünemann, Jörg; Gebhard, Florian
2017-04-26
Coulomb matrix elements are needed in all studies in solid-state theory that are based on Hubbard-type multi-orbital models. Due to symmetries, the matrix elements are not independent. We determine a set of independent Coulomb parameters for a d-shell and an f-shell and all point groups with up to 16 elements (O h , O, T d , T h , D 6h , and D 4h ). Furthermore, we express all other matrix elements as a function of the independent Coulomb parameters. Apart from the solution of the general point-group problem we investigate in detail the spherical approximation and first-order corrections to the spherical approximation.
NASA Technical Reports Server (NTRS)
Zipay, John J.; Bernstein, Karen S.; Bruno, Erica E.; Deloo, Phillipe; Patin, Raymond
2012-01-01
The International Space Station (ISS) can be considered one of the structural engineering wonders of the world. On par with the World Trade Center, the Colossus of Rhodes, the Statue of Liberty, the Great Pyramids, the Petronas towers and the Burj Khalifa skyscraper of Dubai, the ambition and scope of the ISS structural design, verification and assembly effort is a truly global success story. With its on-orbit life projected to be from its beginning in 1998 to the year 2020 (and perhaps beyond), all of those who participated in its development can consider themselves part of an historic engineering achievement representing all of humanity. The structural design and verification of the ISS could be the subject of many scholarly papers. Several papers have been written on the structural dynamic characterization of the ISS once it was assembled on-orbit [1], but the ground-based activities required to assure structural integrity and structural life of the individual elements from delivery to orbit through assembly and planned on-orbit operations have never been totally summarized. This paper is intended to give the reader an overview of some of the key decisions made during the structural verification planning for the elements of the U.S. On-Orbit Segment (USOS) as well as to summarize the many structural tests and structural analyses that were performed on its major elements. An effort is made for this paper to be summarily comprehensive, but as with all knowledge capture efforts of this kind, there are bound to be errors of omission. Should the reader discover any of these, please feel free to contact the principal author. The ISS (Figure 1) is composed of pre-integrated truss segments and pressurized elements supplied by NASA, the Russian Federal Space Agency (RSA), the European Space Agency (ESA) and the Japanese Aerospace Exploration Agency (JAXA). Each of these elements was delivered to orbit by a launch vehicle and connected to one another either robotically or autonomously. The primary structure of each element was assembled and verified by teams of responsible structural engineers within and among their respective agencies and agency contractors.
Tarsitano, Achille; Badiali, Giovanni; Pizzigallo, Angelo; Marchetti, Claudio
2016-10-01
Enophthalmos is a severe complication of primary reconstruction of orbital floor fractures. The goal of secondary reconstruction procedures is to restore symmetrical globe positions to recover function and aesthetics. The authors propose a new method of orbital floor reconstruction using a mirroring technique and a customized titanium mesh, printed using a direct metal laser-sintering method. This reconstructive protocol involves 4 steps: mirroring of the healthy orbit at the affected site, virtual design of a patient-specific orbital floor mesh, CAM procedures for direct laser-sintering of the customized titanium mesh, and surgical insertion of the device. Using a computed tomography data set, the normal, uninjured side of the craniofacial skeleton was reflected onto the contralateral injured side, and a reconstructive orbital floor mesh was designed virtually on the mirrored orbital bone surface. The solid-to-layer files of the mesh were then manufactured using direct metal laser sintering, which resolves the shaping and bending biases inherent in the indirect method. An intraoperative navigation system ensured accuracy of the entire procedure. Clinical outcomes were assessed using 3dMD photogrammetry and computed tomography data in 7 treated patients. The technique described here appears to be a viable method to correct complex orbital floor defects needing delayed reconstruction. This study represents the first step in the development of a wider experimental protocol for orbital floor reconstruction using computer-assisted design-computer-assisted manufacturing technology.
NASA Astrophysics Data System (ADS)
Mendoza, C.; Bautista, M. A.; Palmeri, P.; Quinet, P.; Witthoeft, M. C.; Kallman, T. R.
2017-08-01
Context. We are concerned with improving the diagnostic potential of the K lines and edges of elements with low cosmic abundances, namely F, Na, P, Cl, K, Sc, Ti, V, Cr, Mn, Co, Cu, and Zn, that are observed in the X-ray spectra of supernova remnants, galaxy clusters, and accreting black holes and neutron stars. Aims: Since accurate photoabsorption and photoionization cross sections are needed in their spectral models, they have been computed for isoelectronic sequences with electron number 12 ≤ N ≤ 18 using a multi-channel method. Methods: Target representations are obtained with the atomic structure code autostructure, and ground-state cross sections are computed with the Breit-Pauli R-matrix method (bprm) in intermediate coupling, including damping (radiative and Auger) effects. Results: Following the findings in our earlier work on sequences with 2 ≤ N ≤ 11, the contributions from channels associated with the 2s-hole [2s] μ target configurations and those containing 3d orbitals are studied in the Mg (N = 12) and Ar (N = 18) isoelectronic sequences. Cross sections for the latter ions are also calculated in the isolated-resonance approximation as implemented in autostructure and compared with bprm to test their accuracy. Conclusions: It is confirmed that the collisional channels associated with the [2s] μ target configurations must be taken into account owing to significant increases in the monotonic background cross section between the L and K edges. Target configurations with 3d orbitals give rise to fairly conspicuous unresolved transition arrays in the L-edge region, but to a much lesser extent in the K-edge that is our main concern; therefore, they have been neglected throughout owing to their computationally intractable channel inventory, thus allowing the computation of cross sections for all the ions with 12 ≤ N ≤ 18 in intermediate coupling with bprm. We find that the isolated-resonance approximations performs satisfactorily and will be our best choice to tackle the systems with ground configuration 3p63dm (3 ≤ m ≤ 8) in isoelectronic sequences with N> 20.
The New NASA Orbital Debris Engineering Model ORDEM2000
NASA Technical Reports Server (NTRS)
Liou, Jer-Chyi; Matney, Mark J.; Anz-Meador, Phillip D.; Kessler, Donald; Jansen, Mark; Theall, Jeffery R.
2002-01-01
The NASA Orbital Debris Program Office at Johnson Space Center has developed a new computer-based orbital debris engineering model, ORDEM2000, which describes the orbital debris environment in the low Earth orbit region between 200 and 2000 km altitude. The model is appropriate for those engineering solutions requiring knowledge and estimates of the orbital debris environment (debris spatial density, flux, etc.). ORDEM2000 can also be used as a benchmark for ground-based debris measurements and observations. We incorporated a large set of observational data, covering the object size range from 10 mm to 10 m, into the ORDEM2000 debris database, utilizing a maximum likelihood estimator to convert observations into debris population probability distribution functions. These functions then form the basis of debris populations. We developed a finite element model to process the debris populations to form the debris environment. A more capable input and output structure and a user-friendly graphical user interface are also implemented in the model. ORDEM2000 has been subjected to a significant verification and validation effort. This document describes ORDEM2000, which supersedes the previous model, ORDEM96. The availability of new sensor and in situ data, as well as new analytical techniques, has enabled the construction of this new model. Section 1 describes the general requirements and scope of an engineering model. Data analyses and the theoretical formulation of the model are described in Sections 2 and 3. Section 4 describes the verification and validation effort and the sensitivity and uncertainty analyses. Finally, Section 5 describes the graphical user interface, software installation, and test cases for the user.
On Orbital Elements of Extrasolar Planetary Candidates and Spectroscopic Binaries
NASA Technical Reports Server (NTRS)
Stepinski, T. F.; Black, D. C.
2001-01-01
We estimate probability densities of orbital elements, periods, and eccentricities, for the population of extrasolar planetary candidates (EPC) and, separately, for the population of spectroscopic binaries (SB) with solar-type primaries. We construct empirical cumulative distribution functions (CDFs) in order to infer probability distribution functions (PDFs) for orbital periods and eccentricities. We also derive a joint probability density for period-eccentricity pairs in each population. Comparison of respective distributions reveals that in all cases EPC and SB populations are, in the context of orbital elements, indistinguishable from each other to a high degree of statistical significance. Probability densities of orbital periods in both populations have P(exp -1) functional form, whereas the PDFs of eccentricities can he best characterized as a Gaussian with a mean of about 0.35 and standard deviation of about 0.2 turning into a flat distribution at small values of eccentricity. These remarkable similarities between EPC and SB must be taken into account by theories aimed at explaining the origin of extrasolar planetary candidates, and constitute an important clue us to their ultimate nature.
Orbits for eight Hipparcos double stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cvetković, Z.; Pavlović, R.; Ninković, S., E-mail: zcvetkovic@aob.bg.ac.rs
In this paper, we analyze new orbital elements and the quantities that follow from them for eight binaries: WDS 00101+3825 = HDS 23Da,Db, WDS 00321–1218 = HDS 71, WDS 04287+2613 = HDS 576, WDS 04389–1207 = HDS 599, WDS 16206+4535 = HDS 2309, WDS 17155+1052 = HDS 2440, WDS 22161–0705 = HDS 3158, and WDS 23167+3441 = HDS 3315. For seven of them, the orbital elements are calculated for the first time. Binaries, denoted as HDS, were discovered during the Hipparcos mission, and their first observational epoch is 1991.25, the same as the mean epoch of the Hipparcos catalog. Wemore » found all other measurements of these binaries in databases. They were obtained in the last 15 yr using the speckle interferometric technique. All studied pairs are close, and all measured separations are less than 0.''4. The resulting orbital periods fall within 26 and 80 yr. In addition to the orbital elements, we also give (O – C) residuals in θ and ρ, masses, dynamical parallaxes, absolute magnitudes, spectral types, and ephemerides for the next 5 yr.« less
A preliminary analysis of the orbit of the Mars Trojan asteroid (5261) Eureka
NASA Technical Reports Server (NTRS)
Mikkola, Seppo; Innanen, Kimmo; Muinonen, Karri; Bowell, Edward
1994-01-01
Observations and results of orbit determination of the first known Mars Trojan asteroid (5261) Eureka are presented. We have numerically calculated the evolution of the orbital elements, and have analyzed the behavior of the motion during the next 2 Myr. Strong perturbations by planets other than Mars seem to stabilize the eccentricity of the asteroid by stirring the high order resonances present in the elliptic restricted problem. As a result, the orbit appears stable at least on megayear timescales. The difference of the mean longitudes of Mars and Eureka and the semimajor axis of the asteroid form a pair of variables that essentially behave in an adiabatic manner, while the evolution of the other orbital elements is largely determined by the pertubations due to other planets.
NASA Astrophysics Data System (ADS)
Tavan, Paul; Schulten, Klaus
1980-03-01
A new, efficient algorithm for the evaluation of the matrix elements of the CI Hamiltonian in the basis of spin-coupled ν-fold excitations (over orthonormal orbitals) is developed for even electron systems. For this purpose we construct an orthonormal, spin-adapted CI basis in the framework of second quantization. As a prerequisite, spin and space parts of the fermion operators have to be separated; this makes it possible to introduce the representation theory of the permutation group. The ν-fold excitation operators are Serber spin-coupled products of particle-hole excitations. This construction is also designed for CI calculations from multireference (open-shell) states. The 2N-electron Hamiltonian is expanded in terms of spin-coupled particle-hole operators which map any ν-fold excitation on ν-, and ν±1-, and ν±2-fold excitations. For the calculation of the CI matrix this leaves one with only the evaluation of overlap matrix elements between spin-coupled excitations. This leads to a set of ten general matrix element formulas which contain Serber representation matrices of the permutation group Sν×Sν as parameters. Because of the Serber structure of the CI basis these group-theoretical parameters are kept to a minimum such that they can be stored readily in the central memory of a computer for ν?4 and even for higher excitations. As the computational effort required to obtain the CI matrix elements from the general formulas is very small, the algorithm presented appears to constitute for even electron systems a promising alternative to existing CI methods for multiply excited configurations, e.g., the unitary group approach. Our method makes possible the adaptation of spatial symmetries and the selection of any subset of configurations. The algorithm has been implemented in a computer program and tested extensively for ν?4 and singlet ground and excited states.
Wan, Kelvin H; Chong, Kelvin K L; Young, Alvin L
2015-12-08
Post-traumatic orbital reconstruction remains a surgical challenge and requires careful preoperative planning, sound anatomical knowledge and good intraoperative judgment. Computer-assisted technology has the potential to reduce error and subjectivity in the management of these complex injuries. A systematic review of the literature was conducted to explore the emerging role of computer-assisted technologies in post-traumatic orbital reconstruction, in terms of functional and safety outcomes. We searched for articles comparing computer-assisted procedures with conventional surgery and studied outcomes on diplopia, enophthalmos, or procedure-related complications. Six observational studies with 273 orbits at a mean follow-up of 13 months were included. Three out of 4 studies reported significantly fewer patients with residual diplopia in the computer-assisted group, while only 1 of the 5 studies reported better improvement in enophthalmos in the assisted group. Types and incidence of complications were comparable. Study heterogeneities limiting statistical comparison by meta-analysis will be discussed. This review highlights the scarcity of data on computer-assisted technology in orbital reconstruction. The result suggests that computer-assisted technology may offer potential advantage in treating diplopia while its role remains to be confirmed in enophthalmos. Additional well-designed and powered randomized controlled trials are much needed.
Resonance transition periodic orbits in the circular restricted three-body problem
NASA Astrophysics Data System (ADS)
Lei, Hanlun; Xu, Bo
2018-04-01
This work studies a special type of cislunar periodic orbits in the circular restricted three-body problem called resonance transition periodic orbits, which switch between different resonances and revolve about the secondary with multiple loops during one period. In the practical computation, families of multiple periodic orbits are identified first, and then the invariant manifolds emanating from the unstable multiple periodic orbits are taken to generate resonant homoclinic connections, which are used to determine the initial guesses for computing the desired periodic orbits by means of multiple-shooting scheme. The obtained periodic orbits have potential applications for the missions requiring long-term continuous observation of the secondary and tour missions in a multi-body environment.
NASA Technical Reports Server (NTRS)
Vaughan, William W.; Friedman, Mark J.; Monteiro, Anand C.
1993-01-01
In earlier papers, Doedel and the authors have developed a numerical method and derived error estimates for the computation of branches of heteroclinic orbits for a system of autonomous ordinary differential equations in R(exp n). The idea of the method is to reduce a boundary value problem on the real line to a boundary value problem on a finite interval by using a local (linear or higher order) approximation of the stable and unstable manifolds. A practical limitation for the computation of homoclinic and heteroclinic orbits has been the difficulty in obtaining starting orbits. Typically these were obtained from a closed form solution or via a homotopy from a known solution. Here we consider extensions of our algorithm which allow us to obtain starting orbits on the continuation branch in a more systematic way as well as make the continuation algorithm more flexible. In applications, we use the continuation software package AUTO in combination with some initial value software. The examples considered include computation of homoclinic orbits in a singular perturbation problem and in a turbulent fluid boundary layer in the wall region problem.
An Empirical Method for Determining the Lunar Gravity Field. Ph.D. Thesis - George Washington Univ.
NASA Technical Reports Server (NTRS)
Ferrari, A. J.
1971-01-01
A method has been devised to determine the spherical harmonic coefficients of the lunar gravity field. This method consists of a two-step data reduction and estimation process. In the first step, a weighted least-squares empirical orbit determination scheme is applied to Doppler tracking data from lunar orbits to estimate long-period Kepler elements and rates. Each of the Kepler elements is represented by an independent function of time. The long-period perturbing effects of the earth, sun, and solar radiation are explicitly modeled in this scheme. Kepler element variations estimated by this empirical processor are ascribed to the non-central lunar gravitation features. Doppler data are reduced in this manner for as many orbits as are available. In the second step, the Kepler element rates are used as input to a second least-squares processor that estimates lunar gravity coefficients using the long-period Lagrange perturbation equations.
Reliability model of a monopropellant auxiliary propulsion system
NASA Technical Reports Server (NTRS)
Greenberg, J. S.
1971-01-01
A mathematical model and associated computer code has been developed which computes the reliability of a monopropellant blowdown hydrazine spacecraft auxiliary propulsion system as a function of time. The propulsion system is used to adjust or modify the spacecraft orbit over an extended period of time. The multiple orbit corrections are the multiple objectives which the auxiliary propulsion system is designed to achieve. Thus the reliability model computes the probability of successfully accomplishing each of the desired orbit corrections. To accomplish this, the reliability model interfaces with a computer code that models the performance of a blowdown (unregulated) monopropellant auxiliary propulsion system. The computer code acts as a performance model and as such gives an accurate time history of the system operating parameters. The basic timing and status information is passed on to and utilized by the reliability model which establishes the probability of successfully accomplishing the orbit corrections.
Planetary Geochemistry Using Active Neutron and Gamma Ray Instrumentation
NASA Technical Reports Server (NTRS)
Parsons, A.; Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Schweitzer, J.; Starr, R.; Trombka, J.
2010-01-01
The Pulsed Neutron Generator-Gamma Ray And Neutron Detector (PNG-GRAND) experiment is an innovative application of the active neutron-gamma ray technology so successfully used in oil field well logging and mineral exploration on Earth, The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA/GSFC) is to bring the PNG-GRAND instrument to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Venus, asterOIds, comets and the satellites of the outer planets, Gamma-Ray Spectrometers have been incorporated into numerous orbital planetary science missions and, especially in the case of Mars Odyssey, have contributed detailed maps of the elemental composition over the entire surface of Mars, Neutron detectors have also been placed onboard orbital missions such as the Lunar Reconnaissance Orbiter and Lunar Prospector to measure the hydrogen content of the surface of the moon, The DAN in situ experiment on the Mars Science Laboratory not only includes neutron detectors, but also has its own neutron generator, However, no one has ever combined the three into one instrument PNG-GRAND combines a pulsed neutron generator (PNG) with gamma ray and neutron detectors to produce a landed instrument that can determine subsurface elemental composition without drilling. We are testing PNG-GRAND at a unique outdoor neutron instrumentation test facility recently constructed at NASA/GSFC that consists of a 2 m x 2 m x 1 m granite structure in an empty field, We will present data from the operation of PNG-GRAND in various experimental configurations on a known sample in a geometry that is identical to that which can be achieved on a planetary surface. We will also compare the material composition results inferred from our experiments to both an independent laboratory elemental composition analysis and MCNPX computer modeling results,
Computed tomography of orbital tumors in the dog.
LeCouteur, R A; Fike, J R; Scagliotti, R H; Cann, C E
1982-04-15
Computed tomography (CT) was used to investigate orbital tumors in 3 dogs. Tumors were clearly defined on transverse CT scans by their inherent density and gross distortion of normal orbital anatomy. Dorsal images synthesized from the original transverse scans were also used to visualize size and extent of tumors. Use of an iodinated contrast medium did not appear to improve localization of tumors in the orbit but was useful for identification of tumor extension into the calvaria. It was concluded that CT offered advantages over existing methods of radiographic diagnosis of orbital tumors and exophthalmos.
NASA Technical Reports Server (NTRS)
Mehrbach, E.; Turkel, S. H.
1972-01-01
A summary of the findings of the data management group of the orbital operations study is presented. Element interfaces, alternate approaches, design concepts, operational procedures, functional requirements, design influences, and approach selection are described. The following interfacing activities are considered: (1) communications, (2) rendezvous, (3) stationkeeping, and (4) detached element operations.
NASA Astrophysics Data System (ADS)
Syusina, O. M.; Chernitsov, A. M.; Tamarov, V. A.; Baturin, A. P.
2011-07-01
The analysis various systems of initial orbital elements of comet Herschel-Rigollet defined in bases on different sample of observations was given. In spite of slight quantity of first appearance observations the introduction of weighting coefficients and the new rejection algorithm is allowed to define the most precise system of orbital elements with the least value of volume confidence region.
Space Object Maneuver Detection Algorithms Using TLE Data
NASA Astrophysics Data System (ADS)
Pittelkau, M.
2016-09-01
An important aspect of Space Situational Awareness (SSA) is detection of deliberate and accidental orbit changes of space objects. Although space surveillance systems detect orbit maneuvers within their tracking algorithms, maneuver data are not readily disseminated for general use. However, two-line element (TLE) data is available and can be used to detect maneuvers of space objects. This work is an attempt to improve upon existing TLE-based maneuver detection algorithms. Three adaptive maneuver detection algorithms are developed and evaluated: The first is a fading-memory Kalman filter, which is equivalent to the sliding-window least-squares polynomial fit, but computationally more efficient and adaptive to the noise in the TLE data. The second algorithm is based on a sample cumulative distribution function (CDF) computed from a histogram of the magnitude-squared |V|2 of change-in-velocity vectors (V), which is computed from the TLE data. A maneuver detection threshold is computed from the median estimated from the CDF, or from the CDF and a specified probability of false alarm. The third algorithm is a median filter. The median filter is the simplest of a class of nonlinear filters called order statistics filters, which is within the theory of robust statistics. The output of the median filter is practically insensitive to outliers, or large maneuvers. The median of the |V|2 data is proportional to the variance of the V, so the variance is estimated from the output of the median filter. A maneuver is detected when the input data exceeds a constant times the estimated variance.
Ab initio molecular simulations with numeric atom-centered orbitals
NASA Astrophysics Data System (ADS)
Blum, Volker; Gehrke, Ralf; Hanke, Felix; Havu, Paula; Havu, Ville; Ren, Xinguo; Reuter, Karsten; Scheffler, Matthias
2009-11-01
We describe a complete set of algorithms for ab initio molecular simulations based on numerically tabulated atom-centered orbitals (NAOs) to capture a wide range of molecular and materials properties from quantum-mechanical first principles. The full algorithmic framework described here is embodied in the Fritz Haber Institute "ab initio molecular simulations" (FHI-aims) computer program package. Its comprehensive description should be relevant to any other first-principles implementation based on NAOs. The focus here is on density-functional theory (DFT) in the local and semilocal (generalized gradient) approximations, but an extension to hybrid functionals, Hartree-Fock theory, and MP2/GW electron self-energies for total energies and excited states is possible within the same underlying algorithms. An all-electron/full-potential treatment that is both computationally efficient and accurate is achieved for periodic and cluster geometries on equal footing, including relaxation and ab initio molecular dynamics. We demonstrate the construction of transferable, hierarchical basis sets, allowing the calculation to range from qualitative tight-binding like accuracy to meV-level total energy convergence with the basis set. Since all basis functions are strictly localized, the otherwise computationally dominant grid-based operations scale as O(N) with system size N. Together with a scalar-relativistic treatment, the basis sets provide access to all elements from light to heavy. Both low-communication parallelization of all real-space grid based algorithms and a ScaLapack-based, customized handling of the linear algebra for all matrix operations are possible, guaranteeing efficient scaling (CPU time and memory) up to massively parallel computer systems with thousands of CPUs.
Machine vision for real time orbital operations
NASA Technical Reports Server (NTRS)
Vinz, Frank L.
1988-01-01
Machine vision for automation and robotic operation of Space Station era systems has the potential for increasing the efficiency of orbital servicing, repair, assembly and docking tasks. A machine vision research project is described in which a TV camera is used for inputing visual data to a computer so that image processing may be achieved for real time control of these orbital operations. A technique has resulted from this research which reduces computer memory requirements and greatly increases typical computational speed such that it has the potential for development into a real time orbital machine vision system. This technique is called AI BOSS (Analysis of Images by Box Scan and Syntax).
Orbital Applications of Electrodynamic Propulsion
1993-12-01
Constraint function 4 Greenwich equatorial frame Nt Amp2 .m2/kg 2 Minimize function W Amp2 r-m2 /kg 2 Constrained minimize function h Equinoctial element ...studies will be how a force, besides the two body force, changes the orbital elements . For this, we turn to the force form of Lagrange’s planetary...singularity in e of Equa- tion (10). To do this we introduce two of the equinoctial elements (18:22): h = esinw k = ecosw 11 Note we easily recover e
Zhang, Wen-Bo; Mao, Chi; Liu, Xiao-Jing; Guo, Chuan-Bin; Yu, Guang-Yan; Peng, Xin
2015-10-01
Orbital floor defects after extensive maxillectomy can cause severe esthetic and functional deformities. Orbital floor reconstruction using the computer-assisted fabricated individual titanium mesh technique is a promising method. This study evaluated the application and clinical outcomes of this technique. This retrospective study included 10 patients with orbital floor defects after maxillectomy performed from 2012 through 2014. A 3-dimensional individual stereo model based on mirror images of the unaffected orbit was obtained to fabricate an anatomically adapted titanium mesh using computer-assisted design and manufacturing. The titanium mesh was inserted into the defect using computer navigation. The postoperative globe projection and orbital volume were measured and the incidence of postoperative complications was evaluated. The average postoperative globe projection was 15.91 ± 1.80 mm on the affected side and 16.24 ± 2.24 mm on the unaffected side (P = .505), and the average postoperative orbital volume was 26.01 ± 1.28 and 25.57 ± 1.89 mL, respectively (P = .312). The mean mesh depth was 25.11 ± 2.13 mm. The mean follow-up period was 23.4 ± 7.7 months (12 to 34 months). Of the 10 patients, 9 did not develop diplopia or a decrease in visual acuity and ocular motility. Titanium mesh exposure was not observed in any patient. All patients were satisfied with their postoperative facial symmetry. Orbital floor reconstruction after extensive maxillectomy with an individual titanium mesh fabricated using computer-assisted techniques can preserve globe projection and orbital volume, resulting in successful clinical outcomes. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Space station needs, attributes and architectural options: Architectural options and selection
NASA Technical Reports Server (NTRS)
Nelson, W. G.
1983-01-01
The approach, study results, and recommendations for defining and selecting space station architectural options are described. Space station system architecture is defined as the arrangement of elements (manned and unmanned on-orbit facilities, shuttle vehicles, orbital transfer vehicles, etc.), the number of these elements, their location (orbital inclination and altitude, and their functional performance capability, power, volume, crew, etc.). Architectural options are evaluated based on the degree of mission capture versus cost and required funding rate. Mission capture refers to the number of missions accommodated by the particular architecture.
Accretional evolution of a planetesimal swarm. I - A new simulation
NASA Technical Reports Server (NTRS)
Spaute, Dominique; Weidenschilling, Stuart J.; Davis, Donald R.; Marzari, Francesco
1991-01-01
This novel simulation of planetary accretion simultaneously treats many interacting heliocentric distance zones and characterizes planetesimals via Keplerian elements. The numerical code employed, in addition to following the size distribution and the orbit-element distribution of a planetesimal swarm from arbitrary size and orbit distributions, treats a small number of the largest bodies as discrete objects with individual orbits. The accretion algorithm used yields good agreement with the analytic solutions; agreement is also obtained with the results of Weatherill and Stewart (1989) for gravitational accretion of planetesimals having equivalent initial conditions.
Feasibility of Reusable Continuous Thrust Spacecraft for Cargo Resupply Missions to Mars
NASA Astrophysics Data System (ADS)
Rabotin, C. B.
Continuous thrust propulsion systems benefit from a much greater efficiency in vacuum than chemical rockets, at the expense of lower instantaneous thrust and high power requirements. The satellite telecommunications industry, known for greatly emphasizing heritage over innovation, now uses electric propulsion for station keeping on a number of spacecraft, and for orbit raising for some smaller satellites, such as the Boeing 702SP platform. Only a few interplanetary missions have relied on continuous thrust for most of their mission, such as ESA's 367 kg SMART-1 and NASA's 1217 kg Dawn mission. The high specific impulse of these continuous thrust engines should make them suitable for transportation of heavy payloads to inner solar system destinations in such a way to limit the dependency on heavy rocket launches. Additionally, such spacecraft should be able to perform orbital insertions at destination in order to deliver the cargo directly in a desired orbit. An example application is designing round-trip missions to Mars to support exploration and eventually colonization. This research investigates the feasibility of return journeys to Mars based on the performance of existing or in-development continuous thrust propulsion systems. In order to determine the business viability of such missions, an emphasis is made on the time of flight during different parts of the mission, the relative velocity with respect to the destination planet, and the fuel requirements. The study looks at the applicability for interplanetary mission design of simple control laws for efficient correction of orbital elements, and of thrusting purely in velocity or anti-velocity direction. The simulations explore different configurations of continuous thrusting technologies using a patched-conics approach. In addition, all simulation scenarios facilitate escape from planetary gravity wells as the initial spacecraft orbit is highly elliptical, both around the Earth and around Mars. This work does not include any optimal trajectory design. For this research, a highly configurable orbit propagation software with SPICE ephemerides was developed from scratch in Go, a modern compiled computer language. The outcome of this research is that simple orbital element control laws do not lead to more efficient or faster interplanetary transfers. In addition, spiraling out of Earth's gravity wells requires a substantial amount of time despite starting from a highly elliptical orbit, and even with clustered high thrust engines like the VASIMR VX-200. Further investigation should look into hybrid solutions with a chemical engine for departing Earth; outbound spirals from Mars take a more reasonable amount of time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yee, Jennifer C.; Johnson, John Asher; Eastman, Jason
Light curves of microlensing events involving stellar binaries and planetary systems can provide information about the orbital elements of the system due to orbital modulations of the caustic structure. Accurately measuring the orbit in either the stellar or planetary case requires detailed modeling of subtle deviations in the light curve. At the same time, the natural, Cartesian parameterization of a microlensing binary is partially degenerate with the microlens parallax. Hence, it is desirable to perform independent tests of the predictions of microlens orbit models using radial velocity (RV) time series of the lens binary system. To this end, we presentmore » 3.5 years of RV monitoring of the binary lens system OGLE-2009-BLG-020 L, for which Skowron et al. constrained all internal parameters of the 200–700 day orbit. Our RV measurements reveal an orbit that is consistent with the predictions of the microlens light curve analysis, thereby providing the first confirmation of orbital elements inferred from microlensing events.« less
NASA Technical Reports Server (NTRS)
Blakely, R. L.
1973-01-01
A G189A simulation of the shuttle orbiter EC/lSS was prepared and used to study payload support capabilities. Two master program libraries of the G189A computer program were prepared for the NASA/JSC computer system. Several new component subroutines were added to the G189A program library and many existing subroutines were revised to improve their capabilities. A number of special analyses were performed in support of a NASA/JSC shuttle orbiter EC/LSS payload support capability study.
Computed tomography in the management of orbital infections associated with dental disease.
Flood, T. P.; Braude, L. S.; Jampol, L. M.; Herzog, S.
1982-01-01
Two patients developed orbital infection secondary to dental infections. In one patient the infection spread from maxillary premolar and molar teeth to the infratemporal and pterygopalatine fossa and then through the inferior orbital fissure to the subperiosteal space. A subperiosteal abscess in the posterior orbital wall developed, which subsequently spread within the muscle cone. In the second patient infection of an anterior maxillary tooth caused a pansinusitis and unilateral orbital cellulitis. In both patients computed tomographic scanning of the orbit proved valuable in localising the infection and, in one case, planning a surgical approach to the orbit. The infection in both patients responded to treatment, with no permanent visual impairment. Appropriate antibiotics and prompt identification and surgical drainage of orbital abscesses are essential for the preservation of vision in cases of orbital infection. Images PMID:7066283
Collision broadened resonance localization in tokamaks excited with ICRF waves
NASA Astrophysics Data System (ADS)
Kerbel, G. D.; McCoy, M. G.
1985-08-01
Advanced wave models used to evaluate ICRH in tokamaks typically use warm plasma theory and allow inhomogeneity in one dimension. The authors have developed a bounce-averaged Fokker-Planck quasilinear computational model which evolves the population of particles on more realistic orbits. Each wave-particle resonance has its own specific interaction amplitude within any given volume element. These data need only be generated once, and appropriately stored for efficient retrieval. The wave-particle resonant interaction then serves as a mechanism by which the diffusion of particle populations can proceed among neighboring orbits. Collisions affect the absorption of RF energy by two quite distinct processes: In addition to the usual relaxation towards the Maxwellian distribution creating velocity gradients which drive quasilinear diffusion, collisions also affect the wave-particle resonance through the mechanism of gyro-phase diffusion. The local specific spectral energy absorption rate is directly calculable once the orbit geometry and populations are determined. The code is constructed in such fashion as to accommodate wave propagation models which provide the wave spectral energy density on a poloidal cross-section. Information provided by the calculation includes the local absorption properties of the medium which can then be exploited to evolve the wave field.
Resonance localization in tokamaks excited with ICRF waves
NASA Astrophysics Data System (ADS)
Kerbel, G. D.; McCoy, M. G.
1985-06-01
Advanced wave model used to evaluate ICRH in tokamaks typically used warm plasma theory and allow inhomogeneity in one dimension. The majority of these calculations neglect the fact that gyrocenters experience the inhomogeneity via their motion parallel to the magnetic field. In strongly driven systems, wave damping can distort the particle distribution function supporting the wave and this produces changes in the absorption. A bounce-averaged Fokker-Planck quasilinear computational model which evolves the population of particles on more realistic orbits is presented. Each wave-particle resonance has its own specific interaction amplitude within any given volume element; these data need only be generated once, and appropriately stored for efficient retrieval. The wave-particle resonant interaction then serves as a mechanism by which the diffusion of particle populations can proceed among neighboring orbits. The local specific spectral energy absorption rate is directly calculable once the orbit geometry and populations are determined. The code is constructed in such fashion as to accommodate wave propagation models which provide the wave spectral energy density on a poloidal cross-section. Information provided by the calculation includes the local absorption properties of the medium which can then be exploited to evolve the wave field.
Givehchi, Sogol; Wong, Yin How; Yeong, Chai Hong; Abdullah, Basri Johan Jeet
2018-04-01
To investigate the effect of radiofrequency ablation (RFA) electrode trajectory on complete tumor ablation using computational simulation. The RFA of a spherical tumor of 2.0 cm diameter along with 0.5 cm clinical safety margin was simulated using Finite Element Analysis software. A total of 86 points inside one-eighth of the tumor volume along the axial, sagittal and coronal planes were selected as the target sites for electrode-tip placement. The angle of the electrode insertion in both craniocaudal and orbital planes ranged from -90° to +90° with 30° increment. The RFA electrode was simulated to pass through the target site at different angles in combination of both craniocaudal and orbital planes before being advanced to the edge of the tumor. Complete tumor ablation was observed whenever the electrode-tip penetrated through the epicenter of the tumor regardless of the angles of electrode insertion in both craniocaudal and orbital planes. Complete tumor ablation can also be achieved by placing the electrode-tip at several optimal sites and angles. Identification of the tumor epicenter on the central slice of the axial images is essential to enhance the success rate of complete tumor ablation during RFA procedures.
A general intermolecular force field based on tight-binding quantum chemical calculations
NASA Astrophysics Data System (ADS)
Grimme, Stefan; Bannwarth, Christoph; Caldeweyher, Eike; Pisarek, Jana; Hansen, Andreas
2017-10-01
A black-box type procedure is presented for the generation of a molecule-specific, intermolecular potential energy function. The method uses quantum chemical (QC) information from our recently published extended tight-binding semi-empirical scheme (GFN-xTB) and can treat non-covalently bound complexes and aggregates with almost arbitrary chemical structure. The necessary QC information consists of the equilibrium structure, Mulliken atomic charges, charge centers of localized molecular orbitals, and also of frontier orbitals and orbital energies. The molecular pair potential includes model density dependent Pauli repulsion, penetration, as well as point charge electrostatics, the newly developed D4 dispersion energy model, Drude oscillators for polarization, and a charge-transfer term. Only one element-specific and about 20 global empirical parameters are needed to cover systems with nuclear charges up to radon (Z = 86). The method is tested for standard small molecule interaction energy benchmark sets where it provides accurate intermolecular energies and equilibrium distances. Examples for structures with a few hundred atoms including charged systems demonstrate the versatility of the approach. The method is implemented in a stand-alone computer code which enables rigid-body, global minimum energy searches for molecular aggregation or alignment.
The discrepancy between dynamical and theoretical mass in the triplet-system 2MASS J10364483+1521394
NASA Astrophysics Data System (ADS)
Calissendorff, Per; Janson, Markus; Köhler, Rainer; Durkan, Stephen; Hippler, Stefan; Dai, Xiaolin; Brandner, Wolfgang; Schlieder, Joshua; Henning, Thomas
2017-08-01
We combine new Lucky Imaging astrometry from New Technology Telescope/AstraLux Sur with already published astrometry from the AstraLux Large M-dwarf Multiplicity Survey to compute orbital elements and individual masses of the 2MASS J10364483+1521394 triple system belonging to the Ursa-Major moving group. The system consists of one primary low-mass M-dwarf orbited by two less massive companions, for which we determine a combined dynamical mass of MB + C = 0.48 ± 0.14 M⊙. We show from the companions' relative motions that they are of equal mass (with a mass ratio of 1.00 ± 0.03), thus 0.24 ± 0.07 M⊙ individually, with a separation of 3.2 ± 0.3 AU, and we conclude that these masses are significantly higher (30%) than what is predicted by theoretical stellar evolutionary models. The biggest uncertainty remains the distance to the system, here adopted as 20.1 ± 2.0 pc based on trigonometric parallax, whose ambiguity has a major impact on the result. With the new observational data we are able to conclude that the orbital period of the BC pair is 8.41+0.04-0.02yr.
Space shuttle low cost/risk avionics study
NASA Technical Reports Server (NTRS)
1971-01-01
All work breakdown structure elements containing any avionics related effort were examined for pricing the life cycle costs. The analytical, testing, and integration efforts are included for the basic onboard avionics and electrical power systems. The design and procurement of special test equipment and maintenance and repair equipment are considered. Program management associated with these efforts is described. Flight test spares and labor and materials associated with the operations and maintenance of the avionics systems throughout the horizontal flight test are examined. It was determined that cost savings can be achieved by using existing hardware, maximizing orbiter-booster commonality, specifying new equipments to MIL quality standards, basing redundancy on cost effective analysis, minimizing software complexity and reducing cross strapping and computer-managed functions, utilizing compilers and floating point computers, and evolving the design as dictated by the horizontal flight test schedules.
Unitary Quantum Relativity. (Work in Progress)
NASA Astrophysics Data System (ADS)
Finkelstein, David Ritz
2017-01-01
A quantum universe is expressed as a finite unitary relativistic quantum computer network. Its addresses are subject to quantum superposition as well as its memory. It has no exact mathematical model. It Its Hilbert space of input processes is also a Clifford algebra with a modular architecture of many ranks. A fundamental fermion is a quantum computer element whose quantum address belongs to the rank below. The least significant figures of its address define its spin and flavor. The most significant figures of it adress define its orbital variables. Gauging arises from the same quantification as space-time. This blurs star images only slightly, but perhaps measurably. General relativity is an approximation that splits nature into an emptiness with a high symmetry that is broken by a filling of lower symmetry. Action principles result from self-organization pf the vacuum.
Spatio-Temporal Data Analysis at Scale Using Models Based on Gaussian Processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stein, Michael
Gaussian processes are the most commonly used statistical model for spatial and spatio-temporal processes that vary continuously. They are broadly applicable in the physical sciences and engineering and are also frequently used to approximate the output of complex computer models, deterministic or stochastic. We undertook research related to theory, computation, and applications of Gaussian processes as well as some work on estimating extremes of distributions for which a Gaussian process assumption might be inappropriate. Our theoretical contributions include the development of new classes of spatial-temporal covariance functions with desirable properties and new results showing that certain covariance models lead tomore » predictions with undesirable properties. To understand how Gaussian process models behave when applied to deterministic computer models, we derived what we believe to be the first significant results on the large sample properties of estimators of parameters of Gaussian processes when the actual process is a simple deterministic function. Finally, we investigated some theoretical issues related to maxima of observations with varying upper bounds and found that, depending on the circumstances, standard large sample results for maxima may or may not hold. Our computational innovations include methods for analyzing large spatial datasets when observations fall on a partially observed grid and methods for estimating parameters of a Gaussian process model from observations taken by a polar-orbiting satellite. In our application of Gaussian process models to deterministic computer experiments, we carried out some matrix computations that would have been infeasible using even extended precision arithmetic by focusing on special cases in which all elements of the matrices under study are rational and using exact arithmetic. The applications we studied include total column ozone as measured from a polar-orbiting satellite, sea surface temperatures over the Pacific Ocean, and annual temperature extremes at a site in New York City. In each of these applications, our theoretical and computational innovations were directly motivated by the challenges posed by analyzing these and similar types of data.« less
Robust Real-Time Wide-Area Differential GPS Navigation
NASA Technical Reports Server (NTRS)
Yunck, Thomas P. (Inventor); Bertiger, William I. (Inventor); Lichten, Stephen M. (Inventor); Mannucci, Anthony J. (Inventor); Muellerschoen, Ronald J. (Inventor); Wu, Sien-Chong (Inventor)
1998-01-01
The present invention provides a method and a device for providing superior differential GPS positioning data. The system includes a group of GPS receiving ground stations covering a wide area of the Earth's surface. Unlike other differential GPS systems wherein the known position of each ground station is used to geometrically compute an ephemeris for each GPS satellite. the present system utilizes real-time computation of satellite orbits based on GPS data received from fixed ground stations through a Kalman-type filter/smoother whose output adjusts a real-time orbital model. ne orbital model produces and outputs orbital corrections allowing satellite ephemerides to be known with considerable greater accuracy than from die GPS system broadcasts. The modeled orbits are propagated ahead in time and differenced with actual pseudorange data to compute clock offsets at rapid intervals to compensate for SA clock dither. The orbital and dock calculations are based on dual frequency GPS data which allow computation of estimated signal delay at each ionospheric point. These delay data are used in real-time to construct and update an ionospheric shell map of total electron content which is output as part of the orbital correction data. thereby allowing single frequency users to estimate ionospheric delay with an accuracy approaching that of dual frequency users.
NASA Computational Case Study: The Flight of Friendship 7
NASA Technical Reports Server (NTRS)
Simpson, David G.
2012-01-01
In this case study, we learn how to compute the position of an Earth-orbiting spacecraft as a function of time. As an exercise, we compute the position of John Glenn's Mercury spacecraft Friendship 7 as it orbited the Earth during the third flight of NASA's Mercury program.
Shuttle OFT Level C navigation requirements
NASA Technical Reports Server (NTRS)
1980-01-01
Detailed requirements for the orbital operations computer loads, OPS 2, and OPS 8 are given. These requirements represent the total on-orbit/rendezvous navigation baseline requirements for the following principal functions: on-orbital/rendezvous navigation sequencer; on-orbit/rendezvous UPP sequencer; on-orbit rendezvous navigation; on-orbit prediction; on-orbit user parameter processing; and landing Site update.
Ghosh, Anirban; Sinha Ray, Suvonil; Chaudhuri, Rajat K; Chattopadhyay, Sudip
2017-02-23
The relativistic multireference (MR) perturbative approach is one of the most successful tools for the description of computationally demanding molecular systems of heavy elements. We present here the ground state dissociation energy surfaces, equilibrium bond lengths, harmonic frequencies, and dissociation energies of Ag 2 , Cu 2 , Au 2 , and I 2 computed using the four-component (4c) relativistic spinors based state-specific MR perturbation theory (SSMRPT) with improved virtual orbital complete active space configuration interaction (IVO-CASCI) functions. The IVO-CASCI method is a simple, robust, useful and lower cost alternative to the complete active space self-consistent field approach for treating quasidegenerate situations. The redeeming features of the resulting method, termed as 4c-IVO-SSMRPT, lies in (i) manifestly size-extensivity, (ii) exemption from intruder problems, (iii) the freedom of convenient multipartitionings of the Hamiltonian, (iv) flexibility of the relaxed and unrelaxed descriptions of the reference coefficients, and (v) manageable cost/accuracy ratio. The present method delivers accurate descriptions of dissociation processes of heavy element systems. Close agreement with reference values has been found for the calculated molecular constants indicating that our 4c-IVOSSMRPT provides a robust and economic protocol for determining the structural properties for the ground state of heavy element molecules with eloquent MR character as it treats correlation and relativity on equal footing.
Broad Search for Unstable Resonant Orbits in the Planar Circular Restricted Three-Body Problem
NASA Technical Reports Server (NTRS)
Anderson, Rodney L.; Campagnola, Stefano; Lantoine, Gregory
2013-01-01
Unstable resonant orbits in the circular restricted three-body problem have increasingly been used for trajectory design using optimization and invariant manifold techniques.In this study, several methods for computing these unstable resonant orbits are explored including flyby maps, continuation from two-body models, and grid searches. Families of orbits are computed focusing on the Jupiter-Europa system, and their characteristics are explored. Different parameters such as period and stability are examined for each set of resonantor bits, and the continuation of several specific orbits is explored in more detail.
Analytical Approach Validation for the Spin-Stabilized Satellite Attitude
NASA Technical Reports Server (NTRS)
Zanardi, Maria Cecilia F. P. S.; Garcia, Roberta Veloso; Kuga, Helio Koiti
2007-01-01
An analytical approach for spin-stabilized spacecraft attitude prediction is presented for the influence of the residual magnetic torques and the satellite in an elliptical orbit. Assuming a quadripole model for the Earth s magnetic field, an analytical averaging method is applied to obtain the mean residual torque in every orbital period. The orbit mean anomaly is used to compute the average components of residual torque in the spacecraft body frame reference system. The theory is developed for time variations in the orbital elements, giving rise to many curvature integrals. It is observed that the residual magnetic torque does not have component along the spin axis. The inclusion of this torque on the rotational motion differential equations of a spin stabilized spacecraft yields conditions to derive an analytical solution. The solution shows that the residual torque does not affect the spin velocity magnitude, contributing only for the precession and the drift of the spin axis of the spacecraft. The theory developed has been applied to the Brazilian s spin stabilized satellites, which are quite appropriated for verification and comparison of the theory with the data generated and processed by the Satellite Control Center of Brazil National Research Institute. The results show the period that the analytical solution can be used to the attitude propagation, within the dispersion range of the attitude determination system performance of Satellite Control Center of Brazil National Research Institute.
Four-Formation In-Track Configuration Maintenance Strategy
NASA Technical Reports Server (NTRS)
Lamy, Alain; Costes, Thierry
2007-01-01
The aim of this paper is to present the analysis conducted by CNES for the maintenance of a formation made of several LEO satellites (typically 4) in several planes (typically 2), 100 km or so apart from each other. The along-track separations between the satellites have to be controlled to within 15 km thanks to orbit correction maneuvers supposed to be performed every 2 weeks. The main difficulty is related to solar activity which is expected to be close to its maximum for the entire mission s lifespan. As a matter of fact, a high solar activity makes orbit prediction harder, and makes it impossible to keep the altitude of the formation constant. Thus, a specific relative maintenance strategy had to be devised in order to meet the mission's requirements. The first part provides a few elements on the mission analysis process that has taken place. The method used for the evaluation of the maneuver frequency is detailed, based on the evaluation of the effects of atmospheric drag on the orbit. The second part is dedicated to the maintenance strategy that has been designed, and particularly to the computation of the reference orbits and of the velocity increments that enable the in-track inter-satellite distances to be maintained within the desired bounds. Finally a few simulation results are presented; they enable the performance of the maintenance strategy to be checked in a more realistic context.
NASA Astrophysics Data System (ADS)
Hai, Pham Minh; Bonello, Philip
2008-12-01
The direct study of the vibration of real engine structures with nonlinear bearings, particularly aero-engines, has been severely limited by the fact that current nonlinear computational techniques are not well-suited for complex large-order systems. This paper introduces a novel implicit "impulsive receptance method" (IRM) for the time domain analysis of such structures. The IRM's computational efficiency is largely immune to the number of modes used and dependent only on the number of nonlinear elements. This means that, apart from retaining numerical accuracy, a much more physically accurate solution is achievable within a short timeframe. Simulation tests on a realistically sized representative twin-spool aero-engine showed that the new method was around 40 times faster than a conventional implicit integration scheme. Preliminary results for a given rotor unbalance distribution revealed the varying degree of journal lift, orbit size and shape at the example engine's squeeze-film damper bearings, and the effect of end-sealing at these bearings.
Thermal and orbital analysis of Earth monitoring Sun-synchronous space experiments
NASA Technical Reports Server (NTRS)
Killough, Brian D.
1990-01-01
The fundamentals of an Earth monitoring Sun-synchronous orbit are presented. A Sun-synchronous Orbit Analysis Program (SOAP) was developed to calculate orbital parameters for an entire year. The output from this program provides the required input data for the TRASYS thermal radiation computer code, which in turn computes the infrared, solar and Earth albedo heat fluxes incident on a space experiment. Direct incident heat fluxes can be used as input to a generalized thermal analyzer program to size radiators and predict instrument operating temperatures. The SOAP computer code and its application to the thermal analysis methodology presented, should prove useful to the thermal engineer during the design phases of Earth monitoring Sun-synchronous space experiments.
Three Orbital Burns to Molniya Orbit Via Shuttle_Centaur G Upper Stage
NASA Technical Reports Server (NTRS)
Williams, Craig H.
2015-01-01
An unclassified analytical trajectory design, performance, and mission study was done for the 1982 to 1986 joint National Aeronautics and Space Administration (NASA)-United States Air Force (USAF) Shuttle/Centaur G upper stage development program to send performance-demanding payloads to high orbits such as Molniya using an unconventional orbit transfer. This optimized three orbital burn transfer to Molniya orbit was compared to the then-baselined two burn transfer. The results of the three dimensional trajectory optimization performed include powered phase steering data and coast phase orbital element data. Time derivatives of the orbital elements as functions of thrust components were evaluated and used to explain the optimization's solution. Vehicle performance as a function of parking orbit inclination was given. Performance and orbital element data was provided for launch windows as functions of launch time. Ground track data was given for all burns and coasts including variation within the launch window. It was found that a Centaur with fully loaded propellant tanks could be flown from a 37 deg inclination low Earth parking orbit and achieve Molniya orbit with comparable performance to the baselined transfer which started from a 57 deg inclined orbit: 9,545 versus 9,552 lb of separated spacecraft weight, respectively. There was a significant reduction in the need for propellant launch time reserve for a 1 hr window: only 78 lb for the three burn transfer versus 320 lb for the two burn transfer. Conversely, this also meant that longer launch windows over more orbital revolutions could be done for the same amount of propellant reserve. There was no practical difference in ground tracking station or airborne assets needed to secure telemetric data, even though the geometric locations of the burns varied considerably. There was a significant adverse increase in total mission elapsed time for the three versus two burn transfer (12 vs. 1-1/4 hr), but could be accommodated by modest modifications to Centaur systems. Future applications were discussed. The three burn transfer was found to be a viable, arguably preferable, alternative to the two burn transfer.
Three Orbital Burns to Molniya Orbit via Shuttle Centaur G Upper Stage
NASA Technical Reports Server (NTRS)
Williams, Craig H.
2014-01-01
An unclassified analytical trajectory design, performance, and mission study was done for the 1982-86 joint NASA-USAF Shuttle/Centaur G upper stage development program to send performance-demanding payloads to high orbits such as Molniya using an unconventional orbit transfer. This optimized three orbital burn transfer to Molniya orbit was compared to the then-baselined two burn transfer. The results of the three dimensional trajectory optimization performed include powered phase steering data and coast phase orbital element data. Time derivatives of the orbital elements as functions of thrust components were evaluated and used to explain the optimization's solution. Vehicle performance as a function of parking orbit inclination was given. Performance and orbital element data was provided for launch windows as functions of launch time. Ground track data was given for all burns and coasts including variation within the launch window. It was found that a Centaur with fully loaded propellant tanks could be flown from a 37deg inclination low Earth parking orbit and achieve Molniya orbit with comparable performance to the baselined transfer which started from a 57deg inclined orbit: 9,545 lb vs. 9,552 lb of separated spacecraft weight respectively. There was a significant reduction in the need for propellant launch time reserve for a one hour window: only 78 lb for the three burn transfer vs. 320 lb for the two burn transfer. Conversely, this also meant that longer launch windows over more orbital revolutions could be done for the same amount of propellant reserve. There was no practical difference in ground tracking station or airborne assets needed to secure telemetric data, even though the geometric locations of the burns varied considerably. There was a significant adverse increase in total mission elapsed time for the three vs. two burn transfer (12 vs. 11/4 hrs), but could be accommodated by modest modifications to Centaur systems. Future applications were discussed. The three burn transfer was found to be a viable, arguably preferable, alternative to the two burn transfer.
NASA Technical Reports Server (NTRS)
King, J. C.
1976-01-01
The generation of satellite coverage patterns is facilitated by three basic strategies: use of a simplified physical model, permitting rapid closed-form calculation; separation of earth rotation and nodal precession from initial geometric analyses; and use of symmetries to construct traces of indefinite length by repetitive transposition of basic one-quadrant elements. The complete coverage patterns generated consist of a basic nadir trace plus a number of associated off-nadir traces, one for each sensor swath edge to be delineated. Each trace is generated by transposing one or two of the basic quadrant elements into a circle on a nonrotating earth model sphere, after which the circle is expanded into the actual 'helical' pattern by adding rotational displacements to the longitude coordinates. The procedure adapts to the important periodic coverage cases by direct insertion of the characteristic integers N and R (days and orbital revolutions, respectively, per coverage period).
Factors affecting frequency and orbit utilization by high power transmission satellite systems.
NASA Technical Reports Server (NTRS)
Kuhns, P. W.; Miller, E. F.; O'Malley, T. A.
1972-01-01
The factors affecting the sharing of the geostationary orbit by high power (primarily television) satellite systems having the same or adjacent coverage areas and by satellites occupying the same orbit segment are examined and examples using the results of computer computations are given. The factors considered include: required protection ratio, receiver antenna patterns, relative transmitter power, transmitter antenna patterns, satellite grouping, and coverage pattern overlap. The results presented indicate the limits of system characteristics and orbit deployment which can result from mixing systems.
Factors affecting frequency and orbit utilization by high power transmission satellite systems
NASA Technical Reports Server (NTRS)
Kuhns, P. W.; Miller, E. F.; Malley, T. A.
1972-01-01
The factors affecting the sharing of the geostationary orbit by high power (primarily television) satellite systems having the same or adjacent coverage areas and by satellites occupying the same orbit segment are examined and examples using the results of computer computations are given. The factors considered include: required protection ratio, receiver antenna patterns, relative transmitter power, transmitter antenna patterns, satellite grouping, and coverage pattern overlap. The results presented indicated the limits of system characteristics and orbit deployment which can result from mixing systems.
French Meteor Network for High Precision Orbits of Meteoroids
NASA Technical Reports Server (NTRS)
Atreya, P.; Vaubaillon, J.; Colas, F.; Bouley, S.; Gaillard, B.; Sauli, I.; Kwon, M. K.
2011-01-01
There is a lack of precise meteoroids orbit from video observations as most of the meteor stations use off-the-shelf CCD cameras. Few meteoroids orbit with precise semi-major axis are available using film photographic method. Precise orbits are necessary to compute the dust flux in the Earth s vicinity, and to estimate the ejection time of the meteoroids accurately by comparing them with the theoretical evolution model. We investigate the use of large CCD sensors to observe multi-station meteors and to compute precise orbit of these meteoroids. An ideal spatial and temporal resolution to get an accuracy to those similar of photographic plates are discussed. Various problems faced due to the use of large CCD, such as increasing the spatial and the temporal resolution at the same time and computational problems in finding the meteor position are illustrated.
Electronic Structure at Electrode/Electrolyte Interfaces in Magnesium based Batteries
NASA Astrophysics Data System (ADS)
Balachandran, Janakiraman; Siegel, Donald
2015-03-01
Magnesium is a promising multivalent element for use in next generation electrochemical energy storage systems. However, a wide range of challenges such as low coulombic efficiency, low/varying capacity and cyclability need to be resolved in order to realize Mg based batteries. Many of these issues can be related to interfacial phenomena between the Mg anode and common electrolytes. Ab-initio based computational models of these interfaces can provide insights on the interfacial interactions that can be difficult to probe experimentally. In this work we present ab-initio computations of common electrolyte solvents (THF, DME) in contact with two model electrode surfaces namely -- (i) an ``SEI-free'' electrode based on Mg metal and, (ii) a ``passivated'' electrode consisting of MgO. We perform GW calculations to predict the reorganization of the molecular orbitals (HOMO/LUMO) upon contact with the these surfaces and their alignment with respect to the Fermi energy of the electrodes. These computations are in turn compared with more efficient GGA (PBE) & Hybrid (HSE) functional calculations. The results obtained from these computations enable us to qualitatively describe the stability of these solvent molecules at electrode-electrolyte interfaces
Dynamical lifetimes of asteroids in retrograde orbits
NASA Astrophysics Data System (ADS)
Kankiewicz, Paweł; Włodarczyk, Ireneusz
2017-07-01
The population of known minor bodies in retrograde orbits (I > 90°) that are classified as asteroids is still growing. The aim of our study was to estimate the dynamical lifetimes of these bodies using the latest observational data, including astrometry and physical properties. We selected 25 asteroids with the best-determined orbital elements. We studied their dynamical evolution in the past and future for ±100 Myr (±1 Gyr for three particular cases). We first used orbit determination and cloning to produce swarms of test particles. These swarms were then input into long-term numerical integrations, and the orbital elements were averaged. Next, we collected the available thermal properties of our objects and we used them in an enhanced dynamical model with Yarkovsky forces. We also used a gravitational model for comparison. Finally, we estimated the median lifetimes of 25 asteroids. We found three objects whose retrograde orbits were stable with a dynamical lifetime τ ˜ 10-100 Myr. A large portion of the objects studied displayed smaller values of τ (τ ˜ 1 Myr). In addition, we studied the possible influence of the Yarkovsky effect on our results. We found that the Yarkovsky effect can have a significant influence on the lifetimes of asteroids in retrograde orbits. Because of the presence of this effect, it is possible that the median lifetimes of these objects are extended. Additionally, the changes in orbital elements, caused by Yarkovsky forces, appear to depend on the integration direction. To explain this more precisely, the same model based on new physical parameters, determined from future observations, will be required.
Interacting Winds in Eclipsing Symbiotic Systems - The Case Study of EG Andromedae
NASA Astrophysics Data System (ADS)
Calabrò, Emanuele
2014-03-01
We report the mathematical representation of the so called eccentric eclipse model, whose numerical solutions can be used to obtain the physical parameters of a quiescent eclipsing symbiotic system. Indeed the nebular region produced by the collision of the stellar winds should be shifted to the orbital axis because of the orbital motion of the system. This mechanism is not negligible, and it led us to modify the classical concept of an eclipse. The orbital elements obtained from spectroscopy and photometry of the symbiotic EG Andromedae were used to test the eccentric eclipse model. Consistent values for the unknown orbital elements of this symbiotic were obtained. The physical parameters are in agreement with those obtained by means of other simulations for this system.
Orbital transfer vehicle launch operations study. Volume 2: Detailed summary
NASA Technical Reports Server (NTRS)
1986-01-01
A series of Operational Design Drivers were identified. Several of these could have significant impact(s) on program costs. These recommendations, for example, include such items as: complete factory assembly and checkout prior to shipment to the ground launch site to make significant reductions in time required at the launch site as well as overall manpower required to do this work; minimize use of nonstandard equipment when orbiter provided equipment is available; and require commonality (or interchangeability) of subsystem equipment elements that are common to the space station, Orbit Maneuvering Vehicles, and/or Orbit Transfer Vehicles. Several additional items were identified that will require a significant amount of management attention (and direction) to resolve. Key elements of the space based processing plans are discussed.
A new method for computing the gyrocenter orbit in the tokamak configuration
NASA Astrophysics Data System (ADS)
Xu, Yingfeng
2013-10-01
Gyrokinetic theory is an important tool for studying the long-time behavior of magnetized plasmas in Tokamaks. The gyrocenter trajectory determined by the gyrocenter equations of motion can be computed by using a special kind of the Lie-transform perturbation method. The corresponding Lie-transform called I-transform makes that the transformed equations of motion have the same form as the unperturbed ones. The gyrocenter trajectory in short time is divided into two parts. One is along the unperturbed orbit. The other one, which is related to perturbation, is determined by the I-transform generating vector. The numerical gyrocenter orbit code based on this new method has been developed in the tokamak configuration and benchmarked with the other orbit code in some simple cases. Furthermore, it is clearly demonstrated that this new method for computing gyrocenter orbit is equivalent to the gyrocenter Hamilton equations of motion up to the second order in timestep. The new method can be applied to the gyrokinetic simulation. The gyrocenter orbit of the unperturbed part determined by the equilibrium fields can be computed previously in the gyrokinetic simulation, and the corresponding time consumption is neglectable.
LOP- LONG-TERM ORBIT PREDICTOR
NASA Technical Reports Server (NTRS)
Kwok, J. H.
1994-01-01
The Long-Term Orbit Predictor (LOP) trajectory propagation program is a useful tool in lifetime analysis of orbiting spacecraft. LOP is suitable for studying planetary orbit missions with reconnaissance (flyby) and exploratory (mapping) trajectories. Sample data is included for a geosynchronous station drift cycle study, a Venus radar mapping strategy, a frozen orbit about Mars, and a repeat ground trace orbit. LOP uses the variation-of-parameters method in formulating the equations of motion. Terms involving the mean anomaly are removed from numerical integrations so that large step sizes, on the order of days, are possible. Consequently, LOP executes much faster than programs based on Cowell's method, such as the companion program ASAP (the Artificial Satellite Analysis Program, NPO-17522, also available through COSMIC). The program uses a force model with a gravity field of up to 21 by 21, lunisolar perturbation, drag, and solar radiation pressure. The input includes classical orbital elements (either mean or oscillating), orbital elements of the sun relative to the planet, reference time and dates, drag coefficients, gravitational constants, planet radius, rotation rate. The printed output contains the classical elements for each time step or event step, and additional orbital data such as true anomaly, eccentric anomaly, latitude, longitude, periapsis altitude, and the rate of change per day of certain elements. Selected output is additionally written to a plot file for postprocessing by the user. LOP is written in FORTRAN 77 for batch execution on IBM PC compatibles running MS-DOS with a minimum of 256K RAM. Recompiling the source requires the Lahey F77 v2.2 compiler. The LOP package includes examples that use LOTUS 1-2-3 for graphical displays, but any graphics software package should be able to handle the ASCII plot file. The program is available on two 5.25 inch 360K MS-DOS format diskettes. The program was written in 1986 and last updated in 1989. LOP is a copyrighted work with all copyright vested in NASA. IBM PC is a registered trademark of International Business Machines Corporation. Lotus 1-2-3 is a registered trademark of Lotus Development Corporation. MS-DOS is a trademark of Microsoft Corporation.
Orbital evolution of 95/P Chiron, 39P/Oterma, 29P/Shwassmann-Wachmann 1, and of 33 Centaurs
NASA Astrophysics Data System (ADS)
Kovalenko, N. S.; Churyumov, K. I.; Babenko, Yu. G.
2011-12-01
The paper is devoted to numerical modeling of orbital evolution of 34 Centaurs, and 2 distant Jupiter-family comets - 39P/Oterma and 29P/Shwassmann-Wachmann 1. As a result the evolutionary tracks of orbital elements of 33 Centaurs and 3 comets (95/P Chiron (2060), 39P/Oterma and 29P/Shwassmann-Wachmann 1) are obtained. The integrations were produced for 1 Myr back and forth in time starting at epoch and using the implicit single sequence Everhart methods. The statistical analysis of numerical integrations results was done, trends in changes of Centaurs' orbital elements in the past and in the future are revealed. The part of Centaurs that are potential comets is defined by the values of perihelia distributions for modeled orbits. It is shown that Centaurs may transits into orbits typical for Jupiter-family comets, and vice versa. Centaurs represent one of possible sources for replenishment of JFCs population, but other sources are also necessary.
Using heteroclinic orbits to quantify topological entropy in fluid flows
NASA Astrophysics Data System (ADS)
Sattari, Sulimon; Chen, Qianting; Mitchell, Kevin A.
2016-03-01
Topological approaches to mixing are important tools to understand chaotic fluid flows, ranging from oceanic transport to the design of micro-mixers. Typically, topological entropy, the exponential growth rate of material lines, is used to quantify topological mixing. Computing topological entropy from the direct stretching rate is computationally expensive and sheds little light on the source of the mixing. Earlier approaches emphasized that topological entropy could be viewed as generated by the braiding of virtual, or "ghost," rods stirring the fluid in a periodic manner. Here, we demonstrate that topological entropy can also be viewed as generated by the braiding of ghost rods following heteroclinic orbits instead. We use the machinery of homotopic lobe dynamics, which extracts symbolic dynamics from finite-length pieces of stable and unstable manifolds attached to fixed points of the fluid flow. As an example, we focus on the topological entropy of a bounded, chaotic, two-dimensional, double-vortex cavity flow. Over a certain parameter range, the topological entropy is primarily due to the braiding of a period-three orbit. However, this orbit does not explain the topological entropy for parameter values where it does not exist, nor does it explain the excess of topological entropy for the entire range of its existence. We show that braiding by heteroclinic orbits provides an accurate computation of topological entropy when the period-three orbit does not exist, and that it provides an explanation for some of the excess topological entropy when the period-three orbit does exist. Furthermore, the computation of symbolic dynamics using heteroclinic orbits has been automated and can be used to compute topological entropy for a general 2D fluid flow.
Adaptive particle swarm optimization for optimal orbital elements of binary stars
NASA Astrophysics Data System (ADS)
Attia, Abdel-Fattah
2016-12-01
The paper presents an adaptive particle swarm optimization (APSO) as an alternative method to determine the optimal orbital elements of the star η Bootis of MK type G0 IV. The proposed algorithm transforms the problem of finding periodic orbits into the problem of detecting global minimizers as a function, to get a best fit of Keplerian and Phase curves. The experimental results demonstrate that the proposed approach of APSO generally more accurate than the standard particle swarm optimization (PSO) and other published optimization algorithms, in terms of solution accuracy, convergence speed and algorithm reliability.
Computer Series, 114: MO Theory Made Visible.
ERIC Educational Resources Information Center
Mealli, Carlo; Proserpio, Davide M.
1990-01-01
A collection of Molecular Orbital (MO) programs that have been integrated into routines and programs to illustrate MO theory are presented. Included are discussions of Computer Aided Composition of Atomic Orbitals (CACAO) and Walsh diagrams. (CW)
Dynamic Modeling and Testing of MSRR-1 for Use in Microgravity Environments Analysis
NASA Technical Reports Server (NTRS)
Gattis, Christy; LaVerde, Bruce; Howell, Mike; Phelps, Lisa H. (Technical Monitor)
2001-01-01
Delicate microgravity science is unlikely to succeed on the International Space Station if vibratory and transient disturbers corrupt the environment. An analytical approach to compute the on-orbit acceleration environment at science experiment locations within a standard payload rack resulting from these disturbers is presented. This approach has been grounded by correlation and comparison to test verified transfer functions. The method combines the results of finite element and statistical energy analysis using tested damping and modal characteristics to provide a reasonable approximation of the total root-mean-square (RMS) acceleration spectra at the interface to microgravity science experiment hardware.
Solar electric geocentric transfer with attitude constraints: Analysis
NASA Technical Reports Server (NTRS)
Sackett, L. L.; Malchow, H. L.; Delbaum, T. N.
1975-01-01
A time optimal or nearly time optimal trajectory program was developed for solar electric geocentric transfer with or without attitude constraints and with an optional initial high thrust stage. The method of averaging reduces computation time. A nonsingular set of orbital elements is used. The constraints, which are those of one of the SERT-C designs, introduce complexities into the analysis and the solution yields possible discontinuous changes in thrust direction. The power degradation due to VanAllen radiation is modeled analytically. A wide range of solar cell characteristics is assumed. Effects such as oblateness and shadowing are included. The analysis and the results of many example runs are included.
Operation of the computer model for direct atomic oxygen exposure of Earth satellites
NASA Technical Reports Server (NTRS)
Bourassa, R. J.; Gruenbaum, P. E.; Gillis, J. R.; Hargraves, C. R.
1995-01-01
One of the primary causes of material degradation in low Earth orbit (LEO) is exposure to atomic oxygen. When atomic oxygen molecules collide with an orbiting spacecraft, the relative velocity is 7 to 8 km/sec and the collision energy is 4 to 5 eV per atom. Under these conditions, atomic oxygen may initiate a number of chemical and physical reactions with exposed materials. These reactions contribute to material degradation, surface erosion, and contamination. Interpretation of these effects on materials and the design of space hardware to withstand on-orbit conditions requires quantitative knowledge of the atomic oxygen exposure environment. Atomic oxygen flux is a function of orbit altitude, the orientation of the orbit plan to the Sun, solar and geomagnetic activity, and the angle between exposed surfaces and the spacecraft heading. We have developed a computer model to predict the atomic oxygen exposure of spacecraft in low Earth orbit. The application of this computer model is discussed.
ERIC Educational Resources Information Center
Orenha, Renato P.; Galembeck, Sérgio E.
2014-01-01
This computational experiment presents qualitative molecular orbital (QMO) and computational quantum chemistry exercises of NO, NO[superscript+], and NO[superscript-]. Initially students explore several properties of the target molecules by Lewis diagrams and the QMO theory. Then, they compare qualitative conclusions with EHT and DFT calculations…
Autonomous Navigation for Deep Space Missions
NASA Technical Reports Server (NTRS)
Bhaskaran, Shyam
2012-01-01
Navigation (determining where the spacecraft is at any given time, controlling its path to achieve desired targets), performed using ground-in- the-loop techniques: (1) Data includes 2-way radiometric (Doppler, range), interferometric (Delta- Differential One-way Range), and optical (images of natural bodies taken by onboard camera) (2) Data received on the ground, processed to determine orbit, commands sent to execute maneuvers to control orbit. A self-contained, onboard, autonomous navigation system can: (1) Eliminate delays due to round-trip light time (2) Eliminate the human factors in ground-based processing (3) Reduce turnaround time from navigation update to minutes, down to seconds (4) React to late-breaking data. At JPL, we have developed the framework and computational elements of an autonomous navigation system, called AutoNav. It was originally developed as one of the technologies for the Deep Space 1 mission, launched in 1998; subsequently used on three other spacecraft, for four different missions. The primary use has been on comet missions to track comets during flybys, and impact one comet.
Spin-orbit coupling induced two-electron relaxation in silicon donor pairs
NASA Astrophysics Data System (ADS)
Song, Yang; Das Sarma, S.
2017-09-01
We unravel theoretically a key intrinsic relaxation mechanism among the low-lying singlet and triplet donor-pair states in silicon, an important element in the fast-developing field of spintronics and quantum computation. Despite the perceived weak spin-orbit coupling (SOC) in Si, we find that our discovered relaxation mechanism, combined with the electron-phonon and interdonor interactions, drives the transitions in the two-electron states over a large range of donor coupling regimes. The scaling of the relaxation rate with interdonor exchange interaction J goes from J5 to J4 at the low to high temperature limits. Our analytical study draws on the symmetry analysis over combined band, donor envelope, and valley configurations. It uncovers naturally the dependence on the donor-alignment direction and triplet spin orientation, and especially on the dominant SOC source from donor impurities. While a magnetic field is not necessary for this relaxation, unlike in the single-donor spin relaxation, we discuss the crossover behavior with increasing Zeeman energy in order to facilitate comparison with experiments.
NASA Astrophysics Data System (ADS)
Diehl, Roger E.; Schinnerer, Ralph G.; Williamson, Walton E.; Boden, Daryl G.
The present conference discusses topics in orbit determination, tethered satellite systems, celestial mechanics, guidance optimization, flexible body dynamics and control, attitude dynamics and control, Mars mission analyses, earth-orbiting mission analysis/debris, space probe mission analyses, and orbital computation numerical analyses. Attention is given to electrodynamic forces for control of tethered satellite systems, orbiting debris threats to asteroid flyby missions, launch velocity requirements for interceptors of short range ballistic missiles, transfers between libration-point orbits in the elliptic restricted problem, minimum fuel spacecraft reorientation, orbital guidance for hitting a fixed point at maximum speed, efficient computation of satellite visibility periods, orbit decay and reentry prediction for space debris, and the determination of satellite close approaches.
NASA Technical Reports Server (NTRS)
Diehl, Roger E. (Editor); Schinnerer, Ralph G. (Editor); Williamson, Walton E. (Editor); Boden, Daryl G. (Editor)
1992-01-01
The present conference discusses topics in orbit determination, tethered satellite systems, celestial mechanics, guidance optimization, flexible body dynamics and control, attitude dynamics and control, Mars mission analyses, earth-orbiting mission analysis/debris, space probe mission analyses, and orbital computation numerical analyses. Attention is given to electrodynamic forces for control of tethered satellite systems, orbiting debris threats to asteroid flyby missions, launch velocity requirements for interceptors of short range ballistic missiles, transfers between libration-point orbits in the elliptic restricted problem, minimum fuel spacecraft reorientation, orbital guidance for hitting a fixed point at maximum speed, efficient computation of satellite visibility periods, orbit decay and reentry prediction for space debris, and the determination of satellite close approaches.
NASA Technical Reports Server (NTRS)
Lara, Martin; Palacian, Jesus F.
2007-01-01
Frozen orbits of the Hill problem are determined in the double averaged problem, where short and long period terms are removed by means of Lie transforms. The computation of initial conditions of corresponding quasi periodic solutions in the non-averaged problem is straightforward for the perturbation method used provides the explicit equations of the transformation that connects the averaged and non-averaged models. A fourth order analytical theory reveals necessary for the accurate computation of quasi periodic, frozen orbits.
The use of computer graphic simulation in the development of on-orbit tele-robotic systems
NASA Technical Reports Server (NTRS)
Fernandez, Ken; Hinman, Elaine
1987-01-01
This paper describes the use of computer graphic simulation techniques to resolve critical design and operational issues for robotic systems used for on-orbit operations. These issues are robot motion control, robot path-planning/verification, and robot dynamics. The major design issues in developing effective telerobotic systems are discussed, and the use of ROBOSIM, a NASA-developed computer graphic simulation tool, to address these issues is presented. Simulation plans for the Space Station and the Orbital Maneuvering Vehicle are presented and discussed.
DASTCOM5: A Portable and Current Database of Asteroid and Comet Orbit Solutions
NASA Astrophysics Data System (ADS)
Giorgini, Jon D.; Chamberlin, Alan B.
2014-11-01
A portable direct-access database containing all NASA/JPL asteroid and comet orbit solutions, with the software to access it, is available for download (ftp://ssd.jpl.nasa.gov/pub/xfr/dastcom5.zip; unzip -ao dastcom5.zip). DASTCOM5 contains the latest heliocentric IAU76/J2000 ecliptic osculating orbital elements for all known asteroids and comets as determined by a least-squares best-fit to ground-based optical, spacecraft, and radar astrometric measurements. Other physical, dynamical, and covariance parameters are included when known. A total of 142 parameters per object are supported within DASTCOM5. This information is suitable for initializing high-precision numerical integrations, assessing orbit geometry, computing trajectory uncertainties, visual magnitude, and summarizing physical characteristics of the body. The DASTCOM5 distribution is updated as often as hourly to include newly discovered objects or orbit solution updates. It includes an ASCII index of objects that supports look-ups based on name, current or past designation, SPK ID, MPC packed-designations, or record number. DASTCOM5 is the database used by the NASA/JPL Horizons ephemeris system. It is a subset exported from a larger MySQL-based relational Small-Body Database ("SBDB") maintained at JPL. The DASTCOM5 distribution is intended for programmers comfortable with UNIX/LINUX/MacOSX command-line usage who need to develop stand-alone applications. The goal of the implementation is to provide small, fast, portable, and flexibly programmatic access to JPL comet and asteroid orbit solutions. The supplied software library, examples, and application programs have been verified under gfortran, Lahey, Intel, and Sun 32/64-bit Linux/UNIX FORTRAN compilers. A command-line tool ("dxlook") is provided to enable database access from shell or script environments.
NASA Astrophysics Data System (ADS)
Molaverdikhani, Karan; Ajabshirizadeh, Ali; Davoudifar, Pantea; Lashkanpour, Majid
2016-09-01
Orbital debris are long-standing threats to space systems. They also contribute to the flux of macroscopic particles into the Earth's atmosphere and eventually affects environmental processes across several other related regions. As impactful space debris may be, debris along with other Low Earth Orbit (LEO) orbiting objects, also serve as valuable long-monitoring probes to deduce the properties of geospace environment in-situ. We define the Daily Decay Rate (DDR) as a suitable indicator of how the Earth's space-atmosphere interaction region (SAIR) responds to solar activity and how solar activity directly affects the orbital evolution of a LEO orbiter. We present a computationally simplified technique that simultaneously solves the motion equations for DDR and cross-sectional area to mass ratio (A/m) from consecutive TLE records. By evaluating more than 50 million TLE records we estimate A/m of 15,307 NORAD-indexed objects and determine how DDR varies. We observe the thermospheric ;natural thermostat; in our results, consistent with previous studies. We compare the observed DDRs with two models based on NRLMSISE-00 and DTM-2013, and present evidence the models display a systemic altitudinal bias. We propose several possibilities to explain this altitudinal bias including the overestimated CD at low altitudes in our models (presumably due to the despinning effect of perturbing forces on the orbiting objects), and incomplete and limited coverage of in-situ observations at high solar activity. We conclude that the density models do not reliably reproduce the densities and atmospheric-thermospheric behaviors at high solar active conditions, especially for F10.7 cm above 300 sfu.
Precision Orbit of δ Delphini and Prospects for Astrometric Detection of Exoplanets
NASA Astrophysics Data System (ADS)
Gardner, Tyler; Monnier, John D.; Fekel, Francis C.; Williamson, Mike; Duncan, Douglas K.; White, Timothy R.; Ireland, Michael; Adams, Fred C.; Barman, Travis; Baron, Fabien; ten Brummelaar, Theo; Che, Xiao; Huber, Daniel; Kraus, Stefan; Roettenbacher, Rachael M.; Schaefer, Gail; Sturmann, Judit; Sturmann, Laszlo; Swihart, Samuel J.; Zhao, Ming
2018-03-01
Combining visual and spectroscopic orbits of binary stars leads to a determination of the full 3D orbit, individual masses, and distance to the system. We present a full analysis of the evolved binary system δ Delphini using astrometric data from the MIRC and PAVO instruments on the CHARA long-baseline interferometer, 97 new spectra from the Fairborn Observatory, and 87 unpublished spectra from the Lick Observatory. We determine the full set of orbital elements for δ Del, along with masses of 1.78 ± 0.07 M ⊙ and 1.62 ± 0.07 M ⊙ for each component, and a distance of 63.61 ± 0.89 pc. These results are important in two contexts: for testing stellar evolution models and for defining the detection capabilities for future planet searches. We find that the evolutionary state of this system is puzzling, as our measured flux ratios, radii, and masses imply a ∼200 Myr age difference between the components, using standard stellar evolution models. Possible explanations for this age discrepancy include mass transfer scenarios with a now-ejected tertiary companion. For individual measurements taken over a span of two years, we achieve <10 μas precision on the differential position with 10 minute observations. The high precision of our astrometric orbit suggests that exoplanet detection capabilities are within reach of MIRC at CHARA. We compute exoplanet detection limits around δ Del and conclude that, if this precision is extended to wider systems, we should be able to detect most exoplanets >2 M J on orbits >0.75 au around individual components of hot binary stars via differential astrometry.
The multifacet graphically contracted function method. I. Formulation and implementation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shepard, Ron; Brozell, Scott R.; Gidofalvi, Gergely
2014-08-14
The basic formulation for the multifacet generalization of the graphically contracted function (MFGCF) electronic structure method is presented. The analysis includes the discussion of linear dependency and redundancy of the arc factor parameters, the computation of reduced density matrices, Hamiltonian matrix construction, spin-density matrix construction, the computation of optimization gradients for single-state and state-averaged calculations, graphical wave function analysis, and the efficient computation of configuration state function and Slater determinant expansion coefficients. Timings are given for Hamiltonian matrix element and analytic optimization gradient computations for a range of model problems for full-CI Shavitt graphs, and it is observed that bothmore » the energy and the gradient computation scale as O(N{sup 2}n{sup 4}) for N electrons and n orbitals. The important arithmetic operations are within dense matrix-matrix product computational kernels, resulting in a computationally efficient procedure. An initial implementation of the method is used to present applications to several challenging chemical systems, including N{sub 2} dissociation, cubic H{sub 8} dissociation, the symmetric dissociation of H{sub 2}O, and the insertion of Be into H{sub 2}. The results are compared to the exact full-CI values and also to those of the previous single-facet GCF expansion form.« less
NASA Technical Reports Server (NTRS)
Jones, H. W.
1984-01-01
The computer-assisted C-matrix, Loewdin-alpha-function, single-center expansion method in spherical harmonics has been applied to the three-center nuclear-attraction integral (potential due to the product of separated Slater-type orbitals). Exact formulas are produced for 13 terms of an infinite series that permits evaluation to ten decimal digits of an example using 1s orbitals.
NASA Technical Reports Server (NTRS)
Barker, Edwin S.; Matney, M. J.; Liou, J.-C.; Abercromby, K. J.; Rodriquez, H. M.; Seitzer, P.
2006-01-01
Since 2002 the National Aeronautics and Space Administration (NASA) has carried out an optical survey of the debris environment in the geosynchronous Earth-orbit (GEO) region with the Michigan Orbital Debris Survey Telescope (MODEST) in Chile. The survey coverage has been similar for 4 of the 5 years allowing us to follow the orbital evolution of Correlated Targets (CTs), both controlled and un-controlled objects, and Un-Correlated Targets (UCTs). Under gravitational perturbations the distributions of uncontrolled objects, both CTs and UCTs, in GEO orbits will evolve in predictable patterns, particularly evident in the inclination and right ascension of the ascending node (RAAN) distributions. There are several clusters (others have used a "cloud" nomenclature) in observed distributions that show evolution from year to year in their inclination and ascending node elements. However, when MODEST is in survey mode (field-of-view approx.1.3deg) it provides only short 5-8 minute orbital arcs which can only be fit under the assumption of a circular orbit approximation (ACO) to determine the orbital parameters. These ACO elements are useful only in a statistical sense as dedicated observing runs would be required to obtain sufficient orbital coverage to determine a set of accurate orbital elements and then to follow their evolution. Identification of the source(s) for these "clusters of UCTs" would be advantageous to the overall definition of the GEO orbital debris environment. This paper will set out to determine if the ACO elements can be used to in a statistical sense to identify the source of the "clustering of UCTs" roughly centered on an inclination of 12deg and a RAAN of 345deg. The breakup of the Titan 3C-4 transtage on February 21, 1992 has been modeled using NASA s LEGEND (LEO-to-GEO Environment Debris) code to generate a GEO debris cloud. Breakup fragments are created based on the NASA Standard Breakup Model (including fragment size, area-to-mass (A/M), and delta-V distributions). Once fragments are created, they are propagated forward in time with a subroutine GEOPROP. Perturbations included in GEOPROP are those due to solar/lunar gravity, radiation pressure, and major geopotential terms. The question to be addressed: are the UCTs detected by MODEST in this inclination/RAAN region related to the Titan 3C-4 breakup? Discussion will include the observational biases in attempting to detect a specific, uncontrolled target during given observing session. These restrictions include: (1) the length of the observing session which is 8 hours or less at any given date or declination; (2) the assumption of ACO elements for detected object when the breakup model predicts debris with non-zero eccentricities; (3) the size and illumination or brightness of the debris predicted by the model and the telescope/sky limiting magnitude.
Power subsystem performance prediction /PSPP/ computer program.
NASA Technical Reports Server (NTRS)
Weiner, H.; Weinstein, S.
1972-01-01
A computer program which simulates the operation of the Viking Orbiter Power Subsystem has been developed. The program simulates the characteristics and interactions of a solar array, battery, battery charge controls, zener diodes, power conditioning equipment, and the battery spacecraft and zener diode-spacecraft thermal interfaces. This program has been used to examine the operation of the Orbiter power subsystem during critical phases of the Viking mission - from launch, through midcourse maneuvers, Mars orbital insertion, orbital trims, Lander separation, solar occultations and unattended operation - until the end of the mission. A typical computer run for the first 24 hours after launch is presented which shows the variations in solar array, zener diode, battery charger, batteries and user load characteristics during this period.
Muonium as a model for interstitial hydrogen in the semiconducting and semimetallic elements
NASA Astrophysics Data System (ADS)
Cox, S. F. J.
2009-11-01
Although the interstitial hydrogen atom would seem to be one of the simplest defect centres in any lattice, its solid state chemistry is in fact unknown in many materials, not least amongst the elements. In semiconductors, the realization that hydrogen can profoundly influence electronic properties even as a trace impurity has prompted its study by all available means—but still only in the functionally important or potentially important materials—for the elements, Si, Ge and diamond. Even here, it was not studies of hydrogen itself but of its pseudo-isotope, muonium, that first provided the much needed microscopic pictures of crystallographic site and local electronic structure—now comprehensively confirmed by ab initio computation and such data as exists for monatomic, interstitial hydrogen centres in Si. Muonium can be formed in a variety of neutral paramagnetic states when positive muons are implanted into non-metals. The simple trapped atom is commonly only metastable. It coexists with or reacts to give defect centres with the unpaired electron in somewhat more extended orbitals. Indications of complete delocalization into effective mass states are discussed for B, α-Sn, Bi and even Ge, but otherwise all the muonium centres seen in the elemental semiconductors are deep and relatively compact. These are revealed, distinguished and characterized by μSR spectroscopy—muon spin rotation and resonance informing on sites and spin-density distributions, muon spin relaxation on motional dynamics and charge-state transitions. This Report documents the progress of μSR studies for all the semiconductors and semimetals of the p-block elements, Groups III-VI of the Periodic Table. The striking spectra and originally unanticipated results for Group IV are for the most part well known but deserve summarizing and updating; the sheer diversity of muonium states found is still remarkable, especially in carbon allotropes. The interplay of crystallographic site and charge state in Si and Ge at high temperatures, or under illumination, reflects the capture and loss of charge carriers that should model the electrical activity of monatomic hydrogen but still challenges theoretical descriptions. Spin-flip scattering of conduction electrons by the paramagnetic centres is revealed in heavily doped n-type material, as well as some modification of the local electronic structures. The corresponding spectroscopy for the solid elements of Groups III, V and VI is rather less well known and is reviewed here for the first time; a good deal of previously unpublished data is also included. Theoretical expectations and computational modelling are sparse, here. Recent results for B suggest a relatively shallow centre with molecular character; P and As show deeper quasi-atomic states, but still with substantial overlap of spin density onto surrounding host atoms. Particular attention is paid to the chalcogens. Muonium centres in Te show charge-state transitions already around room temperature; the identification of those in S and Se has been complicated by unusual spin dynamics of a different character, here attributed to spin-orbit coupling and interstitial reorientation. In the metals and semimetals, muonium is not formed as a paramagnetic centre. Here the implanted muons mimic interstital protons and interest shifts to a variety of other topics, including aspects of charge screening (α-Sn, Sb, Bi), site preference and quantum mobility (Al, β-Sn, Pb). The post-transition metals receive only a brief mention, by way of contrast with the nonmetals. Systematic studies of local susceptibility via measurements of muon Knight shifts extends in favourable cases to revealing the elusive high-field Condon domains (Al, Sn, Pb, Bi). Some new information is available on the superconducting phases. Appendices include a derivation of the spin Hamiltonian for paramagnetic muonium centres or molecular radicals having varying admixtures of orbital angular momentum, including the extreme case of orbital degeneracy, and examine the consequences of significant spin-orbit coupling for μSR spectroscopy and muon spin relaxation. This is the framework for the tentative assignments made here for the muonium defect centres formed in sulphur and selenium, namely diatomic species resembling the chalcogen monohydrides. Equally, it provides guidelines for eventual solid-state detection of OMu—the elusive muoniated hydroxyl radical.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, J.; Gajdos, F.; Blumberger, J., E-mail: j.blumberger@ucl.ac.uk
2016-08-14
We introduce a fragment orbital-based fewest switches surface hopping method, FOB-SH, designed to efficiently simulate charge carrier transport in strongly fluctuating condensed phase systems such as organic semiconductors and biomolecules. The charge carrier wavefunction is expanded and the electronic Hamiltonian constructed in a set of singly occupied molecular orbitals of the molecular sites that mediate the charge transfer. Diagonal elements of the electronic Hamiltonian (site energies) are obtained from a force field, whereas the off-diagonal or electronic coupling matrix elements are obtained using our recently developed analytic overlap method. We derive a general expression for the exact forces on themore » adiabatic ground and excited electronic state surfaces from the nuclear gradients of the charge localized electronic states. Applications to electron hole transfer in a model ethylene dimer and through a chain of ten model ethylenes validate our implementation and demonstrate its computational efficiency. On the larger system, we calculate the qualitative behaviour of charge mobility with change in temperature T for different regimes of the intermolecular electronic coupling. For small couplings, FOB-SH predicts a crossover from a thermally activated regime at low temperatures to a band-like transport regime at higher temperatures. For higher electronic couplings, the thermally activated regime disappears and the mobility decreases according to a power law. This is interpreted by a gradual loss in probability for resonance between the sites as the temperature increases. The polaron hopping model solved for the same system gives a qualitatively different result and underestimates the mobility decay at higher temperatures. Taken together, the FOB-SH methodology introduced here shows promise for a realistic investigation of charge carrier transport in complex organic, aqueous, and biological systems.« less
NASA Astrophysics Data System (ADS)
Spencer, J.; Gajdos, F.; Blumberger, J.
2016-08-01
We introduce a fragment orbital-based fewest switches surface hopping method, FOB-SH, designed to efficiently simulate charge carrier transport in strongly fluctuating condensed phase systems such as organic semiconductors and biomolecules. The charge carrier wavefunction is expanded and the electronic Hamiltonian constructed in a set of singly occupied molecular orbitals of the molecular sites that mediate the charge transfer. Diagonal elements of the electronic Hamiltonian (site energies) are obtained from a force field, whereas the off-diagonal or electronic coupling matrix elements are obtained using our recently developed analytic overlap method. We derive a general expression for the exact forces on the adiabatic ground and excited electronic state surfaces from the nuclear gradients of the charge localized electronic states. Applications to electron hole transfer in a model ethylene dimer and through a chain of ten model ethylenes validate our implementation and demonstrate its computational efficiency. On the larger system, we calculate the qualitative behaviour of charge mobility with change in temperature T for different regimes of the intermolecular electronic coupling. For small couplings, FOB-SH predicts a crossover from a thermally activated regime at low temperatures to a band-like transport regime at higher temperatures. For higher electronic couplings, the thermally activated regime disappears and the mobility decreases according to a power law. This is interpreted by a gradual loss in probability for resonance between the sites as the temperature increases. The polaron hopping model solved for the same system gives a qualitatively different result and underestimates the mobility decay at higher temperatures. Taken together, the FOB-SH methodology introduced here shows promise for a realistic investigation of charge carrier transport in complex organic, aqueous, and biological systems.
Orbital operations study. Appendix B: Operational procedures
NASA Technical Reports Server (NTRS)
Galvin, D. M.; Mattson, H. L.; True, D. M.; Anderson, N. R.; Mehrbach, E.; Gianformaggio, A.; Steinwachs, W. L.; Turkel, S. H.
1972-01-01
Operational procedures for each alternate approach for each interfacing activity of the orbital operations study are presented. The applicability of the procedures to interfacing element pairs is identified.
Jain, Sumeet; Jain, Parul
2016-01-01
Squamous cell carcinoma of the eyelid is the second most common malignant neoplasm of the eye with the incidence of 0.09 and 2.42 cases/100 000 people. Orbital invasion is a rare complication but, if recognized early, can be treated effectively with exenteration. Although with advancements in technology such as computer-aided design and computer-aided manufacturing, material science, and retentive methods like implants, orbital prosthesis with stock ocular prosthesis made of methyl methacrylate retained by anatomic undercuts is quiet effective and should not be overlooked and forgotten. This clinical report describes prosthetic rehabilitation of two male patients with polymethyl methacrylate resin orbital prosthesis after orbital exenteration, for squamous cell carcinoma of the upper eyelid. The orbital prosthesis was sufficiently retained by hard and soft tissue undercuts without any complications. The patients using the prosthesis are quite satisfied with the cosmetic results and felt comfortable attending the social events.
Near Earth Asteroids- Prospection, Orbit Modification and Mining
NASA Astrophysics Data System (ADS)
Grandl, W.; Bazso, A.
2014-04-01
The number of known Near Earth Asteroids (NEAs) has increased continuously during the last decades. Now we understand the role of asteroid impacts for the evolution of life on Earth. To ensure that mankind will survive in the long run, we have to face the "asteroid threat" seriously. On one hand we will have to develop methods of detection and deflection for Hazardous Asteroids, on the other hand we can use these methods to modify their orbits and exploit their resources. Rare-earth elements, rare metals like platinum group elements, etc. may be extracted more easily from NEAs than from terrestrial soil, without environmental pollution or political and social problems. In a first step NEAs, which are expected to contain resources like nickel-iron, platinum group metals or rare-earth elements, will be prospected by robotic probes. Then a number of asteroids with a minimum bulk density of 2 g/cm^3 and a diameter of 150 to 500 m will be selected for mining. Given the long duration of an individual mission time of 10-20 years, the authors propose a "pipeline" concept. While the observation of NEAs can be done in parallel, the precursor missions of the the next phase can be launched in short intervals, giving time for technical corrections and upgrades. In this way a continuous data flow is established and there are no idle times. For our purpose Potentially Hazardous Asteroids (PHAs) seem to be a favorable choice for the following reasons: They have frequent closeencounters to Earth, their minimum orbit intersection distance is less than 0.05 AU (Astronomic Units) and they have diameters exceeding 150 meters. The necessary velocity change (delta V) for a spaceship is below 12 km/s to reach the PHA. The authors propose to modify the orbits of the chosen PHAs by orbital maneuvers from solar orbits to stable Earth orbits beyond the Moon. To change the orbits of these celestial bodies it is necessary to develop advanced propulsion systems. They must be able to deliver high thrust and specific impulse to move the huge masses of the asteroids. Such a propulsion system could be the Bussard Fusion System, also known as the quiet-electricdischarge (QED) engine. It uses electrostatic fusion devices to generate electrical power. The fuel consists of Deuterium and Helium3 that are fusing to Helium4 plus protons releasing 18.3 MeV of energy per reaction. The charged protons escape from the confinement; their kinetic energy can be converted to electricity or be used directly as a plasma beam for generating thrust. For the reaction a specific energy of 3.5x1014 Joule/kg can be computed, i.e. orders-ofmagnitude higher than for any existing propulsion system. As an example we take the Asteroid with the designation 2008 EV5. It is classified as an Aten group asteroid with a mean diameter of 450 meters and belongs to spectral type S (stony asteroids). Our mass estimate (using a bulk density of 3 g/cm^3) is 1.4x1011 kg. To transfer 2008 EV5 to an Earth-like orbit the energy required is estimated to be in the order of 2.8x1018 Joule. This is the difference in Kepler energy between the NEA's current orbit and the Earth's orbit around the sun. Using the Bussard Fusion System the amount of fuel would be approx. 8000 kg of Helium3. To move an asteroid by remote control the authors propose to design unmanned space tugs which are propelled by Bussard Fusion Engines. A pair of space tugs is docked to each asteroid using drilling anchors. The fusion engines of the tugs then apply the thrust forces for the maneuvers. The first tug, which carries the main fuel quantity, applies the primary force for the orbital maneuvers. The second one adjust the flight track by short engine thrusts.
Multiconfigurational nature of 5f orbitals in uranium and plutonium intermetallics
Booth, C.H.; Jiang, Yu; Wang, D.L.; Mitchell, J.N.; Tobash, P.H.; Bauer, E.D.; Wall, M.A.; Allen, P.G.; Sokaras, D.; Nordlund, D.; Weng, T.-C.; Torrez, M.A.; Sarrao, J.L.
2012-01-01
Uranium and plutonium’s 5f electrons are tenuously poised between strongly bonding with ligand spd-states and residing close to the nucleus. The unusual properties of these elements and their compounds (e.g., the six different allotropes of elemental plutonium) are widely believed to depend on the related attributes of f-orbital occupancy and delocalization for which a quantitative measure is lacking. By employing resonant X-ray emission spectroscopy (RXES) and X-ray absorption near-edge structure (XANES) spectroscopy and making comparisons to specific heat measurements, we demonstrate the presence of multiconfigurational f-orbital states in the actinide elements U and Pu and in a wide range of uranium and plutonium intermetallic compounds. These results provide a robust experimental basis for a new framework toward understanding the strongly-correlated behavior of actinide materials. PMID:22706643
On the minimum orbital intersection distance computation: a new effective method
NASA Astrophysics Data System (ADS)
Hedo, José M.; Ruíz, Manuel; Peláez, Jesús
2018-06-01
The computation of the Minimum Orbital Intersection Distance (MOID) is an old, but increasingly relevant problem. Fast and precise methods for MOID computation are needed to select potentially hazardous asteroids from a large catalogue. The same applies to debris with respect to spacecraft. An iterative method that strictly meets these two premises is presented.
Proton Upset Monte Carlo Simulation
NASA Technical Reports Server (NTRS)
O'Neill, Patrick M.; Kouba, Coy K.; Foster, Charles C.
2009-01-01
The Proton Upset Monte Carlo Simulation (PROPSET) program calculates the frequency of on-orbit upsets in computer chips (for given orbits such as Low Earth Orbit, Lunar Orbit, and the like) from proton bombardment based on the results of heavy ion testing alone. The software simulates the bombardment of modern microelectronic components (computer chips) with high-energy (.200 MeV) protons. The nuclear interaction of the proton with the silicon of the chip is modeled and nuclear fragments from this interaction are tracked using Monte Carlo techniques to produce statistically accurate predictions.
Inverse free steering law for small satellite attitude control and power tracking with VSCMGs
NASA Astrophysics Data System (ADS)
Malik, M. S. I.; Asghar, Sajjad
2014-01-01
Recent developments in integrated power and attitude control systems (IPACSs) for small satellite, has opened a new dimension to more complex and demanding space missions. This paper presents a new inverse free steering approach for integrated power and attitude control systems using variable-speed single gimbal control moment gyroscope. The proposed inverse free steering law computes the VSCMG steering commands (gimbal rates and wheel accelerations) such that error signal (difference in command and output) in feedback loop is driven to zero. H∞ norm optimization approach is employed to synthesize the static matrix elements of steering law for a static state of VSCMG. Later these matrix elements are suitably made dynamic in order for the adaptation. In order to improve the performance of proposed steering law while passing through a singular state of CMG cluster (no torque output), the matrix element of steering law is suitably modified. Therefore, this steering law is capable of escaping internal singularities and using the full momentum capacity of CMG cluster. Finally, two numerical examples for a satellite in a low earth orbit are simulated to test the proposed steering law.
Introducing the Moon's Orbital Eccentricity
ERIC Educational Resources Information Center
Oostra, Benjamin
2014-01-01
I present a novel way to introduce the lunar orbital eccentricity in introductory astronomy courses. The Moon is perhaps the clearest illustration of the general orbital elements such as inclination, ascending node, eccentricity, perigee, and so on. Furthermore, I like the students to discover astronomical phenomena for themselves, by means of a…
NASA Astrophysics Data System (ADS)
Sekhar, Aswin; Valsecchi, Giovanni B.; Asher, David; Werner, Stephanie; Vaubaillon, Jeremie; Li, Gongjie
2017-06-01
One of the greatest successes of Einstein's General Theory of Relativity (GR) was the correct prediction of the perihelion precession of Mercury. The closed form expression to compute this precession tells us that substantial GR precession would occur only if the bodies have a combination of both moderately small perihelion distance and semi-major axis. Minimum Orbit Intersection Distance (MOID) is a quantity which helps us to understand the closest proximity of two orbits in space. Hence evaluating MOID is crucial to understand close encounters and collision scenarios better. In this work, we look at the possible scenarios where a small GR precession in argument of pericentre can create substantial changes in MOID for small bodies ranging from meteoroids to comets and asteroids.Previous works have looked into neat analytical techniques to understand different collision scenarios and we use those standard expressions to compute MOID analytically. We find the nature of this mathematical function is such that a relatively small GR precession can lead to drastic changes in MOID values depending on the initial value of argument of pericentre. Numerical integrations were done with the MERCURY package incorporating GR code to test the same effects. A numerical approach showed the same interesting relationship (as shown by analytical theory) between values of argument of pericentre and the peaks or dips in MOID values. There is an overall agreement between both analytical and numerical methods.We find that GR precession could play an important role in the calculations pertaining to MOID and close encounter scenarios in the case of certain small solar system bodies (depending on their initial orbital elements) when long term impact risk possibilities are considered. Previous works have looked into impact probabilities and collision scenarios on planets from different small body populations. This work aims to find certain sub-sets of small bodies where GR could play an interesting role. Certain parallels are drawn between the cases of asteroids, comets and small perihelion distance meteoroid streams.
The effects of orbital and climatic variations on Martian surface heat flow
NASA Technical Reports Server (NTRS)
Mellon, Michael T.; Jakosky, Bruce M.
1993-01-01
Large changes in the orbital elements of Mars on timescales of 10(exp 4) to 10(exp 6) years will cause widely varying climate, specifically surface temperatures, as a result of varying insolation. These surface temperature oscillations will produce subsurface thermal gradients which contribute to the total surface heat flux. We investigate the thermal behavior of the Martian regolith on orbital timescales and show that this climatological surface heat flux is spatially variable and contributes significantly to the total surface heat flux at many locations. We model the thermal behavior of the Martian regolith by calculating the mean annual surface temperatures for each epoch (spaced 1000 years apart to resolve orbital variations) for the past 200,000 years at a chosen location on the surface. These temperatures are used as a boundary condition for the deeper regolith and subsurface temperature oscillation are then computed. The surface climatological heat flux due to past climate changes can then be found from the temperature gradient between the surface and about 150 m depth (a fraction of the thermal skin depth on these timescales). This method provides a fairly accurate determination of the climatological heat flow component at a point; however, this method is computationally time consuming and cannot be applied to all points on the globe. To map the spatial variations in the surface heat flow we recognize that the subsurface temperature structure will be largely dominated by the most recent surface temperature oscillations. In fact, the climate component of the surface heat flow will be approximately proportional to the magnitude of the most recent surface temperature change. By calculating surface temperatures at all points globally for the present epoch and an appropriate past epoch, and combining these results with a series of more precise calculations described above, we estimate the global distribution of climatological surface heat flow.
Numerical Algorithms for Precise and Efficient Orbit Propagation and Positioning
NASA Astrophysics Data System (ADS)
Bradley, Ben K.
Motivated by the growing space catalog and the demands for precise orbit determination with shorter latency for science and reconnaissance missions, this research improves the computational performance of orbit propagation through more efficient and precise numerical integration and frame transformation implementations. Propagation of satellite orbits is required for astrodynamics applications including mission design, orbit determination in support of operations and payload data analysis, and conjunction assessment. Each of these applications has somewhat different requirements in terms of accuracy, precision, latency, and computational load. This dissertation develops procedures to achieve various levels of accuracy while minimizing computational cost for diverse orbit determination applications. This is done by addressing two aspects of orbit determination: (1) numerical integration used for orbit propagation and (2) precise frame transformations necessary for force model evaluation and station coordinate rotations. This dissertation describes a recently developed method for numerical integration, dubbed Bandlimited Collocation Implicit Runge-Kutta (BLC-IRK), and compare its efficiency in propagating orbits to existing techniques commonly used in astrodynamics. The BLC-IRK scheme uses generalized Gaussian quadratures for bandlimited functions. It requires significantly fewer force function evaluations than explicit Runge-Kutta schemes and approaches the efficiency of the 8th-order Gauss-Jackson multistep method. Converting between the Geocentric Celestial Reference System (GCRS) and International Terrestrial Reference System (ITRS) is necessary for many applications in astrodynamics, such as orbit propagation, orbit determination, and analyzing geoscience data from satellite missions. This dissertation provides simplifications to the Celestial Intermediate Origin (CIO) transformation scheme and Earth orientation parameter (EOP) storage for use in positioning and orbit propagation, yielding savings in computation time and memory. Orbit propagation and position transformation simulations are analyzed to generate a complete set of recommendations for performing the ITRS/GCRS transformation for a wide range of needs, encompassing real-time on-board satellite operations and precise post-processing applications. In addition, a complete derivation of the ITRS/GCRS frame transformation time-derivative is detailed for use in velocity transformations between the GCRS and ITRS and is applied to orbit propagation in the rotating ITRS. EOP interpolation methods and ocean tide corrections are shown to impact the ITRS/GCRS transformation accuracy at the level of 5 cm and 20 cm on the surface of the Earth and at the Global Positioning System (GPS) altitude, respectively. The precession-nutation and EOP simplifications yield maximum propagation errors of approximately 2 cm and 1 m after 15 minutes and 6 hours in low-Earth orbit (LEO), respectively, while reducing computation time and memory usage. Finally, for orbit propagation in the ITRS, a simplified scheme is demonstrated that yields propagation errors under 5 cm after 15 minutes in LEO. This approach is beneficial for orbit determination based on GPS measurements. We conclude with a summary of recommendations on EOP usage and bias-precession-nutation implementations for achieving a wide range of transformation and propagation accuracies at several altitudes. This comprehensive set of recommendations allows satellite operators, astrodynamicists, and scientists to make informed decisions when choosing the best implementation for their application, balancing accuracy and computational complexity.
Orbital operations study. Appendix A: Interactivity analysis
NASA Technical Reports Server (NTRS)
1972-01-01
Supplemental analyses conducted to verify that safe, feasible, design concepts exist for accomplishing the attendant interface activities of the orbital operations mission are presented. The data are primarily concerned with functions and concepts common to more than one of the interfacing activities or elements. Specific consideration is given to state vector update, payload deployment, communications links, jet plume impingement, attached element operations, docking and structural interface assessment, and propellant transfer.
Potential SPOT-1 R/B-Cosmos 1680 R/B collision
NASA Technical Reports Server (NTRS)
Henize, Karl G.; Rast, Richard H.
1989-01-01
Detailed NORAD data have revealed updated orbital elements for the Ariane third-stage rocket body that underwent breakup on November 13, 1986, as well as for the Cosmos 1680 rocket body. Applying the maximum expected error due to the extrapolation of orbital elements to the date of the possible collision between the two bodies shows the smallest possible distance between bodies to have been 380 km, thereby precluding collision.
HR 7578 - A K dwarf double-lined spectroscopic binary with peculiar abundances
NASA Technical Reports Server (NTRS)
Fekel, F. C., Jr.; Beavers, W. I.
1983-01-01
The number of double-lined K and M dwarf binaries which is currently known is quite small, only a dozen or less of each type. The HR 7578 system was classified as dK5 on the Mount Wilson system and as K2 V on the MK ystem. A summary of radial-velocity measurements including the observatory and weight of each observation is given in a table. The star with the stronger lines has been called component A. The final orbital element solution with all observations appropriately weighted was computed with a differential corrections computer program described by Barker et al. (1967). The program had been modified for the double-lined case. Of particular interest are the very large eccentricity of the system and the large minimum masses for each component. These large minimum masses suggest that eclipses may be detectable despite the relatively long period and small radii of the stars.
NASA Astrophysics Data System (ADS)
Sen, Sangita; Shee, Avijit; Mukherjee, Debashis
2018-02-01
The orbital relaxation attendant on ionization is particularly important for the core electron ionization potential (core IP) of molecules. The Unitary Group Adapted State Universal Coupled Cluster (UGA-SUMRCC) theory, recently formulated and implemented by Sen et al. [J. Chem. Phys. 137, 074104 (2012)], is very effective in capturing orbital relaxation accompanying ionization or excitation of both the core and the valence electrons [S. Sen et al., Mol. Phys. 111, 2625 (2013); A. Shee et al., J. Chem. Theory Comput. 9, 2573 (2013)] while preserving the spin-symmetry of the target states and using the neutral closed-shell spatial orbitals of the ground state. Our Ansatz invokes a normal-ordered exponential representation of spin-free cluster-operators. The orbital relaxation induced by a specific set of cluster operators in our Ansatz is good enough to eliminate the need for different sets of orbitals for the ground and the core-ionized states. We call the single configuration state function (CSF) limit of this theory the Unitary Group Adapted Open-Shell Coupled Cluster (UGA-OSCC) theory. The aim of this paper is to comprehensively explore the efficacy of our Ansatz to describe orbital relaxation, using both theoretical analysis and numerical performance. Whenever warranted, we also make appropriate comparisons with other coupled-cluster theories. A physically motivated truncation of the chains of spin-free T-operators is also made possible by the normal-ordering, and the operational resemblance to single reference coupled-cluster theory allows easy implementation. Our test case is the prediction of the 1s core IP of molecules containing a single light- to medium-heavy nucleus and thus, in addition to demonstrating the orbital relaxation, we have addressed the scalar relativistic effects on the accuracy of the IPs by using a hierarchy of spin-free Hamiltonians in conjunction with our theory. Additionally, the contribution of the spin-free component of the two-electron Gaunt term, not usually taken into consideration, has been estimated at the Self-Consistent Field (ΔSCF) level and is found to become increasingly important and eventually quite prominent for molecules with third period atoms and below. The accuracies of the IPs computed using UGA-OSCC are found to be of the same order as the Coupled Cluster Singles Doubles (ΔCCSD) values while being free from spin contamination. Since the UGA-OSCC uses a common set of orbitals for the ground state and the ion, it obviates the need of two N5 AO to MO transformation in contrast to the ΔCCSD method.
Sen, Sangita; Shee, Avijit; Mukherjee, Debashis
2018-02-07
The orbital relaxation attendant on ionization is particularly important for the core electron ionization potential (core IP) of molecules. The Unitary Group Adapted State Universal Coupled Cluster (UGA-SUMRCC) theory, recently formulated and implemented by Sen et al. [J. Chem. Phys. 137, 074104 (2012)], is very effective in capturing orbital relaxation accompanying ionization or excitation of both the core and the valence electrons [S. Sen et al., Mol. Phys. 111, 2625 (2013); A. Shee et al., J. Chem. Theory Comput. 9, 2573 (2013)] while preserving the spin-symmetry of the target states and using the neutral closed-shell spatial orbitals of the ground state. Our Ansatz invokes a normal-ordered exponential representation of spin-free cluster-operators. The orbital relaxation induced by a specific set of cluster operators in our Ansatz is good enough to eliminate the need for different sets of orbitals for the ground and the core-ionized states. We call the single configuration state function (CSF) limit of this theory the Unitary Group Adapted Open-Shell Coupled Cluster (UGA-OSCC) theory. The aim of this paper is to comprehensively explore the efficacy of our Ansatz to describe orbital relaxation, using both theoretical analysis and numerical performance. Whenever warranted, we also make appropriate comparisons with other coupled-cluster theories. A physically motivated truncation of the chains of spin-free T-operators is also made possible by the normal-ordering, and the operational resemblance to single reference coupled-cluster theory allows easy implementation. Our test case is the prediction of the 1s core IP of molecules containing a single light- to medium-heavy nucleus and thus, in addition to demonstrating the orbital relaxation, we have addressed the scalar relativistic effects on the accuracy of the IPs by using a hierarchy of spin-free Hamiltonians in conjunction with our theory. Additionally, the contribution of the spin-free component of the two-electron Gaunt term, not usually taken into consideration, has been estimated at the Self-Consistent Field (ΔSCF) level and is found to become increasingly important and eventually quite prominent for molecules with third period atoms and below. The accuracies of the IPs computed using UGA-OSCC are found to be of the same order as the Coupled Cluster Singles Doubles (ΔCCSD) values while being free from spin contamination. Since the UGA-OSCC uses a common set of orbitals for the ground state and the ion, it obviates the need of two N 5 AO to MO transformation in contrast to the ΔCCSD method.
On the accuracy of modelling the dynamics of large space structures
NASA Technical Reports Server (NTRS)
Diarra, C. M.; Bainum, P. M.
1985-01-01
Proposed space missions will require large scale, light weight, space based structural systems. Large space structure technology (LSST) systems will have to accommodate (among others): ocean data systems; electronic mail systems; large multibeam antenna systems; and, space based solar power systems. The structures are to be delivered into orbit by the space shuttle. Because of their inherent size, modelling techniques and scaling algorithms must be developed so that system performance can be predicted accurately prior to launch and assembly. When the size and weight-to-area ratio of proposed LSST systems dictate that the entire system be considered flexible, there are two basic modeling methods which can be used. The first is a continuum approach, a mathematical formulation for predicting the motion of a general orbiting flexible body, in which elastic deformations are considered small compared with characteristic body dimensions. This approach is based on an a priori knowledge of the frequencies and shape functions of all modes included within the system model. Alternatively, finite element techniques can be used to model the entire structure as a system of lumped masses connected by a series of (restoring) springs and possibly dampers. In addition, a computational algorithm was developed to evaluate the coefficients of the various coupling terms in the equations of motion as applied to the finite element model of the Hoop/Column.
NASA Astrophysics Data System (ADS)
Wu, Zhangming; Li, Hao
2017-11-01
This paper proposes a novel adaptive sun tracker which is constructed by hybrid unsymmetric composite laminates. The adaptive sun tracker could be applied on spacecraft solar panels to increase their energy efficiency through decreasing the inclined angle between the sunlight and the solar panel normal. The sun tracker possesses a large rotation freedom and its rotation angle depends on the laminate temperature, which is affected by the light condition in the orbit. Both analytical model and finite element model (FEM) are developed for the sun tracker to predict its rotation angle in different light conditions. In this work, the light condition of the geosynchronous orbit on winter solstice is considered in the numerical prediction of the temperatures of the hybrid laminates. The final inclined angle between the sunlight and the solar panel normal during a solar day is computed using the finite element model. Parametric study of the adaptive sun tracker is conducted to improve its capacity and effectiveness of sun tracking. The improved adaptive sun tracker is lightweight and has a state-of-the-art design. In addition, the adaptive sun tracker does not consume any power of the solar panel, since it has no electrical driving devices. The proposed adaptive sun tracker provides a potential alternative to replace the traditional sophisticated electrical driving mechanisms for spacecraft solar panels.
Active Neutron and Gamma Ray Instrumentation for In Situ Planetary Science Applications
NASA Technical Reports Server (NTRS)
Parsons, A.; Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Schweitzer, J.; Starr, R.; Trombka, J.
2010-01-01
The Pulsed Neutron Generator-Gamma Ray And Neutron Detectors (PNG-GRAND) experiment is an innovative application of the active neutron-gamma ray technology so successfully used in oil field well logging and mineral exploration on Earth. The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA-GSFC) is to bring the PNG-GRAND instrument to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Menus, asteroids, comets and the satellites of the outer planets. Gamma-Ray Spectrometers (GRS) have been incorporated into numerous orbital planetary science missions and, especially its the case of the Mars Odyssey GRS, have contributed detailed maps of the elemental composition over the entire surface of Mars. However, orbital gamma ray measurements have low spatial sensitivity (100's of km) due to their low surface emission rates from cosmic rays and subsequent need to be averaged over large surface areas. PNG-GRAND overcomes this impediment by incorporating a powerful neutron excitation source that permits high sensitivity surface and subsurface measurements of bulk elemental compositions. PNG-GRAND combines a pulsed neutron generator (PNG) with gamma ray and neutron detectors to produce a landed instrument to determine subsurface elemental composition without needing to drill into a planet's surface a great advantage in mission design. We are currently testing PNG-GRAND prototypes at a unique outdoor neutron instrumentation test facility recently constructed at NASA/GSFC that consists of a 2 m x 2 in x 1 m granite structure placed outdoors in an empty field. Because an independent trace elemental analysis has been performed on the material, this granite sample is a known standard with which to compare both Monte Carlo simulations and our experimentally measured elemental composition data. We will present data from operating PNG-GRAND in various experimental configurations on a known sample in a geometry that is identical to that on a planetary surface. We will also illustrate the use of gamma ray timing techniques to improve sensitivity and will compare the material composition results from our experiments to both an independent laboratory elemental composition analysis and MCNPX computer modeling results.
Tsao, Kim; Cheng, Andrew; Goss, Alastair; Donovan, David
2014-07-01
Computed tomography (CT) is currently the standard in postoperative evaluation of orbital wall fracture reconstruction, but cone beam computed tomography (CBCT) offers potential advantages including reduced radiation dose and cost. The purpose of this study is to examine objectively the image quality of CBCT in the postoperative evaluation of orbital fracture reconstruction, its radiation dose, and cost compared with CT. Four consecutive patients with orbital wall fractures in whom surgery was indicated underwent orbital reconstruction with radio-opaque grafts (bone, titanium-reinforced polyethylene, and titanium plate) and were assessed postoperatively with orbital CBCT. CBCT was evaluated for its ability to provide objective information regarding the adequacy of orbital reconstruction, radiation dose, and cost. In all patients, CBCT was feasible and provided hard tissue image quality comparable to CT with significantly reduced radiation dose and cost. However, it has poorer soft tissue resolution, which limits its ability to identify the extraocular muscles, their relationship to the reconstructive graft, and potential muscle entrapment. CBCT is a viable alternative to CT in the routine postoperative evaluation of orbital fracture reconstruction. However, in the patient who develops gaze restriction postoperatively, conventional CT is preferred over CBCT for its superior soft tissue resolution to exclude extraocular muscle entrapment.
Satellite Power System (SPS) concept definition study (exhibit C)
NASA Technical Reports Server (NTRS)
Haley, G. M.
1979-01-01
The major outputs of the study are the constructability studies which resulted in the definition of the concepts for satellite, rectenna, and satellite construction base construction. Transportation analyses resulted in definition of heavy-lift launch vehicle, electric orbit transfer vehicle, personnel orbit transfer vehicle, and intra-orbit transfer vehicle as well as overall operations related to transportation systems. The experiment/verification program definition resulted in the definition of elements for the Ground-Based Experimental Research and Key Technology plans. These studies also resulted in conceptual approaches for early space technology verification. The cost analysis defined the overall program and cost data for all program elements and phases.
NASA Technical Reports Server (NTRS)
Hastrup, Rolf; Weinberg, Aaron; Mcomber, Robert
1991-01-01
Results of on-going studies to develop navigation/telecommunications network concepts to support future robotic and human missions to Mars are presented. The performance and connectivity improvements provided by the relay network will permit use of simpler, lower performance, and less costly telecom subsystems for the in-situ mission exploration elements. Orbiting relay satellites can serve as effective navigation aids by supporting earth-based tracking as well as providing Mars-centered radiometric data for mission elements approaching, in orbit, or on the surface of Mars. The relay satellite orbits may be selected to optimize navigation aid support and communication coverage for specific mission sets.
1989-01-01
In this 1989 artist's concept, the Shuttle-C floats in space with its cargo bay doors open. As envisioned by Marshall Space Flight Center plarners, the Shuttle-C would be an unmanned heavy lift cargo vehicle derived from Space Shuttle elements. The vehicle would utilize the basic Shuttle propulsion units (Solid Rocket Boosters, Space Shuttle Main Engine, External Tank), but would replace the Oribiter with an unmanned Shuttle-C Cargo Element (SCE). The SCE would have a payload bay length of eighty-two feet, compared to sixty feet for the Orbiter cargo bay, and would be able to deliver 170,000 pound payloads to low Earth orbit, more than three times the Orbiter's capacity.
NASA Astrophysics Data System (ADS)
Hastrup, Rolf; Weinberg, Aaron; McOmber, Robert
1991-09-01
Results of on-going studies to develop navigation/telecommunications network concepts to support future robotic and human missions to Mars are presented. The performance and connectivity improvements provided by the relay network will permit use of simpler, lower performance, and less costly telecom subsystems for the in-situ mission exploration elements. Orbiting relay satellites can serve as effective navigation aids by supporting earth-based tracking as well as providing Mars-centered radiometric data for mission elements approaching, in orbit, or on the surface of Mars. The relay satellite orbits may be selected to optimize navigation aid support and communication coverage for specific mission sets.
NASA Astrophysics Data System (ADS)
Setty, Srinivas J.; Cefola, Paul J.; Montenbruck, Oliver; Fiedler, Hauke
2016-05-01
Catalog maintenance for Space Situational Awareness (SSA) demands an accurate and computationally lean orbit propagation and orbit determination technique to cope with the ever increasing number of observed space objects. As an alternative to established numerical and analytical methods, we investigate the accuracy and computational load of the Draper Semi-analytical Satellite Theory (DSST). The standalone version of the DSST was enhanced with additional perturbation models to improve its recovery of short periodic motion. The accuracy of DSST is, for the first time, compared to a numerical propagator with fidelity force models for a comprehensive grid of low, medium, and high altitude orbits with varying eccentricity and different inclinations. Furthermore, the run-time of both propagators is compared as a function of propagation arc, output step size and gravity field order to assess its performance for a full range of relevant use cases. For use in orbit determination, a robust performance of DSST is demonstrated even in the case of sparse observations, which is most sensitive to mismodeled short periodic perturbations. Overall, DSST is shown to exhibit adequate accuracy at favorable computational speed for the full set of orbits that need to be considered in space surveillance. Along with the inherent benefits of a semi-analytical orbit representation, DSST provides an attractive alternative to the more common numerical orbit propagation techniques.
NASA Astrophysics Data System (ADS)
Reichl, Karl O., Jr.
1987-06-01
The relationship between the Interactions Measurement Payload for Shuttle (IMPS) flight experiment and the low Earth orbit plasma environment is discussed. Two interactions (parasitic current loss and electrostatic discharge on the array) may be detrimental to mission effectiveness. They result from the spacecraft's electrical potentials floating relative to plasma ground to achieve a charge flow equilibrium into the spacecraft. The floating potentials were driven by external biases applied to a solar array module of the Photovoltaic Array Space Power (PASP) experiment aboard the IMPS test pallet. The modeling was performed using the NASA Charging Analyzer Program/Low Earth Orbit (NASCAP/LEO) computer code which calculates the potentials and current collection of high-voltage objects in low Earth orbit. Models are developed by specifying the spacecraft, environment, and orbital parameters. Eight IMPS models were developed by varying the array's bias voltage and altering its orientation relative to its motion. The code modeled a typical low Earth equatorial orbit. NASCAP/LEO calculated a wide variety of possible floating potential and current collection scenarios. These varied directly with both the array bias voltage and with the vehicle's orbital orientation.
FAST - FREEDOM ASSEMBLY SEQUENCING TOOL PROTOTYPE
NASA Technical Reports Server (NTRS)
Borden, C. S.
1994-01-01
FAST is a project management tool designed to optimize the assembly sequence of Space Station Freedom. An appropriate assembly sequence coordinates engineering, design, utilization, transportation availability, and operations requirements. Since complex designs tend to change frequently, FAST assesses the system level effects of detailed changes and produces output metrics that identify preferred assembly sequences. FAST incorporates Space Shuttle integration, Space Station hardware, on-orbit operations, and programmatic drivers as either precedence relations or numerical data. Hardware sequencing information can either be input directly and evaluated via the "specified" mode of operation or evaluated from the input precedence relations in the "flexible" mode. In the specified mode, FAST takes as its input a list of the cargo elements assigned to each flight. The program determines positions for the cargo elements that maximize the center of gravity (c.g.) margin. These positions are restricted by the geometry of the cargo elements and the location of attachment fittings both in the orbiter and on the cargo elements. FAST calculates every permutation of cargo element location according to its height, trunnion fitting locations, and required intercargo element spacing. Each cargo element is tested in both its normal and reversed orientation (rotated 180 degrees). The best solution is that which maximizes the c.g. margin for each flight. In the flexible mode, FAST begins with the first flight and determines all feasible combinations of cargo elements according to mass, volume, EVA, and precedence relation constraints. The program generates an assembly sequence that meets mass, volume, position, EVA, and precedence constraints while minimizing the total number of Shuttle flights required. Issues associated with ground operations, spacecraft performance, logistics requirements and user requirements will be addressed in future versions of the model. FAST is written in C-Language and has been implemented on DEC VAX series computers running VMS. The program is distributed in executable form. The source code is also provided, but it cannot be compiled without the Tree Manipulation Based Routines (TMBR) package from the Jet Propulsion Laboratory, which is not currently available from COSMIC. The main memory requirement is based on the data used to drive the FAST program. All applications should easily run on an installation with 10Mb of main memory. FAST was developed in 1990 and is a copyrighted work with all copyright vested in NASA. DEC, VAX and VMS are trademarks of Digital Equipment Corporation.
NASA Technical Reports Server (NTRS)
Nurick, W. H.
1974-01-01
An evaluation of reusable thrust chambers for the space shuttle orbit maneuvering engine was conducted. Tests were conducted using subscale injector hot-fire procedures for the injector configurations designed for a regenerative cooled engine. The effect of operating conditions and fuel temperature on combustion chamber performance was determined. Specific objectives of the evaluation were to examine the optimum like-doublet element geometry for operation at conditions consistent with a fuel regeneratively cooled engine (hot fuel, 200 to 250 F) and the sensitivity of the triplet injector element to hot fuels.
Rigorous GNSS network solutions of unlimited size
NASA Astrophysics Data System (ADS)
Boomkamp, H.; Iag Working Group 1. 1. 1
2010-12-01
The session description states that rigorous estimation processes for millions of parameters are computationally impossible. A more accurate observation would be that such solutions exceed the capacity of current Analysis Centres by several orders of magnitude, as was already discussed during the IGS Workshop of 2004. We can however make processing elements that are smaller and simpler than conventional Analysis Centres, until we have a “centre” that can be replicated in arbitrary amounts, at zero cost. In practice this means that the processing element is reduced to a single, automated computer application that can run anywhere. These analysis elements are connected via the internet into a scalable grid computing scheme that can handle GNSS networks of any size. The approach is not fundamentally different from current combination solutions among a network of Analysis Centres, but refines the granularity of the network elements in order to reduce system complexity and eliminate cost. The Dancer project of IAG Working Group 1 has developed a JXTA peer-to-peer application to this purpose. Dancer splits a conventional batch least squares process into as many interacting subtasks as there are receivers. Each task can then run on a local PC of a permanent GNSS site, or anywhere else. All Dancer instances find the same global solution for satellite orbits, clocks and Earth rotation parameters via an efficient vector averaging method called square dancing. The hardware requirements for a single Dancer process do not exceed those of e.g. current mobile phone applications, so that future generations of GNSS receivers may be able to run such a task as an embedded process. This leads to the concept of “smart receivers” that no longer require any post-processing infrastructure. Instead they need an internet connection to join thousands of other smart receivers in a global network solution. The key algorithms, project status and further deployment of the Dancer system will be presented. A brief summary is also given of two follow-on projects, called Digger (distributed computing for global geodetic reprocessing) and Dart (Dancer real-time). For more details, see www.GPSdancer.com.
Measurement of Satellite Impact Test Fragments for Modeling Orbital Debris
NASA Technical Reports Server (NTRS)
Hill, Nicole M.
2009-01-01
There are over 13,000 pieces of catalogued objects 10cm and larger in orbit around Earth [ODQN, January 2009, p12]. More than 6000 of these objects are fragments from explosions and collisions. As the earth-orbiting object count increases, debris-generating collisions in the future become a statistical inevitability. To aid in understanding this collision risk, the NASA Orbital Debris Program Office has developed computer models that calculate quantity and orbits of debris both currently in orbit and in future epochs. In order to create a reasonable computer model of the orbital debris environment, it is important to understand the mechanics of creation of debris as a result of a collision. The measurement of the physical characteristics of debris resulting from ground-based, hypervelocity impact testing aids in understanding the sizes and shapes of debris produced from potential impacts in orbit. To advance the accuracy of fragment shape/size determination, the NASA Orbital Debris Program Office recently implemented a computerized measurement system. The goal of this system is to improve knowledge and understanding of the relation between commonly used dimensions and overall shape. The technique developed involves scanning a single fragment with a hand-held laser device, measuring its size properties using a sophisticated software tool, and creating a three-dimensional computer model to demonstrate how the object might appear in orbit. This information is used to aid optical techniques in shape determination. This more automated and repeatable method provides higher accuracy in the size and shape determination of debris.
Studies of neutron and proton nuclear activation in low-Earth orbit
NASA Technical Reports Server (NTRS)
Laird, C. E.
1982-01-01
The expected induced radioactivity of experimental material in low Earth orbit was studied for characteristics of activating particles such as cosmic rays, high energy Earth albedo neutrons, trapped protons, and secondary protons and neutrons. The activation cross sections for the production of long lived radioisotopes and other existing nuclear data appropriate to the study of these reactions were compiled. Computer codes which are required to calculate the expected activation of orbited materials were developed. The decreased computer code used to predict the activation of trapped protons of materials placed in the expected orbits of LDEF and Spacelab II. Techniques for unfolding the fluxes of activating particles from the measured activation of orbited materials are examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sattari, Sulimon, E-mail: ssattari2@ucmerced.edu; Chen, Qianting, E-mail: qchen2@ucmerced.edu; Mitchell, Kevin A., E-mail: kmitchell@ucmerced.edu
Topological approaches to mixing are important tools to understand chaotic fluid flows, ranging from oceanic transport to the design of micro-mixers. Typically, topological entropy, the exponential growth rate of material lines, is used to quantify topological mixing. Computing topological entropy from the direct stretching rate is computationally expensive and sheds little light on the source of the mixing. Earlier approaches emphasized that topological entropy could be viewed as generated by the braiding of virtual, or “ghost,” rods stirring the fluid in a periodic manner. Here, we demonstrate that topological entropy can also be viewed as generated by the braiding ofmore » ghost rods following heteroclinic orbits instead. We use the machinery of homotopic lobe dynamics, which extracts symbolic dynamics from finite-length pieces of stable and unstable manifolds attached to fixed points of the fluid flow. As an example, we focus on the topological entropy of a bounded, chaotic, two-dimensional, double-vortex cavity flow. Over a certain parameter range, the topological entropy is primarily due to the braiding of a period-three orbit. However, this orbit does not explain the topological entropy for parameter values where it does not exist, nor does it explain the excess of topological entropy for the entire range of its existence. We show that braiding by heteroclinic orbits provides an accurate computation of topological entropy when the period-three orbit does not exist, and that it provides an explanation for some of the excess topological entropy when the period-three orbit does exist. Furthermore, the computation of symbolic dynamics using heteroclinic orbits has been automated and can be used to compute topological entropy for a general 2D fluid flow.« less
The Lenz Vector and Orbital Analog Computers
ERIC Educational Resources Information Center
Harter, W. G.
1976-01-01
Describes a single geometrical diagram based on the Lenz vector which shows the qualitative and quantitative features of all three types of Coulomb orbits. Explains the use of a simple analog computer with an overhead projector to demonstrate many of these effects. (Author/CP)
Trends in Ionization Energy of Transition-Metal Elements
ERIC Educational Resources Information Center
Matsumoto, Paul S.
2005-01-01
A rationale for the difference in the periodic trends in the ionization energy of the transition-metal elements versus the main-group elements is presented. The difference is that in the transition-metal elements, the electrons enter an inner-shell electron orbital, while in the main-group elements, the electrons enter an outer-shell electron…
Space Based Satellite Tracking and Characterization Utilizing Non-Imaging Passive Sensors
2008-03-01
vary from only slightly here. The classical orbital elements are: a - The Semimajor Axis e - Eccentricity i - Inclination Ω - Right Ascension of the...Eccentricity . . . . . . . . . . . . . . . . . . . . . . . . . . 7 ~h Axis normal to orbital plane . . . . . . . . . . . . . . . . . 7 Ω Right ascension of...transistion matrix . . . . . . . . . . . . . . . . . . . 27 i Orbital inclination . . . . . . . . . . . . . . . . . . . . . . 28 Ẑ Unit vector in ECI frame
A Detailed Derivation of Gaussian Orbital-Based Matrix Elements in Electron Structure Calculations
ERIC Educational Resources Information Center
Petersson, T.; Hellsing, B.
2010-01-01
A detailed derivation of analytic solutions is presented for overlap, kinetic, nuclear attraction and electron repulsion integrals involving Cartesian Gaussian-type orbitals. It is demonstrated how s-type orbitals can be used to evaluate integrals with higher angular momentum via the properties of Hermite polynomials and differentiation with…
NASA Astrophysics Data System (ADS)
Gonçalves, L. D.; Rocco, E. M.; de Moraes, R. V.
2013-10-01
A study evaluating the influence due to the lunar gravitational potential, modeled by spherical harmonics, on the gravity acceleration is accomplished according to the model presented in Konopliv (2001). This model provides the components x, y and z for the gravity acceleration at each moment of time along the artificial satellite orbit and it enables to consider the spherical harmonic degree and order up to100. Through a comparison between the gravity acceleration from a central field and the gravity acceleration provided by Konopliv's model, it is obtained the disturbing velocity increment applied to the vehicle. Then, through the inverse problem, the Keplerian elements of perturbed orbit of the satellite are calculated allowing the orbital motion analysis. Transfer maneuvers and orbital correction of lunar satellites are simulated considering the disturbance due to non-uniform gravitational potential of the Moon, utilizing continuous thrust and trajectory control in closed loop. The simulations are performed using the Spacecraft Trajectory Simulator-STRS, Rocco (2008), which evaluate the behavior of the orbital elements, fuel consumption and thrust applied to the satellite over the time.
The Actual Mass of the Object Orbiting Epsilon Eridani
NASA Astrophysics Data System (ADS)
Gatewood, G.
2000-10-01
We have tested our 112 Multichannel Astrometric Photometer (MAP) (Gatewood 1987, AJ 94, 213) observations (beginning in 1988) of Epsilon Eridani against the orbital elements provided to us by W. Cochran (private communication). The reduction algorithm is detailed most recently by Gatewood, Han, and Black (2000 ApJ Letters, in press). The seven year period is clearly shown in a variance vs trial periods plot. Although it is near the limit of the current instrument, the astrometric orbital motion is apparent in the residuals to a standard derivation of the star's proper motion and parallax. The astrometric orbital parameters derived by forcing the spectroscopic elements are: semimajor axis = 1.51 +/- 0.44 mas, node of the orbit on the sky = 120 +/- 28 deg, inclination out of the plane of the sky = 46 +/- 17 deg, actual mass = 1.2 +/- 0.33 times that of Jupiter. Our study confirms this object (this is not a minimum mass) as the nearest extrasolar Jupiter mass companion to our solar system. In view of its large orbital eccentricity, however, its exact nature remains unclear.
KAM Torus Frequency Generation from Two-Line Element Sets
2011-03-01
satellite from occupying or crossing that orbital plane . This is demon- strated by Figure 3 which shows the debris train as of December 2007 created by...expressed in terms of Poincare variables which are the canonical variable counterparts to the equinoctial orbital elements and therefore contain...or one- half the rotational period of Earth. The other difficulty was seen when analyzing data from the oldest GPS satellite which uses only 3 reaction
NASA Astrophysics Data System (ADS)
Al-Ahmary, Khairia M.; Habeeb, Moustafa M.; Al-Obidan, Areej H.
2018-05-01
New charge transfer complex (CTC) between the electron donor 2,3-diaminopyridine (DAP) with the electron acceptor chloranilic (CLA) acid has been synthesized and characterized experimentally and theoretically using a variety of physicochemical techniques. The experimental work included the use of elemental analysis, UV-vis, IR and 1H NMR studies to characterize the complex. Electronic spectra have been carried out in different hydrogen bonded solvents, methanol (MeOH), acetonitrile (AN) and 1:1 mixture from AN-MeOH. The molecular composition of the complex was identified to be 1:1 from Jobs and molar ratio methods. The stability constant was determined using minimum-maximum absorbances method where it recorded high values confirming the high stability of the formed complex. The solid complex was prepared and characterized by elemental analysis that confirmed its formation in 1:1 stoichiometric ratio. Both IR and NMR studies asserted the existence of proton and charge transfers in the formed complex. For supporting the experimental results, DFT computations were carried out using B3LYP/6-31G(d,p) method to compute the optimized structures of the reactants and complex, their geometrical parameters, reactivity parameters, molecular electrostatic potential map and frontier molecular orbitals. The analysis of DFT results strongly confirmed the high stability of the formed complex based on existing charge transfer beside proton transfer hydrogen bonding concordant with experimental results. The origin of electronic spectra was analyzed using TD-DFT method where the observed λmax are strongly consisted with the computed ones. TD-DFT showed the contributed states for various electronic transitions.
NASA Astrophysics Data System (ADS)
Srivastava, Vineet K.; Kumar, Jai; Kushvah, Badam Singh
2018-01-01
In this paper, we study the invariant manifold and its application in transfer trajectory problem from a low Earth parking orbit to the Sun-Earth L1 and L2-halo orbits with the inclusion of radiation pressure and oblateness. Invariant manifold of the halo orbit provides a natural entrance to travel the spacecraft in the solar system along some specific paths due to its strong hyperbolic character. In this regard, the halo orbits near both collinear Lagrangian points are computed first. The manifold's approximation near the nominal halo orbit is computed using the eigenvectors of the monodromy matrix. The obtained local approximation provides globalization of the manifold by applying backward time propagation to the governing equations of motion. The desired transfer trajectory well suited for the transfer is explored by looking at a possible intersection between the Earth's parking orbit of the spacecraft and the manifold.
Orbital tori for non-axisymmetric galaxies
NASA Astrophysics Data System (ADS)
Binney, James
2018-02-01
Our Galaxy's bar makes the Galaxy's potential distinctly non-axisymmetric. All orbits are affected by non-axisymmetry, and significant numbers are qualitatively changed by being trapped at a resonance with the bar. Orbital tori are used to compute these effects. Thick-disc orbits are no less likely to be trapped by corotation or a Lindblad resonance than thin-disc orbits. Perturbation theory is used to create non-axisymmetric orbital tori from standard axisymmetric tori, and both trapped and untrapped orbits are recovered to surprising accuracy. Code is added to the TorusModeller library that makes it as easy to manipulate non-axisymmetric tori as axisymmetric ones. The augmented TorusModeller is used to compute the velocity structure of the solar neighbourhood for bars of different pattern speeds and a simple action-based distribution function. The technique developed here can be applied to any non-axisymmetric potential that is stationary in a rotating from - hence also to classical spiral structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grimme, Stefan, E-mail: grimme@thch.uni-bonn.de; Brandenburg, Jan Gerit; Bannwarth, Christoph
A density functional theory (DFT) based composite electronic structure approach is proposed to efficiently compute structures and interaction energies in large chemical systems. It is based on the well-known and numerically robust Perdew-Burke-Ernzerhoff (PBE) generalized-gradient-approximation in a modified global hybrid functional with a relatively large amount of non-local Fock-exchange. The orbitals are expanded in Ahlrichs-type valence-double zeta atomic orbital (AO) Gaussian basis sets, which are available for many elements. In order to correct for the basis set superposition error (BSSE) and to account for the important long-range London dispersion effects, our well-established atom-pairwise potentials are used. In the design ofmore » the new method, particular attention has been paid to an accurate description of structural parameters in various covalent and non-covalent bonding situations as well as in periodic systems. Together with the recently proposed three-fold corrected (3c) Hartree-Fock method, the new composite scheme (termed PBEh-3c) represents the next member in a hierarchy of “low-cost” electronic structure approaches. They are mainly free of BSSE and account for most interactions in a physically sound and asymptotically correct manner. PBEh-3c yields good results for thermochemical properties in the huge GMTKN30 energy database. Furthermore, the method shows excellent performance for non-covalent interaction energies in small and large complexes. For evaluating its performance on equilibrium structures, a new compilation of standard test sets is suggested. These consist of small (light) molecules, partially flexible, medium-sized organic molecules, molecules comprising heavy main group elements, larger systems with long bonds, 3d-transition metal systems, non-covalently bound complexes (S22 and S66×8 sets), and peptide conformations. For these sets, overall deviations from accurate reference data are smaller than for various other tested DFT methods and reach that of triple-zeta AO basis set second-order perturbation theory (MP2/TZ) level at a tiny fraction of computational effort. Periodic calculations conducted for molecular crystals to test structures (including cell volumes) and sublimation enthalpies indicate very good accuracy competitive to computationally more involved plane-wave based calculations. PBEh-3c can be applied routinely to several hundreds of atoms on a single processor and it is suggested as a robust “high-speed” computational tool in theoretical chemistry and physics.« less
Robotics On-Board Trainer (ROBoT)
NASA Technical Reports Server (NTRS)
Johnson, Genevieve; Alexander, Greg
2013-01-01
ROBoT is an on-orbit version of the ground-based Dynamics Skills Trainer (DST) that astronauts use for training on a frequent basis. This software consists of two primary software groups. The first series of components is responsible for displaying the graphical scenes. The remaining components are responsible for simulating the Mobile Servicing System (MSS), the Japanese Experiment Module Remote Manipulator System (JEMRMS), and the H-II Transfer Vehicle (HTV) Free Flyer Robotics Operations. The MSS simulation software includes: Robotic Workstation (RWS) simulation, a simulation of the Space Station Remote Manipulator System (SSRMS), a simulation of the ISS Command and Control System (CCS), and a portion of the Portable Computer System (PCS) software necessary for MSS operations. These components all run under the CentOS4.5 Linux operating system. The JEMRMS simulation software includes real-time, HIL, dynamics, manipulator multi-body dynamics, and a moving object contact model with Tricks discrete time scheduling. The JEMRMS DST will be used as a functional proficiency and skills trainer for flight crews. The HTV Free Flyer Robotics Operations simulation software adds a functional simulation of HTV vehicle controllers, sensors, and data to the MSS simulation software. These components are intended to support HTV ISS visiting vehicle analysis and training. The scene generation software will use DOUG (Dynamic On-orbit Ubiquitous Graphics) to render the graphical scenes. DOUG runs on a laptop running the CentOS4.5 Linux operating system. DOUG is an Open GL-based 3D computer graphics rendering package. It uses pre-built three-dimensional models of on-orbit ISS and space shuttle systems elements, and provides realtime views of various station and shuttle configurations.
Orbit determination strategy and results for the Pioneer 10 Jupiter mission
NASA Technical Reports Server (NTRS)
Wong, S. K.; Lubeley, A. J.
1974-01-01
Pioneer 10 is the first earth-based vehicle to encounter Jupiter and occult its moon, Io. In contributing to the success of the mission, the Orbit Determination Group evaluated the effects of the dominant error sources on the spacecraft's computed orbit and devised an encounter strategy minimizing the effects of these error sources. The encounter results indicated that: (1) errors in the satellite model played a very important role in the accuracy of the computed orbit, (2) encounter strategy was sound, (3) all mission objectives were met, and (4) Jupiter-Saturn mission for Pioneer 11 is within the navigation capability.
Algorithms for the Computation of Debris Risk
NASA Technical Reports Server (NTRS)
Matney, Mark J.
2017-01-01
Determining the risks from space debris involve a number of statistical calculations. These calculations inevitably involve assumptions about geometry - including the physical geometry of orbits and the geometry of satellites. A number of tools have been developed in NASA’s Orbital Debris Program Office to handle these calculations; many of which have never been published before. These include algorithms that are used in NASA’s Orbital Debris Engineering Model ORDEM 3.0, as well as other tools useful for computing orbital collision rates and ground casualty risks. This paper presents an introduction to these algorithms and the assumptions upon which they are based.
Algorithms for the Computation of Debris Risks
NASA Technical Reports Server (NTRS)
Matney, Mark
2017-01-01
Determining the risks from space debris involve a number of statistical calculations. These calculations inevitably involve assumptions about geometry - including the physical geometry of orbits and the geometry of non-spherical satellites. A number of tools have been developed in NASA's Orbital Debris Program Office to handle these calculations; many of which have never been published before. These include algorithms that are used in NASA's Orbital Debris Engineering Model ORDEM 3.0, as well as other tools useful for computing orbital collision rates and ground casualty risks. This paper will present an introduction to these algorithms and the assumptions upon which they are based.
GNSS Ephemeris with Graceful Degradation and Measurement Fusion
NASA Technical Reports Server (NTRS)
Garrison, James Levi (Inventor); Walker, Michael Allen (Inventor)
2015-01-01
A method for providing an extended propagation ephemeris model for a satellite in Earth orbit, the method includes obtaining a satellite's orbital position over a first period of time, applying a least square estimation filter to determine coefficients defining osculating Keplarian orbital elements and harmonic perturbation parameters associated with a coordinate system defining an extended propagation ephemeris model that can be used to estimate the satellite's position during the first period, wherein the osculating Keplarian orbital elements include semi-major axis of the satellite (a), eccentricity of the satellite (e), inclination of the satellite (i), right ascension of ascending node of the satellite (.OMEGA.), true anomaly (.theta.*), and argument of periapsis (.omega.), applying the least square estimation filter to determine a dominant frequency of the true anomaly, and applying a Fourier transform to determine dominant frequencies of the harmonic perturbation parameters.
Precovery of near-Earth asteroids by a citizen-science project of the Spanish Virtual Observatory
NASA Astrophysics Data System (ADS)
Solano, E.; Rodrigo, C.; Pulido, R.; Carry, B.
2014-02-01
This article describes a citizen-science project conducted by the Spanish Virtual Observatory (SVO) to improve the orbits of near-Earth asteroids (NEAs) using data from astronomical archives. The list of NEAs maintained at the Minor Planet Center (MPC) is checked daily to identify new objects or changes in the orbital parameters of already catalogued objects. Using NEODyS we compute the position and magnitude of these objects at the observing epochs of the 938 046 images comprising the Eigth Data Release of the Sloan Digitised Sky Survey (SDSS). If the object lies within the image boundaries and the magnitude is brighter than the limiting magnitude, then the associated image is visually inspected by the project's collaborators ({the citizens}) to confirm or discard the presence of the NEA. If confirmed, accurate coordinates and, sometimes, magnitudes are submitted to the MPC. Using this methodology, 3226 registered users have made during the first fifteen months of the project more than 167 000 measurements which have improved the orbital elements of 551 NEAs (6 % of the total number of this type of asteroids). Even more remarkable is the fact that these results have been obtained at zero cost to telescope time as NEAs were serendipitously observed while the survey was being carried out. This demonstrates the enormous scientific potential hidden in astronomical archives. The great reception of the project as well as the results obtained makes it a valuable and reliable tool for improving the orbital parameters of near-Earth asteroids.
Li, Bin; Sang, Jizhang; Zhang, Zhongping
2016-01-01
A critical requirement to achieve high efficiency of debris laser tracking is to have sufficiently accurate orbit predictions (OP) in both the pointing direction (better than 20 arc seconds) and distance from the tracking station to the debris objects, with the former more important than the latter because of the narrow laser beam. When the two line element (TLE) is used to provide the orbit predictions, the resultant pointing errors are usually on the order of tens to hundreds of arc seconds. In practice, therefore, angular observations of debris objects are first collected using an optical tracking sensor, and then used to guide the laser beam pointing to the objects. The manual guidance may cause interrupts to the laser tracking, and consequently loss of valuable laser tracking data. This paper presents a real-time orbit determination (OD) and prediction method to realize smooth and efficient debris laser tracking. The method uses TLE-computed positions and angles over a short-arc of less than 2 min as observations in an OD process where simplified force models are considered. After the OD convergence, the OP is performed from the last observation epoch to the end of the tracking pass. Simulation and real tracking data processing results show that the pointing prediction errors are usually less than 10″, and the distance errors less than 100 m, therefore, the prediction accuracy is sufficient for the blind laser tracking. PMID:27347958
Feasibility study of a single, elliptical heliocentric Earth-Mars trajectory
NASA Technical Reports Server (NTRS)
Blake, M.; Fulgham, K.; Westrup, S.
1989-01-01
The initial intent of this design project was to evaluate the existence and feasibility of a single elliptical heliocentric Earth/Mars trajectory. This trajectory was constrained to encounter Mars twice in its orbit, within a time interval of 15 to 180 Earth days between encounters. The single ellipse restriction was soon found to be prohibitive for reasons shown later. Therefore, the approach taken in the design of the round-trip mission to Mars was to construct single-leg trajectories which connected two planets on two prescribed dates. Three methods of trajectory design were developed. Method 1 is an eclectic approach and employs Gaussian Orbit Determination (Method 1A) and Lambert-Euler Preliminary Orbit Determination (Method 1B) in conjunction with each other. Method 2 is an additional version of Lambert's Solution to orbit determination, and both a coplanar and a noncoplanar solution were developed within Method 2. In each of these methods, the fundamental variables are two position vectors and the time between the position vectors. In all methods, the motion was considered Keplerian motion and the reference frame origin was located at the sun. Perturbative effects were not considered in Method 1. The feasibility study of round-trip Earth/Mars trajectories maintains generality by considering only heliocentric trajectory parameters and planetary approach conditions. The coordinates and velocity components of the planets, for the standard epoch J2000, were computed from an approximate set of osculating elements by the procedure outlined in an ephemeris of coordinates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fekel, Francis C.; Henry, Gregory W.; Tomkin, Jocelyn, E-mail: fekel@evans.tsuniv.edu, E-mail: gregory.w.henry@gmail.com
2017-09-01
From an extensive number of newly acquired radial velocities we determine the orbital elements for three late-type dwarf systems, HD 96511, HR 7578, and KZ And. The orbital periods are 18.89737 ± 0.00002, 46.81610 ± 0.00006, and 3.0329113 ± 0.0000005 days, respectively, and all three systems are eccentric, although KZ And is just barely so. We have detected lines of the secondary of HD 96511 for the first time. The orbital dimensions ( a {sub 1} sin i and a {sub 2} sin i ) and minimum masses ( m {sub 1} sin{sup 3} i and m {sub 2} sin{sup 3} i ) of the binary components all have accuracies ofmore » 0.2% or better. Extensive photometry of the chromospherically active binary HR 7578 confirms a rather long rotation period of 16.446 ± 0.002 days and that the K3 V components do not eclipse. We have estimated the basic properties of the stars in the three systems and compared those results with evolutionary tracks. The results for KZ And that we computed with the revised Hipparcos parallax of van Leeuwen produce inconsistencies. That parallax appears to be too large, and so, instead, we used the original Hipparcos parallax of the common proper motion primary, which improves the results, although some problems remain.« less
Significance of large Neptune-crossing objects for terrestrial catastrophism
NASA Astrophysics Data System (ADS)
Steel, D.
2014-07-01
Over the past few decades a substantial number of objects have been discovered on orbits beyond Neptune (i.e. transneptunian objects, in various sub-classes), crossing Neptune's orbit (here: the Neptune-crossers of interest), and also others crossing the orbits of any or all of the jovian planets (i.e. Centaurs). These range in size from tens of kilometres across to hundreds of kilometres and more. Although formally classified as minor planets/asteroids, plus a few dwarf planets, the physical reality of these objects is that they are giant comets. That is, they seem to be composed largely of ices and if they were to enter the inner solar system then they would demonstrate the commonly-observed behaviour of comets such as outgassing, and the formation of ion and dust tails. Commonly-observed cometary behaviour, however, also includes fragmentation events and sometimes complete disintegration for no apparent cause (such as tidal disruption or thermal stresses). One might therefore wonder what the implications would be for life on Earth and terrestrial catastrophism if and when one of these objects, say 100 to 500 kilometres in size, dropped into a short-period orbit with perihelion distance (q) less than 1 au; or even q ˜ 5 au, given what Jupiter's gravity might do to it. How often might such events occur? One way to address that question would be to conduct numerical integrations of suitable test orbits and identify how often small-q orbits result, but this comes up against the problem of identifying very-infrequent events (with annual probabilities per object perhaps of order 10^{-12}-10^{-10}. For example, Emel'yanenko et al. [1] recently followed test orbits for approximately 5 × 10^{14} particle-years (8,925 objects with 200 clones of each, for 300 Myr) but because these were selected on the basis of initial values of q only below 36 (rather than ˜30) au many were not immediately Neptune-crossers; however, many test particles did eventually migrate into small-q orbits, including falling into the Sun. Instead of the demanding computational requirements of numerical integrations I have instead employed a statistical technique which involves: (i) The probability of some test orbit encountering a perturbing planet (Neptune, here); and (ii) The relative probabilities of new orbital elements (in particular q<1 au or q<5 au) resulting from such encounters. This technique I introduced in a paper presented at ACM III in Uppsala in 1989 [2] but I have not used it much in the quarter-century since then. I have presented elsewhere [3] some initial results from running this technique on a handful of known Neptune-crossing orbits, the results justifying the probabilities of order 10^{-12}-10^{-10} per annum that I mentioned above. Here I extend the range of computations and the variety of test orbits sampled in order to try to build a picture of how often the inner solar system might be subject to an incursion by a gigantic fragmenting comet, with obvious repercussions for all the terrestrial planets but especially for the evolution of life on Earth.
A ground track control algorithm for the Topographic Mapping Laser Altimeter (TMLA)
NASA Technical Reports Server (NTRS)
Blaes, V.; Mcintosh, R.; Roszman, L.; Cooley, J.
1993-01-01
The results of an analysis of an algorithm that will provide autonomous onboard orbit control using orbits determined with Global Positioning System (GPS) data. The algorithm uses the GPS data to (1) compute the ground track error relative to a fixed longitude grid, and (2) determine the altitude adjustment required to correct the longitude error. A program was written on a personal computer (PC) to test the concept for numerous altitudes and values of solar flux using a simplified orbit model including only the J sub 2 zonal harmonic and simple orbit decay computations. The algorithm was then implemented in a precision orbit propagation program having a full range of perturbations. The analysis showed that, even with all perturbations (including actual time histories of solar flux variation), the algorithm could effectively control the spacecraft ground track and yield more than 99 percent Earth coverage in the time required to complete one coverage cycle on the fixed grid (220 to 230 days depending on altitude and overlap allowance).
Efficient construction of exchange and correlation potentials by inverting the Kohn-Sham equations.
Kananenka, Alexei A; Kohut, Sviataslau V; Gaiduk, Alex P; Ryabinkin, Ilya G; Staroverov, Viktor N
2013-08-21
Given a set of canonical Kohn-Sham orbitals, orbital energies, and an external potential for a many-electron system, one can invert the Kohn-Sham equations in a single step to obtain the corresponding exchange-correlation potential, vXC(r). For orbitals and orbital energies that are solutions of the Kohn-Sham equations with a multiplicative vXC(r) this procedure recovers vXC(r) (in the basis set limit), but for eigenfunctions of a non-multiplicative one-electron operator it produces an orbital-averaged potential. In particular, substitution of Hartree-Fock orbitals and eigenvalues into the Kohn-Sham inversion formula is a fast way to compute the Slater potential. In the same way, we efficiently construct orbital-averaged exchange and correlation potentials for hybrid and kinetic-energy-density-dependent functionals. We also show how the Kohn-Sham inversion approach can be used to compute functional derivatives of explicit density functionals and to approximate functional derivatives of orbital-dependent functionals.
Using the NASTRAN Thermal Analyzer to simulate a flight scientific instrument package
NASA Technical Reports Server (NTRS)
Lee, H.-P.; Jackson, C. E., Jr.
1974-01-01
The NASTRAN Thermal Analyzer has proven to be a unique and useful tool for thermal analyses involving large and complex structures where small, thermally induced deformations are critical. Among its major advantages are direct grid point-to-grid point compatibility with large structural models; plots of the model that may be generated for both conduction and boundary elements; versatility of applying transient thermal loads especially to repeat orbital cycles; on-line printer plotting of temperatures and rate of temperature changes as a function of time; and direct matrix input to solve linear differential equations on-line. These features provide a flexibility far beyond that available in most finite-difference thermal analysis computer programs.
Thermal response of Space Shuttle wing during reentry heating
NASA Technical Reports Server (NTRS)
Gong, L.; Ko, W. L.; Quinn, R. D.
1984-01-01
A structural performance and resizing (SPAR) finite element thermal analysis computer program was used in the heat transfer analysis of the space shuttle orbiter that was subjected to reentry aerodynamic heatings. One wing segment of the right wing (WS 240) and the whole left wing were selected for the thermal analysis. Results showed that the predicted thermal protection system (TPS) temperatures were in good agreement with the space transportation system, trajectory 5 (STS-5) flight-measured temperatures. In addition, calculated aluminum structural temperatures were in fairly good agreement with the flight data up to the point of touchdown. Results also showed that the internal free convection had a considerable effect on the change of structural temperatures after touchdown.
NASA Technical Reports Server (NTRS)
Karl, D. R.
1972-01-01
An evaluation was made of the feasibility of utilizing a simplified man machine interface concept to manage and control a complex space system involving multiple redundant computers that control multiple redundant subsystems. The concept involves the use of a CRT for display and a simple keyboard for control, with a tree-type control logic for accessing and controlling mission, systems, and subsystem elements. The concept was evaluated in terms of the Phase B space shuttle orbiter, to utilize the wide scope of data management and subsystem control inherent in the central data management subsystem provided by the Phase B design philosophy. Results of these investigations are reported in four volumes.
Materials International Space Station Experiment (MISSE) Arrival
2017-10-02
The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. MISSE will be unpacked for integration and processing. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.
Elliptical orbit performance computer program
NASA Technical Reports Server (NTRS)
Myler, T. R.
1981-01-01
A FORTRAN coded computer program which generates and plots elliptical orbit performance capability of space boosters for presentation purposes is described. Orbital performance capability of space boosters is typically presented as payload weight as a function of perigee and apogee altitudes. The parameters are derived from a parametric computer simulation of the booster flight which yields the payload weight as a function of velocity and altitude at insertion. The process of converting from velocity and altitude to apogee and perigee altitude and plotting the results as a function of payload weight is mechanized with the ELOPE program. The program theory, user instruction, input/output definitions, subroutine descriptions and detailed FORTRAN coding information are included.
Orbital operations study. Appendix C: Data sources and vehicle descriptions
NASA Technical Reports Server (NTRS)
Steinwachs, W. L.
1972-01-01
A bibliography of published documents referred to throughout the orbital operations study is presented. A brief description of all of the space program elements included in the study vehicle inventory is developed.
Expected orbit determination performance for the TOPEX/Poseidon mission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nerem, R.S.; Putney, B.H.; Marshall, J.A.
1993-03-01
The TOPEX/Poseidon (T/P) mission, launched during the summer of 1992, has the requirement that the radial component of its orbit must be computed to an accuracy of 13 cm root-mean-square (rms) or better, allowing measurements of the sea surface height to be computed to similar accuracy when the satellite height is differenced with the altimeter measurements. This will be done by combining precise satellite tracking measurements with precise models of the forces acting on the satellite. The Space Geodesy Branch at Goddard Space Flight Center (GSFC), as part of the T/P precision orbit determination (POD) Team, has the responsibility withinmore » NASA for the T/P precise orbit computations. The prelaunch activities of the T/P POD Team have been mainly directed towards developing improved models of the static and time-varying gravitational forces acting on T/P and precise models for the non-conservative forces perturbing the orbit of T/P such as atmospheric drag, solar and Earth radiation pressure, and thermal imbalances. The radial orbit error budget for T/P allows 10 cm rms error due to gravity field mismodeling, 3 cm due to solid Earth and ocean tides, 6 cm due to radiative forces, and 3 cm due to atmospheric drag. A prelaunch assessment of the current modeling accuracies for these forces indicates that the radial orbit error requirements can be achieved with the current models, and can probably be surpassed once T/P tracking data are used to fine tune the models. Provided that the performance of the T/P spacecraft is nominal, the precise orbits computed by the T/P POD Team should be accurate to 13 cm or better radially.« less
ERIC Educational Resources Information Center
Moore, John W., Ed.
1988-01-01
Describes five computer software packages; four for MS-DOS Systems and one for Apple II. Included are SPEC20, an interactive simulation of a Bausch and Lomb Spectronic-20; a database for laboratory chemicals and programs for visualizing Boltzmann-like distributions, orbital plot for the hydrogen atom and molecular orbital theory. (CW)
The Improvement of Efficiency in the Numerical Computation of Orbit Trajectories
NASA Technical Reports Server (NTRS)
Dyer, J.; Danchick, R.; Pierce, S.; Haney, R.
1972-01-01
An analysis, system design, programming, and evaluation of results are described for numerical computation of orbit trajectories. Evaluation of generalized methods, interaction of different formulations for satellite motion, transformation of equations of motion and integrator loads, and development of efficient integrators are also considered.
NASA Technical Reports Server (NTRS)
Armstrong, J. T.; Hummel, C. A.; Quirrenbach, A.; Buscher, D. F.; Mozurkewich, D.; Vivekanand, M.; Simon, R. S.; Denison, C. S.; Johnston, K. J.; Pan, X.-P.
1992-01-01
The orbit of the double-lined spectroscopic binary Phi Cygni, the distance to the system, and the masses and absolute magnitudes of its components are presented via measurements with the Mar III Optical Interferometer. On the basis of a reexamination of the spectroscopic data of Rach & Herbig (1961), the values and uncertainties are adopted for the period and the projected semimajor axes from the present fit to the spectroscopic data and the values of the remaining elements from the present fit to the Mark III data. The elements of the true orbit are derived, and the masses and absolute magnitudes of the components, and the distance to the system are calculated.
Lunar gravity derived from long-period satellite motion, a proposed method
NASA Technical Reports Server (NTRS)
Ferrari, A. J.
1971-01-01
A method was devised to determine the spherical harmonic coefficients of the lunar gravity field. The method consists of a two-step data reduction and estimation process. Pseudo-Doppler data were generated simulating two different lunar orbits. The analysis included the perturbing effects of the L1 lunar gravity field, the earth, the sun, and solar radiation pressure. Orbit determinations were performed on these data and long-period orbital elements were obtained. The Kepler element rates from these solutions were used to recover L1 lunar gravity coefficients. Overall results of the experiment show that lunar gravity coefficients can be accurately determined and that the method is dynamically consistent with long-period perturbation theory.
Compilation on the use of the stroboscopic method in orbital dynamics
NASA Astrophysics Data System (ADS)
Lecohier, G.
In this paper, the application of the stroboscopic method to orbital dynamics is described. As opposed to averaging methods, the stroboscopic solutions of the perturbed Lagrangian system are derived explicitly in the osculating elements which eases greatly their utilization in practical cases. Using this semi-analytical method, the first order solutions of the Lagrange equations including the perturbations by central body gravity field, the third-bodies, the radiation pressure and by the air-drag are derived. In a next step, the accuracy of the first order solution derived for the classical and equinoctial elements is assessed for the long-term prediction of highly eccentric, low altitude, polar and geostationary orbits is estimated.
Averaged changes in the orbital elements of meteoroids due to Yarkovsky-Radzievskij force
NASA Astrophysics Data System (ADS)
Ryabova, Galina O.
2014-07-01
Yarkovsky-Radzievskij effect exceeds the Poynting-Robertson effect in the perturbing action on particles larger than 100 μm. We obtained formulae for averaged changes in a meteoroid's Keplerian orbital elements and used them to estimate dispersion in the Geminid meteoroid stream. It was found that dispersion in semi-major axis of the model shower increased nearly three times on condition that meteoroids rotation is fast, and the rotation axis is stable.
Alabugin, Igor V; Bresch, Stefan; Manoharan, Mariappan
2014-05-22
Trends in hybridization were systematically analyzed through the combination of DFT calculations with NBO analysis for the five elements X (X = B, C, N, O, and F) in 75 HnX-YHm compounds, where Y spans the groups 13-17 of the periods 2-4. This set of substrates probes the flexibility of the hybridization at five atoms X through variations in electronegativity, polarizability, and orbital size of Y. The results illustrate the scope and limitations of the Bent's rule, the classic correlation between electronegativity and hybridization, commonly used in analyzing structural effects in carbon compounds. The rehybridization effects are larger for fluorine- and oxygen-bonds than they are in the similar bonds to carbon. For bonds with the larger elements Y of the lower periods, trends in orbital hybridization depend strongly on both electronegativity and orbital size. For charged species, the effects of substituent orbital size in the more polarizable bonds to heavier elements show a particularly strong response to the charge introduction at the central atom. In the final section, we provide an example of the interplay between hybridization effects with molecular structure and reactivity. In particular, the ability to change hybridization without changes in polarization provides an alternative way to control structure and reactivity, as illustrated by the strong correlation of strain in monosubstituted cyclopropanes with hybridization in the bond to the substituent.
Orbit correction in a linear nonscaling fixed field alternating gradient accelerator
Kelliher, D. J.; Machida, S.; Edmonds, C. S.; ...
2014-11-20
In a linear non-scaling FFAG the large natural chromaticity of the machine results in a betatron tune that varies by several integers over the momentum range. In addition, orbit correction is complicated by the consequent variation of the phase advance between lattice elements. Here we investigate how the correction of multiple closed orbit harmonics allows correction of both the COD and the accelerated orbit distortion over the momentum range.
NASA Astrophysics Data System (ADS)
Asada, Hideki
2006-11-01
There exists a very classical inverse problem regarding orbit determination of a binary system: "when an orbital plane of two bodies is inclined with respect to the line of sight, observables are their positions projected onto a celestial sphere. How do we determine the orbital elements from observations?" A "complete exact solution" has been found. It is reviewed with some related topics.
Gravity field models from kinematic orbits of CHAMP, GRACE and GOCE satellites
NASA Astrophysics Data System (ADS)
Bezděk, Aleš; Sebera, Josef; Klokočník, Jaroslav; Kostelecký, Jan
2014-02-01
The aim of our work is to generate Earth's gravity field models from GPS positions of low Earth orbiters. Our inversion method is based on Newton's second law, which relates the observed acceleration of the satellite with forces acting on it. The observed acceleration is obtained as numerical second derivative of kinematic positions. Observation equations are formulated using the gradient of the spherical harmonic expansion of the geopotential. Other forces are either modelled (lunisolar perturbations, tides) or provided by onboard measurements (nongravitational perturbations). From this linear regression model the geopotential harmonic coefficients are obtained. To this basic scheme of the acceleration approach we added some original elements, which may be useful in other inversion techniques as well. We tried to develop simple, straightforward and still statistically correct model of observations. (i) The model is linear in the harmonic coefficients, no a priori gravity field model is needed, no regularization is applied. (ii) We use the generalized least squares to successfully mitigate the strong amplification of noise due to numerical second derivative. (iii) The number of other fitted parameters is very small, in fact we use only daily biases, thus we can monitor their behaviour. (iv) GPS positions have correlated errors. The sample autocorrelation function and especially the partial autocorrelation function indicate suitability of an autoregressive model to represent the correlation structure. The decorrelation of residuals improved the accuracy of harmonic coefficients by a factor of 2-3. (v) We found it better to compute separate solutions in the three local reference frame directions than to compute them together at the same time; having obtained separate solutions for along-track, cross-track and radial components, we combine them using the normal matrices. Relative contribution of the along-track component to the combined solution is 50 percent on average. (vi) The computations were performed on an ordinary PC up to maximum degree and order 120. We applied the presented method to orbits of CHAMP and GRACE spanning seven years (2003-2009) and to two months of GOCE (Nov/Dec 2009). The obtained long-term static gravity field models are of similar or better quality compared to other published solutions. We also tried to extract the time-variable gravity signal from CHAMP and GRACE orbits. The acquired average annual signal shows clearly the continental areas with important and known hydrological variations.
NASA Technical Reports Server (NTRS)
Mattson, H. L.; Gianformaggio, A.; Anderson, N. R.
1972-01-01
The activities of the structural and mechanical activity group of the orbital operations study project are discussed. Element interfaces, alternate approaches, design concepts, operational procedures, functional requirements, design influences, and approach selection are presented. The following areas are considered: (1) mating, (2) orbital assembly, (3) separation, EOS payload deployment, and EOS payload retraction.
NASA Technical Reports Server (NTRS)
1979-01-01
User power, duration, and orbit requirements, which were the prime factors influencing power extension package (PEP) design, are discussed. A representative configuration of the PEP concept is presented and the major elements of the system are described as well as the PEP-to-Orbiter and remote manipulator interface provisions.
Orbit error characteristic and distribution of TLE using CHAMP orbit data
NASA Astrophysics Data System (ADS)
Xu, Xiao-li; Xiong, Yong-qing
2018-02-01
Space object orbital covariance data is required for collision risk assessments, but publicly accessible two line element (TLE) data does not provide orbital error information. This paper compared historical TLE data and GPS precision ephemerides of CHAMP to assess TLE orbit accuracy from 2002 to 2008, inclusive. TLE error spatial variations with longitude and latitude were calculated to analyze error characteristics and distribution. The results indicate that TLE orbit data are systematically biased from the limited SGP4 model. The biases can reach the level of kilometers, and the sign and magnitude are correlate significantly with longitude.
Electron and Nucleon Localization Functions of Oganesson: Approaching the Thomas-Fermi Limit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jerabek, Paul; Schuetrumpf, Bastian; Schwerdtfeger, Peter
Fermion localization functions are used to discuss electronic and nucleonic shell structure effects in the superheavy element oganesson, the heaviest element discovered to date. Spin-orbit splitting in the 7p electronic shell becomes so large (~10 eV) that Og is expected to show uniform-gas-like behavior in the valence region with a rather large dipole polarizability compared to the lighter rare gas elements. The nucleon localization in Og is also predicted to undergo a transition to the Thomas-Fermi gas behavior in the valence region. Finally, this effect, particularly strong for neutrons, is due to the high density of single-particle orbitals.
Electron and Nucleon Localization Functions of Oganesson: Approaching the Thomas-Fermi Limit
Jerabek, Paul; Schuetrumpf, Bastian; Schwerdtfeger, Peter; ...
2018-01-31
Fermion localization functions are used to discuss electronic and nucleonic shell structure effects in the superheavy element oganesson, the heaviest element discovered to date. Spin-orbit splitting in the 7p electronic shell becomes so large (~10 eV) that Og is expected to show uniform-gas-like behavior in the valence region with a rather large dipole polarizability compared to the lighter rare gas elements. The nucleon localization in Og is also predicted to undergo a transition to the Thomas-Fermi gas behavior in the valence region. Finally, this effect, particularly strong for neutrons, is due to the high density of single-particle orbitals.
Electron and Nucleon Localization Functions of Oganesson: Approaching the Thomas-Fermi Limit
NASA Astrophysics Data System (ADS)
Jerabek, Paul; Schuetrumpf, Bastian; Schwerdtfeger, Peter; Nazarewicz, Witold
2018-02-01
Fermion localization functions are used to discuss electronic and nucleonic shell structure effects in the superheavy element oganesson, the heaviest element discovered to date. Spin-orbit splitting in the 7 p electronic shell becomes so large (˜10 eV ) that Og is expected to show uniform-gas-like behavior in the valence region with a rather large dipole polarizability compared to the lighter rare gas elements. The nucleon localization in Og is also predicted to undergo a transition to the Thomas-Fermi gas behavior in the valence region. This effect, particularly strong for neutrons, is due to the high density of single-particle orbitals.
Using computer graphics to enhance astronaut and systems safety
NASA Technical Reports Server (NTRS)
Brown, J. W.
1985-01-01
Computer graphics is being employed at the NASA Johnson Space Center as a tool to perform rapid, efficient and economical analyses for man-machine integration, flight operations development and systems engineering. The Operator Station Design System (OSDS), a computer-based facility featuring a highly flexible and versatile interactive software package, PLAID, is described. This unique evaluation tool, with its expanding data base of Space Shuttle elements, various payloads, experiments, crew equipment and man models, supports a multitude of technical evaluations, including spacecraft and workstation layout, definition of astronaut visual access, flight techniques development, cargo integration and crew training. As OSDS is being applied to the Space Shuttle, Orbiter payloads (including the European Space Agency's Spacelab) and future space vehicles and stations, astronaut and systems safety are being enhanced. Typical OSDS examples are presented. By performing physical and operational evaluations during early conceptual phases. supporting systems verification for flight readiness, and applying its capabilities to real-time mission support, the OSDS provides the wherewithal to satisfy a growing need of the current and future space programs for efficient, economical analyses.
Computation of solar perturbations with Poisson series
NASA Technical Reports Server (NTRS)
Broucke, R.
1974-01-01
Description of a project for computing first-order perturbations of natural or artificial satellites by integrating the equations of motion on a computer with automatic Poisson series expansions. A basic feature of the method of solution is that the classical variation-of-parameters formulation is used rather than rectangular coordinates. However, the variation-of-parameters formulation uses the three rectangular components of the disturbing force rather than the classical disturbing function, so that there is no problem in expanding the disturbing function in series. Another characteristic of the variation-of-parameters formulation employed is that six rather unusual variables are used in order to avoid singularities at the zero eccentricity and zero (or 90 deg) inclination. The integration process starts by assuming that all the orbit elements present on the right-hand sides of the equations of motion are constants. These right-hand sides are then simple Poisson series which can be obtained with the use of the Bessel expansions of the two-body problem in conjunction with certain interation methods. These Poisson series can then be integrated term by term, and a first-order solution is obtained.
Efficient development and processing of thermal math models of very large space truss structures
NASA Technical Reports Server (NTRS)
Warren, Andrew H.; Arelt, Joseph E.; Lalicata, Anthony L.
1993-01-01
As the spacecraft moves along the orbit, the truss members are subjected to direct and reflected solar, albedo and planetary infra-red (IR) heating rates, as well as IR heating and shadowing from other spacecraft components. This is a transient process with continuously changing heating loads and the shadowing effects. The resulting nonuniform temperature distribution may cause nonuniform thermal expansion, deflection and stress in the truss elements, truss warping and thermal distortions. There are three challenges in the thermal-structural analysis of the large truss structures. The first is the development of the thermal and structural math models, the second - model processing, and the third - the data transfer between the models. All three tasks require considerable time and computer resources to be done because of a very large number of components involved. To address these challenges a series of techniques of automated thermal math modeling and efficient processing of very large space truss structures were developed. In the process the finite element and finite difference methods are interfaced. A very substantial reduction of the quantity of computations was achieved while assuring a desired accuracy of the results. The techniques are illustrated on the thermal analysis of a segment of the Space Station main truss.
Orbits and masses in the young triple system TWA 5
NASA Astrophysics Data System (ADS)
Köhler, R.; Ratzka, T.; Petr-Gotzens, M. G.; Correia, S.
2013-10-01
Aims: We aim to improve the orbital elements and determine the individual masses of the components in the triple system TWA 5. Methods: Five new relative astrometric positions in the H band were recorded with the adaptive optics system at the Very Large Telescope (VLT). We combine them with data from the literature and a measurement in the Ks band. We derive an improved fit for the orbit of TWA 5Aa-b around each other. Furthermore, we use the third component, TWA 5B, as an astrometric reference to determine the motion of Aa and Ab around their center of mass and compute their mass ratio. Results: We find an orbital period of 6.03 ± 0.01 years and a semi-major axis of 63.7 ± 0.2 mas (3.2 ± 0.1 AU). With the trigonometric distance of 50.1 ± 1.8 pc, this yields a system mass of 0.9 ± 0.1 M⊙, where the error is dominated by the error of the distance. The dynamical mass agrees with the system mass predicted by a number of theoretical models if we assume that TWA5 is at the young end of the age range of the TW Hydrae association. We find a mass ratio of MAb/MAa = 1.3-0.4+0.6 , where the less luminous component Ab is more massive. This result is likely to be a consequence of the large uncertainties due to the limited orbital coverage of the observations. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 079.C-0103, 081.C-0393, 386.C-0205, 087.C-0209, 088.C-0046, 089.C-0167, and 090.C-0184.
Comet and Asteroid Hazard to the Terrestrial Planets
NASA Technical Reports Server (NTRS)
Ipatov, S. I.; Mather, J. C.; Oegerle, William (Technical Monitor)
2002-01-01
We made computer simulations of orbital evolution for intervals of at least 5-10 Myr of N=2000 Jupiter-crossing objects (JCOs) with initial orbits close to those of real comets with period P less than 10 yr, 500 objects with orbits close to that of Comet 10P, and the asteroids initially located at the 3:1 and 5:2 resonances with Jupiter at initial eccentricity e(sub 0)=0.15 and initial inclination i(sub 0)=10(sup 0). The gravitational influence of all planets, except for Mercury and Pluto, was taken into account (without dissipative factors). We calculated the probabilities of collisions of bodies with the terrestrial planets, using orbital elements obtained with a step equal to 500 yr, and then summarized the results for all bodies, obtaining, the total probability Psigma of collisions with a planet and the total time interval Tsigma during which perihelion distance q of bodies was less than a semimajor axis of the planet. The values of p(sub r) =10(exp 6)Psigma/N and T(sub r)=T/1000 yr (where T=Tsigma/N) are presented in a table together with the ratio r of the total time interval when orbits were of Apollo type (at a greater than 1 AU, q less than 1.017 AU, e less than 0.999) to that of Amor type (1.017 less than q less than 1.33 AU), r(sub 2) is the same as r but for Apollo objects with e less than 0.9. For asteroids we present only results obtained by direct integration, as a symplectic method can give large errors for these resonances.
Spectrum/Orbit-Utilization Program
NASA Technical Reports Server (NTRS)
Miller, Edward F.; Sawitz, Paul; Zusman, Fred
1988-01-01
Interferences among geostationary satellites determine allocations. Spectrum/Orbit Utilization Program (SOUP) is analytical computer program for determining mutual interferences among geostationary-satellite communication systems operating in given scenario. Major computed outputs are carrier-to-interference ratios at receivers at specified stations on Earth. Information enables determination of acceptability of planned communication systems. Written in FORTRAN.
NASA Technical Reports Server (NTRS)
1973-01-01
The logistics of orbital vehicle servicing computer specifications was developed and a number of alternatives to improve utilization of the space shuttle and the tug were investigated. Preliminary results indicate that space servicing offers a potential for reducing future operational and program costs over ground refurbishment of satellites. A computer code which could be developed to simulate space servicing is presented.
NASA Astrophysics Data System (ADS)
Luo, Ye; Esler, Kenneth; Kent, Paul; Shulenburger, Luke
Quantum Monte Carlo (QMC) calculations of giant molecules, surface and defect properties of solids have been feasible recently due to drastically expanding computational resources. However, with the most computationally efficient basis set, B-splines, these calculations are severely restricted by the memory capacity of compute nodes. The B-spline coefficients are shared on a node but not distributed among nodes, to ensure fast evaluation. A hybrid representation which incorporates atomic orbitals near the ions and B-spline ones in the interstitial regions offers a more accurate and less memory demanding description of the orbitals because they are naturally more atomic like near ions and much smoother in between, thus allowing coarser B-spline grids. We will demonstrate the advantage of hybrid representation over pure B-spline and Gaussian basis sets and also show significant speed-up like computing the non-local pseudopotentials with our new scheme. Moreover, we discuss a new algorithm for atomic orbital initialization which used to require an extra workflow step taking a few days. With this work, the highly efficient hybrid representation paves the way to simulate large size even in-homogeneous systems using QMC. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Computational Materials Sciences Program.
NASA Astrophysics Data System (ADS)
Bubin, Sergiy; Adamowicz, Ludwik
2008-03-01
In this work we consider explicitly correlated complex Gaussian basis functions for expanding the wave function of an N-particle system with the L =1 total orbital angular momentum. We derive analytical expressions for various matrix elements with these basis functions including the overlap, kinetic energy, and potential energy (Coulomb interaction) matrix elements, as well as matrix elements of other quantities. The derivatives of the overlap, kinetic, and potential energy integrals with respect to the Gaussian exponential parameters are also derived and used to calculate the energy gradient. All the derivations are performed using the formalism of the matrix differential calculus that facilitates a way of expressing the integrals in an elegant matrix form, which is convenient for the theoretical analysis and the computer implementation. The new method is tested in calculations of two systems: the lowest P state of the beryllium atom and the bound P state of the positronium molecule (with the negative parity). Both calculations yielded new, lowest-to-date, variational upper bounds, while the number of basis functions used was significantly smaller than in previous studies. It was possible to accomplish this due to the use of the analytic energy gradient in the minimization of the variational energy.
Bubin, Sergiy; Adamowicz, Ludwik
2008-03-21
In this work we consider explicitly correlated complex Gaussian basis functions for expanding the wave function of an N-particle system with the L=1 total orbital angular momentum. We derive analytical expressions for various matrix elements with these basis functions including the overlap, kinetic energy, and potential energy (Coulomb interaction) matrix elements, as well as matrix elements of other quantities. The derivatives of the overlap, kinetic, and potential energy integrals with respect to the Gaussian exponential parameters are also derived and used to calculate the energy gradient. All the derivations are performed using the formalism of the matrix differential calculus that facilitates a way of expressing the integrals in an elegant matrix form, which is convenient for the theoretical analysis and the computer implementation. The new method is tested in calculations of two systems: the lowest P state of the beryllium atom and the bound P state of the positronium molecule (with the negative parity). Both calculations yielded new, lowest-to-date, variational upper bounds, while the number of basis functions used was significantly smaller than in previous studies. It was possible to accomplish this due to the use of the analytic energy gradient in the minimization of the variational energy.
Morita, Daiki; Numajiri, Toshiaki; Tsujiko, Shoko; Nakamura, Hiroko; Yamochi, Ryo; Sowa, Yoshihiro; Yasuda, Makoto; Hirano, Shigeru
2017-11-01
Computer-aided design/computer-aided manufacturing (CAD/CAM) guides are now widely used in maxillofacial reconstruction. However, there are few reports of CAD/CAM guides being used for scapular flaps. The authors performed the secondary maxillary and orbital floor reconstruction using a free latissimus dorsi muscle, cutaneous tissue, and scapular flap designed using CAD/CAM techniques in a 72-year-old man who had undergone partial maxillectomy four years previously. The patient had diplopia, the vertical dystopia of eye position, and a large oral-nasal-cutaneous fistula. After the operation, the authors confirmed that the deviation between the postoperative and preoperative planning three-dimensional images was less than 2 mm. Because scapular guides require 3 cutting surfaces, the shape of the scapular guide is more complex than that of a conventional fibular guide. In orbital floor reconstruction, the use of a CAM technique such as that used to manufacture the authors' fixation guide is as necessary for accurate, safe, and easy reconstruction as is preoperative CAD planning. The production of a fixation guide as well as a cutting guide is particularly useful because it is difficult to determine the angle for reconstructing the orbital floor by freehand techniques. In this case, the orbital floor was reconstructed based on a mirror image of the healthy side to avoid overcompression of the orbital tissue. Although the patient's vertical dystopia of eye position was improved, diplopia was not improved because, for greater safety, the authors did not plan overcorrection of the orbital volume.
Ukrainian network of Optical Stations for man-made space objects observation
NASA Astrophysics Data System (ADS)
Sybiryakova, Yevgeniya
2016-07-01
The Ukrainian Network of Optical Stations (UNOS) for man-made objects research was founded in 2012 as an association of professional astronomers. The main goals of network are: positional and photometric observations of man-made space objects, calculation of orbital elements, research of shape and period of rotation. The network consists of 8 stations: Kiev, Nikolaev, Odesa, Uzhgorod, Lviv, Yevpatoriya, Alchevsk. UNOS has 12 telescopes for observation of man-made space objects. The new original methods of positional observation were developed for optical observation of geosynchronous and low earth orbit satellites. The observational campaigns of LEO satellites held in the network every year. The numerical model of space object motion, developed in UNOS, is using for orbit calculation. The results of orbital elements calculation are represented on the UNOS web-site http://umos.mao.kiev.ua/eng/. The photometric observation of selected objects is also carried out in network.
The relationship between orbital, earth-based, and sample data for lunar landing sites
NASA Technical Reports Server (NTRS)
Clark, P. E.; Hawke, B. R.; Basu, A.
1990-01-01
Results are reported of a detailed examination of data available for the Apollo lunar landing sites, including the Apollo orbital measurements of six major elements derived from XRF and gamma-ray instruments and geochemical parameters derived from earth-based spectral reflectivity data. Wherever orbital coverage for Apollo landing sites exist, the remote data were correlated with geochemical data derived from the soil sample averages for major geological units and the major rock components associated with these units. Discrepancies were observed between the remote and the soil-anlysis elemental concentration data, which were apparently due to the differences in the extent of exposure of geological units, and, hence, major rock eomponents, in the area sampled. Differences were observed in signal depths between various orbital experiments, which may provide a mechanism for explaining differences between the XRF and other landing-site data.
Introduction to Astrodynamic Reentry
2009-09-09
be used in most instances throughout this text. Two elements (semimajor axis a and eccentricity e ) describe the size and shape of the orbit ...Figure 2-3 already shows how the semimajor axis defines the size or the orbit . The eccentricity describes the shape: 0e is circular, 0 1e is...elliptical, 1e is parabolic, and 1e is hyperbolic. Orbital inclination i and right ascension of the ascending node define how the orbit
Ancient heliocentrists, Ptolemy, and the equant
NASA Astrophysics Data System (ADS)
Rawlins, Dennis
1987-03-01
Evidence is presented suggesting an ancient heliocentrist origin for geocentrist C. Ptolemy's planetary orbit elements and the equant. Pliny's data for Venus are shown to be inconsistent with geocentricity, and a heliocentric period-relation is found to be the basis of Ptolemy's previously unexplained and astonishingly accurate tables of the mean motion of Mars, the very planet whose orbit produced the equant. The admirable correctness of his adopted Mars elements is patently inconsistent with the ordmag 1° inaccuracy of Ptolemy's geocentric model and of his alleged empirical production.
Shuttle Orbiter-like Cargo Carrier on Crew Launch Vehicle
NASA Technical Reports Server (NTRS)
Martinovic, Zoran
2009-01-01
The following document summarizes the results of a conceptual design study for which the goal was to investigate the possibility of using a crew launch vehicle to deliver the remaining International Space Station elements should the Space Shuttle orbiter not be available to complete that task. Conceptual designs and structural weight estimates for two designs are presented. A previously developed systematic approach that was based on finite-element analysis and structural sizing was used to estimate growth of structural weight from analytical to "as built" conditions.
GRASP92: a package for large-scale relativistic atomic structure calculations
NASA Astrophysics Data System (ADS)
Parpia, F. A.; Froese Fischer, C.; Grant, I. P.
2006-12-01
Program summaryTitle of program: GRASP92 Catalogue identifier: ADCU_v1_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADCU_v1_1 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: no Programming language used: Fortran Computer: IBM POWERstation 320H Operating system: IBM AIX 3.2.5+ RAM: 64M words No. of lines in distributed program, including test data, etc.: 65 224 No of bytes in distributed program, including test data, etc.: 409 198 Distribution format: tar.gz Catalogue identifier of previous version: ADCU_v1_0 Journal reference of previous version: Comput. Phys. Comm. 94 (1996) 249 Does the new version supersede the previous version?: Yes Nature of problem: Prediction of atomic spectra—atomic energy levels, oscillator strengths, and radiative decay rates—using a 'fully relativistic' approach. Solution method: Atomic orbitals are assumed to be four-component spinor eigenstates of the angular momentum operator, j=l+s, and the parity operator Π=βπ. Configuration state functions (CSFs) are linear combinations of Slater determinants of atomic orbitals, and are simultaneous eigenfunctions of the atomic electronic angular momentum operator, J, and the atomic parity operator, P. Lists of CSFs are either explicitly prescribed by the user or generated from a set of reference CSFs, a set of subshells, and rules for deriving other CSFs from these. Approximate atomic state functions (ASFs) are linear combinations of CSFs. A variational functional may be constructed by combining expressions for the energies of one or more ASFs. Average level (AL) functionals are weighted sums of energies of all possible ASFs that may be constructed from a set of CSFs; the number of ASFs is then the same as the number, n, of CSFs. Optimal level (OL) functionals are weighted sums of energies of some subset of ASFs; the GRASP92 package is optimized for this latter class of functionals. The composition of an ASF in terms of CSFs sharing the same quantum numbers is determined using the configuration-interaction (CI) procedure that results upon varying the expansion coefficients to determine the extremum of a variational functional. Radial functions may be determined by numerically solving the multiconfiguration Dirac-Fock (MCDF) equations that result upon varying the orbital radial functions or some subset thereof so as to obtain an extremum of the variational functional. Radial wavefunctions may also be determined using a screened hydrogenic or Thomas-Fermi model, although these schemes generally provide initial estimates for MCDF self-consistent-field (SCF) calculations. Transition properties for pairs of ASFs are computed from matrix elements of multipole operators of the electromagnetic field. All matrix elements of CSFs are evaluated using the Racah algebra. Reasons for the new version: During recent studies using the general relativistic atomic structure package (GRASP92), several errors were found, some of which might have been present already in the earlier GRASP92 version (program ABJN_v1_0, Comput. Phys. Comm. 55 (1989) 425). These errors were reported and discussed by Froese Fischer, Gaigalas, and Ralchenko in a separate publication [C. Froese Fischer, G. Gaigalas, Y. Ralchenko, Comput. Phys. Comm. 175 (2006) 738-744. [7
Generating Animated Displays of Spacecraft Orbits
NASA Technical Reports Server (NTRS)
Candey, Robert M.; Chimiak, Reine A.; Harris, Bernard T.
2005-01-01
Tool for Interactive Plotting, Sonification, and 3D Orbit Display (TIPSOD) is a computer program for generating interactive, animated, four-dimensional (space and time) displays of spacecraft orbits. TIPSOD utilizes the programming interface of the Satellite Situation Center Web (SSCWeb) services to communicate with the SSC logic and database by use of the open protocols of the Internet. TIPSOD is implemented in Java 3D and effects an extension of the preexisting SSCWeb two-dimensional static graphical displays of orbits. Orbits can be displayed in any or all of the following seven reference systems: true-of-date (an inertial system), J2000 (another inertial system), geographic, geomagnetic, geocentric solar ecliptic, geocentric solar magnetospheric, and solar magnetic. In addition to orbits, TIPSOD computes and displays Sibeck's magnetopause and Fairfield's bow-shock surfaces. TIPSOD can be used by the scientific community as a means of projection or interpretation. It also has potential as an educational tool.
Spacecraft formation control using analytical finite-duration approaches
NASA Astrophysics Data System (ADS)
Ben Larbi, Mohamed Khalil; Stoll, Enrico
2018-03-01
This paper derives a control concept for formation flight (FF) applications assuming circular reference orbits. The paper focuses on a general impulsive control concept for FF which is then extended to the more realistic case of non-impulsive thrust maneuvers. The control concept uses a description of the FF in relative orbital elements (ROE) instead of the classical Cartesian description since the ROE provide a direct insight into key aspects of the relative motion and are particularly suitable for relative orbit control purposes and collision avoidance analysis. Although Gauss' variational equations have been first derived to offer a mathematical tool for processing orbit perturbations, they are suitable for several different applications. If the perturbation acceleration is due to a control thrust, Gauss' variational equations show the effect of such a control thrust on the Keplerian orbital elements. Integrating the Gauss' variational equations offers a direct relation between velocity increments in the local vertical local horizontal frame and the subsequent change of Keplerian orbital elements. For proximity operations, these equations can be generalized from describing the motion of single spacecraft to the description of the relative motion of two spacecraft. This will be shown for impulsive and finite-duration maneuvers. Based on that, an analytical tool to estimate the error induced through impulsive maneuver planning is presented. The resulting control schemes are simple and effective and thus also suitable for on-board implementation. Simulations show that the proposed concept improves the timing of the thrust maneuver executions and thus reduces the residual error of the formation control.
NASA Technical Reports Server (NTRS)
Fuchs, A. J. (Editor)
1979-01-01
Onboard and real time image processing to enhance geometric correction of the data is discussed with application to autonomous navigation and attitude and orbit determination. Specific topics covered include: (1) LANDSAT landmark data; (2) star sensing and pattern recognition; (3) filtering algorithms for Global Positioning System; and (4) determining orbital elements for geostationary satellites.
Geometric Approach to Orbital Formation Mission Design
2004-03-01
limitations, several individuals have used their resources to im- prove upon the Clohessy and Wiltshire model. First order oblateness affects are added to... Clohessy and Wiltshire solutions by Schaub and Alfriend [21] who de- scribe the relative orbit using Delaunay [7] orbital elements. Further perturbation...a methodology using a sliding mode framework. Irvin [11] investigated minimal fuel reconfiguration techniques using the Clohessy and Wiltshire