Sample records for computed rate constants

  1. Calculation of kinetic rate constants from thermodynamic data

    NASA Technical Reports Server (NTRS)

    Marek, C. John

    1995-01-01

    A new scheme for relating the absolute value for the kinetic rate constant k to the thermodynamic constant Kp is developed for gases. In this report the forward and reverse rate constants are individually related to the thermodynamic data. The kinetic rate constants computed from thermodynamics compare well with the current kinetic rate constants. This method is self consistent and does not have extensive rules. It is first demonstrated and calibrated by computing the HBr reaction from H2 and Br2. This method then is used on other reactions.

  2. Computer Calculation of First-Order Rate Constants

    ERIC Educational Resources Information Center

    Williams, Robert C.; Taylor, James W.

    1970-01-01

    Discusses the computer program used to calculate first-order rate constants. Discussion includes data preparation, weighting options, comparison techniques, infinity point adjustment, least-square fit, Guggenheim calculation, and printed outputs. Exemplifies the utility of the computer program by two experiments: (1) the thermal decomposition of…

  3. Rate Constants and Mechanisms of Protein–Ligand Binding

    PubMed Central

    Pang, Xiaodong; Zhou, Huan-Xiang

    2017-01-01

    Whereas protein–ligand binding affinities have long-established prominence, binding rate constants and binding mechanisms have gained increasing attention in recent years. Both new computational methods and new experimental techniques have been developed to characterize the latter properties. It is now realized that binding mechanisms, like binding rate constants, can and should be quantitatively determined. In this review, we summarize studies and synthesize ideas on several topics in the hope of providing a coherent picture of and physical insight into binding kinetics. The topics include microscopic formulation of the kinetic problem and its reduction to simple rate equations; computation of binding rate constants; quantitative determination of binding mechanisms; and elucidation of physical factors that control binding rate constants and mechanisms. PMID:28375732

  4. HO + CO reaction rates and H/D kinetic isotope effects: master equation models with ab initio SCTST rate constants.

    PubMed

    Weston, Ralph E; Nguyen, Thanh Lam; Stanton, John F; Barker, John R

    2013-02-07

    Ab initio microcanonical rate constants were computed using Semi-Classical Transition State Theory (SCTST) and used in two master equation formulations (1D, depending on active energy with centrifugal corrections, and 2D, depending on total energy and angular momentum) to compute temperature-dependent rate constants for the title reactions using a potential energy surface obtained by sophisticated ab initio calculations. The 2D master equation was used at the P = 0 and P = ∞ limits, while the 1D master equation with centrifugal corrections and an empirical energy transfer parameter could be used over the entire pressure range. Rate constants were computed for 75 K ≤ T ≤ 2500 K and 0 ≤ [He] ≤ 10(23) cm(-3). For all temperatures and pressures important for combustion and for the terrestrial atmosphere, the agreement with the experimental rate constants is very good, but at very high pressures and T ≤ 200 K, the theoretical rate constants are significantly smaller than the experimental values. This effect is possibly due to the presence in the experiments of dimers and prereactive complexes, which were not included in the model calculations. The computed H/D kinetic isotope effects are in acceptable agreement with experimental data, which show considerable scatter. Overall, the agreement between experimental and theoretical H/D kinetic isotope effects is much better than in previous work, and an assumption of non-RRKM behavior does not appear to be needed to reproduce experimental observations.

  5. Steady-State Computation of Constant Rotational Rate Dynamic Stability Derivatives

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Green, Lawrence L.

    2000-01-01

    Dynamic stability derivatives are essential to predicting the open and closed loop performance, stability, and controllability of aircraft. Computational determination of constant-rate dynamic stability derivatives (derivatives of aircraft forces and moments with respect to constant rotational rates) is currently performed indirectly with finite differencing of multiple time-accurate computational fluid dynamics solutions. Typical time-accurate solutions require excessive amounts of computational time to complete. Formulating Navier-Stokes (N-S) equations in a rotating noninertial reference frame and applying an automatic differentiation tool to the modified code has the potential for directly computing these derivatives with a single, much faster steady-state calculation. The ability to rapidly determine static and dynamic stability derivatives by computational methods can benefit multidisciplinary design methodologies and reduce dependency on wind tunnel measurements. The CFL3D thin-layer N-S computational fluid dynamics code was modified for this study to allow calculations on complex three-dimensional configurations with constant rotation rate components in all three axes. These CFL3D modifications also have direct application to rotorcraft and turbomachinery analyses. The modified CFL3D steady-state calculation is a new capability that showed excellent agreement with results calculated by a similar formulation. The application of automatic differentiation to CFL3D allows the static stability and body-axis rate derivatives to be calculated quickly and exactly.

  6. Computation of Kinetics for the Hydrogen/Oxygen System Using the Thermodynamic Method

    NASA Technical Reports Server (NTRS)

    Marek, C. John

    1996-01-01

    A new method for predicting chemical rate constants using thermodynamics has been applied to the hydrogen/oxygen system. This method is based on using the gradient of the Gibbs free energy and a single proportionality constant D to determine the kinetic rate constants. Using this method the rate constants for any gas phase reaction can be computed from thermodynamic properties. A modified reaction set for the H/O system is determined. A11 of the third body efficiencies M are taken to be unity. Good agreement was obtained between the thermodynamic method and the experimental shock tube data. In addition, the hydrogen bromide experimental data presented in previous work is recomputed with M's of unity.

  7. Photophysical and photochemical insights into the photodegradation of sulfapyridine in water: A joint experimental and theoretical study.

    PubMed

    Zhang, Heming; Wei, Xiaoxuan; Song, Xuedan; Shah, Shaheen; Chen, Jingwen; Liu, Jianhui; Hao, Ce; Chen, Zhongfang

    2018-01-01

    For organic pollutants, photodegradation, as a major abiotic elimination process and of great importance to the environmental fate and risk, involves rather complicated physical and chemical processes of excited molecules. Herein, we systematically studied the photophysical and photochemical processes of a widely used antibiotic, namely sulfapyridine. By means of density functional theory (DFT) computations, we examined the rate constants and the competition of both photophysical and photochemical processes, elucidated the photochemical reaction mechanism, calculated reaction quantum yield (Φ) based on both photophysical and photochemical processes, and subsequently estimated the photodegradation rate constant. We further conducted photolysis experiments to measure the photodegradation rate constant of sulfapyridine. Our computations showed that sulfapyridine at the lowest excited singlet state (S 1 ) mainly undergoes internal conversion to its ground state, and is difficult to transfer to the lowest excited triplet states (T 1 ) via intersystem crossing (ISC) and emit fluorescence. In T 1 state, compared with phosphorescence emission and ISC, chemical reaction is much easier to initiate. Encouragingly, the theoretically predicted photodegradation rate constant is close to the experimentally observed value, indicating that quantum chemistry computation is powerful enough to study photodegradation involving ultra-fast photophysical and photochemical processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Barrierless association of CF2 and dissociation of C2F4 by variational transition-state theory and system-specific quantum Rice–Ramsperger–Kassel theory

    PubMed Central

    Bao, Junwei Lucas; Zhang, Xin

    2016-01-01

    Bond dissociation is a fundamental chemical reaction, and the first principles modeling of the kinetics of dissociation reactions with a monotonically increasing potential energy along the dissociation coordinate presents a challenge not only for modern electronic structure methods but also for kinetics theory. In this work, we use multifaceted variable-reaction-coordinate variational transition-state theory (VRC-VTST) to compute the high-pressure limit dissociation rate constant of tetrafluoroethylene (C2F4), in which the potential energies are computed by direct dynamics with the M08-HX exchange correlation functional. To treat the pressure dependence of the unimolecular rate constants, we use the recently developed system-specific quantum Rice–Ramsperger–Kassel theory. The calculations are carried out by direct dynamics using an exchange correlation functional validated against calculations that go beyond coupled-cluster theory with single, double, and triple excitations. Our computed dissociation rate constants agree well with the recent experimental measurements. PMID:27834727

  9. Barrierless association of CF2 and dissociation of C2F4 by variational transition-state theory and system-specific quantum Rice-Ramsperger-Kassel theory.

    PubMed

    Bao, Junwei Lucas; Zhang, Xin; Truhlar, Donald G

    2016-11-29

    Bond dissociation is a fundamental chemical reaction, and the first principles modeling of the kinetics of dissociation reactions with a monotonically increasing potential energy along the dissociation coordinate presents a challenge not only for modern electronic structure methods but also for kinetics theory. In this work, we use multifaceted variable-reaction-coordinate variational transition-state theory (VRC-VTST) to compute the high-pressure limit dissociation rate constant of tetrafluoroethylene (C 2 F 4 ), in which the potential energies are computed by direct dynamics with the M08-HX exchange correlation functional. To treat the pressure dependence of the unimolecular rate constants, we use the recently developed system-specific quantum Rice-Ramsperger-Kassel theory. The calculations are carried out by direct dynamics using an exchange correlation functional validated against calculations that go beyond coupled-cluster theory with single, double, and triple excitations. Our computed dissociation rate constants agree well with the recent experimental measurements.

  10. Efficient quantum-classical method for computing thermal rate constant of recombination: application to ozone formation.

    PubMed

    Ivanov, Mikhail V; Babikov, Dmitri

    2012-05-14

    Efficient method is proposed for computing thermal rate constant of recombination reaction that proceeds according to the energy transfer mechanism, when an energized molecule is formed from reactants first, and is stabilized later by collision with quencher. The mixed quantum-classical theory for the collisional energy transfer and the ro-vibrational energy flow [M. Ivanov and D. Babikov, J. Chem. Phys. 134, 144107 (2011)] is employed to treat the dynamics of molecule + quencher collision. Efficiency is achieved by sampling simultaneously (i) the thermal collision energy, (ii) the impact parameter, and (iii) the incident direction of quencher, as well as (iv) the rotational state of energized molecule. This approach is applied to calculate third-order rate constant of the recombination reaction that forms the (16)O(18)O(16)O isotopomer of ozone. Comparison of the predicted rate vs. experimental result is presented.

  11. Effect of Dunaliella tertiolecta organic exudates on the Fe(II) oxidation kinetics in seawater.

    PubMed

    González, A G; Santana-Casiano, J M; González-Dávila, M; Pérez-Almeida, N; Suárez de Tangil, M

    2014-07-15

    The role played by the natural organic ligands excreted by the green algae Dunaliella tertiolecta on the Fe(II) oxidation rate constants was studied at different stages of growth. The concentration of dissolved organic carbon increased from 2.1 to 7.1 mg L(-1) over time of culture. The oxidation kinetics of Fe(II) was studied at nanomolar levels and under different physicochemical conditions of pH (7.2-8.2), temperature (5-35 °C), salinity (10-37), and dissolved organic carbon produced by cells (2.1-7.1 mg L(-1)). The experimental rate always decreased in the presence of organic exudates with respect to that in the control seawater. The Fe(II) oxidation rate constant was also studied in the context of Marcus theory, where ΔG° was 39.31-51.48 kJ mol(-1). A kinetic modeling approach was applied for computing the equilibrium and rate constants for Fe(II) and exudates present in solution, the Fe(II) speciation, and the contribution of each Fe(II) species to the overall oxidation rate constant. The best fit model took into account two acidity equilibrium constants for the Fe(II) complexing ligands with pKa,1=9.45 and pKa,2=4.9. The Fe(II) complexing constants were KFe(II)-LH=3×10(10) and KFe(II)-L=10(7), and the corresponding computed oxidation rates were 68±2 and 36±8 M(-1) min(-1), respectively.

  12. Handling of computational in vitro/in vivo correlation problems by Microsoft Excel: IV. Generalized matrix analysis of linear compartment systems.

    PubMed

    Langenbucher, Frieder

    2005-01-01

    A linear system comprising n compartments is completely defined by the rate constants between any of the compartments and the initial condition in which compartment(s) the drug is present at the beginning. The generalized solution is the time profiles of drug amount in each compartment, described by polyexponential equations. Based on standard matrix operations, an Excel worksheet computes the rate constants and the coefficients, finally the full time profiles for a specified range of time values.

  13. Hammett analyses of halocarbene-halocarbanion equilibria.

    PubMed

    Wang, Lei; Moss, Robert A; Krogh-Jespersen, Karsten

    2013-04-19

    Substituted arylchlorocarbenes (X = H, p-Cl, p-CF3, p-F, m-Cl) reacted reversibly with Cl(-) in dichloroethane to form the corresponding aryldichloromethide carbanions. Equilibrium constants and rate constants for the forward and reverse reactions were correlated by the Hammett equation. DFT methods were used to compute equilibrium constants and electronic absorption spectra.

  14. The computational analysis and modelling of substitution effects on hydrolysis of formanilides in acidic aqueous solutions

    NASA Astrophysics Data System (ADS)

    Lukeš, Vladimír; Škorňa, Peter; Michalík, Martin; Klein, Erik

    2017-11-01

    Various para, meta and ortho substituted formanilides have been theoretically studied. For trans and cis-isomers of non-substituted formanilide, the calculated B3LYP vibration normal modes were analyzed. Substituent effect on the selected normal modes was described and the comparison with the available experimental data is presented. The calculated B3LYP proton affinities were correlated with Hammett constants, Fujita-Nishioka equation and the rate constants of the hydrolysis in 1 M HCl. Found linear dependences allow predictions of dissociation constants (pKBH+) and hydrolysis rate constants. Obtained results indicate that protonation of amide group may represent the rate determining step of acid catalyzed hydrolysis.

  15. A new analytical method for estimating lumped parameter constants of linear viscoelastic models from strain rate tests

    NASA Astrophysics Data System (ADS)

    Mattei, G.; Ahluwalia, A.

    2018-04-01

    We introduce a new function, the apparent elastic modulus strain-rate spectrum, E_{app} ( \\dot{ɛ} ), for the derivation of lumped parameter constants for Generalized Maxwell (GM) linear viscoelastic models from stress-strain data obtained at various compressive strain rates ( \\dot{ɛ}). The E_{app} ( \\dot{ɛ} ) function was derived using the tangent modulus function obtained from the GM model stress-strain response to a constant \\dot{ɛ} input. Material viscoelastic parameters can be rapidly derived by fitting experimental E_{app} data obtained at different strain rates to the E_{app} ( \\dot{ɛ} ) function. This single-curve fitting returns similar viscoelastic constants as the original epsilon dot method based on a multi-curve global fitting procedure with shared parameters. Its low computational cost permits quick and robust identification of viscoelastic constants even when a large number of strain rates or replicates per strain rate are considered. This method is particularly suited for the analysis of bulk compression and nano-indentation data of soft (bio)materials.

  16. Computation of restoration of ligand response in the random kinetics of a prostate cancer cell signaling pathway.

    PubMed

    Dana, Saswati; Nakakuki, Takashi; Hatakeyama, Mariko; Kimura, Shuhei; Raha, Soumyendu

    2011-01-01

    Mutation and/or dysfunction of signaling proteins in the mitogen activated protein kinase (MAPK) signal transduction pathway are frequently observed in various kinds of human cancer. Consistent with this fact, in the present study, we experimentally observe that the epidermal growth factor (EGF) induced activation profile of MAP kinase signaling is not straightforward dose-dependent in the PC3 prostate cancer cells. To find out what parameters and reactions in the pathway are involved in this departure from the normal dose-dependency, a model-based pathway analysis is performed. The pathway is mathematically modeled with 28 rate equations yielding those many ordinary differential equations (ODE) with kinetic rate constants that have been reported to take random values in the existing literature. This has led to us treating the ODE model of the pathways kinetics as a random differential equations (RDE) system in which the parameters are random variables. We show that our RDE model captures the uncertainty in the kinetic rate constants as seen in the behavior of the experimental data and more importantly, upon simulation, exhibits the abnormal EGF dose-dependency of the activation profile of MAP kinase signaling in PC3 prostate cancer cells. The most likely set of values of the kinetic rate constants obtained from fitting the RDE model into the experimental data is then used in a direct transcription based dynamic optimization method for computing the changes needed in these kinetic rate constant values for the restoration of the normal EGF dose response. The last computation identifies the parameters, i.e., the kinetic rate constants in the RDE model, that are the most sensitive to the change in the EGF dose response behavior in the PC3 prostate cancer cells. The reactions in which these most sensitive parameters participate emerge as candidate drug targets on the signaling pathway. 2011 Elsevier Ireland Ltd. All rights reserved.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dang, Liem X.; Vo, Quynh N.; Nilsson, Mikael

    We report one of the first simulations using a classical rate theory approach to predict the mechanism of the exchange process between water and aqueous uranyl ions. Using our water and ion-water polarizable force fields and molecular dynamics techniques, we computed the potentials of mean force for the uranyl ion-water pair as the function of pressures at ambient temperature. Subsequently, these simulated potentials of mean force were used to calculate rate constants using the transition rate theory; the time dependent transmission coefficients were also examined using the reactive flux method and Grote-Hynes treatments of the dynamic response of the solvent.more » The computed activation volumes using transition rate theory and the corrected rate constants are positive, thus the mechanism of this particular water-exchange is a dissociative process. We discuss our rate theory results and compare them with previously studies in which non-polarizable force fields were used. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.« less

  18. Corrigendum to "Fast computation of dynamic EPR spectra of biradicals" [J. Magn. Reson. Series A 103 (1993) 163-170

    NASA Astrophysics Data System (ADS)

    Sankarapandi, S.; Chandramouli, G. V. R.; Daul, C.; Manoharan, P. T.

    2018-01-01

    The authors regret for an error in units of rate constants K12 and K21 given in Tables 1, 3 and 4. The rate constants K12 and K21 are in gauss, and not in s-1 as mentioned in the article. The authors would like to apologise for any inconvenience caused.

  19. Roll paper pilot. [mathematical model for predicting pilot rating of aircraft in roll task

    NASA Technical Reports Server (NTRS)

    Naylor, F. R.; Dillow, J. D.; Hannen, R. A.

    1973-01-01

    A mathematical model for predicting the pilot rating of an aircraft in a roll task is described. The model includes: (1) the lateral-directional aircraft equations of motion; (2) a stochastic gust model; (3) a pilot model with two free parameters; and (4) a pilot rating expression that is a function of rms roll angle and the pilot lead time constant. The pilot gain and lead time constant are selected to minimize the pilot rating expression. The pilot parameters are then adjusted to provide a 20% stability margin and the adjusted pilot parameters are used to compute a roll paper pilot rating of the aircraft/gust configuration. The roll paper pilot rating was computed for 25 aircraft/gust configurations. A range of actual ratings from 2 to 9 were encountered and the roll paper pilot ratings agree quite well with the actual ratings. In addition there is good correlation between predicted and measured rms roll angle.

  20. Rate constants for proteins binding to substrates with multiple binding sites using a generalized forward flux sampling expression

    NASA Astrophysics Data System (ADS)

    Vijaykumar, Adithya; ten Wolde, Pieter Rein; Bolhuis, Peter G.

    2018-03-01

    To predict the response of a biochemical system, knowledge of the intrinsic and effective rate constants of proteins is crucial. The experimentally accessible effective rate constant for association can be decomposed in a diffusion-limited rate at which proteins come into contact and an intrinsic association rate at which the proteins in contact truly bind. Reversely, when dissociating, bound proteins first separate into a contact pair with an intrinsic dissociation rate, before moving away by diffusion. While microscopic expressions exist that enable the calculation of the intrinsic and effective rate constants by conducting a single rare event simulation of the protein dissociation reaction, these expressions are only valid when the substrate has just one binding site. If the substrate has multiple binding sites, a bound enzyme can, besides dissociating into the bulk, also hop to another binding site. Calculating transition rate constants between multiple states with forward flux sampling requires a generalized rate expression. We present this expression here and use it to derive explicit expressions for all intrinsic and effective rate constants involving binding to multiple states, including rebinding. We illustrate our approach by computing the intrinsic and effective association, dissociation, and hopping rate constants for a system in which a patchy particle model enzyme binds to a substrate with two binding sites. We find that these rate constants increase as a function of the rotational diffusion constant of the particles. The hopping rate constant decreases as a function of the distance between the binding sites. Finally, we find that blocking one of the binding sites enhances both association and dissociation rate constants. Our approach and results are important for understanding and modeling association reactions in enzyme-substrate systems and other patchy particle systems and open the way for large multiscale simulations of such systems.

  1. Accurate acceleration of kinetic Monte Carlo simulations through the modification of rate constants.

    PubMed

    Chatterjee, Abhijit; Voter, Arthur F

    2010-05-21

    We present a novel computational algorithm called the accelerated superbasin kinetic Monte Carlo (AS-KMC) method that enables a more efficient study of rare-event dynamics than the standard KMC method while maintaining control over the error. In AS-KMC, the rate constants for processes that are observed many times are lowered during the course of a simulation. As a result, rare processes are observed more frequently than in KMC and the time progresses faster. We first derive error estimates for AS-KMC when the rate constants are modified. These error estimates are next employed to develop a procedure for lowering process rates with control over the maximum error. Finally, numerical calculations are performed to demonstrate that the AS-KMC method captures the correct dynamics, while providing significant CPU savings over KMC in most cases. We show that the AS-KMC method can be employed with any KMC model, even when no time scale separation is present (although in such cases no computational speed-up is observed), without requiring the knowledge of various time scales present in the system.

  2. Computational chemistry and aeroassisted orbital transfer vehicles

    NASA Technical Reports Server (NTRS)

    Cooper, D. M.; Jaffe, R. L.; Arnold, J. O.

    1985-01-01

    An analysis of the radiative heating phenomena encountered during a typical aeroassisted orbital transfer vehicle (AOTV) trajectory was made to determine the potential impact of computational chemistry on AOTV design technology. Both equilibrium and nonequilibrium radiation mechanisms were considered. This analysis showed that computational chemistry can be used to predict (1) radiative intensity factors and spectroscopic data; (2) the excitation rates of both atoms and molecules; (3) high-temperature reaction rate constants for metathesis and charge exchange reactions; (4) particle ionization and neutralization rates and cross sections; and (5) spectral line widths.

  3. A density functional theory study on peptide bond cleavage at aspartic residues: direct vs cyclic intermediate hydrolysis.

    PubMed

    Sang-aroon, Wichien; Amornkitbamrung, Vittaya; Ruangpornvisuti, Vithaya

    2013-12-01

    In this work, peptide bond cleavages at carboxy- and amino-sides of the aspartic residue in a peptide model via direct (concerted and step-wise) and cyclic intermediate hydrolysis reaction pathways were explored computationally. The energetics, thermodynamic properties, rate constants, and equilibrium constants of all hydrolysis reactions, as well as their energy profiles were computed at the B3LYP/6-311++G(d,p) level of theory. The result indicated that peptide bond cleavage of the Asp residue occurred most preferentially via the cyclic intermediate hydrolysis pathway. In all reaction pathways, cleavage of the peptide bond at the amino-side occurred less preferentially than at the carboxy-side. The overall reaction rate constants of peptide bond cleavage of the Asp residue at the carboxy-side for the assisted system were, in increasing order: concerted < step-wise < cyclic intermediate.

  4. Bimetallic nanoparticles synthesized in microemulsions: A computer simulation study on relationship between kinetics and metal segregation.

    PubMed

    Tojo, Concha; Buceta, David; López-Quintela, M Arturo

    2018-01-15

    Computer simulations were carried out to study the origin of the different metal segregation showed by bimetallic nanoparticles synthesized in microemulsions. Our hypothesis is that the kinetics of nanoparticle formation in microemulsions has to be considered on terms of two potentially limiting factors, chemical reaction itself and the rate of reactants exchange between micelles. From the kinetic study it is deduced that chemical reduction in microemulsions is a pseudo first-order process, but not from the beginning. At the initial stage of the synthesis, redistribution of reactants between micelles is controlled by the intermicellar exchange rate, meanwhile the core and middle layers are being built. This exchange control has a different impact depending on the reduction rate of the particular metal in relation to the intermicellar exchange rate. For the case of Au/Pt nanoparticles, the kinetic constant of Au (fast reduction) is strongly dependent on intermicellar exchange rate and reactant concentration. On the contrary, the kinetic constant of Pt (slower reduction) remains constant. Therefore, the fact that the reaction takes place in a microemulsion affects more or less depending on the reduction rate of the metals. As a consequence, the final nanostructure not only depends on difference between the reduction rates of both metals, but also on the reduction rate of each metal in relation to the intermicellar exchange rate. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Annealed importance sampling with constant cooling rate

    NASA Astrophysics Data System (ADS)

    Giovannelli, Edoardo; Cardini, Gianni; Gellini, Cristina; Pietraperzia, Giangaetano; Chelli, Riccardo

    2015-02-01

    Annealed importance sampling is a simulation method devised by Neal [Stat. Comput. 11, 125 (2001)] to assign weights to configurations generated by simulated annealing trajectories. In particular, the equilibrium average of a generic physical quantity can be computed by a weighted average exploiting weights and estimates of this quantity associated to the final configurations of the annealed trajectories. Here, we review annealed importance sampling from the perspective of nonequilibrium path-ensemble averages [G. E. Crooks, Phys. Rev. E 61, 2361 (2000)]. The equivalence of Neal's and Crooks' treatments highlights the generality of the method, which goes beyond the mere thermal-based protocols. Furthermore, we show that a temperature schedule based on a constant cooling rate outperforms stepwise cooling schedules and that, for a given elapsed computer time, performances of annealed importance sampling are, in general, improved by increasing the number of intermediate temperatures.

  6. Incorporating the gas analyzer response time in gas exchange computations.

    PubMed

    Mitchell, R R

    1979-11-01

    A simple method for including the gas analyzer response time in the breath-by-breath computation of gas exchange rates is described. The method uses a difference equation form of a model for the gas analyzer in the computation of oxygen uptake and carbon dioxide production and avoids a numerical differentiation required to correct the gas fraction wave forms. The effect of not accounting for analyzer response time is shown to be a 20% underestimation in gas exchange rate. The present method accurately measures gas exchange rate, is relatively insensitive to measurement errors in the analyzer time constant, and does not significantly increase the computation time.

  7. Constitutive Model Constants for Al7075-T651 and Al7075-T6

    NASA Astrophysics Data System (ADS)

    Brar, N. S.; Joshi, V. S.; Harris, B. W.

    2009-12-01

    Aluminum 7075-T651 and 7075-T6 are characterized at quasi-static and high strain rates to determine Johnson-Cook (J-C) strength and fracture model constants. Constitutive model constants are required as input to computer codes to simulate projectile (fragment) impact or similar impact events on structural components made of these materials. Although the two tempers show similar elongation at breakage, the ultimate tensile strength of T651 temper is generally lower than the T6 temper. Johnson-Cook strength model constants (A, B, n, C, and m) for the two alloys are determined from high strain rate tension stress-strain data at room and high temperature to 250°C. The Johnson-Cook fracture model constants are determined from quasi-static and medium strain rate as well as high temperature tests on notched and smooth tension specimens. Although the J-C strength model constants are similar, the fracture model constants show wide variations. Details of the experimental method used and the results for the two alloys are presented.

  8. Effects of packaging and heat transfer kinetics on drug-product stability during storage under uncontrolled temperature conditions.

    PubMed

    Nakamura, Toru; Yamaji, Takayuki; Takayama, Kozo

    2013-05-01

    To predict the stability of pharmaceutical preparations under uncontrolled temperature conditions accurately, a method to compute the average reaction rate constant taking into account the heat transfer from the atmosphere to the product was developed. The average reaction rate constants computed with taken into consideration heat transfer (κ(re) ) were then compared with those computed without taking heat transfer into consideration (κ(in) ). The apparent thermal diffusivity (κ(a) ) exerted some influence on the average reaction rate constant ratio (R, R = κ(re) /κ(in) ). In the regions where the κ(a) was large (above 1 h(-1) ) or very small, the value of R was close to 1. On the contrary, in the middle region (0.001-1 h(-1) ), the value of R was less than 1.The κ(a) of the central part of a large-size container and that of the central part of a paper case of 10 bottles of liquid medicine (100 mL) fell within this middle region. On the basis of the above-mentioned considerations, heat transfer may need to be taken into consideration to enable a more accurate prediction of the stability of actual pharmaceutical preparations under nonisothermal atmospheres. Copyright © 2013 Wiley Periodicals, Inc.

  9. Methodologies for extracting kinetic constants for multiphase reacting flow simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, S.L.; Lottes, S.A.; Golchert, B.

    1997-03-01

    Flows in industrial reactors often involve complex reactions of many species. A computational fluid dynamics (CFD) computer code, ICRKFLO, was developed to simulate multiphase, multi-species reacting flows. The ICRKFLO uses a hybrid technique to calculate species concentration and reaction for a large number of species in a reacting flow. This technique includes a hydrodynamic and reacting flow simulation with a small but sufficient number of lumped reactions to compute flow field properties followed by a calculation of local reaction kinetics and transport of many subspecies (order of 10 to 100). Kinetic rate constants of the numerous subspecies chemical reactions aremore » difficult to determine. A methodology has been developed to extract kinetic constants from experimental data efficiently. A flow simulation of a fluid catalytic cracking (FCC) riser was successfully used to demonstrate this methodology.« less

  10. Modeling of polymer photodegradation for solar cell modules

    NASA Technical Reports Server (NTRS)

    Somersall, A. C.; Guillet, J. E.

    1982-01-01

    It was shown that many of the experimental observations in the photooxidation of hydrocarbon polymers can be accounted for with a computer simulation using an elementary mechanistic model with corresponding rate constants for each reaction. For outdoor applications, however, such as in photovoltaics, the variation of temperature must have important effects on the useful lifetimes of such materials. The data bank necessary to replace the isothermal rate constant values with Arrhenius activation parameters: A (the pre-exponential factor) and E (the activation energy) was searched. The best collection of data assembled to data is summarized. Note, however, that the problem is now considerably enlarged since from a theoretical point of view, with 51 of the input variables replaced with 102 parameters. The sensitivity of the overall scheme is such that even after many computer simulations, a successful photooxidation simulation with the expanded variable set was not completed. Many of the species in the complex process undergo a number of competitive pathways, the relative importance of each being often sensitive to small changes in the calculated rate constant values.

  11. Multi-target QSPR modeling for simultaneous prediction of multiple gas-phase kinetic rate constants of diverse chemicals

    NASA Astrophysics Data System (ADS)

    Basant, Nikita; Gupta, Shikha

    2018-03-01

    The reactions of molecular ozone (O3), hydroxyl (•OH) and nitrate (NO3) radicals are among the major pathways of removal of volatile organic compounds (VOCs) in the atmospheric environment. The gas-phase kinetic rate constants (kO3, kOH, kNO3) are thus, important in assessing the ultimate fate and exposure risk of atmospheric VOCs. Experimental data for rate constants are not available for many emerging VOCs and the computational methods reported so far address a single target modeling only. In this study, we have developed a multi-target (mt) QSPR model for simultaneous prediction of multiple kinetic rate constants (kO3, kOH, kNO3) of diverse organic chemicals considering an experimental data set of VOCs for which values of all the three rate constants are available. The mt-QSPR model identified and used five descriptors related to the molecular size, degree of saturation and electron density in a molecule, which were mechanistically interpretable. These descriptors successfully predicted three rate constants simultaneously. The model yielded high correlations (R2 = 0.874-0.924) between the experimental and simultaneously predicted endpoint rate constant (kO3, kOH, kNO3) values in test arrays for all the three systems. The model also passed all the stringent statistical validation tests for external predictivity. The proposed multi-target QSPR model can be successfully used for predicting reactivity of new VOCs simultaneously for their exposure risk assessment.

  12. A Computational Framework for Analyzing Stochasticity in Gene Expression

    PubMed Central

    Sherman, Marc S.; Cohen, Barak A.

    2014-01-01

    Stochastic fluctuations in gene expression give rise to distributions of protein levels across cell populations. Despite a mounting number of theoretical models explaining stochasticity in protein expression, we lack a robust, efficient, assumption-free approach for inferring the molecular mechanisms that underlie the shape of protein distributions. Here we propose a method for inferring sets of biochemical rate constants that govern chromatin modification, transcription, translation, and RNA and protein degradation from stochasticity in protein expression. We asked whether the rates of these underlying processes can be estimated accurately from protein expression distributions, in the absence of any limiting assumptions. To do this, we (1) derived analytical solutions for the first four moments of the protein distribution, (2) found that these four moments completely capture the shape of protein distributions, and (3) developed an efficient algorithm for inferring gene expression rate constants from the moments of protein distributions. Using this algorithm we find that most protein distributions are consistent with a large number of different biochemical rate constant sets. Despite this degeneracy, the solution space of rate constants almost always informs on underlying mechanism. For example, we distinguish between regimes where transcriptional bursting occurs from regimes reflecting constitutive transcript production. Our method agrees with the current standard approach, and in the restrictive regime where the standard method operates, also identifies rate constants not previously obtainable. Even without making any assumptions we obtain estimates of individual biochemical rate constants, or meaningful ratios of rate constants, in 91% of tested cases. In some cases our method identified all of the underlying rate constants. The framework developed here will be a powerful tool for deducing the contributions of particular molecular mechanisms to specific patterns of gene expression. PMID:24811315

  13. Homogeneous processes of atmospheric interest

    NASA Technical Reports Server (NTRS)

    Rossi, M. J.; Barker, J. R.; Golden, D. M.

    1983-01-01

    Upper atmospheric research programs in the department of chemical kinetics are reported. Topics discussed include: (1) third-order rate constants of atmospheric importance; (2) a computational study of the HO2 + HO2 and DO2 + DO2 reactions; (3) measurement and estimation of rate constants for modeling reactive systems; (4) kinetics and thermodynamics of ion-molecule association reactions; (5) entropy barriers in ion-molecule reactions; (6) reaction rate constant for OH + HOONO2 yields products over the temperature range 246 to 324 K; (7) very low-pressure photolysis of tert-bytyl nitrite at 248 nm; (8) summary of preliminary data for the photolysis of C1ONO2 and N2O5 at 285 nm; and (9) heterogeneous reaction of N2O5 and H2O.

  14. Free Radical Chemistry of Disinfection Byproducts 2: Rate Constants and Degradation Mechanism of Trichloronitromethane (Chloropicrin)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B. J. Mincher; S. K. Cole; W. J. Cooper

    2007-02-01

    Absolute rate constants for the free-radical-induced degradation of trichloronitromethane (TCNM, chloropicrin) were determined using electron pulse radiolysis and transient absorption spectroscopy. Rate constants for hydroxyl radical, OH, and hydrated electron, eaq-, reactions were (4.97 ± 0.28) × 107 M-1 s-1 and (2.13 ± 0.03) × 1010 M-1 s-1, respectively. It appears that the OH adds to the nitro-group, while the eaq- reacts via dissociative electron attachment to give two carbon centered radicals. The mechanisms of these free radical reactions with TCNM were investigated, using 60Co gamma irradiation at various absorbed doses, measuring the disappearance of TCNM and the appearance ofmore » the product nitrate and chloride ions. The rate constants and mechanistic data were combined in a kinetic computer model that was used to describe the major free radical pathways for the destruction of TCNM in solution. These data are applicable to other advanced oxidation/reduction processes.« less

  15. A comparison between computer-controlled and set work rate exercise based on target heart rate

    NASA Technical Reports Server (NTRS)

    Pratt, Wanda M.; Siconolfi, Steven F.; Webster, Laurie; Hayes, Judith C.; Mazzocca, Augustus D.; Harris, Bernard A., Jr.

    1991-01-01

    Two methods are compared for observing the heart rate (HR), metabolic equivalents, and time in target HR zone (defined as the target HR + or - 5 bpm) during 20 min of exercise at a prescribed intensity of the maximum working capacity. In one method, called set-work rate exercise, the information from a graded exercise test is used to select a target HR and to calculate a corresponding constant work rate that should induce the desired HR. In the other method, the work rate is controlled by a computer algorithm to achieve and maintain a prescribed target HR. It is shown that computer-controlled exercise is an effective alternative to the traditional set work rate exercise, particularly when tight control of cardiovascular responses is necessary.

  16. Linear free energy relationships between aqueous phase hydroxyl radical reaction rate constants and free energy of activation.

    PubMed

    Minakata, Daisuke; Crittenden, John

    2011-04-15

    The hydroxyl radical (HO(•)) is a strong oxidant that reacts with electron-rich sites on organic compounds and initiates complex radical chain reactions in aqueous phase advanced oxidation processes (AOPs). Computer based kinetic modeling requires a reaction pathway generator and predictions of associated reaction rate constants. Previously, we reported a reaction pathway generator that can enumerate the most important elementary reactions for aliphatic compounds. For the reaction rate constant predictor, we develop linear free energy relationships (LFERs) between aqueous phase literature-reported HO(•) reaction rate constants and theoretically calculated free energies of activation for H-atom abstraction from a C-H bond and HO(•) addition to alkenes. The theoretical method uses ab initio quantum mechanical calculations, Gaussian 1-3, for gas phase reactions and a solvation method, COSMO-RS theory, to estimate the impact of water. Theoretically calculated free energies of activation are found to be within approximately ±3 kcal/mol of experimental values. Considering errors that arise from quantum mechanical calculations and experiments, this should be within the acceptable errors. The established LFERs are used to predict the HO(•) reaction rate constants within a factor of 5 from the experimental values. This approach may be applied to other reaction mechanisms to establish a library of rate constant predictions for kinetic modeling of AOPs.

  17. Absolute protein-protein association rate constants from flexible, coarse-grained Brownian dynamics simulations: the role of intermolecular hydrodynamic interactions in barnase-barstar association.

    PubMed

    Frembgen-Kesner, Tamara; Elcock, Adrian H

    2010-11-03

    Theory and computation have long been used to rationalize the experimental association rate constants of protein-protein complexes, and Brownian dynamics (BD) simulations, in particular, have been successful in reproducing the relative rate constants of wild-type and mutant protein pairs. Missing from previous BD studies of association kinetics, however, has been the description of hydrodynamic interactions (HIs) between, and within, the diffusing proteins. Here we address this issue by rigorously including HIs in BD simulations of the barnase-barstar association reaction. We first show that even very simplified representations of the proteins--involving approximately one pseudoatom for every three residues in the protein--can provide excellent reproduction of the absolute association rate constants of wild-type and mutant protein pairs. We then show that simulations that include intermolecular HIs also produce excellent estimates of association rate constants, but, for a given reaction criterion, yield values that are decreased by ∼35-80% relative to those obtained in the absence of intermolecular HIs. The neglect of intermolecular HIs in previous BD simulation studies, therefore, is likely to have contributed to the somewhat overestimated absolute rate constants previously obtained. Consequently, intermolecular HIs could be an important component to include in accurate modeling of the kinetics of macromolecular association events. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Statistical and Microscopic Approach to Gas Phase Chemical Kinetics.

    ERIC Educational Resources Information Center

    Perez, J. M.; Quereda, R.

    1983-01-01

    Describes advanced undergraduate laboratory exercise examining the dependence of the rate constants and the instantaneous concentrations with the nature and energy content in a gas-phase complex reaction. Computer program (with instructions and computation flow charts) used with the exercise is available from the author. (Author/JN)

  19. Unsteady flow past an airfoil pitched at constant rate

    NASA Technical Reports Server (NTRS)

    Lourenco, L.; Vandommelen, L.; Shib, C.; Krothapalli, A.

    1992-01-01

    The unsteady flow past a NACA 0012 airfoil that is undertaking a constant-rate pitching up motion is investigated experimentally by the PIDV technique in a water towing tank. The Reynolds number is 5000, based upon the airfoil's chord and the free-stream velocity. The airfoil is pitching impulsively from 0 to 30 deg. with a dimensionless pitch rate alpha of 0.131. Instantaneous velocity and associated vorticity data have been acquired over the entire flow field. The primary vortex dominates the flow behavior after it separates from the leading edge of the airfoil. Complete stall emerges after this vortex detaches from the airfoil and triggers the shedding of a counter-rotating vortex near the trailing edge. A parallel computational study using the discrete vortex, random walk approximation has also been conducted. In general, the computational results agree very well with the experiment.

  20. Reaction of SO2 with OH in the atmosphere.

    PubMed

    Long, Bo; Bao, Junwei Lucas; Truhlar, Donald G

    2017-03-15

    The OH + SO 2 reaction plays a critical role in understanding the oxidation of SO 2 in the atmosphere, and its rate constant is critical for clarifying the fate of SO 2 in the atmosphere. The rate constant of the OH + SO 2 reaction is calculated here by using beyond-CCSDT correlation energy calculations for a benchmark, validated density functional methods for direct dynamics, canonical variational transition state theory with anharmonicity and multidimensional tunneling for the high-pressure rate constant, and system-specific quantum RRK theory for pressure effects; the combination of these methods can compete in accuracy with experiments. There has been a long-term debate in the literature about whether the OH + SO 2 reaction is barrierless, but our calculations indicate a positive barrier with an transition structure that has an enthalpy of activation of 0.27 kcal mol -1 at 0 K. Our results show that the high-pressure limiting rate constant of the OH + SO 2 reaction has a positive temperature dependence, but the rate constant at low pressures has a negative temperature dependence. The computed high-pressure limiting rate constant at 298 K is 1.25 × 10 -12 cm 3 molecule -1 s -1 , which agrees excellently with the value (1.3 × 10 -12 cm 3 molecule -1 s -1 ) recommended in the most recent comprehensive evaluation for atmospheric chemistry. We show that the atmospheric lifetime of SO 2 with respect to oxidation by OH depends strongly on altitude (in the range 0-50 km) due to the falloff effect. We introduce a new interpolation procedure for fitting the combined temperature and pressure dependence of the rate constant, and it fits the calculated rate constants over the whole range with a mean unsigned error of only 7%. The present results provide reliable kinetics data for this specific reaction, and also they demonstrate convenient theoretical methods that can be reliable for predicting rate constants of other gas-phase reactions.

  1. Mechanism of Kinetically Controlled Capillary Condensation in Nanopores: A Combined Experimental and Monte Carlo Approach.

    PubMed

    Hiratsuka, Tatsumasa; Tanaka, Hideki; Miyahara, Minoru T

    2017-01-24

    We find the rule of capillary condensation from the metastable state in nanoscale pores based on the transition state theory. The conventional thermodynamic theories cannot achieve it because the metastable capillary condensation inherently includes an activated process. We thus compute argon adsorption isotherms on cylindrical pore models and atomistic silica pore models mimicking the MCM-41 materials by the grand canonical Monte Carlo and the gauge cell Monte Carlo methods and evaluate the rate constant for the capillary condensation by the transition state theory. The results reveal that the rate drastically increases with a small increase in the chemical potential of the system, and the metastable capillary condensation occurs for any mesopores when the rate constant reaches a universal critical value. Furthermore, a careful comparison between experimental adsorption isotherms and the simulated ones on the atomistic silica pore models reveals that the rate constant of the real system also has a universal value. With this finding, we can successfully estimate the experimental capillary condensation pressure over a wide range of temperatures and pore sizes by simply applying the critical rate constant.

  2. Sampling the kinetic pathways of a micelle fusion and fission transition.

    PubMed

    Pool, René; Bolhuis, Peter G

    2007-06-28

    The mechanism and kinetics of micellar breakup and fusion in a dilute solution of a model surfactant are investigated by path sampling techniques. Analysis of the path ensemble gives insight in the mechanism of the transition. For larger, less stable micelles the fission/fusion occurs via a clear neck formation, while for smaller micelles the mechanism is more direct. In addition, path analysis yields an appropriate order parameter to evaluate the fusion and fission rate constants using stochastic transition interface sampling. For the small, stable micelle (50 surfactants) the computed fission rate constant is a factor of 10 lower than the fusion rate constant. The procedure opens the way for accurate calculation of free energy and kinetics for, e.g., membrane fusion, and wormlike micelle endcap formation.

  3. Effects of tunnelling and asymmetry for system-bath models of electron transfer

    NASA Astrophysics Data System (ADS)

    Mattiat, Johann; Richardson, Jeremy O.

    2018-03-01

    We apply the newly derived nonadiabatic golden-rule instanton theory to asymmetric models describing electron-transfer in solution. The models go beyond the usual spin-boson description and have anharmonic free-energy surfaces with different values for the reactant and product reorganization energies. The instanton method gives an excellent description of the behaviour of the rate constant with respect to asymmetry for the whole range studied. We derive a general formula for an asymmetric version of the Marcus theory based on the classical limit of the instanton and find that this gives significant corrections to the standard Marcus theory. A scheme is given to compute this rate based only on equilibrium simulations. We also compare the rate constants obtained by the instanton method with its classical limit to study the effect of tunnelling and other quantum nuclear effects. These quantum effects can increase the rate constant by orders of magnitude.

  4. Quantitative relations between fishing mortality, spawning stress mortality and biomass growth rate (computed with numerical model FISHMO)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laevastu, T.

    1983-01-01

    The effects of fishing on a given species biomass have been quantitatively evaluated. A constant recruitment is assumed in this study, but the evaluation can be computed on any known age distribution of exploitable biomass. Fishing mortality is assumed to be constant with age; however, spawning stress mortality increases with age. When fishing (mortality) increases, the spawning stress mortality decreases relative to total and exploitable biomasses. These changes are quantitatively shown for two species from the Bering Sea - walleye pollock, Theragra chalcogramma, and yellowfin sole, Limanda aspera.

  5. Uncertainty quantification of reaction mechanisms accounting for correlations introduced by rate rules and fitted Arrhenius parameters

    DOE PAGES

    Prager, Jens; Najm, Habib N.; Sargsyan, Khachik; ...

    2013-02-23

    We study correlations among uncertain Arrhenius rate parameters in a chemical model for hydrocarbon fuel-air combustion. We consider correlations induced by the use of rate rules for modeling reaction rate constants, as well as those resulting from fitting rate expressions to empirical measurements arriving at a joint probability density for all Arrhenius parameters. We focus on homogeneous ignition in a fuel-air mixture at constant-pressure. We also outline a general methodology for this analysis using polynomial chaos and Bayesian inference methods. Finally, we examine the uncertainties in both the Arrhenius parameters and in predicted ignition time, outlining the role of correlations,more » and considering both accuracy and computational efficiency.« less

  6. Evidence Accumulation and Change Rate Inference in Dynamic Environments.

    PubMed

    Radillo, Adrian E; Veliz-Cuba, Alan; Josić, Krešimir; Kilpatrick, Zachary P

    2017-06-01

    In a constantly changing world, animals must account for environmental volatility when making decisions. To appropriately discount older, irrelevant information, they need to learn the rate at which the environment changes. We develop an ideal observer model capable of inferring the present state of the environment along with its rate of change. Key to this computation is an update of the posterior probability of all possible change point counts. This computation can be challenging, as the number of possibilities grows rapidly with time. However, we show how the computations can be simplified in the continuum limit by a moment closure approximation. The resulting low-dimensional system can be used to infer the environmental state and change rate with accuracy comparable to the ideal observer. The approximate computations can be performed by a neural network model via a rate-correlation-based plasticity rule. We thus show how optimal observers accumulate evidence in changing environments and map this computation to reduced models that perform inference using plausible neural mechanisms.

  7. Computational study of chain transfer to monomer reactions in high-temperature polymerization of alkyl acrylates.

    PubMed

    Moghadam, Nazanin; Liu, Shi; Srinivasan, Sriraj; Grady, Michael C; Soroush, Masoud; Rappe, Andrew M

    2013-03-28

    This article presents a computational study of chain transfer to monomer (CTM) reactions in self-initiated high-temperature homopolymerization of alkyl acrylates (methyl, ethyl, and n-butyl acrylate). Several mechanisms of CTM are studied. The effects of the length of live polymer chains and the type of monoradical that initiated the live polymer chains on the energy barriers and rate constants of the involved reaction steps are investigated theoretically. All calculations are carried out using density functional theory. Three types of hybrid functionals (B3LYP, X3LYP, and M06-2X) and four basis sets (6-31G(d), 6-31G(d,p), 6-311G(d), and 6-311G(d,p)) are applied to predict the molecular geometries of the reactants, products and transition sates, and energy barriers. Transition state theory is used to estimate rate constants. The results indicate that abstraction of a hydrogen atom (by live polymer chains) from the methyl group in methyl acrylate, the methylene group in ethyl acrylate, and methylene groups in n-butyl acrylate are the most likely mechanisms of CTM. Also, the rate constants of CTM reactions calculated using M06-2X are in good agreement with those estimated from polymer sample measurements using macroscopic mechanistic models. The rate constant values do not change significantly with the length of live polymer chains. Abstraction of a hydrogen atom by a tertiary radical has a higher energy barrier than abstraction by a secondary radical, which agrees with experimental findings. The calculated and experimental NMR spectra of dead polymer chains produced by CTM reactions are comparable. This theoretical/computational study reveals that CTM occurs most likely via hydrogen abstraction by live polymer chains from the methyl group of methyl acrylate and methylene group(s) of ethyl (n-butyl) acrylate.

  8. Rapid computation of directional wellbore drawdown in a confined aquifer via Poisson resummation

    NASA Astrophysics Data System (ADS)

    Blumenthal, Benjamin J.; Zhan, Hongbin

    2016-08-01

    We have derived a rapidly computed analytical solution for drawdown caused by a partially or fully penetrating directional wellbore (vertical, horizontal, or slant) via Green's function method. The mathematical model assumes an anisotropic, homogeneous, confined, box-shaped aquifer. Any dimension of the box can have one of six possible boundary conditions: 1) both sides no-flux; 2) one side no-flux - one side constant-head; 3) both sides constant-head; 4) one side no-flux; 5) one side constant-head; 6) free boundary conditions. The solution has been optimized for rapid computation via Poisson Resummation, derivation of convergence rates, and numerical optimization of integration techniques. Upon application of the Poisson Resummation method, we were able to derive two sets of solutions with inverse convergence rates, namely an early-time rapidly convergent series (solution-A) and a late-time rapidly convergent series (solution-B). From this work we were able to link Green's function method (solution-B) back to image well theory (solution-A). We then derived an equation defining when the convergence rate between solution-A and solution-B is the same, which we termed the switch time. Utilizing the more rapidly convergent solution at the appropriate time, we obtained rapid convergence at all times. We have also shown that one may simplify each of the three infinite series for the three-dimensional solution to 11 terms and still maintain a maximum relative error of less than 10-14.

  9. Longitudinal Evaluation of Myocardial Fatty Acid and Glucose Metabolism in Fasted and Nonfasted Spontaneously Hypertensive Rats Using MicroPET/CT

    DOE PAGES

    Huber, Jennifer S.; Hernandez, Andrew M.; Janabi, Mustafa; ...

    2017-09-06

    Using longitudinal micro positron emission tomography (microPET)/computed tomography (CT) studies, we quantified changes in myocardial metabolism and perfusion in spontaneously hypertensive rats (SHRs), a model of left ventricular hypertrophy (LVH). Fatty acid and glucose metabolism were quantified in the hearts of SHRs and Wistar-Kyoto (WKY) normotensive rats using long-chain fatty acid analog 18F-fluoro-6-thia heptadecanoic acid ( 18F-FTHA) and glucose analog 18F-fluorodeoxyglucose ( 18F-FDG) under normal or fasting conditions. We also used 18F-fluorodihydrorotenol ( 18F-FDHROL) to investigate perfusion in their hearts without fasting. Rats were imaged at 4 or 5 times over their life cycle. Compartment modeling was used to estimatemore » the rate constants for the radiotracers. Blood samples were obtained and analyzed for glucose and free fatty acid concentrations. SHRs demonstrated no significant difference in 18F-FDHROL wash-in rate constant (P = .1) and distribution volume (P = .1), significantly higher 18F-FDG myocardial influx rate constant (P = 4×10 –8), and significantly lower 18F-FTHA myocardial influx rate constant (P = .007) than WKYs during the 2009-2010 study without fasting. SHRs demonstrated a significantly higher 18F-FDHROL wash-in rate constant (P = 5×10 –6) and distribution volume (P = 3×10 –8), significantly higher 18F-FDG myocardial influx rate constant (P = 3×10 –8), and a higher trend of 18F-FTHA myocardial influx rate constant (not significant, P = .1) than WKYs during the 2011–2012 study with fasting. Changes in glucose plasma concentrations were generally negatively correlated with corresponding radiotracer influx rate constant changes. The study indicates a switch from preferred fatty acid metabolism to increased glucose metabolism with hypertrophy. Increased perfusion during the 2011-2012 study may be indicative of increased aerobic metabolism in the SHR model of LVH.« less

  10. Longitudinal Evaluation of Myocardial Fatty Acid and Glucose Metabolism in Fasted and Nonfasted Spontaneously Hypertensive Rats Using MicroPET/CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huber, Jennifer S.; Hernandez, Andrew M.; Janabi, Mustafa

    Using longitudinal micro positron emission tomography (microPET)/computed tomography (CT) studies, we quantified changes in myocardial metabolism and perfusion in spontaneously hypertensive rats (SHRs), a model of left ventricular hypertrophy (LVH). Fatty acid and glucose metabolism were quantified in the hearts of SHRs and Wistar-Kyoto (WKY) normotensive rats using long-chain fatty acid analog 18F-fluoro-6-thia heptadecanoic acid ( 18F-FTHA) and glucose analog 18F-fluorodeoxyglucose ( 18F-FDG) under normal or fasting conditions. We also used 18F-fluorodihydrorotenol ( 18F-FDHROL) to investigate perfusion in their hearts without fasting. Rats were imaged at 4 or 5 times over their life cycle. Compartment modeling was used to estimatemore » the rate constants for the radiotracers. Blood samples were obtained and analyzed for glucose and free fatty acid concentrations. SHRs demonstrated no significant difference in 18F-FDHROL wash-in rate constant (P = .1) and distribution volume (P = .1), significantly higher 18F-FDG myocardial influx rate constant (P = 4×10 –8), and significantly lower 18F-FTHA myocardial influx rate constant (P = .007) than WKYs during the 2009-2010 study without fasting. SHRs demonstrated a significantly higher 18F-FDHROL wash-in rate constant (P = 5×10 –6) and distribution volume (P = 3×10 –8), significantly higher 18F-FDG myocardial influx rate constant (P = 3×10 –8), and a higher trend of 18F-FTHA myocardial influx rate constant (not significant, P = .1) than WKYs during the 2011–2012 study with fasting. Changes in glucose plasma concentrations were generally negatively correlated with corresponding radiotracer influx rate constant changes. The study indicates a switch from preferred fatty acid metabolism to increased glucose metabolism with hypertrophy. Increased perfusion during the 2011-2012 study may be indicative of increased aerobic metabolism in the SHR model of LVH.« less

  11. Ab initio and kinetic study of the reaction of ketones with OH for T = 500-2000 K. Part I: hydrogen-abstraction from H3CC(O)CH(3-x)(CH3)x, x = 0 ↦ 2.

    PubMed

    Zhou, Chong-Wen; Simmie, John M; Curran, Henry J

    2011-06-21

    A theoretical study is presented of the mechanism and kinetics of the reactions of the hydroxyl radical with three ketones: dimethyl (DMK), ethylmethyl (EMK) and iso-propylmethyl (iPMK) ketones. CCSD(T) values extrapolated to the basis set limit are used to benchmark the computationally less expensive methods G3 and G3MP2BH&H, for the DMK + OH reaction system. These latter methods are then used in computations involving the reactions of the larger ketones. All possible abstraction channels have been modeled. A stepwise mechanism involving the formation of a reactant complex in the entrance channel and a product complex in the exit channel has been recognized in part of the abstracting processes. High-pressure limit rate constants of the title reactions have been calculated in the temperature range of 500-2000 K using the Variflex code including Eckart tunneling corrections. Variable reaction coordinate transition state theory (VRC-TST) has been used for the rate constants of the barrier-less entrance channel. Calculated total rate constants (cm(3) mol(-1) s(-1)) are reported as follows: k(DMK) = 1.32 × 10(2)×T(3.30)exp(503/T), k(EMK) = 3.84 × 10(1)×T(3.51)exp(1515/T), k(iPMK) = 2.08 × 10(1)×T(3.58)exp(2161/T). Group rate constants (on a per H atom basis) for different carbon sites in title reactions have also been provided.

  12. DQM: Decentralized Quadratically Approximated Alternating Direction Method of Multipliers

    NASA Astrophysics Data System (ADS)

    Mokhtari, Aryan; Shi, Wei; Ling, Qing; Ribeiro, Alejandro

    2016-10-01

    This paper considers decentralized consensus optimization problems where nodes of a network have access to different summands of a global objective function. Nodes cooperate to minimize the global objective by exchanging information with neighbors only. A decentralized version of the alternating directions method of multipliers (DADMM) is a common method for solving this category of problems. DADMM exhibits linear convergence rate to the optimal objective but its implementation requires solving a convex optimization problem at each iteration. This can be computationally costly and may result in large overall convergence times. The decentralized quadratically approximated ADMM algorithm (DQM), which minimizes a quadratic approximation of the objective function that DADMM minimizes at each iteration, is proposed here. The consequent reduction in computational time is shown to have minimal effect on convergence properties. Convergence still proceeds at a linear rate with a guaranteed constant that is asymptotically equivalent to the DADMM linear convergence rate constant. Numerical results demonstrate advantages of DQM relative to DADMM and other alternatives in a logistic regression problem.

  13. Spin polarized photons from an axially charged plasma at weak coupling: Complete leading order

    DOE PAGES

    Mamo, Kiminad A.; Yee, Ho-Ung

    2016-03-24

    In the presence of (approximately conserved) axial charge in the QCD plasma at finite temperature, the emitted photons are spin aligned, which is a unique P- and CP-odd signature of axial charge in the photon emission observables. We compute this “P-odd photon emission rate” in a weak coupling regime at a high temperature limit to complete leading order in the QCD coupling constant: the leading log as well as the constant under the log. As in the P-even total emission rate in the literature, the computation of the P-odd emission rate at leading order consists of three parts: (1) Comptonmore » and pair annihilation processes with hard momentum exchange, (2) soft t- and u-channel contributions with hard thermal loop resummation, (3) Landau-Pomeranchuk-Migdal resummation of collinear bremsstrahlung and pair annihilation. In conclusion, we present analytical and numerical evaluations of these contributions to our P-odd photon emission rate observable.« less

  14. Semiclassical Calculation of Reaction Rate Constants for Homolytical Dissociations

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.

    2002-01-01

    There is growing interest in extending organometallic chemical vapor deposition (OMCVD) to III-V materials that exhibit large thermal decomposition at their optimum growth temperature, such as indium nitride. The group III nitrides are candidate materials for light-emitting diodes and semiconductor lasers operating into the blue and ultraviolet regions. To overcome decomposition of the deposited compound, the reaction must be conducted at high pressures, which causes problems of uniformity. Microgravity may provide the venue for maintaining conditions of laminar flow under high pressure. Since the selection of optimized parameters becomes crucial when performing experiments in microgravity, efforts are presently geared to the development of computational OMCVD models that will couple the reactor fluid dynamics with its chemical kinetics. In the present study, we developed a method to calculate reaction rate constants for the homolytic dissociation of III-V compounds for modeling OMCVD. The method is validated by comparing calculations with experimental reaction rate constants.

  15. First-principles calculation of photo-induced electron transfer rate constants in phthalocyanine-C60 organic photovoltaic materials: Beyond Marcus theory

    NASA Astrophysics Data System (ADS)

    Lee, Myeong H.; Dunietz, Barry D.; Geva, Eitan

    2014-03-01

    Classical Marcus theory is commonly adopted in solvent-mediated charge transfer (CT) process to obtain the CT rate constant, but it can become questionable when the intramolecular vibrational modes dominate the CT process as in OPV devices because Marcus theory treats these modes classically and therefore nuclear tunneling is not accounted for. We present a computational scheme to obtain the electron transfer rate constant beyond classical Marcus theory. Within this approach, the nuclear vibrational modes are treated quantum-mechanically and a short-time approximation is avoided. Ab initio calculations are used to obtain the basic parameters needed for calculating the electron transfer rate constant. We apply our methodology to phthalocyanine(H2PC)-C60 organic photovoltaic system where one C60 acceptor and one or two H2PC donors are included to model the donor-acceptor interface configuration. We obtain the electron transfer and recombination rate constants for all accessible charge transfer (CT) states, from which the CT exciton dynamics is determined by employing a master equation. The role of higher lying excited states in CT exciton dynamics is discussed. This work is pursued as part of the Center for Solar and Thermal Energy Conversion, an Energy Frontier Research Center funded by the US Department of Energy Office of Science, Office of Basic Energy Sciences under 390 Award No. DE-SC0000957.

  16. Room-temperature and temperature-dependent QSRR modelling for predicting the nitrate radical reaction rate constants of organic chemicals using ensemble learning methods.

    PubMed

    Gupta, S; Basant, N; Mohan, D; Singh, K P

    2016-07-01

    Experimental determinations of the rate constants of the reaction of NO3 with a large number of organic chemicals are tedious, and time and resource intensive; and the development of computational methods has widely been advocated. In this study, we have developed room-temperature (298 K) and temperature-dependent quantitative structure-reactivity relationship (QSRR) models based on the ensemble learning approaches (decision tree forest (DTF) and decision treeboost (DTB)) for predicting the rate constant of the reaction of NO3 radicals with diverse organic chemicals, under OECD guidelines. Predictive powers of the developed models were established in terms of statistical coefficients. In the test phase, the QSRR models yielded a correlation (r(2)) of >0.94 between experimental and predicted rate constants. The applicability domains of the constructed models were determined. An attempt has been made to provide the mechanistic interpretation of the selected features for QSRR development. The proposed QSRR models outperformed the previous reports, and the temperature-dependent models offered a much wider applicability domain. This is the first report presenting a temperature-dependent QSRR model for predicting the nitrate radical reaction rate constant at different temperatures. The proposed models can be useful tools in predicting the reactivities of chemicals towards NO3 radicals in the atmosphere, hence, their persistence and exposure risk assessment.

  17. A computational study of photo-induced electron transfer rate constants in subphthalocyanine/C60 organic photovoltaic materials via Fermi's golden rule

    NASA Astrophysics Data System (ADS)

    Lee, Myeong H.; Dunietz, Barry D.; Geva, Eitan

    2014-03-01

    We present a methodology to obtain the photo-induced electron transfer rate constant in organic photovoltaic (OPV) materials within the framework of Fermi's golden rule, using inputs obtained from first-principles electronic structure calculation. Within this approach, the nuclear vibrational modes are treated quantum-mechanically and a short-time approximation is avoided in contrast to the classical Marcus theory where these modes are treated classically within the high-temperature and short-time limits. We demonstrate our methodology on boron-subphthalocyanine-chloride/C60 OPV system to determine the rate constants of electron transfer and electron recombination processes upon photo-excitation. We consider two representative donor/acceptor interface configurations to investigate the effect of interface configuration on the charge transfer characteristics of OPV materials. In addition, we determine the time scale of excited states population by employing a master equation after obtaining the rate constants for all accessible electronic transitions. This work is pursued as part of the Center for Solar and Thermal Energy Conversion, an Energy Frontier Research Center funded by the US Department of Energy Office of Science, Office of Basic Energy Sciences under 390 Award No. DE-SC0000957.

  18. Computational study of the reactions of methanol with the hydroperoxyl and methyl radicals. 2. Accurate thermal rate constants.

    PubMed

    Alecu, I M; Truhlar, Donald G

    2011-12-29

    Multistructural canonical variational-transition-state theory with multidimensional tunneling (MS-CVT/MT) is employed to calculate thermal rate constants for the abstraction of hydrogen atoms from both positions of methanol by the hydroperoxyl and methyl radicals over the temperature range 100-3000 K. The M08-HX hybrid meta-generalized gradient approximation density functional and M08-HX with specific reaction parameters, both with the maug-cc-pVTZ basis set, were validated in part 1 of this study (Alecu, I. M.; Truhlar, D. G. J. Phys. Chem. A2011, 115, 2811) against highly accurate CCSDT(2)(Q)/CBS calculations for the energetics of these reactions, and they are used here to compute the properties of all stationary points and the energies, gradients, and Hessians of nonstationary points along each considered reaction path. The internal rotations in some of the transition states are found to be highly anharmonic and strongly coupled to each other, and they generate multiple structures (conformations) whose contributions are included in the partition function. It is shown that the previous estimates for these rate constants used to build kinetic models for the combustion of methanol, some of which were based on transition state theory calculations with one-dimensional tunneling corrections and harmonic-oscillator approximations or separable one-dimensional hindered rotor treatments of torsions, are appreciably different than the ones presently calculated using MS-CVT/MT. The rate constants obtained from the best MS-CVT/MT calculations carried out in this study, in which the important effects of corner cutting due to small and large reaction path curvature are captured via a microcanonical optimized multidimensional tunneling (μOMT) treatment, are recommended for future refinement of the kinetic model for methanol combustion. © 2011 American Chemical Society

  19. Triacylglycerol secretion in rats: validation of a tracer method employing radioactive glycerol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, M.; Williams, M.A.; Baker, N.

    1984-10-01

    A two-compartment model was developed to analyze the temporal changes in plasma triacylglycerol (TG)-specific radioactivity after injection of (2-/sup 3/H)glycerol into rats. The analysis, which yielded fractional rate constants of TG secretion, was tested in rats fed diets either adequate or deficient in essential fatty acids (EFA) and containing either glucose, fructose or sucrose as the dietary carbohydrate. The method of analysis appeared valid, first, because of a close agreement between experimental and computer-fitted TG-specific radioactivity curves, and second, because the fractional rate constants obtained were quite similar to fractional rate constants determined previously by the Triton WR-1339 technique inmore » rats maintained on identical diets. The results show that EFA deficiency increased the fractional rate constant of TG secretion 1.7-, 1.8- and 3.3-fold and the rate of TG secretion 1.8-, 1.6- and 1.4-fold when the dietary carbohydrate was glucose, sucrose and fructose, respectively, in comparison with control rats fed diets supplying these same carbohydrates but adequate in EFA. In the latter groups, the rates of plasma TG secretion were in the range of 0.14-0.17 mg/min per 100 g body weight, and the rate of secretion in the fructose-fed rats was only 20% higher than in the glucose-fed rats.« less

  20. Transient state kinetics tutorial using the kinetics simulation program, KINSIM.

    PubMed Central

    Wachsstock, D H; Pollard, T D

    1994-01-01

    This article provides an introduction to a computer tutorial on transient state kinetics. The tutorial uses our Macintosh version of the computer program, KINSIM, that calculates the time course of reactions. KINSIM is also available for other popular computers. This program allows even those investigators not mathematically inclined to evaluate the rate constants for the transitions between the intermediates in any reaction mechanism. These rate constants are one of the insights that are essential for understanding how biochemical processes work at the molecular level. The approach is applicable not only to enzyme reactions but also to any other type of process of interest to biophysicists, cell biologists, and molecular biologists in which concentrations change with time. In principle, the same methods could be used to characterize time-dependent, large-scale processes in ecology and evolution. Completion of the tutorial takes students 6-10 h. This investment is rewarded by a deep understanding of the principles of chemical kinetics and familiarity with the tools of kinetics simulation as an approach to solve everyday problems in the laboratory. PMID:7811941

  1. Learning Rates and Known-to-Unknown Flash-Card Ratios: Comparing Effectiveness While Holding Instructional Time Constant

    ERIC Educational Resources Information Center

    Forbes, Bethany E.; Skinner, Christopher H.; Black, Michelle P.; Yaw, Jared; Booher, Joshua; Delisle, Jean

    2013-01-01

    Using alternating treatments designs, we compared learning rates across 2 computer-based flash-card interventions (3?min each): a traditional drill intervention with 15 unknown words and an interspersal intervention with 12 known words and 3 unknown words. Each student acquired more words under the traditional drill intervention. Discussion…

  2. Bandwidth reduction for video-on-demand broadcasting using secondary content insertion

    NASA Astrophysics Data System (ADS)

    Golynski, Alexander; Lopez-Ortiz, Alejandro; Poirier, Guillaume; Quimper, Claude-Guy

    2005-01-01

    An optimal broadcasting scheme under the presence of secondary content (i.e. advertisements) is proposed. The proposed scheme works both for movies encoded in a Constant Bit Rate (CBR) or a Variable Bit Rate (VBR) format. It is shown experimentally that secondary content in movies can make Video-on-Demand (VoD) broadcasting systems more efficient. An efficient algorithm is given to compute the optimal broadcasting schedule with secondary content, which in particular significantly improves over the best previously known algorithm for computing the optimal broadcasting schedule without secondary content.

  3. Tunneling in hydrogen-transfer isomerization of n-alkyl radicals.

    PubMed

    Sirjean, Baptiste; Dames, Enoch; Wang, Hai; Tsang, Wing

    2012-01-12

    The role of quantum tunneling in hydrogen shift in linear heptyl radicals is explored using multidimensional, small-curvature tunneling method for the transmission coefficients and a potential energy surface computed at the CBS-QB3 level of theory. Several one-dimensional approximations (Wigner, Skodje and Truhlar, and Eckart methods) were compared to the multidimensional results. The Eckart method was found to be sufficiently accurate in comparison to the small-curvature tunneling results for a wide range of temperature, but this agreement is in fact fortuitous and caused by error cancellations. High-pressure limit rate constants were calculated using the transition state theory with treatment of hindered rotations and Eckart transmission coefficients for all hydrogen-transfer isomerizations in n-pentyl to n-octyl radicals. Rate constants are found in good agreement with experimental kinetic data available for n-pentyl and n-hexyl radicals. In the case of n-heptyl and n-octyl, our calculated rates agree well with limited experimentally derived data. Several conclusions made in the experimental studies of Tsang et al. (Tsang, W.; McGivern, W. S.; Manion, J. A. Proc. Combust. Inst. 2009, 32, 131-138) are confirmed theoretically: older low-temperature experimental data, characterized by small pre-exponential factors and activation energies, can be reconciled with high-temperature data by taking into account tunneling; at low temperatures, transmission coefficients are substantially larger for H-atom transfers through a five-membered ring transition state than those with six-membered rings; channels with transition ring structures involving greater than 8 atoms can be neglected because of entropic effects that inhibit such transitions. The set of computational kinetic rates were used to derive a general rate rule that explicitly accounts for tunneling. The rate rule is shown to reproduce closely the theoretical rate constants.

  4. Dataset for an analysis of tourism and economic growth: A study of Sri Lanka.

    PubMed

    Kumar, Ronald Ravinesh; Stauvermann, Peter Josef

    2016-09-01

    We use the sample from 1978 to 2014 for the paper (doi:10.1016/j.tmp.2016.05.005). The data on GDP at constant 2005 USD (US dollar), and the gross fixed capital formation at constant 2005 USD are extracted from the World Bank (2015). The labour stock which includes direct and indirect employment and the tourism receipts (in USD) are sourced from the Sri Lanka Tourism Development Authority (http://www.sltda.lk/statistics). Tourism receipts as a per cent of GDP is used to measure tourism demand. The capital stock data is computed using perpetual inventory method, where a depreciation rate of 8 per cent is assumed with the initial capital stock as 1.05 times the GDP of 1969 at constant 2005 USD. The output per worker and capital per worker is computed by dividing the GDP and capital stock by the labour stock, respectively.

  5. Computed Potential Energy Surfaces and Minimum Energy Pathway for Chemical Reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such observables as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method with the Dunning correlation consistent basis sets to obtain accurate energetics, gives useful results for a number of chemically important systems. Applications to complex reactions leading to NO and soot formation in hydrocarbon combustion are discussed.

  6. Application of one-dimensional semiclassical transition state theory to the CH3OH + H ⇌ CH2OH/CH3O + H2 reactions.

    PubMed

    Shan, Xiao; Clary, David C

    2018-03-13

    The rate constants of the two branches of H-abstractions from CH 3 OH by the H-atom and the corresponding reactions in the reverse direction are calculated using the one-dimensional semiclassical transition state theory (1D SCTST). In this method, only the reaction mode vibration of the transition state (TS) is treated anharmonically, while the remaining internal degrees of freedom are treated as they would have been in a standard TS theory calculation. A total of eight ab initio single-point energy calculations are performed in addition to the computational cost of a standard TS theory calculation. This allows a second-order Richardson extrapolation method to be employed to improve the numerical estimation of the third- and fourth-order derivatives, which in turn are used in the calculation of the anharmonic constant. Hindered-rotor (HR) vibrations are identified in the equilibrium states of CH 3 OH and CH 2 OH, and the TSs of the reactions. The partition function of the HRs are calculated using both a simple harmonic oscillator model and a more sophisticated one-dimensional torsional eigenvalue summation (1D TES) method. The 1D TES method can be easily adapted in 1D SCTST computation. The resulting 1D SCTST with 1D TES rate constants show good agreement to previous theoretical and experimental works. The effects of the HR on rate constants for different reactions are also investigated.This article is part of the theme issue 'Modern theoretical chemistry'. © 2018 The Author(s).

  7. Virtual Instrument for Determining Rate Constant of Second-Order Reaction by pX Based on LabVIEW 8.0.

    PubMed

    Meng, Hu; Li, Jiang-Yuan; Tang, Yong-Huai

    2009-01-01

    The virtual instrument system based on LabVIEW 8.0 for ion analyzer which can measure and analyze ion concentrations in solution is developed and comprises homemade conditioning circuit, data acquiring board, and computer. It can calibrate slope, temperature, and positioning automatically. When applied to determine the reaction rate constant by pX, it achieved live acquiring, real-time displaying, automatical processing of testing data, generating the report of results; and other functions. This method simplifies the experimental operation greatly, avoids complicated procedures of manual processing data and personal error, and improves veracity and repeatability of the experiment results.

  8. Does phenomenological kinetics provide an adequate description of heterogeneous catalytic reactions?

    PubMed

    Temel, Burcin; Meskine, Hakim; Reuter, Karsten; Scheffler, Matthias; Metiu, Horia

    2007-05-28

    Phenomenological kinetics (PK) is widely used in the study of the reaction rates in heterogeneous catalysis, and it is an important aid in reactor design. PK makes simplifying assumptions: It neglects the role of fluctuations, assumes that there is no correlation between the locations of the reactants on the surface, and considers the reacting mixture to be an ideal solution. In this article we test to what extent these assumptions damage the theory. In practice the PK rate equations are used by adjusting the rate constants to fit the results of the experiments. However, there are numerous examples where a mechanism fitted the data and was shown later to be erroneous or where two mutually exclusive mechanisms fitted well the same set of data. Because of this, we compare the PK equations to "computer experiments" that use kinetic Monte Carlo (kMC) simulations. Unlike in real experiments, in kMC the structure of the surface, the reaction mechanism, and the rate constants are known. Therefore, any discrepancy between PK and kMC must be attributed to an intrinsic failure of PK. We find that the results obtained by solving the PK equations and those obtained from kMC, while using the same rate constants and the same reactions, do not agree. Moreover, when we vary the rate constants in the PK model to fit the turnover frequencies produced by kMC, we find that the fit is not adequate and that the rate constants that give the best fit are very different from the rate constants used in kMC. The discrepancy between PK and kMC for the model of CO oxidation used here is surprising since the kMC model contains no lateral interactions that would make the coverage of the reactants spatially inhomogeneous. Nevertheless, such inhomogeneities are created by the interplay between the rate of adsorption, of desorption, and of vacancy creation by the chemical reactions.

  9. Minimum Energy Pathways for Chemical Reactions

    NASA Technical Reports Server (NTRS)

    Walch, S. P.; Langhoff, S. R. (Technical Monitor)

    1995-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives useful results for a number of chemically important systems. The talk will focus on a number of applications to reactions leading to NOx and soot formation in hydrocarbon combustion.

  10. DCE-MRI-Derived Volume Transfer Constant (Ktrans) and DWI Apparent Diffusion Coefficient as Predictive Markers of Short- and Long-Term Efficacy of Chemoradiotherapy in Patients With Esophageal Cancer.

    PubMed

    Ye, Zhi-Min; Dai, Shu-Jun; Yan, Feng-Qin; Wang, Lei; Fang, Jun; Fu, Zhen-Fu; Wang, Yue-Zhen

    2018-01-01

    This study aimed to evaluate both the short- and long-term efficacies of chemoradiotherapy in relation to the treatment of esophageal cancer . This was achieved through the use of dynamic contrast-enhanced magnetic resonance imaging-derived volume transfer constant and diffusion weighted imaging-derived apparent diffusion coefficient . Patients with esophageal cancer were assigned into the sensitive and resistant groups based on respective efficacies in chemoradiotherapy. Dynamic contrast-enhanced magnetic resonance imaging and diffusion weighted imaging were used to measure volume transfer constant and apparent diffusion coefficient, while computed tomography was used to calculate tumor size reduction rate. Pearson correlation analyses were conducted to analyze correlation between volume transfer constant, apparent diffusion coefficient, and the tumor size reduction rate. Receiver operating characteristic curve was constructed to analyze the short-term efficacy of volume transfer constant and apparent diffusion coefficient, while Kaplan-Meier curve was employed for survival rate analysis. Cox proportional hazard model was used for the risk factors for prognosis of patients with esophageal cancer. Our results indicated reduced levels of volume transfer constant, while increased levels were observed in ADC min , ADC mean , and ADC max following chemoradiotherapy. A negative correlation was determined between ADC min , ADC mean , and ADC max , as well as in the tumor size reduction rate prior to chemoradiotherapy, whereas a positive correlation was uncovered postchemoradiotherapy. Volume transfer constant was positively correlated with tumor size reduction rate both before and after chemoradiotherapy. The 5-year survival rate of patients with esophageal cancer having high ADC min , ADC mean , and ADC max and volume transfer constant before chemoradiotherapy was greater than those with respectively lower values. According to the Cox proportional hazard model, ADC mean , clinical stage, degree of differentiation, and tumor stage were all confirmed as being independent risk factors in regard to the prognosis of patients with EC. The findings of this study provide evidence suggesting that volume transfer constant and apparent diffusion coefficient as being tools allowing for the evaluation of both the short- and long-term efficacies of chemoradiotherapy esophageal cancer treatment.

  11. Bringing metabolic networks to life: convenience rate law and thermodynamic constraints

    PubMed Central

    Liebermeister, Wolfram; Klipp, Edda

    2006-01-01

    Background Translating a known metabolic network into a dynamic model requires rate laws for all chemical reactions. The mathematical expressions depend on the underlying enzymatic mechanism; they can become quite involved and may contain a large number of parameters. Rate laws and enzyme parameters are still unknown for most enzymes. Results We introduce a simple and general rate law called "convenience kinetics". It can be derived from a simple random-order enzyme mechanism. Thermodynamic laws can impose dependencies on the kinetic parameters. Hence, to facilitate model fitting and parameter optimisation for large networks, we introduce thermodynamically independent system parameters: their values can be varied independently, without violating thermodynamical constraints. We achieve this by expressing the equilibrium constants either by Gibbs free energies of formation or by a set of independent equilibrium constants. The remaining system parameters are mean turnover rates, generalised Michaelis-Menten constants, and constants for inhibition and activation. All parameters correspond to molecular energies, for instance, binding energies between reactants and enzyme. Conclusion Convenience kinetics can be used to translate a biochemical network – manually or automatically - into a dynamical model with plausible biological properties. It implements enzyme saturation and regulation by activators and inhibitors, covers all possible reaction stoichiometries, and can be specified by a small number of parameters. Its mathematical form makes it especially suitable for parameter estimation and optimisation. Parameter estimates can be easily computed from a least-squares fit to Michaelis-Menten values, turnover rates, equilibrium constants, and other quantities that are routinely measured in enzyme assays and stored in kinetic databases. PMID:17173669

  12. Impact of the differential fluence distribution of brachytherapy sources on the spectroscopic dose-rate constant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malin, Martha J.; Bartol, Laura J.; DeWerd, Larry A., E-mail: mmalin@wisc.edu, E-mail: ladewerd@wisc.edu

    2015-05-15

    Purpose: To investigate why dose-rate constants for {sup 125}I and {sup 103}Pd seeds computed using the spectroscopic technique, Λ{sub spec}, differ from those computed with standard Monte Carlo (MC) techniques. A potential cause of these discrepancies is the spectroscopic technique’s use of approximations of the true fluence distribution leaving the source, φ{sub full}. In particular, the fluence distribution used in the spectroscopic technique, φ{sub spec}, approximates the spatial, angular, and energy distributions of φ{sub full}. This work quantified the extent to which each of these approximations affects the accuracy of Λ{sub spec}. Additionally, this study investigated how the simplified water-onlymore » model used in the spectroscopic technique impacts the accuracy of Λ{sub spec}. Methods: Dose-rate constants as described in the AAPM TG-43U1 report, Λ{sub full}, were computed with MC simulations using the full source geometry for each of 14 different {sup 125}I and 6 different {sup 103}Pd source models. In addition, the spectrum emitted along the perpendicular bisector of each source was simulated in vacuum using the full source model and used to compute Λ{sub spec}. Λ{sub spec} was compared to Λ{sub full} to verify the discrepancy reported by Rodriguez and Rogers. Using MC simulations, a phase space of the fluence leaving the encapsulation of each full source model was created. The spatial and angular distributions of φ{sub full} were extracted from the phase spaces and were qualitatively compared to those used by φ{sub spec}. Additionally, each phase space was modified to reflect one of the approximated distributions (spatial, angular, or energy) used by φ{sub spec}. The dose-rate constant resulting from using approximated distribution i, Λ{sub approx,i}, was computed using the modified phase space and compared to Λ{sub full}. For each source, this process was repeated for each approximation in order to determine which approximations used in the spectroscopic technique affect the accuracy of Λ{sub spec}. Results: For all sources studied, the angular and spatial distributions of φ{sub full} were more complex than the distributions used in φ{sub spec}. Differences between Λ{sub spec} and Λ{sub full} ranged from −0.6% to +6.4%, confirming the discrepancies found by Rodriguez and Rogers. The largest contribution to the discrepancy was the assumption of isotropic emission in φ{sub spec}, which caused differences in Λ of up to +5.3% relative to Λ{sub full}. Use of the approximated spatial and energy distributions caused smaller average discrepancies in Λ of −0.4% and +0.1%, respectively. The water-only model introduced an average discrepancy in Λ of −0.4%. Conclusions: The approximations used in φ{sub spec} caused discrepancies between Λ{sub approx,i} and Λ{sub full} of up to 7.8%. With the exception of the energy distribution, the approximations used in φ{sub spec} contributed to this discrepancy for all source models studied. To improve the accuracy of Λ{sub spec}, the spatial and angular distributions of φ{sub full} could be measured, with the measurements replacing the approximated distributions. The methodology used in this work could be used to determine the resolution that such measurements would require by computing the dose-rate constants from phase spaces modified to reflect φ{sub full} binned at different spatial and angular resolutions.« less

  13. The chemistry of bromine in the stratosphere: Influence of a new rate constant for the reaction BrO + HO2

    NASA Technical Reports Server (NTRS)

    Pirre, Michel; Marceau, Francois J.; Lebras, Georges; Maguin, Francoise; Poulet, Gille; Ramaroson, Radiela

    1994-01-01

    The impact of new laboratory data for the reaction BrO + HO2 yields HOBr + O2 in the depletion of global stratospheric ozone has been estimated using a one-dimensional photochemical model taking into account the heterogeneous reaction on sulphate aerosols which converts N2O5 into HNO3. Assuring an aerosol loading 2 times as large as the 'background' and a reaction probability of 0.1 for the above heterogeneous reaction, the 6 fold increase in the measured rate constant for the reaction of BrO with HO2 increases the computed depletion of global ozone produced by 20 ppt of total bromine from 2.01 percent to 2.36 percent. The use of the higher rate constant increases the HOBr mixing ratio and makes the bromine partitioning and the ozone depletion very sensitive to the branching ratio of the potential channel forming HBr in the BrO + HO2 reaction.

  14. An investigation of one- versus two-dimensional semiclassical transition state theory for H atom abstraction and exchange reactions.

    PubMed

    Greene, Samuel M; Shan, Xiao; Clary, David C

    2016-02-28

    We investigate which terms in Reduced-Dimensionality Semiclassical Transition State Theory (RD SCTST) contribute most significantly in rate constant calculations of hydrogen extraction and exchange reactions of hydrocarbons. We also investigate the importance of deep tunneling corrections to the theory. In addition, we introduce a novel formulation of the theory in Jacobi coordinates. For the reactions of H atoms with methane, ethane, and cyclopropane, we find that a one-dimensional (1-D) version of the theory without deep tunneling corrections compares well with 2-D SCTST results and accurate quantum scattering results. For the "heavy-light-heavy" H atom exchange reaction between CH3 and CH4, deep tunneling corrections are needed to yield 1-D results that compare well with 2-D results. The finding that accurate rate constants can be obtained from derivatives of the potential along only one dimension further validates RD SCTST as a computationally efficient yet accurate rate constant theory.

  15. Constitutive Model Constants for Al7075-T651 and Al7075-T6

    NASA Astrophysics Data System (ADS)

    Brar, Nachhatter; Joshi, Vasant; Harris, Bryan

    2009-06-01

    Aluminum 7075-T651 and 7075-T6 are characterized at quasi-static and high strain rates to determine Johnson-Cook (J-C) strength and fracture model constants. Constitutive model constants are required as input to computer codes to simulate projectile (fragment) impact or similar impact events on structural components made of these material. J-C strength model constants (A, B, n, C, and m) for the two alloys are determined from tension stress-strain data at room and high temperature to 250^oC. J-C strength model constants for Al7075-T651 are: A=527 MPa, B=676 MPa, n=0.71, C=0.017, and m=1.61 and for Al7075-T6: A = 546 MPa, B = 674 MPa, n = 0.72, C = 0.059, and m =1.56. J-C fracture model constants are determined form quasi-static and high strain rate/high temperature tests on notched and smooth tension specimens. J-C fracture model constants for the two alloys are: Al7075-T651; D1 = 0.110, D2 = 0.573, D3= -3.4446, D4 = 0.016, and D 5= 1.099 and Al7075-T6; D1= 0.451 D2= -0.952 D3= -.068, D4 =0.036, and D5 = 0.697.

  16. Non-steady state mass action dynamics without rate constants: dynamics of coupled reactions using chemical potentials

    NASA Astrophysics Data System (ADS)

    Cannon, William R.; Baker, Scott E.

    2017-10-01

    Comprehensive and predictive simulation of coupled reaction networks has long been a goal of biology and other fields. Currently, metabolic network models that utilize enzyme mass action kinetics have predictive power but are limited in scope and application by the fact that the determination of enzyme rate constants is laborious and low throughput. We present a statistical thermodynamic formulation of the law of mass action for coupled reactions at both steady states and non-stationary states. The formulation uses chemical potentials instead of rate constants. When used to model deterministic systems, the method corresponds to a rescaling of the time dependent reactions in such a way that steady states can be reached on the same time scale but with significantly fewer computational steps. The relationships between reaction affinities, free energy changes and generalized detailed balance are central to the discussion. The significance for applications in systems biology are discussed as is the concept and assumption of maximum entropy production rate as a biological principle that links thermodynamics to natural selection.

  17. Processes and kinetics of Cd2+ sorption by a calcareous aquifer sand

    USGS Publications Warehouse

    Fuller, C.C.; Davis, J.A.

    1987-01-01

    The rate of Cd2+ sorption by a calcareous aquifer sand was characterized by two reaction steps, with the first step reaching completion in 24 hours. The second step proceeded at a slow and nearly constant rate for at least seven days. The first step includes a fast adsorption reaction which is followed by diffusive transport into either a disordered surface film of hydrated calcium carbonate or into pore spaces. After 24 hours the rate of Cd2+ sorption was constant and controlled by the rate of surface coprecipitation, as a solid solution of CdCO3 in CaCO3 formed in recrystallizing material. Desorption of Cd2+ from the sand was slow. Clean grains of primary minerals, e.g. quartz and aluminosilicates. sorbed much less Cd2+ than grains which had surface patches of secondary minerals, e.g. carbonates, iron and manganese oxides. Calcite grains sorbed the greatest amount of Cd2+ on a weight-normalized basis despite the greater abundance of quartz. A method is illustrated for determining empirical binding constants for trace metals at in situ pH values without introducing the experimental problem of supersaturation. The binding constants are useful for solute transport models which include a computation of aqueous speciation. ?? 1987.

  18. Computational modeling approaches to quantitative structure-binding kinetics relationships in drug discovery.

    PubMed

    De Benedetti, Pier G; Fanelli, Francesca

    2018-03-21

    Simple comparative correlation analyses and quantitative structure-kinetics relationship (QSKR) models highlight the interplay of kinetic rates and binding affinity as an essential feature in drug design and discovery. The choice of the molecular series, and their structural variations, used in QSKR modeling is fundamental to understanding the mechanistic implications of ligand and/or drug-target binding and/or unbinding processes. Here, we discuss the implications of linear correlations between kinetic rates and binding affinity constants and the relevance of the computational approaches to QSKR modeling. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Reaction pathways and free energy profiles for spontaneous hydrolysis of urea and tetramethylurea: Unexpected substituent effects

    PubMed Central

    Yao, Min; Tu, Wenlong; Chen, Xi; Zhan, Chang-Guo

    2013-01-01

    It has been difficult to directly measure the spontaneous hydrolysis rate of urea and, thus, 1,1,3,3-tetramethylurea (Me4U) was used as a model to determine the “experimental” rate constant for urea hydrolysis. The use of Me4U was based on an assumption that the rate of urea hydrolysis should be 2.8 times that of Me4U hydrolysis because the rate of acetamide hydrolysis is 2.8 times that of N,N-dimethyl-acetamide hydrolysis. The present first-principles electronic-structure calculations on the competing non-enzymatic hydrolysis pathways have demonstrated that the dominant pathway is the neutral hydrolysis via the CN addition for both urea (when pH<~11.6) and Me4U (regardless of pH), unlike the non-enzymatic hydrolysis of amides where alkaline hydrolysis is dominant. Based on the computational data, the substituent shift of free energy barrier calculated for the neutral hydrolysis is remarkably different from that for the alkaline hydrolysis, and the rate constant for the urea hydrolysis should be ~1.3×109-fold lower than that (4.2×10−12 s−1) measured for the Me4U hydrolysis. As a result, the rate enhancement and catalytic proficiency of urease should be 1.2×1025 and 3×1027 M−1, respectively, suggesting that urease surpasses proteases and all other enzymes in its power to enhance the rate of reaction. All of the computational results are consistent with available experimental data for Me4U, suggesting that the computational prediction for urea is reliable. PMID:24097048

  20. Reduced-Dimensionality Semiclassical Transition State Theory: Application to Hydrogen Atom Abstraction and Exchange Reactions of Hydrocarbons.

    PubMed

    Greene, Samuel M; Shan, Xiao; Clary, David C

    2015-12-17

    Quantum mechanical methods for calculating rate constants are often intractable for reactions involving many atoms. Semiclassical transition state theory (SCTST) offers computational advantages over these methods but nonetheless scales exponentially with the number of degrees of freedom (DOFs) of the system. Here we present a method with more favorable scaling, reduced-dimensionality SCTST (RD SCTST), that treats only a subset of DOFs of the system explicitly. We apply it to three H abstraction and exchange reactions for which two-dimensional potential energy surfaces (PESs) have previously been constructed and evaluated using RD quantum scattering calculations. We differentiated these PESs to calculate harmonic frequencies and anharmonic constants, which were then used to calculate cumulative reaction probabilities and rate constants by RD SCTST. This method yielded rate constants in good agreement with quantum scattering results. Notably, it performed well for a heavy-light-heavy reaction, even though it does not explicitly account for corner-cutting effects. Recent extensions to SCTST that improve its treatment of deep tunneling were also evaluated within the reduced-dimensionality framework. The success of RD SCTST in this study suggests its potential applicability to larger systems.

  1. An initial-abstraction, constant-loss model for unit hydrograph modeling for applicable watersheds in Texas

    USGS Publications Warehouse

    Asquith, William H.; Roussel, Meghan C.

    2007-01-01

    Estimation of representative hydrographs from design storms, which are known as design hydrographs, provides for cost-effective, riskmitigated design of drainage structures such as bridges, culverts, roadways, and other infrastructure. During 2001?07, the U.S. Geological Survey (USGS), in cooperation with the Texas Department of Transportation, investigated runoff hydrographs, design storms, unit hydrographs,and watershed-loss models to enhance design hydrograph estimation in Texas. Design hydrographs ideally should mimic the general volume, peak, and shape of observed runoff hydrographs. Design hydrographs commonly are estimated in part by unit hydrographs. A unit hydrograph is defined as the runoff hydrograph that results from a unit pulse of excess rainfall uniformly distributed over the watershed at a constant rate for a specific duration. A time-distributed, watershed-loss model is required for modeling by unit hydrographs. This report develops a specific time-distributed, watershed-loss model known as an initial-abstraction, constant-loss model. For this watershed-loss model, a watershed is conceptualized to have the capacity to store or abstract an absolute depth of rainfall at and near the beginning of a storm. Depths of total rainfall less than this initial abstraction do not produce runoff. The watershed also is conceptualized to have the capacity to remove rainfall at a constant rate (loss) after the initial abstraction is satisfied. Additional rainfall inputs after the initial abstraction is satisfied contribute to runoff if the rainfall rate (intensity) is larger than the constant loss. The initial abstraction, constant-loss model thus is a two-parameter model. The initial-abstraction, constant-loss model is investigated through detailed computational and statistical analysis of observed rainfall and runoff data for 92 USGS streamflow-gaging stations (watersheds) in Texas with contributing drainage areas from 0.26 to 166 square miles. The analysis is limited to a previously described, watershed-specific, gamma distribution model of the unit hydrograph. In particular, the initial-abstraction, constant-loss model is tuned to the gamma distribution model of the unit hydrograph. A complex computational analysis of observed rainfall and runoff for the 92 watersheds was done to determine, by storm, optimal values of initial abstraction and constant loss. Optimal parameter values for a given storm were defined as those values that produced a modeled runoff hydrograph with volume equal to the observed runoff hydrograph and also minimized the residual sum of squares of the two hydrographs. Subsequently, the means of the optimal parameters were computed on a watershed-specific basis. These means for each watershed are considered the most representative, are tabulated, and are used in further statistical analyses. Statistical analyses of watershed-specific, initial abstraction and constant loss include documentation of the distribution of each parameter using the generalized lambda distribution. The analyses show that watershed development has substantial influence on initial abstraction and limited influence on constant loss. The means and medians of the 92 watershed-specific parameters are tabulated with respect to watershed development; although they have considerable uncertainty, these parameters can be used for parameter prediction for ungaged watersheds. The statistical analyses of watershed-specific, initial abstraction and constant loss also include development of predictive procedures for estimation of each parameter for ungaged watersheds. Both regression equations and regression trees for estimation of initial abstraction and constant loss are provided. The watershed characteristics included in the regression analyses are (1) main-channel length, (2) a binary factor representing watershed development, (3) a binary factor representing watersheds with an abundance of rocky and thin-soiled terrain, and (4) curve numb

  2. A study of reacting free and ducted hydrogen/air jets

    NASA Technical Reports Server (NTRS)

    Beach, H. L., Jr.

    1975-01-01

    The mixing and reaction of a supersonic jet of hydrogen in coaxial free and ducted high temperature test gases were investigated. The importance of chemical kinetics on computed results, and the utilization of free-jet theoretical approaches to compute enclosed flow fields were studied. Measured pitot pressure profiles were correlated by use of a parabolic mixing analysis employing an eddy viscosity model. All computations, including free, ducted, reacting, and nonreacting cases, use the same value of the empirical constant in the viscosity model. Equilibrium and finite rate chemistry models were utilized. The finite rate assumption allowed prediction of observed ignition delay, but the equilibrium model gave the best correlations downstream from the ignition location. Ducted calculations were made with finite rate chemistry; correlations were, in general, as good as the free-jet results until problems with the boundary conditions were encountered.

  3. Semiclassical fermion pair creation in de Sitter spacetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stahl, Clément, E-mail: clement.stahl@icranet.org; Eckhard, Strobel, E-mail: eckhard.strobel@irap-phd.eu; Dipartimento di Fisica, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome

    2015-12-17

    We present a method to semiclassically compute the pair creation rate of bosons and fermions in de Sitter spacetime. The results in the bosonic case agree with the ones in the literature. We find that for the constant electric field the fermionic and bosonic pair creation rate are the same. This analogy of bosons and fermions in the semiclassical limit is known from several flat spacetime examples.

  4. Virtual Instrument for Determining Rate Constant of Second-Order Reaction by pX Based on LabVIEW 8.0

    PubMed Central

    Meng, Hu; Li, Jiang-Yuan; Tang, Yong-Huai

    2009-01-01

    The virtual instrument system based on LabVIEW 8.0 for ion analyzer which can measure and analyze ion concentrations in solution is developed and comprises homemade conditioning circuit, data acquiring board, and computer. It can calibrate slope, temperature, and positioning automatically. When applied to determine the reaction rate constant by pX, it achieved live acquiring, real-time displaying, automatical processing of testing data, generating the report of results; and other functions. This method simplifies the experimental operation greatly, avoids complicated procedures of manual processing data and personal error, and improves veracity and repeatability of the experiment results. PMID:19730752

  5. Leak Rate Quantification Method for Gas Pressure Seals with Controlled Pressure Differential

    NASA Technical Reports Server (NTRS)

    Daniels, Christopher C.; Braun, Minel J.; Oravec, Heather A.; Mather, Janice L.; Taylor, Shawn C.

    2015-01-01

    An enhancement to the pressure decay leak rate method with mass point analysis solved deficiencies in the standard method. By adding a control system, a constant gas pressure differential across the test article was maintained. As a result, the desired pressure condition was met at the onset of the test, and the mass leak rate and measurement uncertainty were computed in real-time. The data acquisition and control system were programmed to automatically stop when specified criteria were met. Typically, the test was stopped when a specified level of measurement uncertainty was attained. Using silicone O-ring test articles, the new method was compared with the standard method that permitted the downstream pressure to be non-constant atmospheric pressure. The two methods recorded comparable leak rates, but the new method recorded leak rates with significantly lower measurement uncertainty, statistical variance, and test duration. Utilizing this new method in leak rate quantification, projects will reduce cost and schedule, improve test results, and ease interpretation between data sets.

  6. Rate constants of chemical reactions from semiclassical transition state theory in full and one dimension.

    PubMed

    Greene, Samuel M; Shan, Xiao; Clary, David C

    2016-06-28

    Semiclassical Transition State Theory (SCTST), a method for calculating rate constants of chemical reactions, offers gains in computational efficiency relative to more accurate quantum scattering methods. In full-dimensional (FD) SCTST, reaction probabilities are calculated from third and fourth potential derivatives along all vibrational degrees of freedom. However, the computational cost of FD SCTST scales unfavorably with system size, which prohibits its application to larger systems. In this study, the accuracy and efficiency of 1-D SCTST, in which only third and fourth derivatives along the reaction mode are used, are investigated in comparison to those of FD SCTST. Potential derivatives are obtained from numerical ab initio Hessian matrix calculations at the MP2/cc-pVTZ level of theory, and Richardson extrapolation is applied to improve the accuracy of these derivatives. Reaction barriers are calculated at the CCSD(T)/cc-pVTZ level. Results from FD SCTST agree with results from previous theoretical and experimental studies when Richardson extrapolation is applied. Results from our implementation of 1-D SCTST, which uses only 4 single-point MP2/cc-pVTZ energy calculations in addition to those for conventional TST, agree with FD results to within a factor of 5 at 250 K. This degree of agreement and the efficiency of the 1-D method suggest its potential as a means of approximating rate constants for systems too large for existing quantum scattering methods.

  7. Effect of misalignment on mechanical behavior of metals in creep. [computer programs

    NASA Technical Reports Server (NTRS)

    Wu, H. C.

    1979-01-01

    Application of the endochronic theory of viscoplasticity to creep, creep recovery, and stress relaxation at the small strain and short time range produced the following results: (1) The governing constitutive equations for constant-strain-rate stress-strain behavior, creep, creep recovery, and stress relaxation were derived by imposing appropriate constraints on the general constitutive equation of the endochronic theory. (2) A set of material constants was found which correlate strain-hardening, creep, creep recovery, and stress relaxation. (3) The theory predicts with reasonable accuracy the creep and creep recovery behaviors at short time. (4) The initial strain history prior to the creep stage affects the subsequent creep significantly. (5) A critical stress was established for creep recovery. A computer program, written for the misalignment problem is reported.

  8. Empowering the Non-Traditional College Student and Bridging the "Digital Divide"

    ERIC Educational Resources Information Center

    Jesnek, Lindsey M.

    2012-01-01

    Non-traditional student enrollment, especially at community colleges, has markedly risen in the last ten years due to national unemployment rates, the current economic climate, and employer demand for computer-literate employees. While university instructors struggle to constantly adapt their course materials to incorporate updates in software…

  9. Technology and Giftedness

    ERIC Educational Resources Information Center

    Shea, Lorel

    2010-01-01

    Today's parents and their children use electronic gadgets and gizmos at such a prodigious rate that they are changing the way people live. Cell phones are ubiquitous. Kids constantly text, email, instant message, and send photos from their phones as well as their computers. The Internet, without a doubt, has a tremendous impact on modern family…

  10. Stability of colloidal gold and determination of the Hamaker constant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demirci, S.; Enuestuen, B.V.; Turkevich, J.

    1978-12-14

    Previous computation of stability factors of colloidal gold from coagulation data was found to be in systematic error due to an underestimation of the particle concentration by electron microscopy. A new experimental technique was developed for determination of this concentration. Stability factors were recalculated from the previous data using the correct concentration. While most of the previously reported conclusions remain unchanged, the absolute rate of fast coagulation is found to agree with that predicted by the theory. A value of the Hamaker constant was determined from the corrected data.

  11. Evolution of the Carter constant for inspirals into a black hole: Effect of the black hole quadrupole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flanagan, Eanna E.; Laboratory for Elementary Particle Physics, Cornell University, Ithaca, New York 14853; Hinderer, Tanja

    2007-06-15

    We analyze the effect of gravitational radiation reaction on generic orbits around a body with an axisymmetric mass quadrupole moment Q to linear order in Q, to the leading post-Newtonian order, and to linear order in the mass ratio. This system admits three constants of the motion in absence of radiation reaction: energy, angular momentum along the symmetry axis, and a third constant analogous to the Carter constant. We compute instantaneous and time-averaged rates of change of these three constants. For a point particle orbiting a black hole, Ryan has computed the leading order evolution of the orbit's Carter constant,more » which is linear in the spin. Our result, when combined with an interaction quadratic in the spin (the coupling of the black hole's spin to its own radiation reaction field), gives the next to leading order evolution. The effect of the quadrupole, like that of the linear spin term, is to circularize eccentric orbits and to drive the orbital plane towards antialignment with the symmetry axis. In addition we consider a system of two point masses where one body has a single mass multipole or current multipole of order l. To linear order in the mass ratio, to linear order in the multipole, and to the leading post-Newtonian order, we show that there does not exist an analog of the Carter constant for such a system (except for the cases of an l=1 current moment and an l=2 mass moment). Thus, the existence of the Carter constant in Kerr depends on interaction effects between the different multipoles. With mild additional assumptions, this result falsifies the conjecture that all vacuum, axisymmetric spacetimes possess a third constant of the motion for geodesic motion.« less

  12. Analysis of the dynamics of renal vascular resistance and urine flow rate in the cat following electrical stimulation of the renal nerves.

    PubMed

    Celler, B G; Stella, A; Golin, R; Zanchetti, A

    1996-08-01

    In ten sino aortic denervated, vagotomized and aneasthetized cats, renal efferent nerves were stimulated for 30 s with trains of constant current pulses at frequencies in the range 5-30 Hz. The arterial pressure, heart rate, urine flow rate (electronic drop counter) and renal blood flow (electromagnetic technique) were recorded. Subsequent computer processing gave the true means of renal artery pressure (MRAP) and renal blood flow (MRBF) and hence the renal vascular resistance (MRVR), over each cardiac cycle. Recovery of MRVR after the end of stimulation exhibited two distinct time constants. The fast component had a time constant of 2.03 +/- 0.26 s and represented 60.2 +/- 1.71% of the recovery. The time constant of the slower component was 14.1 +/- 1.9 s and represented 36.0 +/- 1.6% of the recovery. The relationship between MRVR and stimulus frequency was sigmoidal with maximum sensitivity at stimulus frequencies of 12.6 +/- 0.76 Hz. Changes in urine flow rate, in contrast, followed a hyperbolic function with maximum response sensitivity occurring at very low stimulus frequencies. Changes in urine flow rate were 50% complete at stimulus frequencies of 5 Hz. Identification of two distinct components in the relaxation phase of renal vascular resistance leads to a reasonable hypothesis that 60% of total renal vascular resistance may lie proximal to the glomerulus, whereas 36% may be accounted for by the efferent arterioles.

  13. Hierarchical calibration and validation framework of bench-scale computational fluid dynamics simulations for solvent-based carbon capture. Part 2: Chemical absorption across a wetted wall column: Original Research Article: Hierarchical calibration and validation framework of bench-scale computational fluid dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chao; Xu, Zhijie; Lai, Kevin

    Part 1 of this paper presents a numerical model for non-reactive physical mass transfer across a wetted wall column (WWC). In Part 2, we improved the existing computational fluid dynamics (CFD) model to simulate chemical absorption occurring in a WWC as a bench-scale study of solvent-based carbon dioxide (CO2) capture. To generate data for WWC model validation, CO2 mass transfer across a monoethanolamine (MEA) solvent was first measured on a WWC experimental apparatus. The numerical model developed in this work can account for both chemical absorption and desorption of CO2 in MEA. In addition, the overall mass transfer coefficient predictedmore » using traditional/empirical correlations is conducted and compared with CFD prediction results for both steady and wavy falling films. A Bayesian statistical calibration algorithm is adopted to calibrate the reaction rate constants in chemical absorption/desorption of CO2 across a falling film of MEA. The posterior distributions of the two transport properties, i.e., Henry's constant and gas diffusivity in the non-reacting nitrous oxide (N2O)/MEA system obtained from Part 1 of this study, serves as priors for the calibration of CO2 reaction rate constants after using the N2O/CO2 analogy method. The calibrated model can be used to predict the CO2 mass transfer in a WWC for a wider range of operating conditions.« less

  14. Hierarchical calibration and validation framework of bench-scale computational fluid dynamics simulations for solvent-based carbon capture. Part 2: Chemical absorption across a wetted wall column: Original Research Article: Hierarchical calibration and validation framework of bench-scale computational fluid dynamics simulations

    DOE PAGES

    Wang, Chao; Xu, Zhijie; Lai, Kevin; ...

    2017-10-24

    Part 1 of this paper presents a numerical model for non-reactive physical mass transfer across a wetted wall column (WWC). In Part 2, we improved the existing computational fluid dynamics (CFD) model to simulate chemical absorption occurring in a WWC as a bench-scale study of solvent-based carbon dioxide (CO2) capture. To generate data for WWC model validation, CO2 mass transfer across a monoethanolamine (MEA) solvent was first measured on a WWC experimental apparatus. The numerical model developed in this work can account for both chemical absorption and desorption of CO2 in MEA. In addition, the overall mass transfer coefficient predictedmore » using traditional/empirical correlations is conducted and compared with CFD prediction results for both steady and wavy falling films. A Bayesian statistical calibration algorithm is adopted to calibrate the reaction rate constants in chemical absorption/desorption of CO2 across a falling film of MEA. The posterior distributions of the two transport properties, i.e., Henry's constant and gas diffusivity in the non-reacting nitrous oxide (N2O)/MEA system obtained from Part 1 of this study, serves as priors for the calibration of CO2 reaction rate constants after using the N2O/CO2 analogy method. The calibrated model can be used to predict the CO2 mass transfer in a WWC for a wider range of operating conditions.« less

  15. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1994-01-01

    Quantum mechanical methods have been used to compute potential energy surfaces for chemical reactions. The reactions studied were among those believed to be important to the NASP and HSR programs and included the recombination of two H atoms with several different third bodies; the reactions in the thermal Zeldovich mechanism; the reactions of H atom with O2, N2, and NO; reactions involved in the thermal De-NO(x) process; and the reaction of CH(squared Pi) with N2 (leading to 'prompt NO'). These potential energy surfaces have been used to compute reaction rate constants and rates of unimolecular decomposition. An additional application was the calculation of transport properties of gases using a semiclassical approximation (and in the case of interactions involving hydrogen inclusion of quantum mechanical effects).

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallow, Anne M; Abdelaziz, Omar; Graham, Samuel

    The thermal charging performance of phase change materials, specifically paraffin wax, combined with compressed expanded natural graphite foam is studied under constant heat flux and constant temperature conditions. By varying the heat flux between 0.39 W/cm2 and 1.55 W/cm2 or maintaining a boundary temperature of 60 C for four graphite foam bulk densities, the impact on the rate of thermal energy storage is discussed. Thermal charging experiments indicate that thermal conductivity of the composite is an insufficient metric to compare the influence of graphite foam on the rate of thermal energy storage of the PCM composite. By dividing the latentmore » heat of the composite by the time to melt for various boundary conditions and graphite foam bulk densities, it is determined that bulk density selection is dependent on the applied boundary condition. A greater bulk density is advantageous for samples exposed to a constant temperature near the melting temperature as compared to constant heat flux conditions where a lower bulk density is adequate. Furthermore, the anisotropic nature of graphite foam bulk densities greater than 50 kg/m3 is shown to have an insignificant impact on the rate of thermal charging. These experimental results are used to validate a computational model for future use in the design of thermal batteries for waste heat recovery.« less

  17. SCS-CN based time-distributed sediment yield model

    NASA Astrophysics Data System (ADS)

    Tyagi, J. V.; Mishra, S. K.; Singh, Ranvir; Singh, V. P.

    2008-05-01

    SummaryA sediment yield model is developed to estimate the temporal rates of sediment yield from rainfall events on natural watersheds. The model utilizes the SCS-CN based infiltration model for computation of rainfall-excess rate, and the SCS-CN-inspired proportionality concept for computation of sediment-excess. For computation of sedimentographs, the sediment-excess is routed to the watershed outlet using a single linear reservoir technique. Analytical development of the model shows the ratio of the potential maximum erosion (A) to the potential maximum retention (S) of the SCS-CN method is constant for a watershed. The model is calibrated and validated on a number of events using the data of seven watersheds from India and the USA. Representative values of the A/S ratio computed for the watersheds from calibration are used for the validation of the model. The encouraging results of the proposed simple four parameter model exhibit its potential in field application.

  18. Computerized optimization of radioimmunoassays for hCG and estradiol: an experimental evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanagishita, M.; Rodbard, D.

    1978-07-15

    The mathematical and statistical theory of radioimmunoassays (RIAs) has been used to develop a series of computer programs to optimize sensitivity or precision at any desired dose level for either equilibrium or nonequilibrium assays. These computer programs provide for the calculation of the equilibrium constants of association and binding capacities for antisera (parameters of Scatchard plots), the association and dissociation rate constants, and prediction of optimum concentration of labeled ligand and antibody and optimum incubation times for the assay. This paper presents an experimental evaluation of the use of these computer programs applied to RIAs for human chorionic gonadotropin (hCG)more » and estradiol. The experimental results are in reasonable semiquantitative agreement with the predictions of the computer simulations (usually within a factor of two) and thus partially validate the use of computer techniques to optimize RIAs that are reasonably well behaved, as in the case of the hCG and estradiol RIAs. Further, these programs can provide insights into the nature of the RIA system, e.g., the general nature of the sensitivity and precision surfaces. This facilitates empirical optimization of conditions.« less

  19. A thermal NO(x) prediction model - Scalar computation module for CFD codes with fluid and kinetic effects

    NASA Technical Reports Server (NTRS)

    Mcbeath, Giorgio; Ghorashi, Bahman; Chun, Kue

    1993-01-01

    A thermal NO(x) prediction model is developed to interface with a CFD, k-epsilon based code. A converged solution from the CFD code is the input to the postprocessing model for prediction of thermal NO(x). The model uses a decoupled analysis to estimate the equilibrium level of (NO(x))e which is the constant rate limit. This value is used to estimate the flame (NO(x)) and in turn predict the rate of formation at each node using a two-step Zeldovich mechanism. The rate is fixed on the NO(x) production rate plot by estimating the time to reach equilibrium by a differential analysis based on the reaction: O + N2 = NO + N. The rate is integrated in the nonequilibrium time space based on the residence time at each node in the computational domain. The sum of all nodal predictions yields the total NO(x) level.

  20. General Monte Carlo reliability simulation code including common mode failures and HARP fault/error-handling

    NASA Technical Reports Server (NTRS)

    Platt, M. E.; Lewis, E. E.; Boehm, F.

    1991-01-01

    A Monte Carlo Fortran computer program was developed that uses two variance reduction techniques for computing system reliability applicable to solving very large highly reliable fault-tolerant systems. The program is consistent with the hybrid automated reliability predictor (HARP) code which employs behavioral decomposition and complex fault-error handling models. This new capability is called MC-HARP which efficiently solves reliability models with non-constant failures rates (Weibull). Common mode failure modeling is also a specialty.

  1. On the Mechanism and Rate of Spontaneous Decomposition of Amino Acids

    PubMed Central

    Alexandrova, Anastassia N.; Jorgensen, William L.

    2011-01-01

    Spontaneous decarboxylation of amino acids is among the slowest known reactions; it is much less facile than the cleavage of amide bonds in polypeptides. Establishment of the kinetics and mechanisms for this fundamental reaction is important for gauging the proficiency of enzymes. In the present study, multiple mechanisms for glycine decomposition in water are explored using QM/MM Monte Carlo simulations and free energy perturbation theory. Simple CO2 detachment emerges as the preferred pathway for decarboxylation; it is followed by water-assisted proton transfer to yield the products, CO2 and methylamine. The computed free energy of activation of 45 kcal/mol, and the resulting rate-constant of 1 × 10−21 s−1, can be compared with an extrapolated experimental rate constant of ~2 × 10−17 s−1 at 25 °C. The half-life for the reaction is more than 1 billion years. Furthermore, examination of deamination finds simple NH3-detachment yielding α-lactone to be the favored route, though it is less facile than decarboxylation by kcal/mol. Ab initio and DFT calculations with the CPCM hydration model were also carried out for the reactions; the computed free energies of activation for glycine decarboxylation agree with the QM/MM result, while deamination is predicted to be more favorable. QM/MM calculations were also performed for decarboxylation of alanine; the computed barrier is 2 kcal/mol higher than for glycine in qualitative accord with experiment. PMID:21995727

  2. Kinetic and mechanistic analysis of dinucleotide and oligonucleotide formation from the 5'-phosphorimidazolide of adenosine on Na(+)-montmorillonite

    NASA Technical Reports Server (NTRS)

    Kawamura, K.; Ferris, J. P.

    1994-01-01

    The rate constants for the condensation reaction of the 5'-phosphorimidazolide of adenosine (ImpA) to form dinucleotides and oligonucleotides have been measured in the presence of Na(+)-volclay (a Na(+)-montmorillonite) in pH 8 aqueous solution at 25 degrees C. The rates of the reaction of ImpA with an excess of adenosine 5'-monophosphoramidate (NH2pA), P1,P2-diadenosine 5',5'-pyrophosphate (A5'ppA), or adenosine 5'-monophosphate (5'-AMP or pA) in the presence of the montmorillonite to form NH2pA3'pA, A5'ppA3'pA, and pA3'pA, respectively, were measured. Only 3',5'-linked products were observed. The magnitude of the rate constants decrease in the order NH2pA3'pA > A5'-ppA3'pA > pA3'pA. The binding of ImpA to montmorillonite was measured, and the adsorption isotherm was determined. The binding of ImpA to montmorillonite and the formation of higher oligonucleotides is not observed in the absence of salts. Mg2+ enhances binding and oligonucleotide formation more than Ca2+ and Na+. The rate constants for the oligonucleotide formation were determined from the reaction products formed from 10 to 40 mM ImpA in the presence of Na(+)-montmorillonite using the computer program SIMFIT. The magnitudes of the rate constants for the formation of oligonucleotides increased in the order 2-mer < 3-mer < 4-mer ... 7-mer. The rate constants for dinucleotide and trinucleotide formation are more than 1000 times larger than those measured in the absence of montmorillonite. The rate constants for the formation of dinucleotide, trinucleotide, and tetranucleotide are 41,2.6, and 3.7 times larger than those for the formation of oligo(G)s with a poly(C) template. The hydrolysis of ImpA was accelerated 35 times in the presence of the montmorillonite. The catalytic ability of montmorillonite to form dinucleotides and oligonucleotides is quantitatively evaluated and possible pathways for oligo(A) formation are proposed.

  3. All-optical 1st- and 2nd-order differential equation solvers with large tuning ranges using Fabry-Pérot semiconductor optical amplifiers.

    PubMed

    Chen, Kaisheng; Hou, Jie; Huang, Zhuyang; Cao, Tong; Zhang, Jihua; Yu, Yuan; Zhang, Xinliang

    2015-02-09

    We experimentally demonstrate an all-optical temporal computation scheme for solving 1st- and 2nd-order linear ordinary differential equations (ODEs) with tunable constant coefficients by using Fabry-Pérot semiconductor optical amplifiers (FP-SOAs). By changing the injection currents of FP-SOAs, the constant coefficients of the differential equations are practically tuned. A quite large constant coefficient tunable range from 0.0026/ps to 0.085/ps is achieved for the 1st-order differential equation. Moreover, the constant coefficient p of the 2nd-order ODE solver can be continuously tuned from 0.0216/ps to 0.158/ps, correspondingly with the constant coefficient q varying from 0.0000494/ps(2) to 0.006205/ps(2). Additionally, a theoretical model that combining the carrier density rate equation of the semiconductor optical amplifier (SOA) with the transfer function of the Fabry-Pérot (FP) cavity is exploited to analyze the solving processes. For both 1st- and 2nd-order solvers, excellent agreements between the numerical simulations and the experimental results are obtained. The FP-SOAs based all-optical differential-equation solvers can be easily integrated with other optical components based on InP/InGaAsP materials, such as laser, modulator, photodetector and waveguide, which can motivate the realization of the complicated optical computing on a single integrated chip.

  4. Rate Constant and Reaction Coordinate of Trp-Cage Folding in Explicit Water

    PubMed Central

    Juraszek, Jarek; Bolhuis, Peter G.

    2008-01-01

    We report rate constant calculations and a reaction coordinate analysis of the rate-limiting folding and unfolding process of the Trp-cage mini-protein in explicit solvent using transition interface sampling. Previous transition path sampling simulations revealed that in this (un)folding process the protein maintains its compact configuration, while a (de)increase of secondary structure is observed. The calculated folding rate agrees reasonably with experiment, while the unfolding rate is 10 times higher. We discuss possible origins for this mismatch. We recomputed the rates with the forward flux sampling method, and found a discrepancy of four orders of magnitude, probably caused by the method's higher sensitivity to the choice of order parameter with respect to transition interface sampling. Finally, we used the previously computed transition path-sampling ensemble to screen combinations of many order parameters for the best model of the reaction coordinate by employing likelihood maximization. We found that a combination of the root mean-square deviation of the helix and of the entire protein was, of the set of tried order parameters, the one that best describes the reaction coordination. PMID:18676648

  5. False vacuum decay in Jordan-Brans-Dicke cosmologies

    NASA Technical Reports Server (NTRS)

    Holman, Richard; Kolb, Edward W.; Vadas, Sharon L.; Wang, Yun; Weinberg, Erick J.

    1989-01-01

    The bubble nucleation rate in a first-order phase transition taking place in a background Jordan-Brans-Dicke cosmology is examined. The leading order terms in the nucleation rate when the Jordan-Brans-Dicke field is large (i.e., late times) are computed by means of a Weyl rescaling of the fields in the theory. It is found that despite the fact that the Jordan-Brans-Dicke field (hence the effective gravitational constant) has a time dependence in the false vacuum at late times the nucleation rate is time independent.

  6. Improved upper bounds on energy dissipation rates in plane Couette flow with boundary injection and suction

    NASA Astrophysics Data System (ADS)

    Lee, Harry; Wen, Baole; Doering, Charles

    2017-11-01

    The rate of viscous energy dissipation ɛ in incompressible Newtonian planar Couette flow (a horizontal shear layer) imposed with uniform boundary injection and suction is studied numerically. Specifically, fluid is steadily injected through the top plate with a constant rate at a constant angle of injection, and the same amount of fluid is sucked out vertically through the bottom plate at the same rate. This set-up leads to two control parameters, namely the angle of injection, θ, and the Reynolds number of the horizontal shear flow, Re . We numerically implement the `background field' variational problem formulated by Constantin and Doering with a one-dimensional unidirectional background field ϕ(z) , where z aligns with the distance between the plates. Computation is carried out at various levels of Re with θ = 0 , 0 .1° ,1° and 2°, respectively. The computed upper bounds on ɛ scale like Re0 as Re > 20 , 000 for each fixed θ, this agrees with Kolmogorov's hypothesis on isotropic turbulence. The outcome provides new upper bounds to ɛ among any solution to the underlying Navier-Stokes equations, and they are sharper than the analytical bounds presented in Doering et al. (2000). This research was partially supported by the NSF Award DMS-1515161, and the University of Michigan's Rackham Graduate Student Research Grant.

  7. The growth of continents and some consequences since 1.5 Ga

    NASA Technical Reports Server (NTRS)

    Howell, David G.

    1988-01-01

    The budget of Earth's oceanic sediment masses was discussed in terms of crustal growth and recycling. Based on estimates of the volume of oceanic sediments and the average age of oceanic crust, a continental denudation rate of 1.65 cu km/yr was computed. This crudely balances estimated crustal production rates of about 1 cu km/yr, but the efficiency of sediment loss via subduction, for example, must be considered. It was argued, on the basis of earthquake focal solutions, imagery of subduction zones, and plate kinematic reconstructions that little, if any, sediment was lost in this way. This yields a present day crustal growth rate of about 1 cu km/yr. The volume of continents to 1.5 Ga ago was discussed, assuming constant continental thickness and freeboard, and a constant hydrosphere volume. It was concluded that ocean ridge length was a factor of about 1.75 greater 1.5 Ga ago, but a major uncertainty is the average spreading rate in the past.

  8. The growth of the tearing mode - Boundary and scaling effects

    NASA Technical Reports Server (NTRS)

    Steinolfson, R. S.; Van Hoven, G.

    1983-01-01

    A numerical model of resistive magnetic tearing is developed in order to verify and relate the results of the principal approximations used in analytic analyses and to investigate the solutions and their growth-rate scalings over a large range of primary parameters which include parametric values applicable to the solar atmosphere. The computations cover the linear behavior for a variety of boundary conditions, emphasizing effects which differentiate magnetic tearing in astrophysical situations from that in laboratory devices. Eigenfunction profiles for long and short wavelengths are computed and the applicability of the 'constant psi' approximation is investigated. The growth rate is computed for values of the magnetic Reynolds number up to a trillion and of the dimensionless wavelength parameter down to 0.001. The analysis predicts significant effects due to differing values of the magnetic Reynolds number.

  9. Use of advanced particle methods in modeling space propulsion and its supersonic expansions

    NASA Astrophysics Data System (ADS)

    Borner, Arnaud

    This research discusses the use of advanced kinetic particle methods such as Molecular Dynamics (MD) and direct simulation Monte Carlo (DSMC) to model space propulsion systems such as electrospray thrusters and their supersonic expansions. MD simulations are performed to model an electrospray thruster for the ionic liquid (IL) EMIM--BF4 using coarse-grained (CG) potentials. The model is initially featuring a constant electric field applied in the longitudinal direction. Two coarse-grained potentials are compared, and the effective-force CG (EFCG) potential is found to predict the formation of the Taylor cone, the cone-jet, and other extrusion modes for similar electric fields and mass flow rates observed in experiments of a IL fed capillary-tip-extractor system better than the simple CG potential. Later, one-dimensional and fully transient three-dimensional electric fields, the latter solving Poisson's equation to take into account the electric field due to space charge at each timestep, are computed by coupling the MD model to a Poisson solver. It is found that the inhomogeneous electric field as well as that of the IL space-charge improve agreement between modeling and experiment. The boundary conditions (BCs) are found to have a substantial impact on the potential and electric field, and the tip BC is introduced and compared to the two previous BCs, named plate and needle, showing good improvement by reducing unrealistically high radial electric fields generated in the vicinity of the capillary tip. The influence of the different boundary condition models on charged species currents as a function of the mass flow rate is studied, and it is found that a constant electric field model gives similar agreement to the more rigorous and computationally expensive tip boundary condition at lower flow rates. However, at higher mass flow rates the MD simulations with the constant electric field produces extruded particles with higher Coulomb energy per ion, consistent with droplet formation. Supersonic expansions to vacuum produce clusters of sufficiently small size that properties such as heat capacities and latent heat of evaporation cannot be described by bulk vapor thermodynamic values. Therefore, MD simulations are performed to compute the evaporation rate of small water clusters as a function of temperature and size and the rates are found to agree with Unimolecular Dissociation Theory (UDT) and Classical Nucleation Theory (CNT). The heat capacities and latent heat of vaporization obtained from Monte-Carlo Canonical-Ensemble (MCCE) simulations are used in DSMC simulations of two experiments that measured Rayleigh scattering and terminal dimer mole fraction of supersonic water-jet expansions. Water-cluster temperature and size are found to be influenced by the use of kinetic rather than thermodynamic heat-capacity and latent-heat values as well as the nucleation model. Additionally, MD simulations of water condensation in a one-dimensional free expansion are performed to simulate the conditions in the core of a plume. We find that the internal structure of the clusters formed depends on the stagnation temperature conditions. Clusters of sizes 21 and 324 are studied in detail, and their radial distribution functions (RDF) are computed and compared to reported RDFs for solid amorphous ice clusters. Dielectric properties of liquid water and water clusters are investigated, and the static dielectric constant, dipole moment autocorrelation function and relative permittivity are computed by means of MD simulations.

  10. Development of a mathematical model for physical disintegration of flushable consumer products in wastewater systems.

    PubMed

    Karadagli, Fatih; McAvoy, Drew C; Rittmann, Bruce E

    2009-05-01

    The processes that flushable solid products may undergo after discharge to wastewater systems are (1) physical disintegration of solids resulting from turbulence, (2) direct dissolution of water-soluble components, (3) hydrolysis of solids to form soluble components, and (4) biodegradation of soluble and insoluble components. We develop a mathematical model for physical disintegration of flushable solid consumer products and test it with two different flushable products--product A, which has 40% water soluble-content, and product B, which has no water-soluble components. We present our modeling analysis of experimental results, from which we computed disintegration rate constants and fractional distribution coefficients for the disintegration of larger solids. The rate constants for solids of product A in units of (hour(-1)) are 0.45 for > 8-mm, 2.25 x 10(-2) for 4- to 8-mm, 0.9 x 10(-2) for 2- to 4-mm, and 1.26 x 10(-2) for 1- to 2-mm solids. The rate constants for solids of product B in units of hour(-1) are 1.8 for > 8-mm, 1.8 for 4- to 8-mm, 3.6 x 10(-1) for 2- to 4-mm, and 2.25 x 10(-3) for 1- to 2-mm solids. As indicated by the rate constants, larger solids disintegrate at a faster rate than smaller solids. In addition, product B disintegrated much faster and went mostly to the smallest size range, while product A disintegrated more slowly and was transferred to a range of intermediate solid sizes.

  11. Hierarchical calibration and validation framework of bench-scale computational fluid dynamics simulations for solvent-based carbon capture. Part 2: Chemical absorption across a wetted wall column: Original Research Article: Hierarchical calibration and validation framework of bench-scale computational fluid dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chao; Xu, Zhijie; Lai, Kevin

    The first part of this paper (Part 1) presents a numerical model for non-reactive physical mass transfer across a wetted wall column (WWC). In Part 2, we improved the existing computational fluid dynamics (CFD) model to simulate chemical absorption occurring in a WWC as a bench-scale study of solvent-based carbon dioxide (CO2) capture. To generate data for WWC model validation, CO2 mass transfer across a monoethanolamine (MEA) solvent was first measured on a WWC experimental apparatus. The numerical model developed in this work has the ability to account for both chemical absorption and desorption of CO2 in MEA. In addition,more » the overall mass transfer coefficient predicted using traditional/empirical correlations is conducted and compared with CFD prediction results for both steady and wavy falling films. A Bayesian statistical calibration algorithm is adopted to calibrate the reaction rate constants in chemical absorption/desorption of CO2 across a falling film of MEA. The posterior distributions of the two transport properties, i.e., Henry’s constant and gas diffusivity in the non-reacting nitrous oxide (N2O)/MEA system obtained from Part 1 of this study, serves as priors for the calibration of CO2 reaction rate constants after using the N2O/CO2 analogy method. The calibrated model can be used to predict the CO2 mass transfer in a WWC for a wider range of operating conditions.« less

  12. Hierarchical calibration and validation framework of bench-scale computational fluid dynamics simulations for solvent-based carbon capture. Part 2: Chemical absorption across a wetted wall column: Original Research Article: Hierarchical calibration and validation framework of bench-scale computational fluid dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chao; Xu, Zhijie; Lai, Kevin

    Part 1 of this paper presents a numerical model for non-reactive physical mass transfer across a wetted wall column (WWC). In Part 2, we improved the existing computational fluid dynamics (CFD) model to simulate chemical absorption occurring in a WWC as a bench-scale study of solvent-based carbon dioxide (CO 2) capture. In this study, to generate data for WWC model validation, CO 2 mass transfer across a monoethanolamine (MEA) solvent was first measured on a WWC experimental apparatus. The numerical model developed in this work can account for both chemical absorption and desorption of CO 2 in MEA. In addition,more » the overall mass transfer coefficient predicted using traditional/empirical correlations is conducted and compared with CFD prediction results for both steady and wavy falling films. A Bayesian statistical calibration algorithm is adopted to calibrate the reaction rate constants in chemical absorption/desorption of CO 2 across a falling film of MEA. The posterior distributions of the two transport properties, i.e., Henry's constant and gas diffusivity in the non-reacting nitrous oxide (N 2O)/MEA system obtained from Part 1 of this study, serves as priors for the calibration of CO 2 reaction rate constants after using the N 2O/CO 2 analogy method. Finally, the calibrated model can be used to predict the CO 2 mass transfer in a WWC for a wider range of operating conditions.« less

  13. Hierarchical calibration and validation framework of bench-scale computational fluid dynamics simulations for solvent-based carbon capture. Part 2: Chemical absorption across a wetted wall column: Original Research Article: Hierarchical calibration and validation framework of bench-scale computational fluid dynamics simulations

    DOE PAGES

    Wang, Chao; Xu, Zhijie; Lai, Kevin; ...

    2017-10-24

    Part 1 of this paper presents a numerical model for non-reactive physical mass transfer across a wetted wall column (WWC). In Part 2, we improved the existing computational fluid dynamics (CFD) model to simulate chemical absorption occurring in a WWC as a bench-scale study of solvent-based carbon dioxide (CO 2) capture. In this study, to generate data for WWC model validation, CO 2 mass transfer across a monoethanolamine (MEA) solvent was first measured on a WWC experimental apparatus. The numerical model developed in this work can account for both chemical absorption and desorption of CO 2 in MEA. In addition,more » the overall mass transfer coefficient predicted using traditional/empirical correlations is conducted and compared with CFD prediction results for both steady and wavy falling films. A Bayesian statistical calibration algorithm is adopted to calibrate the reaction rate constants in chemical absorption/desorption of CO 2 across a falling film of MEA. The posterior distributions of the two transport properties, i.e., Henry's constant and gas diffusivity in the non-reacting nitrous oxide (N 2O)/MEA system obtained from Part 1 of this study, serves as priors for the calibration of CO 2 reaction rate constants after using the N 2O/CO 2 analogy method. Finally, the calibrated model can be used to predict the CO 2 mass transfer in a WWC for a wider range of operating conditions.« less

  14. Constant Flux Proxies and Pleistocene Sediment Accumulation Rates on the Juan de Fuca Ridge in the Northeast Pacific

    NASA Astrophysics Data System (ADS)

    Middleton, J. L.; Mukhopadhyay, S.; Langmuir, C. H.; Costa, K.; McManus, J. F.; d'Almeida, M.; Huybers, P. J.; Winckler, G.

    2016-12-01

    Mass accumulation rates of marine sediments are often employed to constrain deposition rates of important proxies such as terrigenous dust, carbonate, and biogenic opal to quantitatively examine variations in continental aridity, atmospheric transport, and biologic productivity across changing climatic conditions. However, deposition rates that are estimated using traditional mass accumulation rates calculated from sediment core age models can be subject to bias from lateral sediment transport and limited age model resolution. Constant flux proxies, such as extraterrestrial helium-3 (3HeET) and excess thorium-230 (230ThXS), can be used to calculate vertical sediment accumulation rates that are independent of age model uncertainties and the effects of lateral sediment transport. While a short half-life limits analyses of 230ThXS to the past 500 ka, 3HeET is stable and could be used to constrain sedimentary fluxes during much of the Cenozoic. Despite the vast paleoceanographic potential of constant flux proxies, few studies have directly compared the behavior of 230ThXS and 3HeET using measurements from the same samples. Sediment grain size fractionation and local scavenging effects may differentially bias one or both proxy systems and complicate the interpretation of 230ThXS or 3HeET data. We will present a new record of vertical sediment accumulation rates spanning the past 600 ka in the Northeast Pacific constrained using analyses of both 3HeET and 230ThXS in two sediment cores from cruise AT26-19 on the Juan de Fuca Ridge. Such a record allows for intercomparison of both constant flux proxies in the mid-ocean ridge environment and examination of sedimentary behavior across multiple glacial cycles. The 230ThXS-derived accumulation rates typically range from 0.5 to 2 g cm-2 ka-1 over the past 450 ka, with periods of maximum deposition coinciding with glacial maxima. Preliminary results of samples analyzed with both 3HeET and 230ThXS indicate relative consistency between vertical sediment accumulation rates computed from each proxy and encourage the use of these constant flux proxies in other sedimentary records.

  15. The effects of finite rate chemical processes on high enthalpy nozzle performance - A comparison between SPARK and SEAGULL

    NASA Technical Reports Server (NTRS)

    Carpenter, M. H.

    1988-01-01

    The generalized chemistry version of the computer code SPARK is extended to include two higher-order numerical schemes, yielding fourth-order spatial accuracy for the inviscid terms. The new and old formulations are used to study the influences of finite rate chemical processes on nozzle performance. A determination is made of the computationally optimum reaction scheme for use in high-enthalpy nozzles. Finite rate calculations are compared with the frozen and equilibrium limits to assess the validity of each formulation. In addition, the finite rate SPARK results are compared with the constant ratio of specific heats (gamma) SEAGULL code, to determine its accuracy in variable gamma flow situations. Finally, the higher-order SPARK code is used to calculate nozzle flows having species stratification. Flame quenching occurs at low nozzle pressures, while for high pressures, significant burning continues in the nozzle.

  16. CREKID: A computer code for transient, gas-phase combustion of kinetics

    NASA Technical Reports Server (NTRS)

    Pratt, D. T.; Radhakrishnan, K.

    1984-01-01

    A new algorithm was developed for fast, automatic integration of chemical kinetic rate equations describing homogeneous, gas-phase combustion at constant pressure. Particular attention is paid to the distinguishing physical and computational characteristics of the induction, heat-release and equilibration regimes. The two-part predictor-corrector algorithm, based on an exponentially-fitted trapezoidal rule, includes filtering of ill-posed initial conditions, automatic selection of Newton-Jacobi or Newton iteration for convergence to achieve maximum computational efficiency while observing a prescribed error tolerance. The new algorithm was found to compare favorably with LSODE on two representative test problems drawn from combustion kinetics.

  17. Thermochemistry is not a lower bound to the activation energy of endothermic reactions: a kinetic study of the gas-phase reaction of atomic chlorine with ammonia.

    PubMed

    Gao, Yide; Alecu, I M; Hsieh, P-C; Morgan, Brad P; Marshall, Paul; Krasnoperov, Lev N

    2006-06-01

    The rate constant for Cl + NH3 --> HCl + NH2 has been measured over 290-570 K by the time-resolved resonance fluorescence technique. Ground-state Cl atoms were generated by 193 nm excimer laser photolysis of CCl4 and reacted under pseudo-first-order conditions with excess NH3. The forward rate constant was fit by the expression k1 = (1.08 +/- 0.05) x 10(-11) exp(-11.47 +/- 0.16 kJ mol(-1)/RT) cm3 molecule(-1) s(-1), where the uncertainties in the Arrhenius parameters are +/-1 sigma and the 95% confidence limits for k1 are +/-11%. To rationalize the activation energy, which is 7.4 kJ mol(-1) below the endothermicity in the middle of the 1/T range, the potential energy surface was characterized with MPWB1K/6-31++G(2df,2p) theory. The products NH2 + HCl form a hydrogen-bonded adduct, separated from Cl + NH3 by a transition state lower in energy than the products. The rate constant for the reverse process k(-1) was derived via modified transition state theory, and the computed k(-1) exhibits a negative activation energy, which in combination with the experimental equilibrium constant yields k1 in fair accord with experiment.

  18. Pulsed laser photolysis and quantum chemical-statistical rate study of the reaction of the ethynyl radical with water vapor

    NASA Astrophysics Data System (ADS)

    Carl, Shaun A.; Minh Thi Nguyen, Hue; Elsamra, Rehab M. I.; Tho Nguyen, Minh; Peeters, Jozef

    2005-03-01

    The rate coefficient of the gas-phase reaction C2H+H2O→products has been experimentally determined over the temperature range 500-825K using a pulsed laser photolysis-chemiluminescence (PLP-CL) technique. Ethynyl radicals (C2H) were generated by pulsed 193nm photolysis of C2H2 in the presence of H2O vapor and buffer gas N2 at 15Torr. The relative concentration of C2H radicals was monitored as a function of time using a CH * chemiluminescence method. The rate constant determinations for C2H+H2O were k1(550K)=(2.3±1.3)×10-13cm3s-1, k1(770cm3s-1, and k1(825cm3s-1. The error in the only other measurement of this rate constant is also discussed. We have also characterized the reaction theoretically using quantum chemical computations. The relevant portion of the potential energy surface of C2H3O in its doublet electronic ground state has been investigated using density functional theory B3LYP /6-311++G(3df,2p) and molecular orbital computations at the unrestricted coupled-cluster level of theory that incorporates all single and double excitations plus perturbative corrections for the triple excitations, along with the 6-311++G(3df,2p) basis set [(U)CCSD(T)/6-311++G(3df,2p)] and using UCCSD(T )/6-31G(d,p) optimized geometries. Five isomers, six dissociation products, and sixteen transition structures were characterized. The results confirm that the hydrogen abstraction producing C2H2+OH is the most facile reaction channel. For this channel, refined computations using (U)CCSD(T)/6-311++G(3df,2p)//(U)CCSD(T)/6-311++G(d,p) and complete-active-space second-order perturbation theory/complete-active-space self-consistent-field theory (CASPT2/CASSCF) [B. O. Roos, Adv. Chem. Phys. 69, 399 (1987)] using the contracted atomic natural orbitals basis set (ANO-L) [J. Almlöf and P. R. Taylor, J. Chem. Phys.86, 4070 (1987)] were performed, yielding zero-point energy-corrected potential energy barriers of 17kJmol-1 and 15kJmol-1, respectively. Transition-state theory rate constant calculations, based on the UCCSD(T) and CASPT2/CASSCF computations that also include H-atom tunneling and a hindered internal rotation, are in perfect agreement with the experimental values. Considering both our experimental and theoretical determinations, the rate constant can best be expressed, in modified Arrhenius form as k1(T)=(2.2±0.1)×10-21T3.05exp[-(376±100)/T]cm3s-1 for the range 300-2000K. Thus, at temperatures above 1500K, reaction of C2H with H2O is predicted to be one of the dominant C2H reactions in hydrocarbon combustion.

  19. Rigid Body Rate Inference from Attitude Variation

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, I. Y.; Harman, Richard R.; Thienel, Julie K.

    2006-01-01

    In this paper we research the extraction of the angular rate vector from attitude information without differentiation, in particular from quaternion measurements. We show that instead of using a Kalman filter of some kind, it is possible to obtain good rate estimates, suitable for spacecraft attitude control loop damping, using simple feedback loops, thereby eliminating the need for recurrent covariance computation performed when a Kalman filter is used. This considerably simplifies the computations required for rate estimation in gyro-less spacecraft. Some interesting qualities of the Kalman filter gain are explored, proven and utilized. We examine two kinds of feedback loops, one with varying gain that is proportional to the well known Q matrix, which is computed using the measured quaternion, and the other type of feedback loop is one with constant coefficients. The latter type includes two kinds; namely, a proportional feedback loop, and a proportional-integral feedback loop. The various schemes are examined through simulations and their performance is compared. It is shown that all schemes are adequate for extracting the angular velocity at an accuracy suitable for control loop damping.

  20. Measurement and analysis of critical crack tip processes during fatigue crack growth

    NASA Technical Reports Server (NTRS)

    Davidson, D. L.; Hudak, S. J.; Dexter, R. J.

    1985-01-01

    The mechanics of fatigue crack growth under constant-amplitudes and variable-amplitude loading were examined. Critical loading histories involving relatively simple overload and overload/underload cycles were studied to provide a basic understanding of the underlying physical processes controlling crack growth. The material used for this study was 7091-T7E69, a powder metallurgy aluminum alloy. Local crack-tip parameters were measured at various times before, during, and after the overloads, these include crack-tip opening loads and displacements, and crack-tip strain fields. The latter were useed, in combination with the materials cyclic and monotonic stress-strain properties, to compute crack-tip residual stresses. The experimental results are also compared with analytical predictions obtained using the FAST-2 computer code. The sensitivity of the analytical model to constant-amplitude fatigue crack growth rate properties and to through-thickness constrain are studied.

  1. Computational study of the thermochemistry of N₂O₅ and the kinetics of the reaction N₂O₅ + H₂O → 2 HNO₃.

    PubMed

    Alecu, I M; Marshall, Paul

    2014-12-04

    The multistructural method for torsional anharmonicity (MS-T) is employed to compute anharmonic conformationally averaged partition functions which then serve as the basis for the calculation of thermochemical parameters for N2O5 over the temperature range 0-3000 K, and thermal rate constants for the hydrolysis reaction N2O5 + H2O → 2 HNO3 over the temperature range 180-1800 K. The M06-2X hybrid meta-GGA density functional paired with the MG3S basis set is used to compute the properties of all stationary points and the energies, gradients, and Hessians of nonstationary points along the reaction path, with further energy refinement at stationary points obtained via single-point CCSD(T)-F12a/cc-pVTZ-F12 calculations including corrections for core-valence and scalar relativistic effects. The internal rotations in dinitrogen pentoxide are found to generate three structures (conformations) whose contributions are included in the partition function via the MS-T formalism, leading to a computed value for S°(298.15)(N2O5) of 353.45 J mol(-1) K(-1).This new estimate for S°(298.15)(N2O5) is used to reanalyze the equilibrium constants for the reaction NO3 + NO2 = N2O5 measured by Osthoff et al. [Phys. Chem. Chem. Phys. 2007, 9, 5785-5793] to arrive at ΔfH °(298.15) (N2O5) = 14.31 ± 0.53 kJ mol(-1)via the third law method, which compares well with our computed ab initio value of 13.53 ± 0.56 kJ mol(-1). Finally, multistructural canonical variational-transition-state theory with multidimensional tunneling (MS-CVT/MT) is used to study the kinetics for hydrolysis of N2O5 by a single water molecule, whose rate constant can be summarized by the Arrhenius expression 9.51 × 10(-17) (T/298 K)(3.354) e(-7900K/T) cm3 molecule(-1) s(-1) over the temperature range 180-1800 K.

  2. Charge–transfer reaction of 2,3-dichloro-1,4-naphthoquinone with crizotinib: Spectrophotometric study, computational molecular modeling and use in development of microwell assay for crizotinib

    PubMed Central

    Alzoman, Nourah Z.; Alshehri, Jamilah M.; Darwish, Ibrahim A.; Khalil, Nasr Y.; Abdel-Rahman, Hamdy M.

    2014-01-01

    The reaction of 2,3-dichloro-1,4-naphthoquinone (DCNQ) with crizotinib (CZT; a novel drug used for treatment of non-small cell lung cancer) was investigated in different solvents of varying dielectric constants and polarity indexes. The reaction produced a red-colored product. Spectrophotometric investigations confirmed that the reaction proceeded through charge–transfer (CT) complex formation. The molar absorptivity of the complex was found to be linearly correlated with the dielectric constant and polarity index of the solvent; the correlation coefficients were 0.9567 and 0.9069, respectively. The stoichiometric ratio of DCNQ:CZT was found to be 2:1 and the association constant of the complex was found to be 1.07 × 102 l/mol. The kinetics of the reaction was studied; the order of the reaction, rate and rate constant were determined. Computational molecular modeling for the complex between DCNQ and CZT was conducted, the sites of interaction on CZT molecule were determined, and the mechanism of the reaction was postulated. The reaction was employed as a basis in the development of a novel 96-microwell assay for CZT in a linear range of 4–500 μg/ml. The assay limits of detection and quantitation were 2.06 and 6.23 μg/ml, respectively. The assay was validated as per the guidelines of the International Conference on Harmonization (ICH) and successfully applied to the analysis of CZT in its bulk and capsules with good accuracy and precision. The assay has high throughput and consumes a minimum volume of organic solvents thus it reduces the exposures of the analysts to the toxic effects of organic solvents, and significantly reduces the analysis cost. PMID:25685046

  3. Vacuum instability in Kaluza–Klein manifolds

    NASA Astrophysics Data System (ADS)

    Fucci, Guglielmo

    2018-05-01

    The purpose of this work in to analyze particle creation in spaces with extra dimensions. We consider, in particular, a massive scalar field propagating in a Kaluza–Klein manifold subject to a constant electric field. We compute the rate of particle creation from vacuum by using techniques rooted in the spectral zeta function formalism. The results we obtain show explicitly how the presence of the extra-dimensions and their specific geometric characteristics, influence the rate at which pairs of particles and anti-particles are generated.

  4. Upper and lower bounds for semi-Markov reliability models of reconfigurable systems

    NASA Technical Reports Server (NTRS)

    White, A. L.

    1984-01-01

    This paper determines the information required about system recovery to compute the reliability of a class of reconfigurable systems. Upper and lower bounds are derived for these systems. The class consists of those systems that satisfy five assumptions: the components fail independently at a low constant rate, fault occurrence and system reconfiguration are independent processes, the reliability model is semi-Markov, the recovery functions which describe system configuration have small means and variances, and the system is well designed. The bounds are easy to compute, and examples are included.

  5. Rate Constants for Fine-Structure Excitations in O - H Collisions with Error Bars Obtained by Machine Learning

    NASA Astrophysics Data System (ADS)

    Vieira, Daniel; Krems, Roman

    2017-04-01

    Fine-structure transitions in collisions of O(3Pj) with atomic hydrogen are an important cooling mechanism in the interstellar medium; knowledge of the rate coefficients for these transitions has a wide range of astrophysical applications. The accuracy of the theoretical calculation is limited by inaccuracy in the ab initio interaction potentials used in the coupled-channel quantum scattering calculations from which the rate coefficients can be obtained. In this work we use the latest ab initio results for the O(3Pj) + H interaction potentials to improve on previous calculations of the rate coefficients. We further present a machine-learning technique based on Gaussian Process regression to determine the sensitivity of the rate coefficients to variations of the underlying adiabatic interaction potentials. To account for the inaccuracy inherent in the ab initio calculations we compute error bars for the rate coefficients corresponding to 20% variation in each of the interaction potentials. We obtain these error bars by fitting a Gaussian Process model to a data set of potential curves and rate constants. We use the fitted model to do sensitivity analysis, determining the relative importance of individual adiabatic potential curves to a given fine-structure transition. NSERC.

  6. Slow adaptation of ventricular repolarization as a cause of arrhythmia?

    PubMed

    Bueno-Orovio, A; Hanson, B M; Gill, J S; Taggart, P; Rodriguez, B

    2014-01-01

    This article is part of the Focus Theme of Methods of Information in Medicine on "Biosignal Interpretation: Advanced Methods for Studying Cardiovascular and Respiratory Systems". Adaptation of the QT-interval to changes in heart rate reflects on the body-surface electrocardiogram the adaptation of action potential duration (APD) at the cellular level. The initial fast phase of APD adaptation has been shown to modulate the arrhythmia substrate. Whether the slow phase is potentially proarrhythmic remains unclear. To analyze in-vivo human data and use computer simulations to examine effects of the slow APD adaptation phase on dispersion of repolarization and reentry in the human ventricle. Electrograms were acquired from 10 left and 10 right ventricle (LV/RV) endocardial sites in 15 patients with normal ventricles during RV pacing. Activation-recovery intervals, as a surrogate for APD, were measured during a sustained increase in heart rate. Observed dynamics were studied using computer simulations of human tissue electrophysiology. Spatial heterogeneity of rate adaptation was observed in all patients. Inhomogeneity in slow APD adaptation time constants (Δτ(s)) was greater in LV than RV (Δτ(s)(LV) = 31.8 ± 13.2, Δτ(s)(RV) = 19.0 ± 12.8 s , P< 0.01). Simulations showed that altering local slow time constants of adaptation was sufficient to convert partial wavefront block to block with successful reentry. Using electrophysiological data acquired in-vivo in human and computer simulations, we identify heterogeneity in the slow phase of APD adaptation as an important component of arrhythmogenesis.

  7. Computational study of duct and pipe flows using the method of pseudocompressibility

    NASA Technical Reports Server (NTRS)

    Williams, Robert W.

    1991-01-01

    A viscous, three-dimensional, incompressible, Navier-Stokes Computational Fluid Dynamics code employing pseudocompressibility is used for the prediction of laminar primary and secondary flows in two 90-degree bends of constant cross section. Under study are a square cross section duct bend with 2.3 radius ratio and a round cross section pipe bend with 2.8 radius ratio. Sensitivity of predicted primary and secondary flow to inlet boundary conditions, grid resolution, and code convergence is investigated. Contour and velocity versus spanwise coordinate plots comparing prediction to experimental data flow components are shown at several streamwise stations before, within, and after the duct and pipe bends. Discussion includes secondary flow physics, computational method, computational requirements, grid dependence, and convergence rates.

  8. Intrinsic Antioxidant Potential of the Aminoindole Structure: A Computational Kinetics Study of Tryptamine.

    PubMed

    Bentz, Erika N; Lobayan, Rosana M; Martínez, Henar; Redondo, Pilar; Largo, Antonio

    2018-06-21

    A computational kinetics study of the antioxidant activity of tryptamine toward HO • and HOO • radicals in water at 298 K has been carried out. Density functional methods have been employed for the quantum chemical calculations, and the conventional transition state theory was used for rate constant evaluation. Different mechanisms have been considered: radical adduct formation (RAF), single electron transfer (SET), and hydrogen atom transfer (HAT). For the reaction of tryptamine with the hydroxyl radical, nearly all channels are diffusion-controlled, and the overall rate constant is very high, 6.29 × 10 10 M -1 s -1 . The RAF mechanism has a branching ratio of 55%, followed by the HAT mechanism (31%), whereas the SET mechanism accounts just for 13% of the products. The less hindered carbon atom neighboring to the nitrogen of the indole ring seems to be the preferred site for the RAF mechanism, with a branching ratio of 16%. The overall rate constant for the reaction of tryptamine with the HOO • radical is 3.71 × 10 4 M -1 s -1 , suggesting that it could be a competitive process with other reactions of hydroperoxyl radicals in biological environments. For this reaction only the HAT mechanism seems viable. Furthermore, only two centers may contribute to the HAT mechanism, the nitrogen atom of the indole ring and a carbon atom of the aminoethyl chain, the former accounting for more than 91% of the total products. Our results suggest that tryptamine could have a noticeable scavenging activity toward radicals, and that this activity is mainly related to the nitrogen atom of the indole ring, thus showing the relevance of their behavior in the study of aminoindoles.

  9. An efficient and accurate framework for calculating lattice thermal conductivity of solids: AFLOW—AAPL Automatic Anharmonic Phonon Library

    NASA Astrophysics Data System (ADS)

    Plata, Jose J.; Nath, Pinku; Usanmaz, Demet; Carrete, Jesús; Toher, Cormac; de Jong, Maarten; Asta, Mark; Fornari, Marco; Nardelli, Marco Buongiorno; Curtarolo, Stefano

    2017-10-01

    One of the most accurate approaches for calculating lattice thermal conductivity, , is solving the Boltzmann transport equation starting from third-order anharmonic force constants. In addition to the underlying approximations of ab-initio parameterization, two main challenges are associated with this path: high computational costs and lack of automation in the frameworks using this methodology, which affect the discovery rate of novel materials with ad-hoc properties. Here, the Automatic Anharmonic Phonon Library (AAPL) is presented. It efficiently computes interatomic force constants by making effective use of crystal symmetry analysis, it solves the Boltzmann transport equation to obtain , and allows a fully integrated operation with minimum user intervention, a rational addition to the current high-throughput accelerated materials development framework AFLOW. An "experiment vs. theory" study of the approach is shown, comparing accuracy and speed with respect to other available packages, and for materials characterized by strong electron localization and correlation. Combining AAPL with the pseudo-hybrid functional ACBN0 is possible to improve accuracy without increasing computational requirements.

  10. Intelligence-Augmented Rat Cyborgs in Maze Solving.

    PubMed

    Yu, Yipeng; Pan, Gang; Gong, Yongyue; Xu, Kedi; Zheng, Nenggan; Hua, Weidong; Zheng, Xiaoxiang; Wu, Zhaohui

    2016-01-01

    Cyborg intelligence is an emerging kind of intelligence paradigm. It aims to deeply integrate machine intelligence with biological intelligence by connecting machines and living beings via neural interfaces, enhancing strength by combining the biological cognition capability with the machine computational capability. Cyborg intelligence is considered to be a new way to augment living beings with machine intelligence. In this paper, we build rat cyborgs to demonstrate how they can expedite the maze escape task with integration of machine intelligence. We compare the performance of maze solving by computer, by individual rats, and by computer-aided rats (i.e. rat cyborgs). They were asked to find their way from a constant entrance to a constant exit in fourteen diverse mazes. Performance of maze solving was measured by steps, coverage rates, and time spent. The experimental results with six rats and their intelligence-augmented rat cyborgs show that rat cyborgs have the best performance in escaping from mazes. These results provide a proof-of-principle demonstration for cyborg intelligence. In addition, our novel cyborg intelligent system (rat cyborg) has great potential in various applications, such as search and rescue in complex terrains.

  11. Intelligence-Augmented Rat Cyborgs in Maze Solving

    PubMed Central

    Yu, Yipeng; Pan, Gang; Gong, Yongyue; Xu, Kedi; Zheng, Nenggan; Hua, Weidong; Zheng, Xiaoxiang; Wu, Zhaohui

    2016-01-01

    Cyborg intelligence is an emerging kind of intelligence paradigm. It aims to deeply integrate machine intelligence with biological intelligence by connecting machines and living beings via neural interfaces, enhancing strength by combining the biological cognition capability with the machine computational capability. Cyborg intelligence is considered to be a new way to augment living beings with machine intelligence. In this paper, we build rat cyborgs to demonstrate how they can expedite the maze escape task with integration of machine intelligence. We compare the performance of maze solving by computer, by individual rats, and by computer-aided rats (i.e. rat cyborgs). They were asked to find their way from a constant entrance to a constant exit in fourteen diverse mazes. Performance of maze solving was measured by steps, coverage rates, and time spent. The experimental results with six rats and their intelligence-augmented rat cyborgs show that rat cyborgs have the best performance in escaping from mazes. These results provide a proof-of-principle demonstration for cyborg intelligence. In addition, our novel cyborg intelligent system (rat cyborg) has great potential in various applications, such as search and rescue in complex terrains. PMID:26859299

  12. Portable apparatus for the measurement of environmental radon and thoron

    DOEpatents

    Negro, Vincent C.

    2001-01-01

    The radometer is a portable instrument for the measurement of the concentration of atmospheric radon/thoron in a test area. A constant velocity pump pulls the air from the outside at a constant flow rate. If the air is too moist, some or all of the sample is passed through a desiccant filter prior to encountering an electrostatic filter. The electrostatic filter prevents any charged particles from entering the sampling chamber. Once the sample has entered the chamber, the progeny of the decay of radon/thoron are collected on a detector and measured. The measured data is compiled by a computer and displayed.

  13. Single atom catalysts on amorphous supports: A quenched disorder perspective

    NASA Astrophysics Data System (ADS)

    Peters, Baron; Scott, Susannah L.

    2015-03-01

    Phenomenological models that invoke catalyst sites with different adsorption constants and rate constants are well-established, but computational and experimental methods are just beginning to provide atomically resolved details about amorphous surfaces and their active sites. This letter develops a statistical transformation from the quenched disorder distribution of site structures to the distribution of activation energies for sites on amorphous supports. We show that the overall kinetics are highly sensitive to the precise nature of the low energy tail in the activation energy distribution. Our analysis motivates further development of systematic methods to identify and understand the most reactive members of the active site distribution.

  14. Molecular mechanism of NDMA formation from N,N-dimethylsulfamide during ozonation: quantum chemical insights into a bromide-catalyzed pathway.

    PubMed

    Trogolo, Daniela; Mishra, Brijesh Kumar; Heeb, Michèle B; von Gunten, Urs; Arey, J Samuel

    2015-04-07

    During ozonation of drinking water, the fungicide metabolite N,N-dimethylsulfamide (DMS) can be transformed into a highly toxic product, N-nitrosodimethylamine (NDMA). We used quantum chemical computations and stopped-flow experiments to evaluate a chemical mechanism proposed previously to describe this transformation. Stopped-flow experiments indicate a pK(a) = 10.4 for DMS. Experiments show that hypobromous acid (HOBr), generated by ozone oxidation of naturally occurring bromide, brominates the deprotonated DMS(-) anion with a near-diffusion controlled rate constant (7.1 ± 0.6 × 10(8) M(-1) s(-1)), forming Br-DMS(-) anion. According to quantum chemical calculations, Br-DMS has a pK(a) ∼ 9.0 and thus remains partially deprotonated at neutral pH. The anionic Br-DMS(-) bromamine can react with ozone with a high rate constant (10(5 ± 2.5) M(-1) s(-1)), forming the reaction intermediate (BrNO)(SO2)N(CH3)2(-). This intermediate resembles a loosely bound complex between an electrophilic nitrosyl bromide (BrNO) molecule and an electron-rich dimethylaminosulfinate ((SO2)N(CH3)2(-)) fragment, based on inspection of computed natural charges and geometric parameters. This fragile complex undergoes immediate (10(10 ± 2.5) s(-1)) reaction by two branches: an exothermic channel that produces NDMA, and an entropy-driven channel giving non-NDMA products. Computational results bring new insights into the electronic nature, chemical equilibria, and kinetics of the elementary reactions of this pathway, enabled by computed energies of structures that are not possible to access experimentally.

  15. User's Guide to Galoper: A Program for Simulating the Shapes of Crystal Size Distributions from Growth Mechanisms - and Associated Programs

    USGS Publications Warehouse

    Eberl, Dennis D.; Drits, V.A.; Srodon, J.

    2000-01-01

    GALOPER is a computer program that simulates the shapes of crystal size distributions (CSDs) from crystal growth mechanisms. This manual describes how to use the program. The theory for the program's operation has been described previously (Eberl, Drits, and Srodon, 1998). CSDs that can be simulated using GALOPER include those that result from growth mechanisms operating in the open system, such as constant-rate nucleation and growth, nucleation with a decaying nucleation rate and growth, surface-controlled growth, supply-controlled growth, and constant-rate and random growth; and those that result from mechanisms operating in the closed system such as Ostwald ripening, random ripening, and crystal coalescence. In addition, CSDs for two types weathering reactions can be simulated. The operation of associated programs also is described, including two statistical programs used for comparing calculated with measured CSDs, a program used for calculating lognormal CSDs, and a program for arranging measured crystal sizes into size groupings (bins).

  16. Reactivities of Substituted α-Phenyl-N-tert-butyl Nitrones

    PubMed Central

    2015-01-01

    In this work, a series of α-phenyl-N-tert-butyl nitrones bearing one, two, or three substituents on the tert-butyl group was synthesized. Cyclic voltammetry (CV) was used to investigate their electrochemical properties and showed a more pronounced substituent effect for oxidation than for reduction. Rate constants of superoxide radical (O2•–) reactions with nitrones were determined using a UV–vis stopped-flow method, and phenyl radical (Ph•) trapping rate constants were measured by EPR spectroscopy. The effect of N-tert-butyl substitution on the charge density and electron density localization of the nitronyl carbon as well as on the free energies of nitrone reactivity with O2•– and HO2• were computationally rationalized at the PCM/B3LYP/6-31+G**//B3LYP/6-31G* level of theory. Theoretical and experimental data showed that the rates of the reaction correlate with the nitronyl carbon charge density, suggesting a nucleophilic nature of O2•– and Ph• addition to the nitronyl carbon atom. Finally, the substituent effect was investigated in cell cultures exposed to hydrogen peroxide and a correlation between the cell viability and the oxidation potential of the nitrones was observed. Through a combination of computational methodologies and experimental methods, new insights into the reactivity of free radicals with nitrone derivatives have been proposed. PMID:24968285

  17. Methodology for extracting local constants from petroleum cracking flows

    DOEpatents

    Chang, Shen-Lin; Lottes, Steven A.; Zhou, Chenn Q.

    2000-01-01

    A methodology provides for the extraction of local chemical kinetic model constants for use in a reacting flow computational fluid dynamics (CFD) computer code with chemical kinetic computations to optimize the operating conditions or design of the system, including retrofit design improvements to existing systems. The coupled CFD and kinetic computer code are used in combination with data obtained from a matrix of experimental tests to extract the kinetic constants. Local fluid dynamic effects are implicitly included in the extracted local kinetic constants for each particular application system to which the methodology is applied. The extracted local kinetic model constants work well over a fairly broad range of operating conditions for specific and complex reaction sets in specific and complex reactor systems. While disclosed in terms of use in a Fluid Catalytic Cracking (FCC) riser, the inventive methodology has application in virtually any reaction set to extract constants for any particular application and reaction set formulation. The methodology includes the step of: (1) selecting the test data sets for various conditions; (2) establishing the general trend of the parametric effect on the measured product yields; (3) calculating product yields for the selected test conditions using coupled computational fluid dynamics and chemical kinetics; (4) adjusting the local kinetic constants to match calculated product yields with experimental data; and (5) validating the determined set of local kinetic constants by comparing the calculated results with experimental data from additional test runs at different operating conditions.

  18. Shock tube measurements of growth constants in the branched chain formaldehyde-carbon monoxide-oxygen system

    NASA Technical Reports Server (NTRS)

    Brabbs, T. A.; Brokaw, R. S.

    1982-01-01

    Exponential free radical growth constants were measured for formaldehyde carbon monoxide-oxygen systems by monitoring the growth of oxygen atom concentration as manifested by CO flame band emission. Data were obtained over the temperature range of 1200 to 2000 K. The data were analyzed using a formaldehyde oxidation mechanism involving 12 elementary reaction steps. The computed growth constants are roughly in accord with experimental values, but are much more temperature dependent. The data was also analyzed assuming formaldehyde is rapidly decomposed to carbon monoxide and hydrogen. Growth constants computed for the resulting carbon monoxide hydrogen oxygen mixtures have a temperature dependence similar to experiments; however, for most mixtures, the computed growth constants were larger than experimental values.

  19. Quantal Study of the Exchange Reaction for N + N2 using an ab initio Potential Energy Surface

    NASA Technical Reports Server (NTRS)

    Wang, Dunyou; Stallcop, James R.; Huo, Winifred M.; Dateo, Christopher E.; Schwenke, David W.; Partridge, Harry; Kwak, Dochan (Technical Monitor)

    2002-01-01

    The N + N2 exchange rate is calculated using a time-dependent quantum dynamics method on a newly determined ab initio potential energy surface (PES) for the ground A" state. This ab initio PES shows a double barrier feature in the interaction region with the barrier height at 47.2 kcal/mol, and a shallow well between these two barriers, with the minimum at 43.7 kcal/mol. A quantum dynamics wave packet calculation has been carried out using the fitted PES to compute the cumulative reaction probability for the exchange reaction of N + N2(J=O). The J - K shift method is then employed to obtain the rate constant for this reaction. The calculated rate constant is compared with experimental data and a recent quasi-classical calculation using a LEPS PES. Significant differences are found between the present and quasiclassical results. The present rate calculation is the first accurate 3D quantal dynamics study for N + N2 reaction system and the ab initio PES reported here is the first such surface for N3.

  20. Polycomb group protein complexes exchange rapidly in living Drosophila.

    PubMed

    Ficz, Gabriella; Heintzmann, Rainer; Arndt-Jovin, Donna J

    2005-09-01

    Fluorescence recovery after photobleaching (FRAP) microscopy was used to determine the kinetic properties of Polycomb group (PcG) proteins in whole living Drosophila organisms (embryos) and tissues (wing imaginal discs and salivary glands). PcG genes are essential genes in higher eukaryotes responsible for the maintenance of the spatially distinct repression of developmentally important regulators such as the homeotic genes. Their absence, as well as overexpression, causes transformations in the axial organization of the body. Although protein complexes have been isolated in vitro, little is known about their stability or exact mechanism of repression in vivo. We determined the translational diffusion constants of PcG proteins, dissociation constants and residence times for complexes in vivo at different developmental stages. In polytene nuclei, the rate constants suggest heterogeneity of the complexes. Computer simulations with new models for spatially distributed protein complexes were performed in systems showing both diffusion and binding equilibria, and the results compared with our experimental data. We were able to determine forward and reverse rate constants for complex formation. Complexes exchanged within a period of 1-10 minutes, more than an order of magnitude faster than the cell cycle time, ruling out models of repression in which access of transcription activators to the chromatin is limited and demonstrating that long-term repression primarily reflects mass-action chemical equilibria.

  1. Computational modelling of oxygenation processes in enzymes and biomimetic model complexes.

    PubMed

    de Visser, Sam P; Quesne, Matthew G; Martin, Bodo; Comba, Peter; Ryde, Ulf

    2014-01-11

    With computational resources becoming more efficient and more powerful and at the same time cheaper, computational methods have become more and more popular for studies on biochemical and biomimetic systems. Although large efforts from the scientific community have gone into exploring the possibilities of computational methods for studies on large biochemical systems, such studies are not without pitfalls and often cannot be routinely done but require expert execution. In this review we summarize and highlight advances in computational methodology and its application to enzymatic and biomimetic model complexes. In particular, we emphasize on topical and state-of-the-art methodologies that are able to either reproduce experimental findings, e.g., spectroscopic parameters and rate constants, accurately or make predictions of short-lived intermediates and fast reaction processes in nature. Moreover, we give examples of processes where certain computational methods dramatically fail.

  2. Anisotropic effects on constitutive model parameters of aluminum alloys

    NASA Astrophysics Data System (ADS)

    Brar, Nachhatter S.; Joshi, Vasant S.

    2012-03-01

    Simulation of low velocity impact on structures or high velocity penetration in armor materials heavily rely on constitutive material models. Model constants are determined from tension, compression or torsion stress-strain at low and high strain rates at different temperatures. These model constants are required input to computer codes (LS-DYNA, DYNA3D or SPH) to accurately simulate fragment impact on structural components made of high strength 7075-T651 aluminum alloy. Johnson- Cook model constants determined for Al7075-T651 alloy bar material failed to simulate correctly the penetration into 1' thick Al-7075-T651plates. When simulation go well beyond minor parameter tweaking and experimental results show drastically different behavior it becomes important to determine constitutive parameters from the actual material used in impact/penetration experiments. To investigate anisotropic effects on the yield/flow stress of this alloy quasi-static and high strain rate tensile tests were performed on specimens fabricated in the longitudinal "L", transverse "T", and thickness "TH" directions of 1' thick Al7075 Plate. While flow stress at a strain rate of ~1/s as well as ~1100/s in the thickness and transverse directions are lower than the longitudinal direction. The flow stress in the bar was comparable to flow stress in the longitudinal direction of the plate. Fracture strain data from notched tensile specimens fabricated in the L, T, and Thickness directions of 1' thick plate are used to derive fracture constants.

  3. A statistical model to estimate refractivity turbulence structure constant C sub n sup 2 in the free atmosphere

    NASA Technical Reports Server (NTRS)

    Warnock, J. M.; Vanzandt, T. E.

    1986-01-01

    A computer program has been tested and documented (Warnock and VanZandt, 1985) that estimates mean values of the refractivity turbulence structure constant in the stable free atmosphere from standard National Weather Service balloon data or an equivalent data set. The program is based on the statistical model for the occurrence of turbulence developed by VanZandt et al. (1981). Height profiles of the estimated refractivity turbulence structure constant agree well with profiles measured by the Sunset radar with a height resolution of about 1 km. The program also estimates the energy dissipation rate (epsilon), but because of the lack of suitable observations of epsilon, the model for epsilon has not yet been evaluated sufficiently to be used in routine applications. Vertical profiles of the refractivity turbulence structure constant were compared with profiles measured by both radar and optical remote sensors and good agreement was found. However, at times the scintillometer measurements were less than both the radar and model values.

  4. Simulated transport and biodegradation of chlorinated ethenes in a fractured dolomite aquifer near Niagara Falls, New York

    USGS Publications Warehouse

    Yager, Richard M.

    2002-01-01

    Leakage of trichloroethene (TCE) from a neutralization pond at a former manufacturing facility near Niagara Falls, N.Y. during 1950-87 into the Guelph Formation of the Lockport Group, a fractured dolomite aquifer, created a plume of TCE and its metabolites that, by 1990, extended about 4,300 feet south of the facility. A smaller plume of dense, nonaqueous-phase liquids (DNAPL) probably serves as a continuing source of TCE. The presence of the TCE metabolites cis-1,2-dichloroethene (DCE), vinyl chloride (VC), and ethene in the plume, and the results of previous laboratory microcosm studies, indicate that the TCE is being degraded by naturally occurring microorganisms. Biodegradation rates of TCE and its metabolites were estimated through simulation with BIOMOC, a solute-transport model that represents multispecies reactions through Monod kinetics. A fracture zone in the Guelph Formation was represented as a porous medium containing an extensive, 3-foot thick layer with several interconnected fractures; this layer is bounded above and below by subhorizontal stratigraphic contacts. The Monod reaction constants were estimated through nonlinear regression to minimize the difference between computed concentrations of TCE and its metabolites, and the concentrations measured before and during 5 years of pump-and-treat remediation.Transport simulations indicated that, by April 1998, the chlorinated ethene plume had reached a dynamic equilibrium between the rate of TCE dissolution and the rate of removal through pumping and biodegradation. Biodegradation of chlorinated ethenes at the site can be simulated as first-order reactions because the concentrations are generally less than the half-saturation constants estimated for Monod kinetics (320 mg/L for TCE, 10 mg/L for DCE, and 1 mg/L for VC). Computed degradation rates are proportional to the estimated ground-water velocity, which could vary by more than an order magnitude at the site, as indicated by the estimated range of fracture porosity--3 to 0.3 percent. Half-lives corresponding to first-order rate constants estimated for the lower velocity (5 to 15 feet per day) ranged from 21 to 25 days for TCE, 170 to 230 days for DCE, and 18 to 23 days for VC.Chlorinated ethene concentrations of April 1998 were better reproduced when the TCE source was represented as a constant concentration than as a constant flux, because the latter predicted that the plume would dissipate after 5 years of pump-and-treat remediation. This result indicates that the rate of TCE dissolution is not limited by the mass of TCE in the DNAPL plume. Simulation of diffusion by the transport model MOC3D indicated that concentrations of these contaminants within the rock matrix surrounding the fracture zone were relatively unchanged after 5 years of pump-and-treat remediation. The principal sources of uncertainty in the prediction of biodegradation rates and of the fate of chlorinated ethenes at the site are the fracture porosity and DNAPL mass in the aquifer.

  5. Computational Prediction of Kinetic Rate Constants

    DTIC Science & Technology

    2006-11-30

    without requiring additional data. Zero-point energy ( ZPE ) anharmonicity has a large effect on the accuracy of approximate partition function estimates. If...the accurate ZPE is taken into account, separable approximation partition functions using the most accurate torsion treatment and harmonic treatments...for the remaining degrees of freedom agree with accurate QM partition functions to within a mean accuracy of 9%. If no ZPE anharmonicity correction

  6. Removing the barrier to the calculation of activation energies

    DOE PAGES

    Mesele, Oluwaseun O.; Thompson, Ward H.

    2016-10-06

    Approaches for directly calculating the activation energy for a chemical reaction from a simulation at a single temperature are explored with applications to both classical and quantum systems. The activation energy is obtained from a time correlation function that can be evaluated from the same molecular dynamics trajectories or quantum dynamics used to evaluate the rate constant itself and thus requires essentially no extra computational work.

  7. Intravascular enhancement with identical iodine delivery rate using different iodine contrast media in a circulation phantom.

    PubMed

    Mihl, Casper; Wildberger, Joachim E; Jurencak, Tomas; Yanniello, Michael J; Nijssen, Estelle C; Kalafut, John F; Nalbantov, Georgi; Mühlenbruch, Georg; Behrendt, Florian F; Das, Marco

    2013-11-01

    Both iodine delivery rate (IDR) and iodine concentration are decisive factors for vascular enhancement in computed tomographic angiography. It is unclear, however, whether the use of high-iodine concentration contrast media is beneficial to lower iodine concentrations when IDR is kept identical. This study evaluates the effect of using different iodine concentrations on intravascular attenuation in a circulation phantom while maintaining a constant IDR. A circulation phantom with a low-pressure venous compartment and a high-pressure arterial compartment simulating physiological circulation parameters was used (heart rate, 60 beats per minute; stroke volume, 60 mL; blood pressure, 120/80 mm Hg). Maintaining a constant IDR (2.0 g/s) and a constant total iodine load (20 g), prewarmed (37°C) contrast media with differing iodine concentrations (240-400 mg/mL) were injected into the phantom using a double-headed power injector. Serial computed tomographic scans at the level of the ascending aorta (AA), the descending aorta (DA), and the left main coronary artery (LM) were obtained. Total amount of contrast volume (milliliters), iodine delivery (grams of iodine), peak flow rate (milliliter per second), and intravascular pressure (pounds per square inch) were monitored using a dedicated data acquisition program. Attenuation values in the AA, the DA, and the LM were constantly measured (Hounsfield unit [HU]). In addition, time-enhancement curves, aortic peak enhancement, and time to peak were determined. All contrast injection protocols resulted in similar attenuation values: the AA (516 [11] to 531 [37] HU), the DA (514 [17] to 531 [32] HU), and the LM (490 [10] to 507 [17] HU). No significant differences were found between the AA, the DA, and the LM for either peak enhancement (all P > 0.05) or mean time to peak (AA, 19.4 [0.58] to 20.1 [1.05] seconds; DA, 21.1 [1.0] to 21.4 [1.15] seconds; LM, 19.8 [0.58] to 20.1 [1.05] seconds). This phantom study demonstrates that constant injection parameters (IDR, overall iodine load) lead to robust enhancement patterns, regardless of the contrast material used. Higher iodine concentration itself does not lead to higher attenuation levels. These results may stimulate a shift in paradigm toward clinical usage of contrast media with lower iodine concentrations (eg, 240 mg iodine/mL) in individual tailored contrast protocols. The use of low-iodine concentration contrast media is desirable because of the lower viscosity and the resulting lower injection pressure.

  8. Comparing Results from Constant Comparative and Computer Software Methods: A Reflection about Qualitative Data Analysis

    ERIC Educational Resources Information Center

    Putten, Jim Vander; Nolen, Amanda L.

    2010-01-01

    This study compared qualitative research results obtained by manual constant comparative analysis with results obtained by computer software analysis of the same data. An investigated about issues of trustworthiness and accuracy ensued. Results indicated that the inductive constant comparative data analysis generated 51 codes and two coding levels…

  9. Digital-computer program for design analysis of salient, wound pole alternators

    NASA Technical Reports Server (NTRS)

    Repas, D. S.

    1973-01-01

    A digital computer program for analyzing the electromagnetic design of salient, wound pole alternators is presented. The program, which is written in FORTRAN 4, calculates the open-circuit saturation curve, the field-current requirements at rated voltage for various loads and losses, efficiency, reactances, time constants, and weights. The methods used to calculate some of these items are presented or appropriate references are cited. Instructions for using the program and typical program input and output for an alternator design are given, and an alphabetical list of most FORTRAN symbols and the complete program listing with flow charts are included.

  10. Thermodynamic Modeling and Optimization of the Copper Flash Converting Process Using the Equilibrium Constant Method

    NASA Astrophysics Data System (ADS)

    Li, Ming-zhou; Zhou, Jie-min; Tong, Chang-ren; Zhang, Wen-hai; Chen, Zhuo; Wang, Jin-liang

    2018-05-01

    Based on the principle of multiphase equilibrium, a mathematical model of the copper flash converting process was established by the equilibrium constant method, and a computational system was developed with the use of MetCal software platform. The mathematical model was validated by comparing simulated outputs, industrial data, and published data. To obtain high-quality blister copper, a low copper content in slag, and increased impurity removal rate, the model was then applied to investigate the effects of the operational parameters [oxygen/feed ratio (R OF), flux rate (R F), and converting temperature (T)] on the product weights, compositions, and the distribution behaviors of impurity elements. The optimized results showed that R OF, R F, and T should be controlled at approximately 156 Nm3/t, within 3.0 pct, and at approximately 1523 K (1250 °C), respectively.

  11. Pharmacokinetics of topically applied pilocarpine in the albino rabbit eye.

    PubMed

    Makoid, M C; Robinson, J R

    1979-04-01

    The temporal and spatial pattern of [3H]-pilocarpine nitrate distribution in the albino rabbit eye following topical administration was determined. A four-compartment caternary chain model describing this disposition corresponds to the precorneal area, the cornea, the aqueous humor, and the lens and vitreous. Simultaneous computer fitting of data from tissue corresponding to some compartments in the model supported the proposed model. Additional support was provided by the excellent correlation between predicted and observed values in multiple-dosing studies. Several important aspects of ocular drug disposition are evident from the model. The extensive parallel elimination at the absorption site gives rise to an apparent absorption rate constant that is one to two orders of magnitude larger than the true absorption rate constant. In addition, aqueous flow accounts for most of the drug removal. Thus, major effects on absorption and elimination, independent of the drug structure, suggest the possibility of similar pharmacokinetics for vastly different drugs.

  12. Thermal sensation, rate of temperature change, and the heat dissipation design for tablet computers.

    PubMed

    Zhang, Han; Hedge, Alan; Cosley, Daniel

    2017-07-01

    Past research has shown that the rate of change of skin surface temperature can affect thermal sensation. This study investigated users' thermal responses to a tablet heating surface with different heat pads and different temperature change rates. The test conditions included: A. keeping the surface at a constant 42 °C, B. increasing the surface temperature from 38 °C to 42 °C at a rate of 0.02 °C/s in progressive intervals, C. increasing the temperature at 0.15 °C/s in progressive intervals, and D. Heating two left and right side pads alternately from 38 °C to 42 °C at 0.15 °C/s in progressive intervals. Overall results showed the lowest temperature change rate of 0.02 °C/s was most preferred in terms of thermal comfort. The findings suggest a potential to improve user thermal experience by dissipating tablet computer heat at a lower temperature change rate, or by alternating the dissipation areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Chemical Kinetics of Hydrogen Atom Abstraction from Allylic Sites by 3O2; Implications for Combustion Modeling and Simulation.

    PubMed

    Zhou, Chong-Wen; Simmie, John M; Somers, Kieran P; Goldsmith, C Franklin; Curran, Henry J

    2017-03-09

    Hydrogen atom abstraction from allylic C-H bonds by molecular oxygen plays a very important role in determining the reactivity of fuel molecules having allylic hydrogen atoms. Rate constants for hydrogen atom abstraction by molecular oxygen from molecules with allylic sites have been calculated. A series of molecules with primary, secondary, tertiary, and super secondary allylic hydrogen atoms of alkene, furan, and alkylbenzene families are taken into consideration. Those molecules include propene, 2-butene, isobutene, 2-methylfuran, and toluene containing the primary allylic hydrogen atom; 1-butene, 1-pentene, 2-ethylfuran, ethylbenzene, and n-propylbenzene containing the secondary allylic hydrogen atom; 3-methyl-1-butene, 2-isopropylfuran, and isopropylbenzene containing tertiary allylic hydrogen atom; and 1-4-pentadiene containing super allylic secondary hydrogen atoms. The M06-2X/6-311++G(d,p) level of theory was used to optimize the geometries of all of the reactants, transition states, products and also the hinder rotation treatments for lower frequency modes. The G4 level of theory was used to calculate the electronic single point energies for those species to determine the 0 K barriers to reaction. Conventional transition state theory with Eckart tunnelling corrections was used to calculate the rate constants. The comparison between our calculated rate constants with the available experimental results from the literature shows good agreement for the reactions of propene and isobutene with molecular oxygen. The rate constant for toluene with O 2 is about an order magnitude slower than that experimentally derived from a comprehensive model proposed by Oehlschlaeger and coauthors. The results clearly indicate the need for a more detailed investigation of the combustion kinetics of toluene oxidation and its key pyrolysis and oxidation intermediates. Despite this, our computed barriers and rate constants retain an important internal consistency. Rate constants calculated in this work have also been used in predicting the reactivity of the target fuels of 1-butene, 2-butene, isobutene, 2-methylfuran, 2,5-dimethylfuran, and toluene, and the results show that the ignition delay times for those fuels have been increased by a factor of 1.5-3. This work provides a first systematic study of one of the key initiation reaction for compounds containing allylic hydrogen atoms.

  14. On the Extraction of Angular Velocity from Attitude Measurements

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, I. Y.; Harman, Richard R.; Thienel, Julie K.

    2006-01-01

    In this paper we research the extraction of the angular rate vector from attitude information without differentiation, in particular from quaternion measurements. We show that instead of using a Kalman filter of some kind, it is possible to obtain good rate estimates, suitable for spacecraft attitude control loop damping, using simple feedback loops, thereby eliminating the need for recurrent covariance computation performed when a Kalman filter is used. This considerably simplifies the computations required for rate estimation in gyro-less spacecraft. Some interesting qualities of the Kalman filter gain are explored, proven and utilized. We examine two kinds of feedback loops, one with varying gain that is proportional to the well known Q matrix, which is computed using the measured quaternion, and the other type of feedback loop is one with constant coefficients. The latter type includes two kinds; namely, a proportional feedback loop, and a proportional-integral feedback loop. The various schemes are examined through simulations and their performance is compared. It is shown that all schemes are adequate for extracting the angular velocity at an accuracy suitable for control loop damping.

  15. Hadron mass and decays constant predictions of the valence approximation to lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weingarten, D.

    1993-05-01

    A key goal of the lattice formulation of QCD is to reproduce the masses and decay constants of the low-lying baryons and mesons. Lattice QCD mass and decay constant predictions for the real world are supposed to be obtained from masses and decay constants calculated with finite lattice spacing and finite lattice volume by taking the limits of zero spacing and infinite volume. In addition, since the algorithms used for hadron mass and decay constant calculations become progressively slower for small quark masses, results are presently found with quark masses much larger than the expected values of the up andmore » down quark masses. Predictions for the properties of hadrons containing up and down quarks then require a further extrapolation to small quark masses. The author reports here mass and decay constant predictions combining all three extrapolations for Wilson quarks in the valence (quenched) approximation. This approximation may be viewed as replacing the momentum and frequency dependent color dielectric constant arising from quark-antiquark vacuum polarization with its zero-momentum, zero-frequency limit. These calculations used approximately one year of machine time on the GF11 parallel computer running at a sustained rate of between 5 and 7 Gflops.« less

  16. Making classical and quantum canonical general relativity computable through a power series expansion in the inverse cosmological constant.

    PubMed

    Gambini, R; Pullin, J

    2000-12-18

    We consider general relativity with a cosmological constant as a perturbative expansion around a completely solvable diffeomorphism invariant field theory. This theory is the lambda --> infinity limit of general relativity. This allows an explicit perturbative computational setup in which the quantum states of the theory and the classical observables can be explicitly computed. An unexpected relationship arises at a quantum level between the discrete spectrum of the volume operator and the allowed values of the cosmological constant.

  17. The Original Michaelis Constant: Translation of the 1913 Michaelis-Menten Paper

    PubMed Central

    Johnson, Kenneth A.; Goody, Roger S.

    2011-01-01

    Nearly 100 years ago Michaelis and Menten published their now classic paper (Michaelis, L., and Menten, M. L. (1913) Die Kinetik der Invertinwirkung, Biochemische Zeitschrift 49, 333–369), in which they show that the rate of an enzyme-catalyzed reaction is proportional to the concentration of enzyme-substrate complex predicted by the Michaelis-Menten equation. Because the original text was written in German, yet is often quoted by English speaking authors, we undertook a complete translation of the 1913 publication, which we provide as an online supplement (http://pubs.acs.org). Here we introduce the translation, describe the historical context of the work, and show a new analysis of the original data. In doing so, we uncovered several surprises that reveal an interesting glimpse into the early history of enzymology. In particular, our re-analysis of Michaelis and Menten’s data using modern computational methods revealed an unanticipated rigor and precision in the original publication and uncovered a sophisticated, comprehensive analysis that has been overlooked in the century since their work was published. Michaelis and Menten not only analyzed initial velocity measurements, but they also fit their full time course data to the integrated form of the rate equations, including product inhibition, and derived a single global constant to represent all of their data. That constant was not the Michaelis constant, but rather, Vmax/Km, the specificity constant times the enzyme concentration (kcat/Km*E0). PMID:21888353

  18. Constant-parameter capture-recapture models

    USGS Publications Warehouse

    Brownie, C.; Hines, J.E.; Nichols, J.D.

    1986-01-01

    Jolly (1982, Biometrics 38, 301-321) presented modifications of the Jolly-Seber model for capture-recapture data, which assume constant survival and/or capture rates. Where appropriate, because of the reduced number of parameters, these models lead to more efficient estimators than the Jolly-Seber model. The tests to compare models given by Jolly do not make complete use of the data, and we present here the appropriate modifications, and also indicate how to carry out goodness-of-fit tests which utilize individual capture history information. We also describe analogous models for the case where young and adult animals are tagged. The availability of computer programs to perform the analysis is noted, and examples are given using output from these programs.

  19. Evaluation and comparison of diffusion MR methods for measuring apparent transcytolemmal water exchange rate constant

    NASA Astrophysics Data System (ADS)

    Tian, Xin; Li, Hua; Jiang, Xiaoyu; Xie, Jingping; Gore, John C.; Xu, Junzhong

    2017-02-01

    Two diffusion-based approaches, CG (constant gradient) and FEXI (filtered exchange imaging) methods, have been previously proposed for measuring transcytolemmal water exchange rate constant kin, but their accuracy and feasibility have not been comprehensively evaluated and compared. In this work, both computer simulations and cell experiments in vitro were performed to evaluate these two methods. Simulations were done with different cell diameters (5, 10, 20 μm), a broad range of kin values (0.02-30 s-1) and different SNR's, and simulated kin's were directly compared with the ground truth values. Human leukemia K562 cells were cultured and treated with saponin to selectively change cell transmembrane permeability. The agreement between measured kin's of both methods was also evaluated. The results suggest that, without noise, the CG method provides reasonably accurate estimation of kin especially when it is smaller than 10 s-1, which is in the typical physiological range of many biological tissues. However, although the FEXI method overestimates kin even with corrections for the effects of extracellular water fraction, it provides reasonable estimates with practical SNR's and more importantly, the fitted apparent exchange rate AXR showed approximately linear dependence on the ground truth kin. In conclusion, either CG or FEXI method provides a sensitive means to characterize the variations in transcytolemmal water exchange rate constant kin, although the accuracy and specificity is usually compromised. The non-imaging CG method provides more accurate estimation of kin, but limited to large volume-of-interest. Although the accuracy of FEXI is compromised with extracellular volume fraction, it is capable of spatially mapping kin in practice.

  20. Computational modeling of HHH therapy and impact of blood pressure and hematocrit.

    PubMed

    Robinson, Joe Sam; Walid, M Sami; Hyun, Sinjae; O'Connell, Robert; Menard, Chris; Bohleber, Brandi

    2010-01-01

    After an aneurysmal subarachnoid hemorrhage, cerebral microcirculatory changes occur as a result cerebral vasospasm. The objective of this study is to investigate, with a computational model, how various degrees of vasospasm are influenced by increasing the mean blood pressure and decreasing the blood viscosity. Using ANSYS CFX software, a computational model was constructed to simulate steady-state fully developed laminar blood flow through a rigid wall system consisting of the internal carotid artery (ICA), anterior cerebral artery, posterior cerebral artery, and middle cerebral artery (MCA). The MCA was selected for the site of a single acute vasospasm. Five severities of vasospasm were studied: 3 mm (normal), 2.5, 2, 1.5, and 1 mm. The ICA was assumed to have a constant inlet flow rate of 315 mL/min. The anterior cerebral artery and posterior cerebral artery were assumed to have constant outlet flow rates of 105 mL/min and 30 mL/min, respectively. The MCA was assumed to have a constant outlet pressure of 92 mL/min. Two different hematocrits, 45% and 32%, were simulated using the models. For a hematocrit of 45, the mean ICA inlet pressure required to pump blood through the system was 104 mm Hg for the 3-mm diameter MCA and 105, 108, 116, and 158 mm Hg for vasospasm diameters of 2.5, 2, 1.5, and 1 mm, respectively. For a hematocrit of 32, the mean ICA inlet pressure required was 102, 103, 105, 113, and 152 mm Hg, respectively. The MCA required a large increase in mean ICA inlet pressure for vasospasm diameters less than 1.5 mm, which suggests that for vasospasms more than 50% diameter reduction, the blood pressure must be increased dramatically. Decreasing the hematocrit had minimal impact on blood flow in a constricted vessel. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. On proton excitation of forbidden lines in positive ions

    NASA Astrophysics Data System (ADS)

    Burgess, Alan; Tully, John A.

    2005-08-01

    The semi-classical impact parameter approximations used by Bahcall and Wolf and by Bely and Faucher, for proton excitation of electric quadrupole transitions in positive ions, both fail at high energies, giving cross sections which do not fall off correctly as constant/E. This is in contrast with the pioneering example of Seaton for Fe+13 and of Reid and Schwarz for S+3, both of whom achieve the correct functional form, but do not ensure the correct constant of proportionality. By combining the Born and semi-classical approximations one can obtain cross sections which have the full correct behaviour as E → ∞, and hence, rate coefficients which have the correct high temperature behaviour (~C/T1/2 with the correct value of C). We provide a computer program for calculating these. An error in Faucher's derivation of the Born formula is also discussed.

  2. Dynamic rating curve assessment for hydrometric stations and computation of the associated uncertainties: Quality and station management indicators

    NASA Astrophysics Data System (ADS)

    Morlot, Thomas; Perret, Christian; Favre, Anne-Catherine; Jalbert, Jonathan

    2014-09-01

    A rating curve is used to indirectly estimate the discharge in rivers based on water level measurements. The discharge values obtained from a rating curve include uncertainties related to the direct stage-discharge measurements (gaugings) used to build the curves, the quality of fit of the curve to these measurements and the constant changes in the river bed morphology. Moreover, the uncertainty of discharges estimated from a rating curve increases with the “age” of the rating curve. The level of uncertainty at a given point in time is therefore particularly difficult to assess. A “dynamic” method has been developed to compute rating curves while calculating associated uncertainties, thus making it possible to regenerate streamflow data with uncertainty estimates. The method is based on historical gaugings at hydrometric stations. A rating curve is computed for each gauging and a model of the uncertainty is fitted for each of them. The model of uncertainty takes into account the uncertainties in the measurement of the water level, the quality of fit of the curve, the uncertainty of gaugings and the increase of the uncertainty of discharge estimates with the age of the rating curve computed with a variographic analysis (Jalbert et al., 2011). The presented dynamic method can answer important questions in the field of hydrometry such as “How many gaugings a year are required to produce streamflow data with an average uncertainty of X%?” and “When and in what range of water flow rates should these gaugings be carried out?”. The Rocherousse hydrometric station (France, Haute-Durance watershed, 946 [km2]) is used as an example throughout the paper. Others stations are used to illustrate certain points.

  3. Laser Ionization Studies of Hydrocarbon Flames.

    NASA Astrophysics Data System (ADS)

    Bernstein, Jeffrey Scott

    Resonance-enhanced multiphoton ionization (REMPI) and laser induced fluorescence (LIF) are applied as laser based flame diagnostics for studies of hydrocarbon combustion chemistry. rm CH_4/O_2, C _2H_4/O_2, and rm C_2H_6/O_2 low pressure ( ~20 Torr), stoichiometric burner stabilized flat flames are studied. Density profiles of intermediate flame species, existing at ppm concentrations, are mapped out as a function of distance from the burner head. Profiles resulting from REMPI and LIF detection are obtained for HCO, CH_3, H, O, OH, CH, and CO flame radicals. The above flame systems are computer modeled against currently accepted combustion mechanisms using the Chemkin and Premix flame codes developed at Sandia National Laboratories. The modeled profile densities show good agreement with the experimental results of the CH_4/O_2 flame system, thus confirming the current C1 kinetic flame mechanism. Discrepancies between experimental and modeled results are found with the C2 flames. These discrepancies are partially amended by modifying the rate constant of the rm C_2H_3+rm O_2 to H_2CO + HCO reaction. The modeled results computed with the modified rate constant strongly suggest that the kinetics of several or possibly many reactions in the C2 mechanism need refinement.

  4. A moment-convergence method for stochastic analysis of biochemical reaction networks.

    PubMed

    Zhang, Jiajun; Nie, Qing; Zhou, Tianshou

    2016-05-21

    Traditional moment-closure methods need to assume that high-order cumulants of a probability distribution approximate to zero. However, this strong assumption is not satisfied for many biochemical reaction networks. Here, we introduce convergent moments (defined in mathematics as the coefficients in the Taylor expansion of the probability-generating function at some point) to overcome this drawback of the moment-closure methods. As such, we develop a new analysis method for stochastic chemical kinetics. This method provides an accurate approximation for the master probability equation (MPE). In particular, the connection between low-order convergent moments and rate constants can be more easily derived in terms of explicit and analytical forms, allowing insights that would be difficult to obtain through direct simulation or manipulation of the MPE. In addition, it provides an accurate and efficient way to compute steady-state or transient probability distribution, avoiding the algorithmic difficulty associated with stiffness of the MPE due to large differences in sizes of rate constants. Applications of the method to several systems reveal nontrivial stochastic mechanisms of gene expression dynamics, e.g., intrinsic fluctuations can induce transient bimodality and amplify transient signals, and slow switching between promoter states can increase fluctuations in spatially heterogeneous signals. The overall approach has broad applications in modeling, analysis, and computation of complex biochemical networks with intrinsic noise.

  5. Mechanistic and kinetic study on the reaction of ozone and trans-2-chlorovinyldichloroarsine.

    PubMed

    Zhang, Wanqiao; Sun, Hao; Chen, Wei; Zhang, Yunju; Wang, Fengdi; Tang, Shuwei; Zhang, Jingping; Wang, Haitao; Wang, Rongshun

    2016-05-01

    Singlet and triplet potential energy surfaces for the atmospheric ozonation of trans-2-chlorovnyldichloroarsine (lewisite) are investigated theoretically. Optimizations of the reactants, products, intermediates and transition states are carried out at the BHandHLYP/6-311+G(d,p) level. Single point energy calculations are performed at the CCSD(T)/6-311+G(d,p) level based on the optimized structures. The detailed mechanism is presented and discussed. Various possible H (or Cl)-abstraction and C (or As)-addition/elimination pathways are considered. The results show that the As-addition/elimination is more energetically favorable than the other mechanisms. Rice-Ramsperger-Kassel-Marcus (RRKM) theory is used to compute the rate constants over the possible atmospheric temperature range of 200-3000 K and the pressure range of 10(-8)-10(9) Torr. The calculated rate constant is in good agreement with the available experimental data. The total rate coefficient shows positive temperature dependence and pressure independence. The modified three-parameter Arrhenius expressions for the total rate coefficient and individual rate coefficients are represented. Calculation results show that major product is CHClCHAs(OOO)Cl2 (s-IM3) at the temperature below 600 K and O2 + CHClCHAsOCl2 (s-P9) play an important role at the temperature between 600 and 3000 K. Time-dependent DFT (TD-DFT) calculations indicate that CHCl(OOO)CHAsCl2 (s-IM3) and CHOAsCl2 (s-P5) can take photolysis easily in the sunlight. Due to the absence of spectral information for arsenide, computational vibrational spectra of the important intermediates and products are also analyzed to provide valuable evidence for subsequent experimental identification. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The impact of neighboring infection on the computer virus spread in packets on scale-free networks

    NASA Astrophysics Data System (ADS)

    Lazfi, S.; Lamzabi, S.; Rachadi, A.; Ez-Zahraouy, H.

    2017-12-01

    In this paper, we introduce the effect of neighbors on the infection of packets by computer virus in the SI and SIR models using the minimal traffic routing protocol. We have applied this model to the Barabasi-Albert network to determine how intrasite and extrasite infection rates affect virus propagation through the traffic flow of information packets in both the free-flow and the congested phases. The numerical results show that when we change the intrasite infection rate λ1 while keeping constant the extrasite infection rate λ2, we get normal behavior in the congested phase: in the network, the proportion of infected packets increases to reach a peak and then decreases resulting in a simultaneous increase of the recovered packets. In contrast, when the intrasite infection rate λ1 is kept fixed, an increase of the extrasite infection rate results in two regimes: The first one is characterized by an increase of the proportion of infected packets until reaching some peak value and then decreases smoothly. The second regime is characterized by an increase of infected packets to some stationary value.

  7. Rate constants for the reactions of OH with CH3Cl, CH2Cl2, CHCl3, and CH3Br

    NASA Technical Reports Server (NTRS)

    Hsu, K.-J.; Demore, W. B.

    1994-01-01

    Rate constants for the reactions of OH with CH3Cl, CH2Cl2, CHCl3, and CH3Br have been measured by a relative rate technique in which the reaction rate of each compound was compared to that of HFC-152a (CH3CHF2) and (for CH2Cl2) HFC-161 (CH3CH2F). Using absolute rate constants for HFC-152a and HFC-161, which we have determined relative to those for CH4, CH3CCl3, and C2H6, temperature dependent rate constants of both compounds were derived. The derived rate constant for CH3Br is in good agreement with recent absolute measurements. However, for the chloromethanes all the rate constants are lower at atmospheric temperatures than previously reported, especially for CH2Cl2 where the present rate constant is about a factor of 1.6 below the JPL 92-20 value. The new rate constant appears to resolve a discrepancy between the observed atmospheric concentrations and those calculated from the previous rate constant and estimated release rates.

  8. Correcting reaction rates measured by saturation-transfer magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Gabr, Refaat E.; Weiss, Robert G.; Bottomley, Paul A.

    2008-04-01

    Off-resonance or spillover irradiation and incomplete saturation can introduce significant errors in the estimates of chemical rate constants measured by saturation-transfer magnetic resonance spectroscopy (MRS). Existing methods of correction are effective only over a limited parameter range. Here, a general approach of numerically solving the Bloch-McConnell equations to calculate exchange rates, relaxation times and concentrations for the saturation-transfer experiment is investigated, but found to require more measurements and higher signal-to-noise ratios than in vivo studies can practically afford. As an alternative, correction formulae for the reaction rate are provided which account for the expected parameter ranges and limited measurements available in vivo. The correction term is a quadratic function of experimental measurements. In computer simulations, the new formulae showed negligible bias and reduced the maximum error in the rate constants by about 3-fold compared to traditional formulae, and the error scatter by about 4-fold, over a wide range of parameters for conventional saturation transfer employing progressive saturation, and for the four-angle saturation-transfer method applied to the creatine kinase (CK) reaction in the human heart at 1.5 T. In normal in vivo spectra affected by spillover, the correction increases the mean calculated forward CK reaction rate by 6-16% over traditional and prior correction formulae.

  9. Temperature and pressure influence on maximum rates of pressure rise during explosions of propane-air mixtures in a spherical vessel.

    PubMed

    Razus, D; Brinzea, V; Mitu, M; Movileanu, C; Oancea, D

    2011-06-15

    The maximum rates of pressure rise during closed vessel explosions of propane-air mixtures are reported, for systems with various initial concentrations, pressures and temperatures ([C(3)H(8)]=2.50-6.20 vol.%, p(0)=0.3-1.3 bar; T(0)=298-423 K). Experiments were performed in a spherical vessel (Φ=10 cm) with central ignition. The deflagration (severity) index K(G), calculated from experimental values of maximum rates of pressure rise is examined against the adiabatic deflagration index, K(G, ad), computed from normal burning velocities and peak explosion pressures. At constant temperature and fuel/oxygen ratio, both the maximum rates of pressure rise and the deflagration indices are linear functions of total initial pressure, as reported for other fuel-air mixtures. At constant initial pressure and composition, the maximum rates of pressure rise and deflagration indices are slightly influenced by the initial temperature; some influence of the initial temperature on maximum rates of pressure rise is observed only for propane-air mixtures far from stoichiometric composition. The differentiated temperature influence on the normal burning velocities and the peak explosion pressures might explain this behaviour. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Control of the Protein Turnover Rates in Lemna minor

    PubMed Central

    Trewavas, A.

    1972-01-01

    The control of protein turnover in Lemna minor has been examined using a method described in the previous paper for determining the rate constants of synthesis and degradation of protein. If Lemna is placed on water, there is a reduction in the rate constants of synthesis of protein and an increase (3- to 6-fold) in the rate constant of degradation. The net effect is a loss of protein from the tissue. Omission of nitrate, phosphate, sulfate, magnesium, or calcium results in increases in the rate constant of degradation of protein. An unusual dual effect of benzyladenine on the turnover constants has been observed. Treatment of Lemna grown on sucrose-mineral salts with benzyladenine results in alterations only in the rate constant of synthesis. Treatment of Lemna grown on water with benzyladenine alters only the rate constant of degradation. Abscisic acid on the other hand alters both rate constants of synthesis and degradation of protein together. Inclusion of growth-inhibiting amino acids in the medium results in a reduction in the rate constants of synthesis and increases in the rate constant of degradation of protein. It is concluded that the rate of turnover of protein in Lemna is very dependent on the composition of the growth medium. Conditions which reduce growth rates also reduce the rates of synthesis of protein and increase those of degradation. PMID:16657895

  11. The constant displacement scheme for tracking particles in heterogeneous aquifers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, X.H.; Gomez-Hernandez, J.J.

    1996-01-01

    Simulation of mass transport by particle tracking or random walk in highly heterogeneous media may be inefficient from a computational point of view if the traditional constant time step scheme is used. A new scheme which adjusts automatically the time step for each particle according to the local pore velocity, so that each particle always travels a constant distance, is shown to be computationally faster for the same degree of accuracy than the constant time step method. Using the constant displacement scheme, transport calculations in a 2-D aquifer model, with nature log-transmissivity variance of 4, can be 8.6 times fastermore » than using the constant time step scheme.« less

  12. Photodegradation routes of the herbicide bromoxynil in solution and sorbed on silica nanoparticles.

    PubMed

    Escalada, Juan P; Arce, Valeria B; Carlos, Luciano; Porcal, Gabriela V; Biasutti, M Alicia; Criado, Susana; García, Norman A; Mártire, Daniel O

    2014-04-01

    Some organic contaminants dissolved in natural waters tend to adsorb on suspended particles and sediments. In order to mimic the photodegradation routes in natural waters of bromoxynil (BXN) adsorbed on silica, we here prepare and characterize silica nanoparticles modified with BXN (NP-BXN). We measure the direct photolysis quantum yield of aqueous BXN at 307 nm (0.064 ± 0.001) and detect the formation of bromide ions as a reaction product. Under similar conditions the photolysis quantum yield of BXN bonded to NP-BXN is much lower (0.0021 ± 0.0004) and does not lead to formation of bromide ions. The rate constant of the reaction of NP-BXN with the excited triplet states of riboflavin, a molecule employed as a proxy of chromophore dissolved organic matter (DOM) was measured in laser flash-photolysis experiments. The rate constants for the overall (kt) and chemical interaction (kr) of singlet oxygen with NP-BXN were also measured. Kinetic computer simulations show that the relevance of the direct and indirect (through reactions with reactive species generated in photoinduced processes) photodegradation routes of BXN is very much affected by sorption on silica. Immobilization of the herbicide on the particles, on one hand, affects the photolysis mechanism and lowers its photolysis quantum yield. On the other hand, the results obtained in aqueous suspensions indicate that immobilization also lowers the rate of collisional encounter, which affects the quenching rate constants of excited triplet states and singlet oxygen with the herbicide.

  13. Theoretical study of thermodynamic properties and reaction rates of importance in the high-speed research program

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephen; Bauschlicher, Charles; Jaffe, Richard

    1992-01-01

    One of the primary goals of NASA's high-speed research program is to determine the feasibility of designing an environmentally safe commercial supersonic transport airplane. The largest environmental concern is focused on the amount of ozone destroying nitrogen oxides (NO(x)) that would be injected into the lower stratosphere during the cruise portion of the flight. The limitations placed on NO(x) emission require more than an order of magnitude reduction over current engine designs. To develop strategies to meet this goal requires first gaining a fundamental understanding of the combustion chemistry. To accurately model the combustor requires a computational fluid dynamics approach that includes both turbulence and chemistry. Since many of the important chemical processes in this regime involve highly reactive radicals, an experimental determination of the required thermodynamic data and rate constants is often very difficult. Unlike experimental approaches, theoretical methods are as applicable to highly reactive species as stable ones. Also our approximation of treating the dynamics classically becomes more accurate with increasing temperature. In this article we review recent progress in generating thermodynamic properties and rate constants that are required to understand NO(x) formation in the combustion process. We also describe our one-dimensional modeling efforts to validate an NH3 combustion reaction mechanism. We have been working in collaboration with researchers at LeRC, to ensure that our theoretical work is focused on the most important thermodynamic quantities and rate constants required in the chemical data base.

  14. Luminescence of the (O2(a(1)Δ(g)))2 collisional complex in the temperature range of 90-315 K: Experiment and theory.

    PubMed

    Zagidullin, M V; Pershin, A A; Azyazov, V N; Mebel, A M

    2015-12-28

    Experimental and theoretical studies of collision induced emission of singlet oxygen molecules O2(a(1)Δg) in the visible range have been performed. The rate constants, half-widths, and position of peaks for the emission bands of the (O2(a(1)Δg))2 collisional complex centered around 634 nm (2) and 703 nm (3) have been measured in the temperature range of 90-315 K using a flow-tube apparatus that utilized a gas-liquid chemical singlet oxygen generator. The absolute values of the spontaneous emission rate constants k2 and k3 are found to be similar, with the k3/k2 ratio monotonically decreasing from 1.1 at 300 K to 0.96 at 90 K. k2 slowly decreases with decreasing temperature but a sharp increase in its values is measured below 100 K. The experimental results were rationalized in terms of ab initio calculations of the ground and excited potential energy and transition dipole moment surfaces of singlet electronic states of the (O2)2 dimole, which were utilized to compute rate constants k2 and k3 within a statistical model. The best theoretical results reproduced experimental rate constants with the accuracy of under 40% and correctly described the observed temperature dependence. The main contribution to emission process (2), which does not involve vibrational excitation of O2 molecules at the ground electronic level, comes from the spin- and symmetry-allowed 1(1)Ag←(1)B3u transition in the rectangular H configuration of the dimole. Alternatively, emission process (3), in which one of the monomers becomes vibrationally excited in the ground electronic state, is found to be predominantly due to the vibronically allowed 1(1)Ag←2(1)Ag transition induced by the asymmetric O-O stretch vibration in the collisional complex. The strong vibronic coupling between nearly degenerate excited singlet states of the dimole makes the intensities of vibronically and symmetry-allowed transitions comparable and hence the rate constants k2 and k3 close to one another.

  15. Estimating dust production rate of carbon-rich stars in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Nanni, A.; Marigo, P.; Groenewegen, M. A. T.; Aringer, B.; Pastorelli, G.; Rubele, S.; Girardi, L.; Bressan, A.; Bladh, S.

    We compute a grid of spectra describing dusty Circumstellar Envelopes of Thermally Pulsing Asymptotic Giant Branch carbon-rich stars by employing a physically grounded description for dust growth. The optical constants for carbon dust have been selected in order to reproduce simultaneously the most important color-color diagrams in the Near and Mid Infrared bands. We fit the Spectral Energy Distribution of ≈2000 carbon-rich in the Small Magellanic Cloud and we compute their total dust production rate. We compare our results with the ones in the literature. Different choices of the dust-to-gas ratio and outflow expansion velocity adopted in different works, yield, in some cases, a total dust budget about three times lower than the one derived from our scheme, with the same optical data set for carbon dust.

  16. Comparing Teacher-Directed and Computer-Assisted Constant Time Delay for Teaching Functional Sight Words to Students with Moderate Intellectual Disability

    ERIC Educational Resources Information Center

    Coleman, Mari Beth; Hurley, Kevin J.; Cihak, David F.

    2012-01-01

    The purpose of this study was to compare the effectiveness and efficiency of teacher-directed and computer-assisted constant time delay strategies for teaching three students with moderate intellectual disability to read functional sight words. Target words were those found in recipes and were taught via teacher-delivered constant time delay or…

  17. Computational multiple steady states for enzymatic esterification of ethanol and oleic acid in an isothermal CSTR.

    PubMed

    Ho, Pang-Yen; Chuang, Guo-Syong; Chao, An-Chong; Li, Hsing-Ya

    2005-05-01

    The capacity of complex biochemical reaction networks (consisting of 11 coupled non-linear ordinary differential equations) to show multiple steady states, was investigated. The system involved esterification of ethanol and oleic acid by lipase in an isothermal continuous stirred tank reactor (CSTR). The Deficiency One Algorithm and the Subnetwork Analysis were applied to determine the steady state multiplicity. A set of rate constants and two corresponding steady states are computed. The phenomena of bistability, hysteresis and bifurcation are discussed. Moreover, the capacity of steady state multiplicity is extended to the family of the studied reaction networks.

  18. Microscopic approaches to liquid nitromethane detonation properties.

    PubMed

    Hervouët, Anaïs; Desbiens, Nicolas; Bourasseau, Emeric; Maillet, Jean-Bernard

    2008-04-24

    In this paper, thermodynamic and chemical properties of nitromethane are investigated using microscopic simulations. The Hugoniot curve of the inert explosive is computed using Monte Carlo simulations with a modified version of the adaptative Erpenbeck equation of state and a recently developed intermolecular potential. Molecular dynamic simulations of nitromethane decomposition have been performed using a reactive potential, allowing the calculation of kinetic rate constants and activation energies. Finally, the Crussard curve of detonation products as well as thermodynamic properties at the Chapman-Jouguet (CJ) point are computed using reactive ensemble Monte Carlo simulations. Results are in good agreement with both thermochemical calculations and experimental measurements.

  19. Design of a microfluidic system for red blood cell aggregation investigation.

    PubMed

    Mehri, R; Mavriplis, C; Fenech, M

    2014-06-01

    The purpose of this paper is to design a microfluidic apparatus capable of providing controlled flow conditions suitable for red blood cell (RBC) aggregation analysis. The linear velocity engendered from the controlled flow provides constant shear rates used to qualitatively analyze RBC aggregates. The design of the apparatus is based on numerical and experimental work. The numerical work consists of 3D numerical simulations performed using a research computational fluid dynamics (CFD) solver, Nek5000, while the experiments are conducted using a microparticle image velocimetry system. A Newtonian model is tested numerically and experimentally, then blood is tested experimentally under several conditions (hematocrit, shear rate, and fluid suspension) to be compared to the simulation results. We find that using a velocity ratio of 4 between the two Newtonian fluids, the layer corresponding to blood expands to fill 35% of the channel thickness where the constant shear rate is achieved. For blood experiments, the velocity profile in the blood layer is approximately linear, resulting in the desired controlled conditions for the study of RBC aggregation under several flow scenarios.

  20. CFD Analysis of Tile-Repair Augers for the Shuttle Orbiter Re-Entry Aeroheating

    NASA Technical Reports Server (NTRS)

    Mazaheri, Ali R.

    2007-01-01

    A three-dimensional aerothermodynamic model of the shuttle orbiter's tile overlay repair (TOR) sub-assembly is presented. This sub-assembly, which is an overlay that covers the damaged tiles, is modeled as a protuberance with a constant thickness. The washers and augers that serve as the overlay fasteners are modeled as cylindrical protuberances with constant thicknesses. Entry aerothermodynamic cases are studied to provide necessary inputs for future thermal analyses and to support the space-shuttle return-to-flight effort. The NASA Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) is used to calculate heat transfer rate on the surfaces of the tile overlay repair and augers. Gas flow is modeled as non-equilibrium, five species air in thermal equilibrium. Heat transfer rate and surface temperatures are analyzed and studied for a shuttle orbiter trajectory point at Mach 17.85. Computational results show that the average heat transfer rate normalized with respect to its value at body point 1800 is about BF=1.9 for the auger head. It is also shown that the average BF for the auger and washer heads is about BF=2.0.

  1. Kinetic isotope effect in malonaldehyde determined from path integral Monte Carlo simulations.

    PubMed

    Huang, Jing; Buchowiecki, Marcin; Nagy, Tibor; Vaníček, Jiří; Meuwly, Markus

    2014-01-07

    The primary H/D kinetic isotope effect on the intramolecular proton transfer in malonaldehyde is determined from quantum instanton path integral Monte Carlo simulations on a fully dimensional and validated potential energy surface for temperatures between 250 and 1500 K. Our calculations, based on thermodynamic integration with respect to the mass of the transferring particle, are significantly accelerated by the direct evaluation of the kinetic isotope effect instead of computing it as a ratio of two rate constants. At room temperature, the KIE from the present simulations is 5.2 ± 0.4. The KIE is found to vary considerably as a function of temperature and the low-T behaviour is dominated by the fact that the free energy derivative in the reactant state increases more rapidly than in the transition state. Detailed analysis of the various contributions to the quantum rate constant together with estimates for rates from conventional transition state theory and from periodic orbit theory suggest that the KIE in malonaldehyde is dominated by zero point energy effects and that tunneling plays a minor role at room temperature.

  2. Kinetics of protein–ligand unbinding: Predicting pathways, rates, and rate-limiting steps

    PubMed Central

    Tiwary, Pratyush; Limongelli, Vittorio; Salvalaglio, Matteo; Parrinello, Michele

    2015-01-01

    The ability to predict the mechanisms and the associated rate constants of protein–ligand unbinding is of great practical importance in drug design. In this work we demonstrate how a recently introduced metadynamics-based approach allows exploration of the unbinding pathways, estimation of the rates, and determination of the rate-limiting steps in the paradigmatic case of the trypsin–benzamidine system. Protein, ligand, and solvent are described with full atomic resolution. Using metadynamics, multiple unbinding trajectories that start with the ligand in the crystallographic binding pose and end with the ligand in the fully solvated state are generated. The unbinding rate koff is computed from the mean residence time of the ligand. Using our previously computed binding affinity we also obtain the binding rate kon. Both rates are in agreement with reported experimental values. We uncover the complex pathways of unbinding trajectories and describe the critical rate-limiting steps with unprecedented detail. Our findings illuminate the role played by the coupling between subtle protein backbone fluctuations and the solvation by water molecules that enter the binding pocket and assist in the breaking of the shielded hydrogen bonds. We expect our approach to be useful in calculating rates for general protein–ligand systems and a valid support for drug design. PMID:25605901

  3. Energy Consumption Management of Virtual Cloud Computing Platform

    NASA Astrophysics Data System (ADS)

    Li, Lin

    2017-11-01

    For energy consumption management research on virtual cloud computing platforms, energy consumption management of virtual computers and cloud computing platform should be understood deeper. Only in this way can problems faced by energy consumption management be solved. In solving problems, the key to solutions points to data centers with high energy consumption, so people are in great need to use a new scientific technique. Virtualization technology and cloud computing have become powerful tools in people’s real life, work and production because they have strong strength and many advantages. Virtualization technology and cloud computing now is in a rapid developing trend. It has very high resource utilization rate. In this way, the presence of virtualization and cloud computing technologies is very necessary in the constantly developing information age. This paper has summarized, explained and further analyzed energy consumption management questions of the virtual cloud computing platform. It eventually gives people a clearer understanding of energy consumption management of virtual cloud computing platform and brings more help to various aspects of people’s live, work and son on.

  4. Current state and future direction of computer systems at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Rogers, James L. (Editor); Tucker, Jerry H. (Editor)

    1992-01-01

    Computer systems have advanced at a rate unmatched by any other area of technology. As performance has dramatically increased there has been an equally dramatic reduction in cost. This constant cost performance improvement has precipitated the pervasiveness of computer systems into virtually all areas of technology. This improvement is due primarily to advances in microelectronics. Most people are now convinced that the new generation of supercomputers will be built using a large number (possibly thousands) of high performance microprocessors. Although the spectacular improvements in computer systems have come about because of these hardware advances, there has also been a steady improvement in software techniques. In an effort to understand how these hardware and software advances will effect research at NASA LaRC, the Computer Systems Technical Committee drafted this white paper to examine the current state and possible future directions of computer systems at the Center. This paper discusses selected important areas of computer systems including real-time systems, embedded systems, high performance computing, distributed computing networks, data acquisition systems, artificial intelligence, and visualization.

  5. The vibrational dependence of dissociative recombination: Rate constants for N{sub 2}{sup +}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guberman, Steven L., E-mail: slg@sci.org

    Dissociative recombination rate constants are reported with electron temperature dependent uncertainties for the lowest 5 vibrational levels of the N{sub 2}{sup +} ground state. The rate constants are determined from ab initio calculations of potential curves, electronic widths, quantum defects, and cross sections. At 100 K electron temperature, the rate constants overlap with the exception of the third vibrational level. At and above 300 K, the rate constants for excited vibrational levels are significantly smaller than that for the ground level. It is shown that any experimentally determined total rate constant at 300 K electron temperature that is smaller thanmore » 2.0 × 10{sup −7} cm{sup 3}/s is likely to be for ions that have a substantially excited vibrational population. Using the vibrational level specific rate constants, the total rate constant is in very good agreement with that for an excited vibrational distribution found in a storage ring experiment. It is also shown that a prior analysis of a laser induced fluorescence experiment is quantitatively flawed due to the need to account for reactions with unknown rate constants. Two prior calculations of the dissociative recombination rate constant are shown to be inconsistent with the cross sections upon which they are based. The rate constants calculated here contribute to the resolution of a 30 year old disagreement between modeled and observed N{sub 2}{sup +} ionospheric densities.« less

  6. Mean field treatment of heterogeneous steady state kinetics

    NASA Astrophysics Data System (ADS)

    Geva, Nadav; Vaissier, Valerie; Shepherd, James; Van Voorhis, Troy

    2017-10-01

    We propose a method to quickly compute steady state populations of species undergoing a set of chemical reactions whose rate constants are heterogeneous. Using an average environment in place of an explicit nearest neighbor configuration, we obtain a set of equations describing a single fluctuating active site in the presence of an averaged bath. We apply this Mean Field Steady State (MFSS) method to a model of H2 production on a disordered surface for which the activation energy for the reaction varies from site to site. The MFSS populations quantitatively reproduce the KMC results across the range of rate parameters considered.

  7. Studies on a novel doughnut-shaped minitablet for intraocular drug delivery.

    PubMed

    Choonara, Yahya E; Pillay, Viness; Carmichael, Trevor; Danckwerts, Michael P

    2007-12-28

    The objective of this study was to evaluate the effect of 2 independent formulation variables on the drug release from a novel doughnut-shaped minitablet (DSMT) in order to optimize formulations for intraocular drug delivery. Formulations were based on a 3(2) full-factorial design. The 2 independent variables were the concentration of Resomer (% wt/wt) and the type of Resomer grade (RG502, RG503, and RG504), respectively. The evaluated response was the drug release rate constant computed from a referenced marketed product and in vitro drug release data obtained at pH 7.4 in simulated vitreous humor. DSMT devices were prepared containing either of 2 model drugs, ganciclovir or foscarnet, using a Manesty F3 tableting press fitted with a novel central-rod, punch, and die setup. Dissolution data revealed biphasic drug release behavior with 55% to 60% drug released over 120 days. The inherent viscosity of the various Resomer grades and the concentration were significant to achieve optimum release rate constants. Using the resultant statistical relationships with the release rate constant as a response, the optimum formulation predicted for devices formulated with foscarnet was 70% wt/wt of Resomer RG504, while 92% wt/wt of Resomer RG503 was ideal for devices formulated with ganciclovir. The results of this study revealed that the full-factorial design was a suitable tool to predict an optimized formulation for prolonged intraocular drug delivery.

  8. ATMOSPHERIC CHEMISTRY FOR ASTROPHYSICISTS: A SELF-CONSISTENT FORMALISM AND ANALYTICAL SOLUTIONS FOR ARBITRARY C/O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heng, Kevin; Tsai, Shang-Min; Lyons, James R., E-mail: kevin.heng@csh.unibe.ch

    2016-01-10

    We present a self-consistent formalism for computing and understanding the atmospheric chemistry of exoplanets from the viewpoint of an astrophysicist. Starting from the first law of thermodynamics, we demonstrate that the van’t Hoff equation (which describes the equilibrium constant), Arrhenius equation (which describes the rate coefficients), and procedures associated with the Gibbs free energy (minimization, rescaling) have a common physical and mathematical origin. We address an ambiguity associated with the equilibrium constant, which is used to relate the forward and reverse rate coefficients, and restate its two definitions. By necessity, one of the equilibrium constants must be dimensionless and equatemore » to an exponential function involving the Gibbs free energy, while the other is a ratio of rate coefficients and must therefore possess physical units. We demonstrate that the Arrhenius equation takes on a functional form that is more general than previously stated without recourse to tagging on ad hoc functional forms. Finally, we derive analytical models of chemical systems, in equilibrium, with carbon, hydrogen, and oxygen. We include acetylene and are able to reproduce several key trends, versus temperature and carbon-to-oxygen ratio, published in the literature. The rich variety of behavior that mixing ratios exhibit as a function of the carbon-to-oxygen ratio is merely the outcome of stoichiometric book-keeping and not the direct consequence of temperature or pressure variations.« less

  9. Atmospheric Chemistry for Astrophysicists: A Self-consistent Formalism and Analytical Solutions for Arbitrary C/O

    NASA Astrophysics Data System (ADS)

    Heng, Kevin; Lyons, James R.; Tsai, Shang-Min

    2016-01-01

    We present a self-consistent formalism for computing and understanding the atmospheric chemistry of exoplanets from the viewpoint of an astrophysicist. Starting from the first law of thermodynamics, we demonstrate that the van’t Hoff equation (which describes the equilibrium constant), Arrhenius equation (which describes the rate coefficients), and procedures associated with the Gibbs free energy (minimization, rescaling) have a common physical and mathematical origin. We address an ambiguity associated with the equilibrium constant, which is used to relate the forward and reverse rate coefficients, and restate its two definitions. By necessity, one of the equilibrium constants must be dimensionless and equate to an exponential function involving the Gibbs free energy, while the other is a ratio of rate coefficients and must therefore possess physical units. We demonstrate that the Arrhenius equation takes on a functional form that is more general than previously stated without recourse to tagging on ad hoc functional forms. Finally, we derive analytical models of chemical systems, in equilibrium, with carbon, hydrogen, and oxygen. We include acetylene and are able to reproduce several key trends, versus temperature and carbon-to-oxygen ratio, published in the literature. The rich variety of behavior that mixing ratios exhibit as a function of the carbon-to-oxygen ratio is merely the outcome of stoichiometric book-keeping and not the direct consequence of temperature or pressure variations.

  10. Pharmacokinetic modelling of intravenous tobramycin in adolescent and adult patients with cystic fibrosis using the nonparametric expectation maximization (NPEM) algorithm.

    PubMed

    Touw, D J; Vinks, A A; Neef, C

    1997-06-01

    The availability of personal computer programs for individualizing drug dosage regimens has stimulated the interest in modelling population pharmacokinetics. Data from 82 adolescent and adult patients with cystic fibrosis (CF) who were treated with intravenous tobramycin because of an exacerbation of their pulmonary infection were analysed with a non-parametric expectation maximization (NPEM) algorithm. This algorithm estimates the entire discrete joint probability density of the pharmacokinetic parameters. It also provides traditional parametric statistics such as the means, standard deviation, median, covariances and correlations among the various parameters. It also provides graphic-2- and 3-dimensional representations of the marginal densities of the parameters investigated. Several models for intravenous tobramycin in adolescent and adult patients with CF were compared. Covariates were total body weight (for the volume of distribution) and creatinine clearance (for the total body clearance and elimination rate). Because of lack of data on patients with poor renal function, restricted models with non-renal clearance and the non-renal elimination rate constant fixed at literature values of 0.15 L/h and 0.01 h-1 were also included. In this population, intravenous tobramycin could be best described by median (+/-dispersion factor) volume of distribution per unit of total body weight of 0.28 +/- 0.05 L/kg, elimination rate constant of 0.25 +/- 0.10 h-1 and elimination rate constant per unit of creatinine clearance of 0.0008 +/- 0.0009 h-1/(ml/min/1.73 m2). Analysis of populations of increasing size showed that using a restricted model with a non-renal elimination rate constant fixed at 0.01 h-1, a model based on a population of only 10 to 20 patients, contained parameter values similar to those of the entire population and, using the full model, a larger population (at least 40 patients) was needed.

  11. The dependence of educational infrastructure on clinical infrastructure.

    PubMed Central

    Cimino, C.

    1998-01-01

    The Albert Einstein College of Medicine needed to assess the growth of its infrastructure for educational computing as a first step to determining if student needs were being met. Included in computing infrastructure are space, equipment, software, and computing services. The infrastructure was assessed by reviewing purchasing and support logs for a six year period from 1992 to 1998. This included equipment, software, and e-mail accounts provided to students and to faculty for educational purposes. Student space has grown at a constant rate (averaging 14% increase each year respectively). Student equipment on campus has grown by a constant amount each year (average 8.3 computers each year). Student infrastructure off campus and educational support of faculty has not kept pace. It has either declined or remained level over the six year period. The availability of electronic mail clearly demonstrates this with accounts being used by 99% of students, 78% of Basic Science Course Leaders, 38% of Clerkship Directors, 18% of Clerkship Site Directors, and 8% of Clinical Elective Directors. The collection of the initial descriptive infrastructure data has revealed problems that may generalize to other medical schools. The discrepancy between infrastructure available to students and faculty on campus and students and faculty off campus creates a setting where students perceive a paradoxical declining support for computer use as they progress through medical school. While clinical infrastructure may be growing, it is at the expense of educational infrastructure at affiliate hospitals. PMID:9929262

  12. An ab initio/Rice-Ramsperger-Kassel-Marcus study of the hydrogen-abstraction reactions of methyl ethers, H(3)COCH(3-x)(CH(3))(x), x = 0-2, by OH; mechanism and kinetics.

    PubMed

    Zhou, Chong-Wen; Simmie, John M; Curran, Henry J

    2010-07-14

    A theoretical study of the mechanism and kinetics of the H-abstraction reaction from dimethyl (DME), ethylmethyl (EME) and iso-propylmethyl (IPME) ethers by the OH radical has been carried out using the high-level methods CCSD(T)/CBS, G3 and G3MP2BH&H. The computationally less-expensive methods of G3 and G3MP2BH&H yield results for DME within 0.2-0.6 and 0.7-0.9 kcal mol(-1), respectively, of the coupled cluster, CCSD(T), values extrapolated to the basis set limit. So the G3 and G3MP2BH&H methods can be confidently used for the reactions of the higher ethers. A distinction is made between the two different kinds of H-atoms, classified as in/out-of the symmetry plane, and it is found that abstraction from the out-of-plane H-atoms proceeds through a stepwise mechanism involving the formation of a reactant complex in the entrance channel and product complex in the exit channel. The in-plane H-atom abstractions take place through a more direct mechanism and are less competitive. Rate constants of the three reactions have been calculated in the temperature range of 500-3000 K using the Variflex code, based on the weak collision, master equation/microcanonical variational RRKM theory including tunneling corrections. The computed total rate constants (cm(3) mol(-1) s(-1)) have been fitted as follows: k(DME) = 2.74 xT(3.94) exp (1534.2/T), k(EME) = 20.93 xT(3.61) exp (2060.1/T) and k(IPME) = 0.55 xT(3.93) exp (2826.1/T). Expressions of the group rate constants for the three different carbon sites are also provided.

  13. Synaptic Plasticity and Memory Formation

    DTIC Science & Technology

    1994-05-31

    manipulations affected the waveform of the isolated response: i) a drug ( aniracetam ) known to prolong the mean open time of the receptors, ii) LTP and iii...LTP and aniracetam combined. In agreement with our previous reports, LTP was found to produce a characteristic distortion of the waveform of the... aniracetam and LTP was readily accounted for by the computer simulation of the AMPA receptor when LTP was modelled as an increase in the rate constants

  14. Evaluation and optimization of the performance of frame geometries for lithium-ion battery application by computer simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miranda, D.; Instituto Politécnico de Viana do Castelo, Viana do Castelo; Miranda, F.

    2016-06-08

    Tailoring battery geometries is essential for many applications, as geometry influences the delivered capacity value. Two geometries, frame and conventional, have been studied and, for a given scan rate of 330C, the square frame shows a capacity value of 305,52 Ahm{sup −2}, which is 527 times higher than the one for the conventional geometry for a constant the area of all components.

  15. The effects of surface evaporation parameterizations on climate sensitivity to solar constant variations

    NASA Technical Reports Server (NTRS)

    Chou, S.-H.; Curran, R. J.; Ohring, G.

    1981-01-01

    The effects of two different evaporation parameterizations on the sensitivity of simulated climate to solar constant variations are investigated by using a zonally averaged climate model. One parameterization is a nonlinear formulation in which the evaporation is nonlinearly proportional to the sensible heat flux, with the Bowen ratio determined by the predicted vertical temperature and humidity gradients near the earth's surface (model A). The other is the formulation of Saltzman (1968) with the evaporation linearly proportional to the sensible heat flux (model B). The computed climates of models A and B are in good agreement except for the energy partition between sensible and latent heat at the earth's surface. The difference in evaporation parameterizations causes a difference in the response of temperature lapse rate to solar constant variations and a difference in the sensitivity of longwave radiation to surface temperature which leads to a smaller sensitivity of surface temperature to solar constant variations in model A than in model B. The results of model A are qualitatively in agreement with those of the general circulation model calculations of Wetherald and Manabe (1975).

  16. Users manual for updated computer code for axial-flow compressor conceptual design

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.

    1992-01-01

    An existing computer code that determines the flow path for an axial-flow compressor either for a given number of stages or for a given overall pressure ratio was modified for use in air-breathing engine conceptual design studies. This code uses a rapid approximate design methodology that is based on isentropic simple radial equilibrium. Calculations are performed at constant-span-fraction locations from tip to hub. Energy addition per stage is controlled by specifying the maximum allowable values for several aerodynamic design parameters. New modeling was introduced to the code to overcome perceived limitations. Specific changes included variable rather than constant tip radius, flow path inclination added to the continuity equation, input of mass flow rate directly rather than indirectly as inlet axial velocity, solution for the exact value of overall pressure ratio rather than for any value that met or exceeded it, and internal computation of efficiency rather than the use of input values. The modified code was shown to be capable of computing efficiencies that are compatible with those of five multistage compressors and one fan that were tested experimentally. This report serves as a users manual for the revised code, Compressor Spanline Analysis (CSPAN). The modeling modifications, including two internal loss correlations, are presented. Program input and output are described. A sample case for a multistage compressor is included.

  17. Control of parallel manipulators using force feedback

    NASA Technical Reports Server (NTRS)

    Nanua, Prabjot

    1994-01-01

    Two control schemes are compared for parallel robotic mechanisms actuated by hydraulic cylinders. One scheme, the 'rate based scheme', uses the position and rate information only for feedback. The second scheme, the 'force based scheme' feeds back the force information also. The force control scheme is shown to improve the response over the rate control one. It is a simple constant gain control scheme better suited to parallel mechanisms. The force control scheme can be easily modified for the dynamic forces on the end effector. This paper presents the results of a computer simulation of both the rate and force control schemes. The gains in the force based scheme can be individually adjusted in all three directions, whereas the adjustment in just one direction of the rate based scheme directly affects the other two directions.

  18. Theory of Exciton Energy Transfer in Carbon Nanotube Composites

    DOE PAGES

    Davoody, A. H.; Karimi, F.; Arnold, M. S.; ...

    2016-06-24

    Here, we compute the exciton transfer (ET) rate between semiconducting single-wall carbon nanotubes (SWNTs). We show that the main reasons for the wide range of measured ET rates reported in the literature are (1) exciton confinement in local quantum wells stemming from disorder in the environment and (2) exciton thermalization between dark and bright states due to intratube scattering. The SWNT excitonic states are calculated by solving the Bethe–Salpeter equation using tight-binding basis functions. The ET rates due to intertube Coulomb interaction are computed via Fermi’s golden rule. In pristine samples, the ET rate between parallel (bundled) SWNTs of similarmore » chirality is very high (~10 14 s –1), while the ET rate for dissimilar or nonparallel tubes is considerably lower (~10 12 s –1). Exciton confinement reduces the ET rate between same-chirality parallel SWNTs by 2 orders of magnitude but has little effect otherwise. Consequently, the ET rate in most measurements will be on the order of 10 12 s –1, regardless of the tube relative orientation or chirality. Exciton thermalization between bright and dark states further reduces the ET rate to ~10 11 s –1. The ET rate also increases with increasing temperature and decreases with increasing dielectric constant of the surrounding medium.« less

  19. Theory of Exciton Energy Transfer in Carbon Nanotube Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davoody, A. H.; Karimi, F.; Arnold, M. S.

    Here, we compute the exciton transfer (ET) rate between semiconducting single-wall carbon nanotubes (SWNTs). We show that the main reasons for the wide range of measured ET rates reported in the literature are (1) exciton confinement in local quantum wells stemming from disorder in the environment and (2) exciton thermalization between dark and bright states due to intratube scattering. The SWNT excitonic states are calculated by solving the Bethe–Salpeter equation using tight-binding basis functions. The ET rates due to intertube Coulomb interaction are computed via Fermi’s golden rule. In pristine samples, the ET rate between parallel (bundled) SWNTs of similarmore » chirality is very high (~10 14 s –1), while the ET rate for dissimilar or nonparallel tubes is considerably lower (~10 12 s –1). Exciton confinement reduces the ET rate between same-chirality parallel SWNTs by 2 orders of magnitude but has little effect otherwise. Consequently, the ET rate in most measurements will be on the order of 10 12 s –1, regardless of the tube relative orientation or chirality. Exciton thermalization between bright and dark states further reduces the ET rate to ~10 11 s –1. The ET rate also increases with increasing temperature and decreases with increasing dielectric constant of the surrounding medium.« less

  20. Generalization of Wilemski-Fixman-Weiss decoupling approximation to the case involving multiple sinks of different sizes, shapes, and reactivities.

    PubMed

    Uhm, Jesik; Lee, Jinuk; Eun, Changsun; Lee, Sangyoub

    2006-08-07

    We generalize the Wilemski-Fixman-Weiss decoupling approximation to calculate the transient rate of absorption of point particles into multiple sinks of different sizes, shapes, and reactivities. As an application we consider the case involving two spherical sinks. We obtain a Laplace-transform expression for the transient rate that is in excellent agreement with computer simulations. The long-time steady-state rate has a relatively simple expression, which clearly shows the dependence on the diffusion constant of the particles and on the sizes and reactivities of sinks, and its numerical result is in good agreement with the known exact result that is given in terms of recursion relations.

  1. A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling

    USGS Publications Warehouse

    Palandri, James L.; Kharaka, Yousif K.

    2004-01-01

    Geochemical reaction path modeling is useful for rapidly assessing the extent of water-aqueous-gas interactions both in natural systems and in industrial processes. Modeling of some systems, such as those at low temperature with relatively high hydrologic flow rates, or those perturbed by the subsurface injection of industrial waste such as CO2 or H2S, must account for the relatively slow kinetics of mineral-gas-water interactions. We have therefore compiled parameters conforming to a general Arrhenius-type rate equation, for over 70 minerals, including phases from all the major classes of silicates, most carbonates, and many other non-silicates. The compiled dissolution rate constants range from -0.21 log moles m-2 s-1 for halite, to -17.44 log moles m-2 s-1 for kyanite, for conditions far from equilibrium, at 25 ?C, and pH near neutral. These data have been added to a computer code that simulates an infinitely well-stirred batch reactor, allowing computation of mass transfer as a function of time. Actual equilibration rates are expected to be much slower than those predicted by the selected computer code, primarily because actual geochemical processes commonly involve flow through porous or fractured media, wherein the development of concentration gradients in the aqueous phase near mineral surfaces, which results in decreased absolute chemical affinity and slower reaction rates. Further differences between observed and computed reaction rates may occur because of variables beyond the scope of most geochemical simulators, such as variation in grain size, aquifer heterogeneity, preferred fluid flow paths, primary and secondary mineral coatings, and secondary minerals that may lead to decreased porosity and clogged pore throats.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, S.; Gross, R.; Goble, W

    The safety integrity level (SIL) of equipment used in safety instrumented functions is determined by the average probability of failure on demand (PFDavg) computed at the time of periodic inspection and maintenance, i.e., the time of proof testing. The computation of PFDavg is generally based solely on predictions or estimates of the assumed constant failure rate of the equipment. However, PFDavg is also affected by maintenance actions (or lack thereof) taken by the end user. This paper shows how maintenance actions can affect the PFDavg of spring operated pressure relief valves (SOPRV) and how these maintenance actions may be accountedmore » for in the computation of the PFDavg metric. The method provides a means for quantifying the effects of changes in maintenance practices and shows how these changes impact plant safety.« less

  3. On multigrid methods for the Navier-Stokes Computer

    NASA Technical Reports Server (NTRS)

    Nosenchuck, D. M.; Krist, S. E.; Zang, T. A.

    1988-01-01

    The overall architecture of the multipurpose parallel-processing Navier-Stokes Computer (NSC) being developed by Princeton and NASA Langley (Nosenchuck et al., 1986) is described and illustrated with extensive diagrams, and the NSC implementation of an elementary multigrid algorithm for simulating isotropic turbulence (based on solution of the incompressible time-dependent Navier-Stokes equations with constant viscosity) is characterized in detail. The present NSC design concept calls for 64 nodes, each with the performance of a class VI supercomputer, linked together by a fiber-optic hypercube network and joined to a front-end computer by a global bus. In this configuration, the NSC would have a storage capacity of over 32 Gword and a peak speed of over 40 Gflops. The multigrid Navier-Stokes code discussed would give sustained operation rates of about 25 Gflops.

  4. Improved resolution of single channel dwell times reveals mechanisms of binding, priming, and gating in muscle AChR

    PubMed Central

    Mukhtasimova, Nuriya; daCosta, Corrie J.B.

    2016-01-01

    The acetylcholine receptor (AChR) from vertebrate skeletal muscle initiates voluntary movement, and its kinetics of activation are crucial for maintaining the safety margin for neuromuscular transmission. Furthermore, the kinetic mechanism of the muscle AChR serves as an archetype for understanding activation mechanisms of related receptors from the Cys-loop superfamily. Here we record currents through single muscle AChR channels with improved temporal resolution approaching half an order of magnitude over our previous best. A range of concentrations of full and partial agonists are used to elicit currents from human wild-type and gain-of-function mutant AChRs. For each agonist–receptor combination, rate constants are estimated from maximum likelihood analysis using a kinetic scheme comprised of agonist binding, priming, and channel gating steps. The kinetic scheme and rate constants are tested by stochastic simulation, followed by incorporation of the experimental step response, sampling rate, background noise, and filter bandwidth. Analyses of the simulated data confirm all rate constants except those for channel gating, which are overestimated because of the established effect of noise on the briefest dwell times. Estimates of the gating rate constants were obtained through iterative simulation followed by kinetic fitting. The results reveal that the agonist association rate constants are independent of agonist occupancy but depend on receptor state, whereas those for agonist dissociation depend on occupancy but not on state. The priming rate and equilibrium constants increase with successive agonist occupancy, and for a full agonist, the forward rate constant increases more than the equilibrium constant; for a partial agonist, the forward rate and equilibrium constants increase equally. The gating rate and equilibrium constants also increase with successive agonist occupancy, but unlike priming, the equilibrium constants increase more than the forward rate constants. As observed for a full and a partial agonist, the gain-of-function mutation affects the relationship between rate and equilibrium constants for priming but not for channel gating. Thus, resolving brief single channel currents distinguishes priming from gating steps and reveals how the corresponding rate and equilibrium constants depend on agonist occupancy. PMID:27353445

  5. Relationship of compressive stress-strain response of engineering materials obtained at constant engineering and true strain rates

    DOE PAGES

    Song, Bo; Sanborn, Brett

    2018-05-07

    In this paper, a Johnson–Cook model was used as an example to analyze the relationship of compressive stress-strain response of engineering materials experimentally obtained at constant engineering and true strain rates. There was a minimal deviation between the stress-strain curves obtained at the same constant engineering and true strain rates. The stress-strain curves obtained at either constant engineering or true strain rates could be converted from one to the other, which both represented the intrinsic material response. There is no need to specify the testing requirement of constant engineering or true strain rates for material property characterization, provided that eithermore » constant engineering or constant true strain rate is attained during the experiment.« less

  6. Relationship of compressive stress-strain response of engineering materials obtained at constant engineering and true strain rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Bo; Sanborn, Brett

    In this paper, a Johnson–Cook model was used as an example to analyze the relationship of compressive stress-strain response of engineering materials experimentally obtained at constant engineering and true strain rates. There was a minimal deviation between the stress-strain curves obtained at the same constant engineering and true strain rates. The stress-strain curves obtained at either constant engineering or true strain rates could be converted from one to the other, which both represented the intrinsic material response. There is no need to specify the testing requirement of constant engineering or true strain rates for material property characterization, provided that eithermore » constant engineering or constant true strain rate is attained during the experiment.« less

  7. A Detailed Chemical Kinetic Model for TNT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitz, W J; Westbrook, C K

    2005-01-13

    A detailed chemical kinetic mechanism for 2,4,6-tri-nitrotoluene (TNT) has been developed to explore problems of explosive performance and soot formation during the destruction of munitions. The TNT mechanism treats only gas-phase reactions. Reactions for the decomposition of TNT and for the consumption of intermediate products formed from TNT are assembled based on information from the literature and on current understanding of aromatic chemistry. Thermodynamic properties of intermediate and radical species are estimated by group additivity. Reaction paths are developed based on similar paths for aromatic hydrocarbons. Reaction-rate constant expressions are estimated from the literature and from analogous reactions where themore » rate constants are available. The detailed reaction mechanism for TNT is added to existing reaction mechanisms for RDX and for hydrocarbons. Computed results show the effect of oxygen concentration on the amount of soot precursors that are formed in the combustion of RDX and TNT mixtures in N{sub 2}/O{sub 2} mixtures.« less

  8. The maximum entropy production and maximum Shannon information entropy in enzyme kinetics

    NASA Astrophysics Data System (ADS)

    Dobovišek, Andrej; Markovič, Rene; Brumen, Milan; Fajmut, Aleš

    2018-04-01

    We demonstrate that the maximum entropy production principle (MEPP) serves as a physical selection principle for the description of the most probable non-equilibrium steady states in simple enzymatic reactions. A theoretical approach is developed, which enables maximization of the density of entropy production with respect to the enzyme rate constants for the enzyme reaction in a steady state. Mass and Gibbs free energy conservations are considered as optimization constraints. In such a way computed optimal enzyme rate constants in a steady state yield also the most uniform probability distribution of the enzyme states. This accounts for the maximal Shannon information entropy. By means of the stability analysis it is also demonstrated that maximal density of entropy production in that enzyme reaction requires flexible enzyme structure, which enables rapid transitions between different enzyme states. These results are supported by an example, in which density of entropy production and Shannon information entropy are numerically maximized for the enzyme Glucose Isomerase.

  9. Comparison of TID Effects in Space-Like Variable Dose Rates and Constant Dose Rates

    NASA Technical Reports Server (NTRS)

    Harris, Richard D.; McClure, Steven S.; Rax, Bernard G.; Evans, Robin W.; Jun, Insoo

    2008-01-01

    The degradation of the LM193 dual voltage comparator has been studied at different TID dose rate profiles, including several different constant dose rates and a variable dose rate that simulates the behavior of a solar flare. A comparison of results following constant dose rate vs. variable dose rates is made to explore how well the constant dose rates used for typical part testing predict the performance during a simulated space-like mission. Testing at a constant dose rate equal to the lowest dose rate seen during the simulated flare provides an extremely conservative estimate of the overall amount of degradation. A constant dose rate equal to the average dose rate is also more conservative than the variable rate. It appears that, for this part, weighting the dose rates by the amount of total dose received at each rate (rather than the amount of time at each dose rate) results in an average rate that produces an amount of degradation that is a reasonable approximation to that received by the variable rate.

  10. Kinetics of Hydrogen Radical Reactions with Toluene Including Chemical Activation Theory Employing System-Specific Quantum RRK Theory Calibrated by Variational Transition State Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Junwei Lucas; Zheng, Jingjing; Truhlar, Donald G.

    Here, pressure-dependent reactions are ubiquitous in combustion and atmospheric chemistry. We employ a new calibration procedure for quantum Rice–Ramsperger–Kassel (QRRK) unimolecular rate theory within a chemical activation mechanism to calculate the pressure-falloff effect of a radical association with an aromatic ring. The new theoretical framework is applied to the reaction of H with toluene, which is a prototypical reaction in the combustion chemistry of aromatic hydrocarbons present in most fuels. Both the hydrogen abstraction reactions and the hydrogen addition reactions are calculated. Our system-specific (SS) QRRK approach is adjusted with SS parameters to agree with multistructural canonical variational transition statemore » theory with multidimensional tunneling (MS-CVT/SCT) at the high-pressure limit. The new method avoids the need for the usual empirical estimations of the QRRK parameters, and it eliminates the need for variational transition state theory calculations as a function of energy, although in this first application we do validate the falloff curves by comparing SS-QRRK results without tunneling to multistructural microcanonical variational transition state theory (MS-μVT) rate constants without tunneling. At low temperatures, the two approaches agree well with each other, but at high temperatures, SS-QRRK tends to overestimate falloff slightly. We also show that the variational effect is important in computing the energy-resolved rate constants. Multiple-structure anharmonicity, torsional–potential anharmonicity, and high-frequency-mode vibrational anharmonicity are all included in the rate computations, and torsional anharmonicity effects on the density of states are investigated. Branching fractions, which are both temperature- and pressure-dependent (and for which only limited data is available from experiment), are predicted as a function of pressure.« less

  11. Kinetics of Hydrogen Radical Reactions with Toluene Including Chemical Activation Theory Employing System-Specific Quantum RRK Theory Calibrated by Variational Transition State Theory

    DOE PAGES

    Bao, Junwei Lucas; Zheng, Jingjing; Truhlar, Donald G.

    2016-02-03

    Here, pressure-dependent reactions are ubiquitous in combustion and atmospheric chemistry. We employ a new calibration procedure for quantum Rice–Ramsperger–Kassel (QRRK) unimolecular rate theory within a chemical activation mechanism to calculate the pressure-falloff effect of a radical association with an aromatic ring. The new theoretical framework is applied to the reaction of H with toluene, which is a prototypical reaction in the combustion chemistry of aromatic hydrocarbons present in most fuels. Both the hydrogen abstraction reactions and the hydrogen addition reactions are calculated. Our system-specific (SS) QRRK approach is adjusted with SS parameters to agree with multistructural canonical variational transition statemore » theory with multidimensional tunneling (MS-CVT/SCT) at the high-pressure limit. The new method avoids the need for the usual empirical estimations of the QRRK parameters, and it eliminates the need for variational transition state theory calculations as a function of energy, although in this first application we do validate the falloff curves by comparing SS-QRRK results without tunneling to multistructural microcanonical variational transition state theory (MS-μVT) rate constants without tunneling. At low temperatures, the two approaches agree well with each other, but at high temperatures, SS-QRRK tends to overestimate falloff slightly. We also show that the variational effect is important in computing the energy-resolved rate constants. Multiple-structure anharmonicity, torsional–potential anharmonicity, and high-frequency-mode vibrational anharmonicity are all included in the rate computations, and torsional anharmonicity effects on the density of states are investigated. Branching fractions, which are both temperature- and pressure-dependent (and for which only limited data is available from experiment), are predicted as a function of pressure.« less

  12. Kinetics of Hydrogen Radical Reactions with Toluene Including Chemical Activation Theory Employing System-Specific Quantum RRK Theory Calibrated by Variational Transition State Theory.

    PubMed

    Bao, Junwei Lucas; Zheng, Jingjing; Truhlar, Donald G

    2016-03-02

    Pressure-dependent reactions are ubiquitous in combustion and atmospheric chemistry. We employ a new calibration procedure for quantum Rice-Ramsperger-Kassel (QRRK) unimolecular rate theory within a chemical activation mechanism to calculate the pressure-falloff effect of a radical association with an aromatic ring. The new theoretical framework is applied to the reaction of H with toluene, which is a prototypical reaction in the combustion chemistry of aromatic hydrocarbons present in most fuels. Both the hydrogen abstraction reactions and the hydrogen addition reactions are calculated. Our system-specific (SS) QRRK approach is adjusted with SS parameters to agree with multistructural canonical variational transition state theory with multidimensional tunneling (MS-CVT/SCT) at the high-pressure limit. The new method avoids the need for the usual empirical estimations of the QRRK parameters, and it eliminates the need for variational transition state theory calculations as a function of energy, although in this first application we do validate the falloff curves by comparing SS-QRRK results without tunneling to multistructural microcanonical variational transition state theory (MS-μVT) rate constants without tunneling. At low temperatures, the two approaches agree well with each other, but at high temperatures, SS-QRRK tends to overestimate falloff slightly. We also show that the variational effect is important in computing the energy-resolved rate constants. Multiple-structure anharmonicity, torsional-potential anharmonicity, and high-frequency-mode vibrational anharmonicity are all included in the rate computations, and torsional anharmonicity effects on the density of states are investigated. Branching fractions, which are both temperature- and pressure-dependent (and for which only limited data is available from experiment), are predicted as a function of pressure.

  13. Determination of stream reaeration coefficients by use of tracers

    USGS Publications Warehouse

    Kilpatrick, F.A.; Rathbun, R.E.; Yotsukura, N.; Parker, G.W.; DeLong, L.L.

    1987-01-01

    Stream reaeration is the physical absorption of oxygen from the atmosphere by a flowing stream. This is the primary process by which a stream replenishes the oxygen consumed in the biodegradation of organic wastes.Prior to 1965, reaeration rate coefficients could be estimated only by indirect methods. In 1965, a direct method of measuring stream reaeration coefficients was developed in which a radioactive tracer gas was injected into a stream--the tracer gas being desorbed from the stream inversely to how oxygen would be absorbed. The technique has since been modified by substituting hydrocarbon gases for the radioactive tracer gas.This manual describes the slug-injection and constant-rate injection methods of performing gas-tracer desorption measurements. Emphasis is on the use of rhodamine WT dye as a relatively conservative tracer and propane as the nonconservative gas tracer, on planning field tests, methods of injection, sampling and analysis, and computational techniques to compute desorption and reaeration coefficients.

  14. Programmable energy landscapes for kinetic control of DNA strand displacement.

    PubMed

    Machinek, Robert R F; Ouldridge, Thomas E; Haley, Natalie E C; Bath, Jonathan; Turberfield, Andrew J

    2014-11-10

    DNA is used to construct synthetic systems that sense, actuate, move and compute. The operation of many dynamic DNA devices depends on toehold-mediated strand displacement, by which one DNA strand displaces another from a duplex. Kinetic control of strand displacement is particularly important in autonomous molecular machinery and molecular computation, in which non-equilibrium systems are controlled through rates of competing processes. Here, we introduce a new method based on the creation of mismatched base pairs as kinetic barriers to strand displacement. Reaction rate constants can be tuned across three orders of magnitude by altering the position of such a defect without significantly changing the stabilities of reactants or products. By modelling reaction free-energy landscapes, we explore the mechanistic basis of this control mechanism. We also demonstrate that oxDNA, a coarse-grained model of DNA, is capable of accurately predicting and explaining the impact of mismatches on displacement kinetics.

  15. Cosmological Constant: A Lesson from Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Finazzi, Stefano; Liberati, Stefano; Sindoni, Lorenzo

    2012-02-01

    The cosmological constant is one of the most pressing problems in modern physics. We address this issue from an emergent gravity standpoint, by using an analogue gravity model. Indeed, the dynamics of the emergent metric in a Bose-Einstein condensate can be described by a Poisson-like equation with a vacuum source term reminiscent of a cosmological constant. The direct computation of this term shows that in emergent gravity scenarios this constant may be naturally much smaller than the naive ground-state energy of the emergent effective field theory. This suggests that a proper computation of the cosmological constant would require a detailed understanding about how Einstein equations emerge from the full microscopic quantum theory. In this light, the cosmological constant appears as a decisive test bench for any quantum or emergent gravity scenario.

  16. Cosmological constant: a lesson from Bose-Einstein condensates.

    PubMed

    Finazzi, Stefano; Liberati, Stefano; Sindoni, Lorenzo

    2012-02-17

    The cosmological constant is one of the most pressing problems in modern physics. We address this issue from an emergent gravity standpoint, by using an analogue gravity model. Indeed, the dynamics of the emergent metric in a Bose-Einstein condensate can be described by a Poisson-like equation with a vacuum source term reminiscent of a cosmological constant. The direct computation of this term shows that in emergent gravity scenarios this constant may be naturally much smaller than the naive ground-state energy of the emergent effective field theory. This suggests that a proper computation of the cosmological constant would require a detailed understanding about how Einstein equations emerge from the full microscopic quantum theory. In this light, the cosmological constant appears as a decisive test bench for any quantum or emergent gravity scenario.

  17. Kinetic modeling of cellulosic biomass to ethanol via simultaneous saccharification and fermentation: Part I. Accommodation of intermittent feeding and analysis of staged reactors.

    PubMed

    Shao, Xiongjun; Lynd, Lee; Wyman, Charles; Bakker, André

    2009-01-01

    The model of South et al. [South et al. (1995) Enzyme Microb Technol 17(9): 797-803] for simultaneous saccharification of fermentation of cellulosic biomass is extended and modified to accommodate intermittent feeding of substrate and enzyme, cascade reactor configurations, and to be more computationally efficient. A dynamic enzyme adsorption model is found to be much more computationally efficient than the equilibrium model used previously, thus increasing the feasibility of incorporating the kinetic model in a computational fluid dynamic framework in the future. For continuous or discretely fed reactors, it is necessary to use particle conversion in conversion-dependent hydrolysis rate laws rather than reactor conversion. Whereas reactor conversion decreases due to both reaction and exit of particles from the reactor, particle conversion decreases due to reaction only. Using the modified models, it is predicted that cellulose conversion increases with decreasing feeding frequency (feedings per residence time, f). A computationally efficient strategy for modeling cascade reactors involving a modified rate constant is shown to give equivalent results relative to an exhaustive approach considering the distribution of particles in each successive fermenter.

  18. Application of the compensated Arrhenius formalism to explain the dielectric constant dependence of rates for Menschutkin reactions.

    PubMed

    Petrowsky, Matt; Glatzhofer, Daniel T; Frech, Roger

    2013-11-21

    The dependence of the reaction rate on solvent dielectric constant is examined for the reaction of trihexylamine with 1-bromohexane in a series of 2-ketones over the temperature range 25-80 °C. The rate constant data are analyzed using the compensated Arrhenius formalism (CAF), where the rate constant assumes an Arrhenius-like equation that also contains a dielectric constant dependence in the exponential prefactor. The CAF activation energies are substantially higher than those obtained using the simple Arrhenius equation. A master curve of the data is observed by plotting the prefactors against the solvent dielectric constant. The master curve shows that the reaction rate has a weak dependence on dielectric constant for values approximately less than 10 and increases more rapidly for dielectric constant values greater than 10.

  19. Statistical effects related to low numbers of reacting molecules analyzed for a reversible association reaction A + B = C in ideally dispersed systems: An apparent violation of the law of mass action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szymanski, R., E-mail: rszymans@cbmm.lodz.pl; Sosnowski, S.; Maślanka, Ł.

    2016-03-28

    Theoretical analysis and computer simulations (Monte Carlo and numerical integration of differential equations) show that the statistical effect of a small number of reacting molecules depends on a way the molecules are distributed among the small volume nano-reactors (droplets in this study). A simple reversible association A + B = C was chosen as a model reaction, enabling to observe both thermodynamic (apparent equilibrium constant) and kinetic effects of a small number of reactant molecules. When substrates are distributed uniformly among droplets, all containing the same equal number of substrate molecules, the apparent equilibrium constant of the association is highermore » than the chemical one (observed in a macroscopic—large volume system). The average rate of the association, being initially independent of the numbers of molecules, becomes (at higher conversions) higher than that in a macroscopic system: the lower the number of substrate molecules in a droplet, the higher is the rate. This results in the correspondingly higher apparent equilibrium constant. A quite opposite behavior is observed when reactant molecules are distributed randomly among droplets: the apparent association rate and equilibrium constants are lower than those observed in large volume systems, being the lower, the lower is the average number of reacting molecules in a droplet. The random distribution of reactant molecules corresponds to ideal (equal sizes of droplets) dispersing of a reaction mixture. Our simulations have shown that when the equilibrated large volume system is dispersed, the resulting droplet system is already at equilibrium and no changes of proportions of droplets differing in reactant compositions can be observed upon prolongation of the reaction time.« less

  20. Update on Bayesian Blocks: Segmented Models for Sequential Data

    NASA Technical Reports Server (NTRS)

    Scargle, Jeff

    2017-01-01

    The Bayesian Block algorithm, in wide use in astronomy and other areas, has been improved in several ways. The model for block shape has been generalized to include other than constant signal rate - e.g., linear, exponential, or other parametric models. In addition the computational efficiency has been improved, so that instead of O(N**2) the basic algorithm is O(N) in most cases. Other improvements in the theory and application of segmented representations will be described.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, Samuel M., E-mail: samuel.greene@chem.ox.ac.uk; Shan, Xiao, E-mail: xiao.shan@chem.ox.ac.uk; Clary, David C., E-mail: david.clary@chem.ox.ac.u

    Semiclassical Transition State Theory (SCTST), a method for calculating rate constants of chemical reactions, offers gains in computational efficiency relative to more accurate quantum scattering methods. In full-dimensional (FD) SCTST, reaction probabilities are calculated from third and fourth potential derivatives along all vibrational degrees of freedom. However, the computational cost of FD SCTST scales unfavorably with system size, which prohibits its application to larger systems. In this study, the accuracy and efficiency of 1-D SCTST, in which only third and fourth derivatives along the reaction mode are used, are investigated in comparison to those of FD SCTST. Potential derivatives aremore » obtained from numerical ab initio Hessian matrix calculations at the MP2/cc-pVTZ level of theory, and Richardson extrapolation is applied to improve the accuracy of these derivatives. Reaction barriers are calculated at the CCSD(T)/cc-pVTZ level. Results from FD SCTST agree with results from previous theoretical and experimental studies when Richardson extrapolation is applied. Results from our implementation of 1-D SCTST, which uses only 4 single-point MP2/cc-pVTZ energy calculations in addition to those for conventional TST, agree with FD results to within a factor of 5 at 250 K. This degree of agreement and the efficiency of the 1-D method suggest its potential as a means of approximating rate constants for systems too large for existing quantum scattering methods.« less

  2. A moment-convergence method for stochastic analysis of biochemical reaction networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiajun; Nie, Qing; Zhou, Tianshou, E-mail: mcszhtsh@mail.sysu.edu.cn

    Traditional moment-closure methods need to assume that high-order cumulants of a probability distribution approximate to zero. However, this strong assumption is not satisfied for many biochemical reaction networks. Here, we introduce convergent moments (defined in mathematics as the coefficients in the Taylor expansion of the probability-generating function at some point) to overcome this drawback of the moment-closure methods. As such, we develop a new analysis method for stochastic chemical kinetics. This method provides an accurate approximation for the master probability equation (MPE). In particular, the connection between low-order convergent moments and rate constants can be more easily derived in termsmore » of explicit and analytical forms, allowing insights that would be difficult to obtain through direct simulation or manipulation of the MPE. In addition, it provides an accurate and efficient way to compute steady-state or transient probability distribution, avoiding the algorithmic difficulty associated with stiffness of the MPE due to large differences in sizes of rate constants. Applications of the method to several systems reveal nontrivial stochastic mechanisms of gene expression dynamics, e.g., intrinsic fluctuations can induce transient bimodality and amplify transient signals, and slow switching between promoter states can increase fluctuations in spatially heterogeneous signals. The overall approach has broad applications in modeling, analysis, and computation of complex biochemical networks with intrinsic noise.« less

  3. Reactions of mixed silver-gold cluster cations AgmAun+ (m+n=4,5,6) with CO: Radiative association kinetics and density functional theory computations

    NASA Astrophysics Data System (ADS)

    Neumaier, Marco; Weigend, Florian; Hampe, Oliver; Kappes, Manfred M.

    2006-09-01

    Near thermal energy reactive collisions of small mixed metal cluster cations AgmAun+ (m +n=4, 5, and 6) with carbon monoxide have been studied in the room temperature Penning trap of a Fourier transform ion-cyclotron-resonance mass spectrometer as a function of cluster size and composition. The tetrameric species AgAu3+ and Ag2Au2+ are found to react dissociatively by way of Au or Ag atom loss, respectively, to form the cluster carbonyl AgAu2CO+. In contrast, measurements on a selection of pentamers and hexamers show that CO is added with absolute rate constants that decrease with increasing silver content. Experimentally determined absolute rate constants for CO adsorption were analyzed using the radiative association kinetics model to obtain cluster cation-CO binding energies ranging from 0.77to1.09eV. High-level ab initio density functional theory (DFT) computations identifying the lowest-energy cluster isomers and the respective CO adsorption energies are in good agreement with the experimental findings clearly showing that CO binds in a "head-on" fashion to a gold atom in the mixed clusters. DFT exploration of reaction pathways in the case of Ag2Au2+ suggests that exoergicities are high enough to access the minimum energy products for all reactive clusters probed.

  4. Experimental and computational results on exciton/free-carrier ratio, hot/thermalized carrier diffusion, and linear/nonlinear rate constants affecting scintillator proportionality

    NASA Astrophysics Data System (ADS)

    Williams, R. T.; Grim, Joel Q.; Li, Qi; Ucer, K. B.; Bizarri, G. A.; Kerisit, S.; Gao, Fei; Bhattacharya, P.; Tupitsyn, E.; Rowe, E.; Buliga, V. M.; Burger, A.

    2013-09-01

    Models of nonproportional response in scintillators have highlighted the importance of parameters such as branching ratios, carrier thermalization times, diffusion, kinetic order of quenching, associated rate constants, and radius of the electron track. For example, the fraction ηeh of excitations that are free carriers versus excitons was shown by Payne and coworkers to have strong correlation with the shape of electron energy response curves from Compton-coincidence studies. Rate constants for nonlinear quenching are implicit in almost all models of nonproportionality, and some assumption about track radius must invariably be made if one is to relate linear energy deposition dE/dx to volume-based excitation density n (eh/cm3) in terms of which the rates are defined. Diffusion, affecting time-dependent track radius and thus density of excitations, has been implicated as an important factor in nonlinear light yield. Several groups have recently highlighted diffusion of hot electrons in addition to thermalized carriers and excitons in scintillators. However, experimental determination of many of these parameters in the insulating crystals used as scintillators has seemed difficult. Subpicosecond laser techniques including interband z scan light yield, fluence-dependent decay time, and transient optical absorption are now yielding experimental values for some of the missing rates and ratios needed for modeling scintillator response. First principles calculations and Monte Carlo simulations can fill in additional parameters still unavailable from experiment. As a result, quantitative modeling of scintillator electron energy response from independently determined material parameters is becoming possible on an increasingly firmer data base. This paper describes recent laser experiments, calculations, and numerical modeling of scintillator response.

  5. Experimental and computational results on exciton/free-carrier ratio, hot/thermalized carrier diffusion, and linear/nonlinear rate constants affecting scintillator proportionality

    DOE PAGES

    Williams, R. T.; Grim, Joel Q.; Li, Qi; ...

    2013-09-26

    Models of nonproportional response in scintillators have highlighted the importance of parameters such as branching ratios, carrier thermalization times, diffusion, kinetic order of quenching, associated rate constants, and radius of the electron track. For example, the fraction ηeh of excitations that are free carriers versus excitons was shown by Payne and coworkers to have strong correlation with the shape of electron energy response curves from Compton-coincidence studies. Rate constants for nonlinear quenching are implicit in almost all models of nonproportionality, and some assumption about track radius must invariably be made if one is to relate linear energy deposition dE/dx tomore » volume-based excitation density n (eh/cm 3) in terms of which the rates are defined. Diffusion, affecting time-dependent track radius and thus density of excitations, has been implicated as an important factor in nonlinear light yield. Several groups have recently highlighted diffusion of hot electrons in addition to thermalized carriers and excitons in scintillators. However, experimental determination of many of these parameters in the insulating crystals used as scintillators has seemed difficult. Subpicosecond laser techniques including interband z scan light yield, fluence-dependent decay time, and transient optical absorption are now yielding experimental values for some of the missing rates and ratios needed for modeling scintillator response. First principles calculations and Monte Carlo simulations can fill in additional parameters still unavailable from experiment. As a result, quantitative modeling of scintillator electron energy response from independently determined material parameters is becoming possible on an increasingly firmer data base. This study describes recent laser experiments, calculations, and numerical modeling of scintillator response.« less

  6. Determinants of fluidlike behavior and effective viscosity in cross-linked actin networks.

    PubMed

    Kim, Taeyoon; Gardel, Margaret L; Munro, Ed

    2014-02-04

    The actin cortex has a well-documented ability to rapidly remodel and flow while maintaining long-range connectivity, but how this is achieved remains poorly understood. Here, we use computer simulations to explore how stress relaxation in cross-linked actin networks subjected to extensional stress depends on the interplay between network architecture and turnover. We characterize a regime in which a network response is nonaffine and stress relaxation is governed by the continuous dissipation of elastic energy via cyclic formation, elongation, and turnover of tension-bearing elements. Within this regime, for a wide range of network parameters, we observe a constant deformation (creep) rate that is linearly proportional to the rate of filament turnover, leading to a constant effective viscosity that is inversely proportional to turnover rate. Significantly, we observe a biphasic dependence of the creep rate on applied stress: below a critical stress threshold, the creep rate increases linearly with applied stress; above that threshold, the creep rate becomes independent of applied stress. We show that this biphasic stress dependence can be understood in terms of the nonlinear force-extension behavior of individual force-transmitting network elements. These results have important implications for understanding the origins and control of viscous flows both in the cortex of living cells and in other polymer networks. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Quantum adiabatic computation with a constant gap is not useful in one dimension.

    PubMed

    Hastings, M B

    2009-07-31

    We show that it is possible to use a classical computer to efficiently simulate the adiabatic evolution of a quantum system in one dimension with a constant spectral gap, starting the adiabatic evolution from a known initial product state. The proof relies on a recently proven area law for such systems, implying the existence of a good matrix product representation of the ground state, combined with an appropriate algorithm to update the matrix product state as the Hamiltonian is changed. This implies that adiabatic evolution with such Hamiltonians is not useful for universal quantum computation. Therefore, adiabatic algorithms which are useful for universal quantum computation either require a spectral gap tending to zero or need to be implemented in more than one dimension (we leave open the question of the computational power of adiabatic simulation with a constant gap in more than one dimension).

  8. Rate constants measured for hydrated electron reactions with peptides and proteins

    NASA Technical Reports Server (NTRS)

    Braams, R.

    1968-01-01

    Effects of ionizing radiation on the amino acids of proteins and the reactivity of the protonated amino group depends upon the pK subscript a of the group. Estimates of the rate constants for reactions involving the amino acid side chains are presented. These rate constants gave an approximate rate constant for three different protein molecules.

  9. Computation of the sound generated by isotropic turbulence

    NASA Technical Reports Server (NTRS)

    Sarkar, S.; Hussaini, M. Y.

    1993-01-01

    The acoustic radiation from isotropic turbulence is computed numerically. A hybrid direct numerical simulation approach which combines direct numerical simulation (DNS) of the turbulent flow with the Lighthill acoustic analogy is utilized. It is demonstrated that the hybrid DNS method is a feasible approach to the computation of sound generated by turbulent flows. The acoustic efficiency in the simulation of isotropic turbulence appears to be substantially less than that in subsonic jet experiments. The dominant frequency of the computed acoustic pressure is found to be somewhat larger than the dominant frequency of the energy-containing scales of motion. The acoustic power in the simulations is proportional to epsilon (M(sub t))(exp 5) where epsilon is the turbulent dissipation rate and M(sub t) is the turbulent Mach number. This is in agreement with the analytical result of Proudman (1952), but the constant of proportionality is smaller than the analytical result. Two different methods of computing the acoustic power from the DNS data bases yielded consistent results.

  10. Non-Bloch decay of Rabi oscillations in liquid state NMR

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Arnab; Bhattacharyya, Rangeet

    2018-03-01

    Rabi oscillations are known to exhibit non-Bloch behaviour in anisotropic media. In this letter, we report an experimental observation of non-Bloch decay of Rabi oscillations in isotropic liquid state NMR. To avoid the dephasing due to the radio-frequency inhomogeneities, we develop a modified version of the rotary echo protocol and use it to determine the decay rates of Rabi oscillations. We find that the measured decay rates are proportional to the square of the Rabi frequencies and the proportionality constant is of the order of tens of picoseconds. Further, we show that this non-Bloch nature of the decay rates becomes less prominent with increasing temperature. The implications of the presence of non-Bloch decay rates in liquid state NMR in the context of ensemble quantum computing are also discussed.

  11. Reliability Growth in Space Life Support Systems

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.

    2014-01-01

    A hardware system's failure rate often increases over time due to wear and aging, but not always. Some systems instead show reliability growth, a decreasing failure rate with time, due to effective failure analysis and remedial hardware upgrades. Reliability grows when failure causes are removed by improved design. A mathematical reliability growth model allows the reliability growth rate to be computed from the failure data. The space shuttle was extensively maintained, refurbished, and upgraded after each flight and it experienced significant reliability growth during its operational life. In contrast, the International Space Station (ISS) is much more difficult to maintain and upgrade and its failure rate has been constant over time. The ISS Carbon Dioxide Removal Assembly (CDRA) reliability has slightly decreased. Failures on ISS and with the ISS CDRA continue to be a challenge.

  12. Binding equilibrium and kinetics of membrane-anchored receptors and ligands in cell adhesion: Insights from computational model systems and theory.

    PubMed

    Weikl, Thomas R; Hu, Jinglei; Xu, Guang-Kui; Lipowsky, Reinhard

    2016-09-02

    The adhesion of cell membranes is mediated by the binding of membrane-anchored receptor and ligand proteins. In this article, we review recent results from simulations and theory that lead to novel insights on how the binding equilibrium and kinetics of these proteins is affected by the membranes and by the membrane anchoring and molecular properties of the proteins. Simulations and theory both indicate that the binding equilibrium constant [Formula: see text] and the on- and off-rate constants of anchored receptors and ligands in their 2-dimensional (2D) membrane environment strongly depend on the membrane roughness from thermally excited shape fluctuations on nanoscales. Recent theory corroborated by simulations provides a general relation between [Formula: see text] and the binding constant [Formula: see text] of soluble variants of the receptors and ligands that lack the membrane anchors and are free to diffuse in 3 dimensions (3D).

  13. Binding equilibrium and kinetics of membrane-anchored receptors and ligands in cell adhesion: Insights from computational model systems and theory

    PubMed Central

    Weikl, Thomas R.; Hu, Jinglei; Xu, Guang-Kui; Lipowsky, Reinhard

    2016-01-01

    ABSTRACT The adhesion of cell membranes is mediated by the binding of membrane-anchored receptor and ligand proteins. In this article, we review recent results from simulations and theory that lead to novel insights on how the binding equilibrium and kinetics of these proteins is affected by the membranes and by the membrane anchoring and molecular properties of the proteins. Simulations and theory both indicate that the binding equilibrium constant K2D and the on- and off-rate constants of anchored receptors and ligands in their 2-dimensional (2D) membrane environment strongly depend on the membrane roughness from thermally excited shape fluctuations on nanoscales. Recent theory corroborated by simulations provides a general relation between K2D and the binding constant K3D of soluble variants of the receptors and ligands that lack the membrane anchors and are free to diffuse in 3 dimensions (3D). PMID:27294442

  14. Tumor Delineation and Quantitative Assessment of Glucose Metabolic Rate within Histologic Subtypes of Non-Small Cell Lung Cancer by Using Dynamic 18F Fluorodeoxyglucose PET.

    PubMed

    Meijer, Tineke W H; de Geus-Oei, Lioe-Fee; Visser, Eric P; Oyen, Wim J G; Looijen-Salamon, Monika G; Visvikis, Dimitris; Verhagen, Ad F T M; Bussink, Johan; Vriens, Dennis

    2017-05-01

    Purpose To assess whether dynamic fluorine 18 ( 18 F) fluorodeoxyglucose (FDG) positron emission tomography (PET) has added value over static 18 F-FDG PET for tumor delineation in non-small cell lung cancer (NSCLC) radiation therapy planning by using pathology volumes as the reference standard and to compare pharmacokinetic rate constants of 18 F-FDG metabolism, including regional variation, between NSCLC histologic subtypes. Materials and Methods The study was approved by the institutional review board. Patients gave written informed consent. In this prospective observational study, 1-hour dynamic 18 F-FDG PET/computed tomographic examinations were performed in 35 patients (36 resectable NSCLCs) between 2009 and 2014. Static and parametric images of glucose metabolic rate were obtained to determine lesion volumes by using three delineation strategies. Pathology volume was calculated from three orthogonal dimensions (n = 32). Whole tumor and regional rate constants and blood volume fraction (V B ) were computed by using compartment modeling. Results Pathology volumes were larger than PET volumes (median difference, 8.7-25.2 cm 3 ; Wilcoxon signed rank test, P < .001). Static fuzzy locally adaptive Bayesian (FLAB) volumes corresponded best with pathology volumes (intraclass correlation coefficient, 0.72; P < .001). Bland-Altman analyses showed the highest precision and accuracy for static FLAB volumes. Glucose metabolic rate and 18 F-FDG phosphorylation rate were higher in squamous cell carcinoma (SCC) than in adenocarcinoma (AC), whereas V B was lower (Mann-Whitney U test or t test, P = .003, P = .036, and P = .019, respectively). Glucose metabolic rate, 18 F-FDG phosphorylation rate, and V B were less heterogeneous in AC than in SCC (Friedman analysis of variance). Conclusion Parametric images are not superior to static images for NSCLC delineation. FLAB-based segmentation on static 18 F-FDG PET images is in best agreement with pathology volume and could be useful for NSCLC autocontouring. Differences in glycolytic rate and V B between SCC and AC are relevant for research in targeting agents and radiation therapy dose escalation. © RSNA, 2016 Online supplemental material is available for this article.

  15. Growth behavior of surface cracks in pipeline steels exposed to near-neutral pH environments

    NASA Astrophysics Data System (ADS)

    Egbewande, Afolabi Taiwo

    We perform Restrained hybrid Monte Carlo simulations to compute the equilibrium constant of the dissociation reaction of HF in HF(H 2O) 7. We find that, like in the bulk, hydrofluoric acid, is a weak acid also in the cubic HF(H2O)7 cluster, and that its acidity is higher at lower T. This latter phenomenon has a (vibrational) entropic origin, namely it is due to the reduction of the (negative) TDeltaS contribution to the variation of free energy between the reactant and product. We found also a temperature dependence of the reactions mechanism. At low T (≤225 K) the dissociation reaction follows a concerted path, with the H atoms belonging to the relevant hydrogen bond chain moving synchronously. At higher T (300 K), first two hydrogen atoms move together, forming an intermediate metastable state having the structure of an Eigen ion H9O 4 +, then the third hydrogen migrates completing the reaction. We also compute the dissociation rate constant, krp. We find that at very low T (≤75 K), krp depends strongly on the temperature, while it is almost constant at higher Ts. With respect to the bulk, the HF dissociation in HF(H2O)7 is about one order of magnitude faster. This is due to a lower free energy barrier for dissociation in the cluster.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heifetz, Alexander; Vilim, Richard

    Super-critical carbon dioxide (S-CO2) is a promising thermodynamic cycle for advanced nuclear reactors and solar energy conversion applications. Dynamic control of the proposed recompression S-CO2 cycle is accomplished with input from resistance temperature detector (RTD) measurements of the process fluid. One of the challenges in practical implementation of S-CO2 cycle is high corrosion rate of component and sensor materials. In this paper, we develop a mathematical model of RTD sensing using eigendecomposition model of radial heat transfer in a layered long cylinder. We show that the value of RTD time constant primarily depends on the rate of heat transfer frommore » the fluid to the outer wall of RTD. We also show that for typical material properties, RTD time constant can be calculated as the sum of reciprocal eigen-values of the heat transfer matrix. Using the computational model and a set of RTD and CO2 fluid thermophysical parameter values, we calculate the value of time constant of thermowell-mounted RTD sensor at the hot side of the precooler in the S-CO2 cycle. The eigendecomposition model of RTD will be used in future studies to model sensor degradation and its impact on control of S-CO2. (C) 2016 Elsevier B.V. All rights reserved.« less

  17. Subsite mapping of enzymes. Application of the depolymerase computer model to two alpha-amylases.

    PubMed Central

    Allen, J D; Thoma, J A

    1976-01-01

    In the preceding paper (Allen and Thoma, 1976) we developed a depolymerase computer model, which uses a minimization routine to establish a subsite map for a depolymerase. In the present paper we show how the model is applied to experimental data for two alpha-amylases. Michaelis parameters and bond-cleavage frequencies for substrates of chain lengths up to twelve glucosyl units have been reported for Bacillus amyloliquefaciens, and a subsite map has been proposed for this enzyme [Thoma et al. (1971) J. Biol. Chem. 246, 5621-5635]. By applying the computer model to the experimental data, we have arrived at a ten-subsite map. We find that a significant improvement in this map is achieved by allowing the hydrolytic rate coefficient to vary as a function of the number of occupied subsites comprising the enzyme-binding region. The bond-cleavage frequencies, the enzyme is found to have eight subsites. A partial subsite map is arrived at, but the entire binding region cannot be mapped because Michaelis parameters are complicated by transglycosylation reactions. The hydrolytic rate coefficients for this enzyme are not constant. PMID:999630

  18. Dissociation rate of bromine diatomics in an argon heat bath

    NASA Technical Reports Server (NTRS)

    Razner, R.; Hopkins, D.

    1973-01-01

    The evolution of a collection of 300 K bromine diatomics embedded in a heat bath of argon atoms at 1800 K was studied by computer, and a dissociation-rate constant for the reaction Br2 + BR + Ar yields Br + Ar was determined. Previously published probability distributions for energy and angular momentum transfers in classical three-dimensional Br2-Ar collisions were used in conjunction with a newly developed Monte Carlo scheme for this purpose. Results are compared with experimental shock-tube data and the predictions of several other theoretical models. A departure from equilibrium is obtained which is significantly greater than that predicted by any of these other theories.

  19. On framing potential features of SWCNTs and MWCNTs in mixed convective flow

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Ullah, Siraj; Khan, M. Ijaz; Alsaedi, A.

    2018-03-01

    Our target in this research article is to elaborate the characteristics of Darcy-Forchheimer relation in carbon-water nanoliquid flow induced by impermeable stretched cylinder. Energy expression is modeled through viscous dissipation and nonlinear thermal radiation. Application of appropriate transformations yields nonlinear ODEs through nonlinear PDEs. Shooting technique is adopted for the computations of nonlinear ODEs. Importance of influential variables for velocity and thermal fields is elaborated graphically. Moreover rate of heat transfer and drag force are calculated and demonstrated through Tables. Our analysis reports that velocity is higher for ratio of rate constant and buoyancy factor when compared with porosity and volume fraction.

  20. Three-dimensional turbulent-mixing-length modeling for discrete-hole coolant injection into a crossflow

    NASA Technical Reports Server (NTRS)

    Wang, C. R.; Papell, S. S.

    1983-01-01

    Three dimensional mixing length models of a flow field immediately downstream of coolant injection through a discrete circular hole at a 30 deg angle into a crossflow were derived from the measurements of turbulence intensity. To verify their effectiveness, the models were used to estimate the anisotropic turbulent effects in a simplified theoretical and numerical analysis to compute the velocity and temperature fields. With small coolant injection mass flow rate and constant surface temperature, numerical results of the local crossflow streamwise velocity component and surface heat transfer rate are consistent with the velocity measurement and the surface film cooling effectiveness distributions reported in previous studies.

  1. Three-dimensional turbulent-mixing-length modeling for discrete-hole coolant injection into a crossflow

    NASA Astrophysics Data System (ADS)

    Wang, C. R.; Papell, S. S.

    1983-09-01

    Three dimensional mixing length models of a flow field immediately downstream of coolant injection through a discrete circular hole at a 30 deg angle into a crossflow were derived from the measurements of turbulence intensity. To verify their effectiveness, the models were used to estimate the anisotropic turbulent effects in a simplified theoretical and numerical analysis to compute the velocity and temperature fields. With small coolant injection mass flow rate and constant surface temperature, numerical results of the local crossflow streamwise velocity component and surface heat transfer rate are consistent with the velocity measurement and the surface film cooling effectiveness distributions reported in previous studies.

  2. A novel scaling approach for sooting laminar coflow flames at elevated pressures

    NASA Astrophysics Data System (ADS)

    Abdelgadir, Ahmed; Steinmetz, Scott A.; Attili, Antonio; Bisetti, Fabrizio; Roberts, William L.

    2016-11-01

    Laminar coflow diffusion flames are often used to study soot formation at elevated pressures due to their well-characterized configuration. In these expriments, these flames are operated at constant mass flow rate (constant Reynolds number) at increasing pressures. Due to the effect of gravity, the flame shape changes and as a results, the mixing field changes, which in return has a great effect on soot formation. In this study, a novel scaling approach of the flame at different pressures is proposed. In this approach, both the Reynolds and Grashof's numbers are kept constant so that the effect of gravity is the same at all pressures. In order to keep the Grashof number constant, the diameter of the nozzle is modified as pressure varies. We report both numerical and experimental data proving that this approach guarantees the same nondimensional flow fields over a broad range of pressures. In the range of conditions studied, the Damkoehler number, which varies when both Reynolds and Grashof numbers are kept constant, is shown to play a minor role. Hence, a set of suitable flames for investigating soot formation at pressure is identified. This research made use of the resources of IT Research Computing at King Abdullah University of Science & Technology (KAUST), Saudi Arabia.

  3. Creatine kinase rate constant in the human heart measured with 3D-localization at 7 tesla.

    PubMed

    Clarke, William T; Robson, Matthew D; Neubauer, Stefan; Rodgers, Christopher T

    2017-07-01

    We present a new Bloch-Siegert four Angle Saturation Transfer (BOAST) method for measuring the creatine kinase (CK) first-order effective rate constant k f in human myocardium at 7 tesla (T). BOAST combines a variant of the four-angle saturation transfer (FAST) method using amplitude-modulated radiofrequency pulses, phosphorus Bloch-Siegert B1+-mapping to determine the per-voxel flip angles, and nonlinear fitting to Bloch simulations for postprocessing. Optimal flip angles and repetition time parameters were determined from Monte Carlo simulations. BOAST was validated in the calf muscle of two volunteers at 3T and 7T. The myocardial CK forward rate constant was then measured in 10 volunteers at 7T in 82 min (after 1 H localization). BOAST kfCK values were 0.281 ± 0.002 s -1 in the calf and 0.35 ± 0.05 s -1 in myocardium. These are consistent with literature values from lower fields. Using a literature values for adenosine triphosphate concentration, we computed CK flux values of 4.55 ± 1.52 mmol kg -1 s -1 . The sensitive volume for BOAST depends on the B 1 inhomogeneity of the transmit coil. BOAST enables measurement of the CK rate constant in the human heart at 7T, with spatial localization in three dimensions to 5.6 mL voxels, using a 10-cm loop coil. Magn Reson Med 78:20-32, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  4. Creatine kinase rate constant in the human heart measured with 3D‐localization at 7 tesla

    PubMed Central

    Robson, Matthew D.; Neubauer, Stefan; Rodgers, Christopher T.

    2016-01-01

    Purpose We present a new Bloch‐Siegert four Angle Saturation Transfer (BOAST) method for measuring the creatine kinase (CK) first‐order effective rate constant kf in human myocardium at 7 tesla (T). BOAST combines a variant of the four‐angle saturation transfer (FAST) method using amplitude‐modulated radiofrequency pulses, phosphorus Bloch‐Siegert B1+‐mapping to determine the per‐voxel flip angles, and nonlinear fitting to Bloch simulations for postprocessing. Methods Optimal flip angles and repetition time parameters were determined from Monte Carlo simulations. BOAST was validated in the calf muscle of two volunteers at 3T and 7T. The myocardial CK forward rate constant was then measured in 10 volunteers at 7T in 82 min (after 1H localization). Results BOAST kfCK values were 0.281 ± 0.002 s−1 in the calf and 0.35 ± 0.05 s−1 in myocardium. These are consistent with literature values from lower fields. Using a literature values for adenosine triphosphate concentration, we computed CK flux values of 4.55 ± 1.52 mmol kg−1 s−1. The sensitive volume for BOAST depends on the B1 inhomogeneity of the transmit coil. Conclusion BOAST enables measurement of the CK rate constant in the human heart at 7T, with spatial localization in three dimensions to 5.6 mL voxels, using a 10‐cm loop coil. Magn Reson Med 78:20–32, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:27579566

  5. A theoretical study of the H-abstraction reactions from HOI by moist air radiolytic products (H, OH, and O (3P)) and iodine atoms (2P(3/2)).

    PubMed

    Hammaecher, Catherine; Canneaux, Sébastien; Louis, Florent; Cantrel, Laurent

    2011-06-23

    The rate constants of the reactions of HOI molecules with H, OH, O ((3)P), and I ((2)P(3/2)) atoms have been estimated over the temperature range 300-2500 K using four different levels of theory. Geometry optimizations and vibrational frequency calculations are performed using MP2 methods combined with two basis sets (cc-pVTZ and 6-311G(d,p)). Single-point energy calculations are performed with the highly correlated ab initio coupled cluster method in the space of single, double, and triple (pertubatively) electron excitations CCSD(T) using the cc-pVTZ, cc-pVQZ, 6-311+G(3df,2p), and 6-311++G(3df,3pd) basis sets. Reaction enthalpies at 0 K were calculated at the CCSD(T)/cc-pVnZ//MP2/cc-pVTZ (n = T and Q), CCSD(T)/6-311+G(3df,2p)//MP2/6-311G(d,p), and CCSD(T)/6-311++G(3df,3pd)//MP2/6-311G(d,p) levels of theory and compared to the experimental values taken from the literature. Canonical transition-state theory with an Eckart tunneling correction is used to predict the rate constants as a function of temperature. The computational procedure has been used to predict rate constants for H-abstraction elementary reactions because there are actually no literature data to which the calculated rate constants can be directly compared. The final objective is to implement kinetics of gaseous reactions in the ASTEC (accident source term evaluation code) program to improve speciation of fission products, which can be transported along the reactor coolant system (RCS) of a pressurized water reactor (PWR) in the case of a severe accident.

  6. Kinetics and Thermodynamics of the Reaction between the (•)OH Radical and Adenine: A Theoretical Investigation.

    PubMed

    Milhøj, Birgitte O; Sauer, Stephan P A

    2015-06-18

    The accessibility of all possible reaction paths for the reaction between the nucleobase adenine and the (•)OH radical is investigated through quantum chemical calculations of barrier heights and rate constants at the ωB97X-D/6-311++G(2df,2pd) level with Eckart tunneling corrections. First the computational method is validated by considering the hydrogen abstraction from the heterocyclic N9 nitrogen in adenine as a test system. Geometries for all molecules in the reaction are optimized with four different DFT exchange-correlation functionals (B3LYP, BHandHLYP, M06-2X, and ωB97X-D), in combination with Pople and Dunning basis sets, all of which have been employed in similar investigations in the literature. Improved energies are obtained through single point calculations with CCSD(T) and the same basis sets, and reaction rate constants are calculated for all methods both without tunneling corrections and with the Wigner, Bell, and Eckart corrections. In comparison to CCSD(T)//BHandHLYP/aug-cc-pVTZ reference results, the ωB97X-D/6-311++G(2df,2pd) method combined with Eckart tunneling corrections provides a sensible compromise between accuracy and time. Using this method, all subreactions of the reaction between adenine and the (•)OH radical are investigated. The total rate constants for hydrogen abstraction and addition for adenine are predicted with this method to be 1.06 × 10(-12) and 1.10 × 10(-12) cm(3) molecules(-1) s(-1), respectively. Abstractions of H61 and H62 contribute the most, while only addition to the C8 carbon is found to be of any significance, in contrast to previous claims that addition is the dominant reaction pathway. The overall rate constant for the complete reaction is found to be 2.17 × 10(-12) cm(3) molecules(-1) s(-1), which agrees exceptionally well with experimental results.

  7. Transport, biodegradation and isotopic fractionation of chlorinated ethenes: modeling and parameter estimation methods

    NASA Astrophysics Data System (ADS)

    Béranger, Sandra C.; Sleep, Brent E.; Lollar, Barbara Sherwood; Monteagudo, Fernando Perez

    2005-01-01

    An analytical, one-dimensional, multi-species, reactive transport model for simulating the concentrations and isotopic signatures of tetrachloroethylene (PCE) and its daughter products was developed. The simulation model was coupled to a genetic algorithm (GA) combined with a gradient-based (GB) method to estimate the first order decay coefficients and enrichment factors. In testing with synthetic data, the hybrid GA-GB method reduced the computational requirements for parameter estimation by a factor as great as 300. The isotopic signature profiles were observed to be more sensitive than the concentration profiles to estimates of both the first order decay constants and enrichment factors. Including isotopic data for parameter estimation significantly increased the GA convergence rate and slightly improved the accuracy of estimation of first order decay constants.

  8. Schwarzschild-de Sitter spacetime: The role of temperature in the emission of Hawking radiation

    NASA Astrophysics Data System (ADS)

    Pappas, Thomas; Kanti, Panagiota

    2017-12-01

    We consider a Schwarzschild-de Sitter (SdS) black hole, and focus on the emission of massless scalar fields either minimally or non-minimally coupled to gravity. We use six different temperatures, two black-hole and four effective ones for the SdS spacetime, as the question of the proper temperature for such a background is still debated in the literature. We study their profiles under the variation of the cosmological constant, and derive the corresponding Hawking radiation spectra. We demonstrate that only few of these temperatures may support significant emission of radiation. We finally compute the total emissivities for each temperature, and show that the non-minimal coupling constant of the scalar field to gravity also affects the relative magnitudes of the energy emission rates.

  9. Efficient estimation of diffusion during dendritic solidification

    NASA Technical Reports Server (NTRS)

    Yeum, K. S.; Poirier, D. R.; Laxmanan, V.

    1989-01-01

    A very efficient finite difference method has been developed to estimate the solute redistribution during solidification with diffusion in the solid. This method is validated by comparing the computed results with the results of an analytical solution derived by Kobayashi (1988) for the assumptions of a constant diffusion coefficient, a constant equilibrium partition ratio, and a parabolic rate of the advancement of the solid/liquid interface. The flexibility of the method is demonstrated by applying it to the dendritic solidification of a Pb-15 wt pct Sn alloy, for which the equilibrium partition ratio and diffusion coefficient vary substantially during solidification. The fraction eutectic at the end of solidification is also obtained by estimating the fraction solid, in greater resolution, where the concentration of solute in the interdendritic liquid reaches the eutectic composition of the alloy.

  10. How to deal with the Poisson-gamma model to forecast patients' recruitment in clinical trials when there are pauses in recruitment dynamic?

    PubMed

    Minois, Nathan; Savy, Stéphanie; Lauwers-Cances, Valérie; Andrieu, Sandrine; Savy, Nicolas

    2017-03-01

    Recruiting patients is a crucial step of a clinical trial. Estimation of the trial duration is a question of paramount interest. Most techniques are based on deterministic models and various ad hoc methods neglecting the variability in the recruitment process. To overpass this difficulty the so-called Poisson-gamma model has been introduced involving, for each centre, a recruitment process modelled by a Poisson process whose rate is assumed constant in time and gamma-distributed. The relevancy of this model has been widely investigated. In practice, rates are rarely constant in time, there are breaks in recruitment (for instance week-ends or holidays). Such information can be collected and included in a model considering piecewise constant rate functions yielding to an inhomogeneous Cox model. The estimation of the trial duration is much more difficult. Three strategies of computation of the expected trial duration are proposed considering all the breaks, considering only large breaks and without considering breaks. The bias of these estimations procedure are assessed by means of simulation studies considering three scenarios of breaks simulation. These strategies yield to estimations with a very small bias. Moreover, the strategy with the best performances in terms of prediction and with the smallest bias is the one which does not take into account of breaks. This result is important as, in practice, collecting breaks data is pretty hard to manage.

  11. Detection of the YORP effect in asteroid (161989) Cacus

    NASA Astrophysics Data System (ADS)

    Durech, Josef; Vokrouhlicky, David; Pravec, Petr; Hanus, Josef; Kusnirak, Peter; Hornoch, Kamil; Galad, Adrian; Masi, Gianluca

    2016-10-01

    The rotation state of small asteroids is affected by the thermal Yarkovsky-O'Keefe-Radzievski-Paddack (YORP) torque. The directly observable consequence of YORP is the secular change of the asteroid's rotational period in time. We carried out new photometric observations of asteroid (161989) Cacus during its apparitions in 2014-2016. Using the new lightcurves together with archived data going back to 1978, we were able to detect a tiny deviation from the constant-period rotation. This deviation caused an observable shift between the observed lightcurves and those predicted by the best constant-period model. We used the lightcurve inversion method to derive a shape/spin solution that fitted the data at best. We assumed that the rotation rate evolved linearly in time and derived the acceleration of the rotation rate dω/dt = (1.9 +/- 0.3) × 10-8 rad/day2. The accelerating model provides a significantly better fit than the constant-period model. By applying a thermophysical model on WISE thermal infrared data, we estimated the thermal inertia of the surface to Γ = 250-2000 J m-2 s-0.5 K-1 and the volume-equivalent diameter to 0.8-1.2 km (1σ intervals). The value of dω/dt derived from observations is in agreement with the theoretical value computed numerically from the lightcurve inversion shape model and its spin axis orientation. Cacus has become the sixth asteroid with YORP detection. Surprisingly, for all six cases the rotation rate accelerates.

  12. Fault Injection Campaign for a Fault Tolerant Duplex Framework

    NASA Technical Reports Server (NTRS)

    Sacco, Gian Franco; Ferraro, Robert D.; von llmen, Paul; Rennels, Dave A.

    2007-01-01

    Fault tolerance is an efficient approach adopted to avoid or reduce the damage of a system failure. In this work we present the results of a fault injection campaign we conducted on the Duplex Framework (DF). The DF is a software developed by the UCLA group [1, 2] that uses a fault tolerant approach and allows to run two replicas of the same process on two different nodes of a commercial off-the-shelf (COTS) computer cluster. A third process running on a different node, constantly monitors the results computed by the two replicas, and eventually restarts the two replica processes if an inconsistency in their computation is detected. This approach is very cost efficient and can be adopted to control processes on spacecrafts where the fault rate produced by cosmic rays is not very high.

  13. Theoretical investigation of rotationally inelastic collisions of CH(X2Π) with hydrogen atoms

    NASA Astrophysics Data System (ADS)

    Dagdigian, Paul J.

    2017-06-01

    We report calculations of state-to-state cross sections for collision-induced rotational transitions of CH(X2Π) with atomic hydrogen. These calculations employed the four adiabatic potential energy surfaces correlating CH(X2Π) + H(2S), computed in this work through the multi-reference configuration interaction method [MRCISD + Q(Davidson)]. Because of the presence of deep wells on three of the potential energy surfaces, the scattering calculations were carried out using the quantum statistical method of Manolopoulos and co-workers [Chem. Phys. Lett. 343, 356 (2001)]. The computed cross sections included contributions from only direct scattering since the CH2 collision complex is expected to decay predominantly to C + H2. Rotationally energy transfer rate constants were computed for this system since these are required for astrophysical modeling.

  14. THE EFFECTS OF MAINTENANCE ACTIONS ON THE PFDavg OF SPRING OPERATED PRESSURE RELIEF VALVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, S.; Gross, R.

    2014-04-01

    The safety integrity level (SIL) of equipment used in safety instrumented functions is determined by the average probability of failure on demand (PFDavg) computed at the time of periodic inspection and maintenance, i.e., the time of proof testing. The computation of PFDavg is generally based solely on predictions or estimates of the assumed constant failure rate of the equipment. However, PFDavg is also affected by maintenance actions (or lack thereof) taken by the end user. This paper shows how maintenance actions can affect the PFDavg of spring operated pressure relief valves (SOPRV) and how these maintenance actions may be accountedmore » for in the computation of the PFDavg metric. The method provides a means for quantifying the effects of changes in maintenance practices and shows how these changes impact plant safety.« less

  15. The Effects of Maintenance Actions on the PFDavg of Spring Operated Pressure Relief Valves

    DOE PAGES

    Harris, S.; Gross, R.; Goble, W; ...

    2015-12-01

    The safety integrity level (SIL) of equipment used in safety instrumented functions is determined by the average probability of failure on demand (PFDavg) computed at the time of periodic inspection and maintenance, i.e., the time of proof testing. The computation of PFDavg is generally based solely on predictions or estimates of the assumed constant failure rate of the equipment. However, PFDavg is also affected by maintenance actions (or lack thereof) taken by the end user. This paper shows how maintenance actions can affect the PFDavg of spring operated pressure relief valves (SOPRV) and how these maintenance actions may be accountedmore » for in the computation of the PFDavg metric. The method provides a means for quantifying the effects of changes in maintenance practices and shows how these changes impact plant safety.« less

  16. Higher success rate with transcranial electrical stimulation of motor-evoked potentials using constant-voltage stimulation compared with constant-current stimulation in patients undergoing spinal surgery.

    PubMed

    Shigematsu, Hideki; Kawaguchi, Masahiko; Hayashi, Hironobu; Takatani, Tsunenori; Iwata, Eiichiro; Tanaka, Masato; Okuda, Akinori; Morimoto, Yasuhiko; Masuda, Keisuke; Tanaka, Yuu; Tanaka, Yasuhito

    2017-10-01

    During spine surgery, the spinal cord is electrophysiologically monitored via transcranial electrical stimulation of motor-evoked potentials (TES-MEPs) to prevent injury. Transcranial electrical stimulation of motor-evoked potential involves the use of either constant-current or constant-voltage stimulation; however, there are few comparative data available regarding their ability to adequately elicit compound motor action potentials. We hypothesized that the success rates of TES-MEP recordings would be similar between constant-current and constant-voltage stimulations in patients undergoing spine surgery. The objective of this study was to compare the success rates of TES-MEP recordings between constant-current and constant-voltage stimulation. This is a prospective, within-subject study. Data from 100 patients undergoing spinal surgery at the cervical, thoracic, or lumbar level were analyzed. The success rates of the TES-MEP recordings from each muscle were examined. Transcranial electrical stimulation with constant-current and constant-voltage stimulations at the C3 and C4 electrode positions (international "10-20" system) was applied to each patient. Compound muscle action potentials were bilaterally recorded from the abductor pollicis brevis (APB), deltoid (Del), abductor hallucis (AH), tibialis anterior (TA), gastrocnemius (GC), and quadriceps (Quad) muscles. The success rates of the TES-MEP recordings from the right Del, right APB, bilateral Quad, right TA, right GC, and bilateral AH muscles were significantly higher using constant-voltage stimulation than those using constant-current stimulation. The overall success rates with constant-voltage and constant-current stimulations were 86.3% and 68.8%, respectively (risk ratio 1.25 [95% confidence interval: 1.20-1.31]). The success rates of TES-MEP recordings were higher using constant-voltage stimulation compared with constant-current stimulation in patients undergoing spinal surgery. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Elongational flow of polymer melts at constant strain rate, constant stress and constant force

    NASA Astrophysics Data System (ADS)

    Wagner, Manfred H.; Rolón-Garrido, Víctor H.

    2013-04-01

    Characterization of polymer melts in elongational flow is typically performed at constant elongational rate or rarely at constant tensile stress conditions. One of the disadvantages of these deformation modes is that they are hampered by the onset of "necking" instabilities according to the Considère criterion. Experiments at constant tensile force have been performed even more rarely, in spite of the fact that this deformation mode is free from necking instabilities and is of considerable industrial relevance as it is the correct analogue of steady fiber spinning. It is the objective of the present contribution to present for the first time a full experimental characterization of a long-chain branched polyethylene melt in elongational flow. Experiments were performed at constant elongation rate, constant tensile stress and constant tensile force by use of a Sentmanat Extensional Rheometer (SER) in combination with an Anton Paar MCR301 rotational rheometer. The accessible experimental window and experimental limitations are discussed. The experimental data are modelled by using the Wagner I model. Predictions of the steady-start elongational viscosity in constant strain rate and creep experiments are found to be identical, albeit only by extrapolation of the experimental data to Hencky strains of the order of 6. For constant stress experiments, a minimum in the strain rate and a corresponding maximum in the elongational viscosity is found at a Hencky strain of the order of 3, which, although larger than the steady-state value, follows roughly the general trend of the steady-state elongational viscosity. The constitutive analysis also reveals that constant tensile force experiments indicate a larger strain hardening potential than seen in constant elongation rate or constant tensile stress experiments. This may be indicative of the effect of necking under constant elongation rate or constant tensile stress conditions according to the Considère criterion.

  18. Maximum likelihood methods for investigating reporting rates of rings on hunter-shot birds

    USGS Publications Warehouse

    Conroy, M.J.; Morgan, B.J.T.; North, P.M.

    1985-01-01

    It is well known that hunters do not report 100% of the rings that they find on shot birds. Reward studies can be used to estimate what this reporting rate is, by comparison of recoveries of rings offering a monetary reward, to ordinary rings. A reward study of American Black Ducks (Anas rubripes) is used to illustrate the design, and to motivate the development of statistical models for estimation and for testing hypotheses of temporal and geographic variation in reporting rates. The method involves indexing the data (recoveries) and parameters (reporting, harvest, and solicitation rates) by geographic and temporal strata. Estimates are obtained under unconstrained (e.g., allowing temporal variability in reporting rates) and constrained (e.g., constant reporting rates) models, and hypotheses are tested by likelihood ratio. A FORTRAN program, available from the author, is used to perform the computations.

  19. Photoexcitation of lasers and chemical reactions for NASA missions: A theoretical study. [optical pumping in high pressure gas

    NASA Technical Reports Server (NTRS)

    Javan, A.; Guerra, M.

    1981-01-01

    The possibility of obtaining CW laser oscillation by optical pumping in the infrared at an elevated gas pressure is reviewed. A specific example utilizing a mixture of CO and NO gases is included. The gas pressures considered are in excess of several atmospheres. Laser frequency tuning over a broad region becomes possible at such elevated gas pressures due to collisional broadening of the amplifying transitions. The prior-rate and surprisal analysis are applied to obtain detailed VV and VT rates for CO and NO molecules and the transfer rates in a CO-NO gas mixture. The analysis is capable of giving temperature dependence of the rate constants. Computer estimates of the rates are presented for vibrational levels up to v = 50. The results show that in the high-lying vibrational states the VV transfer rates with Delta nu = 2 become appreciable.

  20. Modeling Hybridization Kinetics of Gene Probes in a DNA Biochip Using FEMLAB

    PubMed Central

    Munir, Ahsan; Waseem, Hassan; Williams, Maggie R.; Stedtfeld, Robert D.; Gulari, Erdogan; Tiedje, James M.; Hashsham, Syed A.

    2017-01-01

    Microfluidic DNA biochips capable of detecting specific DNA sequences are useful in medical diagnostics, drug discovery, food safety monitoring and agriculture. They are used as miniaturized platforms for analysis of nucleic acids-based biomarkers. Binding kinetics between immobilized single stranded DNA on the surface and its complementary strand present in the sample are of interest. To achieve optimal sensitivity with minimum sample size and rapid hybridization, ability to predict the kinetics of hybridization based on the thermodynamic characteristics of the probe is crucial. In this study, a computer aided numerical model for the design and optimization of a flow-through biochip was developed using a finite element technique packaged software tool (FEMLAB; package included in COMSOL Multiphysics) to simulate the transport of DNA through a microfluidic chamber to the reaction surface. The model accounts for fluid flow, convection and diffusion in the channel and on the reaction surface. Concentration, association rate constant, dissociation rate constant, recirculation flow rate, and temperature were key parameters affecting the rate of hybridization. The model predicted the kinetic profile and signal intensities of eighteen 20-mer probes targeting vancomycin resistance genes (VRGs). Predicted signal intensities and hybridization kinetics strongly correlated with experimental data in the biochip (R2 = 0.8131). PMID:28555058

  1. Modeling Hybridization Kinetics of Gene Probes in a DNA Biochip Using FEMLAB.

    PubMed

    Munir, Ahsan; Waseem, Hassan; Williams, Maggie R; Stedtfeld, Robert D; Gulari, Erdogan; Tiedje, James M; Hashsham, Syed A

    2017-05-29

    Microfluidic DNA biochips capable of detecting specific DNA sequences are useful in medical diagnostics, drug discovery, food safety monitoring and agriculture. They are used as miniaturized platforms for analysis of nucleic acids-based biomarkers. Binding kinetics between immobilized single stranded DNA on the surface and its complementary strand present in the sample are of interest. To achieve optimal sensitivity with minimum sample size and rapid hybridization, ability to predict the kinetics of hybridization based on the thermodynamic characteristics of the probe is crucial. In this study, a computer aided numerical model for the design and optimization of a flow-through biochip was developed using a finite element technique packaged software tool (FEMLAB; package included in COMSOL Multiphysics) to simulate the transport of DNA through a microfluidic chamber to the reaction surface. The model accounts for fluid flow, convection and diffusion in the channel and on the reaction surface. Concentration, association rate constant, dissociation rate constant, recirculation flow rate, and temperature were key parameters affecting the rate of hybridization. The model predicted the kinetic profile and signal intensities of eighteen 20-mer probes targeting vancomycin resistance genes (VRGs). Predicted signal intensities and hybridization kinetics strongly correlated with experimental data in the biochip (R² = 0.8131).

  2. Instanton rate constant calculations close to and above the crossover temperature.

    PubMed

    McConnell, Sean; Kästner, Johannes

    2017-11-15

    Canonical instanton theory is known to overestimate the rate constant close to a system-dependent crossover temperature and is inapplicable above that temperature. We compare the accuracy of the reaction rate constants calculated using recent semi-classical rate expressions to those from canonical instanton theory. We show that rate constants calculated purely from solving the stability matrix for the action in degrees of freedom orthogonal to the instanton path is not applicable at arbitrarily low temperatures and use two methods to overcome this. Furthermore, as a by-product of the developed methods, we derive a simple correction to canonical instanton theory that can alleviate this known overestimation of rate constants close to the crossover temperature. The combined methods accurately reproduce the rate constants of the canonical theory along the whole temperature range without the spurious overestimation near the crossover temperature. We calculate and compare rate constants on three different reactions: H in the Müller-Brown potential, methylhydroxycarbene → acetaldehyde and H 2  + OH → H + H 2 O. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Kinetic dissection of individual steps in the poly(C)-directed oligoguanylate synthesis from guanosine 5'-monophosphate 2-methylimidazolide

    NASA Technical Reports Server (NTRS)

    Kanavarioti, A.; Bernasconi, C. F.; Alberas, D. J.; Baird, E. E.

    1993-01-01

    A kinetic study of oligoguanylate synthesis on a polycytidylate template, poly(C), as a function of the concentration of the activated monomer, guanosine 5'-monophosphate 2-methylimidazolide, 2-MeImpG, is reported. Reactions were run with 0.005-0.045 M 2-MeImpG in the presence of 0.05 M poly(C) at 23 degrees C. The kinetic results are consistent with a reaction scheme (eq 1) that consists of a series of consecutive steps, each step representing the addition of one molecule of 2-MeImpG to the growing oligomer. This scheme allows the calculation of second-order rate constants for every step by analyzing the time-dependent growth of each oligomer. Computer simulations of the course of reaction based on the determined rate constants and eq 1 are in excellent agreement with the product distributions seen in the HPLC profiles. In accord with an earlier study (Fakhrai, H.; Inoue, T.; Orgel, L. E. Tetrahedron 1984, 40, 39), rate constants, ki, for the formation of the tetramer and longer oligomers up to the 16-mer were found to be independent of length and somewhat higher than k3 (formation of trimer), which in turn is much higher than k2 (formation of dimer). The ki (i > or = 4), k3, and k2 values are not true second-order rate constants but vary with monomer concentration. Mechanistic models for the dimerization (Scheme I) and elongation reactions (Scheme II) are proposed that are consistent with our results. These models take into account that the monomer associates with the template in a cooperative manner. Our kinetic analysis allowed the determination of rate constants for the elementary processes of covalent bond formation between two monomers (dimerization) and between an oligomer and a monomer (elongation) on the template. A major conclusion from our study is that bond formation between two monomer units or between a primer and a monomer is assisted by the presence of additional next-neighbor monomer units. This is consistent with recent findings with hairpin oligonucleotides (Wu, T.; Orgel, L. E. J. Am. Chem. Soc. 1992, 114, 317). Our study is the first of its kind that shows the feasibility of a thorough kinetic analysis of a template-directed oligomerization and provides a detailed mechanistic model of these reactions.

  4. Luminescence of the (O{sub 2}(a{sup 1}Δ{sub g})){sub 2} collisional complex in the temperature range of 90-315 K: Experiment and theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zagidullin, M. V., E-mail: marsel@fian.smr.ru; Pershin, A. A., E-mail: anchizh93@gmail.com; Azyazov, V. N., E-mail: azyazov@ssau.ru

    Experimental and theoretical studies of collision induced emission of singlet oxygen molecules O{sub 2}(a{sup 1}Δ{sub g}) in the visible range have been performed. The rate constants, half-widths, and position of peaks for the emission bands of the (O{sub 2}(a{sup 1}Δ{sub g})){sub 2} collisional complex centered around 634 nm (2) and 703 nm (3) have been measured in the temperature range of 90–315 K using a flow-tube apparatus that utilized a gas-liquid chemical singlet oxygen generator. The absolute values of the spontaneous emission rate constants k{sub 2} and k{sub 3} are found to be similar, with the k{sub 3}/k{sub 2} ratiomore » monotonically decreasing from 1.1 at 300 K to 0.96 at 90 K. k{sub 2} slowly decreases with decreasing temperature but a sharp increase in its values is measured below 100 K. The experimental results were rationalized in terms of ab initio calculations of the ground and excited potential energy and transition dipole moment surfaces of singlet electronic states of the (O{sub 2}){sub 2} dimole, which were utilized to compute rate constants k{sub 2} and k{sub 3} within a statistical model. The best theoretical results reproduced experimental rate constants with the accuracy of under 40% and correctly described the observed temperature dependence. The main contribution to emission process (2), which does not involve vibrational excitation of O{sub 2} molecules at the ground electronic level, comes from the spin- and symmetry-allowed 1{sup 1}A{sub g}←{sup 1}B{sub 3u} transition in the rectangular H configuration of the dimole. Alternatively, emission process (3), in which one of the monomers becomes vibrationally excited in the ground electronic state, is found to be predominantly due to the vibronically allowed 1{sup 1}A{sub g}←2{sup 1}A{sub g} transition induced by the asymmetric O–O stretch vibration in the collisional complex. The strong vibronic coupling between nearly degenerate excited singlet states of the dimole makes the intensities of vibronically and symmetry-allowed transitions comparable and hence the rate constants k{sub 2} and k{sub 3} close to one another.« less

  5. A Green's function method for simulation of time-dependent solute transport and reaction in realistic microvascular geometries

    PubMed Central

    Secomb, Timothy W.

    2016-01-01

    A novel theoretical method is presented for simulating the spatially resolved convective and diffusive transport of reacting solutes between microvascular networks and the surrounding tissues. The method allows for efficient computational solution of problems involving convection and non-linear binding of solutes in blood flowing through microvascular networks with realistic 3D geometries, coupled with transvascular exchange and diffusion and reaction in the surrounding tissue space. The method is based on a Green's function approach, in which the solute concentration distribution in the tissue is expressed as a sum of fields generated by time-varying distributions of discrete sources and sinks. As an example of the application of the method, the washout of an inert diffusible tracer substance from a tissue region perfused by a network of microvessels is simulated, showing its dependence on the solute's transvascular permeability and tissue diffusivity. Exponential decay of the washout concentration is predicted, with rate constants that are about 10–30% lower than the rate constants for a tissue cylinder model with the same vessel length, vessel surface area and blood flow rate per tissue volume. PMID:26443811

  6. Slow and fast motion of cracks in inelastic solids. Part 1: Slow growth of cracks in a rate sensitive tresca solid. Part 2: Dynamic crack represented by the Dugdale model

    NASA Technical Reports Server (NTRS)

    Wnuk, M. P.; Sih, G. C.

    1972-01-01

    An extension is proposed of the classical theory of fracture to viscoelastic and elastic-plastic materials in which the plasticity effects are confined to a narrow band encompassing the crack front. It is suggested that the Griffith-Irwin criterion of fracture, which requires that the energy release rate computed for a given boundary value problem equals the critical threshold, ought to be replaced by a differential equation governing the slow growth of a crack prior to the onset of rapid propagation. A new term which enters the equation of motion in the dissipative media is proportional to the energy lost within the end sections of the crack, and thus reflects the extent of inelastic behavior of a solid. A concept of apparent surface energy is introduced to account for the geometry dependent and the rate dependent phenomena which influence toughness of an inelastic solid. Three hypotheses regarding the condition for fracture in the subcritical range of load are compared. These are: (1) constant fracture energy (Cherepanov), (2) constant opening displacement at instability (Morozov) and (3) final stretch criterion (Wnuk).

  7. Effect of Flow Rate Controller on Liquid Steel Flow in Continuous Casting Mold using Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Gursoy, Kadir Ali; Yavuz, Mehmet Metin

    2014-11-01

    In continuous casting operation of steel, the flow through tundish to the mold can be controlled by different flow rate control systems including stopper rod and slide-gate. Ladle changes in continuous casting machines result in liquid steel level changes in tundishes. During this transient event of production, the flow rate controller opening is increased to reduce the pressure drop across the opening which helps to keep the mass flow rate at the desired level for the reduced liquid steel level in tundish. In the present study, computational fluid dynamic (CFD) models are developed to investigate the effect of flow rate controller on mold flow structure, and particularly to understand the effect of flow controller opening on meniscus flow. First, a detailed validation of the CFD models is conducted using available experimental data and the performances of different turbulence models are compared. Then, the constant throughput casting operations for different flow rate controller openings are simulated to quantify the opening effect on meniscus region. The results indicate that the meniscus velocities are significantly affected by the flow rate controller and its opening level. The steady state operations, specified as constant throughput casting, do not provide the same mold flow if the controller opening is altered. Thus, for quality and castability purposes, adjusting the flow controller opening to obtain the fixed mold flow structure is proposed. Supported by Middle East Technical University (METU) BAP (Scientific Research Projects) Coordination.

  8. A spectroscopic experimental and computer-assisted empirical model for the production and energetics of excited oxygen molecules formed by atom recombination on shuttle tile surfaces

    NASA Technical Reports Server (NTRS)

    Owan, D. A.

    1981-01-01

    A visible emission spectroscopic method was developed. The amounts of excited singlet and triplet oxygen molecules produced by recombination on the Space Shuttle Orbiter thermal protective tiles at elevated temperatures are determined. Rate constants and energetics of the extremely exothermic reaction are evaluated in terms of a chemical and mathematical model. Implications for potential contribution to Shuttle surface reentry heating fluxes are outlined.

  9. Study of Reaction Mechanism in Tracer Munitions

    DTIC Science & Technology

    1974-12-01

    Effect of Fuel Particle Size on Reaction Zone Thickness 39 10 Temperature Distribution in Solid 41 11 Computed Reaction Rates as Func’ion of Heat Flux...dissociation (cal/g) R = gan constant (cal/mole K) r radius of fuel droplet (cm) s or x = distance increments in solid phase (cm) T = surface temperature ...of solid (*K) S T = arerage temperature in the reaction zone (°K) a t = ti-ne (sec) tb = avaporation time for droplet (sec) v = regression or burning

  10. Stoichiometry of maltodextrin-binding sites in LamB, an outer membrane protein from Escherichia coli.

    PubMed Central

    Gehring, K; Cheng, C H; Nikaido, H; Jap, B K

    1991-01-01

    We have directly measured the stoichiometry of maltodextrin-binding sites in LamB. Scatchard plots and computer fitting of flow dialysis (rate-of-dialysis) experiments clearly establish three independent binding sites per LamB trimer, with a dissociation constant of approximately 60 microM for maltoheptaose. The current model for LamB's function as a specific pore is discussed with respect to the symmetry in LamB's kinetic properties and the implications of our results. Images PMID:2001992

  11. Computational Prediction of Kinetic Rate Constants

    DTIC Science & Technology

    2009-02-01

    best experimental estimates are in kcal/mol. RMcdoo l> Uil. . 1 -.In 1 1 II. lei ,. »rrsnn • emu rtvm . « snfi. !>ii K.IIHlMi’ \\i . St"WTi H...straightforward extensions the HF energy and gradient expressions. For example, the energy and the gradient HF-DFT ’ dE designated as E r-IIF DF1 and...8217’ Coulomb Electron Electron «P Hartr » . pBecke-LYP I ^Hartree-Fock \\7 n ’ Exchange correlation \\H ’ r llarlree-Fock Contract

  12. Papain hydrolysis of X-phenyl-N-methanesulfonyl glycinates: a quantitative structure-activity relationship and molecular graphics analysis.

    PubMed

    Carotti, A; Smith, R N; Wong, S; Hansch, C; Blaney, J M; Langridge, R

    1984-02-15

    The hydrolysis of 32 X-phenyl-N-methanesulfonyl glycinates by papain was investigated. It was found that the variation in the Michaelis constants could be rationalized by the following correlation equation: log 1/Km = 0.61 pi '3 + 0.46 MR4 + 0.55 sigma + 2.00 with a correlation coefficient of 0.945. In this expression, pi '3 is the hydrophobic constant for the more lipophilic of the two possible meta substituents, MR4 is the molar refractivity of 4-substituents, and sigma is the Hammett constant summed for all substituents. Using this equation, we designed, synthesized, and successfully predicted Km for a new congener intended to maximize binding (1/Km). The interactions involved in enzyme-substrate binding, as characterized by the correlation equation, are interpreted using a computer-constructed color three-dimensional-graphics molecular model of the enzyme active site. The nonenzymatic hydrolysis (both acid and basic) of phenyl hippurates yield rate constants which are well correlated by Hammett equations; however, log k for both acid and alkaline hydrolysis are not linearly related to log 1/Km or log kcat/Km.

  13. Molecular dynamics simulations of thermally activated edge dislocation unpinning from voids in α -Fe

    NASA Astrophysics Data System (ADS)

    Byggmästar, J.; Granberg, F.; Nordlund, K.

    2017-10-01

    In this study, thermal unpinning of edge dislocations from voids in α -Fe is investigated by means of molecular dynamics simulations. The activation energy as a function of shear stress and temperature is systematically determined. Simulations with a constant applied stress are compared with dynamic simulations with a constant strain rate. We found that a constant applied stress results in a temperature-dependent activation energy. The temperature dependence is attributed to the elastic softening of iron. If the stress is normalized with the softening of the specific shear modulus, the activation energy is shown to be temperature-independent. From the dynamic simulations, the activation energy as a function of critical shear stress was determined using previously developed methods. The results from the dynamic simulations are in good agreement with the constant stress simulations, after the normalization. This indicates that the computationally more efficient dynamic method can be used to obtain the activation energy as a function of stress and temperature. The obtained relation between stress, temperature, and activation energy can be used to introduce a stochastic unpinning event in larger-scale simulation methods, such as discrete dislocation dynamics.

  14. The temperature dependence of the rate constant for the reaction of hydroxyl radicals with nitric acid

    NASA Technical Reports Server (NTRS)

    Kurylo, M. J.; Cornett, K. D.; Murphy, J. L.

    1982-01-01

    The rate constant for the reaction of hydroxyl radicals with nitric acid in the 225-443 K temperature range has been measured by means of the flash photolysis resonance fluorescence technique. Above 300 K, the rate constant levels off in a way that can only be explained by the occurrence of two reaction channels, of which one, operative at low temperatures, proceeds through the formation of an adduct intermediate. The implications of these rate constant values for stratospheric reaction constants is discussed.

  15. Very high pressure liquid chromatography using core-shell particles: quantitative analysis of fast gradient separations without post-run times.

    PubMed

    Stankovich, Joseph J; Gritti, Fabrice; Stevenson, Paul G; Beaver, Lois A; Guiochon, Georges

    2014-01-17

    Five methods for controlling the mobile phase flow rate for gradient elution analyses using very high pressure liquid chromatography (VHPLC) were tested to determine thermal stability of the column during rapid gradient separations. To obtain rapid separations, instruments are operated at high flow rates and high inlet pressure leading to uneven thermal effects across columns and additional time needed to restore thermal equilibrium between successive analyses. The purpose of this study is to investigate means to minimize thermal instability and obtain reliable results by measuring the reproducibility of the results of six replicate gradient separations of a nine component RPLC standard mixture under various experimental conditions with no post-run times. Gradient separations under different conditions were performed: constant flow rates, two sets of constant pressure operation, programmed flow constant pressure operation, and conditions which theoretically should yield a constant net heat loss at the column's wall. The results show that using constant flow rates, programmed flow constant pressures, and constant heat loss at the column's wall all provide reproducible separations. However, performing separations using a high constant pressure with programmed flow reduces the analysis time by 16% compared to constant flow rate methods. For the constant flow rate, programmed flow constant pressure, and constant wall heat experiments no equilibration time (post-run time) was required to obtain highly reproducible data. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Ionic strength dependence of the oxidation of SO2 by H2O2 in sodium chloride particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, Hashim M.; Iedema, Martin J.; Yu, Xiao-Ying

    The reaction of sulfur dioxide and hydrogen peroxide in the presence of deliquesced (>75% RH) sodium particles was studied by utilizing a crossflow-mini reactor. The reaction kinetics was followed by observing chloride depletion in particles by computer-controlled scanning electron microscope with energy dispersive X-ray analysis, namely SEM/EDX. The reactions take place in concentrated mixed salt brine aerosols, for which no complete kinetic equilibrium data previously existed. We measured the Henry’s law solubility of H2O2 to close that gap. We also calculated the reaction rate as the particle transforms continuously from concentrated NaCl brine to eventually a mixed NaHSO4 plus H2SO4more » brine solution. The reaction rate of the SO2 oxidation by H2O2 was found to be influenced by the change in ionic strength as the particle undergoes compositional transformation, following closely the dependence of the third order rate constant on ionic strength as predicted rates using previously established rate equations. This is the first study that has measured the ionic strength dependence of sulfate formation (in non-aqueous media) from oxidation of mixed salt brine aerosols in the presence of H2O2. It also gives the first report of the Henry’s law constant of H2O2 dependence on ionic strength.« less

  17. Graviton fluctuations erase the cosmological constant

    NASA Astrophysics Data System (ADS)

    Wetterich, C.

    2017-10-01

    Graviton fluctuations induce strong non-perturbative infrared renormalization effects for the cosmological constant. The functional renormalization flow drives a positive cosmological constant towards zero, solving the cosmological constant problem without the need to tune parameters. We propose a simple computation of the graviton contribution to the flow of the effective potential for scalar fields. Within variable gravity, with effective Planck mass proportional to the scalar field, we find that the potential increases asymptotically at most quadratically with the scalar field. The solutions of the derived cosmological equations lead to an asymptotically vanishing cosmological "constant" in the infinite future, providing for dynamical dark energy in the present cosmological epoch. Beyond a solution of the cosmological constant problem, our simplified computation also entails a sizeable positive graviton-induced anomalous dimension for the quartic Higgs coupling in the ultraviolet regime, substantiating the successful prediction of the Higgs boson mass within the asymptotic safety scenario for quantum gravity.

  18. [Characteristics of autonomic status in employees working with computers].

    PubMed

    Vlasova, E M; Zaĭtseva, N V; Maliutina, N N

    2011-01-01

    Human evolution is accompanied by "sensible thoughts" spread to all spheres of occupational activities. One can hardly find an industrial enterprise without computers. In contemporary industry, health care in conditions of humans and computers interaction and evaluation of harm in computer users remain topical. Social and occupational environment is not always comfortable for human body. Changes is occupational conditions, with wide use of computer technologies, decrease role of manual labour and increase role of intellectual work from the one hand, but from the other hand, chasing economic profit alters individual "comfort zone" due to constant psychoemotional stress and causes "burnout". Being healthy in constant stress is impossible.

  19. An exactly solvable, spatial model of mutation accumulation in cancer

    NASA Astrophysics Data System (ADS)

    Paterson, Chay; Nowak, Martin A.; Waclaw, Bartlomiej

    2016-12-01

    One of the hallmarks of cancer is the accumulation of driver mutations which increase the net reproductive rate of cancer cells and allow them to spread. This process has been studied in mathematical models of well mixed populations, and in computer simulations of three-dimensional spatial models. But the computational complexity of these more realistic, spatial models makes it difficult to simulate realistically large and clinically detectable solid tumours. Here we describe an exactly solvable mathematical model of a tumour featuring replication, mutation and local migration of cancer cells. The model predicts a quasi-exponential growth of large tumours, even if different fragments of the tumour grow sub-exponentially due to nutrient and space limitations. The model reproduces clinically observed tumour growth times using biologically plausible rates for cell birth, death, and migration rates. We also show that the expected number of accumulated driver mutations increases exponentially in time if the average fitness gain per driver is constant, and that it reaches a plateau if the gains decrease over time. We discuss the realism of the underlying assumptions and possible extensions of the model.

  20. Comparison of numerical techniques for integration of stiff ordinary differential equations arising in combustion chemistry

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, K.

    1984-01-01

    The efficiency and accuracy of several algorithms recently developed for the efficient numerical integration of stiff ordinary differential equations are compared. The methods examined include two general-purpose codes, EPISODE and LSODE, and three codes (CHEMEQ, CREK1D, and GCKP84) developed specifically to integrate chemical kinetic rate equations. The codes are applied to two test problems drawn from combustion kinetics. The comparisons show that LSODE is the fastest code currently available for the integration of combustion kinetic rate equations. An important finding is that an interactive solution of the algebraic energy conservation equation to compute the temperature does not result in significant errors. In addition, this method is more efficient than evaluating the temperature by integrating its time derivative. Significant reductions in computational work are realized by updating the rate constants (k = at(supra N) N exp(-E/RT) only when the temperature change exceeds an amount delta T that is problem dependent. An approximate expression for the automatic evaluation of delta T is derived and is shown to result in increased efficiency.

  1. Characterization of ion-assisted induced absorption in A-Si thin-films used for multivariate optical computing

    NASA Astrophysics Data System (ADS)

    Nayak, Aditya B.; Price, James M.; Dai, Bin; Perkins, David; Chen, Ding Ding; Jones, Christopher M.

    2015-06-01

    Multivariate optical computing (MOC), an optical sensing technique for analog calculation, allows direct and robust measurement of chemical and physical properties of complex fluid samples in high-pressure/high-temperature (HP/HT) downhole environments. The core of this MOC technology is the integrated computational element (ICE), an optical element with a wavelength-dependent transmission spectrum designed to allow the detector to respond sensitively and specifically to the analytes of interest. A key differentiator of this technology is it uses all of the information present in the broadband optical spectrum to determine the proportion of the analyte present in a complex fluid mixture. The detection methodology is photometric in nature; therefore, this technology does not require a spectrometer to measure and record a spectrum or a computer to perform calculations on the recorded optical spectrum. The integrated computational element is a thin-film optical element with a specific optical response function designed for each analyte. The optical response function is achieved by fabricating alternating layers of high-index (a-Si) and low-index (SiO2) thin films onto a transparent substrate (BK7 glass) using traditional thin-film manufacturing processes (e.g., ion-assisted e-beam vacuum deposition). A proprietary software and process are used to control the thickness and material properties, including the optical constants of the materials during deposition to achieve the desired optical response function. The ion-assisted deposition is useful for controlling the densification of the film, stoichiometry, and material optical constants as well as to achieve high deposition growth rates and moisture-stable films. However, the ion-source can induce undesirable absorption in the film; and subsequently, modify the optical constants of the material during the ramp-up and stabilization period of the e-gun and ion-source, respectively. This paper characterizes the unwanted absorption in the a-Si thin-film using advanced thin-film metrology methods, including spectroscopic ellipsometry and Fourier transform infrared (FTIR) spectroscopy. The resulting analysis identifies a fundamental mechanism contributing to this absorption and a method for minimizing and accounting for the unwanted absorption in the thin-film such that the exact optical response function can be achieved.

  2. SPECIES - EVALUATING THERMODYNAMIC PROPERTIES, TRANSPORT PROPERTIES & EQUILIBRIUM CONSTANTS OF AN 11-SPECIES AIR MODEL

    NASA Technical Reports Server (NTRS)

    Thompson, R. A.

    1994-01-01

    Accurate numerical prediction of high-temperature, chemically reacting flowfields requires a knowledge of the physical properties and reaction kinetics for the species involved in the reacting gas mixture. Assuming an 11-species air model at temperatures below 30,000 degrees Kelvin, SPECIES (Computer Codes for the Evaluation of Thermodynamic Properties, Transport Properties, and Equilibrium Constants of an 11-Species Air Model) computes values for the species thermodynamic and transport properties, diffusion coefficients and collision cross sections for any combination of the eleven species, and reaction rates for the twenty reactions normally occurring. The species represented in the model are diatomic nitrogen, diatomic oxygen, atomic nitrogen, atomic oxygen, nitric oxide, ionized nitric oxide, the free electron, ionized atomic nitrogen, ionized atomic oxygen, ionized diatomic nitrogen, and ionized diatomic oxygen. Sixteen subroutines compute the following properties for both a single species, interaction pair, or reaction, and an array of all species, pairs, or reactions: species specific heat and static enthalpy, species viscosity, species frozen thermal conductivity, diffusion coefficient, collision cross section (OMEGA 1,1), collision cross section (OMEGA 2,2), collision cross section ratio, and equilibrium constant. The program uses least squares polynomial curve-fits of the most accurate data believed available to provide the requested values more quickly than is possible with table look-up methods. The subroutines for computing transport coefficients and collision cross sections use additional code to correct for any electron pressure when working with ionic species. SPECIES was developed on a SUN 3/280 computer running the SunOS 3.5 operating system. It is written in standard FORTRAN 77 for use on any machine, and requires roughly 92K memory. The standard distribution medium for SPECIES is a 5.25 inch 360K MS-DOS format diskette. The contents of the diskettes are compressed using the PKWARE archiving tools. The utility to unarchive the files, PKUNZIP.EXE, is included. This program was last updated in 1991. SUN and SunOS are registered trademarks of Sun Microsystems, Inc.

  3. Practical Algorithms for the Longest Common Extension Problem

    NASA Astrophysics Data System (ADS)

    Ilie, Lucian; Tinta, Liviu

    The Longest Common Extension problem considers a string s and computes, for each of a number of pairs (i,j), the longest substring of s that starts at both i and j. It appears as a subproblem in many fundamental string problems and can be solved by linear-time preprocessing of the string that allows (worst-case) constant-time computation for each pair. The two known approaches use powerful algorithms: either constant-time computation of the Lowest Common Ancestor in trees or constant-time computation of Range Minimum Queries (RMQ) in arrays. We show here that, from practical point of view, such complicated approaches are not needed. We give two very simple algorithms for this problem that require no preprocessing. The first needs only the string and is significantly faster than all previous algorithms on the average. The second combines the first with a direct RMQ computation on the Longest Common Prefix array. It takes advantage of the superior speed of the cache memory and is the fastest on virtually all inputs.

  4. Ab initio thermal rate calculations of HO + HO = O(3P) + H2O reaction and isotopologues.

    PubMed

    Nguyen, Thanh Lam; Stanton, John F

    2013-04-04

    The forward and reverse reactions, HO + HO ⇌ O((3)P) + H2O, which play roles in both combustion and laboratory studies, were theoretically characterized with a master equation approach to compute thermal reaction rate constants at both the low and high pressure limits. Our ab initio k(T) results for the title reaction and two isotopic variants agree very well with experiments (within 15%) over a wide temperature range. The calculated reaction rate shows a distinctly non-Arrhenius behavior and a strong curvature consistent with the experiment. This characteristic behavior is due to effects of positive barrier height and quantum mechanical tunneling. Tunneling is very important and contributes more than 70% of total reaction rate at room temperature. A prereactive complex is also important in the overall reaction scheme.

  5. Comparative evaluation of image quality among different detector configurations using area detector computed tomography.

    PubMed

    Miura, Yohei; Ichikawa, Katsuhiro; Fujimura, Ichiro; Hara, Takanori; Hoshino, Takashi; Niwa, Shinji; Funahashi, Masao

    2018-03-01

    The 320-detector row computed tomography (CT) system, i.e., the area detector CT (ADCT), can perform helical scanning with detector configurations of 4-, 16-, 32-, 64-, 80-, 100-, and 160-detector rows for routine CT examinations. This phantom study aimed to compare the quality of images obtained using helical scan mode with different detector configurations. The image quality was measured using modulation transfer function (MTF) and noise power spectrum (NPS). The system performance function (SP), based on the pre-whitening theorem, was calculated as MTF 2 /NPS, and compared between configurations. Five detector configurations, i.e., 0.5 × 16 mm (16 row), 0.5 × 64 mm (64 row), 0.5 × 80 mm (80 row), 0.5 × 100 mm (100 row), and 0.5 × 160 mm (160 row), were compared using a constant volume CT dose index (CTDI vol ) of 25 mGy, simulating the scan of an adult abdomen, and with a constant effective mAs value. The MTF was measured using the wire method, and the NPS was measured from images of a 20-cm diameter phantom with uniform content. The SP of 80-row configuration was the best, for the constant CTDI vol , followed by the 64-, 160-, 16-, and 100-row configurations. The decrease in the rate of the 100- and 160-row configurations from the 80-row configuration was approximately 30%. For the constant effective mAs, the SPs of the 100-row and 160-row configurations were significantly lower, compared with the other three detector configurations. The 80- and 64-row configurations were adequate in cases that required dose efficiency rather than scan speed.

  6. Rate Constant and Temperature Dependence for the Reaction of Hydroxyl Radicals with 2-Flouropropane (FC-281ea) and Comparison with an Estimated Rate Constant

    NASA Technical Reports Server (NTRS)

    DeMore, W.; Wilson, E., Jr.

    1998-01-01

    Relative rate experiments were used to measure the rate constant and temperature dependence of the reaction of OH radicals with 2-fluoropropane (HFC-281ea), using ethane, propane, ethyl chloride as reference standards.

  7. Adaptive data rate control TDMA systems as a rain attenuation compensation technique

    NASA Technical Reports Server (NTRS)

    Sato, Masaki; Wakana, Hiromitsu; Takahashi, Takashi; Takeuchi, Makoto; Yamamoto, Minoru

    1993-01-01

    Rainfall attenuation has a severe effect on signal strength and impairs communication links for future mobile and personal satellite communications using Ka-band and millimeter wave frequencies. As rain attenuation compensation techniques, several methods such as uplink power control, site diversity, and adaptive control of data rate or forward error correction have been proposed. In this paper, we propose a TDMA system that can compensate rain attenuation by adaptive control of transmission rates. To evaluate the performance of this TDMA terminal, we carried out three types of experiments: experiments using a Japanese CS-3 satellite with Ka-band transponders, in house IF loop-back experiments, and computer simulations. Experimental results show that this TDMA system has advantages over the conventional constant-rate TDMA systems, as resource sharing technique, in both bit error rate and total TDMA burst lengths required for transmitting given information.

  8. Selection on Network Dynamics Drives Differential Rates of Protein Domain Evolution

    PubMed Central

    Mannakee, Brian K.; Gutenkunst, Ryan N.

    2016-01-01

    The long-held principle that functionally important proteins evolve slowly has recently been challenged by studies in mice and yeast showing that the severity of a protein knockout only weakly predicts that protein’s rate of evolution. However, the relevance of these studies to evolutionary changes within proteins is unknown, because amino acid substitutions, unlike knockouts, often only slightly perturb protein activity. To quantify the phenotypic effect of small biochemical perturbations, we developed an approach to use computational systems biology models to measure the influence of individual reaction rate constants on network dynamics. We show that this dynamical influence is predictive of protein domain evolutionary rate within networks in vertebrates and yeast, even after controlling for expression level and breadth, network topology, and knockout effect. Thus, our results not only demonstrate the importance of protein domain function in determining evolutionary rate, but also the power of systems biology modeling to uncover unanticipated evolutionary forces. PMID:27380265

  9. Computational Simulation of the High Strain Rate Tensile Response of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.

    2002-01-01

    A research program is underway to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. Under these types of loading conditions, the material response can be highly strain rate dependent and nonlinear. State variable constitutive equations based on a viscoplasticity approach have been developed to model the deformation of the polymer matrix. The constitutive equations are then combined with a mechanics of materials based micromechanics model which utilizes fiber substructuring to predict the effective mechanical and thermal response of the composite. To verify the analytical model, tensile stress-strain curves are predicted for a representative composite over strain rates ranging from around 1 x 10(exp -5)/sec to approximately 400/sec. The analytical predictions compare favorably to experimentally obtained values both qualitatively and quantitatively. Effective elastic and thermal constants are predicted for another composite, and compared to finite element results.

  10. Reactivity of BrCl, Br₂, BrOCl, Br₂O, and HOBr toward dimethenamid in solutions of bromide + aqueous free chlorine.

    PubMed

    Sivey, John D; Arey, J Samuel; Tentscher, Peter R; Roberts, A Lynn

    2013-02-05

    HOBr, formed via oxidation of bromide by free available chlorine (FAC), is frequently assumed to be the sole species responsible for generating brominated disinfection byproducts (DBPs). Our studies reveal that BrCl, Br(2), BrOCl, and Br(2)O can also serve as brominating agents of the herbicide dimethenamid in solutions of bromide to which FAC was added. Conditions affecting bromine speciation (pH, total free bromine concentration ([HOBr](T)), [Cl(-)], and [FAC](o)) were systematically varied, and rates of dimethenamid bromination were measured. Reaction orders in [HOBr](T) ranged from 1.09 (±0.17) to 1.67 (±0.16), reaching a maximum near the pK(a) of HOBr. This complex dependence on [HOBr](T) implicates Br(2)O as an active brominating agent. That bromination rates increased with increasing [Cl(-)], [FAC](o) (at constant [HOBr](T)), and excess bromide (where [Br(-)](o)>[FAC](o)) implicate BrCl, BrOCl, and Br(2), respectively, as brominating agents. As equilibrium constants for the formation of Br(2)O and BrOCl (aq) have not been previously reported, we have calculated these values (and their gas-phase analogues) using benchmark-quality quantum chemical methods [CCSD(T) up to CCSDTQ calculations plus solvation effects]. The results allow us to compute bromine speciation and hence second-order rate constants. Intrinsic brominating reactivity increased in the order: HOBr ≪ Br(2)O < BrOCl ≈ Br(2) < BrCl. Our results indicate that species other than HOBr can influence bromination rates under conditions typical of drinking water and wastewater chlorination.

  11. Theoretical Kinetic Study of the Unimolecular Keto-Enol Tautomerism Propen-2-ol ↔ Acetone. Pressure Effects and Implications in the Pyrolysis of tert- and 2-Butanol.

    PubMed

    Grajales-González, E; Monge-Palacios, M; Sarathy, S Mani

    2018-04-12

    The need for renewable and cleaner sources of energy has made biofuels an interesting alternative to fossil fuels, especially in the case of butanol isomers, with its favorable blend properties and low hygroscopicity. Although C 4 alcohols are prospective fuels, some key reactions governing their pyrolysis and combustion have not been adequately studied, leading to incomplete kinetic models. Enols are important intermediates in the combustion of C 4 alcohols, as well as in atmospheric processes. Butanol reactions kinetics is poorly understood. Specifically, the unimolecular tautomerism of propen-2-ol ↔ acetone, which is included in butanol combustion kinetic models, is assigned rate parameters based on the tautomerism vinyl alcohol ↔ acetaldehyde as an analogy. In an attempt to update current kinetic models for tert- and 2-butanol, a theoretical kinetic study of the titled reaction was carried out by means of CCSD(T,FULL)/aug-cc-pVTZ//CCSD(T)/6-31+G(d,p) ab initio calculations, with multistructural torsional anharmonicity and variational transition state theory considerations in a wide temperature and pressure range (200-3000 K; 0.1-10 8 kPa). Results differ from vinyl alcohol ↔ acetaldehyde analogue reaction, which shows lower rate constant values. It was observed that decreasing pressure leads to a decrease in rate constants, describing the expected falloff behavior. Tunneling turned out to be important, especially at low temperatures. Accordingly, pyrolysis simulations in a batch reactor for tert- and 2-butanol with computed rate constants showed important differences in comparison with previous results, such as larger acetone yield and quicker propen-2-ol consumption.

  12. Kinetics of the hydrogen atom abstraction reactions from 1-butanol by hydroxyl radical: theory matches experiment and more.

    PubMed

    Seal, Prasenjit; Oyedepo, Gbenga; Truhlar, Donald G

    2013-01-17

    In the present work, we study the H atom abstraction reactions by hydroxyl radical at all five sites of 1-butanol. Multistructural variational transition state theory (MS-VTST) was employed to estimate the five thermal rate constants. MS-VTST utilizes a multifaceted dividing surface that accounts for the multiple conformational structures of the transition state, and we also include all the structures of the reactant molecule. The vibrational frequencies and minimum energy paths (MEPs) were computed using the M08-HX/MG3S electronic structure method. The required potential energy surfaces were obtained implicitly by direct dynamics employing interpolated variational transition state theory with mapping (IVTST-M) using a variational reaction path algorithm. The M08-HX/MG3S electronic model chemistry was then used to calculate multistructural torsional anharmonicity factors to complete the MS-VTST rate constant calculations. The results indicate that torsional anharmonicity is very important at higher temperatures, and neglecting it would lead to errors of 26 and 32 at 1000 and 1500 K, respectively. Our results for the sums of the site-specific rate constants agree very well with the experimental values of Hanson and co-workers at 896-1269 K and with the experimental results of Campbell et al. at 292 K, but slightly less well with the experiments of Wallington et al., Nelson et al., and Yujing and Mellouki at 253-372 K; nevertheless, the calculated rates are within a factor of 1.61 of all experimental values at all temperatures. This gives us confidence in the site-specific values, which are currently inaccessible to experiment.

  13. First-principles study of crystal structure, elastic stiffness constants, piezoelectric constants, and spontaneous polarization of orthorhombic Pna21-M2O3 (M = Al, Ga, In, Sc, Y)

    NASA Astrophysics Data System (ADS)

    Shimada, Kazuhiro

    2018-03-01

    We perform first-principles calculations to investigate the crystal structure, elastic and piezoelectric properties, and spontaneous polarization of orthorhombic M2O3 (M = Al, Ga, In, Sc, Y) with Pna21 space group based on density functional theory. The lattice parameters, full elastic stiffness constants, piezoelectric stress and strain constants, and spontaneous polarization are successfully predicted. Comparison with available experimental and computational results indicates the validity of our computational results. Detailed analysis of the results clarifies the difference in the bonding character and the origin of the strong piezoelectric response and large spontaneous polarization.

  14. Computational studies of the helium-lithium hydride system

    NASA Astrophysics Data System (ADS)

    Taylor, Brian Keith

    2000-12-01

    We have computed an ab initio potential energy surface for the He-LiH system. We compute the He- LiH interaction energy at the CCSD(T) level using large correlation consistent atomic basis sets supplemented with bond functions. To capture the severe anisotropy of the He-LH potential, we interpolate our ab initio points in the angular direction with cubic splines, then expand the splines in terms of Legendre polynomials. We have constructed both a He-LiH rigid rotor potential and a complete He-LiH potential where the LiH bond length is allowed to change. The resulting potential surface has a unique shape. The He- LiH rigid rotor colinear geometry has a very attractive minimum of -176.7 cm-1, while the LiH-He colinear geometry has a local minimum of only -9.8 cm -1. Using our computed He-LiH potential energy surface, we investigate the collision dynamics of He-LiH. Using a totally quantum mechanical treatment of collisions dynamics, we compute both pure rotational and rovibrational state-to-state cross sections. We integrate our rovibrational cross sections over a Maxwell-Boltzmann distribution of energies to obtain temperature dependent vibrational excitation and relaxation rate constants. The vibrational excitation rate constants are very small for temperature below 400 K, but become significant at higher temperatures. These results suggests that He-LiH collisions probably were important in the very early Universe, especially in the larger primordial gas clouds. We also investigate the structure and dynamics of small HeN-LiH clusters using diffusion quantum Monte Carlo techniques. We find that three body effects are negligible, so we take the HeN-LiH potential to be a pairwise additive potential; we use the HFD-B3-FCI1 He-He potential of Aziz and Janzen [R. A. Aziz and A. R. Janzen, Phys. Rev. Lett. 74, 1586 (1995)] and our He-LiH potential. Because of the strong He-LiH attraction, one helium is always located in the attractive well at the lithium end of the LiH.

  15. The Evolution of Teachers' Instructional Beliefs and Practices in High-Access-to-Technology Classrooms.

    ERIC Educational Resources Information Center

    Dwyer, David C.; And Others

    Beginning in 1985, Apple Computer, Inc., and several school districts began a collaboration to examine the impact of computer saturation on instruction and learning in K-12 classrooms. The initial guiding question was simply put: What happens when teachers and students have constant access to technology? To provide "constant access,"…

  16. Gender differences in mental rotation across adulthood.

    PubMed

    Jansen, Petra; Heil, Martin

    2010-01-01

    Although gender differences in mental rotation in younger adults are prominent in paper-pencil tests as well as in chronometric tests with polygons as stimuli, less is known about this topic in the older age ranges. Therefore, performance was assessed with the Mental Rotation Test (MRT) paper-pencil test as well as with a computer-based two-stimulus same-different task with polygons in a sample of 150 adults divided into three age groups, 20-30, 40-50, and 60-70 years. Performance decreased with age, and men outperformed women in all age groups. The gender effect decreased with age in the MRT, possibly due to a floor effect. Gender differences remained constant across age, however, in the error rates of the computer-based task.

  17. A modified homogeneous relaxation model for CO2 two-phase flow in vapour ejector

    NASA Astrophysics Data System (ADS)

    Haida, M.; Palacz, M.; Smolka, J.; Nowak, A. J.; Hafner, A.; Banasiak, K.

    2016-09-01

    In this study, the homogenous relaxation model (HRM) for CO2 flow in a two-phase ejector was modified in order to increase the accuracy of the numerical simulations The two- phase flow model was implemented on the effective computational tool called ejectorPL for fully automated and systematic computations of various ejector shapes and operating conditions. The modification of the HRM was performed by a change of the relaxation time and the constants included in the relaxation time equation based on the experimental result under the operating conditions typical for the supermarket refrigeration system. The modified HRM was compared to the HEM results, which were performed based on the comparison of motive nozzle and suction nozzle mass flow rates.

  18. Aerospace Applications of Weibull and Monte Carlo Simulation with Importance Sampling

    NASA Technical Reports Server (NTRS)

    Bavuso, Salvatore J.

    1998-01-01

    Recent developments in reliability modeling and computer technology have made it practical to use the Weibull time to failure distribution to model the system reliability of complex fault-tolerant computer-based systems. These system models are becoming increasingly popular in space systems applications as a result of mounting data that support the decreasing Weibull failure distribution and the expectation of increased system reliability. This presentation introduces the new reliability modeling developments and demonstrates their application to a novel space system application. The application is a proposed guidance, navigation, and control (GN&C) system for use in a long duration manned spacecraft for a possible Mars mission. Comparisons to the constant failure rate model are presented and the ramifications of doing so are discussed.

  19. Rapid estimation of glucosinolate thermal degradation rate constants in leaves of Chinese kale and broccoli (Brassica oleracea) in two seasons.

    PubMed

    Hennig, Kristin; Verkerk, Ruud; Bonnema, Guusje; Dekker, Matthijs

    2012-08-15

    Kinetic modeling was used as a tool to quantitatively estimate glucosinolate thermal degradation rate constants. Literature shows that thermal degradation rates differ in different vegetables. Well-characterized plant material, leaves of broccoli and Chinese kale plants grown in two seasons, was used in the study. It was shown that a first-order reaction is appropriate to model glucosinolate degradation independent from the season. No difference in degradation rate constants of structurally identical glucosinolates was found between broccoli and Chinese kale leaves when grown in the same season. However, glucosinolate degradation rate constants were highly affected by the season (20-80% increase in spring compared to autumn). These results suggest that differences in glucosinolate degradation rate constants can be due to variation in environmental as well as genetic factors. Furthermore, a methodology to estimate rate constants rapidly is provided to enable the analysis of high sample numbers for future studies.

  20. Methane steam reforming rates over Pt, Rh and Ni(111) accounting for H tunneling and for metal lattice vibrations

    NASA Astrophysics Data System (ADS)

    German, Ernst D.; Sheintuch, Moshe

    2017-02-01

    Microkinetic models of methane steam reforming (MSR) over bare platinum and rhodium (111) surfaces are analyzed in present work using calculated rate constants. The individual rate constants are classified into three different sets: (i) rate constants of adsorption and desorption steps of CH4, H2O, CO and of H2; (ii) rate constants of dissociation and formation of A-H bonds (A = C, O, and H), and (iii) rate constants of dissociation and formation of C-O bond. The rate constants of sets (i) and (iii) are calculated using transition state theory and published thermochemical data. The rate constants of H-dissociation reactions (set (ii)) are calculated in terms of a previously-developed approach that accounts for thermal metal lattice vibrations and for H tunneling through a potential barrier of height which depends on distance of AH from a surface. Pre-exponential factors of several group (ii) steps were calculated to be usually lower than the traditional kBT/h due to tunneling effect. Surface composition and overall MSR rates over platinum and rhodium surfaces are compared with those over nickel surface showing that operating conditions strongly affect on the activity order of the catalysts.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mermigkis, Panagiotis G.; Tsalikis, Dimitrios G.; Institute of Chemical Engineering and High Temperature Chemical Processes, GR 26500 Patras

    A kinetic Monte Carlo (kMC) simulation algorithm is developed for computing the effective diffusivity of water molecules in a poly(methyl methacrylate) (PMMA) matrix containing carbon nanotubes (CNTs) at several loadings. The simulations are conducted on a cubic lattice to the bonds of which rate constants are assigned governing the elementary jump events of water molecules from one lattice site to another. Lattice sites belonging to PMMA domains of the membrane are assigned different rates than lattice sites belonging to CNT domains. Values of these two rate constants are extracted from available numerical data for water diffusivity within a PMMA matrixmore » and a CNT pre-computed on the basis of independent atomistic molecular dynamics simulations, which show that water diffusivity in CNTs is 3 orders of magnitude faster than in PMMA. Our discrete-space, continuum-time kMC simulation results for several PMMA-CNT nanocomposite membranes (characterized by different values of CNT length L and diameter D and by different loadings of the matrix in CNTs) demonstrate that the overall or effective diffusivity, D{sub eff}, of water in the entire polymeric membrane is of the same order of magnitude as its diffusivity in PMMA domains and increases only linearly with the concentration C (vol. %) in nanotubes. For a constant value of the concentration C, D{sub eff} is found to vary practically linearly also with the CNT aspect ratio L/D. The kMC data allow us to propose a simple bilinear expression for D{sub eff} as a function of C and L/D that can describe the numerical data for water mobility in the membrane extremely accurately. Additional simulations with two different CNT configurations (completely random versus aligned) show that CNT orientation in the polymeric matrix has only a minor effect on D{sub eff} (as long as CNTs do not fully penetrate the membrane). We have also extensively analyzed and quantified sublinear (anomalous) diffusive phenomena over small to moderate times and correlated them with the time needed for penetrant water molecules to explore the available large, fast-diffusing CNT pores before Fickian diffusion is reached.« less

  2. Determination of the effective diffusivity of water in a poly (methyl methacrylate) membrane containing carbon nanotubes using kinetic Monte Carlo simulations.

    PubMed

    Mermigkis, Panagiotis G; Tsalikis, Dimitrios G; Mavrantzas, Vlasis G

    2015-10-28

    A kinetic Monte Carlo (kMC) simulation algorithm is developed for computing the effective diffusivity of water molecules in a poly(methyl methacrylate) (PMMA) matrix containing carbon nanotubes (CNTs) at several loadings. The simulations are conducted on a cubic lattice to the bonds of which rate constants are assigned governing the elementary jump events of water molecules from one lattice site to another. Lattice sites belonging to PMMA domains of the membrane are assigned different rates than lattice sites belonging to CNT domains. Values of these two rate constants are extracted from available numerical data for water diffusivity within a PMMA matrix and a CNT pre-computed on the basis of independent atomistic molecular dynamics simulations, which show that water diffusivity in CNTs is 3 orders of magnitude faster than in PMMA. Our discrete-space, continuum-time kMC simulation results for several PMMA-CNT nanocomposite membranes (characterized by different values of CNT length L and diameter D and by different loadings of the matrix in CNTs) demonstrate that the overall or effective diffusivity, D(eff), of water in the entire polymeric membrane is of the same order of magnitude as its diffusivity in PMMA domains and increases only linearly with the concentration C (vol. %) in nanotubes. For a constant value of the concentration C, D(eff) is found to vary practically linearly also with the CNT aspect ratio L/D. The kMC data allow us to propose a simple bilinear expression for D(eff) as a function of C and L/D that can describe the numerical data for water mobility in the membrane extremely accurately. Additional simulations with two different CNT configurations (completely random versus aligned) show that CNT orientation in the polymeric matrix has only a minor effect on D(eff) (as long as CNTs do not fully penetrate the membrane). We have also extensively analyzed and quantified sublinear (anomalous) diffusive phenomena over small to moderate times and correlated them with the time needed for penetrant water molecules to explore the available large, fast-diffusing CNT pores before Fickian diffusion is reached.

  3. Determination of the effective diffusivity of water in a poly (methyl methacrylate) membrane containing carbon nanotubes using kinetic Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Mermigkis, Panagiotis G.; Tsalikis, Dimitrios G.; Mavrantzas, Vlasis G.

    2015-10-01

    A kinetic Monte Carlo (kMC) simulation algorithm is developed for computing the effective diffusivity of water molecules in a poly(methyl methacrylate) (PMMA) matrix containing carbon nanotubes (CNTs) at several loadings. The simulations are conducted on a cubic lattice to the bonds of which rate constants are assigned governing the elementary jump events of water molecules from one lattice site to another. Lattice sites belonging to PMMA domains of the membrane are assigned different rates than lattice sites belonging to CNT domains. Values of these two rate constants are extracted from available numerical data for water diffusivity within a PMMA matrix and a CNT pre-computed on the basis of independent atomistic molecular dynamics simulations, which show that water diffusivity in CNTs is 3 orders of magnitude faster than in PMMA. Our discrete-space, continuum-time kMC simulation results for several PMMA-CNT nanocomposite membranes (characterized by different values of CNT length L and diameter D and by different loadings of the matrix in CNTs) demonstrate that the overall or effective diffusivity, Deff, of water in the entire polymeric membrane is of the same order of magnitude as its diffusivity in PMMA domains and increases only linearly with the concentration C (vol. %) in nanotubes. For a constant value of the concentration C, Deff is found to vary practically linearly also with the CNT aspect ratio L/D. The kMC data allow us to propose a simple bilinear expression for Deff as a function of C and L/D that can describe the numerical data for water mobility in the membrane extremely accurately. Additional simulations with two different CNT configurations (completely random versus aligned) show that CNT orientation in the polymeric matrix has only a minor effect on Deff (as long as CNTs do not fully penetrate the membrane). We have also extensively analyzed and quantified sublinear (anomalous) diffusive phenomena over small to moderate times and correlated them with the time needed for penetrant water molecules to explore the available large, fast-diffusing CNT pores before Fickian diffusion is reached.

  4. Evidence for the absence of cerebral glucose-6-phosphatase activity in glycogen storage disease type I (Von Gierke's disease)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phelps, M.E.; Mazziotta, J.C.; Hawkins, R.A.

    1981-01-01

    Glycogen storage disease type I (GSD-I) is characterized by a functional deficit in glucose-6-phosphatase that normally hydrolyzes glucose-6-PO/sub 4/ to glucose. This enzyme is primarily found in liver, kidney, and muscle but it is also present in brain, where it appears to participate in the regulation of cerebral tissue glucose. Since most neurological symptoms in GSD-I patients involve systemic hypoglycemia, previous reports have not examined possible deficiencies in phosphatase activity in the brain. Positron computed tomography, F-18-labeled 2-fluorodeoxyglucose (FDG) and a tracer kinetic model for FDG were used to measure the cortical plasma/tissue forward and reverse transport, phosphorylation and dephosphorylationmore » rate constants, tissue/plasma concentration gradient, tissue concentration turnover rate for this competitive analog of glucose, and the cortical metabolic rates for glucose. Studies were carried out in age-matched normals (N = 13) and a single GSD-I patient. The dephosphorylation rate constant in the GSD-I patient was about one tenth the normal value indicating a low level of cerebral phosphatase activity. The other measured parameters were within normal limits except for the rate of glucose phosphorylation which reflected a cortical glucose metabolic rate one half the normal value. Since glucose transport and tissue glucose concentration was normal, the reduced cortical glucose metabolism probably results from the use of alternative substrates (..beta..-hydroxybutyrate and acetoacetate) which are consistently elevated in the plasma of GSD-I patients.« less

  5. Highly Efficient Computation of the Basal kon using Direct Simulation of Protein-Protein Association with Flexible Molecular Models.

    PubMed

    Saglam, Ali S; Chong, Lillian T

    2016-01-14

    An essential baseline for determining the extent to which electrostatic interactions enhance the kinetics of protein-protein association is the "basal" kon, which is the rate constant for association in the absence of electrostatic interactions. However, since such association events are beyond the milliseconds time scale, it has not been practical to compute the basal kon by directly simulating the association with flexible models. Here, we computed the basal kon for barnase and barstar, two of the most rapidly associating proteins, using highly efficient, flexible molecular simulations. These simulations involved (a) pseudoatomic protein models that reproduce the molecular shapes, electrostatic, and diffusion properties of all-atom models, and (b) application of the weighted ensemble path sampling strategy, which enhanced the efficiency of generating association events by >130-fold. We also examined the extent to which the computed basal kon is affected by inclusion of intermolecular hydrodynamic interactions in the simulations.

  6. Prediction of Chain Propagation Rate Constants of Polymerization Reactions in Aqueous NIPAM/BIS and VCL/BIS Systems.

    PubMed

    Kröger, Leif C; Kopp, Wassja A; Leonhard, Kai

    2017-04-06

    Microgels have a wide range of possible applications and are therefore studied with increasing interest. Nonetheless, the microgel synthesis process and some of the resulting properties of the microgels, such as the cross-linker distribution within the microgels, are not yet fully understood. An in-depth understanding of the synthesis process is crucial for designing tailored microgels with desired properties. In this work, rate constants and reaction enthalpies of chain propagation reactions in aqueous N-isopropylacrylamide/N,N'-methylenebisacrylamide and aqueous N-vinylcaprolactam/N,N'-methylenebisacrylamide systems are calculated to identify the possible sources of an inhomogeneous cross-linker distribution in the resulting microgels. Gas-phase reaction rate constants are calculated from B2PLYPD3/aug-cc-pVTZ energies and B3LYPD3/tzvp geometries and frequencies. Then, solvation effects based on COSMO-RS are incorporated into the rate constants to obtain the desired liquid-phase reaction rate constants. The rate constants agree with experiments within a factor of 2-10, and the reaction enthalpies deviate less than 5 kJ/mol. Further, the effect of rate constants on the microgel growth process is analyzed, and it is shown that differences in the magnitude of the reaction rate constants are a source of an inhomogeneous cross-linker distribution within the resulting microgel.

  7. Computer program to solve two-dimensional shock-wave interference problems with an equilibrium chemically reacting air model

    NASA Technical Reports Server (NTRS)

    Glass, Christopher E.

    1990-01-01

    The computer program EASI, an acronym for Equilibrium Air Shock Interference, was developed to calculate the inviscid flowfield, the maximum surface pressure, and the maximum heat flux produced by six shock wave interference patterns on a 2-D, cylindrical configuration. Thermodynamic properties of the inviscid flowfield are determined using either an 11-specie, 7-reaction equilibrium chemically reacting air model or a calorically perfect air model. The inviscid flowfield is solved using the integral form of the conservation equations. Surface heating calculations at the impingement point for the equilibrium chemically reacting air model use variable transport properties and specific heat. However, for the calorically perfect air model, heating rate calculations use a constant Prandtl number. Sample calculations of the six shock wave interference patterns, a listing of the computer program, and flowcharts of the programming logic are included.

  8. Computer program to solve two-dimensional shock-wave interference problems with an equilibrium chemically reacting air model

    NASA Astrophysics Data System (ADS)

    Glass, Christopher E.

    1990-08-01

    The computer program EASI, an acronym for Equilibrium Air Shock Interference, was developed to calculate the inviscid flowfield, the maximum surface pressure, and the maximum heat flux produced by six shock wave interference patterns on a 2-D, cylindrical configuration. Thermodynamic properties of the inviscid flowfield are determined using either an 11-specie, 7-reaction equilibrium chemically reacting air model or a calorically perfect air model. The inviscid flowfield is solved using the integral form of the conservation equations. Surface heating calculations at the impingement point for the equilibrium chemically reacting air model use variable transport properties and specific heat. However, for the calorically perfect air model, heating rate calculations use a constant Prandtl number. Sample calculations of the six shock wave interference patterns, a listing of the computer program, and flowcharts of the programming logic are included.

  9. Experimental and Computational Studies of the Kinetics of the Reaction of Atomic Hydrogen with Methanethiol.

    PubMed

    Kerr, Katherine E; Alecu, Ionut M; Thompson, Kristopher M; Gao, Yide; Marshall, Paul

    2015-07-16

    The overall rate constant for H + CH3SH has been studied over 296-1007 K in an Ar bath gas using the laser flash photolysis method at 193 nm. H atoms were generated from CH3SH and in some cases NH3. They were detected via time-resolved resonance fluorescence. The results are summarized as k = (3.45 ± 0.19) × 10(-11) cm(3) molecule(-1) s(-1) exp(-6.92 ± 0.16 kJ mol(-1)/RT) where the errors in the Arrhenius parameters are the statistical uncertainties at the 2σ level. Overall error limits of ±9% for k are proposed. In the overlapping temperature range there is very good agreement with the resonance fluorescence measurements of Wine et al. Ab initio data and transition state theory yield moderate accord with the total rate constant, but not with prior mass spectrometry measurements of the main product channels leading to CH3S + H2 and CH3 + H2S by Amano et al.

  10. Resonant vibrational-excitation cross sections and rate constants for low-energy electron scattering by molecular oxygen

    NASA Astrophysics Data System (ADS)

    Laporta, V.; Celiberto, R.; Tennyson, J.

    2013-04-01

    Resonant vibrational-excitation cross sections and rate constants for electron scattering by molecular oxygen are presented. Transitions between all 42 vibrational levels of O_2({X}\\, ^3\\Sigma_g^{-}) are considered. Molecular rotations are parametrized by the rotational quantum number J, which is considered in the range 1-151. The lowest four resonant states of O_2^- , 2Πg, 2Πu, ^4\\Sigma_u^- and ^2\\Sigma_u^- are taken into account. The calculations are performed using the fixed-nuclei R-matrix approach to determine the resonance positions and widths, and the boomerang model to characterize the nuclei motion. Two energy regions below and above 4 eV are investigated: the first one is characterized by sharp structures in the cross section and the second by a broad resonance peaked at 10 eV. The computed cross sections are compared with theoretical and experimental results available in the literature for both energy regions, and are made available for use by modelers. The effect of including rotational motion is found to be non-negligible.

  11. Experimental and theoretical investigation of the temperature dependent electronic quenching of O(1D) atoms in collisions with Kr

    NASA Astrophysics Data System (ADS)

    Nuñez-Reyes, Dianailys; Kłos, Jacek; Alexander, Millard H.; Dagdigian, Paul J.; Hickson, Kevin M.

    2018-03-01

    The kinetics and dynamics of the collisional electronic quenching of O(1D) atoms by Kr have been investigated in a joint experimental and theoretical study. The kinetics of quenching were measured over the temperature range 50-296 K using the Laval nozzle method. O(1D) atoms were prepared by 266 nm photolysis of ozone, and the decay of the O(1D) concentration was monitored through vacuum ultraviolet fluorescence at 115.215 nm, from which the rate constant was determined. To interpret the experiments, a quantum close-coupling treatment of the quenching transition from the 1D state to the 3Pj fine-structure levels in collisions with Kr, and also Ar and Xe, was carried out. The relevant potential energy curves and spin-orbit coupling matrix elements were obtained in electronic structure calculations. We find reasonable agreement between computed temperature-dependent O(1D)-Rg (Rg = Ar, Kr, Xe) quenching rate constants and the present measurements for Kr and earlier measurements. In particular, the temperature dependence is well described.

  12. Reaction mechanisms and kinetics of the elimination processes of 2-chloroethylsilane and derivatives: A DFT study using CTST, RRKM, and BET theories

    NASA Astrophysics Data System (ADS)

    Shiroudi, Abolfazl; Zahedi, Ehsan; Oliaey, Ahmad Reza; Deleuze, Michael S.

    2017-03-01

    The thermal decomposition kinetics of 2-chloroethylsilane and derivatives in the gas phase has been studied computationally using density functional theory, along with various exchange-correlation functionals (UM06-2x and ωB97XD) and the aug-cc-pVTZ basis set. The calculated energy profile has been supplemented with calculations of kinetic rate constants under atmospheric pressure and in the fall-off regime, using transition state theory (TST) and statistical Rice-Ramsperger-Kassel-Marcus (RRKM) theory. Activation energies and rate constants obtained using the UM06-2x/aug-cc-pVTZ approach are in good agreement with the experimental data. The decomposition of 2-chloroethyltriethylsilane species into the related products [C2H4 + Et3SiCl] is characterized by 6 successive structural stability domains associated to the sequence of catastrophes C8H19SiCl: 6-C†FCC†[FF]-0: C6H15SiCl + C2H4. Breaking of Si-C bonds and formation of Si-Cl bonds occur in the vicinity of the transition state.

  13. Mechanism and kinetics of low-temperature oxidation of a biodiesel surrogate: methyl propanoate radicals with oxygen molecule.

    PubMed

    Le, Xuan T; Mai, Tam V T; Ratkiewicz, Artur; Huynh, Lam K

    2015-04-23

    This paper presents a computational study on the low-temperature mechanism and kinetics of the reaction between molecular oxygen and alkyl radicals of methyl propanoate (MP), which plays an important role in low-temperature oxidation and/or autoignition processes of the title fuel. Their multiple reaction pathways either accelerate the oxidation process via chain branching or inhibit it by forming relatively stable products. The potential energy surfaces of the reactions between three primary MP radicals and molecular oxygen, namely, C(•)H2CH2COOCH3 + O2, CH3C(•)HCOOCH3 + O2, and CH3CH2COOC(•)H2 + O2, were constructed using the accurate composite CBS-QB3 method. Thermodynamic properties of all species as well as high-pressure rate constants of all reaction channels were derived with explicit corrections for tunneling and hindered internal rotations. Our calculation results are in good agreement with a limited number of scattered data in the literature. Furthermore, pressure- and temperature-dependent rate constants for all reaction channels on the multiwell-multichannel potential energy surfaces were computed with the quantum Rice-Ramsperger-Kassel (QRRK) and the modified strong collision (MSC) theories. This procedure resulted in a thermodynamically consistent detailed kinetic submechanism for low-temperature oxidation governed by the title process. A simplified mechanism, which consists of important reactions, is also suggested for low-temperature combustion at engine-like conditions.

  14. Predicting chemical degradation during storage from two successive concentration ratios: Theoretical investigation.

    PubMed

    Peleg, Micha; Normand, Mark D

    2015-09-01

    When a vitamin's, pigment's or other food component's chemical degradation follows a known fixed order kinetics, and its rate constant's temperature-dependence follows a two parameter model, then, at least theoretically, it is possible to extract these two parameters from two successive experimental concentration ratios determined during the food's non-isothermal storage. This requires numerical solution of two simultaneous equations, themselves the numerical solutions of two differential rate equations, with a program especially developed for the purpose. Once calculated, these parameters can be used to reconstruct the entire degradation curve for the particular temperature history and predict the degradation curves for other temperature histories. The concept and computation method were tested with simulated degradation under rising and/or falling oscillating temperature conditions, employing the exponential model to characterize the rate constant's temperature-dependence. In computer simulations, the method's predictions were robust against minor errors in the two concentration ratios. The program to do the calculations was posted as freeware on the Internet. The temperature profile can be entered as an algebraic expression that can include 'If' statements, or as an imported digitized time-temperature data file, to be converted into an Interpolating Function by the program. The numerical solution of the two simultaneous equations requires close initial guesses of the exponential model's parameters. Programs were devised to obtain these initial values by matching the two experimental concentration ratios with a generated degradation curve whose parameters can be varied manually with sliders on the screen. These programs too were made available as freeware on the Internet and were tested with published data on vitamin A. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Microcomputer-Based Programs for Pharmacokinetic Simulations.

    ERIC Educational Resources Information Center

    Li, Ronald C.; And Others

    1995-01-01

    Microcomputer software that simulates drug-concentration time profiles based on user-assigned pharmacokinetic parameters such as central volume of distribution, elimination rate constant, absorption rate constant, dosing regimens, and compartmental transfer rate constants is described. The software is recommended for use in undergraduate…

  16. Nonlinear Gravitational and Radiation Aspects in Nanoliquid with Exponential Space Dependent Heat Source and Variable Viscosity

    NASA Astrophysics Data System (ADS)

    Gireesha, B. J.; Kumar, P. B. Sampath; Mahanthesh, B.; Shehzad, S. A.; Abbasi, F. M.

    2018-05-01

    The nonlinear convective flow of kerosene-Alumina nanoliquid subjected to an exponential space dependent heat source and temperature dependent viscosity is investigated here. This study is focuses on augmentation of heat transport rate in liquid propellant rocket engine. The kerosene-Alumina nanoliquid is considered as the regenerative coolant. Aspects of radiation and viscous dissipation are also covered. Relevant nonlinear system is solved numerically via RK based shooting scheme. Diverse flow fields are computed and examined for distinct governing variables. We figured out that the nanoliquid's temperature increased due to space dependent heat source and radiation aspects. The heat transfer rate is higher in case of changeable viscosity than constant viscosity.

  17. Nonlinear Gravitational and Radiation Aspects in Nanoliquid with Exponential Space Dependent Heat Source and Variable Viscosity

    NASA Astrophysics Data System (ADS)

    Gireesha, B. J.; Kumar, P. B. Sampath; Mahanthesh, B.; Shehzad, S. A.; Abbasi, F. M.

    2018-02-01

    The nonlinear convective flow of kerosene-Alumina nanoliquid subjected to an exponential space dependent heat source and temperature dependent viscosity is investigated here. This study is focuses on augmentation of heat transport rate in liquid propellant rocket engine. The kerosene-Alumina nanoliquid is considered as the regenerative coolant. Aspects of radiation and viscous dissipation are also covered. Relevant nonlinear system is solved numerically via RK based shooting scheme. Diverse flow fields are computed and examined for distinct governing variables. We figured out that the nanoliquid's temperature increased due to space dependent heat source and radiation aspects. The heat transfer rate is higher in case of changeable viscosity than constant viscosity.

  18. A Symmetric Time-Varying Cluster Rate of Descent Model

    NASA Technical Reports Server (NTRS)

    Ray, Eric S.

    2015-01-01

    A model of the time-varying rate of descent of the Orion vehicle was developed based on the observed correlation between canopy projected area and drag coefficient. This initial version of the model assumes cluster symmetry and only varies the vertical component of velocity. The cluster fly-out angle is modeled as a series of sine waves based on flight test data. The projected area of each canopy is synchronized with the primary fly-out angle mode. The sudden loss of projected area during canopy collisions is modeled at minimum fly-out angles, leading to brief increases in rate of descent. The cluster geometry is converted to drag coefficient using empirically derived constants. A more complete model is under development, which computes the aerodynamic response of each canopy to its local incidence angle.

  19. Using Computational Fluid Dynamics to Compare Shear Rate and Turbulence in the TIM-Automated Gastric Compartment With USP Apparatus II.

    PubMed

    Hopgood, Matthew; Reynolds, Gavin; Barker, Richard

    2018-03-30

    We use computational fluid dynamics to compare the shear rate and turbulence in an advanced in vitro gastric model (TIMagc) during its simulation of fasted state Migrating Motor Complex phases I and II, with the United States Pharmacopeia paddle dissolution apparatus II (USPII). A specific focus is placed on how shear rate in these apparatus affects erosion-based solid oral dosage forms. The study finds that tablet surface shear rates in TIMagc are strongly time dependant and fluctuate between 0.001 and 360 s -1 . In USPII, tablet surface shear rates are approximately constant for a given paddle speed and increase linearly from 9 s -1 to 36 s -1 as the paddle speed is increased from 25 to 100 rpm. A strong linear relationship is observed between tablet surface shear rate and tablet erosion rate in USPII, whereas TIMagc shows highly variable behavior. The flow regimes present in each apparatus are compared to in vivo predictions using Reynolds number analysis. Reynolds numbers for flow in TIMagc lie predominantly within the predicted in vivo bounds (0.01-30), whereas Reynolds numbers for flow in USPII lie above the predicted upper bound when operating with paddle speeds as low as 25 rpm (33). Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  20. Comparing Vibrationally Averaged Nuclear Shielding Constants by Quantum Diffusion Monte Carlo and Second-Order Perturbation Theory.

    PubMed

    Ng, Yee-Hong; Bettens, Ryan P A

    2016-03-03

    Using the method of modified Shepard's interpolation to construct potential energy surfaces of the H2O, O3, and HCOOH molecules, we compute vibrationally averaged isotropic nuclear shielding constants ⟨σ⟩ of the three molecules via quantum diffusion Monte Carlo (QDMC). The QDMC results are compared to that of second-order perturbation theory (PT), to see if second-order PT is adequate for obtaining accurate values of nuclear shielding constants of molecules with large amplitude motions. ⟨σ⟩ computed by the two approaches differ for the hydrogens and carbonyl oxygen of HCOOH, suggesting that for certain molecules such as HCOOH where big displacements away from equilibrium happen (internal OH rotation), ⟨σ⟩ of experimental quality may only be obtainable with the use of more sophisticated and accurate methods, such as quantum diffusion Monte Carlo. The approach of modified Shepard's interpolation is also extended to construct shielding constants σ surfaces of the three molecules. By using a σ surface with the equilibrium geometry as a single data point to compute isotropic nuclear shielding constants for each descendant in the QDMC ensemble representing the ground state wave function, we reproduce the results obtained through ab initio computed σ to within statistical noise. Development of such an approach could thereby alleviate the need for any future costly ab initio σ calculations.

  1. Assessing Chemical Retention Process Controls in Ponds

    NASA Astrophysics Data System (ADS)

    Torgersen, T.; Branco, B.; John, B.

    2002-05-01

    Small ponds are a ubiquitous component of the landscape and have earned a reputation as effective chemical retention devices. The most common characterization of pond chemical retention is the retention coefficient, Ri= ([Ci]inflow-[Ci] outflow)/[Ci]inflow. However, this parameter varies widely in one pond with time and among ponds. We have re-evaluated literature reported (Borden et al., 1998) monthly average retention coefficients for two ponds in North Carolina. Employing a simple first order model that includes water residence time, the first order process responsible for species removal have been separated from the water residence time over which it acts. Assuming the rate constant for species removal is constant within the pond (arguable at least), the annual average rate constant for species removal is generated. Using the annual mean rate constant for species removal and monthly water residence times results in a significantly enhanced predictive capability for Davis Pond during most months of the year. Predictive ability remains poor in Davis Pond during winter/unstratified periods when internal loading of P and N results in low to negative chemical retention. Predictive ability for Piedmont Pond (which has numerous negative chemical retention periods) is improved but not to the same extent as Davis Pond. In Davis Pond, the rate constant for sediment removal (each month) is faster than the rate constant for water and explains the good predictability for sediment retention. However, the removal rate constant for P and N is slower than the removal rate constant for sediment (longer water column residence time for P,N than for sediment). Thus sedimentation is not an overall control on nutrient retention. Additionally, the removal rate constant for P is slower than for TOC (TOC is not the dominate removal process for P) and N is removed slower than P (different in pond controls). For Piedmont Pond, sediment removal rate constants are slower than the removal rate constant for water indicating significant sediment resuspension episodes. It appears that these sediment resuspension events are aperiodic and control the loading and the chemical retention capability of Piedmont Pond for N,P,TOC. These calculated rate constants reflect the differing internal loading processes for each component and suggest means and mechanisms for the use of ponds in water quality management.

  2. Dynamic Characteristics of The DSI-Type Constant-Flow Valves

    NASA Astrophysics Data System (ADS)

    Kang, Yuan; Hu, Sheng-Yan; Chou, Hsien-Chin; Lee, Hsing-Han

    Constant flow valves have been presented in industrial applications or academic studies, which compensate recess pressures of a hydrostatic bearing to resist load fluctuating. The flow rate of constant-flow valves can be constant in spite of the pressure changes in recesses, however the design parameters must be specified. This paper analyzes the dynamic responses of DSI-type constant-flow valves that is designed as double pistons on both ends of a spool with single feedback of working pressure and regulating restriction at inlet. In this study the static analysis presents the specific relationships among design parameters for constant flow rate and the dynamic analyses give the variations around the constant flow rate as the working pressure fluctuates.

  3. Detection of the YORP Effect in Asteroid (3103) Eger

    NASA Astrophysics Data System (ADS)

    Durech, Josef; Vokrouhlicky, D.; Polishook, D.; Krugly, Y. N.; Gaftonyuk, N. M.; Stephens, R. D.; Warner, B. D.; Kaasalainen, M.; Gross, J.; Cooney, W.; Terrel, D.

    2009-09-01

    The rotation state of small bodies of the Solar System is affected by the thermal Yarkovsky-O'Keefe-Radzievski-Paddack (YORP) torque. The directly observable consequence of YORP is the secular change of the asteroid's rotational period in time. We carried out new photometric measurements of asteroid (3103) Eger during its suitable apparitions in 2001-2009. We also used archived data going back to 1987. Using all available photometry covering more than twenty years, we were able to detect a tiny deviation from the constant-period rotation. This deviation caused an observable shift between the observed lightcurves and those predicted by the best constant-period model. We used the lightcurve inversion method to derive a shape/spin solution that fitted the data at best. We assumed that the rotation rate evolved linearly in time and derived the acceleration of Eger's rotation rate dω/dt = (9 +/- 6) x 10-9 rad/d2 (maximum estimated uncertainty). The accelerating model provides a significantly better fit than the constant-period model. The value of dω/dt derived from observations is in agreement with the theoretical value computed numerically from the lightcurve inversion shape model and its spin axis orientation. After the three asteroids for which the YORP effect has already been detected (1862 Apollo, 54509 YORP, and 1620 Geographos), Eger is the fourth one.

  4. Experimental and Estimated Rate Constants for the Reactions of Hydroxyl Radicals with Several Halocarbons

    NASA Technical Reports Server (NTRS)

    DeMore, W.B.

    1996-01-01

    Relative rate experiments are used to measure rate constants and temperature dependencies of the reactions of OH with CH3F (41), CH2FCl (31), CH2BrCl (30B1), CH2Br2 (3OB2), CHBr3 (2OB3), CF2BrCHFCl (123aBl(alpha)), and CF2ClCHCl2 (122). Rate constants for additional compounds of these types are estimated using an empirical rate constant estimation method which is based on measured rate constants for a wide range of halocarbons. The experimental data are combined with the estimated and previously reported rate constants to illustrate the effects of F, Cl, and Br substitution on OH rate constants for a series of 19 halomethanes and 25 haloethanes. Application of the estimation technique is further illustrated for some higher hydrofluorocarbons (HFCs), including CHF2CF2CF2CF2H (338pcc), CF3CHFCHFCF2CF3 (43-10mee), CF3CH2CH2CF3 (356ffa), CF3CH2CF2CH2CF3 (458mfcf), CF3CH2CHF2 (245fa), and CF3CH2CF2CH3 (365mfc). The predictions are compared with literature data for these compounds.

  5. Modeling the reactivities of hydroxyl radical and ozone towards atmospheric organic chemicals using quantitative structure-reactivity relationship approaches.

    PubMed

    Gupta, Shikha; Basant, Nikita; Mohan, Dinesh; Singh, Kunwar P

    2016-07-01

    The persistence and the removal of organic chemicals from the atmosphere are largely determined by their reactions with the OH radical and O3. Experimental determinations of the kinetic rate constants of OH and O3 with a large number of chemicals are tedious and resource intensive and development of computational approaches has widely been advocated. Recently, ensemble machine learning (EML) methods have emerged as unbiased tools to establish relationship between independent and dependent variables having a nonlinear dependence. In this study, EML-based, temperature-dependent quantitative structure-reactivity relationship (QSRR) models have been developed for predicting the kinetic rate constants for OH (kOH) and O3 (kO3) reactions with diverse chemicals. Structural diversity of chemicals was evaluated using a Tanimoto similarity index. The generalization and prediction abilities of the constructed models were established through rigorous internal and external validation performed employing statistical checks. In test data, the EML QSRR models yielded correlation (R (2)) of ≥0.91 between the measured and the predicted reactivities. The applicability domains of the constructed models were determined using methods based on descriptors range, Euclidean distance, leverage, and standardization approaches. The prediction accuracies for the higher reactivity compounds were relatively better than those of the low reactivity compounds. Proposed EML QSRR models performed well and outperformed the previous reports. The proposed QSRR models can make predictions of rate constants at different temperatures. The proposed models can be useful tools in predicting the reactivities of chemicals towards OH radical and O3 in the atmosphere.

  6. Solvent dynamics and electron transfer reactions

    NASA Astrophysics Data System (ADS)

    Rasaiah, Jayendran C.; Zhu, Jianjun

    1994-02-01

    Recent experimental and theoretical studies of the influence of solvent dynamics on electron transfer (ET) reactions are discussed. It is seen that the survival probabilities of the reactants and products can be obtained as the solution to an integral equation using experimental or simulation data on the solvation dynamics. The theory developed for ET between thermally equilibrated reactants in solution, in which the ligand vibrations were treated classically, is extended to include quantum effects on the inner-shell ligand vibration and electron transfer from a nonequilibrium initial state prepared, for example, by laser excitation. This leads to a slight modification of the integral equation which is easily solved on a personal computer to provide results that can be directly compared with experiment. Analytic approximations to the solutions of the integral equation, ranging from a single exponential to multiexponential time dependence of the survival probabilities are discussed. The rate constant for the single exponential decay of the reactants interpolates between the thermal equilibrium rate constant kie (that is independent of solvent dynamics) and a diffusion controlled rate constant kid (determined by solvent dynamics) and also between the wide (A=0) and narrow (A=1) window limits dominated by inner-sphere ligand vibration and outer-sphere solvent reorganization respectively. The explicit dependence of the integral equation solutions on solvation dynamics S(t), the free energy of reaction ΔG0, the total reorganization energy λ and its partitioning between ligand vibration λq and solvent polarization fluctuations λ0, and the nature of the initial state should be useful in the analysis and design of ET experiments in different solvents.

  7. Efficient star formation in the spiral arms of M51

    NASA Technical Reports Server (NTRS)

    Lord, Steven D.; Young, Judith S.

    1990-01-01

    The molecular, neutral, and ionized hydrogen distributions in the Sbc galaxy M51 (NGC 5194) are compared. To estimate H2 surface densities observations of the CO (J = 1 - 0) transition were made in 60 positions out to a radius of 155 arcsec. Extinction-corrected H-alpha intensities were used to compute the detailed massive star formation rates (MSFRs) in the disk. Estimates of the gas surface density, the MSFR, and the ratio of these quantities, MSFR/sigma(p), were then examined. The spiral arms were found to exhibit an excess gas density, measuring between 1.4 and 1.6 times the interarm values at 45 arcsec resolution. The total (arm and interarm) gas content and massive star formation rates in concentric annuli in the disk of M51 were computed. The two quantities fall off together with radius, yielding a relatively constant MSFR/sigma(p) with radius. This behavior is not explained by current models of star formation in galactic disks.

  8. Nonlinear transport for a dilute gas in steady Couette flow

    NASA Astrophysics Data System (ADS)

    Garzó, V.; López de Haro, M.

    1997-03-01

    Transport properties of a dilute gas subjected to arbitrarily large velocity and temperature gradients (steady planar Couette flow) are determined. The results are obtained from the so-called ellipsoidal statistical (ES) kinetic model, which is an extension of the well-known BGK kinetic model to account for the correct Prandtl number. At a hydrodynamic level, the solution is characterized by constant pressure, and linear velocity and parabolic temperature profiles with respect to a scaled variable. The transport coefficients are explicitly evaluated as nonlinear functions of the shear rate. A comparison with previous results derived from a perturbative solution of the Boltzmann equation as well as from other kinetic models is carried out. Such a comparison shows that the ES predictions are in better agreement with the Boltzmann results than those of the other approximations. In addition, the velocity distribution function is also computed. Although the shear rates required for observing non-Newtonian effects are experimentally unrealizable, the conclusions obtained here may be relevant for analyzing computer results.

  9. An experimental study of high-pressure droplet combustion

    NASA Technical Reports Server (NTRS)

    Norton, Chris M.; Litchford, Ron J.; Jeng, San-Mou

    1990-01-01

    The results are presented of an experimental study on suspended n-heptane droplet combustion in air for reduced pressures up to P(r) = 2.305. Transition to fully transient heat-up through the critical state is demonstrated above a threshold pressure corresponding to P(r) of roughly 1.4. A silhouette imaging technique resolves the droplet surface for reduced pressures up to about P(r) roughly 0.63, but soot formation conceals the surface at higher pressures. Images of the soot plumes do not show any sudden change in behavior indicative of critical transition. Mean burning rate constants are computed from the d-squared variation law using measured effective droplet diameters at ignition and measured burn times, and corrected burning times are computed for an effective initial droplet diameter. The results show that the burning rates increase as the fuel critical pressure is approached and decrease as the pressure exceeds the fuel critical pressure. Corrected burning times show inverse behavior.

  10. Computing sextic centrifugal distortion constants by DFT: A benchmark analysis on halogenated compounds

    NASA Astrophysics Data System (ADS)

    Pietropolli Charmet, Andrea; Stoppa, Paolo; Tasinato, Nicola; Giorgianni, Santi

    2017-05-01

    This work presents a benchmark study on the calculation of the sextic centrifugal distortion constants employing cubic force fields computed by means of density functional theory (DFT). For a set of semi-rigid halogenated organic compounds several functionals (B2PLYP, B3LYP, B3PW91, M06, M06-2X, O3LYP, X3LYP, ωB97XD, CAM-B3LYP, LC-ωPBE, PBE0, B97-1 and B97-D) were used for computing the sextic centrifugal distortion constants. The effects related to the size of basis sets and the performances of hybrid approaches, where the harmonic data obtained at higher level of electronic correlation are coupled with cubic force constants yielded by DFT functionals, are presented and discussed. The predicted values were compared to both the available data published in the literature and those obtained by calculations carried out at increasing level of electronic correlation: Hartree-Fock Self Consistent Field (HF-SCF), second order Møller-Plesset perturbation theory (MP2), and coupled-cluster single and double (CCSD) level of theory. Different hybrid approaches, having the cubic force field computed at DFT level of theory coupled to harmonic data computed at increasing level of electronic correlation (up to CCSD level of theory augmented by a perturbational estimate of the effects of connected triple excitations, CCSD(T)) were considered. The obtained results demonstrate that they can represent reliable and computationally affordable methods to predict sextic centrifugal terms with an accuracy almost comparable to that yielded by the more expensive anharmonic force fields fully computed at MP2 and CCSD levels of theory. In view of their reduced computational cost, these hybrid approaches pave the route to the study of more complex systems.

  11. Computed Potential Energy Surfaces and Minimum Energy Pathways for Chemical Reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. For some dynamics methods, global potential energy surfaces are required. In this case, it is necessary to obtain the energy at a complete sampling of all the possible arrangements of the nuclei, which are energetically accessible, and then a fitting function must be obtained to interpolate between the computed points. In other cases, characterization of the stationary points and the reaction pathway connecting them is sufficient. These properties may be readily obtained using analytical derivative methods. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives usefull results for a number of chemically important systems. The talk will focus on a number of applications including global potential energy surfaces, H + O2, H + N2, O(3p) + H2, and reaction pathways for complex reactions, including reactions leading to NO and soot formation in hydrocarbon combustion.

  12. Characteristics of an aerosol photometer while automatically controlling chamber dilution-air flow rate.

    PubMed

    O'Shaughnessy, P T; Hemenway, D R

    2000-10-01

    Trials were conducted to determine those factors that affect the accuracy of a direct-reading aerosol photometer when automatically controlling airflow rate within an exposure chamber to regulate airborne dust concentrations. Photometer response was affected by a shift in the aerosol size distribution caused by changes in chamber flow rate. In addition to a dilution effect, flow rate also determined the relative amount of aerosol lost to sedimentation within the chamber. Additional calculations were added to a computer control algorithm to compensate for these effects when attempting to automatically regulate flow based on a proportional-integral-derivative (PID) feedback control algorithm. A comparison between PID-controlled trials and those performed with a constant generator output rate and dilution-air flow rate demonstrated that there was no significant decrease in photometer accuracy despite the many changes in flow rate produced when using PID control. Likewise, the PID-controlled trials produced chamber aerosol concentrations within 1% of a desired level.

  13. Schedule-induced drinking: rate of food delivery and Herrnstein's equation.

    PubMed Central

    Wetherington, C L

    1979-01-01

    Schedule-induced drinking was measured in four rats exposed to fixed-time schedules of food ranging from 30 to 480 seconds. Herrnstein's (1970, 1974) equation relating rate of a single response as a hyperbolic function of reinforcement rate provided a good fit to three measures of drinking: lick rate, ingestion rate, and relative time spent drinking. The functions relating the three measures of drinking to reinforcement rate were of similar form. Herrnstein's equation also provided a good description of some already published data on schedule-induced drinking. The fit both to the present data and to the already published data was improved somewhat by computing the measures by subtracting from the time base a latency constant representing the minimal time required to consume the food pellet and travel to the water source. The data from this study provide two correspondences between operant behavior and schedule-induced behavior: (a) conformity to Herrnstein's equation and (b) equivalence of rate and relative time measures. PMID:512568

  14. The discrete Fourier transform algorithm for determining decay constants—Implementation using a field programmable gate array

    NASA Astrophysics Data System (ADS)

    Bostrom, G.; Atkinson, D.; Rice, A.

    2015-04-01

    Cavity ringdown spectroscopy (CRDS) uses the exponential decay constant of light exiting a high-finesse resonance cavity to determine analyte concentration, typically via absorption. We present a high-throughput data acquisition system that determines the decay constant in near real time using the discrete Fourier transform algorithm on a field programmable gate array (FPGA). A commercially available, high-speed, high-resolution, analog-to-digital converter evaluation board system is used as the platform for the system, after minor hardware and software modifications. The system outputs decay constants at maximum rate of 4.4 kHz using an 8192-point fast Fourier transform by processing the intensity decay signal between ringdown events. We present the details of the system, including the modifications required to adapt the evaluation board to accurately process the exponential waveform. We also demonstrate the performance of the system, both stand-alone and incorporated into our existing CRDS system. Details of FPGA, microcontroller, and circuitry modifications are provided in the Appendix and computer code is available upon request from the authors.

  15. Oxygen monitor for semi-closed rebreathers: design and use for estimating metabolic oxygen consumption

    NASA Astrophysics Data System (ADS)

    Clarke, John R.; Southerland, David

    1999-07-01

    Semi-closed circuit underwater breathing apparatus (UBA) provide a constant flow of mixed gas containing oxygen and nitrogen or helium to a diver. However, as a diver's work rate and metabolic oxygen consumption varies, the oxygen percentages within the UBA can change dramatically. Hence, even a resting diver can become hypoxic and become at risk for oxygen induced seizures. Conversely, a hard working diver can become hypoxic and lose consciousness. Unfortunately, current semi-closed UBA do not contain oxygen monitors. We describe a simple oxygen monitoring system designed and prototyped at the Navy Experimental Diving Unit. The main monitor components include a PIC microcontroller, analog-to-digital converter, bicolor LED, and oxygen sensor. The LED, affixed to the diver's mask is steady green if the oxygen partial pressure is within pre- defined acceptable limits. A more advanced monitor with a depth senor and additional computational circuitry could be used to estimate metabolic oxygen consumption. The computational algorithm uses the oxygen partial pressure and the diver's depth to compute O2 using the steady state solution of the differential equation describing oxygen concentrations within the UBA. Consequently, dive transients induce errors in the O2 estimation. To evalute these errors, we used a computer simulation of semi-closed circuit UBA dives to generate transient rich data as input to the estimation algorithm. A step change in simulated O2 elicits a monoexponential change in the estimated O2 with a time constant of 5 to 10 minutes. Methods for predicting error and providing a probable error indication to the diver are presented.

  16. Modeling and performance improvement of the constant power regulator systems in variable displacement axial piston pump.

    PubMed

    Park, Sung Hwan; Lee, Ji Min; Kim, Jong Shik

    2013-01-01

    An irregular performance of a mechanical-type constant power regulator is considered. In order to find the cause of an irregular discharge flow at the cut-off pressure area, modeling and numerical simulations are performed to observe dynamic behavior of internal parts of the constant power regulator system for a swashplate-type axial piston pump. The commercial numerical simulation software AMESim is applied to model the mechanical-type regulator with hydraulic pump and simulate the performance of it. The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments. In order to find the cause of the irregular performance of the mechanical-type constant power regulator system, the behavior of main components such as the spool, sleeve, and counterbalance piston is investigated using computer simulation. The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator. The performance improvement is verified by computer simulation using AMESim software.

  17. Piezo-optic tensor of crystals from quantum-mechanical calculations.

    PubMed

    Erba, A; Ruggiero, M T; Korter, T M; Dovesi, R

    2015-10-14

    An automated computational strategy is devised for the ab initio determination of the full fourth-rank piezo-optic tensor of crystals belonging to any space group of symmetry. Elastic stiffness and compliance constants are obtained as numerical first derivatives of analytical energy gradients with respect to the strain and photo-elastic constants as numerical derivatives of analytical dielectric tensor components, which are in turn computed through a Coupled-Perturbed-Hartree-Fock/Kohn-Sham approach, with respect to the strain. Both point and translation symmetries are exploited at all steps of the calculation, within the framework of periodic boundary conditions. The scheme is applied to the determination of the full set of ten symmetry-independent piezo-optic constants of calcium tungstate CaWO4, which have recently been experimentally reconstructed. Present calculations unambiguously determine the absolute sign (positive) of the π61 constant, confirm the reliability of 6 out of 10 experimentally determined constants and provide new, more accurate values for the remaining 4 constants.

  18. Piezo-optic tensor of crystals from quantum-mechanical calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erba, A., E-mail: alessandro.erba@unito.it; Dovesi, R.; Ruggiero, M. T.

    2015-10-14

    An automated computational strategy is devised for the ab initio determination of the full fourth-rank piezo-optic tensor of crystals belonging to any space group of symmetry. Elastic stiffness and compliance constants are obtained as numerical first derivatives of analytical energy gradients with respect to the strain and photo-elastic constants as numerical derivatives of analytical dielectric tensor components, which are in turn computed through a Coupled-Perturbed-Hartree-Fock/Kohn-Sham approach, with respect to the strain. Both point and translation symmetries are exploited at all steps of the calculation, within the framework of periodic boundary conditions. The scheme is applied to the determination of themore » full set of ten symmetry-independent piezo-optic constants of calcium tungstate CaWO{sub 4}, which have recently been experimentally reconstructed. Present calculations unambiguously determine the absolute sign (positive) of the π{sub 61} constant, confirm the reliability of 6 out of 10 experimentally determined constants and provide new, more accurate values for the remaining 4 constants.« less

  19. The Arrhenius equation revisited.

    PubMed

    Peleg, Micha; Normand, Mark D; Corradini, Maria G

    2012-01-01

    The Arrhenius equation has been widely used as a model of the temperature effect on the rate of chemical reactions and biological processes in foods. Since the model requires that the rate increase monotonically with temperature, its applicability to enzymatic reactions and microbial growth, which have optimal temperature, is obviously limited. This is also true for microbial inactivation and chemical reactions that only start at an elevated temperature, and for complex processes and reactions that do not follow fixed order kinetics, that is, where the isothermal rate constant, however defined, is a function of both temperature and time. The linearity of the Arrhenius plot, that is, Ln[k(T)] vs. 1/T where T is in °K has been traditionally considered evidence of the model's validity. Consequently, the slope of the plot has been used to calculate the reaction or processes' "energy of activation," usually without independent verification. Many experimental and simulated rate constant vs. temperature relationships that yield linear Arrhenius plots can also be described by the simpler exponential model Ln[k(T)/k(T(reference))] = c(T-T(reference)). The use of the exponential model or similar empirical alternative would eliminate the confusing temperature axis inversion, the unnecessary compression of the temperature scale, and the need for kinetic assumptions that are hard to affirm in food systems. It would also eliminate the reference to the Universal gas constant in systems where a "mole" cannot be clearly identified. Unless proven otherwise by independent experiments, one cannot dismiss the notion that the apparent linearity of the Arrhenius plot in many food systems is due to a mathematical property of the model's equation rather than to the existence of a temperature independent "energy of activation." If T+273.16°C in the Arrhenius model's equation is replaced by T+b, where the numerical value of the arbitrary constant b is substantially larger than T and T(reference), the plot of Ln k(T) vs. 1/(T+b) will always appear almost perfectly linear. Both the modified Arrhenius model version having the arbitrary constant b, Ln[k(T)/k(T(reference)) = a[1/ (T(reference)+b)-1/ (T+b)], and the exponential model can faithfully describe temperature dependencies traditionally described by the Arrhenius equation without the assumption of a temperature independent "energy of activation." This is demonstrated mathematically and with computer simulations, and with reprocessed classical kinetic data and published food results.

  20. Phase-field simulations of coherent precipitate morphologies and coarsening kinetics

    NASA Astrophysics Data System (ADS)

    Vaithyanathan, Venugopalan

    2002-09-01

    The primary aim of this research is to enhance the fundamental understanding of coherent precipitation reactions in advanced metallic alloys. The emphasis is on a particular class of precipitation reactions which result in ordered intermetallic precipitates embedded in a disordered matrix. These precipitation reactions underlie the development of high-temperature Ni-base superalloys and ultra-light aluminum alloys. Phase-field approach, which has emerged as the method of choice for modeling microstructure evolution, is employed for this research with the focus on factors that control the precipitate morphologies and coarsening kinetics, such as precipitate volume fractions and lattice mismatch between precipitates and matrix. Two types of alloy systems are considered. The first involves L1 2 ordered precipitates in a disordered cubic matrix, in an attempt to model the gamma' precipitates in Ni-base superalloys and delta' precipitates in Al-Li alloys. The effect of volume fraction on coarsening kinetics of gamma' precipitates was investigated using two-dimensional (2D) computer simulations. With increase in volume fraction, larger fractions of precipitates were found to have smaller aspect ratios in the late stages of coarsening, and the precipitate size distributions became wider and more positively skewed. The most interesting result was associated with the effect of volume fraction on the coarsening rate constant. Coarsening rate constant as a function of volume fraction extracted from the cubic growth law of average half-edge length was found to exhibit three distinct regimes: anomalous behavior or decreasing rate constant with volume fraction at small volume fractions ( ≲ 20%), volume fraction independent or constant behavior for intermediate volume fractions (˜20--50%), and the normal behavior or increasing rate constant with volume fraction for large volume fractions ( ≳ 50%). The second alloy system considered was Al-Cu with the focus on understanding precipitation of metastable tetragonal theta'-Al 2Cu in a cubic Al solid solution matrix. In collaboration with Chris Wolverton at Ford Motor Company, a multiscale model, which involves a novel combination of first-principles atomistic calculations with a mesoscale phase-field microstructure model, was developed. Reliable energetics in the form of bulk free energy, interfacial energy and parameters for calculating the elastic energy were obtained using accurate first-principles calculations. (Abstract shortened by UMI.)

  1. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soudackov, Alexander V.; Hammes-Schiffer, Sharon

    2015-11-21

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at highmore » temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton transfer and proton-coupled electron transfer in chemical and biological processes.« less

  2. Radioimmunoassay for pyridostigmine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, H.G.; Lukey, B.J.; Gepp, R.T.

    1988-01-01

    Pyridostigmine is a cholinergic drug used for the treatment of myasthenia gravis and for antagonizing the effects of non-depolarizing muscle relaxants. In addition, military organizations in several countries have an active interest in pyridostigmine as a pretreatment compound for nerve agent poisoning. Anti-pyridostigmine antibodies were produced in rabbits using a pyridostigmine analog conjugated to keyhole limpet hemocyanin. These antibodies were used for development of a radioimmunoassay that has a linear standard curve (r2=0.986) ranging from 0.5 to 10.0 ng/ml of pyridostigmine bromide in a 0.1-ml plasma sample. This assay measures pyridostigmine in plasma with better sensitivity and much greater through-putmore » than do current state-of-the-art high-performance liquid chromatography techniques. In addition, only small volumes (100ml) of the plasma samples are required. Plasma levels of pyridostigmine were determined in the rat after intramuscular administration (0.056mg/kg) of pyridostigmine bromide. Estimates of the various pharmacokinetic parameters were calculated using the computer program NONLIN84. The results were as follows: apparent volume of distribution = 1.97 1/kg, absorption rate constant = 0.277 min-1, elimination rate constant = 0.0273 min-1, area under the curve = 1010 ng x min/ml, absorption rate half-life = 2.41 min, elimination rate half-life = 24.8 min, maximal plasma concentration (Cmax) = 21.3 ng/ml and time to Cmax = 9.02 min.« less

  3. Ionic strength dependence of the oxidation of SO2 by H2O2 in sodium chloride particles

    NASA Astrophysics Data System (ADS)

    Ali, H. M.; Iedema, M.; Yu, X.-Y.; Cowin, J. P.

    2014-06-01

    The reaction of sulfur dioxide and hydrogen peroxide in the presence of deliquesced (>75% RH) sodium chloride (brine) particles was studied by utilizing a cross flow mini-reactor. The reaction kinetics were followed by observing chloride depletion in particles by computer-controlled scanning electron microscope with energy dispersive X-ray analysis, namely CCSEM/EDX. The reactions take place in concentrated mixed salt brine aerosols, for which no complete kinetic equilibrium data previously existed. We measured the Henry's law solubility of H2O2 in brine solutions to close that gap. We also calculated the reaction rate as the particle transforms continuously from concentrated NaCl brine to, eventually, a mixed NaHSO4 plus H2SO4 brine solution. The reaction rate of the SO2 oxidation by H2O2 was found to be influenced by the change in ionic strength as the particle undergoes compositional transformation, following closely the dependence of the third order rate constant on ionic strength as predicted using established rate equations. This is the first study that has measured the ionic strength dependence of sulfate formation (in non-aqueous media) from oxidation of mixed salt brine aerosols in the presence of H2O2. It also gives the first report of the dependence of the Henry's law constant of H2O2 on ionic strength.

  4. Discrete-state representation of ion permeation coupled to fast gating in a model of ClC chloride channels: comparison to multi-ion continuous space Brownian dynamics simulations.

    PubMed

    Coalson, Rob D; Cheng, Mary Hongying

    2010-01-28

    A discrete-state model of chloride ion motion in a ClC chloride channel is constructed, following a previously developed multi-ion continuous space model of the same system (Cheng, M. H.; Mamonov, A. B.; Dukes, J. W.; Coalson, R. D. J. Phys. Chem. B 2007, 111, 5956) that included a simplistic representation of the fast gate in this channel. The reducibility of the many-body continuous space to the eight discrete-state model considered in the present work is examined in detail by performing three-dimensional Brownian dynamics simulations of each allowed state-to-state transition in order to extract the appropriate rate constant for this process, and then inserting the pairwise rate constants thereby obtained into an appropriate set of kinetic master equations. Experimental properties of interest, including the rate of Cl(-) ion permeation through the open channel and the average rate of closing of the fast gate as a function of bulk Cl(-) ion concentrations in the intracellular and extracellular electrolyte reservoirs are computed. Good agreement is found between the results obtained via the eight discrete-state model versus the multi-ion continuous space model, thereby encouraging continued development of the discrete-state model to include more complex behaviors observed experimentally in these channels.

  5. Constant curvature black holes in Einstein AdS gravity: Euclidean action and thermodynamics

    NASA Astrophysics Data System (ADS)

    Guilleminot, Pablo; Olea, Rodrigo; Petrov, Alexander N.

    2018-03-01

    We compute the Euclidean action for constant curvature black holes (CCBHs), as an attempt to associate thermodynamic quantities to these solutions of Einstein anti-de Sitter (AdS) gravity. CCBHs are gravitational configurations obtained by identifications along isometries of a D -dimensional globally AdS space, such that the Riemann tensor remains constant. Here, these solutions are interpreted as extended objects, which contain a (D -2 )-dimensional de-Sitter brane as a subspace. Nevertheless, the computation of the free energy for these solutions shows that they do not obey standard thermodynamic relations.

  6. Windows(Registered Trademark)-Based Software Models Cyclic Oxidation Behavior

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.; Auping, J. V.

    2004-01-01

    Oxidation of high-temperature aerospace materials is a universal issue for combustion-path components in turbine or rocket engines. In addition to the question of the consumption of material due to growth of protective scale at use temperatures, there is also the question of cyclic effects and spallation of scale on cooldown. The spallation results in the removal of part of the protective oxide in a discontinuous step and thereby opens the way for more rapid oxidation upon reheating. In experiments, cyclic oxidation behavior is most commonly characterized by measuring changes in weight during extended time intervals that include hundreds or thousands of heating and cooling cycles. Weight gains occurring during isothermal scale-growth processes have been well characterized as being parabolic or nearly parabolic functions of time because diffusion controls reaction rates. In contrast, the net weight change in cyclic oxidation is the sum of the effects of the growth and spallation of scale. Typically, the net weight gain in cyclic oxidation is determined only empirically (that is, by measurement), with no unique or straightforward mathematical connection to either the rate of growth or the amount of metal consumed. Thus, there is a need for mathematical modeling to infer spallation mechanisms. COSP is a computer program that models the growth and spallation processes of cyclic oxidation on the basis of a few elementary assumptions that were discussed in COSP: A Computer Model of Cyclic Oxidation, Oxidation of Metals, vol. 36, numbers 1 and 2, 1991, pages 81-112. Inputs to the model include the selection of an oxidation-growth law and a spalling geometry, plus oxide-phase, growth-rate, cycle-duration, and spall-constant parameters. (The spalling fraction is often shown to be a constant factor times the existing amount of scale.) The output of COSP includes the net change in weight, the amounts of retained and spalled oxide, the total amounts of oxygen and metal consumed, and the terminal rates of weight loss and metal consumption.

  7. New spatial diversity equalizer based on PLL

    NASA Astrophysics Data System (ADS)

    Rao, Wei

    2011-10-01

    A new Spatial Diversity Equalizer (SDE) based on phase-locked loop (PLL) is proposed to overcome the inter-symbol interference (ISI) and phase rotations simultaneously in the digital communication system. The proposed SDE consists of equal gain combining technique based on a famous blind equalization algorithm constant modulus algorithm (CMA) and a PLL. Compared with conventional SDE, the proposed SDE has not only faster convergence rate and lower residual error but also the ability to recover carrier phase rotation. The efficiency of the method is proved by computer simulation.

  8. International Symposium on Bioorganic Chemistry Held in New York, New York on 6-8 May 1985.

    DTIC Science & Technology

    1985-12-23

    the stilbenes by HPLC analysis using an Ultrasphere-Octyl column eluting with 70:30 - MeOH:H 20 (v/v). ’Approximately 1% yields of 2-cyclohexene- I -ol...of each individual product was followed by HPLC at several wavelengths and the rate constants computed for their appearance. Given this body of...CH2CH)j HPLC : 13 IASTEOMERS, (Il 6.O10-3 M MAIN ISOMER: cck [X-RAY) ftt A WADgTSCHATKA -c~ FIGURE 10. The porphyrinogen - pyrrocorphin tautomerization

  9. Optically Driven Spin Based Quantum Dots for Quantum Computing

    DTIC Science & Technology

    2008-01-01

    time . Figure 3. Demonstration of optical pumping. This shows the absorption as a function of bias voltage and laser energy. In region...319,076 319,079 0 2 0 2 0 2 0 2 0 2 R el at iv e ab so rp tio n (× 1 0– 4 ) Probe frequency (GHz) Time constant (ms) 1 1 3 10 30 c Figure 1 | Laser ...spectrum of the forward (or backward) scan. c, The probe absorption spectrum as a function of the laser scan rate, indicated by the lock-in time

  10. Computational Prediction of Kinetic Rate Constants

    DTIC Science & Technology

    2006-06-09

    24 Reactant: P(CH3)F2O (Difluor) Energetics: RHF DZP Frozen Core CCSD: -655.069925 Hartree CCSD(T): -655.090871 Hartree ZPE : 30.59 kcal...655.069925 Hartree CCSD(T): -655.090871 Hartree ZPE : 30.59 kcal/mol Geometry: RHF CCSD(T) Geom. Opt. PC Bond (Å): 1.79575 OP Bond (Å): 1.47117 FP Bond (Å... ZPE : 18.67 kcal/mol Intensity (km/mol)Frequency (cm -1)Symmetry 11.03833324.0968A1 11.03833324.0968A1 0.00003133.6602A1 2.38681429.9058A1

  11. A Computer Code for a One-Dimensional Dynamic Model of the Mesosphere and Lower Thermosphere.

    DTIC Science & Technology

    1984-03-07

    electron flux, both at energy 4 The ionization cross section is given by 9 u( ) = S(,W) dW (57) I 2. Nicolet, M., and Aikin, A.C. (1960) The formation of the... energy in ev, and P, y, P, and S are parameters obtained from the best fit of Eq. (58) to experimental and theoretical results. Table B22 lists the values...Chem. 47:1783-1793. .E.. .I 73) Rate constants of thermal energy binary ion-molecule rtactions (of zqeionomic interest, At. Data Nucl. Data Tables 12

  12. Modelling of polymer photodegradation for solar cell modules

    NASA Technical Reports Server (NTRS)

    Somersall, A. C.; Guillet, J. E.

    1981-01-01

    A computer program developed to model and calculate by numerical integration the varying concentrations of chemical species formed during photooxidation of a polymeric material over time, using as input data a choice set of elementary reactions, corresponding rate constants and a convenient set of starting conditions is evaluated. Attempts were made to validate the proposed mechanism by experimentally monitoring the photooxidation products of small liquid alkane which are useful starting models for ethylene segments of polymers like EVA. The model system proved in appropriate for the intended purposes. Another validation model is recommended.

  13. Quantum chaos on a critical Fermi surface.

    PubMed

    Patel, Aavishkar A; Sachdev, Subir

    2017-02-21

    We compute parameters characterizing many-body quantum chaos for a critical Fermi surface without quasiparticle excitations. We examine a theory of [Formula: see text] species of fermions at nonzero density coupled to a [Formula: see text] gauge field in two spatial dimensions and determine the Lyapunov rate and the butterfly velocity in an extended random-phase approximation. The thermal diffusivity is found to be universally related to these chaos parameters; i.e., the relationship is independent of [Formula: see text], the gauge-coupling constant, the Fermi velocity, the Fermi surface curvature, and high-energy details.

  14. Detailed mechanism of benzene oxidation

    NASA Technical Reports Server (NTRS)

    Bittker, David A.

    1987-01-01

    A detailed quantitative mechanism for the oxidation of benzene in both argon and nitrogen diluted systems is presented. Computed ignition delay time for argon diluted mixtures are in satisfactory agreement with experimental results for a wide range of initial conditions. An experimental temperature versus time profile for a nitrogen diluted oxidation was accurately matched and several concentration profiles were matched qualitatively. Application of sensitivity analysis has given approximate rate constant expressions for the two dominant heat release reactions, the oxidation of C6H5 and C5H5 radicals by molecular oxygen.

  15. Modeling of chemical reactions in micelle: water-mediated keto-enol interconversion as a case study.

    PubMed

    Marracino, Paolo; Amadei, Andrea; Apollonio, Francesca; d'Inzeo, Guglielmo; Liberti, Micaela; di Crescenzo, Antonello; Fontana, Antonella; Zappacosta, Romina; Aschi, Massimiliano

    2011-06-30

    The effect of a zwitterionic micelle environment on the efficiency of the keto-enol interconversion of 2-phenylacetylthiophene has been investigated by means of a joint application of experimental and theoretical/computational approaches. Results have revealed a reduction of the reaction rate constant if compared with bulk water essentially because of the different solvation conditions experienced by the reactant species, including water molecules, in the micelle environment. The slight inhibiting effect due to the application of a static electric field has also been theoretically investigated and presented.

  16. Agricultural pesticide emissions associated with common crops in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benjey, W.G.

    Annual emissions for the year 1987 from the application of agricultural pesticides have been estimated by crop type by county for the United States using a geographic information system. The emissions estimates are based upon computed volatilization rates accounting for the properties of each pesticide, evaporation rates, mode of application (surface or soil incorporation) and percent of interception by leaves. Key pesticide properties include the Henry's Law constant, half-life in soil and the organic carbon partitioning coefficient. The volatilization rates are multiplied by the amount of pesticide applied by crop acreage in each county as determined from agricultural census andmore » pesticide sales data. The geographic distribution of the dominant emissions, such as atrazine and diazinon, etc. are presented by crop type and state. For a given pesticide, the geographic variability is controlled principally by amount applied and water availability as reflected in evaporation rates.« less

  17. Imaging Breathing Rate in the CO2Absorption Band.

    PubMed

    Fei, Jin; Zhu, Zhen; Pavlidis, Ioannis

    2005-01-01

    Following up on our previous work, we have developed one more non-contact method to measure human breathing rate. We have retrofitted our Mid-Wave Infra-Red (MWIR) imaging system with a narrow band-pass filter in the CO2absorption band (4.3 µm). This improves the contrast between the foreground (i.e., expired air) and background (e.g., wall). Based on the radiation information within the breath flow region, we get the mean dynamic thermal signal. This signal is quasi-periodic due to the interleaving of high and low intensities corresponding to expirations and inspirations respectively. We sample the signal at a constant rate and then determine the breathing frequency through Fourier analysis. We have performed experiments on 9 subjects at distances ranging from 6-8 ft. We compared the breathing rate computed by our novel method with ground-truth measurements obtained via a traditional contact device (PowerLab/4SP from ADInstruments with an abdominal transducer). The results show high correlation between the two modalities. For the first time, we report a Fourier based breathing rate computation method on a MWIR signal in the CO2absorption band. The method opens the way for desktop, unobtrusive monitoring of an important vital sign, that is, breathing rate. It may find widespread applications in preventive medicine as well as sustained physiological monitoring of subjects suffering from chronic ailments.

  18. A Green's function method for simulation of time-dependent solute transport and reaction in realistic microvascular geometries.

    PubMed

    Secomb, Timothy W

    2016-12-01

    A novel theoretical method is presented for simulating the spatially resolved convective and diffusive transport of reacting solutes between microvascular networks and the surrounding tissues. The method allows for efficient computational solution of problems involving convection and non-linear binding of solutes in blood flowing through microvascular networks with realistic 3D geometries, coupled with transvascular exchange and diffusion and reaction in the surrounding tissue space. The method is based on a Green's function approach, in which the solute concentration distribution in the tissue is expressed as a sum of fields generated by time-varying distributions of discrete sources and sinks. As an example of the application of the method, the washout of an inert diffusible tracer substance from a tissue region perfused by a network of microvessels is simulated, showing its dependence on the solute's transvascular permeability and tissue diffusivity. Exponential decay of the washout concentration is predicted, with rate constants that are about 10-30% lower than the rate constants for a tissue cylinder model with the same vessel length, vessel surface area and blood flow rate per tissue volume. © The authors 2015. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  19. GROUND WATER ISSUE - CALCULATION AND USE OF FIRST-ORDER RATE CONSTANTS FOR MONITORED NATURAL ATTENUATION STUDIES

    EPA Science Inventory

    This issue paper explains when and how to apply first-order attenuation rate constant calculations in monitored natural attenuation (MNA) studies. First-order attenuation rate constant calculations can be an important tool for evaluating natural attenuation processes at ground-wa...

  20. Trends in electron-ion dissociative recombination of benzene analogs with functional group substitutions: Negative Hammett σpara values

    NASA Astrophysics Data System (ADS)

    Osborne, David; Lawson, Patrick Andrew; Adams, Nigel; Dotan, Itzhak

    2014-06-01

    An in-depth study of the effects of functional group substitution on benzene's electron-ion dissociative recombination (e-IDR) rate constant has been conducted. The e-IDR rate constants for benzene, biphenyl, toluene, ethylbenzene, anisole, phenol, and aniline have been measured using a Flowing Afterglow equipped with an electrostatic Langmuir probe (FALP). These measurements have been made over a series of temperatures from 300 to 550 K. A relationship between the Hammett σpara values for each compound and rate constant has indicated a trend in the e-IDR rate constants and possibly in their temperature dependence data. The Hammett σpara value is a method to describe the effect a functional group substituted to a benzene ring has upon the reaction rate constant.

  1. Computer analysis of potentiometric data of complexes formation in the solution

    NASA Astrophysics Data System (ADS)

    Jastrzab, Renata; Kaczmarek, Małgorzata T.; Tylkowski, Bartosz; Odani, Akira

    2018-02-01

    The determination of equilibrium constants is an important process for many branches of chemistry. In this review we provide the readers with a discussion on computer methods which have been applied for elaboration of potentiometric experimental data generated during complexes formation in solution. The review describes both: general basis of modeling tools and examples of the use of calculated stability constants.

  2. Highly fault-tolerant parallel computation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spielman, D.A.

    We re-introduce the coded model of fault-tolerant computation in which the input and output of a computational device are treated as words in an error-correcting code. A computational device correctly computes a function in the coded model if its input and output, once decoded, are a valid input and output of the function. In the coded model, it is reasonable to hope to simulate all computational devices by devices whose size is greater by a constant factor but which are exponentially reliable even if each of their components can fail with some constant probability. We consider fine-grained parallel computations inmore » which each processor has a constant probability of producing the wrong output at each time step. We show that any parallel computation that runs for time t on w processors can be performed reliably on a faulty machine in the coded model using w log{sup O(l)} w processors and time t log{sup O(l)} w. The failure probability of the computation will be at most t {center_dot} exp(-w{sup 1/4}). The codes used to communicate with our fault-tolerant machines are generalized Reed-Solomon codes and can thus be encoded and decoded in O(n log{sup O(1)} n) sequential time and are independent of the machine they are used to communicate with. We also show how coded computation can be used to self-correct many linear functions in parallel with arbitrarily small overhead.« less

  3. Comment on 'Can infrared gravitons screen {lambda}?'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsamis, N. C.; Woodard, R. P.; Department of Physics, University of Florida, Gainesville, Florida 32611

    2008-07-15

    We reply to the recent criticism by Garriga and Tanaka of our proposal that quantum gravitational loop corrections may lead to a secular screening of the effective cosmological constant. Their argument rests upon a renormalization scheme in which the composite operator (R{radical}(-g)-4{lambda}{radical}(-g)){sub ren} is defined to be the trace of the renormalized field equations. Although this is a peculiar prescription, we show that it does not preclude secular screening. Moreover, we show that a constant Ricci scalar does not even classically imply a constant expansion rate. Other important points are: (1) the quantity R{sub ren} of Garriga and Tanaka ismore » neither a properly defined composite operator, nor is it constant; (2) gauge dependence does not render a Green's function devoid of physical content; (3) scalar models on a nondynamical de Sitter background (for which there is no gauge issue) can induce arbitrarily large secular contributions to the stress tensor; (4) the same secular corrections appear in observable quantities in quantum gravity; and (5) the prospects seem good for deriving a simple stochastic formulation of quantum gravity in which the leading secular effects can be summed and for which the expectation values of even complicated, gauge invariant operators can be computed at leading order.« less

  4. Equilibrium muscle cross-bridge behavior. Theoretical considerations.

    PubMed Central

    Schoenberg, M

    1985-01-01

    We have developed a model for the equilibrium attachment and detachment of myosin cross-bridges to actin that takes into account the possibility that a given cross-bridge can bind to one of a number of actin monomers, as seems likely, rather than to a site on only a single actin monomer, as is often assumed. The behavior of this multiple site model in response to constant velocity, as well as instantaneous stretches, was studied and the influence of system parameters on the force response explored. It was found that in the multiple site model the detachment rate constant has considerably greater influence on the mechanical response than the attachment rate constant. It is shown that one can obtain information about the detachment rate constants either by examining the relationship between the apparent stiffness and duration of stretch for constant velocity stretches or by examining the force-decay rate constants following an instantaneous stretch. The main effect of the attachment rate constant is to scale the mechanical response by influencing the number of attached cross-bridges. The significance of the modeling for the interpretation of experimental results is discussed. PMID:4041539

  5. Relativistic force field: parametric computations of proton-proton coupling constants in (1)H NMR spectra.

    PubMed

    Kutateladze, Andrei G; Mukhina, Olga A

    2014-09-05

    Spin-spin coupling constants in (1)H NMR carry a wealth of structural information and offer a powerful tool for deciphering molecular structures. However, accurate ab initio or DFT calculations of spin-spin coupling constants have been very challenging and expensive. Scaling of (easy) Fermi contacts, fc, especially in the context of recent findings by Bally and Rablen (Bally, T.; Rablen, P. R. J. Org. Chem. 2011, 76, 4818), offers a framework for achieving practical evaluation of spin-spin coupling constants. We report a faster and more precise parametrization approach utilizing a new basis set for hydrogen atoms optimized in conjunction with (i) inexpensive B3LYP/6-31G(d) molecular geometries, (ii) inexpensive 4-31G basis set for carbon atoms in fc calculations, and (iii) individual parametrization for different atom types/hybridizations, not unlike a force field in molecular mechanics, but designed for the fc's. With the training set of 608 experimental constants we achieved rmsd <0.19 Hz. The methodology performs very well as we illustrate with a set of complex organic natural products, including strychnine (rmsd 0.19 Hz), morphine (rmsd 0.24 Hz), etc. This precision is achieved with much shorter computational times: accurate spin-spin coupling constants for the two conformers of strychnine were computed in parallel on two 16-core nodes of a Linux cluster within 10 min.

  6. Electron-ion dissociative recombination rate constants relevant to the Titan atmosphere and the Interstellar Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osborne, David; Lawson, Patrick; Adams, Nigel, E-mail: ngadams@uga.edu

    Following the arrival of Cassini at Titan in 2004, the Titan atmosphere has been shown to contain large complex polycyclic-aromatic hydrocarbons. Since Cassini has provided a great deal of data, there exists a need for kinetic rate data to help with modeling this atmosphere. One type of kinetic data needed is electron-ion dissociative recombination (e-IDR) rate constants. These data are not readily available for larger compounds, such as naphthalene, or oxygen containing compounds, such as 1,4 dioxane or furan. Here, the rate constants for naphthalene, 1,4 dioxane, and furan have been measured and their temperature dependencies are determined when possible,more » using the University of Georgia's Variable Temperature Flowing Afterglow. The rate constants are compared with those previously published for other compounds; these show trends which illustrate the effects which multi-rings and oxygen heteroatoms substitutions have upon e-IDR rate constants.« less

  7. Electron-ion dissociative recombination rate constants relevant to the Titan atmosphere and the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Osborne, David; Lawson, Patrick; Adams, Nigel

    2014-01-01

    Following the arrival of Cassini at Titan in 2004, the Titan atmosphere has been shown to contain large complex polycyclic-aromatic hydrocarbons. Since Cassini has provided a great deal of data, there exists a need for kinetic rate data to help with modeling this atmosphere. One type of kinetic data needed is electron-ion dissociative recombination (e-IDR) rate constants. These data are not readily available for larger compounds, such as naphthalene, or oxygen containing compounds, such as 1,4 dioxane or furan. Here, the rate constants for naphthalene, 1,4 dioxane, and furan have been measured and their temperature dependencies are determined when possible, using the University of Georgia's Variable Temperature Flowing Afterglow. The rate constants are compared with those previously published for other compounds; these show trends which illustrate the effects which multi-rings and oxygen heteroatoms substitutions have upon e-IDR rate constants.

  8. Well hydraulics in pumping tests with exponentially decayed rates of abstraction in confined aquifers

    NASA Astrophysics Data System (ADS)

    Wen, Zhang; Zhan, Hongbin; Wang, Quanrong; Liang, Xing; Ma, Teng; Chen, Chen

    2017-05-01

    Actual field pumping tests often involve variable pumping rates which cannot be handled by the classical constant-rate or constant-head test models, and often require a convolution process to interpret the test data. In this study, we proposed a semi-analytical model considering an exponentially decreasing pumping rate started at a certain (higher) rate and eventually stabilized at a certain (lower) rate for cases with or without wellbore storage. A striking new feature of the pumping test with an exponentially decayed rate is that the drawdowns will decrease over a certain period of time during intermediate pumping stage, which has never been seen before in constant-rate or constant-head pumping tests. It was found that the drawdown-time curve associated with an exponentially decayed pumping rate function was bounded by two asymptotic curves of the constant-rate tests with rates equaling to the starting and stabilizing rates, respectively. The wellbore storage must be considered for a pumping test without an observation well (single-well test). Based on such characteristics of the time-drawdown curve, we developed a new method to estimate the aquifer parameters by using the genetic algorithm.

  9. Impact of uncertainties in inorganic chemical rate constants on tropospheric composition and ozone radiative forcing

    NASA Astrophysics Data System (ADS)

    Newsome, Ben; Evans, Mat

    2017-12-01

    Chemical rate constants determine the composition of the atmosphere and how this composition has changed over time. They are central to our understanding of climate change and air quality degradation. Atmospheric chemistry models, whether online or offline, box, regional or global, use these rate constants. Expert panels evaluate laboratory measurements, making recommendations for the rate constants that should be used. This results in very similar or identical rate constants being used by all models. The inherent uncertainties in these recommendations are, in general, therefore ignored. We explore the impact of these uncertainties on the composition of the troposphere using the GEOS-Chem chemistry transport model. Based on the Jet Propulsion Laboratory (JPL) and International Union of Pure and Applied Chemistry (IUPAC) evaluations we assess the influence of 50 mainly inorganic rate constants and 10 photolysis rates on tropospheric composition through the use of the GEOS-Chem chemistry transport model. We assess the impact on four standard metrics: annual mean tropospheric ozone burden, surface ozone and tropospheric OH concentrations, and tropospheric methane lifetime. Uncertainty in the rate constants for NO2 + OH M HNO3 and O3 + NO → NO2 + O2 are the two largest sources of uncertainty in these metrics. The absolute magnitude of the change in the metrics is similar if rate constants are increased or decreased by their σ values. We investigate two methods of assessing these uncertainties, addition in quadrature and a Monte Carlo approach, and conclude they give similar outcomes. Combining the uncertainties across the 60 reactions gives overall uncertainties on the annual mean tropospheric ozone burden, surface ozone and tropospheric OH concentrations, and tropospheric methane lifetime of 10, 11, 16 and 16 %, respectively. These are larger than the spread between models in recent model intercomparisons. Remote regions such as the tropics, poles and upper troposphere are most uncertain. This chemical uncertainty is sufficiently large to suggest that rate constant uncertainty should be considered alongside other processes when model results disagree with measurement. Calculations for the pre-industrial simulation allow a tropospheric ozone radiative forcing to be calculated of 0.412 ± 0.062 W m-2. This uncertainty (13 %) is comparable to the inter-model spread in ozone radiative forcing found in previous model-model intercomparison studies where the rate constants used in the models are all identical or very similar. Thus, the uncertainty of tropospheric ozone radiative forcing should expanded to include this additional source of uncertainty. These rate constant uncertainties are significant and suggest that refinement of supposedly well-known chemical rate constants should be considered alongside other improvements to enhance our understanding of atmospheric processes.

  10. A root-mean-square approach for predicting fatigue crack growth under random loading

    NASA Technical Reports Server (NTRS)

    Hudson, C. M.

    1981-01-01

    A method for predicting fatigue crack growth under random loading which employs the concept of Barsom (1976) is presented. In accordance with this method, the loading history for each specimen is analyzed to determine the root-mean-square maximum and minimum stresses, and the predictions are made by assuming the tests have been conducted under constant-amplitude loading at the root-mean-square maximum and minimum levels. The procedure requires a simple computer program and a desk-top computer. For the eleven predictions made, the ratios of the predicted lives to the test lives ranged from 2.13 to 0.82, which is a good result, considering that the normal scatter in the fatigue-crack-growth rates may range from a factor of two to four under identical loading conditions.

  11. Three-dimensional user interfaces for scientific visualization

    NASA Technical Reports Server (NTRS)

    Vandam, Andries

    1995-01-01

    The main goal of this project is to develop novel and productive user interface techniques for creating and managing visualizations of computational fluid dynamics (CFD) datasets. We have implemented an application framework in which we can visualize computational fluid dynamics user interfaces. This UI technology allows users to interactively place visualization probes in a dataset and modify some of their parameters. We have also implemented a time-critical scheduling system which strives to maintain a constant frame-rate regardless of the number of visualization techniques. In the past year, we have published parts of this research at two conferences, the research annotation system at Visualization 1994, and the 3D user interface at UIST 1994. The real-time scheduling system has been submitted to SIGGRAPH 1995 conference. Copies of these documents are included with this report.

  12. Application of an Artificial Neural Network to the Prediction of OH Radical Reaction Rate Constants for Evaluating Global Warming Potential.

    PubMed

    Allison, Thomas C

    2016-03-03

    Rate constants for reactions of chemical compounds with hydroxyl radical are a key quantity used in evaluating the global warming potential of a substance. Experimental determination of these rate constants is essential, but it can also be difficult and time-consuming to produce. High-level quantum chemistry predictions of the rate constant can suffer from the same issues. Therefore, it is valuable to devise estimation schemes that can give reasonable results on a variety of chemical compounds. In this article, the construction and training of an artificial neural network (ANN) for the prediction of rate constants at 298 K for reactions of hydroxyl radical with a diverse set of molecules is described. Input to the ANN consists of counts of the chemical bonds and bends present in the target molecule. The ANN is trained using 792 (•)OH reaction rate constants taken from the NIST Chemical Kinetics Database. The mean unsigned percent error (MUPE) for the training set is 12%, and the MUPE of the testing set is 51%. It is shown that the present methodology yields rate constants of reasonable accuracy for a diverse set of inputs. The results are compared to high-quality literature values and to another estimation scheme. This ANN methodology is expected to be of use in a wide range of applications for which (•)OH reaction rate constants are required. The model uses only information that can be gathered from a 2D representation of the molecule, making the present approach particularly appealing, especially for screening applications.

  13. Mathematical modeling of spinning elastic bodies for modal analysis.

    NASA Technical Reports Server (NTRS)

    Likins, P. W.; Barbera, F. J.; Baddeley, V.

    1973-01-01

    The problem of modal analysis of an elastic appendage on a rotating base is examined to establish the relative advantages of various mathematical models of elastic structures and to extract general inferences concerning the magnitude and character of the influence of spin on the natural frequencies and mode shapes of rotating structures. In realization of the first objective, it is concluded that except for a small class of very special cases the elastic continuum model is devoid of useful results, while for constant nominal spin rate the distributed-mass finite-element model is quite generally tractable, since in the latter case the governing equations are always linear, constant-coefficient, ordinary differential equations. Although with both of these alternatives the details of the formulation generally obscure the essence of the problem and permit very little engineering insight to be gained without extensive computation, this difficulty is not encountered when dealing with simple concentrated mass models.

  14. Renormalization group analysis of anisotropic diffusion in turbulent shear flows

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Barton, J. Michael

    1991-01-01

    The renormalization group is applied to compute anisotropic corrections to the scalar eddy diffusivity representation of turbulent diffusion of a passive scalar. The corrections are linear in the mean velocity gradients. All model constants are computed theoretically. A form of the theory valid at arbitrary Reynolds number is derived. The theory applies only when convection of the velocity-scalar correlation can be neglected. A ratio of diffusivity components, found experimentally to have a nearly constant value in a variety of shear flows, is computed theoretically for flows in a certain state of equilibrium. The theoretical value is well within the fairly narrow range of experimentally observed values. Theoretical predictions of this diffusivity ratio are also compared with data from experiments and direct numerical simulations of homogeneous shear flows with constant velocity and scalar gradients.

  15. Class Projects in Physical Organic Chemistry: The Hydrolysis of Aspirin

    ERIC Educational Resources Information Center

    Marrs, Peter S.

    2004-01-01

    An exercise that provides a hands-on demonstration of the hydrolysis of aspirin is presented. The key to understanding the hydrolysis is recognizing that all six process may occur simultaneously and that the observed rate constant is the sum of the rate constants that one rate constant dominates the overall process.

  16. SU-F-T-12: Monte Carlo Dosimetry of the 60Co Bebig High Dose Rate Source for Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campos, L T; Almeida, C E V de

    Purpose: The purpose of this work is to obtain the dosimetry parameters in accordance with the AAPM TG-43U1 formalism with Monte Carlo calculations regarding the BEBIG 60Co high-dose-rate brachytherapy. The geometric design and material details of the source was provided by the manufacturer and was used to define the Monte Carlo geometry. Methods: The dosimetry studies included the calculation of the air kerma strength Sk, collision kerma in water along the transverse axis with an unbounded phantom, dose rate constant and radial dose function. The Monte Carlo code system that was used was EGSnrc with a new cavity code, whichmore » is a part of EGS++ that allows calculating the radial dose function around the source. The XCOM photon cross-section library was used. Variance reduction techniques were used to speed up the calculation and to considerably reduce the computer time. To obtain the dose rate distributions of the source in an unbounded liquid water phantom, the source was immersed at the center of a cube phantom of 100 cm3. Results: The obtained dose rate constant for the BEBIG 60Co source was 1.108±0.001 cGyh-1U-1, which is consistent with the values in the literature. The radial dose functions were compared with the values of the consensus data set in the literature, and they are consistent with the published data for this energy range. Conclusion: The dose rate constant is consistent with the results of Granero et al. and Selvam and Bhola within 1%. Dose rate data are compared to GEANT4 and DORZnrc Monte Carlo code. However, the radial dose function is different by up to 10% for the points that are notably near the source on the transversal axis because of the high-energy photons from 60Co, which causes an electronic disequilibrium at the interface between the source capsule and the liquid water for distances up to 1 cm.« less

  17. Modeling variability in porescale multiphase flow experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ling, Bowen; Bao, Jie; Oostrom, Mart

    Microfluidic devices and porescale numerical models are commonly used to study multiphase flow in biological, geological, and engineered porous materials. In this work, we perform a set of drainage and imbibition experiments in six identical microfluidic cells to study the reproducibility of multiphase flow experiments. We observe significant variations in the experimental results, which are smaller during the drainage stage and larger during the imbibition stage. We demonstrate that these variations are due to sub-porescale geometry differences in microcells (because of manufacturing defects) and variations in the boundary condition (i.e.,fluctuations in the injection rate inherent to syringe pumps). Computational simulationsmore » are conducted using commercial software STAR-CCM+, both with constant and randomly varying injection rate. Stochastic simulations are able to capture variability in the experiments associated with the varying pump injection rate.« less

  18. Close encounters and collisions of comets with the earth

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.; Yeomans, D. K.

    1984-01-01

    A computer search for earth-approaching comets among those listed in Marsden's (1983) updated orbit catalog has identified 36 cases at which minimum separation distance was less than 2500 earth radii. A strong representation of short period comets in the sample is noted, and the constant rate of the close approaching comets in the last 300 years is interpreted to suggest the lack of long-period comets intrinsically fainter than an absolute magnitude of about 11. A comet-earth collision rate derived from the statistics of these close encounters implies an average period of 33-64 million years between any two events. This rate is comparable with the frequency of geologically recent global catastrophes which appear to be associated with extraterrestrial object impacts, such as the Cretaceous-Tertiary extinction 65 million years ago and the late Eocene event 34 million years ago.

  19. Quantum calculations of the rate constant for the O(3P)+HCl reaction on new ab initio 3A″ and 3A' surfaces

    NASA Astrophysics Data System (ADS)

    Xie, Tiao; Bowman, Joel M.; Peterson, K. A.; Ramachandran, B.

    2003-11-01

    We report the thermal rate constant of the O(3P)+HCl→OH+Cl reaction calculated from 200 to 3200 K, using new fits to extensive ab initio calculations [B. Ramachandran and K. A. Peterson, J. Chem. Phys. 119, 9590 (2003), preceding paper]. The rate constants are obtained for both the 3A″ and 3A' surfaces using exact quantum reactive scattering calculations for selected values of the total angular momentum and the J-shifting approximation for both the 3A″ and 3A' surfaces. The results are compared with the ICVT/μOMT rate constants calculated by the POLYRATE program and all available experimental data. Other related high-energy reaction channels are also studied qualitatively for their contribution to the total thermal rate constant at high temperature.

  20. Inflation with a constant rate of roll

    NASA Astrophysics Data System (ADS)

    Motohashi, Hayato; Starobinsky, Alexei A.; Yokoyama, Jun'ichi

    2015-09-01

    We consider an inflationary scenario where the rate of inflaton roll defined by ̈phi/H dot phi remains constant. The rate of roll is small for slow-roll inflation, while a generic rate of roll leads to the interesting case of 'constant-roll' inflation. We find a general exact solution for the inflaton potential required for such inflaton behaviour. In this model, due to non-slow evolution of background, the would-be decaying mode of linear scalar (curvature) perturbations may not be neglected. It can even grow for some values of the model parameter, while the other mode always remains constant. However, this always occurs for unstable solutions which are not attractors for the given potential. The most interesting particular cases of constant-roll inflation remaining viable with the most recent observational data are quadratic hilltop inflation (with cutoff) and natural inflation (with an additional negative cosmological constant). In these cases even-order slow-roll parameters approach non-negligible constants while the odd ones are asymptotically vanishing in the quasi-de Sitter regime.

  1. On the ambiguity of the reaction rate constants in multivariate curve resolution for reversible first-order reaction systems.

    PubMed

    Schröder, Henning; Sawall, Mathias; Kubis, Christoph; Selent, Detlef; Hess, Dieter; Franke, Robert; Börner, Armin; Neymeyr, Klaus

    2016-07-13

    If for a chemical reaction with a known reaction mechanism the concentration profiles are accessible only for certain species, e.g. only for the main product, then often the reaction rate constants cannot uniquely be determined from the concentration data. This is a well-known fact which includes the so-called slow-fast ambiguity. This work combines the question of unique or non-unique reaction rate constants with factor analytic methods of chemometrics. The idea is to reduce the rotational ambiguity of pure component factorizations by considering only those concentration factors which are possible solutions of the kinetic equations for a properly adapted set of reaction rate constants. The resulting set of reaction rate constants corresponds to those solutions of the rate equations which appear as feasible factors in a pure component factorization. The new analysis of the ambiguity of reaction rate constants extends recent research activities on the Area of Feasible Solutions (AFS). The consistency with a given chemical reaction scheme is shown to be a valuable tool in order to reduce the AFS. The new methods are applied to model and experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Temperature-Dependent Rate Constants and Substituent Effects for the Reactions of Hydroxyl Radicals With Three Partially Fluorinated Ethers

    NASA Technical Reports Server (NTRS)

    Hsu, K.-J.; DeMore, W. B.

    1995-01-01

    Rate constants and temperature dependencies for the reactions of OH with CF3OCH3 (HFOC-143a), CF2HOCF2H (HFOC-134), and CF3OCF2H (HFOC-125) were studied using a relative rate technique in the temperature range 298-393 K. The following absolute rate constants were derived: HFOC-143a, 1.9E-12 exp(-1555/T); HFOC-134, 1.9E-12 exp(-2006/T); HFOC-125, 4.7E-13 exp(-2095/T). Units are cm(exp 3)molecule(exp -1) s(exp -1). Substituent effects on OH abstraction rate constants are discussed, and it is shown that the CF3O group has an effect on the OH rate constants similar to that of a fluorine atom. The effects are related to changes in the C-H bond energies of the reactants (and thereby the activation energies) rather than changes in the preexponential factors. On the basis of a correlation of rate constants with bond energies, the respective D(C-H) bond strengths in the three ethers are found to be 102, 104, and 106 kcal/mol, with an uncertainty of about 1 kcal/mol.

  3. Cavitation pitting and erosion of aluminum 6061-T6 in mineral oil water

    NASA Technical Reports Server (NTRS)

    Rao, B. C. S.; Buckley, D. H.

    1983-01-01

    Cavitation erosion studies of aluminum 6061-T6 in mineral oil and in ordinary tap water are presented. The maximum erosion rate (MDPR, or mean depth of penetration rate) in mineral oil was about four times that in water. The MDPR in mineral oil decreased continuously with time, but the MDPR in water remained approximately constant. The cavitation pits in mineral oil were of smaller diameter and depth than the pits in water. Treating the pits as spherical segments, we computed the radius r of the sphere. The logarithm of h/a, where h is the pit depth and 2a is the top width of the pit, was linear when plotted against the logarithm of 2r/h - 1.

  4. Rate constant for the fraction of atomic chlorine with formaldehyde from 200 to 500K

    NASA Technical Reports Server (NTRS)

    Michael, J. V.; Nava, D. F.; Payne, W. A.; Stief, L. J.

    1978-01-01

    A flash photolysis - resonance fluorescence technique was used to measure rate constant. The results were independent of substantial variations in H2CO, total pressure (Ar), and flash intensity (i.e., initial Cl). The rate constant was shown to be invariant with temperature, the best representation for this temperature range being K = (7.48 + or - 0.50) x 10 to the minus 11 power cu cm molecule-1 s-1 where the error is one standard deviation. The rate constant is theoretically discussed and the potential importance of the reaction in stratospheric chemistry is considered.

  5. Computational Prediction of Excited-State Carbon Tunneling in the Two Steps of Triplet Zimmerman Di-π-Methane Rearrangement.

    PubMed

    Li, Xin; Liao, Tao; Chung, Lung Wa

    2017-11-22

    The photoinduced Zimmerman di-π-methane (DPM) rearrangement of polycyclic molecules to form synthetically useful cyclopropane derivatives was found experimentally to proceed in a triplet excited state. We have applied state-of-the-art quantum mechanical methods, including M06-2X, DLPNO-CCSD(T) and variational transition-state theory with multidimensional tunneling corrections, to an investigation of the reaction rates of the two steps in the triplet DPM rearrangement of dibenzobarrelene, benzobarrelene and barrelene. This study predicts a high probability of carbon tunneling in regions around the two consecutive transition states at 200-300 K, and an enhancement in the rates by 104-276/35-67% with carbon tunneling at 200/300 K. The Arrhenius plots of the rate constants were found to be curved at low temperatures. Moreover, the computed 12 C/ 13 C kinetic isotope effects were affected significantly by carbon tunneling and temperature. Our predictions of electronically excited-state carbon tunneling and two consecutive carbon tunneling are unprecedented. Heavy-atom tunneling in some photoinduced reactions with reactive intermediates and narrow barriers can be potentially observed at relatively low temperature in experiments.

  6. Decay Properties of K-Vacancy States in Fe X-Fe XVII

    NASA Technical Reports Server (NTRS)

    Mendoza, C.; Kallman, T. R.; Bautista, M. A.; Palmeri, P.

    2003-01-01

    We report extensive calculations of the decay properties of fine-structure K-vacancy levels in Fe X-Fe XVII. A large set of level energies, wavelengths, radiative and Auger rates, and fluorescence yields has been computed using three different standard atomic codes, namely Cowan's HFR, AUTOSTRUCTURE and the Breit-Pauli R-matrix package. This multi-code approach is used to the study the effects of core relaxation, configuration interaction and the Breit interaction, and enables the estimate of statistical accuracy ratings. The Ksigma and KLL Auger widths have been found to be nearly independent of both the outer-electron configuration and electron occupancy keeping a constant ratio of 1.53 +/- 0.06. By comparing with previous theoretical and measured wavelengths, the accuracy of the present set is determined to be within 2 m Angstrom. Also, the good agreement found between the different radiative and Auger data sets that have been computed allow us to propose with confidence an accuracy rating of 20% for the line fluorescence yields greater than 0.01. Emission and absorption spectral features are predicted finding good correlation with measurements in both laboratory and astrophysical plasmas.

  7. Absolute NMR shielding scales and nuclear spin–rotation constants in {sup 175}LuX and {sup 197}AuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br and {sup 127}I)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demissie, Taye B., E-mail: taye.b.demissie@uit.no; Komorovsky, Stanislav; Repisky, Michal

    2015-10-28

    We present nuclear spin–rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants, and shielding spans of all the nuclei in {sup 175}LuX and {sup 197}AuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br, {sup 127}I), calculated using coupled-cluster singles-and-doubles with a perturbative triples (CCSD(T)) correction theory, four-component relativistic density functional theory (relativistic DFT), and non-relativistic DFT. The total nuclear spin–rotation constants determined by adding the relativistic corrections obtained from DFT calculations to the CCSD(T) values are in general in agreement with available experimental data, indicating that the computational approach followed in this study allows us to predict reliable results formore » the unknown spin–rotation constants in these molecules. The total NMR absolute shielding constants are determined for all the nuclei following the same approach as that applied for the nuclear spin–rotation constants. In most of the molecules, relativistic effects significantly change the computed shielding constants, demonstrating that straightforward application of the non-relativistic formula relating the electronic contribution to the nuclear spin–rotation constants and the paramagnetic contribution to the shielding constants does not yield correct results. We also analyze the origin of the unusually large absolute shielding constant and its relativistic correction of gold in AuF compared to the other gold monohalides.« less

  8. Reaction kinetics of resveratrol with tert-butoxyl radicals

    NASA Astrophysics Data System (ADS)

    Džeba, Iva; Pedzinski, Tomasz; Mihaljević, Branka

    2012-09-01

    The rate constant for the reaction of t-butoxyl radicals with resveratrol was studied under pseudo-first order conditions. The rate constant was determined by measuring the phenoxyl radical formation rate at 390 nm as function of resveratrol concentration in acetonitrile. The rate constant was determined to be 6.5×108 M-1s-1. This high value indicates the high reactivity consistent with the strong antioxidant activity of resveratrol.

  9. Kinetic Analysis for the Multistep Profiles of Organic Reactions: Significance of the Conformational Entropy on the Rate Constants of the Claisen Rearrangement.

    PubMed

    Sumiya, Yosuke; Nagahata, Yutaka; Komatsuzaki, Tamiki; Taketsugu, Tetsuya; Maeda, Satoshi

    2015-12-03

    The significance of kinetic analysis as a tool for understanding the reactivity and selectivity of organic reactions has recently been recognized. However, conventional simulation approaches that solve rate equations numerically are not amenable to multistep reaction profiles consisting of fast and slow elementary steps. Herein, we present an efficient and robust approach for evaluating the overall rate constants of multistep reactions via the recursive contraction of the rate equations to give the overall rate constants for the products and byproducts. This new method was applied to the Claisen rearrangement of allyl vinyl ether, as well as a substituted allyl vinyl ether. Notably, the profiles of these reactions contained 23 and 84 local minima, and 66 and 278 transition states, respectively. The overall rate constant for the Claisen rearrangement of allyl vinyl ether was consistent with the experimental value. The selectivity of the Claisen rearrangement reaction has also been assessed using a substituted allyl vinyl ether. The results of this study showed that the conformational entropy in these flexible chain molecules had a substantial impact on the overall rate constants. This new method could therefore be used to estimate the overall rate constants of various other organic reactions involving flexible molecules.

  10. High variance in reproductive success generates a false signature of a genetic bottleneck in populations of constant size: a simulation study

    PubMed Central

    2013-01-01

    Background Demographic bottlenecks can severely reduce the genetic variation of a population or a species. Establishing whether low genetic variation is caused by a bottleneck or a constantly low effective number of individuals is important to understand a species’ ecology and evolution, and it has implications for conservation management. Recent studies have evaluated the power of several statistical methods developed to identify bottlenecks. However, the false positive rate, i.e. the rate with which a bottleneck signal is misidentified in demographically stable populations, has received little attention. We analyse this type of error (type I) in forward computer simulations of stable populations having greater than Poisson variance in reproductive success (i.e., variance in family sizes). The assumption of Poisson variance underlies bottleneck tests, yet it is commonly violated in species with high fecundity. Results With large variance in reproductive success (Vk ≥ 40, corresponding to a ratio between effective and census size smaller than 0.1), tests based on allele frequencies, allelic sizes, and DNA sequence polymorphisms (heterozygosity excess, M-ratio, and Tajima’s D test) tend to show erroneous signals of a bottleneck. Similarly, strong evidence of population decline is erroneously detected when ancestral and current population sizes are estimated with the model based method MSVAR. Conclusions Our results suggest caution when interpreting the results of bottleneck tests in species showing high variance in reproductive success. Particularly in species with high fecundity, computer simulations are recommended to confirm the occurrence of a population bottleneck. PMID:24131797

  11. A systematic computational study of electronic effects on hydrogen sensitivity of olefin polymerization catalysts (abstract only).

    PubMed

    Coussens, Betty B; Budzelaar, Peter H M; Friederichs, Nic

    2008-02-13

    One of the important product parameters of polyolefins is their molecular weight (distribution). A common way to control this parameter is to add molecular hydrogen during the polymerization, which then acts as a chain transfer agent. The factors governing the hydrogen sensitivity of olefin polymerization catalysts are poorly understood and have attracted little attention from computational chemists. To explore the electronic factors determining hydrogen sensitivity we performed density functional calculations on a wide range of simple model systems including some metallocenes and a few basic models of heterogeneous catalysts. As a quantitative measure for hydrogen sensitivity we used the ratio of (i) the rate constant for chain transfer to hydrogen to (ii) the rate constant for ethene insertion, k(h)/k(p) (see the scheme below), and as a measure of electrophilicity we used the energy of complexation to the probe molecule ammonia. [Formula: see text] For isolated species in the gas phase, complexation energies appear to dominate the chemistry. Ethene complexes more strongly than hydrogen and with increasing electrophilicity of the metal centre this difference grows; the hydrogen sensitivity decreases accordingly. Although many factors (like catalyst dormancy and deactivation issues) complicate the comparison with experiment, this result seems to agree both in broad terms with the experimental lower hydrogen sensitivity of heterogeneous catalysts, and more specifically with the increased hydrogen sensitivity of highly alkylated or fused metallocenes. The opposite conclusion reached by Blom (see Blom et al 2002 Macromol. Chem. Phys. 203 381-7) is due to the use of a very different measure of electrophilicity, rather than to different experimental data.

  12. Control for small-speed lateral flight in a model insect.

    PubMed

    Zhang, Yan Lai; Sun, Mao

    2011-09-01

    Controls required for small-speed lateral flight of a model insect were studied using techniques based on the linear theories of stability and control (the stability and control derivatives were computed by the method of computational fluid dynamics). The main results are as follows. (1) Two steady-state lateral motions can exist: one is a horizontal side translation with the body rolling to the same side of the translation by a small angle, and the other is a constant-rate yaw rotation (rotation about the vertical axis). (2) The side translation requires an anti-symmetrical change in the stroke amplitudes of the contralateral wings, and/or an anti-symmetrical change in the angles of attack of the contralateral wings, with the down- and upstroke angles of attack of a wing having equal change. The constant-rate yaw rotation requires an anti-symmetrical change in the angles of attack of the contralateral wings, with the down- and upstroke angles of attack of a wing having differential change. (3) For the control of the horizontal side translation, control input required for the steady-state motion has an opposite sign to that needed for initiating the motion. For example, to have a steady-state left side-translation, the insect needs to increase the stroke amplitude of the left wing and decrease that of the right wing to maintain the steady-state flight, but it needs an opposite change in stroke amplitude (decreasing the stroke amplitude of the left wing and increasing that of the right wing) to enter the flight.

  13. Dosimetric characterization of the M−15 high‐dose‐rate Iridium−192 brachytherapy source using the AAPM and ESTRO formalism

    PubMed Central

    Thanh, Minh‐Tri Ho; Munro, John J.

    2015-01-01

    The Source Production & Equipment Co. (SPEC) model M−15 is a new Iridium−192 brachytherapy source model intended for use as a temporary high‐dose‐rate (HDR) brachytherapy source for the Nucletron microSelectron Classic afterloading system. The purpose of this study is to characterize this HDR source for clinical application by obtaining a complete set of Monte Carlo calculated dosimetric parameters for the M‐15, as recommended by AAPM and ESTRO, for isotopes with average energies greater than 50 keV. This was accomplished by using the MCNP6 Monte Carlo code to simulate the resulting source dosimetry at various points within a pseudoinfinite water phantom. These dosimetric values next were converted into the AAPM and ESTRO dosimetry parameters and the respective statistical uncertainty in each parameter also calculated and presented. The M−15 source was modeled in an MCNP6 Monte Carlo environment using the physical source specifications provided by the manufacturer. Iridium−192 photons were uniformly generated inside the iridium core of the model M−15 with photon and secondary electron transport replicated using photoatomic cross‐sectional tables supplied with MCNP6. Simulations were performed for both water and air/vacuum computer models with a total of 4×109 sources photon history for each simulation and the in‐air photon spectrum filtered to remove low‐energy photons below δ=10%keV. Dosimetric data, including D(r,θ),gL(r),F(r,θ),Φan(r), and φ¯an, and their statistical uncertainty were calculated from the output of an MCNP model consisting of an M−15 source placed at the center of a spherical water phantom of 100 cm diameter. The air kerma strength in free space, SK, and dose rate constant, Λ, also was computed from a MCNP model with M−15 Iridium−192 source, was centered at the origin of an evacuated phantom in which a critical volume containing air at STP was added 100 cm from the source center. The reference dose rate, D˙(r0,θ0)≡D˙(1cm,π/2), is found to be 4.038±0.064 cGy mCi−1 h−1. The air kerma strength, SK, is reported to be 3.632±0.086 cGy cm2 mCi−1 g−1, and the dose rate constant, Λ, is calculated to be 1.112±0.029 cGy h−1 U−1. The normalized dose rate, radial dose function, and anisotropy function with their uncertainties were computed and are represented in both tabular and graphical format in the report. A dosimetric study was performed of the new M−15 Iridium−192 HDR brachytherapy source using the MCNP6 radiation transport code. Dosimetric parameters, including the dose‐rate constant, radial dose function, and anisotropy function, were calculated in accordance with the updated AAPM and ESTRO dosimetric parameters for brachytherapy sources of average energy greater than 50 keV. These data therefore may be applied toward the development of a treatment planning program and for clinical use of the source. PACS numbers: 87.56.bg, 87.53.Jw PMID:26103489

  14. On the Dielectric Constant for Acetanilide: Experimental Measurements and Effect on Energy Transport

    NASA Astrophysics Data System (ADS)

    Careri, G.; Compatangelo, E.; Christiansen, P. L.; Halding, J.; Skovgaard, O.

    1987-01-01

    Experimental measurements of the dielectric constant for crystalline acetanilide powder for temperatures ranging from - 140°C to 20°C and for different hydration levels are presented. A Davydov-soliton computer model predicts dramatic changes in the energy transport and storage for typically increased values of the dielectric constant.

  15. Modeling and Performance Improvement of the Constant Power Regulator Systems in Variable Displacement Axial Piston Pump

    PubMed Central

    Park, Sung Hwan; Lee, Ji Min; Kim, Jong Shik

    2013-01-01

    An irregular performance of a mechanical-type constant power regulator is considered. In order to find the cause of an irregular discharge flow at the cut-off pressure area, modeling and numerical simulations are performed to observe dynamic behavior of internal parts of the constant power regulator system for a swashplate-type axial piston pump. The commercial numerical simulation software AMESim is applied to model the mechanical-type regulator with hydraulic pump and simulate the performance of it. The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments. In order to find the cause of the irregular performance of the mechanical-type constant power regulator system, the behavior of main components such as the spool, sleeve, and counterbalance piston is investigated using computer simulation. The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator. The performance improvement is verified by computer simulation using AMESim software. PMID:24282389

  16. A first-passage scheme for determination of overall rate constants for non-diffusion-limited suspensions

    NASA Astrophysics Data System (ADS)

    Lu, Shih-Yuan; Yen, Yi-Ming

    2002-02-01

    A first-passage scheme is devised to determine the overall rate constant of suspensions under the non-diffusion-limited condition. The original first-passage scheme developed for diffusion-limited processes is modified to account for the finite incorporation rate at the inclusion surface by using a concept of the nonzero survival probability of the diffusing entity at entity-inclusion encounters. This nonzero survival probability is obtained from solving a relevant boundary value problem. The new first-passage scheme is validated by an excellent agreement between overall rate constant results from the present development and from an accurate boundary collocation calculation for the three common spherical arrays [J. Chem. Phys. 109, 4985 (1998)], namely simple cubic, body-centered cubic, and face-centered cubic arrays, for a wide range of P and f. Here, P is a dimensionless quantity characterizing the relative rate of diffusion versus surface incorporation, and f is the volume fraction of the inclusion. The scheme is further applied to random spherical suspensions and to investigate the effect of inclusion coagulation on overall rate constants. It is found that randomness in inclusion arrangement tends to lower the overall rate constant for f up to the near close-packing value of the regular arrays because of the inclusion screening effect. This screening effect turns stronger for regular arrays when f is near and above the close-packing value of the regular arrays, and consequently the overall rate constant of the random array exceeds that of the regular array. Inclusion coagulation too induces the inclusion screening effect, and leads to lower overall rate constants.

  17. Accurate ab initio quartic force fields for borane and BeH2

    NASA Technical Reports Server (NTRS)

    Martin, J. M. L.; Lee, Timothy J.

    1992-01-01

    The quartic force fields of BH3 and BeH2 have been computed ab initio using an augmented coupled cluster (CCSD(T)) method and basis sets of spdf and spdfg quality. For BH3, the computed spectroscopic constants are in very good agreement with recent experimental data, and definitively confirm misassignments in some older work, in agreement with recent ab initio studies. Using the computed spectroscopic constants, the rovibrational partition function for both molecules has been constructed using a modified direct numerical summation algorithm, and JANAF-style thermochemical tables are presented.

  18. Effects of generation time on spray aerosol transport and deposition in models of the mouth-throat geometry.

    PubMed

    Worth Longest, P; Hindle, Michael; Das Choudhuri, Suparna

    2009-06-01

    For most newly developed spray aerosol inhalers, the generation time is a potentially important variable that can be fully controlled. The objective of this study was to determine the effects of spray aerosol generation time on transport and deposition in a standard induction port (IP) and more realistic mouth-throat (MT) geometry. Capillary aerosol generation (CAG) was selected as a representative system in which spray momentum was expected to significantly impact deposition. Sectional and total depositions in the IP and MT geometries were assessed at a constant CAG flow rate of 25 mg/sec for aerosol generation times of 1, 2, and 4 sec using both in vitro experiments and a previously developed computational fluid dynamics (CFD) model. Both the in vitro and numerical results indicated that extending the generation time of the spray aerosol, delivered at a constant mass flow rate, significantly reduced deposition in the IP and more realistic MT geometry. Specifically, increasing the generation time of the CAG system from 1 to 4 sec reduced the deposition fraction in the IP and MT geometries by approximately 60 and 33%, respectively. Furthermore, the CFD predictions of deposition fraction were found to be in good agreement with the in vitro results for all times considered in both the IP and MT geometries. The numerical results indicated that the reduction in deposition fraction over time was associated with temporal dissipation of what was termed the spray aerosol "burst effect." Based on these results, increasing the spray aerosol generation time, at a constant mass flow rate, may be an effective strategy for reducing deposition in the standard IP and in more realistic MT geometries.

  19. Comparison of hydration reactions for "piano-stool" RAPTA-B and [Ru(η6- arene)(en)Cl]+ complexes: Density functional theory computational study

    NASA Astrophysics Data System (ADS)

    Chval, Zdeněk; Futera, Zdeněk; Burda, Jaroslav V.

    2011-01-01

    The hydration process for two Ru(II) representative half-sandwich complexes: Ru(arene)(pta)Cl2 (from the RAPTA family) and [Ru(arene)(en)Cl]+ (further labeled as Ru_en) were compared with analogous reaction of cisplatin. In the study, quantum chemical methods were employed. All the complexes were optimized at the B3LYP/6-31G(d) level using Conductor Polarizable Continuum Model (CPCM) solvent continuum model and single-point (SP) energy calculations and determination of electronic properties were performed at the B3LYP/6-311++G(2df,2pd)/CPCM level. It was found that the hydration model works fairly well for the replacement of the first chloride by water where an acceptable agreement for both Gibbs free energies and rate constants was obtained. However, in the second hydration step worse agreement of the experimental and calculated values was achieved. In agreement with experimental values, the rate constants for the first step can be ordered as RAPTA-B > Ru_en > cisplatin. The rate constants correlate well with binding energies (BEs) of the Pt/Ru-Cl bond in the reactant complexes. Substitution reactions on Ru_en and cisplatin complexes proceed only via pseudoassociative (associative interchange) mechanism. On the other hand in the case of RAPTA there is also possible a competitive dissociation mechanism with metastable pentacoordinated intermediate. The first hydration step is slightly endothermic for all three complexes by 3-5 kcal/mol. Estimated BEs confirm that the benzene ligand is relatively weakly bonded assuming the fact that it occupies three coordination positions of the Ru(II) cation.

  20. Asynchronous Rate Chaos in Spiking Neuronal Circuits

    PubMed Central

    Harish, Omri; Hansel, David

    2015-01-01

    The brain exhibits temporally complex patterns of activity with features similar to those of chaotic systems. Theoretical studies over the last twenty years have described various computational advantages for such regimes in neuronal systems. Nevertheless, it still remains unclear whether chaos requires specific cellular properties or network architectures, or whether it is a generic property of neuronal circuits. We investigate the dynamics of networks of excitatory-inhibitory (EI) spiking neurons with random sparse connectivity operating in the regime of balance of excitation and inhibition. Combining Dynamical Mean-Field Theory with numerical simulations, we show that chaotic, asynchronous firing rate fluctuations emerge generically for sufficiently strong synapses. Two different mechanisms can lead to these chaotic fluctuations. One mechanism relies on slow I-I inhibition which gives rise to slow subthreshold voltage and rate fluctuations. The decorrelation time of these fluctuations is proportional to the time constant of the inhibition. The second mechanism relies on the recurrent E-I-E feedback loop. It requires slow excitation but the inhibition can be fast. In the corresponding dynamical regime all neurons exhibit rate fluctuations on the time scale of the excitation. Another feature of this regime is that the population-averaged firing rate is substantially smaller in the excitatory population than in the inhibitory population. This is not necessarily the case in the I-I mechanism. Finally, we discuss the neurophysiological and computational significance of our results. PMID:26230679

  1. 3-D modeling of ductile tearing using finite elements: Computational aspects and techniques

    NASA Astrophysics Data System (ADS)

    Gullerud, Arne Stewart

    This research focuses on the development and application of computational tools to perform large-scale, 3-D modeling of ductile tearing in engineering components under quasi-static to mild loading rates. Two standard models for ductile tearing---the computational cell methodology and crack growth controlled by the crack tip opening angle (CTOA)---are described and their 3-D implementations are explored. For the computational cell methodology, quantification of the effects of several numerical issues---computational load step size, procedures for force release after cell deletion, and the porosity for cell deletion---enables construction of computational algorithms to remove the dependence of predicted crack growth on these issues. This work also describes two extensions of the CTOA approach into 3-D: a general 3-D method and a constant front technique. Analyses compare the characteristics of the extensions, and a validation study explores the ability of the constant front extension to predict crack growth in thin aluminum test specimens over a range of specimen geometries, absolutes sizes, and levels of out-of-plane constraint. To provide a computational framework suitable for the solution of these problems, this work also describes the parallel implementation of a nonlinear, implicit finite element code. The implementation employs an explicit message-passing approach using the MPI standard to maintain portability, a domain decomposition of element data to provide parallel execution, and a master-worker organization of the computational processes to enhance future extensibility. A linear preconditioned conjugate gradient (LPCG) solver serves as the core of the solution process. The parallel LPCG solver utilizes an element-by-element (EBE) structure of the computations to permit a dual-level decomposition of the element data: domain decomposition of the mesh provides efficient coarse-grain parallel execution, while decomposition of the domains into blocks of similar elements (same type, constitutive model, etc.) provides fine-grain parallel computation on each processor. A major focus of the LPCG solver is a new implementation of the Hughes-Winget element-by-element (HW) preconditioner. The implementation employs a weighted dependency graph combined with a new coloring algorithm to provide load-balanced scheduling for the preconditioner and overlapped communication/computation. This approach enables efficient parallel application of the HW preconditioner for arbitrary unstructured meshes.

  2. A comprehensive model to determine the effects of temperature and species fluctuations on reaction rates in turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Chinitz, W.; Foy, E.; Rowan, G.; Goldstein, D.

    1982-01-01

    The use of probability theory to determine the effects of turbulent fluctuations on reaction rates in turbulent combustion systems is briefly reviewed. Results are presented for the effect of species fluctuations in particular. It is found that turbulent fluctuations of species act to reduce the reaction rates, in contrast with the temperature fluctuations previously determined to increase Arrhenius reaction rate constants. For the temperature fluctuations, a criterion is set forth for determining if, in a given region of a turbulent flow field, the temperature can be expected to exhibit ramp like fluctuations. Using the above results, along with results previously obtained, a model is described for testing the effects of turbulent fluctuations of temperature and species on reaction rates in computer programs dealing with turbulent reacting flows. An alternative model which employs three variable probability density functions (temperature and two species) and is currently being formulated is discussed as well.

  3. Quantification aspects of constant pressure (ultra) high pressure liquid chromatography using mass-sensitive detectors with a nebulizing interface.

    PubMed

    Verstraeten, M; Broeckhoven, K; Lynen, F; Choikhet, K; Landt, K; Dittmann, M; Witt, K; Sandra, P; Desmet, G

    2013-01-25

    The present contribution investigates the quantitation aspects of mass-sensitive detectors with nebulizing interface (ESI-MSD, ELSD, CAD) in the constant pressure gradient elution mode. In this operation mode, the pressure is controlled and maintained at a set value and the liquid flow rate will vary according to the inverse mobile phase viscosity. As the pressure is continuously kept at the allowable maximum during the entire gradient run, the average liquid flow rate is higher compared to that in the conventional constant flow rate operation mode, thus shortening the analysis time. The following three mass-sensitive detectors were investigated: mass spectrometry detector (MS), evaporative light scattering detector (ELSD) and charged aerosol detector (CAD) and a wide variety of samples (phenones, polyaromatic hydrocarbons, wine, cocoa butter) has been considered. It was found that the nebulizing efficiency of the LC-interfaces of the three detectors under consideration changes with the increasing liquid flow rate. For the MS, the increasing flow rate leads to a lower peak area whereas for the ELSD the peak area increases compared to the constant flow rate mode. The peak area obtained with a CAD is rather insensitive to the liquid flow rate. The reproducibility of the peak area remains similar in both modes, although variation in system permeability compromises the 'long-term' reproducibility. This problem can however be overcome by running a flow rate program with an optimized flow rate and composition profile obtained from the constant pressure mode. In this case, the quantification remains reproducibile, despite any occuring variations of the system permeability. Furthermore, the same fragmentation pattern (MS) has been found in the constant pressure mode compared to the customary constant flow rate mode. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solis, John Hector

    In this paper, we present a modular framework for constructing a secure and efficient program obfuscation scheme. Our approach, inspired by the obfuscation with respect to oracle machines model of [4], retains an interactive online protocol with an oracle, but relaxes the original computational and storage restrictions. We argue this is reasonable given the computational resources of modern personal devices. Furthermore, we relax the information-theoretic security requirement for computational security to utilize established cryptographic primitives. With this additional flexibility we are free to explore different cryptographic buildingblocks. Our approach combines authenticated encryption with private information retrieval to construct a securemore » program obfuscation framework. We give a formal specification of our framework, based on desired functionality and security properties, and provide an example instantiation. In particular, we implement AES in Galois/Counter Mode for authenticated encryption and the Gentry-Ramzan [13]constant communication-rate private information retrieval scheme. We present our implementation results and show that non-trivial sized programs can be realized, but scalability is quickly limited by computational overhead. Finally, we include a discussion on security considerations when instantiating specific modules.« less

  5. Computed a multiple band metamaterial absorber and its application based on the figure of merit value

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Sheng, Yuping; Jun, Wang

    2018-01-01

    A high performed multiple band metamaterial absorber is designed and computed through the software Ansofts HFSS 10.0, which is constituted with two kinds of separated metal particles sub-structures. The multiple band absorption property of the metamaterial absorber is based on the resonance of localized surface plasmon (LSP) modes excited near edges of metal particles. The damping constant of gold layer is optimized to obtain a near-perfect absorption rate. Four kinds of dielectric layers is computed to achieve the perfect absorption perform. The perfect absorption perform of the metamaterial absorber is enhanced through optimizing the structural parameters (R = 75 nm, w = 80 nm). Moreover, a perfect absorption band is achieved because of the plasmonic hybridization phenomenon between LSP modes. The designed metamaterial absorber shows high sensitive in the changed of the refractive index of the liquid. A liquid refractive index sensor strategy is proposed based on the computed figure of merit (FOM) value of the metamaterial absorber. High FOM values (116, 111, and 108) are achieved with three liquid (Methanol, Carbon tetrachloride, and Carbon disulfide).

  6. Anisotropic Effects on Constitutive Model Parameters of Aluminum Alloys

    DTIC Science & Technology

    2012-01-01

    constants are required input to computer codes (LS-DYNA, DYNA3D or SPH ) to accurately simulate fragment impact on structural components made of high...different temperatures. These model constants are required input to computer codes (LS-DYNA, DYNA3D or SPH ) to accurately simulate fragment impact on...ADDRESS(ES) Naval Surface Warfare Center,4104Evans Way Suite 102,Indian Head,MD,20640 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING

  7. Numerical convergence of the self-diffusion coefficient and viscosity obtained with Thomas-Fermi-Dirac molecular dynamics.

    PubMed

    Danel, J-F; Kazandjian, L; Zérah, G

    2012-06-01

    Computations of the self-diffusion coefficient and viscosity in warm dense matter are presented with an emphasis on obtaining numerical convergence and a careful evaluation of the standard deviation. The transport coefficients are computed with the Green-Kubo relation and orbital-free molecular dynamics at the Thomas-Fermi-Dirac level. The numerical parameters are varied until the Green-Kubo integral is equal to a constant in the t→+∞ limit; the transport coefficients are deduced from this constant and not by extrapolation of the Green-Kubo integral. The latter method, which gives rise to an unknown error, is tested for the computation of viscosity; it appears that it should be used with caution. In the large domain of coupling constant considered, both the self-diffusion coefficient and viscosity turn out to be well approximated by simple analytical laws using a single effective atomic number calculated in the average-atom model.

  8. Numerical convergence of the self-diffusion coefficient and viscosity obtained with Thomas-Fermi-Dirac molecular dynamics

    NASA Astrophysics Data System (ADS)

    Danel, J.-F.; Kazandjian, L.; Zérah, G.

    2012-06-01

    Computations of the self-diffusion coefficient and viscosity in warm dense matter are presented with an emphasis on obtaining numerical convergence and a careful evaluation of the standard deviation. The transport coefficients are computed with the Green-Kubo relation and orbital-free molecular dynamics at the Thomas-Fermi-Dirac level. The numerical parameters are varied until the Green-Kubo integral is equal to a constant in the t→+∞ limit; the transport coefficients are deduced from this constant and not by extrapolation of the Green-Kubo integral. The latter method, which gives rise to an unknown error, is tested for the computation of viscosity; it appears that it should be used with caution. In the large domain of coupling constant considered, both the self-diffusion coefficient and viscosity turn out to be well approximated by simple analytical laws using a single effective atomic number calculated in the average-atom model.

  9. A Computational Scheme To Evaluate Hamaker Constants of Molecules with Practical Size and Anisotropy.

    PubMed

    Hongo, Kenta; Maezono, Ryo

    2017-11-14

    We propose a computational scheme to evaluate Hamaker constants, A, of molecules with practical sizes and anisotropies. Upon the increasing feasibility of diffusion Monte Carlo (DMC) methods to evaluate binding curves for such molecules to extract the constants, we discussed how to treat the averaging over anisotropy and how to correct the bias due to the nonadditivity. We have developed a computational procedure for dealing with the anisotropy and reducing statistical errors and biases in DMC evaluations, based on possible validations on predicted A. We applied the scheme to cyclohexasilane molecule, Si 6 H 12 , used in "printed electronics" fabrications, getting A ≈ 105 ± 2 zJ, being in plausible range supported even by other possible extrapolations. The scheme provided here would open a way to use handy ab initio evaluations to predict wettabilities as in the form of materials informatics over broader molecules.

  10. Computation of Nonretarded London Dispersion Coefficients and Hamaker Constants of Copper Phthalocyanine.

    PubMed

    Zhao, Yan; Ng, Hou T; Hanson, Eric; Dong, Jiannan; Corti, David S; Franses, Elias I

    2010-02-09

    A time-dependent density functional theory (TDDFT) scheme has been validated for predictions of the dispersion coefficients of five molecules (H2O, NH3, CO2, C6H6, and pentane) and for predictions of the static dipole polarizabilities of three organometallic compounds (TiCl4, OsO4, and Ge(CH3)4). The convergence of grid spacing has been examined, and two types of pseudopotentials and 13 density functionals have been tested. The nonretarded Hamaker constants A11 are calculated by employing a semiempirical parameter a along with the standard Hamaker constant equation. The parameter a is optimized against six accurate Hamaker constants obtained from the full Lifshitz theory. The dispersion coefficients of copper phthalocyanine CuPc and CuPc-SO3H are then computed. Using the theoretical densities of ρ1 = 1.63 and 1.62 g/cm(3), the Hamaker constants A11 of crystalline α-CuPc and β-CuPc are found to be 14.73 × 10(-20) and 14.66 × 10(-20) J, respectively. Using the experimentally derived density of ρ1 = 1.56 g/cm(3) for a commercially available β-CuPc (nanoparticles of ∼90 nm hydrodynamic diameter), A11 = 13.52 × 10(-20) J is found. Its corresponding effective Hamaker constant in water (A121) is calculated to be 3.07 × 10(-20) J. All computed A11 values for CuPc are noted to be higher than those reported previously.

  11. Anisotropic Effects on Constitutive Model Parameters of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Brar, Nachhatter; Joshi, Vasant

    2011-06-01

    Simulation of low velocity impact on structures or high velocity penetration in armor materials heavily rely on constitutive material models. The model constants are required input to computer codes (LS-DYNA, DYNA3D or SPH) to accurately simulate fragment impact on structural components made of high strength 7075-T651 aluminum alloys. Johnson-Cook model constants determined for Al7075-T651 alloy bar material failed to simulate correctly the penetration into 1' thick Al-7075-T651plates. When simulations go well beyond minor parameter tweaking and experimental results are drastically different it is important to determine constitutive parameters from the actual material used in impact/penetration experiments. To investigate anisotropic effects on the yield/flow stress of this alloy we performed quasi-static and high strain rate tensile tests on specimens fabricated in the longitudinal, transverse, and thickness directions of 1' thick Al7075-T651 plate. Flow stresses at a strain rate of ~1100/s in the longitudinal and transverse direction are similar around 670MPa and decreases to 620 MPa in the thickness direction. These data are lower than the flow stress of 760 MPa measured in Al7075-T651 bar stock.

  12. The role of atmospheric shear, turbulence and a ground plane on the dissipation of aircraft vortex wakes

    NASA Technical Reports Server (NTRS)

    Bilanin, A. J.; Teske, M. E.; Hirsh, J. E.

    1978-01-01

    Enhanced dispersion of two-dimensional trailed vortex pairs within simplified neutral atmospheric backgrounds is studied numerically for three conditions: when the pair is imbedded in a constant turbulent bath (constant dissipation); when the pair is subjected to a mean cross-wind shear; and when the pair is near the ground. Turbulent transport is modeled using second-order closure turbulent transport theory. The turbulent background fields are constructed using a superequilibrium approximation. The computed results allow several general conclusions to be drawn with regard to the reduction in circulation of the vortex pair and the rolling moment induced on a following aircraft: (1) the rate of decay of a vortex pair increases with increasing background dissipation rate; (2) cross-wind shear disperses the vortex whose vorticity is opposite to the background; and (3) the proximity of a ground plane reduces the hazard of the pair by scrubbing. The phenomenon of vortex bounce is explained in terms of secondary vorticity produced at the ground plane. Qualitative comparisons are made with available experimental data, and inferences of these results upon the persistence of aircraft trailing vortices are discussed.

  13. Kinetics of Diffusional Droplet Growth in a Liquid/Liquid Two-Phase System

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Fradkov, V. E.

    1996-01-01

    We address the problem of diffusional interactions in a finite sized cluster of spherical particles for volume fractions, V(sub v) in the range 0-0.01. We determined the quasi-static monopole diffusion solution for n particles distributed at random in a continuous matrix. A global mass conservation condition is employed, obviating the need for any external boundary condition. The numerical results provide the instantaneous (snapshot) growth or shrinkage rate of each particle, precluding the need for extensive time-dependent computations. The close connection between these snapshot results and the coarsegrained kinetic constants are discussed. A square-root dependence of the deviations of the rate constants from their zero volume fraction value is found for the higher V(sub v) investigated. This behavior is consistent with predictions from diffusion Debye-Huckel screening theory. By contrast, a cube-root dependence, reported in earlier numerical studies, is found for the lower V(sub v) investigated. The roll-over region of the volume fraction where the two asymptotics merge depends on the number of particles, n, alone. A theoretical estimate for the roll-over point predicts that the corresponding V(sub v) varies as n(sup -2), in good agreement with the numerical results.

  14. A non-local computational boundary condition for duct acoustics

    NASA Technical Reports Server (NTRS)

    Zorumski, William E.; Watson, Willie R.; Hodge, Steve L.

    1994-01-01

    A non-local boundary condition is formulated for acoustic waves in ducts without flow. The ducts are two dimensional with constant area, but with variable impedance wall lining. Extension of the formulation to three dimensional and variable area ducts is straightforward in principle, but requires significantly more computation. The boundary condition simulates a nonreflecting wave field in an infinite duct. It is implemented by a constant matrix operator which is applied at the boundary of the computational domain. An efficient computational solution scheme is developed which allows calculations for high frequencies and long duct lengths. This computational solution utilizes the boundary condition to limit the computational space while preserving the radiation boundary condition. The boundary condition is tested for several sources. It is demonstrated that the boundary condition can be applied close to the sound sources, rendering the computational domain small. Computational solutions with the new non-local boundary condition are shown to be consistent with the known solutions for nonreflecting wavefields in an infinite uniform duct.

  15. Kinetics of phloretin binding to phosphatidylcholine vesicle membranes

    PubMed Central

    1980-01-01

    The submillisecond kinetics for phloretin binding to unilamellar phosphatidylcholine (PC) vesicles was investigated using the temperature-jump technique. Spectrophotometric studies of the equilibrium binding performed at 328 nm demonstrated that phloretin binds to a single set of independent, equivalent sites on the vesicle with a dissociation constant of 8.0 microM and a lipid/site ratio of 4.0. The temperature of the phloretin-vesicle solution was jumped by 4 degrees C within 4 microseconds producing a monoexponential, concentration-dependent relaxation process with time constants in the 30--200-microseconds time range. An analysis of the concentration dependence of relaxation time constants at pH 7.30 and 24 degrees C yielded a binding rate constant of 2.7 X 10(8) M-1 s-1 and an unbinding constant of 2,900 s-1; approximately 66 percent of total binding sites are exposed at the outer vesicle surface. The value of the binding rate constant and three additional observations suggest that the binding kinetics are diffusion limited. The phloretin analogue, naringenin, which has a diffusion coefficient similar to phloretin yet a dissociation constant equal to 24 microM, bound to PC vesicle with the same rate constant as phloretin did. In addition, the phloretin-PC system was studied in buffers made one to six times more viscous than water by addition of sucrose or glycerol to the differ. The equilibrium affinity for phloretin binding to PC vesicles is independent of viscosity, yet the binding rate constant decreases with the expected dependence (kappa binding alpha 1/viscosity) for diffusion-limited processes. Thus, the binding rate constant is not altered by differences in binding affinity, yet depends upon the diffusion coefficient in buffer. Finally, studies of the pH dependence of the binding rate constant showed a dependence (kappa binding alpha [1 + 10pH-pK]) consistent with the diffusion-limited binding of a weak acid. PMID:7391812

  16. Empirical Estimation of Local Dielectric Constants: Toward Atomistic Design of Collagen Mimetic Peptides

    PubMed Central

    Pike, Douglas H.; Nanda, Vikas

    2017-01-01

    One of the key challenges in modeling protein energetics is the treatment of solvent interactions. This is particularly important in the case of peptides, where much of the molecule is highly exposed to solvent due to its small size. In this study, we develop an empirical method for estimating the local dielectric constant based on an additive model of atomic polarizabilities. Calculated values match reported apparent dielectric constants for a series of Staphylococcus aureus nuclease mutants. Calculated constants are used to determine screening effects on Coulombic interactions and to determine solvation contributions based on a modified Generalized Born model. These terms are incorporated into the protein modeling platform protCAD, and benchmarked on a data set of collagen mimetic peptides for which experimentally determined stabilities are available. Computing local dielectric constants using atomistic protein models and the assumption of additive atomic polarizabilities is a rapid and potentially useful method for improving electrostatics and solvation calculations that can be applied in the computational design of peptides. PMID:25784456

  17. Spectroscopic Constants and Vibrational Frequencies for l-C3H+ and Isotopologues from Highly-Accurate Quartic Force Fields: The Detection of l-C3H+ in the Horsehead Nebula PDR Questioned

    NASA Technical Reports Server (NTRS)

    Huang, Xinchuan; Fortenberry, Ryan Clifton; Lee, Timothy J.

    2013-01-01

    Very recently, molecular rotational transitions observed in the photon-dominated region of the Horsehead nebula have been attributed to l-C3H+. In an effort to corroborate this finding, we employed state-of-the art and proven high-accuracy quantum chemical techniques to compute spectroscopic constants for this cation and its isotopologues. Even though the B rotational constant from the fit of the observed spectrum and our computations agree to within 20 MHz, a typical level of accuracy, the D rotational constant differs by more than 40%, while the H rotational constant differs by three orders of magnitude. With the likely errors in the rotational transition energies resulting from this difference in D on the order of 1 MHz for the lowest observed transition (J = 4 yields 3) and growing as J increases, the assignment of the observed rotational lines from the Horsehead nebula to l-C3H+ is questionable.

  18. Analytical approximations of the firing rate of an adaptive exponential integrate-and-fire neuron in the presence of synaptic noise.

    PubMed

    Hertäg, Loreen; Durstewitz, Daniel; Brunel, Nicolas

    2014-01-01

    Computational models offer a unique tool for understanding the network-dynamical mechanisms which mediate between physiological and biophysical properties, and behavioral function. A traditional challenge in computational neuroscience is, however, that simple neuronal models which can be studied analytically fail to reproduce the diversity of electrophysiological behaviors seen in real neurons, while detailed neuronal models which do reproduce such diversity are intractable analytically and computationally expensive. A number of intermediate models have been proposed whose aim is to capture the diversity of firing behaviors and spike times of real neurons while entailing the simplest possible mathematical description. One such model is the exponential integrate-and-fire neuron with spike rate adaptation (aEIF) which consists of two differential equations for the membrane potential (V) and an adaptation current (w). Despite its simplicity, it can reproduce a wide variety of physiologically observed spiking patterns, can be fit to physiological recordings quantitatively, and, once done so, is able to predict spike times on traces not used for model fitting. Here we compute the steady-state firing rate of aEIF in the presence of Gaussian synaptic noise, using two approaches. The first approach is based on the 2-dimensional Fokker-Planck equation that describes the (V,w)-probability distribution, which is solved using an expansion in the ratio between the time constants of the two variables. The second is based on the firing rate of the EIF model, which is averaged over the distribution of the w variable. These analytically derived closed-form expressions were tested on simulations from a large variety of model cells quantitatively fitted to in vitro electrophysiological recordings from pyramidal cells and interneurons. Theoretical predictions closely agreed with the firing rate of the simulated cells fed with in-vivo-like synaptic noise.

  19. Fission Limit And Surface Disruption Criteria For Asteroids: The Case Of Kleopatra

    NASA Astrophysics Data System (ADS)

    Hirabayashi, Masatoshi; Scheeres, D. J.

    2012-05-01

    Asteroid structural failure due to a rapid rotation may occur by two fundamentally different ways: by spinning so fast that surface particles are lofted off due to centripetal accelerations overcoming gravitational attractions or through fission of the body. We generalize these failure modes for real asteroid shapes. How a rubble pile asteroid will fail depends on which of these failure criterion occur first if its spin rate is increased due to the YORP effect, impacts, or planetary flybys. The spin rate at which the interior of an arbitrary uniformly rotating body will undergo tension (and conservatively be susceptible to fission) is computed by taking planar cuts through the shape model, computing the mutual gravitational attraction between the two segments, and determining the spin rate at which the centrifugal force between the two components equals the mutual gravitational attraction. The gravitational attraction computation uses an improved version of the algorithm presented in Werner et al. (2005). To determine the interior point that first undergoes tension, we consider this planar cut perpendicular to the axis of minimum moment of inertia at different cross-sections. On the other hand, we define the surface disruption as follows. For an arbitrary body uniformly rotating at a constant spin rate there are at least four synchronous orbits, which represent circular orbits with the same period as the asteroid spin rate. Surface disruption occurs when the body spins fast enough so that at least one of these synchronous orbits touches the asteroid surface. Kleopatra currently spins with a period of 5.38 hours. The spin period for surface disruption is computed to be 3.02 hours, while the spin period for the interior of the asteroid to go into tension is about 4.8 hours. Thus Kleopatra’s internal fission could occur at spin periods longer than when surface disruption occurs.

  20. Temperature and pressure dependence of the absolute rate constant for the reactions of NH2 radicals with acetylene and ethylene

    NASA Technical Reports Server (NTRS)

    Bosco, S. R.; Nava, D. F.; Brobst, W. D.; Stief, L. J.

    1984-01-01

    The absolute rate constants for the reaction between the NH2 free radical and acetylene and ethylene is measured experimentally using a flash photolysis technique. The constant is considered to be a function of temperature and pressure. At each temperature level of the experiment, the observed pseudo-first-order rate constants were assumed to be independent of flash intensity. The results of the experiment indicate that the bimolecular rate constant for the NH2 + C2H2 reaction increases with pressure at 373 K and 459 K but not at lower temperatures. Results near the pressure limit conform to an Arrhenius expression of 1.11 (+ or -) 0.36 x 10 to the -13th over the temperature range from 241 to 459 K. For the reaction NH2 + C2H4, a smaller rate of increase in the bimolecular rate constant was observed over the temperature range 250-465 K. The implications of these results for current theoretical models of NH2 + C2H2 (or H4) reactions in the atmospheres of Jupiter and Saturn are discussed.

  1. Determination of Bimolecular Rate Constants for Reactions of Hydroxyl Radical with Pharmaceutical and Cosmetics Chemicals - Implications to the Fate in the Aquatic Environment

    NASA Astrophysics Data System (ADS)

    Nakajima, H.; Arakaki, T.; Anastasio, C.

    2008-12-01

    Large organic compounds such as hyaluronic acid and chondroitin sulfate are often used in pharmaceutical and cosmetics products, but their chemical degradation pathways are not well understood. To better elucidate their fate in the aquatic environment, we initiated a study to determine bimolecular rate constants between these organic compounds and hydroxyl radical (OH), which is a potent oxidant in the environment. The lifetimes of many organic compounds are determined by reactions with OH radicals, and the lifetime of OH is often controlled by reactions with organic compounds. To determine these bimolecular rate constants we used a competition kinetics technique with either hydrogen peroxide or nitrate as a source of OH and benzoate as the competing sink. Since the molecular weights of some of the large organic compounds we studied were not known, we used dissolved organic carbon (DOC) concentrations to determine mole-carbon based bimolecular rate constants, instead of the commonly used molar-based bimolecular rate constants. We will report the mole-carbon based bimolecular rate constants of OH, determined at room temperature, with hyaluronic acid, chondroitin sulfate and some other large organic compounds.

  2. Projection rule for complex-valued associative memory with large constant terms

    NASA Astrophysics Data System (ADS)

    Kitahara, Michimasa; Kobayashi, Masaki

    Complex-valued Associative Memory (CAM) has an inherent property of rotation invariance. Rotation invariance produces many undesirable stable states and reduces the noise robustness of CAM. Constant terms may remove rotation invariance, but if the constant terms are too small, rotation invariance does not vanish. In this paper, we eliminate rotation invariance by introducing large constant terms to complex-valued neurons. We have to make constant terms sufficiently large to improve the noise robustness. We introduce a parameter to control the amplitudes of constant terms into projection rule. The large constant terms are proved to be effective by our computer simulations.

  3. The uncertainty of biodegradation rate constants of emerging organic compounds in soil and groundwater - A compilation of literature values for 82 substances.

    PubMed

    Greskowiak, Janek; Hamann, Enrico; Burke, Victoria; Massmann, Gudrun

    2017-12-01

    The present study reports on biodegradation rate constants of emerging organic compounds (EOCs) in soil and groundwater available in the literature. The major aim of this compilation was to provide an assessment of the uncertainty of hydrological models with respect to the fate of EOCs. The literature search identified a total number of 82 EOCs for which 1st-order rate constants could be derived. It was found that for the majority of compounds degradation rate constants vary over more than three orders of magnitude. Correlation to factors that are well known to affect the degradation rate, such as temperature or redox condition was weak. No correlation at all was found with results from available quantitative structure-activity relationship models. This suggests that many unknown site specific or experimentally specific factors influence the degradation behavior of EOCs in the environment. Thus, local and catchment scale predictive models to estimate EOC concentration at receptors, e.g., receiving waters or drinking water wells, need to consider the large uncertainty in 1st-order rate constants. As a consequence, applying rate constants that were derived from one experiment or field site investigation to other experiments or field sites should be done with extreme caution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Assessment of rate of drug release from oil vehicle using a rotating dialysis cell.

    PubMed

    Larsen, D H; Fredholt, K; Larsen, C

    2000-09-01

    The rate constants for transfer of model compounds (naproxen and lidocaine) from oily vehicle (Viscoleo) to aqueous buffer phases were determined by use of the rotating dialysis cell. Release studies were done for the partly ionized compounds at several pH values. A correlation between the overall first-order rate constant related to attainment of equilibrium, k(obs), and the pH-dependent distribution coefficient, D, determined between oil vehicle and aqueous buffer was established according to the equation: logk(obs)=-0.71 logD-0.22 (k(obs) in h(-1)). Based on this correlation it was suggested that the rate constant of a weak electrolyte at a specified D value could be considered equal to the k(obs) value for a non-electrolyte possessing a partition coefficient, P(app), the magnitude of which was equal to D. Specific rate constants k(ow) and k(wo) were calculated from the overall rate constant and the pH-dependent distribution coefficient. The rate constant representing the transport from oily vehicle to aqueous phase, k(ow), was found to be significantly influenced by the magnitude of the partition coefficient P(app) according to: logk(ow)=-0.71 logP(app)-log(P(app)+1)-0.22 (k(ow) in h(-1)).

  5. Kinetic modeling of methyl butanoate in shock tube.

    PubMed

    Huynh, Lam K; Lin, Kuang C; Violi, Angela

    2008-12-25

    An increased necessity for energy independence and heightened concern about the effects of rising carbon dioxide levels have intensified the search for renewable fuels that could reduce our current consumption of petrol and diesel. One such fuel is biodiesel, which consists of the methyl esters of fatty acids. Methyl butanoate (MB) contains the essential chemical structure of the long-chain fatty acids and a shorter, but similar, alkyl chain. This paper reports on a detailed kinetic mechanism for MB that is assembled using theoretical approaches. Thirteen pathways that include fuel decomposition, isomerization, and propagation steps were computed using ab initio calculations [J. Org. Chem. 2008, 73, 94]. Rate constants from first principles for important reactions in CO(2) formation, namely CH(3)OCO=CH(3) + CO(2) (R1) and CH(3)OCO=CH(3)O + CO (R2) reactions, are computed at high levels of theory and implemented in the mechanism. Using the G3B3 potential energy surface together with the B3LYP/6-31G(d) gradient, Hessian and geometries, the rate constants for reactions R1 and R2 are calculated using the Rice-Ramsperger-Kassel-Marcus theory with corrections from treatments for tunneling, hindered rotation, and variational effects. The calculated rate constants of reaction R1 differ from the data present in the literature by at most 20%, while those of reaction R2 are about a factor of 4 lower than the available values. The new kinetic model derived from ab initio simulations is combined with the kinetic mechanism presented by Fisher et al. [Proc. Combust. Inst. 2000, 28, 1579] together with the addition of the newly found six-centered unimolecular elimination reaction that yields ethylene and methyl acetate, MB = C(2)H(4) + CH(3)COOCH(3). This latter pathway requires the inclusion of the CH(3)COOCH(3) decomposition model suggested by Westbrook et al. [Proc. Combust. Inst. 2008, accepted]. The newly composed kinetic mechanism for MB is used to study the CO(2) formation during the pyrolysis of MB as well as to investigate the autoignition of MB in a shock tube reactor at different temperatures and pressures. The computed results agree very well with experimental data present in the literature. Sensitivity and flux (rate-of-production) analyses are carried out for the CO(2) formation with the new MB mechanism, together with available reaction mechanisms, to assess the importance of various kinetic pathways for each regime. With the new mechanism, the flux analyses for the formation of C(2)H species, one of the most important species for ignition delay time, are also presented at different conditions. In addition to giving a better chemical insight of the pyrolysis/oxidation of MB, the results suggest ways to improve the mechanism's capability to predict CO(2) formation and ignition delay times in pyrolysis and oxidation conditions.

  6. Inverse problem analysis for identification of reaction kinetics constants in microreactors for biodiesel synthesis

    NASA Astrophysics Data System (ADS)

    Pontes, P. C.; Naveira-Cotta, C. P.

    2016-09-01

    The theoretical analysis for the design of microreactors in biodiesel production is a complicated task due to the complex liquid-liquid flow and mass transfer processes, and the transesterification reaction that takes place within these microsystems. Thus, computational simulation is an important tool that aids in understanding the physical-chemical phenomenon and, consequently, in determining the suitable conditions that maximize the conversion of triglycerides during the biodiesel synthesis. A diffusive-convective-reactive coupled nonlinear mathematical model, that governs the mass transfer process during the transesterification reaction in parallel plates microreactors, under isothermal conditions, is here described. A hybrid numerical-analytical solution via the Generalized Integral Transform Technique (GITT) for this partial differential system is developed and the eigenfunction expansions convergence rates are extensively analyzed and illustrated. The heuristic method of Particle Swarm Optimization (PSO) is applied in the inverse analysis of the proposed direct problem, to estimate the reaction kinetics constants, which is a critical step in the design of such microsystems. The results present a good agreement with the limited experimental data in the literature, but indicate that the GITT methodology combined with the PSO approach provide a reliable computational algorithm for direct-inverse analysis in such reactive mass transfer problems.

  7. Estimating the dust production rate of carbon stars in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Nanni, Ambra; Marigo, Paola; Girardi, Léo; Rubele, Stefano; Bressan, Alessandro; Groenewegen, Martin A. T.; Pastorelli, Giada; Aringer, Bernhard

    2018-02-01

    We employ newly computed grids of spectra reprocessed by dust for estimating the total dust production rate (DPR) of carbon stars in the Small Magellanic Cloud (SMC). For the first time, the grids of spectra are computed as a function of the main stellar parameters, i.e. mass-loss rate, luminosity, effective temperature, current stellar mass and element abundances at the photosphere, following a consistent, physically grounded scheme of dust growth coupled with stationary wind outflow. The model accounts for the dust growth of various dust species formed in the circumstellar envelopes of carbon stars, such as carbon dust, silicon carbide and metallic iron. In particular, we employ some selected combinations of optical constants and grain sizes for carbon dust that have been shown to reproduce simultaneously the most relevant colour-colour diagrams in the SMC. By employing our grids of models, we fit the spectral energy distributions of ≈3100 carbon stars in the SMC, consistently deriving some important dust and stellar properties, i.e. luminosities, mass-loss rates, gas-to-dust ratios, expansion velocities and dust chemistry. We discuss these properties and we compare some of them with observations in the Galaxy and Large Magellanic Cloud. We compute the DPR of carbon stars in the SMC, finding that the estimates provided by our method can be significantly different, between a factor of ≈2-5, than the ones available in the literature. Our grids of models, including the spectra and other relevant dust and stellar quantities, are publicly available at http://starkey.astro.unipd.it/web/guest/dustymodels.

  8. Application of the compensated arrhenius formalism to dielectric relaxation.

    PubMed

    Petrowsky, Matt; Frech, Roger

    2009-12-17

    The temperature dependence of the dielectric rate constant, defined as the reciprocal of the dielectric relaxation time, is examined for several groups of organic solvents. Early studies of linear alcohols using a simple Arrhenius equation found that the activation energy was dependent on the chain length of the alcohol. This paper re-examines the earlier data using a compensated Arrhenius formalism that assumes the presence of a temperature-dependent static dielectric constant in the exponential prefactor. Scaling temperature-dependent rate constants to isothermal rate constants so that the dielectric constant dependence is removed results in calculated energies of activation E(a) in which there is a small increase with chain length. These energies of activation are very similar to those calculated from ionic conductivity data using compensated Arrhenius formalism. This treatment is then extended to dielectic relaxation data for n-alkyl bromides, n-nitriles, and n-acetates. The exponential prefactor is determined by dividing the temperature-dependent rate constants by the Boltzmann term exp(-E(a)/RT). Plotting the prefactors versus the static dielectric constant places the data on a single master curve for each group of solvents.

  9. Inflation with a constant rate of roll

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motohashi, Hayato; Starobinsky, Alexei A.; Yokoyama, Jun'ichi, E-mail: motohashi@kicp.uchicago.edu, E-mail: alstar@landau.ac.ru, E-mail: yokoyama@resceu.s.u-tokyo.ac.jp

    2015-09-01

    We consider an inflationary scenario where the rate of inflaton roll defined by {sup ··}φ/H φ-dot remains constant. The rate of roll is small for slow-roll inflation, while a generic rate of roll leads to the interesting case of 'constant-roll' inflation. We find a general exact solution for the inflaton potential required for such inflaton behaviour. In this model, due to non-slow evolution of background, the would-be decaying mode of linear scalar (curvature) perturbations may not be neglected. It can even grow for some values of the model parameter, while the other mode always remains constant. However, this always occurs formore » unstable solutions which are not attractors for the given potential. The most interesting particular cases of constant-roll inflation remaining viable with the most recent observational data are quadratic hilltop inflation (with cutoff) and natural inflation (with an additional negative cosmological constant). In these cases even-order slow-roll parameters approach non-negligible constants while the odd ones are asymptotically vanishing in the quasi-de Sitter regime.« less

  10. Optimized temporal pattern of brain stimulation designed by computational evolution

    PubMed Central

    Brocker, David T.; Swan, Brandon D.; So, Rosa Q.; Turner, Dennis A.; Gross, Robert E.; Grill, Warren M.

    2017-01-01

    Brain stimulation is a promising therapy for several neurological disorders, including Parkinson’s disease. Stimulation parameters are selected empirically and are limited to the frequency and intensity of stimulation. We used the temporal pattern of stimulation as a novel parameter of deep brain stimulation to ameliorate symptoms in a parkinsonian animal model and in humans with Parkinson’s disease. We used model-based computational evolution to optimize the stimulation pattern. The optimized pattern produced symptom relief comparable to that from standard high-frequency stimulation (a constant rate of 130 or 185 Hz) and outperformed frequency-matched standard stimulation in the parkinsonian rat and in patients. Both optimized and standard stimulation suppressed abnormal oscillatory activity in the basal ganglia of rats and humans. The results illustrate the utility of model-based computational evolution to design temporal pattern of stimulation to increase the efficiency of brain stimulation in Parkinson’s disease, thereby requiring substantially less energy than traditional brain stimulation. PMID:28053151

  11. Computation of the anharmonic orbits in two piecewise monotonic maps with a single discontinuity

    NASA Astrophysics Data System (ADS)

    Li, Yurong; Du, Zhengdong

    2017-02-01

    In this paper, the bifurcation values for two typical piecewise monotonic maps with a single discontinuity are computed. The variation of the parameter of those maps leads to a sequence of border-collision and period-doubling bifurcations, generating a sequence of anharmonic orbits on the boundary of chaos. The border-collision and period-doubling bifurcation values are computed by the word-lifting technique and the Maple fsolve function or the Newton-Raphson method, respectively. The scaling factors which measure the convergent rates of the bifurcation values and the width of the stable periodic windows, respectively, are investigated. We found that these scaling factors depend on the parameters of the maps, implying that they are not universal. Moreover, if one side of the maps is linear, our numerical results suggest that those quantities converge increasingly. In particular, for the linear-quadratic case, they converge to one of the Feigenbaum constants δ _F= 4.66920160\\cdots.

  12. Stochastic theory of large-scale enzyme-reaction networks: Finite copy number corrections to rate equation models

    NASA Astrophysics Data System (ADS)

    Thomas, Philipp; Straube, Arthur V.; Grima, Ramon

    2010-11-01

    Chemical reactions inside cells occur in compartment volumes in the range of atto- to femtoliters. Physiological concentrations realized in such small volumes imply low copy numbers of interacting molecules with the consequence of considerable fluctuations in the concentrations. In contrast, rate equation models are based on the implicit assumption of infinitely large numbers of interacting molecules, or equivalently, that reactions occur in infinite volumes at constant macroscopic concentrations. In this article we compute the finite-volume corrections (or equivalently the finite copy number corrections) to the solutions of the rate equations for chemical reaction networks composed of arbitrarily large numbers of enzyme-catalyzed reactions which are confined inside a small subcellular compartment. This is achieved by applying a mesoscopic version of the quasisteady-state assumption to the exact Fokker-Planck equation associated with the Poisson representation of the chemical master equation. The procedure yields impressively simple and compact expressions for the finite-volume corrections. We prove that the predictions of the rate equations will always underestimate the actual steady-state substrate concentrations for an enzyme-reaction network confined in a small volume. In particular we show that the finite-volume corrections increase with decreasing subcellular volume, decreasing Michaelis-Menten constants, and increasing enzyme saturation. The magnitude of the corrections depends sensitively on the topology of the network. The predictions of the theory are shown to be in excellent agreement with stochastic simulations for two types of networks typically associated with protein methylation and metabolism.

  13. Rationalizing 5000-Fold Differences in Receptor-Binding Rate Constants of Four Cytokines

    PubMed Central

    Pang, Xiaodong; Qin, Sanbo; Zhou, Huan-Xiang

    2011-01-01

    The four cytokines erythropoietin (EPO), interleukin-4 (IL4), human growth hormone (hGH), and prolactin (PRL) all form four-helix bundles and bind to type I cytokine receptors. However, their receptor-binding rate constants span a 5000-fold range. Here, we quantitatively rationalize these vast differences in rate constants by our transient-complex theory for protein-protein association. In the transient complex, the two proteins have near-native separation and relative orientation, but have yet to form the short-range specific interactions of the native complex. The theory predicts the association rate constant as ka=ka0exp(−ΔGel∗/kBT) where ka0 is the basal rate constant for reaching the transient complex by random diffusion, and the Boltzmann factor captures the rate enhancement due to electrostatic attraction. We found that the vast differences in receptor-binding rate constants of the four cytokines arise mostly from the differences in charge complementarity among the four cytokine-receptor complexes. The basal rate constants (ka0) of EPO, IL4, hGH, and PRL were similar (5.2 × 105 M−1s−1, 2.4 × 105 M−1s−1, 1.7 × 105 M−1s−1, and 1.7 × 105 M−1s−1, respectively). However, the average electrostatic free energies (ΔGe1∗) were very different (−4.2 kcal/mol, −2.4 kcal/mol, −0.1 kcal/mol, and −0.5 kcal/mol, respectively, at ionic strength = 160 mM). The receptor-binding rate constants predicted without adjusting any parameters, 6.2 × 108 M−1s−1, 1.3 × 107 M−1s−1, 2.0 × 105 M−1s−1, and 7.6 × 104 M−1s−1, respectively, for EPO, IL4, hGH, and PRL agree well with experimental results. We uncover that these diverse rate constants are anticorrelated with the circulation concentrations of the cytokines, with the resulting cytokine-receptor binding rates very close to the limits set by the half-lives of the receptors, suggesting that these binding rates are functionally relevant and perhaps evolutionarily tuned. Our calculations also reproduced well-observed effects of mutations and ionic strength on the rate constants and produced a set of mutations on the complex of hGH with its receptor that putatively enhances the rate constant by nearly 100-fold through increasing charge complementarity. To quantify charge complementarity, we propose a simple index based on the charge distribution within the binding interface, which shows good correlation with ΔGe1∗. Together these results suggest that protein charges can be manipulated to tune ka and control biological function. PMID:21889455

  14. The Effects of Varied versus Constant High-, Medium-, and Low-Preference Stimuli on Performance

    ERIC Educational Resources Information Center

    Wine, Byron; Wilder, David A.

    2009-01-01

    The purpose of the current study was to compare the delivery of varied versus constant high-, medium-, and low-preference stimuli on performance of 2 adults on a computer-based task in an analogue employment setting. For both participants, constant delivery of the high-preference stimulus produced the greatest increases in performance over…

  15. Kinetic Effects Of Increased Proton Transfer Distance On Proton-Coupled Oxidations Of Phenol-Amines

    PubMed Central

    Rhile, Ian J.

    2011-01-01

    To test the effect of varying the proton donor-acceptor distance in proton-coupled electron transfer (PCET) reactions, the oxidation of a bicyclic amino-indanol (2) is compared with that of a closely related phenol with an ortho CPh2NH2 substituent (1). Spectroscopic, structural, thermochemical and computational studies show that the two amino-phenols are very similar, except that the O⋯N distance (dON) is >0.1 Å longer in 2 than in 1. The difference in dON is 0.13 ± 0.03 Å from X-ray crystallography and 0.165 Å from DFT calculations. Oxidations of these phenols by outer-sphere oxidants yield distonic radical cations •OAr–NH3+ by concerted proton-electron transfer (CPET). Simple tunneling and classical kinetic models both predict that the longer donor-acceptor distance in 2 should lead to slower reactions, by ca. two orders of magnitude, as well as larger H/D kinetic isotope effects (KIEs). However, kinetic studies show that the compound with the longer proton-transfer distance, 2, exhibits smaller KIEs and has rate constants that are quite close to those of 1. For example, the oxidation of 2 by the triarylamminium radical cation N(C6H4OMe)3•+ (3a+) occurs at (1.4 ± 0.1) × 104 M-1 s-1, only a factor of two slower than the closely related reaction of 1 with N(C6H4OMe)2(C6H4Br)•+ (3b+). This difference in rate constants is well accounted for by the slightly different free energies of reaction: ΔG°(2 + 3a+) = +0.078 V vs. ΔG°(1 + 3b+) = +0.04 V. The two phenol-amines do display some subtle kinetic differences: for instance, compound 2 has a shallower dependence of CPET rate constants on driving force (Brønsted α, Δln(k)/Δln(Keq)). These results show that the simple tunneling model is not a good predictor of the effect of proton donor-acceptor distance on concerted-electron transfer reactions involving strongly hydrogen-bonded systems. Computational analysis of the observed similarity of the two phenols emphasizes the importance of the highly anharmonic O⋯H⋯N potential energy surface and the influence of proton vibrational excited states. PMID:21919508

  16. Provable classically intractable sampling with measurement-based computation in constant time

    NASA Astrophysics Data System (ADS)

    Sanders, Stephen; Miller, Jacob; Miyake, Akimasa

    We present a constant-time measurement-based quantum computation (MQC) protocol to perform a classically intractable sampling problem. We sample from the output probability distribution of a subclass of the instantaneous quantum polynomial time circuits introduced by Bremner, Montanaro and Shepherd. In contrast with the usual circuit model, our MQC implementation includes additional randomness due to byproduct operators associated with the computation. Despite this additional randomness we show that our sampling task cannot be efficiently simulated by a classical computer. We extend previous results to verify the quantum supremacy of our sampling protocol efficiently using only single-qubit Pauli measurements. Center for Quantum Information and Control, Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA.

  17. PROFEAT Update: A Protein Features Web Server with Added Facility to Compute Network Descriptors for Studying Omics-Derived Networks.

    PubMed

    Zhang, P; Tao, L; Zeng, X; Qin, C; Chen, S Y; Zhu, F; Yang, S Y; Li, Z R; Chen, W P; Chen, Y Z

    2017-02-03

    The studies of biological, disease, and pharmacological networks are facilitated by the systems-level investigations using computational tools. In particular, the network descriptors developed in other disciplines have found increasing applications in the study of the protein, gene regulatory, metabolic, disease, and drug-targeted networks. Facilities are provided by the public web servers for computing network descriptors, but many descriptors are not covered, including those used or useful for biological studies. We upgraded the PROFEAT web server http://bidd2.nus.edu.sg/cgi-bin/profeat2016/main.cgi for computing up to 329 network descriptors and protein-protein interaction descriptors. PROFEAT network descriptors comprehensively describe the topological and connectivity characteristics of unweighted (uniform binding constants and molecular levels), edge-weighted (varying binding constants), node-weighted (varying molecular levels), edge-node-weighted (varying binding constants and molecular levels), and directed (oriented processes) networks. The usefulness of the network descriptors is illustrated by the literature-reported studies of the biological networks derived from the genome, interactome, transcriptome, metabolome, and diseasome profiles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Gibbs Free Energy of Hydrolytic Water Molecule in Acyl-Enzyme Intermediates of a Serine Protease: A Potential Application for Computer-Aided Discovery of Mechanism-Based Reversible Covalent Inhibitors.

    PubMed

    Masuda, Yosuke; Yamaotsu, Noriyuki; Hirono, Shuichi

    2017-01-01

    In order to predict the potencies of mechanism-based reversible covalent inhibitors, the relationships between calculated Gibbs free energy of hydrolytic water molecule in acyl-trypsin intermediates and experimentally measured catalytic rate constants (k cat ) were investigated. After obtaining representative solution structures by molecular dynamics (MD) simulations, hydration thermodynamics analyses using WaterMap™ were conducted. Consequently, we found for the first time that when Gibbs free energy of the hydrolytic water molecule was lower, logarithms of k cat were also lower. The hydrolytic water molecule with favorable Gibbs free energy may hydrolyze acylated serine slowly. Gibbs free energy of hydrolytic water molecule might be a useful descriptor for computer-aided discovery of mechanism-based reversible covalent inhibitors of hydrolytic enzymes.

  19. Influence of ablation impurities on blunt body re-entry ionization

    NASA Technical Reports Server (NTRS)

    Schexnayder, C. J., Jr.; Evans, J. S.

    1974-01-01

    Electron density profiles which include the effect of an ablated sodium impurity were computed for the boundary layer on a blunt-nosed body re-entering the atmosphere at 7.62 km/sec. Profiles are computed from the nose to a distance of four diameters along the RAM C-payload. A finite-difference, laminar, nonequilibrium chemistry boundary-layer program was used. Comparison of theory with S-band diagnostic antenna results, electron concentration deduced from X- and C-band attenuation data, and Langmuir probe data at several different aft body locations show that agreement is good at high altitude. At the lower altitudes there is disagreement between theory and S-band antenna data where the apparent discrepancy is attributed to the three-body recombination rate constant used for deionization of sodium coupled with the effect of angle of attack.

  20. Implicit Total Variation Diminishing (TVD) schemes for steady-state calculations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Warming, R. F.; Harten, A.

    1983-01-01

    The application of a new implicit unconditionally stable high resolution total variation diminishing (TVD) scheme to steady state calculations. It is a member of a one parameter family of explicit and implicit second order accurate schemes developed by Harten for the computation of weak solutions of hyperbolic conservation laws. This scheme is guaranteed not to generate spurious oscillations for a nonlinear scalar equation and a constant coefficient system. Numerical experiments show that this scheme not only has a rapid convergence rate, but also generates a highly resolved approximation to the steady state solution. A detailed implementation of the implicit scheme for the one and two dimensional compressible inviscid equations of gas dynamics is presented. Some numerical computations of one and two dimensional fluid flows containing shocks demonstrate the efficiency and accuracy of this new scheme.

  1. Dehalogenation of arenes via SN2 reactions at bromine: competition with nucleophilic aromatic substitution.

    PubMed

    Gronert, Scott; Garver, John M; Nichols, Charles M; Worker, Benjamin B; Bierbaum, Veronica M

    2014-11-21

    The gas-phase reactions of carbon- and nitrogen-centered nucleophiles with polyfluorobromobenzenes were examined in a selected-ion flow tube (SIFT) and modeled computationally at the MP2/6-31+G(d,p)//MP2/6-31+G(d) level. In the gas-phase experiments, rate constants and branching ratios were determined. The carbon nucleophiles produce expected nucleophilic aromatic substitution (SNAr) and proton transfer products along with unexpected products that result from SN2 reactions at the bromine center (polyfluorophenide leaving group). With nitrogen nucleophiles, the SN2 at bromine channel is suppressed. In the SNAr channels, the "element effect" is observed, and fluoride loss competes with bromide loss. The computational modeling indicates that all the substitution barriers are well below the entrance channel and that entropy and dynamics effects control the product distributions.

  2. Very high pressure liquid chromatography using fully porous particles: quantitative analysis of fast gradient separations without post-run times.

    PubMed

    Stankovich, Joseph J; Gritti, Fabrice; Stevenson, Paul G; Beaver, Lois Ann; Guiochon, Georges

    2014-01-10

    Using a column packed with fully porous particles, four methods for controlling the flow rates at which gradient elution runs are conducted in very high pressure liquid chromatography (VHPLC) were tested to determine whether reproducible thermal conditions could be achieved, such that subsequent analyses would proceed at nearly the same initial temperature. In VHPLC high flow rates are achieved, producing fast analyses but requiring high inlet pressures. The combination of high flow rates and high inlet pressures generates local heat, leading to temperature changes in the column. Usually in this case a post-run time is input into the analytical method to allow the return of the column temperature to its initial state. An alternative strategy involves operating the column without a post-run equilibration period and maintaining constant temperature variations for subsequent analysis after conducting one or a few separations to bring the column to a reproducible starting temperature. A liquid chromatography instrument equipped with a pressure controller was used to perform constant pressure and constant flow rate VHPLC separations. Six replicate gradient separations of a nine component mixture consisting of acetophenone, propiophenone, butyrophenone, valerophenone, hexanophenone, heptanophenone, octanophenone, benzophenone, and acetanilide dissolved in water/acetonitrile (65:35, v/v) were performed under various experimental conditions: constant flow rate, two sets of constant pressure, and constant pressure operation with a programmed flow rate. The relative standard deviations of the response factors for all the analytes are lower than 5% across the methods. Programming the flow rate to maintain a fairly constant pressure instead of using instrument controlled constant pressure improves the reproducibility of the retention times by a factor of 5, when plotting the chromatograms in time. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Theoretical rate constants of super-exchange hole transfer and thermally induced hopping in DNA.

    PubMed

    Shimazaki, Tomomi; Asai, Yoshihiro; Yamashita, Koichi

    2005-01-27

    Recently, the electronic properties of DNA have been extensively studied, because its conductivity is important not only to the study of fundamental biological problems, but also in the development of molecular-sized electronics and biosensors. We have studied theoretically the reorganization energies, the activation energies, the electronic coupling matrix elements, and the rate constants of hole transfer in B-form double-helix DNA in water. To accommodate the effects of DNA nuclear motions, a subset of reaction coordinates for hole transfer was extracted from classical molecular dynamics (MD) trajectories of DNA in water and then used for ab initio quantum chemical calculations of electron coupling constants based on the generalized Mulliken-Hush model. A molecular mechanics (MM) method was used to determine the nuclear Franck-Condon factor. The rate constants for two types of mechanisms of hole transfer-the thermally induced hopping (TIH) and the super-exchange mechanisms-were determined based on Marcus theory. We found that the calculated matrix elements are strongly dependent on the conformations of the nucleobase pairs of hole-transferable DNA and extend over a wide range of values for the "rise" base-step parameter but cluster around a particular value for the "twist" parameter. The calculated activation energies are in good agreement with experimental results. Whereas the rate constant for the TIH mechanism is not dependent on the number of A-T nucleobase pairs that act as a bridge, the rate constant for the super-exchange process rapidly decreases when the length of the bridge increases. These characteristic trends in the calculated rate constants effectively reproduce those in the experimental data of Giese et al. [Nature 2001, 412, 318]. The calculated rate constants were also compared with the experimental results of Lewis et al. [Nature 2000, 406, 51].

  4. A single mutation in a tunnel to the active site changes the mechanism and kinetics of product release in haloalkane dehalogenase LinB.

    PubMed

    Biedermannová, Lada; Prokop, Zbyněk; Gora, Artur; Chovancová, Eva; Kovács, Mihály; Damborsky, Jiří; Wade, Rebecca C

    2012-08-17

    Many enzymes have buried active sites. The properties of the tunnels connecting the active site with bulk solvent affect ligand binding and unbinding and also the catalytic properties. Here, we investigate ligand passage in the haloalkane dehalogenase enzyme LinB and the effect of replacing leucine by a bulky tryptophan at a tunnel-lining position. Transient kinetic experiments show that the mutation significantly slows down the rate of product release. Moreover, the mechanism of bromide ion release is changed from a one-step process in the wild type enzyme to a two-step process in the mutant. The rate constant of bromide ion release corresponds to the overall steady-state turnover rate constant, suggesting that product release became the rate-limiting step of catalysis in the mutant. We explain the experimental findings by investigating the molecular details of the process computationally. Analysis of trajectories from molecular dynamics simulations with a tunnel detection software reveals differences in the tunnels available for ligand egress. Corresponding differences are seen in simulations of product egress using a specialized enhanced sampling technique. The differences in the free energy barriers for egress of a bromide ion obtained using potential of mean force calculations are in good agreement with the differences in rates obtained from the transient kinetic experiments. Interactions of the bromide ion with the introduced tryptophan are shown to affect the free energy barrier for its passage. The study demonstrates how the mechanism of an enzymatic catalytic cycle and reaction kinetics can be engineered by modification of protein tunnels.

  5. Constant strain rate and peri-implant bone modeling: an in vivo longitudinal micro-CT analysis.

    PubMed

    De Smet, Els; Jaecques, Siegfried V N; Wevers, Martine; Sloten, Jos Vander; Naert, Ignace E

    2013-06-01

    Strain, frequency, loading time, and strain rate, among others, determine mechanical parameters in osteogenic loading. We showed a significant osteogenic effect on bone mass (BM) by daily peri-implant loading at 1.600µε.s(-1) after 4 weeks. To study the peri-implant osteogenic effect of frequency and strain in the guinea pig tibia by in vivo longitudinal micro-computed tomography (CT) analysis. One week after implant installation in both hind limb tibiae, one implant was loaded daily for 10' during 4 weeks, while the other served as control. Frequencies (3, 10, and 30Hz) and strains varied alike in the three series to keep the strain rate constant at 1.600µε.s(-1) . In vivo micro-CT scans were taken of both tibiae: 1 week after implantation but before loading (v1) and after 2 (v2) and 4 weeks (v3) of loading as well as postmortem (pm). BM (BM (%) bone-occupied area fraction) was calculated as well as the difference between test and control sides (delta BM) RESULTS: All implants (n=78) were clinically stable at 4 weeks. Significant increase in BM was measured between v1 and v2 (p<.0001) and between v1 and v3 (p<.0001). A significant positive effect of loading on delta BM was observed in the distal peri-implant marrow 500 Region of Interest already 2 weeks after loading (p=.01) and was significantly larger (11%) in series 1 compared with series 2 (p=.006) and 3 (p=.016). Within the constraints of constant loading time and strain rate, the effect of early implant loading on the peri-implant bone is strongly dependent on strain and frequency. This cortical bone model has shown to be most sensitive for high force loading at low frequency. © 2011 Wiley Periodicals, Inc.

  6. Accurate pressure gradient calculations in hydrostatic atmospheric models

    NASA Technical Reports Server (NTRS)

    Carroll, John J.; Mendez-Nunez, Luis R.; Tanrikulu, Saffet

    1987-01-01

    A method for the accurate calculation of the horizontal pressure gradient acceleration in hydrostatic atmospheric models is presented which is especially useful in situations where the isothermal surfaces are not parallel to the vertical coordinate surfaces. The present method is shown to be exact if the potential temperature lapse rate is constant between the vertical pressure integration limits. The technique is applied to both the integration of the hydrostatic equation and the computation of the slope correction term in the horizontal pressure gradient. A fixed vertical grid and a dynamic grid defined by the significant levels in the vertical temperature distribution are employed.

  7. The effect of membrane parameters on the properties of the nerve impulse.

    NASA Technical Reports Server (NTRS)

    Sabah, N. H.; Leibovic, K. N.

    1972-01-01

    The effect of varying some membrane parameters is explored, basing the investigation on computer simulation of the Hodgkin-Huxley equations for the squid giant axon, including variations in the membrane capacitance, conductances, and the rate constants. It is shown that by reducing the degree of regeneration in the excitable membrane, the character of the nerve signal can be smoothly changed from that of the axonal spike to essentially electrotonic spread, with all gradations in between. The reduction in the degree of regeneration can most simply be brought about by a decrease in the density of active membrane patches.

  8. Escherichia coli promoter sequences predict in vitro RNA polymerase selectivity.

    PubMed

    Mulligan, M E; Hawley, D K; Entriken, R; McClure, W R

    1984-01-11

    We describe a simple algorithm for computing a homology score for Escherichia coli promoters based on DNA sequence alone. The homology score was related to 31 values, measured in vitro, of RNA polymerase selectivity, which we define as the product KBk2, the apparent second order rate constant for open complex formation. We found that promoter strength could be predicted to within a factor of +/-4.1 in KBk2 over a range of 10(4) in the same parameter. The quantitative evaluation was linked to an automated (Apple II) procedure for searching and evaluating possible promoters in DNA sequence files.

  9. A numerical and experimental study of confined swirling jets

    NASA Technical Reports Server (NTRS)

    Nikjooy, M.; Mongia, H. C.; Samuelsen, G. S.; Mcdonell, V. G.

    1989-01-01

    A numerical and experimental study of a confined strong swirling flow is presented. Detailed velocity measurements are made using a two-component laser Doppler velocimeter (LDV) technique. Computations are performed using a differential second-moment (DSM) closure. The effect of inlet dissipation rate on calculated mean and turbulence fields is investigated. Various model constants are employed in the pressure-strain model to demonstrate their influences on the predicted results. Finally, comparison of the DSM calculations with the algebraic second-monent (ASM) closure results shows that the DSM is better suited for complex swirling flow analysis.

  10. 17O nuclear quadrupole coupling constants of water bound to a metal ion: A gadolinium(III) case study

    NASA Astrophysics Data System (ADS)

    Yazyev, Oleg V.; Helm, Lothar

    2006-08-01

    Rotational correlation times of metal ion aqua complexes can be determined from O17 NMR relaxation rates if the quadrupole coupling constant of the bound water oxygen-17 nucleus is known. The rotational correlation time is an important parameter for the efficiency of Gd3+ complexes as magnetic resonance imaging contrast agents. Using a combination of density functional theory with classical and Car-Parrinello molecular dynamics simulations we performed a computational study of the O17 quadrupole coupling constants in model aqua ions and the [Gd(DOTA)(H2O)]- complex used in clinical diagnostics. For the inner sphere water molecule in the [Gd(DOTA)(H2O)]- complex the determined quadrupole coupling parameter χ√1+η2/3 of 8.7MHz is very similar to that of the liquid water (9.0MHz ). Very close values were also predicted for the the homoleptic aqua ions of Gd3+ and Ca2+. We conclude that the O17 quadrupole coupling parameters of water molecules coordinated to closed shell and lanthanide metal ions are similar to water molecules in the liquid state.

  11. Robust estimation-free prescribed performance back-stepping control of air-breathing hypersonic vehicles without affine models

    NASA Astrophysics Data System (ADS)

    Bu, Xiangwei; Wu, Xiaoyan; Huang, Jiaqi; Wei, Daozhi

    2016-11-01

    This paper investigates the design of a novel estimation-free prescribed performance non-affine control strategy for the longitudinal dynamics of an air-breathing hypersonic vehicle (AHV) via back-stepping. The proposed control scheme is capable of guaranteeing tracking errors of velocity, altitude, flight-path angle, pitch angle and pitch rate with prescribed performance. By prescribed performance, we mean that the tracking error is limited to a predefined arbitrarily small residual set, with convergence rate no less than a certain constant, exhibiting maximum overshoot less than a given value. Unlike traditional back-stepping designs, there is no need of an affine model in this paper. Moreover, both the tedious analytic and numerical computations of time derivatives of virtual control laws are completely avoided. In contrast to estimation-based strategies, the presented estimation-free controller possesses much lower computational costs, while successfully eliminating the potential problem of parameter drifting. Owing to its independence on an accurate AHV model, the studied methodology exhibits excellent robustness against system uncertainties. Finally, simulation results from a fully nonlinear model clarify and verify the design.

  12. Chemical kinetic modeling of benzene and toluene oxidation behind shock waves

    NASA Technical Reports Server (NTRS)

    Mclain, A. G.; Jachimowski, C. J.; Wilson, C. H.

    1979-01-01

    The oxidation of stoichiometric mixtures of benzene and toluene behind incident shock waves was studied for a temperature range from 1700 to 2800 K and a pressure range from 1.1 to 1.7 atm. The concentration of CO and CO2 produced were measured as well as the product of the oxygen atom and carbon monoxide concentrations. Comparisons between the benzene experimental data and results calculated by use of a reaction mechanism published in the open literature were carried out. With some additional reactions and changes in rate constants to reflect the pressure-temperature range of the experimental data, a good agreement was achieved between computed and experimental results. A reaction mechanism was developed for toluene oxidation based on analogous rate steps from the benzene mechanism. Measurements of NOx levels in an actual flame device, a jet-stirred combustor, were reproduced successfully by use of the reaction mechanism developed from the shock-tube experiments on toluene. These experimental measurements of NOx levels were reproduced from a computer simulation of a jet-stirred combustor.

  13. Accelerating Sequential Gaussian Simulation with a constant path

    NASA Astrophysics Data System (ADS)

    Nussbaumer, Raphaël; Mariethoz, Grégoire; Gravey, Mathieu; Gloaguen, Erwan; Holliger, Klaus

    2018-03-01

    Sequential Gaussian Simulation (SGS) is a stochastic simulation technique commonly employed for generating realizations of Gaussian random fields. Arguably, the main limitation of this technique is the high computational cost associated with determining the kriging weights. This problem is compounded by the fact that often many realizations are required to allow for an adequate uncertainty assessment. A seemingly simple way to address this problem is to keep the same simulation path for all realizations. This results in identical neighbourhood configurations and hence the kriging weights only need to be determined once and can then be re-used in all subsequent realizations. This approach is generally not recommended because it is expected to result in correlation between the realizations. Here, we challenge this common preconception and make the case for the use of a constant path approach in SGS by systematically evaluating the associated benefits and limitations. We present a detailed implementation, particularly regarding parallelization and memory requirements. Extensive numerical tests demonstrate that using a constant path allows for substantial computational gains with very limited loss of simulation accuracy. This is especially the case for a constant multi-grid path. The computational savings can be used to increase the neighbourhood size, thus allowing for a better reproduction of the spatial statistics. The outcome of this study is a recommendation for an optimal implementation of SGS that maximizes accurate reproduction of the covariance structure as well as computational efficiency.

  14. Uncertainty analysis of multi-rate kinetics of uranium desorption from sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaoying; Liu, Chongxuan; Hu, Bill X.

    2014-01-01

    A multi-rate expression for uranyl [U(VI)] surface complexation reactions has been proposed to describe diffusion-limited U(VI) sorption/desorption in heterogeneous subsurface sediments. An important assumption in the rate expression is that its rate constants follow a certain type probability distribution. In this paper, a Bayes-based, Differential Evolution Markov Chain method was used to assess the distribution assumption and to analyze parameter and model structure uncertainties. U(VI) desorption from a contaminated sediment at the US Hanford 300 Area, Washington was used as an example for detail analysis. The results indicated that: 1) the rate constants in the multi-rate expression contain uneven uncertaintiesmore » with slower rate constants having relative larger uncertainties; 2) the lognormal distribution is an effective assumption for the rate constants in the multi-rate model to simualte U(VI) desorption; 3) however, long-term prediction and its uncertainty may be significantly biased by the lognormal assumption for the smaller rate constants; and 4) both parameter and model structure uncertainties can affect the extrapolation of the multi-rate model with a larger uncertainty from the model structure. The results provide important insights into the factors contributing to the uncertainties of the multi-rate expression commonly used to describe the diffusion or mixing-limited sorption/desorption of both organic and inorganic contaminants in subsurface sediments.« less

  15. Unconfined laminar nanofluid flow and heat transfer around a rotating circular cylinder in the steady regime

    NASA Astrophysics Data System (ADS)

    Bouakkaz, Rafik; Salhi, Fouzi; Khelili, Yacine; Quazzazi, Mohamed; Talbi, Kamel

    2017-06-01

    In this work, steady flow-field and heat transfer through a copper- water nanofluid around a rotating circular cylinder with a constant nondimensional rotation rate α varying from 0 to 5 was investigated for Reynolds numbers of 5-40. Furthermore, the range of nanoparticle volume fractions considered is 0-5%. The effect of volume fraction of nanoparticles on the fluid flow and heat transfer characteristics are carried out by using a finite-volume method based commercial computational fluid dynamics solver. The variation of the local and the average Nusselt numbers with Reynolds number, volume fractions, and rotation rate are presented for the range of conditions. The average Nusselt number is found to decrease with increasing value of the rotation rate for the fixed value of the Reynolds number and volume fraction of nanoparticles. In addition, rotation can be used as a drag reduction technique.

  16. [Key physical parameters of hawthorn leaf granules by stepwise regression analysis method].

    PubMed

    Jiang, Qie-Ying; Zeng, Rong-Gui; Li, Zhe; Luo, Juan; Zhao, Guo-Wei; Lv, Dan; Liao, Zheng-Gen

    2017-05-01

    The purpose of this study was to investigate the effect of key physical properties of hawthorn leaf granule on its dissolution behavior. Hawthorn leaves extract was utilized as a model drug. The extract was mixed with microcrystalline cellulose or starch with the same ratio by using different methods. Appropriate amount of lubricant and disintegrating agent was added into part of the mixed powder, and then the granules were prepared by using extrusion granulation and high shear granulation. The granules dissolution behavior was evaluated by using equilibrium dissolution quantity and dissolution rate constant of the hypericin as the indicators. Then the effect of physical properties on dissolution behavior was analyzed through the stepwise regression analysis method. The equilibrium dissolution quantity of hypericin and adsorption heat constant in hawthorn leaves were positively correlated with the monolayer adsorption capacity and negatively correlated with the moisture absorption rate constant. The dissolution rate constants were decreased with the increase of Hausner rate, monolayer adsorption capacity and adsorption heat constant, and were increased with the increase of Carr index and specific surface area. Adsorption heat constant, monolayer adsorption capacity, moisture absorption rate constant, Carr index and specific surface area were the key physical properties of hawthorn leaf granule to affect its dissolution behavior. Copyright© by the Chinese Pharmaceutical Association.

  17. Determination of equilibrium and rate constants for complex formation by fluorescence correlation spectroscopy supplemented by dynamic light scattering and Taylor dispersion analysis.

    PubMed

    Zhang, Xuzhu; Poniewierski, Andrzej; Jelińska, Aldona; Zagożdżon, Anna; Wisniewska, Agnieszka; Hou, Sen; Hołyst, Robert

    2016-10-04

    The equilibrium and rate constants of molecular complex formation are of great interest both in the field of chemistry and biology. Here, we use fluorescence correlation spectroscopy (FCS), supplemented by dynamic light scattering (DLS) and Taylor dispersion analysis (TDA), to study the complex formation in model systems of dye-micelle interactions. In our case, dyes rhodamine 110 and ATTO-488 interact with three differently charged surfactant micelles: octaethylene glycol monododecyl ether C 12 E 8 (neutral), cetyltrimethylammonium chloride CTAC (positive) and sodium dodecyl sulfate SDS (negative). To determine the rate constants for the dye-micelle complex formation we fit the experimental data obtained by FCS with a new form of the autocorrelation function, derived in the accompanying paper. Our results show that the association rate constants for the model systems are roughly two orders of magnitude smaller than those in the case of the diffusion-controlled limit. Because the complex stability is determined by the dissociation rate constant, a two-step reaction mechanism, including the diffusion-controlled and reaction-controlled rates, is used to explain the dye-micelle interaction. In the limit of fast reaction, we apply FCS to determine the equilibrium constant from the effective diffusion coefficient of the fluorescent components. Depending on the value of the equilibrium constant, we distinguish three types of interaction in the studied systems: weak, intermediate and strong. The values of the equilibrium constant obtained from the FCS and TDA experiments are very close to each other, which supports the theoretical model used to interpret the FCS data.

  18. Comparing 2-nt 3' overhangs against blunt-ended siRNAs: a systems biology based study.

    PubMed

    Ghosh, Preetam; Dullea, Robert; Fischer, James E; Turi, Tom G; Sarver, Ronald W; Zhang, Chaoyang; Basu, Kalyan; Das, Sajal K; Poland, Bradley W

    2009-07-07

    In this study, we formulate a computational reaction model following a chemical kinetic theory approach to predict the binding rate constant for the siRNA-RISC complex formation reaction. The model allowed us to study the potency difference between 2-nt 3' overhangs against blunt-ended siRNA molecules in an RNA interference (RNAi) system. The rate constant predicted by this model was fed into a stochastic simulation of the RNAi system (using the Gillespie stochastic simulator) to study the overall potency effect. We observed that the stochasticity in the transcription/translation machinery has no observable effects in the RNAi pathway. Sustained gene silencing using siRNAs can be achieved only if there is a way to replenish the dsRNA molecules in the cell. Initial findings show about 1.5 times more blunt-ended molecules will be required to keep the mRNA at the same reduced level compared to the 2-nt overhang siRNAs. However, the mRNA levels jump back to saturation after a longer time when blunt-ended siRNAs are used. We found that the siRNA-RISC complex formation reaction rate was 2 times slower when blunt-ended molecules were used pointing to the fact that the presence of the 2-nt overhangs has a greater effect on the reaction in which the bound RISC complex cleaves the mRNA.

  19. Comparing 2-nt 3' overhangs against blunt-ended siRNAs: a systems biology based study

    PubMed Central

    Ghosh, Preetam; Dullea, Robert; Fischer, James E; Turi, Tom G; Sarver, Ronald W; Zhang, Chaoyang; Basu, Kalyan; Das, Sajal K; Poland, Bradley W

    2009-01-01

    In this study, we formulate a computational reaction model following a chemical kinetic theory approach to predict the binding rate constant for the siRNA-RISC complex formation reaction. The model allowed us to study the potency difference between 2-nt 3' overhangs against blunt-ended siRNA molecules in an RNA interference (RNAi) system. The rate constant predicted by this model was fed into a stochastic simulation of the RNAi system (using the Gillespie stochastic simulator) to study the overall potency effect. We observed that the stochasticity in the transcription/translation machinery has no observable effects in the RNAi pathway. Sustained gene silencing using siRNAs can be achieved only if there is a way to replenish the dsRNA molecules in the cell. Initial findings show about 1.5 times more blunt-ended molecules will be required to keep the mRNA at the same reduced level compared to the 2-nt overhang siRNAs. However, the mRNA levels jump back to saturation after a longer time when blunt-ended siRNAs are used. We found that the siRNA-RISC complex formation reaction rate was 2 times slower when blunt-ended molecules were used pointing to the fact that the presence of the 2-nt overhangs has a greater effect on the reaction in which the bound RISC complex cleaves the mRNA. PMID:19594876

  20. Solvolysis of para-substituted cumyl chlorides. Brown and Okamoto's electrophilic substituent constants revisited using continuum solvent models.

    PubMed

    DiLabio, Gino A; Ingold, K U

    2004-03-05

    Brown and Okamoto (J. Am. Chem. Soc. 1958, 80, 4979) derived their electrophilic substitutent constants, sigma(p)+, from the relative rates of solvolysis of ring-substituted cumyl chlorides in an acetone/water solvent mixture. Application of the Hammett equation to the rates for the meta-substituted cumyl chlorides, where there could be no resonance interaction with the developing carbocation, gave a slope, rho(+) = -4.54 ( identical with 6.2 kcal/mol free energy). Rates for the para-substituted chlorides were then used to obtain sigma(p)+ values. We have calculated gas-phase C-Cl heterolytic bond dissociation enthalpy differences, Delta BDE(het) (= BDE(het)(4-YC(6)H(4)CMe(2)Cl) - BDE(het)(C(6)H(5)CMe(2)Cl)), for 16 of the 4-Y substituents employed by Brown and Okamoto. The plot of Delta BDE(het) vs sigma(p)+ gave rho(+) (SD) = 16.3 (2.3) kcal/mol, i.e., a rho(+) value roughly 2.5 times greater than experiment. Inclusion of solvation (water) energies, calculated using three continuum solvent models, reduced rho(+) and SD. The computationally least expensive model used, SM5.42R (Li et al. Theor. Chem. Acc. 1999, 103, 9) gave the best agreement with experiment. This model yielded rho(+) (SD) = 7.7 (0.9) kcal/mol, i.e., a rho(+) value that is only 24% larger than experiment.

  1. Reaction kinetics of hydrogen atom abstraction from isopentanol by the H atom and HO2˙ radical.

    PubMed

    Parab, Prajakta Rajaram; Heufer, K Alexander; Fernandes, Ravi Xavier

    2018-04-25

    Isopentanol is a potential next-generation biofuel for future applications to Homogeneous Charge Compression Ignition (HCCI) engine concepts. To provide insights into the combustion behavior of isopentanol, especially to its auto-ignition behavior which is linked both to efficiency and pollutant formation in real combustion systems, detailed quantum chemical studies for crucial reactions are desired. H-Abstraction reaction rates from fuel molecules are key initiation steps for chain branching required for auto-ignition. In this study, rate constants are determined for the hydrogen atom abstraction reactions from isopentanol by the H atom and HO2˙ radical by implementing the CBS-QB3 composite method. For the treatment of the internal rotors, a Pitzer-Gwinn-like approximation is applied. On comparing the computed reaction energies, the highest exothermicity (ΔE = -46 kJ mol-1) is depicted for Hα abstraction by the H atom whereas the lowest endothermicity (ΔE = 29 kJ mol-1) is shown for the abstraction of Hα by the HO2˙ radical. The formation of hydrogen bonding is found to affect the kinetics of the H atom abstraction reactions by the HO2˙ radical. Further above 750 K, the calculated high pressure limit rate constants indicate that the total contribution from delta carbon sites (Cδ) is predominant for hydrogen atom abstraction by the H atom and HO2˙ radical.

  2. Rate constant for reaction of atomic hydrogen with germane

    NASA Technical Reports Server (NTRS)

    Nava, David F.; Payne, Walter A.; Marston, George; Stief, Louis J.

    1990-01-01

    Due to the interest in the chemistry of germane in the atmospheres of Jupiter and Saturn, and because previously reported kinetic reaction rate studies at 298 K gave results differing by a factor of 200, laboratory measurements were performed to determine the reaction rate constant for H + GeH4. Results of the study at 298 K, obtained via the direct technique of flash photolysis-resonance fluorescence, yield the reaction rate constant, k = (4.08 + or - 0.22) x 10(exp -12) cu cm/s.

  3. REACTOR PHYSICS CONSTANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1963-07-01

    This second edition is based on data available on March 15, 1961. Sections on constants necessary for the interpretation of experimental data and on digital computer programs for reactor design and reactor physics have been added. 1344 references. (D.C.W.)

  4. High-Accuracy Quartic Force Field Calculations for the Spectroscopic Constants and Vibrational Frequencies of 1(exp 1)A' l-C3H(-): A Possible Link to Lines Observed in the Horsehead Nebula PDR

    NASA Technical Reports Server (NTRS)

    Fortenberry, Ryan C.; Huang, Xinchuan; Crawford, T. Daniel; Lee, Timothy J.

    2013-01-01

    It has been shown that rotational lines observed in the Horsehead nebula photon-dominated-region (PDR) are probably not caused by l-C3H+, as was originally suggested. In the search for viable alternative candidate carriers, quartic force fields are employed here to provide highly accurate rotational constants, as well as fundamental vibrational frequencies, for another candidate carrier: 1 (sup 1)A' C3H(-). The ab initio computed spectroscopic constants provided in this work are, compared to those necessary to define the observed lines, as accurate as the computed spectroscopic constants for many of the known interstellar anions. Additionally, the computed D-eff for C3H(-) is three times closer to the D deduced from the observed Horsehead nebula lines relative to l-C3H(+). As a result, 1 (sup 1)A' C3H(-). is a more viable candidate for these observed rotational transitions and would be the seventh confirmed interstellar anion detected within the past decade and the first C(sub n)H(-) molecular anion with an odd n.

  5. Complexity Bounds for Quantum Computation

    DTIC Science & Technology

    2007-06-22

    Programs Trustees of Boston University Boston, MA 02215 - Complexity Bounds for Quantum Computation REPORT DOCUMENTATION PAGE 18. SECURITY CLASSIFICATION...Complexity Bounds for Quantum Comp[utation Report Title ABSTRACT This project focused on upper and lower bounds for quantum computability using constant...classical computation models, particularly emphasizing new examples of where quantum circuits are more powerful than their classical counterparts. A second

  6. Rare behavior of growth processes via umbrella sampling of trajectories

    NASA Astrophysics Data System (ADS)

    Klymko, Katherine; Geissler, Phillip L.; Garrahan, Juan P.; Whitelam, Stephen

    2018-03-01

    We compute probability distributions of trajectory observables for reversible and irreversible growth processes. These results reveal a correspondence between reversible and irreversible processes, at particular points in parameter space, in terms of their typical and atypical trajectories. Thus key features of growth processes can be insensitive to the precise form of the rate constants used to generate them, recalling the insensitivity to microscopic details of certain equilibrium behavior. We obtained these results using a sampling method, inspired by the "s -ensemble" large-deviation formalism, that amounts to umbrella sampling in trajectory space. The method is a simple variant of existing approaches, and applies to ensembles of trajectories controlled by the total number of events. It can be used to determine large-deviation rate functions for trajectory observables in or out of equilibrium.

  7. Installation of automatic control at experimental breeder reactor II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, H.A.; Booty, W.F.; Chick, D.R.

    1985-08-01

    The Experimental Breeder Reactor II (EBR-II) has been modified to permit automatic control capability. Necessary mechanical and electrical changes were made on a regular control rod position; motor, gears, and controller were replaced. A digital computer system was installed that has the programming capability for varied power profiles. The modifications permit transient testing at EBR-II. Experiments were run that increased power linearly as much as 4 MW/s (16% of initial power of 25 MW(thermal)/s), held power constant, and decreased power at a rate no slower than the increase rate. Thus the performance of the automatic control algorithm, the mechanical andmore » electrical control equipment, and the qualifications of the driver fuel for future power change experiments were all demonstrated.« less

  8. Measurement of respiratory rate and timing using a nasal thermocouple.

    PubMed

    Marks, M K; South, M; Carter, B G

    1995-05-01

    The aims of this study were to assess aspects of the response of a small thermocouple to temperature change, and to evaluate whether such a thermocouple could be used intermittently to measure respiratory rate and timing by detecting the changes in nasal temperature occurring with breathing. The study had three parts. First, three similar, fast-responding thermocouples were immersed repeatedly in warm water. Second, the influence of atmospheric temperature on the signal of a thermocouple placed at different sites within the nasal orifice was studied. The signals produced were continuously displayed and analyzed using a laptop computer to allow evaluation of the thermocouples' response characteristics. Third, simultaneous respiratory recordings were acquired using a nasal thermocouple and a nasal pneumotachograph in 12 teenaged subjects. The respiratory rate and the periods of time taken for inspiration (Ti) and expiration (Te) were calculated and compared. The thermocouples' responses to the temperature changes associated with breathing and immersion into water were rapid and consistent. The rate of the signals' decay, following the peak signal marking expiration, was influenced by the atmospheric temperature. The time constants of the thermocouples were similar (mean time constant = 0.41 sec, standard deviation (SD) = 0.07). Optimal respiratory recordings were obtained, with least discomfort, when the thermocouple was positioned at 0 to 4 mm within the nasal orifice. In comparing the respiratory recordings acquired simultaneously with a thermocouple and pneumotachograph, the respiratory rates were identical, and the Ti and Te values were similar (mean difference 0.04 sec (95% CI: -0.11 to 0.21 sec) and -0.04 sec (95% CI: -0.20 to 0.12 sec), respectively). Intermittent measurements of respiratory rate and timing using a nasal thermocouple accurately reflected measurements obtained from nasal airflow using a pneumotachograph.

  9. Development of a Detailed Surface Chemistry Framework in DSMC

    NASA Technical Reports Server (NTRS)

    Swaminathan-Gopalan, K.; Borner, A.; Stephani, K. A.

    2017-01-01

    Many of the current direct simulation Monte Carlo (DSMC) codes still employ only simple surface catalysis models. These include only basic mechanisms such as dissociation, recombination, and exchange reactions, without any provision for adsorption and finite rate kinetics. Incorporating finite rate chemistry at the surface is increasingly becoming a necessity for various applications such as high speed re-entry flows over thermal protection systems (TPS), micro-electro-mechanical systems (MEMS), surface catalysis, etc. In the recent years, relatively few works have examined finite-rate surface reaction modeling using the DSMC method.In this work, a generalized finite-rate surface chemistry framework incorporating a comprehensive list of reaction mechanisms is developed and implemented into the DSMC solver SPARTA. The various mechanisms include adsorption, desorption, Langmuir-Hinshelwood (LH), Eley-Rideal (ER), Collision Induced (CI), condensation, sublimation, etc. The approach is to stochastically model the various competing reactions occurring on a set of active sites. Both gas-surface (e.g., ER, CI) and pure-surface (e.g., LH, desorption) reaction mechanisms are incorporated. The reaction mechanisms could also be catalytic or surface altering based on the participation of the bulk-phase species (e.g., bulk carbon atoms). Marschall and MacLean developed a general formulation in which multiple phases and surface sites are used and we adopt a similar convention in the current work. Microscopic parameters of reaction probabilities (for gas-surface reactions) and frequencies (for pure-surface reactions) that are require for DSMC are computed from the surface properties and macroscopic parameters such as rate constants, sticking coefficients, etc. The energy and angular distributions of the products are decided based on the reaction type and input parameters. Thus, the user has the capability to model various surface reactions via user-specified reaction rate constants, surface properties and parameters.

  10. Toward an understanding of the turbidity measurement of heterocoagulation rate constants of dispersions containing particles of different sizes.

    PubMed

    Liu, Jie; Xu, Shenghua; Sun, Zhiwei

    2007-11-06

    Our previous studies have shown that the determination of coagulation rate constants by turbidity measurement becomes impossible for a certain operating wavelength (that is, its blind point) because at this wavelength the change in the turbidity of a dispersion completely loses its response to the coagulation process. Therefore, performing the turbidity measurement in the wavelength range near the blind point should be avoided. In this article, we demonstrate that the turbidity measurement of the rate constant for coagulation of a binary dispersion containing particles of two different sizes (heterocoagulation) presents special difficulties because the blind point shifts with not only particle size but also with the component fraction. Some important aspects of the turbidity measurement for the heterocoagulation rate constant are discussed and experimentally tested. It is emphasized that the T-matrix method can be used to correctly evaluate extinction cross sections of doublets formed during the heterocoagulation process, which is the key data determining the rate constant from the turbidity measurement, and choosing the appropriate operating wavelength and component fraction are important to achieving a more accurate rate constant. Finally, a simple scheme in experimentally determining the sensitivity of the turbidity changes with coagulation over a wavelength range is proposed.

  11. Theoretical microwave spectral constants for C2N, C2N/+/, and C3H

    NASA Technical Reports Server (NTRS)

    Green, S.

    1980-01-01

    Theoretical microwave spectral constants have been computed for C2N, C3H, and C2N(+). For C2N these are compared with values obtained from optical data. Calculated hyperfine constants are also presented for HNC, DNC, and HCNH(+). The possibility of observing these species in dense interstellar clouds is discussed.

  12. Theoretical study of the gas-phase reactions of iodine atoms ((2)P(3/2)) with H(2), H(2)O, HI, and OH.

    PubMed

    Canneaux, Sébastien; Xerri, Bertrand; Louis, Florent; Cantrel, Laurent

    2010-09-02

    The rate constants of the reactions of iodine atoms with H(2), H(2)O, HI, and OH have been estimated using 39, 21, 13, and 39 different levels of theory, respectively, and have been compared to the available literature values over the temperature range of 250-2500 K. The aim of this methodological work is to demonstrate that standard theoretical methods are adequate to obtain quantitative rate constants for the reactions involving iodine-containing species. Geometry optimizations and vibrational frequency calculations are performed using three methods (MP2, MPW1K, and BHandHLYP) combined with three basis sets (cc-pVTZ, cc-pVQZ, and 6-311G(d,p)). Single-point energy calculations are performed with the highly correlated ab initio coupled cluster method in the space of single, double, and triple (pertubatively) electron excitations CCSD(T) using the cc-pVnZ (n = T, Q, and 5), aug-cc-pVnZ (n = T, Q, and 5), 6-311G(d,p), 6-311+G(3df,2p), and 6-311++G(3df,3pd) basis sets. Canonical transition state theory with a simple Wigner tunneling correction is used to predict the rate constants as a function of temperature. CCSD(T)/cc-pVnZ//MP2/cc-pVTZ (n = T and Q), CCSD(T)/6-311+G(3df,2p)//MP2/6-311G(d,p), and CCSD(T)/6-311++G(3df,3pd)//MP2/6-311G(d,p) levels of theory provide accurate kinetic rate constants when compared to available literature data. The use of the CCSD(T)/cc-pVQZ//MP2/cc-pVTZ and CCSD(T)/6-311++G(3df,3pd) levels of theory allows one to obtain a better agreement with the literature data for all reactions with the exception of the I + H(2) reaction R(1) . This computational procedure has been also used to predict rate constants for some reactions where no available experimental data exist. The use of quantum chemistry tools could be therefore extended to other elements and next applied to develop kinetic networks involving various fission products, steam, and hydrogen in the absence of literature data. The final objective is to implement the kinetics of gaseous reactions in the ASTEC (Accident Source Term Evaluation Code) code to improve speciation of fission transport, which can be transported along the Reactor Coolant System (RCS) of a Pressurized Water Reactor (PWR) in case of a severe accident.

  13. The Chemical Basis of Thiol Addition to Nitro-conjugated Linoleic Acid, a Protective Cell-signaling Lipid*♦

    PubMed Central

    Turell, Lucía; Vitturi, Darío A.; Coitiño, E. Laura; Lebrato, Lourdes; Möller, Matías N.; Sagasti, Camila; Salvatore, Sonia R.; Woodcock, Steven R.; Alvarez, Beatriz; Schopfer, Francisco J.

    2017-01-01

    Nitroalkene fatty acids are formed in vivo and exert protective and anti-inflammatory effects via reversible Michael addition to thiol-containing proteins in key signaling pathways. Nitro-conjugated linoleic acid (NO2-CLA) is preferentially formed, constitutes the most abundant nitrated fatty acid in humans, and contains two carbons that could potentially react with thiols, modulating signaling actions and levels. In this work, we examined the reactions of NO2-CLA with low molecular weight thiols (glutathione, cysteine, homocysteine, cysteinylglycine, and β-mercaptoethanol) and human serum albumin. Reactions followed reversible biphasic kinetics, consistent with the presence of two electrophilic centers in NO2-CLA located on the β- and δ-carbons with respect to the nitro group. The differential reactivity was confirmed by computational modeling of the electronic structure. The rates (kon and koff) and equilibrium constants for both reactions were determined for different thiols. LC-UV-Visible and LC-MS analyses showed that the fast reaction corresponds to β-adduct formation (the kinetic product), while the slow reaction corresponds to the formation of the δ-adduct (the thermodynamic product). The pH dependence of the rate constants, the correlation between intrinsic reactivity and thiol pKa, and the absence of deuterium solvent kinetic isotope effects suggested stepwise mechanisms with thiolate attack on NO2-CLA as rate-controlling step. Computational modeling supported the mechanism and revealed additional features of the transition states, anionic intermediates, and final neutral products. Importantly, the detection of cysteine-δ-adducts in human urine provided evidence for the biological relevance of this reaction. Finally, human serum albumin was found to bind NO2-CLA both non-covalently and to form covalent adducts at Cys-34, suggesting potential modes for systemic distribution. These results provide new insights into the chemical basis of NO2-CLA signaling actions. PMID:27923813

  14. (In)validity of the constant field and constant currents assumptions in theories of ion transport.

    PubMed Central

    Syganow, A; von Kitzing, E

    1999-01-01

    Constant electric fields and constant ion currents are often considered in theories of ion transport. Therefore, it is important to understand the validity of these helpful concepts. The constant field assumption requires that the charge density of permeant ions and flexible polar groups is virtually voltage independent. We present analytic relations that indicate the conditions under which the constant field approximation applies. Barrier models are frequently fitted to experimental current-voltage curves to describe ion transport. These models are based on three fundamental characteristics: a constant electric field, negligible concerted motions of ions inside the channel (an ion can enter only an empty site), and concentration-independent energy profiles. An analysis of those fundamental assumptions of barrier models shows that those approximations require large barriers because the electrostatic interaction is strong and has a long range. In the constant currents assumption, the current of each permeating ion species is considered to be constant throughout the channel; thus ion pairing is explicitly ignored. In inhomogeneous steady-state systems, the association rate constant determines the strength of ion pairing. Among permeable ions, however, the ion association rate constants are not small, according to modern diffusion-limited reaction rate theories. A mathematical formulation of a constant currents condition indicates that ion pairing very likely has an effect but does not dominate ion transport. PMID:9929480

  15. Analytical Theory of the Destruction Terms in Dissipation Rate Transport Equations

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Zhou, Ye

    1996-01-01

    Modeled dissipation rate transport equations are often derived by invoking various hypotheses to close correlations in the corresponding exact equations. D. C. Leslie suggested that these models might be derived instead from Kraichnan's wavenumber space integrals for inertial range transport power. This suggestion is applied to the destruction terms in the dissipation rate equations for incompressible turbulence, buoyant turbulence, rotating incompressible turbulence, and rotating buoyant turbulence. Model constants like C(epsilon 2) are expressed as integrals; convergence of these integrals implies the absence of Reynolds number dependence in the corresponding destruction term. The dependence of C(epsilon 2) on rotation rate emerges naturally; sensitization of the modeled dissipation rate equation to rotation is not required. A buoyancy related effect which is absent in the exact transport equation for temperature variance dissipation, but which sometimes improves computational predictions, also arises naturally. Both the presence of this effect and the appropriate time scale in the modeled transport equation depend on whether Bolgiano or Kolmogorov inertial range scaling applies. A simple application of these methods leads to a preliminary, dissipation rate equation for rotating buoyant turbulence.

  16. Performance Assessment of the Spare Parts for the Activation of Relocated Systems (SPARES) Forecasting Model

    DTIC Science & Technology

    1991-09-01

    constant data into the gaining base’s computer records. Among the data elements to be loaded, the 1XT434 image contains the level detail effective date...the mission support effective date, and the PBR override (19:19-203). In conjunction with the 1XT434, the Mission Change Parameter Image (Constant...the gaining base (19:19-208). The level detail effective date establishes the date the MCDDFR and MCDDR "are considered by the requirements computation

  17. ELEMENT MASSES IN THE CRAB NEBULA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sibley, Adam R.; Katz, Andrea M.; Satterfield, Timothy J.

    Using our previously published element abundance or mass-fraction distributions in the Crab Nebula, we derived actual mass distributions and estimates for overall nebular masses of hydrogen, helium, carbon, nitrogen, oxygen and sulfur. As with the previous work, computations were carried out for photoionization models involving constant hydrogen density and also constant nuclear density. In addition, employing new flux measurements for [Ni ii]  λ 7378, along with combined photoionization models and analytic computations, a nickel abundance distribution was mapped and a nebular stable nickel mass estimate was derived.

  18. Mathematical model for steady state, simple ampholyte isoelectric focusing: Development, computer simulation and implementation

    NASA Technical Reports Server (NTRS)

    Palusinski, O. A.; Allgyer, T. T.

    1979-01-01

    The elimination of Ampholine from the system by establishing the pH gradient with simple ampholytes is proposed. A mathematical model was exercised at the level of the two-component system by using values for mobilities, diffusion coefficients, and dissociation constants representative of glutamic acid and histidine. The constants assumed in the calculations are reported. The predictions of the model and computer simulation of isoelectric focusing experiments are in direct importance to obtain Ampholine-free, stable pH gradients.

  19. Determining Planck's Constant Using a Light-emitting Diode.

    ERIC Educational Resources Information Center

    Sievers, Dennis; Wilson, Alan

    1989-01-01

    Describes a method for making a simple, inexpensive apparatus which can be used to determine Planck's constant. Provides illustrations of a circuit diagram using one or more light-emitting diodes and a BASIC computer program for simplifying calculations. (RT)

  20. A generalized chemistry version of SPARK

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.

    1988-01-01

    An extension of the reacting H2-air computer code SPARK is presented, which enables the code to be used on any reacting flow problem. Routines are developed calculating in a general fashion, the reaction rates, and chemical Jacobians of any reacting system. In addition, an equilibrium routine is added so that the code will have frozen, finite rate, and equilibrium capabilities. The reaction rate for the species is determined from the law of mass action using Arrhenius expressions for the rate constants. The Jacobian routines are determined by numerically or analytically differentiating the law of mass action for each species. The equilibrium routine is based on a Gibbs free energy minimization routine. The routines are written in FORTRAN 77, with special consideration given to vectorization. Run times for the generalized routines are generally 20 percent slower than reaction specific routines. The numerical efficiency of the generalized analytical Jacobian, however, is nearly 300 percent better than the reaction specific numerical Jacobian used in SPARK.

  1. Numerical investigation on the effects of acceleration reversal times in Rayleigh-Taylor Instability with multiple reversals

    NASA Astrophysics Data System (ADS)

    Farley, Zachary; Aslangil, Denis; Banerjee, Arindam; Lawrie, Andrew G. W.

    2017-11-01

    An implicit large eddy simulation (ILES) code, MOBILE, is used to explore the growth rate of the mixing layer width of the acceleration-driven Rayleigh-Taylor instability (RTI) under variable acceleration histories. The sets of computations performed consist of a series of accel-decel-accel (ADA) cases in addition to baseline constant acceleration and accel-decel (AD) cases. The ADA cases are a series of varied times for the second acceleration reversal (t2) and show drastic differences in the growth rates. Upon the deceleration phase, the kinetic energy of the flow is shifted into internal wavelike patterns. These waves are evidenced by the examined differences in growth rate in the second acceleration phase for the set of ADA cases. Here, we investigate global parameters that include mixing width, growth rates and the anisotropy tensor for the kinetic energy to better understand the behavior of the growth during the re-acceleration period. Authors acknowledge financial support from DOE-SSAA (DE-NA0003195) and NSF CAREER (#1453056) awards.

  2. Fitting a single-phase model to the post-exercise changes in heart rate and oxygen uptake.

    PubMed

    Stupnicki, R; Gabryś, T; Szmatlan-Gabryś, U; Tomaszewski, P

    2010-01-01

    The kinetics of post-exercise heart rate (HR) and oxygen consumption (EPOC) was studied in 10 elite cyclists subjected to four laboratory cycle ergometer maximal exercises lasting 30, 90, 180 or 360 s. Heart rate and oxygen uptake (VO2) were recorded over a period of 6 min after the exercise. By applying the logit transformation to the recorded variables and relating them to the decimal logarithm of the recovery time, uniform single-phase courses of changes were shown for both variables in all subjects and exercises. This enabled computing half-recovery times (t(1/2)) for both variables. Half-time for VO2 negatively correlated with square root of exercise duration (within-subject r = -0.629, p < 0.001), the total post-exercise oxygen uptake till t(1/2) was thus constant irrespectively of exercise intensity. The method is simple and enables reliable comparisons of various modes of exercise with respect to the rate of recovery.

  3. A Cohesive Zone Approach for Fatigue-Driven Delamination Analysis in Composite Materials

    NASA Astrophysics Data System (ADS)

    Amiri-Rad, Ahmad; Mashayekhi, Mohammad

    2017-08-01

    A new model for prediction of fatigue-driven delamination in laminated composites is proposed using cohesive interface elements. The presented model provides a link between cohesive elements damage evolution rate and crack growth rate of Paris law. This is beneficial since no additional material parameters are required and the well-known Paris law constants are used. The link between the cohesive zone method and fracture mechanics is achieved without use of effective length which has led to more accurate results. The problem of unknown failure path in calculation of the energy release rate is solved by imposing a condition on the damage model which leads to completely vertical failure path. A global measure of energy release rate is used for the whole cohesive zone which is computationally more efficient compared to previous similar models. The performance of the proposed model is investigated by simulation of well-known delamination tests and comparison against experimental data of the literature.

  4. Streamline similarity method for flow distributions and shock losses at the impeller inlet of the centrifugal pump

    NASA Astrophysics Data System (ADS)

    Zhang, Zh.

    2018-02-01

    An analytical method is presented, which enables the non-uniform velocity and pressure distributions at the impeller inlet of a pump to be accurately computed. The analyses are based on the potential flow theory and the geometrical similarity of the streamline distribution along the leading edge of the impeller blades. The method is thus called streamline similarity method (SSM). The obtained geometrical form of the flow distribution is then simply described by the geometrical variable G( s) and the first structural constant G I . As clearly demonstrated and also validated by experiments, both the flow velocity and the pressure distributions at the impeller inlet are usually highly non-uniform. This knowledge is indispensible for impeller blade designs to fulfill the shockless inlet flow condition. By introducing the second structural constant G II , the paper also presents the simple and accurate computation of the shock loss, which occurs at the impeller inlet. The introduction of two structural constants contributes immensely to the enhancement of the computational accuracies. As further indicated, all computations presented in this paper can also be well applied to the non-uniform exit flow out of an impeller of the Francis turbine for accurately computing the related mean values.

  5. Clay catalysis of oligonucleotide formation: kinetics of the reaction of the 5'-phosphorimidazolides of nucleotides with the non-basic heterocycles uracil and hypoxanthine

    NASA Technical Reports Server (NTRS)

    Kawamura, K.; Ferris, J. P.

    1999-01-01

    The montmorillonite clay catalyzed condensation of activated monocleotides to oligomers of RNA is a possible first step in the formation of the proposed RNA world. The rate constants for the condensation of the phosphorimidazolide of adenosine were measured previously and these studies have been extended to the phosphorimidazolides of inosine and uridine in the present work to determine of substitution of neutral heterocycles for the basic adenine ring changes the reaction rate or regioselectivity. The oligomerization reactions of the 5'-phosphoromidazolides of uridine (ImpU) and inosine (ImpI) on montmorillonite yield oligo(U)s and oligo(I)s as long as heptamers. The rate constants for oligonucleotide formation were determined by measuring the rates of formation of the oligomers by HPLC. Both the apparent rate constants in the reaction mixture and the rate constants on the clay surface were calculated using the partition coefficients of the oligomers between the aqueous and clay phases. The rate constants for trimer formation are much greater than those dimer synthesis but there was little difference in the rate constants for the formation of trimers and higher oligomers. The overall rates of oligomerization of the phosphorimidazolides of purine and pyrimidine nucleosides in the presence of montmorillonite clay are the same suggesting that RNA formed on the primitive Earth could have contained a variety of heterocyclic bases. The rate constants for oligomerization of pyrimidine nucleotides on the clay surface are significantly higher than those of purine nucleotides since the pyrimidine nucleotides bind less strongly to the clay than do the purine nucleotides. The differences in the binding is probably due to Van der Waals interactions between the purine bases and the clay surface. Differences in the basicity of the heterocyclic ring in the nucleotide have little effect on the oligomerization process.

  6. Effect of a Nonplanar Melt-Solid Interface On Lateral Compositional Distribution During Unidirectional Solidification of a Binary Alloy with a Constant Growth Velocity V. Pt. 1; Theory

    NASA Technical Reports Server (NTRS)

    Wang, Jai-Ching; Watring, D.; Lehoczky. S. L.; Su, C. H.; Gillies, D.; Szofran, F.; Sha, Y. G.; Sha, Y. G.

    1999-01-01

    Infrared detected materials, such as Hg(1-x)Cd(x)Te, Hg(1-x)Zn(x)Te have energy gaps almost linearly proportional to their composition. Due to the wide separation of liquidus and solidus curves of their phase diagram, there are compositional segregation in both of the axial and radial directions of these crystals grown in the Bridgman system unidirectionally with constant growth rate. It is important to understand the mechanisms, which affect lateral segregation such that large radially uniform composition crystal can be produced. Following Coriel, etc's treatment, we have developed a theory to study the effect of a curved melt-solid interface shape on lateral composition distribution. The model is considered to be a cylindrical system with azimuthal symmetry and a curved melt-solid interface shape which can be expressed as a linear combination of a series of Bessell's functions. The results show that melt-solid interface shape has a dominant effect on the lateral composition distribution of these systems. For small values of beta, the solute concentration at the melt-solid interface scales linearly with interface shape with a proportional constant of the produce of beta and (1 -k), where beta = VR/D, with V as growth velocity, R as the sample radius, D as the diffusion constant and k as the distribution constant. A detailed theory will be presented. A computer code has been developed and simulations have been performed and compared with experimental results. These will be published in another paper.

  7. Effect of a Nonplanar Melt-Solid Interface on Lateral Compositional Distribution during Unidirectional Solidification of a Binary Alloy with a Constant Growth Velocity V. Part 1; Theory

    NASA Technical Reports Server (NTRS)

    Wang, Jai-Ching; Watring, Dale A.; Lehoczky, Sandor L.; Su, Ching-Hua; Gillies, Don; Szofran, Frank

    1999-01-01

    Infrared detector materials, such as Hg(1-x)Cd(x)Te, Hg(1-x)Zn(x)Te have energy gaps almost linearly proportional to its composition. Due to the wide separation of liquidus and solidus curves of their phase diagram, there are compositional segregations in both of axial and radial directions of these crystals grown in the Bridgman system unidirectionally with constant growth rate. It is important to understand the mechanisms which affect lateral segregation such that large uniform radial composition crystal is possible. Following Coriell, etc's treatment, we have developed a theory to study the effect of a curved melt-solid interface shape on the lateral composition distribution. The system is considered to be cylindrical system with azimuthal symmetric with a curved melt-solid interface shape which can be expressed as a linear combination of a series of Bessell's functions. The results show that melt-solid interface shape has a dominate effect on lateral composition distribution of these systems. For small values of b, the solute concentration at the melt-solid interface scales linearly with interface shape with a proportional constant of the product of b and (1 - k), where b = VR/D, with V as growth velocity, R as sample radius, D as diffusion constant and k as distribution constant. A detailed theory will be presented. A computer code has been developed and simulations have been performed and compared with experimental results. These will be published in another paper.

  8. Designing Educational Games for Computer Programming: A Holistic Framework

    ERIC Educational Resources Information Center

    Malliarakis, Christos; Satratzemi, Maya; Xinogalos, Stelios

    2014-01-01

    Computer science is continuously evolving during the past decades. This has also brought forth new knowledge that should be incorporated and new learning strategies must be adopted for the successful teaching of all sub-domains. For example, computer programming is a vital knowledge area within computer science with constantly changing curriculum…

  9. Rate Constants for the Reactions of Hydroxyl Radical with Several Alkanes, Cycloalkanes, and Dimethyl Ether

    NASA Technical Reports Server (NTRS)

    DeMore, W.; Bayes, K.

    1998-01-01

    Relative rate experiements were used to measure rate constants and temperature denpendencies of the reactions of OH with propane, n-butane, n-pentane, n-hexane, cyclopropane, cyclobutane, cyclopentane, and dimethyl ether.

  10. High-Temperature Slow Crack Growth of Silicon Carbide Determined by Constant-Stress-Rate and Constant-Stress Testing

    NASA Technical Reports Server (NTRS)

    Choi, Sung H.; Salem, J. A.; Nemeth, N. N.

    1998-01-01

    High-temperature slow-crack-growth behaviour of hot-pressed silicon carbide was determined using both constant-stress-rate ("dynamic fatigue") and constant-stress ("static fatigue") testing in flexure at 1300 C in air. Slow crack growth was found to be a governing mechanism associated with failure of the material. Four estimation methods such as the individual data, the Weibull median, the arithmetic mean and the median deviation methods were used to determine the slow crack growth parameters. The four estimation methods were in good agreement for the constant-stress-rate testing with a small variation in the slow-crack-growth parameter, n, ranging from 28 to 36. By contrast, the variation in n between the four estimation methods was significant in the constant-stress testing with a somewhat wide range of n= 16 to 32.

  11. Simple Model for Detonation Energy and Rate

    NASA Astrophysics Data System (ADS)

    Lauderbach, Lisa M.; Souers, P. Clark

    2017-06-01

    A simple model is used to derive the Eyring equation for the size effect and detonation rate, which depends on a constant energy density. The rate derived from detonation velocities is then converted into a rate constant to be used in a reactive flow model. The rate might be constant if the size effect curve is straight, but the rate constant will change with the radius of the sample and cannot be a constant. This is based on many careful cylinder tests have been run recently on LX-17 with inner copper diameters ranging from 12.7 to 101.6 mm. Copper wall velocities at scaled displacements of 6, 12.5 and 19 mm equate to values at relative volumes of 2.4, 4.4 and 7.0. At each point, the velocities from 25.4 to 101.6 mm are constant within error whereas the 12.7 mm velocities are lower. Using the updated Gurney model, the energy densities at the three larger sizes are also constant. Similar behavior has been seen in LX-14, LX-04, and an 83% RDX mix. A rough saturation has also been in old ANFO data for diameters of 101.6 mm and larger. Although the energy densities saturate, the detonation velocities continue to increase with size. These observations suggest that maximum energy density is a constant for a given explosive of a given density. The correlation of energy density with detonation velocity is not good because the latter depends on the total energy of the sample. This work performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  12. Constant-pH Molecular Dynamics Simulations for Large Biomolecular Systems

    DOE PAGES

    Radak, Brian K.; Chipot, Christophe; Suh, Donghyuk; ...

    2017-11-07

    We report that an increasingly important endeavor is to develop computational strategies that enable molecular dynamics (MD) simulations of biomolecular systems with spontaneous changes in protonation states under conditions of constant pH. The present work describes our efforts to implement the powerful constant-pH MD simulation method, based on a hybrid nonequilibrium MD/Monte Carlo (neMD/MC) technique within the highly scalable program NAMD. The constant-pH hybrid neMD/MC method has several appealing features; it samples the correct semigrand canonical ensemble rigorously, the computational cost increases linearly with the number of titratable sites, and it is applicable to explicit solvent simulations. The present implementationmore » of the constant-pH hybrid neMD/MC in NAMD is designed to handle a wide range of biomolecular systems with no constraints on the choice of force field. Furthermore, the sampling efficiency can be adaptively improved on-the-fly by adjusting algorithmic parameters during the simulation. Finally, illustrative examples emphasizing medium- and large-scale applications on next-generation supercomputing architectures are provided.« less

  13. Constant-pH Molecular Dynamics Simulations for Large Biomolecular Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radak, Brian K.; Chipot, Christophe; Suh, Donghyuk

    We report that an increasingly important endeavor is to develop computational strategies that enable molecular dynamics (MD) simulations of biomolecular systems with spontaneous changes in protonation states under conditions of constant pH. The present work describes our efforts to implement the powerful constant-pH MD simulation method, based on a hybrid nonequilibrium MD/Monte Carlo (neMD/MC) technique within the highly scalable program NAMD. The constant-pH hybrid neMD/MC method has several appealing features; it samples the correct semigrand canonical ensemble rigorously, the computational cost increases linearly with the number of titratable sites, and it is applicable to explicit solvent simulations. The present implementationmore » of the constant-pH hybrid neMD/MC in NAMD is designed to handle a wide range of biomolecular systems with no constraints on the choice of force field. Furthermore, the sampling efficiency can be adaptively improved on-the-fly by adjusting algorithmic parameters during the simulation. Finally, illustrative examples emphasizing medium- and large-scale applications on next-generation supercomputing architectures are provided.« less

  14. The Influence of Uncompensated Solution Resistance on the Determination and Standard Electrochemical Rate Constants Using Cyclic Voltammetry, and Some Comparisons with AC Voltammetry.

    DTIC Science & Technology

    1987-09-25

    rate constants, k2r using cyclic voltametry . The res tss are expressed in terms of systematic deviations oP sapparent measured" rate constants, k~b(app...concentration was taken to be lum unless otherwise noted. The voltammetric sweep rate was set at 20 V sŕ unless specified otherwise. The general procedure...peaks for the negative- and positive-going potential sweeps have opposite signs, the measured cathodic-anodic peak separation, AEp, will clearly be

  15. Passive air sampling theory for semivolatile organic compounds.

    PubMed

    Bartkow, Michael E; Booij, Kees; Kennedy, Karen E; Müller, Jochen F; Hawker, Darryl W

    2005-07-01

    The mathematical modelling underlying passive air sampling theory can be based on mass transfer coefficients or rate constants. Generally, these models have not been inter-related. Starting with basic models, the exchange of chemicals between the gaseous phase and the sampler is developed using mass transfer coefficients and rate constants. Importantly, the inter-relationships between the approaches are demonstrated by relating uptake rate constants and loss rate constants to mass transfer coefficients when either sampler-side or air-side resistance is dominating chemical exchange. The influence of sampler area and sampler volume on chemical exchange is discussed in general terms and as they relate to frequently used parameters such as sampling rates and time to equilibrium. Where air-side or sampler-side resistance dominates, an increase in the surface area of the sampler will increase sampling rates. Sampling rates are not related to the sampler/air partition coefficient (K(SV)) when air-side resistance dominates and increase with K(SV) when sampler-side resistance dominates.

  16. Assessing the effect of different treatments on decomposition rate of dairy manure.

    PubMed

    Khalil, Tariq M; Higgins, Stewart S; Ndegwa, Pius M; Frear, Craig S; Stöckle, Claudio O

    2016-11-01

    Confined animal feeding operations (CAFOs) contribute to greenhouse gas emission, but the magnitude of these emissions as a function of operation size, infrastructure, and manure management are difficult to assess. Modeling is a viable option to estimate gaseous emission and nutrient flows from CAFOs. These models use a decomposition rate constant for carbon mineralization. However, this constant is usually determined assuming a homogenous mix of manure, ignoring the effects of emerging manure treatments. The aim of this study was to measure and compare the decomposition rate constants of dairy manure in single and three-pool decomposition models, and to develop an empirical model based on chemical composition of manure for prediction of a decomposition rate constant. Decomposition rate constants of manure before and after an anaerobic digester (AD), following coarse fiber separation, and fine solids removal were determined under anaerobic conditions for single and three-pool decomposition models. The decomposition rates of treated manure effluents differed significantly from untreated manure for both single and three-pool decomposition models. In the single-pool decomposition model, AD effluent containing only suspended solids had a relatively high decomposition rate of 0.060 d(-1), while liquid with coarse fiber and fine solids removed had the lowest rate of 0.013 d(-1). In the three-pool decomposition model, fast and slow decomposition rate constants (0.25 d(-1) and 0.016 d(-1) respectively) of untreated AD influent were also significantly different from treated manure fractions. A regression model to predict the decomposition rate of treated dairy manure fitted well (R(2) = 0.83) to observed data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. A laser flash photolysis and quantum chemical study of the fluorinated derivatives of singlet phenylnitrene.

    PubMed

    Gritsan, N P; Gudmundsdóttir, A D; Tigelaar, D; Zhu, Z; Karney, W L; Hadad, C M; Platz, M S

    2001-03-07

    Laser flash photolysis (LFP, Nd:YAG laser, 35 ps, 266 nm, 10 mJ or KrF excimer laser, 10 ns, 249 nm, 50 mJ) of 2-fluoro, 4-fluoro, 3,5-difluoro, 2,6-difluoro, and 2,3,4,5,6-pentafluorophenyl azides produces the corresponding singlet nitrenes. The singlet nitrenes were detected by transient absorption spectroscopy, and their spectra are characterized by sharp absorption bands with maxima in the range of 300-365 nm. The kinetics of their decay were analyzed as a function of temperature to yield observed decay rate constants, k(OBS). The observed rate constant in inert solvents is the sum of k(R) + k(ISC) where k(R) is the absolute rate constant of rearrangement of singlet nitrene to an azirine and k(ISC) is the absolute rate constant of nitrene intersystem crossing (ISC). Values of k(R) and k(ISC) were deduced after assuming that k(ISC) is independent of temperature. Barriers to cyclization of 4-fluoro-, 3,5-difluoro-, 2-fluoro-, 2,6-difluoro-, and 2,3,4,5,6-pentafluorophenylnitrene in inert solvents are 5.3 +/- 0.3, 5.5 +/- 0.3, 6.7 +/- 0.3, 8.0 +/- 1.5, and 8.8 +/- 0.4 kcal/mol, respectively. The barrier to cyclization of parent singlet phenylnitrene is 5.6 +/- 0.3 kcal/mol. All of these values are in good quantitative agreement with CASPT2 calculations of the relative barrier heights for the conversion of fluoro-substituted singlet aryl nitrenes to benzazirines (Karney, W. L. and Borden, W. T. J. Am. Chem. Soc. 1997, 119, 3347). A single ortho-fluorine substituent exerts a small but significant bystander effect on remote cyclization that is not steric in origin. The influence of two ortho-fluorine substituents on the cyclization is pronounced. In the case of the singlet 2-fluorophenylnitrene system, evidence is presented that the benzazirine is an intermediate and that the corresponding singlet nitrene and benzazirine interconvert. Ab initio calculations at different levels of theory on a series of benzazirines, their isomeric ketenimines, and the transition states converting the benzazirines to ketenimines were performed. The computational results are in good qualitative and quantitative agreement with the experimental findings.

  18. Field Programmable Gate Array Based Parallel Strapdown Algorithm Design for Strapdown Inertial Navigation Systems

    PubMed Central

    Li, Zong-Tao; Wu, Tie-Jun; Lin, Can-Long; Ma, Long-Hua

    2011-01-01

    A new generalized optimum strapdown algorithm with coning and sculling compensation is presented, in which the position, velocity and attitude updating operations are carried out based on the single-speed structure in which all computations are executed at a single updating rate that is sufficiently high to accurately account for high frequency angular rate and acceleration rectification effects. Different from existing algorithms, the updating rates of the coning and sculling compensations are unrelated with the number of the gyro incremental angle samples and the number of the accelerometer incremental velocity samples. When the output sampling rate of inertial sensors remains constant, this algorithm allows increasing the updating rate of the coning and sculling compensation, yet with more numbers of gyro incremental angle and accelerometer incremental velocity in order to improve the accuracy of system. Then, in order to implement the new strapdown algorithm in a single FPGA chip, the parallelization of the algorithm is designed and its computational complexity is analyzed. The performance of the proposed parallel strapdown algorithm is tested on the Xilinx ISE 12.3 software platform and the FPGA device XC6VLX550T hardware platform on the basis of some fighter data. It is shown that this parallel strapdown algorithm on the FPGA platform can greatly decrease the execution time of algorithm to meet the real-time and high precision requirements of system on the high dynamic environment, relative to the existing implemented on the DSP platform. PMID:22164058

  19. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS - ALKALINE HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to allow the calculation of alkaline hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition state...

  20. The reaction mechanism with free energy barriers at constant potentials for the oxygen evolution reaction at the IrO 2 (110) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ping, Yuan; Nielsen, Robert J.; Goddard, William A.

    How to efficiently oxidize H 2O to O 2 (oxygen evolution reaction, OER) in photoelectrochemical cells (PEC) is a great challenge due to its complex charge transfer process, high overpotential, and corrosion. So far no OER mechanism has been fully explained atomistically with both thermodynamic and kinetics. IrO 2 is the only known OER catalyst with both high catalytic activity and stability in acidic conditions. This is important because PEC experiments often operate at extreme pH conditions. In this work, we performed first-principles calculations integrated with implicit solvation at constant potentials to examine the detailed atomistic reaction mechanism of OERmore » at the IrO 2 (110) surface. We determined the surface phase diagram, explored the possible reaction pathways including kinetic barriers, and computed reaction rates based on the microkinetic models. Furthermore, this allowed us to resolve several long-standing puzzles about the atomistic OER mechanism.« less

Top