Sample records for computed tomographic spect

  1. Costs and clinical outcomes in individuals without known coronary artery disease undergoing coronary computed tomographic angiography from an analysis of Medicare category III transaction codes.

    PubMed

    Min, James K; Shaw, Leslee J; Berman, Daniel S; Gilmore, Amanda; Kang, Ning

    2008-09-15

    Multidetector coronary computed tomographic angiography (CCTA) demonstrates high accuracy for the detection and exclusion of coronary artery disease (CAD) and predicts adverse prognosis. To date, opportunity costs relating the clinical and economic outcomes of CCTA compared with other methods of diagnosing CAD, such as myocardial perfusion single-photon emission computed tomography (SPECT), remain unknown. An observational, multicenter, patient-level analysis of patients without known CAD who underwent CCTA or SPECT was performed. Patients who underwent CCTA (n = 1,938) were matched to those who underwent SPECT (n = 7,752) on 8 demographic and clinical characteristics and 2 summary measures of cardiac medications and co-morbidities and were evaluated for 9-month expenditures and clinical outcomes. Adjusted total health care and CAD expenditures were 27% (p <0.001) and 33% (p <0.001) lower, respectively, for patients who underwent CCTA compared with those who underwent SPECT, by an average of $467 (95% confidence interval $99 to $984) for CAD expenditures per patient. Despite lower total health care expenditures for CCTA, no differences were observed for rates of adverse cardiovascular events, including CAD hospitalizations (4.2% vs 4.1%, p = NS), CAD outpatient visits (17.4% vs 13.3%, p = NS), myocardial infarction (0.4% vs 0.6%, p = NS), and new-onset angina (3.0% vs 3.5%, p = NS). Patients without known CAD who underwent CCTA, compared with matched patients who underwent SPECT, incurred lower overall health care and CAD expenditures while experiencing similarly low rates of CAD hospitalization, outpatient visits, myocardial infarction, and angina. In conclusion, these data suggest that CCTA may be a cost-efficient alternative to SPECT for the initial coronary evaluation of patients without known CAD.

  2. Cerebral blood flow tomography with xenon-133

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lassen, N.A.

    1985-10-01

    Cerebral blood flow (CBF) can be measured tomographically by inhalation of Xenon-/sup 133/. The calculation is based on taking a sequence of tomograms during the wash-in and wash-out phase of the tracer. Due to the dynamic nature of the process, a highly sensitive and fast moving single photon emission computed tomograph (SPECT) is required. Two brain-dedicated SPECT systems designed for this purpose are mentioned, and the method is described with special reference to the limitations inherent in the soft energy of the 133Xe primary photons. CBF tomography can be used for a multitude of clinical and investigative purposes. This articlemore » discusses in particular its use for the selection of patients with carotid occlusion for extracranial/intracranial bypass surgery, for detection of severe arterial spasm after aneurysm bleeding, and for detection of low flow areas during severe migraine attacks. The use of other tracers for CBF tomography using SPECT is summarized with emphasis on the /sup 99m/Tc chelates that freely pass the intact blood-brain barrier. The highly sensitive brain-dedicated SPECT systems described are a prerequisite for achieving high resolution tomograms with such tracers.« less

  3. Towards Omni-Tomography—Grand Fusion of Multiple Modalities for Simultaneous Interior Tomography

    PubMed Central

    Wang, Ge; Zhang, Jie; Gao, Hao; Weir, Victor; Yu, Hengyong; Cong, Wenxiang; Xu, Xiaochen; Shen, Haiou; Bennett, James; Furth, Mark; Wang, Yue; Vannier, Michael

    2012-01-01

    We recently elevated interior tomography from its origin in computed tomography (CT) to a general tomographic principle, and proved its validity for other tomographic modalities including SPECT, MRI, and others. Here we propose “omni-tomography”, a novel concept for the grand fusion of multiple tomographic modalities for simultaneous data acquisition in a region of interest (ROI). Omni-tomography can be instrumental when physiological processes under investigation are multi-dimensional, multi-scale, multi-temporal and multi-parametric. Both preclinical and clinical studies now depend on in vivo tomography, often requiring separate evaluations by different imaging modalities. Over the past decade, two approaches have been used for multimodality fusion: Software based image registration and hybrid scanners such as PET-CT, PET-MRI, and SPECT-CT among others. While there are intrinsic limitations with both approaches, the main obstacle to the seamless fusion of multiple imaging modalities has been the bulkiness of each individual imager and the conflict of their physical (especially spatial) requirements. To address this challenge, omni-tomography is now unveiled as an emerging direction for biomedical imaging and systems biomedicine. PMID:22768108

  4. Ideal-observer analysis of lesion detectability in planar, conventional SPECT, and dedicated SPECT scintimammography using effective multi-dimensional smoothing

    NASA Astrophysics Data System (ADS)

    La Riviere, P. J.; Pan, X.; Penney, B. C.

    1998-06-01

    Scintimammography, a nuclear-medicine imaging technique that relies on the preferential uptake of Tc-99m-sestamibi and other radionuclides in breast malignancies, has the potential to provide differentiation of mammographically suspicious lesions, as well as outright detection of malignancies in women with radiographically dense breasts. In this work we use the ideal-observer framework to quantify the detectability of a 1-cm lesion using three different imaging geometries: the planar technique that is the current clinical standard, conventional single-photon emission computed tomography (SPECT), in which the scintillation cameras rotate around the entire torso, and dedicated breast SPECT, in which the cameras rotate around the breast alone. We also introduce an adaptive smoothing technique for the processing of planar images and of sinograms that exploits Fourier transforms to achieve effective multidimensional smoothing at a reasonable computational cost. For the detection of a 1-cm lesion with a clinically typical 6:1 tumor-background ratio, we find ideal-observer signal-to-noise ratios (SNR) that suggest that the dedicated breast SPECT geometry is the most effective of the three, and that the adaptive, two-dimensional smoothing technique should enhance lesion detectability in the tomographic reconstructions.

  5. Influence of proton-pump inhibitors on stomach wall uptake of 99mTc-tetrofosmin in cadmium-zinc-telluride SPECT myocardial perfusion imaging.

    PubMed

    Mouden, Mohamed; Rijkee, Karlijn S; Schreuder, Nanno; Timmer, Jorik R; Jager, Pieter L

    2015-02-01

    Proton-pump inhibitors (PPIs) induce potentially interfering stomach wall activity in single-photon emission computed tomography myocardial perfusion imaging (SPECT-MPI) with technetium-99m ((99m)Tc)-sestamibi. However, no data are available for (99m)Tc-tetrofosmin. We assessed the influence of prolonged (>2 weeks) PPI use on the stomach wall uptake of (99m)Tc-tetrofosmin in patients referred for stress MPI with a cadmium-zinc-telluride-based SPECT camera and its relation with dyspepsia symptoms. Consecutive patients (n=127) underwent a 1-day adenosine stress-first SPECT-MPI with (99m)Tc-tetrofosmin, of whom 54 (43%) patients had been on PPIs for more than 2 weeks. Stomach wall activity was identified on stress SPECT using computed tomographic attenuation maps and was scored using a four-point grading scale into clinically relevant (scores 2 or 3) or nonrelevant (scores 0 or 1).Patients on PPIs had stomach wall uptake more frequently as compared with patients not using PPIs (22 vs. 7%, P=0.017). Dyspepsia was similar in both groups. Prolonged use of PPIs is associated with stomach wall uptake of (99m)Tc-tetrofosmin in stress cadmium-zinc-telluride-SPECT images. Gastric symptoms were not associated with stomach wall uptake.

  6. Single-photon tomographic determination of regional cerebral blood flow in epilepsy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonte, F.J.; Devous, M.D. Sr.; Stokely, E.M.

    Using a single-photon emission computed tomographic scanner (SPECT) the authors determined regional cerebral blood flow (rCBF) with inhaled xenon-133, a noninvasive procedure. Studies were performed in 40 normal individuals, and these were compared with rCBF determinations in 51 patients with seizure disorders. Although positive results were obtained in 15 of 16 patients with mass lesions, the group of principal interest comprised 25 patients suffering from ''temporal lobe'' epilepsy. Only one of these had a positive x-ray computed tomogram, but 16 had positive findings on rCBF study. These findings included increased local blood flow in the ictal state and reduced flowmore » interictally.« less

  7. Correlation between clinical severity of central nervous system (CNS) lupus and findings on single photon emission computed tomographic (SPECT) images of the brain; preliminary results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silverman, I.E.; Zeit, R.M.; Von Feldt, J.M.

    1994-05-01

    Systemic Lupus Erythematosis (SLE) commonly causes significant neuropsychiatric disorders. The purpose of this study was to review the brain SPECT studies of SLE patients with clinical evidence of CNS involvement and determine whether there is a correlation between the findings on SPECT images and the clinical manifestations of this serious phase of the disease. We enrolled 19 SLE patients and 12 normal controls in this study. The level of each patient`s disease activity was determined by the SLE Disease Activity Index (SLEDAI), an established method of scoring disease severity which is heavily weighted toward neuropsychiatric symptomatology, for 15 of themore » 19 SLE patients. The SLEDAI was calculated within a 10 day window of the date when the SPECT scan was obtained. SPECT scans were performed 30 minutes following the intravenous administration of 99mTc-HMPAO. Results are discussed.« less

  8. Types of traumatic brain injury and regional cerebral blood flow assessed by 99mTc-HMPAO SPECT.

    PubMed

    Yamakami, I; Yamaura, A; Isobe, K

    1993-01-01

    To investigate the relationship between focal and diffuse traumatic brain injury (TBI) and regional cerebral blood flow (rCBF), rCBF changes in the first 24 hours post-trauma were studied in 12 severe head trauma patients using single photon emission computed tomography (SPECT) with 99mtechnetium-hexamethyl propyleneamine oxime. Patients were classified as focal or diffuse TBI based on x-ray computed tomographic (X-CT) findings and neurological signs. In six patients with focal damage, SPECT demonstrated 1) perfusion defect (focal severe ischemia) in the brain region larger than the brain contusion by X-CT, 2) hypoperfusion (focal CBF reduction) in the brain region without abnormality by X-CT, and 3) localized hyperperfusion (focal CBF increase) in the surgically decompressed brain after decompressive craniectomy. Focal damage may be associated with a heterogeneous CBF change by causing various focal CBF derangements. In six patients with diffuse damage, SPECT revealed hypoperfusion in only one patient. Diffuse damage may be associated with a homogeneous CBF change by rarely causing focal CBF derangements. The type of TBI, focal or diffuse, determines the type of CBF change, heterogeneous or homogeneous, in the acute severe head trauma patient.

  9. A restraint-free small animal SPECT imaging system with motion tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisenberger, A.G.; Gleason, S.S.; Goddard, J.

    2005-06-01

    We report on an approach toward the development of a high-resolution single photon emission computed tomography (SPECT) system to image the biodistribution of radiolabeled tracers such as Tc-99m and I-125 in unrestrained/unanesthetized mice. An infrared (IR)-based position tracking apparatus has been developed and integrated into a SPECT gantry. The tracking system is designed to measure the spatial position of a mouse's head at a rate of 10-15 frames per second with submillimeter accuracy. The high-resolution, gamma imaging detectors are based on pixellated NaI(Tl) crystal scintillator arrays, position-sensitive photomultiplier tubes, and novel readout circuitry requiring fewer analog-digital converter (ADC) channels whilemore » retaining high spatial resolution. Two SPECT gamma camera detector heads based upon position-sensitive photomultiplier tubes have been built and installed onto the gantry. The IR landmark-based pose measurement and tracking system is under development to provide animal position data during a SPECT scan. The animal position and orientation data acquired by the tracking system will be used for motion correction during the tomographic image reconstruction.« less

  10. [Restoration filtering based on projection power spectrum for single-photon emission computed tomography].

    PubMed

    Kubo, N

    1995-04-01

    To improve the quality of single-photon emission computed tomographic (SPECT) images, a restoration filter has been developed. This filter was designed according to practical "least squares filter" theory. It is necessary to know the object power spectrum and the noise power spectrum. The power spectrum is estimated from the power spectrum of a projection, when the high-frequency power spectrum of a projection is adequately approximated as a polynomial exponential expression. A study of the restoration with the filter based on a projection power spectrum was conducted, and compared with that of the "Butterworth" filtering method (cut-off frequency of 0.15 cycles/pixel), and "Wiener" filtering (signal-to-noise power spectrum ratio was a constant). Normalized mean-squared errors (NMSE) of the phantom, two line sources located in a 99mTc filled cylinder, were used. NMSE of the "Butterworth" filter, "Wiener" filter, and filtering based on a power spectrum were 0.77, 0.83, and 0.76 respectively. Clinically, brain SPECT images utilizing this new restoration filter improved the contrast. Thus, this filter may be useful in diagnosis of SPECT images.

  11. Jini service to reconstruct tomographic data

    NASA Astrophysics Data System (ADS)

    Knoll, Peter; Mirzaei, S.; Koriska, K.; Koehn, H.

    2002-06-01

    A number of imaging systems rely on the reconstruction of a 3- dimensional model from its projections through the process of computed tomography (CT). In medical imaging, for example magnetic resonance imaging (MRI), positron emission tomography (PET), and Single Computer Tomography (SPECT) acquire two-dimensional projections of a three dimensional projections of a three dimensional object. In order to calculate the 3-dimensional representation of the object, i.e. its voxel distribution, several reconstruction algorithms have been developed. Currently, mainly two reconstruct use: the filtered back projection(FBP) and iterative methods. Although the quality of iterative reconstructed SPECT slices is better than that of FBP slices, such iterative algorithms are rarely used for clinical routine studies because of their low availability and increased reconstruction time. We used Jini and a self-developed iterative reconstructions algorithm to design and implement a Jini reconstruction service. With this service, the physician selects the patient study from a database and a Jini client automatically discovers the registered Jini reconstruction services in the department's Intranet. After downloading the proxy object the this Jini service, the SPECT acquisition data are reconstructed. The resulting transaxial slices are visualized using a Jini slice viewer, which can be used for various imaging modalities.

  12. Relation between lung perfusion defects and intravascular clots in acute pulmonary thromboembolism: assessment with breath-hold SPECT-CT pulmonary angiography fusion images.

    PubMed

    Suga, Kazuyoshi; Yasuhiko, Kawakami; Iwanaga, Hideyuki; Tokuda, Osamu; Matsunaga, Naofumi

    2008-09-01

    The relation between lung perfusion defects and intravascular clots in acute pulmonary thromboembolism (PTE) was comprehensively assessed on deep-inspiratory breath-hold (DIBrH) perfusion SPECT-computed tomographic pulmonary angiography (CTPA) fusion images. Subjects were 34 acute PTE patients, who had successfully performed DIBrH perfusion SPECT using a dual-headed SPECT and a respiratory tracking system. Automated DIBrH SPECT-CTPA fusion images were used to assess the relation between lung perfusion defects and intravascular clots detected by CTPA. DIBrH SPECT visualized 175 lobar/segmental or subsegmental defects in 34 patients, and CTPA visualized 61 intravascular clots at variable locations in 30 (88%) patients, but no clots in four (12%) patients. In 30 patients with clots, the fusion images confirmed that 69 (41%) perfusion defects (20 segmental, 45 subsegmental and 4 lobar defects) of total 166 defects were located in lung territories without clots, although the remaining 97 (58%) defects were located in lung territories with clots. Perfusion defect was absent in lung territories with clots (one lobar branch and three segmental branches) in four (12%) of these patients. In four patients without clots, nine perfusion defects including four segmental ones were present. Because of unexpected dissociation between intravascular clots and lung perfusion defects, the present fusion images will be a useful adjunct to CTPA in the diagnosis of acute PTE.

  13. Simulating patient-specific heart shape and motion using SPECT perfusion images with the MCAT phantom

    NASA Astrophysics Data System (ADS)

    Faber, Tracy L.; Garcia, Ernest V.; Lalush, David S.; Segars, W. Paul; Tsui, Benjamin M.

    2001-05-01

    The spline-based Mathematical Cardiac Torso (MCAT) phantom is a realistic software simulation designed to simulate single photon emission computed tomographic (SPECT) data. It incorporates a heart model of known size and shape; thus, it is invaluable for measuring accuracy of acquisition, reconstruction, and post-processing routines. New functionality has been added by replacing the standard heart model with left ventricular (LV) epicaridal and endocardial surface points detected from actual patient SPECT perfusion studies. LV surfaces detected from standard post-processing quantitation programs are converted through interpolation in space and time into new B-spline models. Perfusion abnormalities are added to the model based on results of standard perfusion quantification. The new LV is translated and rotated to fit within existing atria and right ventricular models, which are scaled based on the size of the LV. Simulations were created for five different patients with myocardial infractions who had undergone SPECT perfusion imaging. Shape, size, and motion of the resulting activity map were compared visually to the original SPECT images. In all cases, size, shape and motion of simulated LVs matched well with the original images. Thus, realistic simulations with known physiologic and functional parameters can be created for evaluating efficacy of processing algorithms.

  14. Exercise thallium-201 tomographic scintigraphy in the diagnosis of coronary artery disease: emphasis on the effect of exercise level.

    PubMed

    Huang, P J; Chieng, P U; Lee, Y T; Chiang, F T; Tseng, Y Z; Liau, C S; Tseng, C D; Su, C T; Lien, W P

    1992-11-01

    Exercise thallium-201 imaging using single-photon emission computed tomography (SPECT) was evaluated in 154 patients with angiographically documented coronary artery disease (CAD) and in 25 normal subjects. Of the 154 patients with CAD, 134 (87%) had abnormal thallium images. By contrast, only 77 (50%) patients had ischemic ST-segment depression (p < 0.001). Among 25 normal subjects, 20 had normal exercise SPECT images. The specificity of exercise SPECT imaging (80% or 20/25) in excluding patients with CAD was not significantly higher than that of exercise electrocardiography (76% or 19/25). For the detection of individual vessel involvement by analysis of territories of perfusion abnormalities, the sensitivity and specificity of exercise SPECT were 72% and 96% for the left anterior descending, 78% and 85% for the right coronary, and 47% and 98% for the left circumflex artery. Ninety (group 1) of the 154 patients with CAD achieved adequate exercise end points (ischemic ST-segment depression or > 85% of maximal predicted heart rate) and 64 (group 2) did not. Exercise SPECT showed significantly more perfusion abnormalities in group 1 than in group 2 (96% vs 75%, p < 0.001). We conclude that: (1) exercise SPECT thallium imaging is more sensitive than exercise electrocardiography for detecting patients with CAD; (2) the sensitivity of the test is affected by the level of exercise; and (3) it is valuable in the identification of individual vessel involvement.

  15. Single photon emission computed tomography-guided Cerenkov luminescence tomography

    NASA Astrophysics Data System (ADS)

    Hu, Zhenhua; Chen, Xueli; Liang, Jimin; Qu, Xiaochao; Chen, Duofang; Yang, Weidong; Wang, Jing; Cao, Feng; Tian, Jie

    2012-07-01

    Cerenkov luminescence tomography (CLT) has become a valuable tool for preclinical imaging because of its ability of reconstructing the three-dimensional distribution and activity of the radiopharmaceuticals. However, it is still far from a mature technology and suffers from relatively low spatial resolution due to the ill-posed inverse problem for the tomographic reconstruction. In this paper, we presented a single photon emission computed tomography (SPECT)-guided reconstruction method for CLT, in which a priori information of the permissible source region (PSR) from SPECT imaging results was incorporated to effectively reduce the ill-posedness of the inverse reconstruction problem. The performance of the method was first validated with the experimental reconstruction of an adult athymic nude mouse implanted with a Na131I radioactive source and an adult athymic nude mouse received an intravenous tail injection of Na131I. A tissue-mimic phantom based experiment was then conducted to illustrate the ability of the proposed method in resolving double sources. Compared with the traditional PSR strategy in which the PSR was determined by the surface flux distribution, the proposed method obtained much more accurate and encouraging localization and resolution results. Preliminary results showed that the proposed SPECT-guided reconstruction method was insensitive to the regularization methods and ignored the heterogeneity of tissues which can avoid the segmentation procedure of the organs.

  16. Hyperthyroid dementia: clinicoradiological findings and response to treatment.

    PubMed

    Fukui, T; Hasegawa, Y; Takenaka, H

    2001-02-15

    Dementia associated with hyperthyroidism is less well documented than is hypothyroid dementia. Therapeutic response of hyperthyroid dementia and associated cerebral circulatory and/or metabolic abnormalities has not been elucidated. We described a patient with hyperthyroid dementia and clinicoradiological response to treatment. Single photon emission computed tomographic (SPECT) study was repeated and analyzed semiquantitatively. A 67-year-old man experienced progressive impairments of attention, memory, constructive skills and behavior as well as hand tremor and weight loss of two-year duration. Laboratory findings were compatible with Graves' disease. The initial SPECT showed diffuse tracer uptake defect with an accentuation in the bilateral temporoparietal regions. Clinical and SPECT findings both suggested concurrent "possible" Alzheimer's disease. However, initial treatment with a beta-blocker improved behavior and attention-related cognitive functions as well as tracer uptake in the frontal lobes. Subsequent treatment with additional methimazole then improved memory and constructive abilities when a euthyroid state was established. Uptake defect in the temporoparietal regions also responded gradually to the medication. We suggest that the present patient represent hyperthyroid dementia, which responds favorably to treatment with regard to clinical symptoms and SPECT findings. We also suggest that thyroid function be measured in patients with "possible" Alzheimer's disease because treatable hyperthyroid dementia may not be identified.

  17. Brain pertechnetate SPECT in perinatal asphyxia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sfakianakis, G.; Curless, R.; Goldberg, R.

    1984-01-01

    Single photon emission computed tomography of the brain was performed in 6 patients with perinatal asphyxis aged 8-26 days. A single-head (LFOV) commercial SPECT system (Picker) was used and data were acquired 2-3 hr after an IV injection of 1-2 mCi Tc-99m-pertechnetate (360/sup 0/ rotation, 60 views, 64 x 64 matrix, 50K cts/view). Reconstruction in three planes was performed using MDS software (Hanning medium resolution filter, with or without attenuation correction using Sorenson's technique). For each clinical study, a ring type phantom source was used to identify the level of reconstruction noise in the tomographic planes. Abnormalities were found inmore » all patients studied, 3 central (moderate intensity), 2 peripheral (1 severe, 1 moderate) and 1 diffuse (mild intensity). Despite use of oral perchlorate (50 mg) in one patient the choroid plexus was visible. Since attenuation correction tended to amplify noise, the clinical studies were interpreted both with and without this correction. All 3 patients with central lesions were found abnormal on early (1-4 mo) neurologic follow-up examination, whereas the others were normal. No correlation was found between SPECT and 24 hr blood levels of CPK, ammonia, base excess, or the Apgar scores. Ct scans were reported abnormal (3 diffuse, 1 peripheral, 1 central and 1 questionable). Planar scintigrams obtained immediately after SPECT were normal (2), questionable (2) and abnormal (2). Follow-up SPECT brain scintigrams in two of the patients showed partial resolution. SPECT of the brain appears promising in perinatal asphyxia but long-term correlation with patient development is necessary.« less

  18. Clinical results with beta-methyl-p-(123I)iodophenylpentadecanoic acid, single-photon emission computed tomography in cardiac disease.

    PubMed

    Nishimura, T; Uehara, T; Shimonagata, T; Nagata, S; Haze, K

    1994-01-01

    This study was undertaken to evaluate the relationships, between myocardial perfusion and metabolism. Simultaneous beta-methyl-p(123I)iodophenylpentadecanoic acid (123I-BMIPP) and thallium 201 myocardial single-photon emission computed tomography (SPECT) were performed in 25 patients with myocardial infarction (group A) and 16 patients with hypertrophic cardiomyopathy (group B). The severity scores of 123I-BMIPP and 201Tl myocardial SPECT images were evaluated semiquantitatively by segmental analysis. In Group A, dissociations between thallium- and 123I-BMIPP-imaged defects were frequently observed in patients with successful reperfusion compared with those with no reperfusion and those with reinfarction. In four patients with successful reperfusion, repeated 123I-BMIPP and 201Tl myocardial SPECT showed gradual improvement of the 123I-BMIPP severity score compared with the thallium severity score. In group B, dissociations between thallium- and 123I-BMIPP-imaged defects were also demonstrated in hypertrophic myocardium. In addition, nonhypertrophic myocardium also had decreased 123I-BMIPP uptake. In groups A and B, 123I-BMIPP severity scores correlated well with left ventricular function compared with thallium severity scores. These findings indicate that 123I-BMIPP is a suitable agent for the assessment of functional integrity, because left ventricular wall motion is energy dependent and 123I-BMIPP may reflect an aspect of myocardial energy production. This agent may be useful for the early detection and patient management of various heart diseases as an alternative to positron emission tomographic study.

  19. An Adaptation of the Distance Driven Projection Method for Single Pinhole Collimators in SPECT Imaging

    NASA Astrophysics Data System (ADS)

    Ihsani, Alvin; Farncombe, Troy

    2016-02-01

    The modelling of the projection operator in tomographic imaging is of critical importance especially when working with algebraic methods of image reconstruction. This paper proposes a distance-driven projection method which is targeted to single-pinhole single-photon emission computed tomograghy (SPECT) imaging since it accounts for the finite size of the pinhole, and the possible tilting of the detector surface in addition to other collimator-specific factors such as geometric sensitivity. The accuracy and execution time of the proposed method is evaluated by comparing to a ray-driven approach where the pinhole is sub-sampled with various sampling schemes. A point-source phantom whose projections were generated using OpenGATE was first used to compare the resolution of reconstructed images with each method using the full width at half maximum (FWHM). Furthermore, a high-activity Mini Deluxe Phantom (Data Spectrum Corp., Durham, NC, USA) SPECT resolution phantom was scanned using a Gamma Medica X-SPECT system and the signal-to-noise ratio (SNR) and structural similarity of reconstructed images was compared at various projection counts. Based on the reconstructed point-source phantom, the proposed distance-driven approach results in a lower FWHM than the ray-driven approach even when using a smaller detector resolution. Furthermore, based on the Mini Deluxe Phantom, it is shown that the distance-driven approach has consistently higher SNR and structural similarity compared to the ray-driven approach as the counts in measured projections deteriorates.

  20. Regional brain hematocrit in stroke by single photon emission computed tomography imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loutfi, I.; Frackowiak, R.S.; Myers, M.J.

    1987-01-01

    Nineteen studies on 18 subjects were performed by single photon emission computed tomography (SPECT) of the head after the successive intravenous administration of a plasma label (/sup 99m/Tc-human serum albumin (HSA)) and /sup 99m/Tc-labeled autologous red blood cells (RBC). Two sets of cerebral tomographic sections were generated: for cerebral /sup 99m/Tc-HSA alone and for combined /sup 99m/Tc-HSA and /sup 99m/Tc-RBC. By relating counts in regions of interest from the cerebral tomograms to counts from blood samples obtained during each tomographic acquisition, regional cerebral haematocrit (Hct) was calculated by the application of a simple formula. Results show 1) lower cerebral Hctmore » than venous Hct (ratio of HCT brain/Hct venous 0.65-0.90) in all subjects, and 2) comparison between right and left hemisphere Hct in 3/3 normal subjects, 6/6 patients with transient ischaemic attacks and 3/8 patients with stroke showed no significant difference. However, in 3/8 patients with stroke (most recent strokes) significant differences were found, the higher Hct value corresponding to the affected side.« less

  1. Segmented slant hole collimator for stationary cardiac SPECT: Monte Carlo simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Yanfei, E-mail: ymao@ucair.med.utah.edu; Yu, Zhicong; Zeng, Gengsheng L.

    2015-09-15

    Purpose: This work is a preliminary study of a stationary cardiac SPECT system. The goal of this research is to propose a stationary cardiac SPECT system using segmented slant-hole collimators and to perform computer simulations to test the feasibility. Compared to the rotational SPECT, a stationary system has a benefit of acquiring temporally consistent projections. The most challenging issue in building a stationary system is to provide sufficient projection view-angles. Methods: A GATE (GEANT4 application for tomographic emission) Monte Carlo model was developed to simulate a two-detector stationary cardiac SPECT that uses segmented slant-hole collimators. Each detector contains seven segmentedmore » slant-hole sections that slant to a common volume at the rotation center. Consequently, 14 view-angles over 180° were acquired without any gantry rotation. The NCAT phantom was used for data generation and a tailored maximum-likelihood expectation-maximization algorithm was used for image reconstruction. Effects of limited number of view-angles and data truncation were carefully evaluated in the paper. Results: Simulation results indicated that the proposed segmented slant-hole stationary cardiac SPECT system is able to acquire sufficient data for cardiac imaging without a loss of image quality, even when the uptakes in the liver and kidneys are high. Seven views are acquired simultaneously at each detector, leading to 5-fold sensitivity gain over the conventional dual-head system at the same total acquisition time, which in turn increases the signal-to-noise ratio by 19%. The segmented slant-hole SPECT system also showed a good performance in lesion detection. In our prototype system, a short hole-length was used to reduce the dead zone between neighboring collimator segments. The measured sensitivity gain is about 17-fold over the conventional dual-head system. Conclusions: The GATE Monte Carlo simulations confirm the feasibility of the proposed stationary cardiac SPECT system with segmented slant-hole collimators. The proposed collimator consists of combined parallel and slant holes, and the image on the detector is not reduced in size.« less

  2. Limited angle tomographic breast imaging: A comparison of parallel beam and pinhole collimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wessell, D.E.; Kadrmas, D.J.; Frey, E.C.

    1996-12-31

    Results from clinical trials have suggested no improvement in lesion detection with parallel hole SPECT scintimammography (SM) with Tc-99m over parallel hole planar SM. In this initial investigation, we have elucidated some of the unique requirements of SPECT SM. With these requirements in mind, we have begun to develop practical data acquisition and reconstruction strategies that can reduce image artifacts and improve image quality. In this paper we investigate limited angle orbits for both parallel hole and pinhole SPECT SM. Singular Value Decomposition (SVD) is used to analyze the artifacts associated with the limited angle orbits. Maximum likelihood expectation maximizationmore » (MLEM) reconstructions are then used to examine the effects of attenuation compensation on the quality of the reconstructed image. All simulations are performed using the 3D-MCAT breast phantom. The results of these simulation studies demonstrate that limited angle SPECT SM is feasible, that attenuation correction is needed for accurate reconstructions, and that pinhole SPECT SM may have an advantage over parallel hole SPECT SM in terms of improved image quality and reduced image artifacts.« less

  3. High-resolution single photon planar and spect imaging of brain and neck employing a system of two co-registered opposed gamma imaging heads

    DOEpatents

    Majewski, Stanislaw [Yorktown, VA; Proffitt, James [Newport News, VA

    2011-12-06

    A compact, mobile, dedicated SPECT brain imager that can be easily moved to the patient to provide in-situ imaging, especially when the patient cannot be moved to the Nuclear Medicine imaging center. As a result of the widespread availability of single photon labeled biomarkers, the SPECT brain imager can be used in many locations, including remote locations away from medical centers. The SPECT imager improves the detection of gamma emission from the patient's head and neck area with a large field of view. Two identical lightweight gamma imaging detector heads are mounted to a rotating gantry and precisely mechanically co-registered to each other at 180 degrees. A unique imaging algorithm combines the co-registered images from the detector heads and provides several SPECT tomographic reconstructions of the imaged object thereby improving the diagnostic quality especially in the case of imaging requiring higher spatial resolution and sensitivity at the same time.

  4. Imaging in primary hyperparathyroidism: focus on the evidence-based diagnostic performance of different methods.

    PubMed

    Treglia, Giorgio; Trimboli, Pierpaolo; Huellner, Martin; Giovanella, Luca

    2018-06-01

    Primary hyperparathyroidism (PHPT) is a common endocrine disorder usually due to hyperfunctioning parathyroid glands (HP). Surgical removal of HP is the main treatment in PHPT, particularly in symptomatic patients. The correct detection and localization of HP is challenging and crucial as it may guide surgical treatment in patients with PHPT. To date, different imaging methods have been used to detect and localize HP in patients with PHPT including radiology, nuclear medicine and hybrid techniques. This review was focused to describe the diagnostic performance of several imaging methods used in detecting HP in patients with PHPT. We have summarized the diagnostic performance of different imaging methods used in detecting HP in patients with PHPT taking into account recent evidence-based articles published in the literature. To this regard, findings of recently published meta-analyses on the diagnostic accuracy of imaging methods in PHPT were reported. Furthermore, a suggested imaging strategy taking into account the diagnostic performance and further consideration has been described. Cervical ultrasound (US) and parathyroid scintigraphy using 99mTc-MIBI are the most commonly employed first-line investigations in patients with PHPT, with many institutions using both methods in combination. The diagnostic performance of US and planar 99mTc-MIBI scintigraphy seems to be similar. The use of tomographic imaging (SPECT and SPECT/CT) increases the detection rate of HP compared to planar 99mTc-MIBI scintigraphy. Whereas traditional computed tomography (CT) has limited usefulness in PHPT, four dimensional CT (4D-CT) has similar diagnostic performance compared to tomographic parathyroid scintigraphy but a higher radiation dose. Although initial encouraging results, to date there is insufficient evidence to recommend the routine use of MRI or positron emission tomography (PET) with several radiopharmaceuticals in patients with PHPT. However, they could be useful alternatives in cases with negative or discordant findings at first-line imaging methods. Patients with PHPT who are candidates for parathyroidectomy should be referred to an expert clinician to decide which imaging studies to perform based on regional imaging capabilities. The imaging techniques with higher diagnostic performance in detecting and localizing HP seems to be 99mTc-MIBI SPECT/CT and 4D-CT. Taking into account several data beyond the diagnostic performance, the combination of cervical US performed by an experienced parathyroid sonographer and 99mTc-MIBI SPECT or SPECT//CT seems to be an optimal first-line strategy in the preoperative planning of patients with PHPT.

  5. Automated three-dimensional quantification of myocardial perfusion and brain SPECT.

    PubMed

    Slomka, P J; Radau, P; Hurwitz, G A; Dey, D

    2001-01-01

    To allow automated and objective reading of nuclear medicine tomography, we have developed a set of tools for clinical analysis of myocardial perfusion tomography (PERFIT) and Brain SPECT/PET (BRASS). We exploit algorithms for image registration and use three-dimensional (3D) "normal models" for individual patient comparisons to composite datasets on a "voxel-by-voxel basis" in order to automatically determine the statistically significant abnormalities. A multistage, 3D iterative inter-subject registration of patient images to normal templates is applied, including automated masking of the external activity before final fit. In separate projects, the software has been applied to the analysis of myocardial perfusion SPECT, as well as brain SPECT and PET data. Automatic reading was consistent with visual analysis; it can be applied to the whole spectrum of clinical images, and aid physicians in the daily interpretation of tomographic nuclear medicine images.

  6. Compton camera study for high efficiency SPECT and benchmark with Anger system

    NASA Astrophysics Data System (ADS)

    Fontana, M.; Dauvergne, D.; Létang, J. M.; Ley, J.-L.; Testa, É.

    2017-12-01

    Single photon emission computed tomography (SPECT) is at present one of the major techniques for non-invasive diagnostics in nuclear medicine. The clinical routine is mostly based on collimated cameras, originally proposed by Hal Anger. Due to the presence of mechanical collimation, detection efficiency and energy acceptance are limited and fixed by the system’s geometrical features. In order to overcome these limitations, the application of Compton cameras for SPECT has been investigated for several years. In this study we compare a commercial SPECT-Anger device, the General Electric HealthCare Infinia system with a High Energy General Purpose (HEGP) collimator, and the Compton camera prototype under development by the French collaboration CLaRyS, through Monte Carlo simulations (GATE—GEANT4 Application for Tomographic Emission—version 7.1 and GEANT4 version 9.6, respectively). Given the possible introduction of new radio-emitters at higher energies intrinsically allowed by the Compton camera detection principle, the two detectors are exposed to point-like sources at increasing primary gamma energies, from actual isotopes already suggested for nuclear medicine applications. The Compton camera prototype is first characterized for SPECT application by studying the main parameters affecting its imaging performance: detector energy resolution and random coincidence rate. The two detector performances are then compared in terms of radial event distribution, detection efficiency and final image, obtained by gamma transmission analysis for the Anger system, and with an iterative List Mode-Maximum Likelihood Expectation Maximization (LM-MLEM) algorithm for the Compton reconstruction. The results show for the Compton camera a detection efficiency increased by a factor larger than an order of magnitude with respect to the Anger camera, associated with an enhanced spatial resolution for energies beyond 500 keV. We discuss the advantages of Compton camera application for SPECT if compared to present commercial Anger systems, with particular focus on dose delivered to the patient, examination time, and spatial uncertainties.

  7. Critical examination of the uniformity requirements for single-photon emission computed tomography.

    PubMed

    O'Connor, M K; Vermeersch, C

    1991-01-01

    It is generally recognized that single-photon emission computed tomography (SPECT) imposes very stringent requirements on gamma camera uniformity to prevent the occurrence of ring artifacts. The purpose of this study was to examine the relationship between nonuniformities in the planar data and the magnitude of the consequential ring artifacts in the transaxial data, and how the perception of these artifacts is influenced by factors such as reconstruction matrix size, reconstruction filter, and image noise. The study indicates that the relationship between ring artifact magnitude and image noise is essentially independent of the acquisition or reconstruction matrix sizes, but is strongly dependent upon the type of smoothing filter applied during the reconstruction process. Furthermore, the degree to which a ring artifact can be perceived above image noise is dependent on the size and location of the nonuniformity in the planar data, with small nonuniformities (1-2 pixels wide) close to the center of rotation being less perceptible than those further out (8-20 pixels). Small defects or nonuniformities close to the center of rotation are thought to cause the greatest potential corruption to tomographic data. The study indicates that such may not be the case. Hence the uniformity requirements for SPECT may be less demanding than was previously thought.

  8. Anthropomorphic thorax phantom for cardio-respiratory motion simulation in tomographic imaging

    NASA Astrophysics Data System (ADS)

    Bolwin, Konstantin; Czekalla, Björn; Frohwein, Lynn J.; Büther, Florian; Schäfers, Klaus P.

    2018-02-01

    Patient motion during medical imaging using techniques such as computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), or single emission computed tomography (SPECT) is well known to degrade images, leading to blurring effects or severe artifacts. Motion correction methods try to overcome these degrading effects. However, they need to be validated under realistic conditions. In this work, a sophisticated anthropomorphic thorax phantom is presented that combines several aspects of a simulator for cardio-respiratory motion. The phantom allows us to simulate various types of cardio-respiratory motions inside a human-like thorax, including features such as inflatable lungs, beating left ventricular myocardium, respiration-induced motion of the left ventricle, moving lung lesions, and moving coronary artery plaques. The phantom is constructed to be MR-compatible. This means that we can not only perform studies in PET, SPECT and CT, but also inside an MRI system. The technical features of the anthropomorphic thorax phantom Wilhelm are presented with regard to simulating motion effects in hybrid emission tomography and radiotherapy. This is supplemented by a study on the detectability of small coronary plaque lesions in PET/CT under the influence of cardio-respiratory motion, and a study on the accuracy of left ventricular blood volumes.

  9. 3D tomographic reconstruction using geometrical models

    NASA Astrophysics Data System (ADS)

    Battle, Xavier L.; Cunningham, Gregory S.; Hanson, Kenneth M.

    1997-04-01

    We address the issue of reconstructing an object of constant interior density in the context of 3D tomography where there is prior knowledge about the unknown shape. We explore the direct estimation of the parameters of a chosen geometrical model from a set of radiographic measurements, rather than performing operations (segmentation for example) on a reconstructed volume. The inverse problem is posed in the Bayesian framework. A triangulated surface describes the unknown shape and the reconstruction is computed with a maximum a posteriori (MAP) estimate. The adjoint differentiation technique computes the derivatives needed for the optimization of the model parameters. We demonstrate the usefulness of the approach and emphasize the techniques of designing forward and adjoint codes. We use the system response of the University of Arizona Fast SPECT imager to illustrate this method by reconstructing the shape of a heart phantom.

  10. Towards the Experimental Assessment of the DQE in SPECT Scanners

    NASA Astrophysics Data System (ADS)

    Fountos, G. P.; Michail, C. M.

    2017-11-01

    The purpose of this work was to introduce the Detective Quantum Efficiency (DQE) in single photon emission computed tomography (SPECT) systems using a flood source. A Tc-99m-based flood source (Eγ = 140 keV) consisting of a radiopharmaceutical solution of dithiothreitol (DTT, 10-3 M)/Tc-99m(III)-DMSA, 40 mCi/40 ml bound to the grains of an Agfa MammoRay HDR Medical X-ray film) was prepared in laboratory. The source was placed between two PMMA blocks and images were obtained by using the brain tomographic acquisition protocol (DatScan-brain). The Modulation Transfer Function (MTF) was evaluated using the Iterative 2D algorithm. All imaging experiments were performed in a Siemens e-Cam gamma camera. The Normalized Noise Power spectra (NNPS) were obtained from the sagittal views of the source. The higher MTF values were obtained for the Flash Iterative 2D with 24 iterations and 20 subsets. The noise levels of the SPECT reconstructed images, in terms of the NNPS, were found to increase as the number of iterations increase. The behavior of the DQE was influenced by both MTF and NNPS. As the number of iterations was increased, higher MTF values were obtained, however with a parallel, increase of magnitude in image noise, as depicted from the NNPS results. DQE values, which were influenced by both MTF and NNPS, were found higher when the number of iterations results in resolution saturation. The method presented here is novel and easy to implement, requiring materials commonly found in clinical practice and can be useful in the quality control of SPECT scanners.

  11. Assessment of myocardial viability by dynamic tomographic iodine 123 iodophenylpentadecanoic acid imaging: comparison with rest-redistribution thallium 201 imaging.

    PubMed

    Iskandrian, A S; Powers, J; Cave, V; Wasserleben, V; Cassell, D; Heo, J

    1995-01-01

    This study examined the ability of dynamic 123I-labeled iodophenylpentadecanoic acid (IPPA) imaging to detect myocardial viability in patients with left ventricular (LV) dysfunction caused by coronary artery disease. Serial 180-degree single-photon emission computed tomographic (SPECT) images (five sets, 8 minutes each) were obtained starting 4 minutes after injection of 2 to 6 mCi 123I at rest in 21 patients with LV dysfunction (ejection fraction [EF] 34% +/- 11%). The segmental uptake was compared with that of rest-redistribution 201Tl images (20 segments/study). The number of perfusion defects (reversible and fixed) was similar by IPPA and thallium (11 +/- 5 vs 10 +/- 5 segments/patient; difference not significant). There was agreement between IPPA and thallium for presence or absence (kappa = 0.78 +/- 0.03) and nature (reversible, mild fixed, or severe fixed) of perfusion defects (kappa = 0.54 +/- 0.04). However, there were more reversible IPPA defects than reversible thallium defects (7 +/- 4 vs 3 +/- 4 segments/patient; p = 0.001). In 14 patients the EF (by gated pool imaging) improved after coronary revascularization from 33% +/- 11% to 39% +/- 12% (p = 0.002). The number of reversible IPPA defects was greater in the seven patients who had improvement in EF than in the patients without such improvement (10 +/- 4 vs 5 +/- 4 segments/patient; p = 0.075). 123I-labeled IPPA SPECT imaging is a promising new technique for assessment of viability. Reversible defects predict recovery of LV dysfunction after coronary revascularization.

  12. A review of GPU-based medical image reconstruction.

    PubMed

    Després, Philippe; Jia, Xun

    2017-10-01

    Tomographic image reconstruction is a computationally demanding task, even more so when advanced models are used to describe a more complete and accurate picture of the image formation process. Such advanced modeling and reconstruction algorithms can lead to better images, often with less dose, but at the price of long calculation times that are hardly compatible with clinical workflows. Fortunately, reconstruction tasks can often be executed advantageously on Graphics Processing Units (GPUs), which are exploited as massively parallel computational engines. This review paper focuses on recent developments made in GPU-based medical image reconstruction, from a CT, PET, SPECT, MRI and US perspective. Strategies and approaches to get the most out of GPUs in image reconstruction are presented as well as innovative applications arising from an increased computing capacity. The future of GPU-based image reconstruction is also envisioned, based on current trends in high-performance computing. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  13. Performance evaluation of D-SPECT: a novel SPECT system for nuclear cardiology

    NASA Astrophysics Data System (ADS)

    Erlandsson, Kjell; Kacperski, Krzysztof; van Gramberg, Dean; Hutton, Brian F.

    2009-05-01

    D-SPECT (Spectrum Dynamics, Israel) is a novel SPECT system for cardiac perfusion studies. Based on CZT detectors, region-centric scanning, high-sensitivity collimators and resolution recovery, it offers potential advantages over conventional systems. A series of measurements were made on a β-version D-SPECT system in order to evaluate its performance in terms of energy resolution, scatter fraction, sensitivity, count rate capability and resolution. Corresponding measurements were also done on a conventional SPECT system (CS) for comparison. The energy resolution of the D-SPECT system at 140 keV was 5.5% (CS: 9.25%), the scatter fraction 30% (CS: 34%), the planar sensitivity 398 s-1 MBq-1 per head (99mTc, 10 cm) (CS: 72 s-1 MBq-1), and the tomographic sensitivity in the heart region was in the range 647-1107 s-1 MBq-1 (CS: 141 s-1 MBq-1). The count rate increased linearly with increasing activity up to 1.44 M s-1. The intrinsic resolution was equal to the pixel size, 2.46 mm (CS: 3.8 mm). The average reconstructed resolution using the standard clinical filter was 12.5 mm (CS: 13.7 mm). The D-SPECT has superior sensitivity to that of a conventional system with similar spatial resolution. It also has excellent energy resolution and count rate characteristics, which should prove useful in dynamic and dual radionuclide studies.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choong, W. -S.; Abu-Nimeh, F.; Moses, W. W.

    Here, we present a 16-channel front-end readout board for the OpenPET electronics system. A major task in developing a nuclear medical imaging system, such as a positron emission computed tomograph (PET) or a single-photon emission computed tomograph (SPECT), is the electronics system. While there are a wide variety of detector and camera design concepts, the relatively simple nature of the acquired data allows for a common set of electronics requirements that can be met by a flexible, scalable, and high-performance OpenPET electronics system. The analog signals from the different types of detectors used in medical imaging share similar characteristics, whichmore » allows for a common analog signal processing. The OpenPET electronics processes the analog signals with Detector Boards. Here we report on the development of a 16-channel Detector Board. Each signal is digitized by a continuously sampled analog-to-digital converter (ADC), which is processed by a field programmable gate array (FPGA) to extract pulse height information. A leading edge discriminator creates a timing edge that is "time stamped" by a time-to-digital converter (TDC) implemented inside the FPGA. In conclusion, this digital information from each channel is sent to an FPGA that services 16 analog channels, and then information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc.« less

  15. A cylindrical SPECT camera with de-centralized readout scheme

    NASA Astrophysics Data System (ADS)

    Habte, F.; Stenström, P.; Rillbert, A.; Bousselham, A.; Bohm, C.; Larsson, S. A.

    2001-09-01

    An optimized brain single photon emission computed tomograph (SPECT) camera is being designed at Stockholm University and Karolinska Hospital. The design goal is to achieve high sensitivity, high-count rate and high spatial resolution. The sensitivity is achieved by using a cylindrical crystal, which gives a closed geometry with large solid angles. A de-centralized readout scheme where only a local environment around the light excitation is readout supports high-count rates. The high resolution is achieved by using an optimized crystal configuration. A 12 mm crystal plus 12 mm light guide combination gave an intrinsic spatial resolution better than 3.5 mm (140 keV) in a prototype system. Simulations show that a modified configuration can improve this value. A cylindrical configuration with a rotating collimator significantly simplifies the mechanical design of the gantry. The data acquisition and control system uses early digitization and subsequent digital signal processing to extract timing and amplitude information, and monitors the position of the collimator. The readout system consists of 12 or more modules each based on programmable logic and a digital signal processor. The modules send data to a PC file server-reconstruction engine via a Firewire (IEEE-1394) network.

  16. A front-end readout Detector Board for the OpenPET electronics system

    NASA Astrophysics Data System (ADS)

    Choong, W.-S.; Abu-Nimeh, F.; Moses, W. W.; Peng, Q.; Vu, C. Q.; Wu, J.-Y.

    2015-08-01

    We present a 16-channel front-end readout board for the OpenPET electronics system. A major task in developing a nuclear medical imaging system, such as a positron emission computed tomograph (PET) or a single-photon emission computed tomograph (SPECT), is the electronics system. While there are a wide variety of detector and camera design concepts, the relatively simple nature of the acquired data allows for a common set of electronics requirements that can be met by a flexible, scalable, and high-performance OpenPET electronics system. The analog signals from the different types of detectors used in medical imaging share similar characteristics, which allows for a common analog signal processing. The OpenPET electronics processes the analog signals with Detector Boards. Here we report on the development of a 16-channel Detector Board. Each signal is digitized by a continuously sampled analog-to-digital converter (ADC), which is processed by a field programmable gate array (FPGA) to extract pulse height information. A leading edge discriminator creates a timing edge that is ``time stamped'' by a time-to-digital converter (TDC) implemented inside the FPGA . This digital information from each channel is sent to an FPGA that services 16 analog channels, and then information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc.

  17. A front-end readout Detector Board for the OpenPET electronics system

    DOE PAGES

    Choong, W. -S.; Abu-Nimeh, F.; Moses, W. W.; ...

    2015-08-12

    Here, we present a 16-channel front-end readout board for the OpenPET electronics system. A major task in developing a nuclear medical imaging system, such as a positron emission computed tomograph (PET) or a single-photon emission computed tomograph (SPECT), is the electronics system. While there are a wide variety of detector and camera design concepts, the relatively simple nature of the acquired data allows for a common set of electronics requirements that can be met by a flexible, scalable, and high-performance OpenPET electronics system. The analog signals from the different types of detectors used in medical imaging share similar characteristics, whichmore » allows for a common analog signal processing. The OpenPET electronics processes the analog signals with Detector Boards. Here we report on the development of a 16-channel Detector Board. Each signal is digitized by a continuously sampled analog-to-digital converter (ADC), which is processed by a field programmable gate array (FPGA) to extract pulse height information. A leading edge discriminator creates a timing edge that is "time stamped" by a time-to-digital converter (TDC) implemented inside the FPGA. In conclusion, this digital information from each channel is sent to an FPGA that services 16 analog channels, and then information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc.« less

  18. Image quality phantom and parameters for high spatial resolution small-animal SPECT

    NASA Astrophysics Data System (ADS)

    Visser, Eric P.; Harteveld, Anita A.; Meeuwis, Antoi P. W.; Disselhorst, Jonathan A.; Beekman, Freek J.; Oyen, Wim J. G.; Boerman, Otto C.

    2011-10-01

    At present, generally accepted standards to characterize small-animal single photon emission tomographs (SPECT) do not exist. Whereas for small-animal positron emission tomography (PET), the NEMA NU 4-2008 guidelines are available, such standards are still lacking for small-animal SPECT. More specifically, a dedicated image quality (IQ) phantom and corresponding IQ parameters are absent. The structures of the existing PET IQ phantom are too large to fully characterize the sub-millimeter spatial resolution of modern multi-pinhole SPECT scanners, and its diameter will not fit into all scanners when operating in high spatial resolution mode. We therefore designed and constructed an adapted IQ phantom with smaller internal structures and external diameter, and a facility to guarantee complete filling of the smallest rods. The associated IQ parameters were adapted from NEMA NU 4. An additional parameter, effective whole-body sensitivity, was defined since this was considered relevant in view of the variable size of the field of view and the use of multiple bed positions as encountered in modern small-animal SPECT scanners. The usefulness of the phantom was demonstrated for 99mTc in a USPECT-II scanner operated in whole-body scanning mode using a multi-pinhole mouse collimator with 0.6 mm pinhole diameter.

  19. SPECT data acquisition and image reconstruction in a stationary small animal SPECT/MRI system

    NASA Astrophysics Data System (ADS)

    Xu, Jingyan; Chen, Si; Yu, Jianhua; Meier, Dirk; Wagenaar, Douglas J.; Patt, Bradley E.; Tsui, Benjamin M. W.

    2010-04-01

    The goal of the study was to investigate data acquisition strategies and image reconstruction methods for a stationary SPECT insert that can operate inside an MRI scanner with a 12 cm bore diameter for simultaneous SPECT/MRI imaging of small animals. The SPECT insert consists of 3 octagonal rings of 8 MR-compatible CZT detectors per ring surrounding a multi-pinhole (MPH) collimator sleeve. Each pinhole is constructed to project the field-of-view (FOV) to one CZT detector. All 24 pinholes are focused to a cylindrical FOV of 25 mm in diameter and 34 mm in length. The data acquisition strategies we evaluated were optional collimator rotations to improve tomographic sampling; and the image reconstruction methods were iterative ML-EM with and without compensation for the geometric response function (GRF) of the MPH collimator. For this purpose, we developed an analytic simulator that calculates the system matrix with the GRF models of the MPH collimator. The simulator was used to generate projection data of a digital rod phantom with pinhole aperture sizes of 1 mm and 2 mm and with different collimator rotation patterns. Iterative ML-EM reconstruction with and without GRF compensation were used to reconstruct the projection data from the central ring of 8 detectors only, and from all 24 detectors. Our results indicated that without GRF compensation and at the default design of 24 projection views, the reconstructed images had significant artifacts. Accurate GRF compensation substantially improved the reconstructed image resolution and reduced image artifacts. With accurate GRF compensation, useful reconstructed images can be obtained using 24 projection views only. This last finding potentially enables dynamic SPECT (and/or MRI) studies in small animals, one of many possible application areas of the SPECT/MRI system. Further research efforts are warranted including experimentally measuring the system matrix for improved geometrical accuracy, incorporating the co-registered MRI image in SPECT reconstruction, and exploring potential applications of the simultaneous SPECT/MRI SA system including dynamic SPECT studies.

  20. GATE - Geant4 Application for Tomographic Emission: a simulation toolkit for PET and SPECT

    PubMed Central

    Jan, S.; Santin, G.; Strul, D.; Staelens, S.; Assié, K.; Autret, D.; Avner, S.; Barbier, R.; Bardiès, M.; Bloomfield, P. M.; Brasse, D.; Breton, V.; Bruyndonckx, P.; Buvat, I.; Chatziioannou, A. F.; Choi, Y.; Chung, Y. H.; Comtat, C.; Donnarieix, D.; Ferrer, L.; Glick, S. J.; Groiselle, C. J.; Guez, D.; Honore, P.-F.; Kerhoas-Cavata, S.; Kirov, A. S.; Kohli, V.; Koole, M.; Krieguer, M.; van der Laan, D. J.; Lamare, F.; Largeron, G.; Lartizien, C.; Lazaro, D.; Maas, M. C.; Maigne, L.; Mayet, F.; Melot, F.; Merheb, C.; Pennacchio, E.; Perez, J.; Pietrzyk, U.; Rannou, F. R.; Rey, M.; Schaart, D. R.; Schmidtlein, C. R.; Simon, L.; Song, T. Y.; Vieira, J.-M.; Visvikis, D.; Van de Walle, R.; Wieërs, E.; Morel, C.

    2012-01-01

    Monte Carlo simulation is an essential tool in emission tomography that can assist in the design of new medical imaging devices, the optimization of acquisition protocols, and the development or assessment of image reconstruction algorithms and correction techniques. GATE, the Geant4 Application for Tomographic Emission, encapsulates the Geant4 libraries to achieve a modular, versatile, scripted simulation toolkit adapted to the field of nuclear medicine. In particular, GATE allows the description of time-dependent phenomena such as source or detector movement, and source decay kinetics. This feature makes it possible to simulate time curves under realistic acquisition conditions and to test dynamic reconstruction algorithms. This paper gives a detailed description of the design and development of GATE by the OpenGATE collaboration, whose continuing objective is to improve, document, and validate GATE by simulating commercially available imaging systems for PET and SPECT. Large effort is also invested in the ability and the flexibility to model novel detection systems or systems still under design. A public release of GATE licensed under the GNU Lesser General Public License can be downloaded at the address http://www-lphe.ep.ch/GATE/. Two benchmarks developed for PET and SPECT to test the installation of GATE and to serve as a tutorial for the users are presented. Extensive validation of the GATE simulation platform has been started, comparing simulations and measurements on commercially available acquisition systems. References to those results are listed. The future prospects toward the gridification of GATE and its extension to other domains such as dosimetry are also discussed. PMID:15552416

  1. Influence of the Pixel Sizes of Reference Computed Tomography on Single-photon Emission Computed Tomography Image Reconstruction Using Conjugate-gradient Algorithm.

    PubMed

    Okuda, Kyohei; Sakimoto, Shota; Fujii, Susumu; Ida, Tomonobu; Moriyama, Shigeru

    The frame-of-reference using computed-tomography (CT) coordinate system on single-photon emission computed tomography (SPECT) reconstruction is one of the advanced characteristics of the xSPECT reconstruction system. The aim of this study was to reveal the influence of the high-resolution frame-of-reference on the xSPECT reconstruction. 99m Tc line-source phantom and National Electrical Manufacturers Association (NEMA) image quality phantom were scanned using the SPECT/CT system. xSPECT reconstructions were performed with the reference CT images in different sizes of the display field-of-view (DFOV) and pixel. The pixel sizes of the reconstructed xSPECT images were close to 2.4 mm, which is acquired as originally projection data, even if the reference CT resolution was varied. The full width at half maximum (FWHM) of the line-source, absolute recovery coefficient, and background variability of image quality phantom were independent on the sizes of DFOV in the reference CT images. The results of this study revealed that the image quality of the reconstructed xSPECT images is not influenced by the resolution of frame-of-reference on SPECT reconstruction.

  2. Initial evaluation of discrete orthogonal basis reconstruction of ECT images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, E.B.; Donohue, K.D.

    1996-12-31

    Discrete orthogonal basis restoration (DOBR) is a linear, non-iterative, and robust method for solving inverse problems for systems characterized by shift-variant transfer functions. This simulation study evaluates the feasibility of using DOBR for reconstructing emission computed tomographic (ECT) images. The imaging system model uses typical SPECT parameters and incorporates the effects of attenuation, spatially-variant PSF, and Poisson noise in the projection process. Sample reconstructions and statistical error analyses for a class of digital phantoms compare the DOBR performance for Hartley and Walsh basis functions. Test results confirm that DOBR with either basis set produces images with good statistical properties. Nomore » problems were encountered with reconstruction instability. The flexibility of the DOBR method and its consistent performance warrants further investigation of DOBR as a means of ECT image reconstruction.« less

  3. SU-E-J-100: Reconstruction of Prompt Gamma Ray Three Dimensional SPECT Image From Boron Neutron Capture Therapy(BNCT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, D; Jung, J; Suh, T

    2014-06-01

    Purpose: Purpose of paper is to confirm the feasibility of acquisition of three dimensional single photon emission computed tomography (SPECT) image from boron neutron capture therapy (BNCT) using Monte Carlo simulation. Methods: In case of simulation, the pixelated SPECT detector, collimator and phantom were simulated using Monte Carlo n particle extended (MCNPX) simulation tool. A thermal neutron source (<1 eV) was used to react with the boron uptake region (BUR) in the phantom. Each geometry had a spherical pattern, and three different BURs (A, B and C region, density: 2.08 g/cm3) were located in the middle of the brain phantom.more » The data from 128 projections for each sorting process were used to achieve image reconstruction. The ordered subset expectation maximization (OSEM) reconstruction algorithm was used to obtain a tomographic image with eight subsets and five iterations. The receiver operating characteristic (ROC) curve analysis was used to evaluate the geometric accuracy of reconstructed image. Results: The OSEM image was compared with the original phantom pattern image. The area under the curve (AUC) was calculated as the gross area under each ROC curve. The three calculated AUC values were 0.738 (A region), 0.623 (B region), and 0.817 (C region). The differences between length of centers of two boron regions and distance of maximum count points were 0.3 cm, 1.6 cm and 1.4 cm. Conclusion: The possibility of extracting a 3D BNCT SPECT image was confirmed using the Monte Carlo simulation and OSEM algorithm. The prospects for obtaining an actual BNCT SPECT image were estimated from the quality of the simulated image and the simulation conditions. When multiple tumor region should be treated using the BNCT, a reasonable model to determine how many useful images can be obtained from the SPECT could be provided to the BNCT facilities. This research was supported by the Leading Foreign Research Institute Recruitment Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, Information and Communication Technologies (ICT) and Future Planning (MSIP)(Grant No.200900420) and the Radiation Technology Research and Development program (Grant No.2013043498), Republic of Korea.« less

  4. Transmyocardial revascularization on canine with Ho:YAG laser - an experimental study

    NASA Astrophysics Data System (ADS)

    Bao, Xiaoqing; Zhu, Jing; Zhang, Hui-Guo

    2005-07-01

    Background and Objective: To evaluate the efficiency of transmyocardial revascularization with Ho:YAG laser and find out adequate physical parameters of the laser. Materials and Methods: 10 dogs were studied. All the samples were divided into two groups: the laser group (5 dogs) and the control group (5 dogs). Acute myocardial ischemia was induced in all the samples, and transmyocardial laser revascularization (TMLR) was only done in the laser group. We compared the difference of improvement in myocardial perfusion between the two groups with single photon emission computed tomograph (SPECT) and observed the patency of the laser channels and heat injures in the tissue adjacent to the channels with light- and electro-scope. Results: After 4 weeks, the recovery of myocardial perfusion was significantly faster in the laser group than in the control group through SPECT (P<0.05). Most of the laser channels drilled with Ho:YAG laser were filled with fibrin. There were amount of microvessels and erythrocytes inside and around the channels. Only slight heat injures were seen in the tissue adjacent to the channels. Only 20-30 watts were needed in TMLR. Conclusions: Transmyocardial revascularization with Ho:YAG laser limits infarct expansion and reduces myocardial ischemia efficiently. TMLR with Ho:YAG laser can become a new technique to treat ischemic heart disease.

  5. Tomographic image reconstruction using the cell broadband engine (CBE) general purpose hardware

    NASA Astrophysics Data System (ADS)

    Knaup, Michael; Steckmann, Sven; Bockenbach, Olivier; Kachelrieß, Marc

    2007-02-01

    Tomographic image reconstruction, such as the reconstruction of CT projection values, of tomosynthesis data, PET or SPECT events, is computational very demanding. In filtered backprojection as well as in iterative reconstruction schemes, the most time-consuming steps are forward- and backprojection which are often limited by the memory bandwidth. Recently, a novel general purpose architecture optimized for distributed computing became available: the Cell Broadband Engine (CBE). Its eight synergistic processing elements (SPEs) currently allow for a theoretical performance of 192 GFlops (3 GHz, 8 units, 4 floats per vector, 2 instructions, multiply and add, per clock). To maximize image reconstruction speed we modified our parallel-beam and perspective backprojection algorithms which are highly optimized for standard PCs, and optimized the code for the CBE processor. 1-3 In addition, we implemented an optimized perspective forwardprojection on the CBE which allows us to perform statistical image reconstructions like the ordered subset convex (OSC) algorithm. 4 Performance was measured using simulated data with 512 projections per rotation and 5122 detector elements. The data were backprojected into an image of 512 3 voxels using our PC-based approaches and the new CBE- based algorithms. Both the PC and the CBE timings were scaled to a 3 GHz clock frequency. On the CBE, we obtain total reconstruction times of 4.04 s for the parallel backprojection, 13.6 s for the perspective backprojection and 192 s for a complete OSC reconstruction, consisting of one initial Feldkamp reconstruction, followed by 4 OSC iterations.

  6. A guide to SPECT equipment for brain imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffer, P.B.; Zubal, G.

    1991-12-31

    Single photon emission computed tomography (SPECT) was started by Kuhl and Edwards about 30 years ago. Their original instrument consisted of four focused Nal probes mounted on a moving gantry. During the 1980s, clinical SPECT imaging was most frequently performed using single-headed Anger-type cameras which were modified for rotational as well as static imaging. Such instruments are still available and may be useful in settings where there are few patients and SPECT is used only occasionally. More frequently, however, dedicated SPECT devices are purchased which optimize equipment potential while being user-friendly. Modern SPECT instrumentation incorporates improvements in the detector, computers,more » mathematical formulations, electronics and display systems. A comprehensive discussion of all aspects of SPECT is beyond the scope of this article. The authors, however, discuss general concepts of SPECT, the current state-of-the-art in clinical SPECT instrumentation, and areas of common misunderstanding. 9 refs.« less

  7. Improved scatter correction with factor analysis for planar and SPECT imaging

    NASA Astrophysics Data System (ADS)

    Knoll, Peter; Rahmim, Arman; Gültekin, Selma; Šámal, Martin; Ljungberg, Michael; Mirzaei, Siroos; Segars, Paul; Szczupak, Boguslaw

    2017-09-01

    Quantitative nuclear medicine imaging is an increasingly important frontier. In order to achieve quantitative imaging, various interactions of photons with matter have to be modeled and compensated. Although correction for photon attenuation has been addressed by including x-ray CT scans (accurate), correction for Compton scatter remains an open issue. The inclusion of scattered photons within the energy window used for planar or SPECT data acquisition decreases the contrast of the image. While a number of methods for scatter correction have been proposed in the past, in this work, we propose and assess a novel, user-independent framework applying factor analysis (FA). Extensive Monte Carlo simulations for planar and tomographic imaging were performed using the SIMIND software. Furthermore, planar acquisition of two Petri dishes filled with 99mTc solutions and a Jaszczak phantom study (Data Spectrum Corporation, Durham, NC, USA) using a dual head gamma camera were performed. In order to use FA for scatter correction, we subdivided the applied energy window into a number of sub-windows, serving as input data. FA results in two factor images (photo-peak, scatter) and two corresponding factor curves (energy spectra). Planar and tomographic Jaszczak phantom gamma camera measurements were recorded. The tomographic data (simulations and measurements) were processed for each angular position resulting in a photo-peak and a scatter data set. The reconstructed transaxial slices of the Jaszczak phantom were quantified using an ImageJ plugin. The data obtained by FA showed good agreement with the energy spectra, photo-peak, and scatter images obtained in all Monte Carlo simulated data sets. For comparison, the standard dual-energy window (DEW) approach was additionally applied for scatter correction. FA in comparison with the DEW method results in significant improvements in image accuracy for both planar and tomographic data sets. FA can be used as a user-independent approach for scatter correction in nuclear medicine.

  8. An evaluation to design high performance pinhole array detector module for four head SPECT: a simulation study

    NASA Astrophysics Data System (ADS)

    Rahman, Tasneem; Tahtali, Murat; Pickering, Mark R.

    2014-09-01

    The purpose of this study is to derive optimized parameters for a detector module employing an off-the-shelf X-ray camera and a pinhole array collimator applicable for a range of different SPECT systems. Monte Carlo simulations using the Geant4 application for tomographic emission (GATE) were performed to estimate the performance of the pinhole array collimators and were compared to that of low energy high resolution (LEHR) parallel-hole collimator in a four head SPECT system. A detector module was simulated to have 48 mm by 48 mm active area along with 1mm, 1.6mm and 2 mm pinhole aperture sizes at 0.48 mm pitch on a tungsten plate. Perpendicular lead septa were employed to verify overlapping and non-overlapping projections against a proper acceptance angle without lead septa. A uniform shape cylindrical water phantom was used to evaluate the performance of the proposed four head SPECT system of the pinhole array detector module. For each head, 100 pinhole configurations were evaluated based on sensitivity and detection efficiency for 140 keV γ-rays, and compared to LEHR parallel-hole collimator. SPECT images were reconstructed based on filtered back projection (FBP) algorithm where neither scatter nor attenuation corrections were performed. A better reconstruction algorithm development for this specific system is in progress. Nevertheless, activity distribution was well visualized using the backprojection algorithm. In this study, we have evaluated several quantitative and comparative analyses for a pinhole array imaging system providing high detection efficiency and better system sensitivity over a large FOV, comparing to the conventional four head SPECT system. The proposed detector module is expected to provide improved performance in various SPECT imaging.

  9. Simulation of the Beating Heart Based on Physically Modeling aDeformable Balloon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohmer, Damien; Sitek, Arkadiusz; Gullberg, Grant T.

    2006-07-18

    The motion of the beating heart is complex and createsartifacts in SPECT and x-ray CT images. Phantoms such as the JaszczakDynamic Cardiac Phantom are used to simulate cardiac motion forevaluationof acquisition and data processing protocols used for cardiacimaging. Two concentric elastic membranes filled with water are connectedto tubing and pump apparatus for creating fluid flow in and out of theinner volume to simulate motion of the heart. In the present report, themovement of two concentric balloons is solved numerically in order tocreate a computer simulation of the motion of the moving membranes in theJaszczak Dynamic Cardiac Phantom. A system ofmore » differential equations,based on the physical properties, determine the motion. Two methods aretested for solving the system of differential equations. The results ofboth methods are similar providing a final shape that does not convergeto a trivial circular profile. Finally,a tomographic imaging simulationis performed by acquiring static projections of the moving shape andreconstructing the result to observe motion artifacts. Two cases aretaken into account: in one case each projection angle is sampled for ashort time interval and the other case is sampled for a longer timeinterval. The longer sampling acquisition shows a clear improvement indecreasing the tomographic streaking artifacts.« less

  10. Comparison of conventional and cadmium-zinc-telluride single-photon emission computed tomography for analysis of thallium-201 myocardial perfusion imaging: an exploratory study in normal databases for different ethnicities.

    PubMed

    Ishihara, Masaru; Onoguchi, Masahisa; Taniguchi, Yasuyo; Shibutani, Takayuki

    2017-12-01

    The aim of this study was to clarify the differences in thallium-201-chloride (thallium-201) myocardial perfusion imaging (MPI) scans evaluated by conventional anger-type single-photon emission computed tomography (conventional SPECT) versus cadmium-zinc-telluride SPECT (CZT SPECT) imaging in normal databases for different ethnic groups. MPI scans from 81 consecutive Japanese patients were examined using conventional SPECT and CZT SPECT and analyzed with the pre-installed quantitative perfusion SPECT (QPS) software. We compared the summed stress score (SSS), summed rest score (SRS), and summed difference score (SDS) for the two SPECT devices. For a normal MPI reference, we usually use Japanese databases for MPI created by the Japanese Society of Nuclear Medicine, which can be used with conventional SPECT but not with CZT SPECT. In this study, we used new Japanese normal databases constructed in our institution to compare conventional and CZT SPECT. Compared with conventional SPECT, CZT SPECT showed lower SSS (p < 0.001), SRS (p = 0.001), and SDS (p = 0.189) using the pre-installed SPECT database. In contrast, CZT SPECT showed no significant difference from conventional SPECT in QPS analysis using the normal databases from our institution. Myocardial perfusion analyses by CZT SPECT should be evaluated using normal databases based on the ethnic group being evaluated.

  11. Initial experience with SPECT imaging of the brain using I-123 p-iodoamphetamine in focal epilepsy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaManna, M.M.; Sussman, N.M.; Harner, R.N.

    1989-06-01

    Nineteen patients with complex partial seizures refractory to medical treatment were examined with routine electroencephalography (EEG), video EEG monitoring, computed tomography or magnetic resonance imaging, neuropsychological tests and interictal single photon emission computed tomography (SPECT) with I-123 iodoamphetamine (INT). In 18 patients, SPECT identified areas of focal reduction in tracer uptake that correlated with the epileptogenic focus identified on the EEG. In addition, SPECT disclosed other areas of neurologic dysfunction as elicited on neuropsychological tests. Thus, IMP SPECT is a useful tool for localizing epileptogenic foci and their associated dynamic deficits.

  12. Advantages of semiconductor CZT for medical imaging

    NASA Astrophysics Data System (ADS)

    Wagenaar, Douglas J.; Parnham, Kevin; Sundal, Bjorn; Maehlum, Gunnar; Chowdhury, Samir; Meier, Dirk; Vandehei, Thor; Szawlowski, Marek; Patt, Bradley E.

    2007-09-01

    Cadmium zinc telluride (CdZnTe, or CZT) is a room-temperature semiconductor radiation detector that has been developed in recent years for a variety of applications. CZT has been investigated for many potential uses in medical imaging, especially in the field of single photon emission computed tomography (SPECT). CZT can also be used in positron emission tomography (PET) as well as photon-counting and integration-mode x-ray radiography and computed tomography (CT). The principal advantages of CZT are 1) direct conversion of x-ray or gamma-ray energy into electron-hole pairs; 2) energy resolution; 3) high spatial resolution and hence high space-bandwidth product; 4) room temperature operation, stable performance, high density, and small volume; 5) depth-of-interaction (DOI) available through signal processing. These advantages will be described in detail with examples from our own CZT systems. The ability to operate at room temperature, combined with DOI and very small pixels, make the use of multiple, stationary CZT "mini-gamma cameras" a realistic alternative to today's large Anger-type cameras that require motion to obtain tomographic sampling. The compatibility of CZT with Magnetic Resonance Imaging (MRI)-fields is demonstrated for a new type of multi-modality medical imaging, namely SPECT/MRI. For pre-clinical (i.e., laboratory animal) imaging, the advantages of CZT lie in spatial and energy resolution, small volume, automated quality control, and the potential for DOI for parallax removal in pinhole imaging. For clinical imaging, the imaging of radiographically dense breasts with CZT enables scatter rejection and hence improved contrast. Examples of clinical breast images with a dual-head CZT system are shown.

  13. Progress In The Development Of A Tomographic SPECT System For Online Dosimetry In BNCT

    NASA Astrophysics Data System (ADS)

    Minsky, D. M.; Valda, A.; Kreiner, A. J.; Burlon, A. A.; Green, S.; Wojnecki, C.; Ghani, Z.

    2010-08-01

    In boron neutron capture therapy (BNCT) the delivered dose to the patient depends both on the neutron beam characteristics and on the 10B body distribution which, in turn, is governed by the tumor specificity of the 10B drug-carrier. BNCT dosimetry is a complex matter due to the several interactions that neutrons can undergo with the different nuclei present in tissue. However the boron capture reaction 10B(n,α)7Li accounts for about 80 % of the total dose in a tumor with 40 ppm in 10B concentration. Present dosimetric methods are indirect, based on drug biodistribution statistical data and subjected to inter and intra-patient variability. In order to overcome the consequences of the concomitant high dosimetric uncertainties, we propose a SPECT (Single Photon Emission Tomography) approach based on the detection of the prompt gamma-ray (478 keV) emitted in 94 % of the cases from 7Li. For this purpose we designed, built and tested a prototype based on LaBr3(Ce) scintillators. Measurements on a head and tumor phantom were performed in the accelerator-based BNCT facility of the University of Birmingham (UK). They result in the first tomographic image of the 10B capture distribution obtained in a BNCT facility.

  14. System Integration of FastSPECT III, a Dedicated SPECT Rodent-Brain Imager Based on BazookaSPECT Detector Technology

    PubMed Central

    Miller, Brian W.; Furenlid, Lars R.; Moore, Stephen K.; Barber, H. Bradford; Nagarkar, Vivek V.; Barrett, Harrison H.

    2010-01-01

    FastSPECT III is a stationary, single-photon emission computed tomography (SPECT) imager designed specifically for imaging and studying neurological pathologies in rodent brain, including Alzheimer’s and Parkinsons’s disease. Twenty independent BazookaSPECT [1] gamma-ray detectors acquire projections of a spherical field of view with pinholes selected for desired resolution and sensitivity. Each BazookaSPECT detector comprises a columnar CsI(Tl) scintillator, image-intensifier, optical lens, and fast-frame-rate CCD camera. Data stream back to processing computers via firewire interfaces, and heavy use of graphics processing units (GPUs) ensures that each frame of data is processed in real time to extract the images of individual gamma-ray events. Details of the system design, imaging aperture fabrication methods, and preliminary projection images are presented. PMID:21218137

  15. Electrocardiograph-gated single photon emission computed tomography radionuclide angiography presents good interstudy reproducibility for the quantification of global systolic right ventricular function.

    PubMed

    Daou, Doumit; Coaguila, Carlos; Vilain, Didier

    2007-05-01

    Electrocardiograph-gated single photon emission computed tomography (SPECT) radionuclide angiography provides accurate measurement of right ventricular ejection fraction and end-diastolic and end-systolic volumes. In this study, we report the interstudy precision and reliability of SPECT radionuclide angiography for the measurement of global systolic right ventricular function using two, three-dimensional volume processing methods (SPECT-QBS, SPECT-35%). These were compared with equilibrium planar radionuclide angiography. Ten patients with chronic coronary artery disease having two SPECT and planar radionuclide angiography acquisitions were included. For the right ventricular ejection fraction, end-diastolic volume and end-systolic volume, the interstudy precision and reliability were better with SPECT-35% than with SPECT-QBS. The sample sizes needed to objectify a change in right ventricular volumes or ejection fraction were lower with SPECT-35% than with SPECT-QBS. The interstudy precision and reliability of SPECT-35% and SPECT-QBS for the right ventricle were better than those of equilibrium planar radionuclide angiography, but poorer than those previously reported for the left ventricle with SPECT radionuclide angiography on the same population. SPECT-35% and SPECT-QBS present good interstudy precision and reliability for right ventricular function, with the results favouring the use of SPECT-35%. The results are better than those of equilibrium planar radionuclide angiography, but poorer than those previously reported for the left ventricle with SPECT radionuclide angiography. They need to be confirmed in a larger population.

  16. Physics process level discrimination of detections for GATE: assessment of contamination in SPECT and spurious activity in PET.

    PubMed

    De Beenhouwer, Jan; Staelens, Steven; Vandenberghe, Stefaan; Verhaeghe, Jeroen; Van Holen, Roel; Rault, Erwann; Lemahieu, Ignace

    2009-04-01

    The GEANT4 application for tomographic emission (GATE) is one of the most detailed Monte Carlo simulation tools for SPECT and PET. It allows for realistic phantoms, complex decay schemes, and a large variety of detector geometries. However, only a fraction of the information in each particle history is available for postprocessing. In order to extend the analysis capabilities of GATE, a flexible framework was developed. This framework allows all detected events to be subdivided according to their type: In PET, true coincidences from others, and in SPECT, geometrically collimated photons from others. The framework of the authors can be applied to any isotope, phantom, and detector geometry available in GATE. It is designed to enhance the usability of GATE for the study of contamination and for the investigation of the properties of current and future prototype detectors. The authors apply the framework to a case study of Bexxar, first assuming labeling with 124I, then with 131I. It is shown that with 124I PET, results with an optimized window improve upon those with the standard window but achieve less than half of the ideal improvement. Nevertheless, 124I PET shows improved resolution compared to 131I SPECT with triple-energy-window scatter correction.

  17. Single photon emission computed tomographic studies (SPECT) of hepatic arterial perfusion scintigraphy (HAPS) in patients with colorectal liver metastases: improved tumour targetting by microspheres with angiotensin II.

    PubMed

    Goldberg, J A; Bradnam, M S; Kerr, D J; McKillop, J H; Bessent, R G; McArdle, C S; Willmott, N; George, W D

    1987-12-01

    As intra-arterial chemotherapy for liver metastases of colorectal origin becomes accepted, methods of further improving drug delivery to the tumour have been devised. Degradable microspheres have been shown to reduce regional blood flow by transient arteriolar capillary block, thereby improving uptake of a co-administered drug, when injected into the hepatic artery. In our study of five patients, we combined hepatic arterial perfusion scintigraphy (HAPS) and SPECT to assess the localization of approximately 1 X 10(5) labelled microspheres of human serum albumin (99Tcm MSA) in tumour. In addition, in three patients, we assessed the effect of an intra-arterial infusion of the vasoactive agent angiotension II during HAPS. Results were interpreted by comparing transaxial slices with corresponding slices of a tin colloid liver-spleen scan. Two of five patients showed good localization of 99Tcm MSA in tumour without an angiotensin II infusion. Of the three patients receiving angiotensin II, all showed good tumour targetting with the vasoconstrictor compared with only one of these three before its use. Thus, hepatic arterial infusion of angiotensin II greatly improves microsphere localization in tumour in some patients with colorectal liver metastases. This technique may be useful in the assessment of tumour targetting before and during locoregional therapy.

  18. SPECT/CT in patients with lower back pain after lumbar fusion surgery.

    PubMed

    Sumer, Johannes; Schmidt, Daniela; Ritt, Philipp; Lell, Michael; Forst, Raimund; Kuwert, Torsten; Richter, Richard

    2013-10-01

    The aim of the study was to investigate the incremental diagnostic value of skeletal hybrid imaging with single-photon emission computed tomography and X-ray computed tomography (SPECT/CT) over conventional nuclear medical imaging in patients with lower back pain after lumbar fusion surgery (LFS). This retrospective study comprised 37 patients suffering from lower back pain after LFS in whom three-phase planar bone scintigraphies of the lumbar spine including SPECT/CT of that region had been performed. The findings visible on these imaging data sets were classified into the following five diagnostic categories: (a) metal loosening; (b) insufficient stabilizing function of the metal implants indicated by metabolically active facet joint arthritis and/or intervertebral osteochondrosis in the instrumented region; (c) adjacent instability defined as metabolically active degenerative disease in the segments adjacent to the instrumented region; (d) indeterminate; and (e) normal. In the case of eight patients no lesions were visible on their planar scintigraphy and SPECT (planar/SPECT) or SPECT/CT images. In the remaining 29 patients, planar/SPECT disclosed 62 pathological foci of uptake within the graft region and SPECT/CT revealed 55. The rate of reclassification by SPECT/CT compared with planar/SPECT was 5/12 for lesions categorized as metal loosening by planar/SPECT, 16/29 for foci with a planar/SPECT diagnosis of insufficient stabilizing function, 7/20 when the planar/SPECT diagnosis had been adjacent instability, and 1/1 for the lesions indeterminate on planar/SPECT. Two lesions had been detected on SPECT/CT only. The overall rate of reclassification was 45.2% (28/62) (95% confidence interval, 33.4-57.5%). Because of its significantly higher accuracy compared with planar/SPECT, SPECT/CT should be the conventional nuclear medical procedure of choice for patients with lower back pain after LFS.

  19. The predictive value of single-photon emission computed tomography/computed tomography for sentinel lymph node localization in head and neck cutaneous malignancy.

    PubMed

    Remenschneider, Aaron K; Dilger, Amanda E; Wang, Yingbing; Palmer, Edwin L; Scott, James A; Emerick, Kevin S

    2015-04-01

    Preoperative localization of sentinel lymph nodes in head and neck cutaneous malignancies can be aided by single-photon emission computed tomography/computed tomography (SPECT/CT); however, its true predictive value for identifying lymph nodes intraoperatively remains unquantified. This study aims to understand the sensitivity, specificity, and positive and negative predictive values of SPECT/CT in sentinel lymph node biopsy for cutaneous malignancies of the head and neck. Blinded retrospective imaging review with comparison to intraoperative gamma probe confirmed sentinel lymph nodes. A consecutive series of patients with a head and neck cutaneous malignancy underwent preoperative SPECT/CT followed by sentinel lymph node biopsy with a gamma probe. Two nuclear medicine physicians, blinded to clinical data, independently reviewed each SPECT/CT. Activity within radiographically defined nodal basins was recorded and compared to intraoperative gamma probe findings. Sensitivity, specificity, and negative and positive predictive values were calculated with subgroup stratification by primary tumor site. Ninety-two imaging reads were performed on 47 patients with cutaneous malignancy who underwent SPECT/CT followed by sentinel lymph node biopsy. Overall sensitivity was 73%, specificity 92%, positive predictive value 54%, and negative predictive value 96%. The predictive ability of SPECT/CT to identify the basin or an adjacent basin containing the single hottest node was 92%. SPECT/CT overestimated uptake by an average of one nodal basin. In the head and neck, SPECT/CT has higher reliability for primary lesions of the eyelid, scalp, and cheek. SPECT/CT has high sensitivity, specificity, and negative predictive value, but may overestimate relevant nodal basins in sentinel lymph node biopsy. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  20. Imaging of gene expression in live pancreatic islet cell lines using dual-isotope SPECT.

    PubMed

    Tai, Joo Ho; Nguyen, Binh; Wells, R Glenn; Kovacs, Michael S; McGirr, Rebecca; Prato, Frank S; Morgan, Timothy G; Dhanvantari, Savita

    2008-01-01

    We are combining nuclear medicine with molecular biology to establish a sensitive, quantitative, and tomographic method with which to detect gene expression in pancreatic islet cells in vivo. Dual-isotope SPECT can be used to image multiple molecular events simultaneously, and coregistration of SPECT and CT images enables visualization of reporter gene expression in the correct anatomic context. We have engineered pancreatic islet cell lines for imaging with SPECT/CT after transplantation under the kidney capsule. INS-1 832/13 and alphaTC1-6 cells were stably transfected with a herpes simplex virus type 1-thymidine kinase-green fluorescent protein (HSV1-thymidine kinase-GFP) fusion construct (tkgfp). After clonal selection, radiolabel uptake was determined by incubation with 5-(131)I-iodo-1-(2-deoxy-2-fluoro-beta-d-arabinofuranosyl)uracil ((131)I-FIAU) (alphaTC1-6 cells) or (123)I-FIAU (INS-1 832/13 cells). For the first set of in vivo experiments, SPECT was conducted after alphaTC1-6/tkgfp cells had been labeled with either (131)I-FIAU or (111)In-tropolone and transplanted under the left kidney capsule of CD1 mice. Reconstructed SPECT images were coregistered to CT. In a second study using simultaneous acquisition dual-isotope SPECT, INS-1 832/13 clone 9 cells were labeled with (111)In-tropolone before transplantation. Mice were then systemically administered (123)I-FIAU and data for both (131)I and (111)In were acquired simultaneously. alphaTC1-6/tkgfp cells showed a 15-fold greater uptake of (131)I-FIAU, and INS-1/tkgfp cells showed a 12-fold greater uptake of (123)I-FIAU, compared with that of wild-type cells. After transplantation under the kidney capsule, both reporter gene expression and location of cells could be visualized in vivo with dual-isotope SPECT. Immunohistochemistry confirmed the presence of glucagon- and insulin-positive cells at the site of transplantation. Dual-isotope SPECT is a promising method to detect gene expression in and location of transplanted pancreatic cells in vivo.

  1. Onboard functional and molecular imaging: A design investigation for robotic multipinhole SPECT

    PubMed Central

    Bowsher, James; Yan, Susu; Roper, Justin; Giles, William; Yin, Fang-Fang

    2014-01-01

    Purpose: Onboard imaging—currently performed primarily by x-ray transmission modalities—is essential in modern radiation therapy. As radiation therapy moves toward personalized medicine, molecular imaging, which views individual gene expression, may also be important onboard. Nuclear medicine methods, such as single photon emission computed tomography (SPECT), are premier modalities for molecular imaging. The purpose of this study is to investigate a robotic multipinhole approach to onboard SPECT. Methods: Computer-aided design (CAD) studies were performed to assess the feasibility of maneuvering a robotic SPECT system about a patient in position for radiation therapy. In order to obtain fast, high-quality SPECT images, a 49-pinhole SPECT camera was designed which provides high sensitivity to photons emitted from an imaging region of interest. This multipinhole system was investigated by computer-simulation studies. Seventeen hot spots 10 and 7 mm in diameter were placed in the breast region of a supine female phantom. Hot spot activity concentration was six times that of background. For the 49-pinhole camera and a reference, more conventional, broad field-of-view (FOV) SPECT system, projection data were computer simulated for 4-min scans and SPECT images were reconstructed. Hot-spot localization was evaluated using a nonprewhitening forced-choice numerical observer. Results: The CAD simulation studies found that robots could maneuver SPECT cameras about patients in position for radiation therapy. In the imaging studies, most hot spots were apparent in the 49-pinhole images. Average localization errors for 10-mm- and 7-mm-diameter hot spots were 0.4 and 1.7 mm, respectively, for the 49-pinhole system, and 3.1 and 5.7 mm, respectively, for the reference broad-FOV system. Conclusions: A robot could maneuver a multipinhole SPECT system about a patient in position for radiation therapy. The system could provide onboard functional and molecular imaging with 4-min scan times. PMID:24387490

  2. Onboard functional and molecular imaging: A design investigation for robotic multipinhole SPECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowsher, James, E-mail: james.bowsher@duke.edu; Giles, William; Yin, Fang-Fang

    2014-01-15

    Purpose: Onboard imaging—currently performed primarily by x-ray transmission modalities—is essential in modern radiation therapy. As radiation therapy moves toward personalized medicine, molecular imaging, which views individual gene expression, may also be important onboard. Nuclear medicine methods, such as single photon emission computed tomography (SPECT), are premier modalities for molecular imaging. The purpose of this study is to investigate a robotic multipinhole approach to onboard SPECT. Methods: Computer-aided design (CAD) studies were performed to assess the feasibility of maneuvering a robotic SPECT system about a patient in position for radiation therapy. In order to obtain fast, high-quality SPECT images, a 49-pinholemore » SPECT camera was designed which provides high sensitivity to photons emitted from an imaging region of interest. This multipinhole system was investigated by computer-simulation studies. Seventeen hot spots 10 and 7 mm in diameter were placed in the breast region of a supine female phantom. Hot spot activity concentration was six times that of background. For the 49-pinhole camera and a reference, more conventional, broad field-of-view (FOV) SPECT system, projection data were computer simulated for 4-min scans and SPECT images were reconstructed. Hot-spot localization was evaluated using a nonprewhitening forced-choice numerical observer. Results: The CAD simulation studies found that robots could maneuver SPECT cameras about patients in position for radiation therapy. In the imaging studies, most hot spots were apparent in the 49-pinhole images. Average localization errors for 10-mm- and 7-mm-diameter hot spots were 0.4 and 1.7 mm, respectively, for the 49-pinhole system, and 3.1 and 5.7 mm, respectively, for the reference broad-FOV system. Conclusions: A robot could maneuver a multipinhole SPECT system about a patient in position for radiation therapy. The system could provide onboard functional and molecular imaging with 4-min scan times.« less

  3. Progress In The Development Of A Tomographic SPECT System For Online Dosimetry In BNCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minsky, D. M.; Kreiner, A. J.; ECyT, UNSAM, M. de Irigoyen 3100

    2010-08-04

    In boron neutron capture therapy (BNCT) the delivered dose to the patient depends both on the neutron beam characteristics and on the {sup 10}B body distribution which, in turn, is governed by the tumor specificity of the {sup 10}B drug-carrier. BNCT dosimetry is a complex matter due to the several interactions that neutrons can undergo with the different nuclei present in tissue. However the boron capture reaction {sup 10}B(n,{alpha}){sup 7}Li accounts for about 80 % of the total dose in a tumor with 40 ppm in {sup 10}B concentration. Present dosimetric methods are indirect, based on drug biodistribution statistical datamore » and subjected to inter and intra-patient variability. In order to overcome the consequences of the concomitant high dosimetric uncertainties, we propose a SPECT (Single Photon Emission Tomography) approach based on the detection of the prompt gamma-ray (478 keV) emitted in 94 % of the cases from {sup 7}Li. For this purpose we designed, built and tested a prototype based on LaBr{sub 3}(Ce) scintillators. Measurements on a head and tumor phantom were performed in the accelerator-based BNCT facility of the University of Birmingham (UK). They result in the first tomographic image of the 10B capture distribution obtained in a BNCT facility.« less

  4. Improved image quality in pinhole SPECT by accurate modeling of the point spread function in low magnification systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pino, Francisco; Roé, Nuria; Aguiar, Pablo, E-mail: pablo.aguiar.fernandez@sergas.es

    2015-02-15

    Purpose: Single photon emission computed tomography (SPECT) has become an important noninvasive imaging technique in small-animal research. Due to the high resolution required in small-animal SPECT systems, the spatially variant system response needs to be included in the reconstruction algorithm. Accurate modeling of the system response should result in a major improvement in the quality of reconstructed images. The aim of this study was to quantitatively assess the impact that an accurate modeling of spatially variant collimator/detector response has on image-quality parameters, using a low magnification SPECT system equipped with a pinhole collimator and a small gamma camera. Methods: Threemore » methods were used to model the point spread function (PSF). For the first, only the geometrical pinhole aperture was included in the PSF. For the second, the septal penetration through the pinhole collimator was added. In the third method, the measured intrinsic detector response was incorporated. Tomographic spatial resolution was evaluated and contrast, recovery coefficients, contrast-to-noise ratio, and noise were quantified using a custom-built NEMA NU 4–2008 image-quality phantom. Results: A high correlation was found between the experimental data corresponding to intrinsic detector response and the fitted values obtained by means of an asymmetric Gaussian distribution. For all PSF models, resolution improved as the distance from the point source to the center of the field of view increased and when the acquisition radius diminished. An improvement of resolution was observed after a minimum of five iterations when the PSF modeling included more corrections. Contrast, recovery coefficients, and contrast-to-noise ratio were better for the same level of noise in the image when more accurate models were included. Ring-type artifacts were observed when the number of iterations exceeded 12. Conclusions: Accurate modeling of the PSF improves resolution, contrast, and recovery coefficients in the reconstructed images. To avoid the appearance of ring-type artifacts, the number of iterations should be limited. In low magnification systems, the intrinsic detector PSF plays a major role in improvement of the image-quality parameters.« less

  5. Tomographic digital subtraction angiography for lung perfusion estimation in rodents.

    PubMed

    Badea, Cristian T; Hedlund, Laurence W; De Lin, Ming; Mackel, Julie S Boslego; Samei, Ehsan; Johnson, G Allan

    2007-05-01

    In vivo measurements of perfusion present a challenge to existing small animal imaging techniques such as magnetic resonance microscopy, micro computed tomography, micro positron emission tomography, and microSPECT, due to combined requirements for high spatial and temporal resolution. We demonstrate the use of tomographic digital subtraction angiography (TDSA) for estimation of perfusion in small animals. TDSA augments conventional digital subtraction angiography (DSA) by providing three-dimensional spatial information using tomosynthesis algorithms. TDSA is based on the novel paradigm that the same time density curves can be reproduced in a number of consecutive injections of microL volumes of contrast at a series of different angles of rotation. The capabilities of TDSA are established in studies on lung perfusion in rats. Using an imaging system developed in-house, we acquired data for four-dimensional (4D) imaging with temporal resolution of 140 ms, in-plane spatial resolution of 100 microm, and slice thickness on the order of millimeters. Based on a structured experimental approach, we optimized TDSA imaging providing a good trade-off between slice thickness, the number of injections, contrast to noise, and immunity to artifacts. Both DSA and TDSA images were used to create parametric maps of perfusion. TDSA imaging has potential application in a number of areas where functional perfusion measurements in 4D can provide valuable insight into animal models of disease and response to therapeutics.

  6. Quantitative PET and SPECT performance characteristics of the Albira Trimodal pre-clinical tomograph

    NASA Astrophysics Data System (ADS)

    Spinks, T. J.; Karia, D.; Leach, M. O.; Flux, G.

    2014-02-01

    The Albira Trimodal pre-clinical scanner comprises PET, SPECT and CT sub-systems and thus provides a range of pre-clinical imaging options. The PET component consists of three rings of single-crystal LYSO detectors with axial/transverse fields-of-view (FOVs) of 148/80 mm. The SPECT component has two opposing CsI detectors (100 × 100 mm2) with single-pinhole (SPH) or multi(9)-pinhole (MPH) collimators; the detectors rotate in 6° increments and their spacing can be adjusted to provide different FOVs (25 to 120 mm). The CT sub-system provides ‘low’ (200 µA, 35 kVp) or ‘high’ (400 µA, 45 kVp) power x-rays onto a flat-panel CsI detector. This study examines the performance characteristics and quantitative accuracy of the PET and SPECT components. Using the NEMA NU 4-2008 specifications (22Na point source), the PET spatial resolution is 1.5 + 0.1 mm on axis and sensitivity 6.3% (axial centre) and 4.6% (central 70 mm). The usable activity range is ≤ 10 MBq (18F) over which good linearity (within 5%) is obtained for a uniform cylinder spanning the axial FOV; increasing deviation from linearity with activity is, however, observed for the NEMA (mouse) line source phantom. Image uniformity axially is within 5%. Spatial resolution (SPH/MPH) for the minimum SPECT FOV used for mouse imaging (50 mm) is 1.5/1.7 mm and point source sensitivity 69/750 cps MBq-1. Axial uniformity of SPECT images (%CV of regions-of-interest counts along the axis) is mostly within 8% although there is a range of 30-40% for the largest FOV. The variation is significantly smaller within the central 40 mm. Instances of count rate nonlinearity (PET) and axial non-uniformity (SPECT) were found to be reproducible and thus amenable to empirical correction.

  7. SPECT-CT in routine clinical practice: increase in patient radiation dose compared with SPECT alone.

    PubMed

    Sharma, Punit; Sharma, Shekhar; Ballal, Sanjana; Bal, Chandrasekhar; Malhotra, Arun; Kumar, Rakesh

    2012-09-01

    To assess the patient radiation dose during routine clinical single-photon emission computed tomography-computed tomography (SPECT-CT) and measure the increase as compared with SPECT alone. Data pertaining to 357 consecutive patients who had undergone radioisotope imaging along with SPECT-CT of a selected volume were retrospectively evaluated. Dose of the injected radiopharmaceutical (MBq) was noted, and the effective dose (mSv) was calculated as per International Commission on Radiological Protection (ICRP) guidelines. The volume-weighted computed tomography dose index (CTDIvol) and dose length product of the CT were also assessed using standard phantoms. The effective dose (mSv) due to CT was calculated as the product of dose length product and a conversion factor depending on the region of investigation, using ICRP guidelines. The dose due to CT was compared among different investigations. The increase in effective dose was calculated as CT dose expressed as a percentage of radiopharmaceutical dose. The per-patient CT effective dose for different studies varied between 0.06 and 11.9 mSv. The mean CT effective dose was lowest for 99mTc-ethylene cysteine dimer brain SPECT-CT (0.9 ± 0.7) and highest for 99mTc-methylene diphosphonate bone SPECT-CT (4.2 ± 2.8). The increase in radiation dose (SPECT-CT vs. SPECT) varied widely (2.3-666.4% for 99mTc-tracers and 0.02-96.2% for 131I-tracers). However, the effective dose of CT in SPECT-CT was less than the values reported for conventional CT examinations of the same regions. Addition of CT to nuclear medicine imaging in the form of SPECT-CT increases the radiation dose to the patient, with the effective dose due to CT exceeding the effective dose of RP in many instances. Hence, appropriate utilization and optimization of the protocols of SPECT-CT is needed to maximize benefit to patients.

  8. A cost-utility analysis of the use of preoperative computed tomographic angiography in abdomen-based perforator flap breast reconstruction.

    PubMed

    Offodile, Anaeze C; Chatterjee, Abhishek; Vallejo, Sergio; Fisher, Carla S; Tchou, Julia C; Guo, Lifei

    2015-04-01

    Computed tomographic angiography is a diagnostic tool increasingly used for preoperative vascular mapping in abdomen-based perforator flap breast reconstruction. This study compared the use of computed tomographic angiography and the conventional practice of Doppler ultrasonography only in postmastectomy reconstruction using a cost-utility model. Following a comprehensive literature review, a decision analytic model was created using the three most clinically relevant health outcomes in free autologous breast reconstruction with computed tomographic angiography versus Doppler ultrasonography only. Cost and utility estimates for each health outcome were used to derive the quality-adjusted life-years and incremental cost-utility ratio. One-way sensitivity analysis was performed to scrutinize the robustness of the authors' results. Six studies and 782 patients were identified. Cost-utility analysis revealed a baseline cost savings of $3179, a gain in quality-adjusted life-years of 0.25. This yielded an incremental cost-utility ratio of -$12,716, implying a dominant choice favoring preoperative computed tomographic angiography. Sensitivity analysis revealed that computed tomographic angiography was costlier when the operative time difference between the two techniques was less than 21.3 minutes. However, the clinical advantage of computed tomographic angiography over Doppler ultrasonography only showed that computed tomographic angiography would still remain the cost-effective option even if it offered no additional operating time advantage. The authors' results show that computed tomographic angiography is a cost-effective technology for identifying lower abdominal perforators for autologous breast reconstruction. Although the perfect study would be a randomized controlled trial of the two approaches with true cost accrual, the authors' results represent the best available evidence.

  9. Utility of Quantitative Parameters from Single-Photon Emission Computed Tomography/Computed Tomography in Patients with Destructive Thyroiditis.

    PubMed

    Kim, Ji-Young; Kim, Ji Hyun; Moon, Jae Hoon; Kim, Kyoung Min; Oh, Tae Jung; Lee, Dong-Hwa; So, Young; Lee, Won Woo

    2018-01-01

    Quantitative parameters from Tc-99m pertechnetate single-photon emission computed tomography/computed tomography (SPECT/CT) are emerging as novel diagnostic markers for functional thyroid diseases. We intended to assess the utility of SPECT/CT parameters in patients with destructive thyroiditis. Thirty-five destructive thyroiditis patients (7 males and 28 females; mean age, 47.3 ± 13.0 years) and 20 euthyroid patients (6 males and 14 females; mean age, 45.0 ± 14.8 years) who underwent Tc-99m pertechnetate quantitative SPECT/CT were retrospectively enrolled. Quantitative parameters from the SPECT/CT (%uptake, standardized uptake value [SUV], thyroid volume, and functional thyroid mass [SUVmean × thyroid volume]) and thyroid hormone levels were investigated to assess correlations and predict the prognosis for destructive thyroiditis. The occurrence of hypothyroidism was the outcome for prognosis. All the SPECT/CT quantitative parameters were significantly lower in the 35 destructive thyroiditis patients compared to the 20 euthyroid patients using the same SPECT/CT scanner and protocol ( p < 0.001 for all parameters). T3 and free T4 did not correlate with any SPECT/CT parameters, but thyroid-stimulating hormone (TSH) significantly correlated with %uptake ( p = 0.004), SUVmean ( p < 0.001), SUVmax ( p = 0.002), and functional thyroid mass ( p < 0.001). Of the 35 destructive thyroiditis patients, 16 progressed to hypothyroidism. On univariate and multivariate analyses, only T3 levels were associated with the later occurrence of hypothyroidism ( p = 0.002, exp(β) = 1.022, 95% confidence interval: 1.008 - 1.035). Novel quantitative SPECT/CT parameters could discriminate patients with destructive thyroiditis from euthyroid patients, suggesting the robustness of the quantitative SPECT/CT approach. However, disease progression of destructive thyroiditis could not be predicted using the parameters, as these only correlated with TSH, but not with T3, the sole predictor of the later occurrence of hypothyroidism.

  10. Utility of Quantitative Parameters from Single-Photon Emission Computed Tomography/Computed Tomography in Patients with Destructive Thyroiditis

    PubMed Central

    Kim, Ji-Young; Kim, Ji Hyun; Moon, Jae Hoon; Kim, Kyoung Min; Oh, Tae Jung; Lee, Dong-Hwa; So, Young

    2018-01-01

    Objective Quantitative parameters from Tc-99m pertechnetate single-photon emission computed tomography/computed tomography (SPECT/CT) are emerging as novel diagnostic markers for functional thyroid diseases. We intended to assess the utility of SPECT/CT parameters in patients with destructive thyroiditis. Materials and Methods Thirty-five destructive thyroiditis patients (7 males and 28 females; mean age, 47.3 ± 13.0 years) and 20 euthyroid patients (6 males and 14 females; mean age, 45.0 ± 14.8 years) who underwent Tc-99m pertechnetate quantitative SPECT/CT were retrospectively enrolled. Quantitative parameters from the SPECT/CT (%uptake, standardized uptake value [SUV], thyroid volume, and functional thyroid mass [SUVmean × thyroid volume]) and thyroid hormone levels were investigated to assess correlations and predict the prognosis for destructive thyroiditis. The occurrence of hypothyroidism was the outcome for prognosis. Results All the SPECT/CT quantitative parameters were significantly lower in the 35 destructive thyroiditis patients compared to the 20 euthyroid patients using the same SPECT/CT scanner and protocol (p < 0.001 for all parameters). T3 and free T4 did not correlate with any SPECT/CT parameters, but thyroid-stimulating hormone (TSH) significantly correlated with %uptake (p = 0.004), SUVmean (p < 0.001), SUVmax (p = 0.002), and functional thyroid mass (p < 0.001). Of the 35 destructive thyroiditis patients, 16 progressed to hypothyroidism. On univariate and multivariate analyses, only T3 levels were associated with the later occurrence of hypothyroidism (p = 0.002, exp(β) = 1.022, 95% confidence interval: 1.008 – 1.035). Conclusion Novel quantitative SPECT/CT parameters could discriminate patients with destructive thyroiditis from euthyroid patients, suggesting the robustness of the quantitative SPECT/CT approach. However, disease progression of destructive thyroiditis could not be predicted using the parameters, as these only correlated with TSH, but not with T3, the sole predictor of the later occurrence of hypothyroidism. PMID:29713225

  11. The origins of SPECT and SPECT/CT.

    PubMed

    Hutton, Brian F

    2014-05-01

    Single photon emission computed tomography (SPECT) has a long history of development since its initial demonstration by Kuhl and Edwards in 1963. Although clinical utility has been dominated by the rotating gamma camera, there have been many technological innovations with the recent popularity of organ-specific dedicated SPECT systems. The combination of SPECT and CT evolved from early transmission techniques used for attenuation correction with the initial commercial systems predating the release of PET/CT. The development and acceptance of SPECT/CT has been relatively slow with continuing debate as to what cost/performance ratio is justified. Increasingly, fully diagnostic CT is combined with SPECT so as to facilitate optimal clinical utility.

  12. Brain single photon emission computed tomography in neonates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denays, R.; Van Pachterbeke, T.; Tondeur, M.

    1989-08-01

    This study was designed to rate the clinical value of ({sup 123}I)iodoamphetamine (IMP) or ({sup 99m}Tc) hexamethyl propylene amine oxyme (HM-PAO) brain single photon emission computed tomography (SPECT) in neonates, especially in those likely to develop cerebral palsy. The results showed that SPECT abnormalities were congruent in most cases with structural lesions demonstrated by ultrasonography. However, mild bilateral ventricular dilatation and bilateral subependymal porencephalic cysts diagnosed by ultrasound were not associated with an abnormal SPECT finding. In contrast, some cortical periventricular and sylvian lesions and all the parasagittal lesions well visualized in SPECT studies were not diagnosed by ultrasound scans.more » In neonates with subependymal and/or intraventricular hemorrhage the existence of a parenchymal abnormality was only diagnosed by SPECT. These results indicate that ({sup 123}I)IMP or ({sup 99m}Tc)HM-PAO brain SPECT shows a potential clinical value as the neurodevelopmental outcome is clearly related to the site, the extent, and the number of cerebral lesions. Long-term clinical follow-up is, however, mandatory in order to define which SPECT abnormality is associated with neurologic deficit.« less

  13. Comparison of SPECT/CT, MRI and CT in diagnosis of skull base bone invasion in nasopharyngeal carcinoma.

    PubMed

    Zhang, Shu-xu; Han, Peng-hui; Zhang, Guo-qian; Wang, Rui-hao; Ge, Yong-bin; Ren, Zhi-gang; Li, Jian-sheng; Fu, Wen-hai

    2014-01-01

    Early detection of skull base invasion in nasopharyngeal carcinoma (NPC) is crucial for correct staging, assessing treatment response and contouring the tumor target in radiotherapy planning, as well as improving the patient's prognosis. To compare the diagnostic efficacy of single photon emission computed tomography/computed tomography (SPECT/CT) imaging, magnetic resonance imaging (MRI) and computed tomography (CT) for the detection of skull base invasion in NPC. Sixty untreated patients with histologically proven NPC underwent SPECT/CT imaging, contrast-enhanced MRI and CT. Of the 60 patients, 30 had skull base invasion confirmed by the final results of contrast-enhanced MRI, CT and six-month follow-up imaging (MRI and CT). The diagnostic efficacy of the three imaging modalities in detecting skull base invasion was evaluated. The rates of positive findings of skull base invasion for SPECT/CT, MRI and CT were 53.3%, 48.3% and 33.3%, respectively. The sensitivity, specificity and accuracy were 93.3%, 86.7% and 90.0% for SPECT/CT fusion imaging, 96.7%, 100.0% and 98.3% for contrast-enhanced MRI, and 66.7%, 100.0% and 83.3% for contrast-enhanced CT. MRI showed the best performance for the diagnosis of skull base invasion in nasopharyngeal carcinoma, followed closely by SPECT/CT. SPECT/CT had poorer specificity than that of both MRI and CT, while CT had the lowest sensitivity.

  14. Development of an oximeter for neurology

    NASA Astrophysics Data System (ADS)

    Aleinik, A.; Serikbekova, Z.; Zhukova, N.; Zhukova, I.; Nikitina, M.

    2016-06-01

    Cerebral desaturation can occur during surgery manipulation, whereas other parameters vary insignificantly. Prolonged intervals of cerebral anoxia can cause serious damage to the nervous system. Commonly used method for measurement of cerebral blood flow uses invasive catheters. Other techniques include single photon emission computed tomography (SPECT), positron emission tomography (PET), magnetic resonance imaging (MRI). Tomographic methods frequently use isotope administration, that may result in anaphylactic reactions to contrast media and associated nerve diseases. Moreover, the high cost and the need for continuous monitoring make it difficult to apply these techniques in clinical practice. Cerebral oximetry is a method for measuring oxygen saturation using infrared spectrometry. Moreover reflection pulse oximetry can detect sudden changes in sympathetic tone. For this purpose the reflectance pulse oximeter for use in neurology is developed. Reflectance oximeter has a definite advantage as it can be used to measure oxygen saturation in any part of the body. Preliminary results indicate that the device has a good resolution and high reliability. Modern applied schematics have improved device characteristics compared with existing ones.

  15. Non-invasive mapping of deep-tissue lymph nodes in live animals using a multimodal PET/MRI nanoparticle

    NASA Astrophysics Data System (ADS)

    Thorek, Daniel L. J.; Ulmert, David; Diop, Ndeye-Fatou M.; Lupu, Mihaela E.; Doran, Michael G.; Huang, Ruimin; Abou, Diane S.; Larson, Steven M.; Grimm, Jan

    2014-01-01

    The invasion status of tumour-draining lymph nodes (LNs) is a critical indicator of cancer stage and is important for treatment planning. Clinicians currently use planar scintigraphy and single-photon emission computed tomography (SPECT) with 99mTc-radiocolloid to guide biopsy and resection of LNs. However, emerging multimodality approaches such as positron emission tomography combined with magnetic resonance imaging (PET/MRI) detect sites of disease with higher sensitivity and accuracy. Here we present a multimodal nanoparticle, 89Zr-ferumoxytol, for the enhanced detection of LNs with PET/MRI. For genuine translational potential, we leverage a clinical iron oxide formulation, altered with minimal modification for radiolabelling. Axillary drainage in naive mice and from healthy and tumour-bearing prostates was investigated. We demonstrate that 89Zr-ferumoxytol can be used for high-resolution tomographic studies of lymphatic drainage in preclinical disease models. This nanoparticle platform has significant translational potential to improve preoperative planning for nodal resection and tumour staging.

  16. A COMPUTER MODEL OF LUNG MORPHOLOGY TO ANALYZE SPECT IMAGES

    EPA Science Inventory

    Measurement of the three-dimensional (3-D) spatial distribution of aerosol deposition can be performed using Single Photon Emission Computed Tomography (SPECT). The advantage of using 3-D techniques over planar gamma imaging is that deposition patterns can be related to real lun...

  17. A parallel Monte Carlo code for planar and SPECT imaging: implementation, verification and applications in (131)I SPECT.

    PubMed

    Dewaraja, Yuni K; Ljungberg, Michael; Majumdar, Amitava; Bose, Abhijit; Koral, Kenneth F

    2002-02-01

    This paper reports the implementation of the SIMIND Monte Carlo code on an IBM SP2 distributed memory parallel computer. Basic aspects of running Monte Carlo particle transport calculations on parallel architectures are described. Our parallelization is based on equally partitioning photons among the processors and uses the Message Passing Interface (MPI) library for interprocessor communication and the Scalable Parallel Random Number Generator (SPRNG) to generate uncorrelated random number streams. These parallelization techniques are also applicable to other distributed memory architectures. A linear increase in computing speed with the number of processors is demonstrated for up to 32 processors. This speed-up is especially significant in Single Photon Emission Computed Tomography (SPECT) simulations involving higher energy photon emitters, where explicit modeling of the phantom and collimator is required. For (131)I, the accuracy of the parallel code is demonstrated by comparing simulated and experimental SPECT images from a heart/thorax phantom. Clinically realistic SPECT simulations using the voxel-man phantom are carried out to assess scatter and attenuation correction.

  18. Navigation of a robot-integrated fluorescence laparoscope in preoperative SPECT/CT and intraoperative freehand SPECT imaging data: a phantom study

    NASA Astrophysics Data System (ADS)

    van Oosterom, Matthias Nathanaël; Engelen, Myrthe Adriana; van den Berg, Nynke Sjoerdtje; KleinJan, Gijs Hendrik; van der Poel, Henk Gerrit; Wendler, Thomas; van de Velde, Cornelis Jan Hadde; Navab, Nassir; van Leeuwen, Fijs Willem Bernhard

    2016-08-01

    Robot-assisted laparoscopic surgery is becoming an established technique for prostatectomy and is increasingly being explored for other types of cancer. Linking intraoperative imaging techniques, such as fluorescence guidance, with the three-dimensional insights provided by preoperative imaging remains a challenge. Navigation technologies may provide a solution, especially when directly linked to both the robotic setup and the fluorescence laparoscope. We evaluated the feasibility of such a setup. Preoperative single-photon emission computed tomography/X-ray computed tomography (SPECT/CT) or intraoperative freehand SPECT (fhSPECT) scans were used to navigate an optically tracked robot-integrated fluorescence laparoscope via an augmented reality overlay in the laparoscopic video feed. The navigation accuracy was evaluated in soft tissue phantoms, followed by studies in a human-like torso phantom. Navigation accuracies found for SPECT/CT-based navigation were 2.25 mm (coronal) and 2.08 mm (sagittal). For fhSPECT-based navigation, these were 1.92 mm (coronal) and 2.83 mm (sagittal). All errors remained below the <1-cm detection limit for fluorescence imaging, allowing refinement of the navigation process using fluorescence findings. The phantom experiments performed suggest that SPECT-based navigation of the robot-integrated fluorescence laparoscope is feasible and may aid fluorescence-guided surgery procedures.

  19. Correction of nonuniform attenuation and image fusion in SPECT imaging by means of separate X-ray CT.

    PubMed

    Kashiwagi, Toru; Yutani, Kenji; Fukuchi, Minoru; Naruse, Hitoshi; Iwasaki, Tadaaki; Yokozuka, Koichi; Inoue, Shinichi; Kondo, Shoji

    2002-06-01

    Improvements in image quality and quantitation measurement, and the addition of detailed anatomical structures are important topics for single-photon emission tomography (SPECT). The goal of this study was to develop a practical system enabling both nonuniform attenuation correction and image fusion of SPECT images by means of high-performance X-ray computed tomography (CT). A SPECT system and a helical X-ray CT system were placed next to each other and linked with Ethernet. To avoid positional differences between the SPECT and X-ray CT studies, identical flat patient tables were used for both scans; body distortion was minimized with laser beams from the upper and lateral directions to detect the position of the skin surface. For the raw projection data of SPECT, a scatter correction was performed with the triple energy window method. Image fusion of the X-ray CT and SPECT images was performed automatically by auto-registration of fiducial markers attached to the skin surface. After registration of the X-ray CT and SPECT images, an X-ray CT-derived attenuation map was created with the calibration curve for 99mTc. The SPECT images were then reconstructed with scatter and attenuation correction by means of a maximum likelihood expectation maximization algorithm. This system was evaluated in torso and cylindlical phantoms and in 4 patients referred for myocardial SPECT imaging with Tc-99m tetrofosmin. In the torso phantom study, the SPECT and X-ray CT images overlapped exactly on the computer display. After scatter and attenuation correction, the artifactual activity reduction in the inferior wall of the myocardium improved. Conversely, the incresed activity around the torso surface and the lungs was reduced. In the abdomen, the liver activity, which was originally uniform, had recovered after scatter and attenuation correction processing. The clinical study also showed good overlapping of cardiac and skin surface outlines on the fused SPECT and X-ray CT images. The effectiveness of the scatter and attenuation correction process was similar to that observed in the phantom study. Because the total time required for computer processing was less than 10 minutes, this method of attenuation correction and image fusion for SPECT images is expected to become popular in clinical practice.

  20. Lutetium oxyorthosilicate (LSO) intrinsic activity correction and minimal detectable target activity study for SPECT imaging with a LSO-based animal PET scanner

    NASA Astrophysics Data System (ADS)

    Yao, Rutao; Ma, Tianyu; Shao, Yiping

    2008-08-01

    This work is part of a feasibility study to develop SPECT imaging capability on a lutetium oxyorthosilicate (LSO) based animal PET system. The SPECT acquisition was enabled by inserting a collimator assembly inside the detector ring and acquiring data in singles mode. The same LSO detectors were used for both PET and SPECT imaging. The intrinsic radioactivity of 176Lu in the LSO crystals, however, contaminates the SPECT data, and can generate image artifacts and introduce quantification error. The objectives of this study were to evaluate the effectiveness of a LSO background subtraction method, and to estimate the minimal detectable target activity (MDTA) of image object for SPECT imaging. For LSO background correction, the LSO contribution in an image study was estimated based on a pre-measured long LSO background scan and subtracted prior to the image reconstruction. The MDTA was estimated in two ways. The empirical MDTA (eMDTA) was estimated from screening the tomographic images at different activity levels. The calculated MDTA (cMDTA) was estimated from using a formula based on applying a modified Currie equation on an average projection dataset. Two simulated and two experimental phantoms with different object activity distributions and levels were used in this study. The results showed that LSO background adds concentric ring artifacts to the reconstructed image, and the simple subtraction method can effectively remove these artifacts—the effect of the correction was more visible when the object activity level was near or above the eMDTA. For the four phantoms studied, the cMDTA was consistently about five times of the corresponding eMDTA. In summary, we implemented a simple LSO background subtraction method and demonstrated its effectiveness. The projection-based calculation formula yielded MDTA results that closely correlate with that obtained empirically and may have predicative value for imaging applications.

  1. The Added Value of a Single-photon Emission Computed Tomography-Computed Tomography in Sentinel Lymph Node Mapping in Patients with Breast Cancer and Malignant Melanoma.

    PubMed

    Bennie, George; Vorster, Mariza; Buscombe, John; Sathekge, Mike

    2015-01-01

    Single-photon emission computed tomography-computed tomography (SPECT-CT) allows for physiological and anatomical co-registration in sentinel lymph node (SLN) mapping and offers additional benefits over conventional planar imaging. However, the clinical relevance when considering added costs and radiation burden of these reported benefits remains somewhat uncertain. This study aimed to evaluate the possible added value of SPECT-CT and intra-operative gamma-probe use over planar imaging alone in the South African setting. 80 patients with breast cancer or malignant melanoma underwent both planar and SPECT-CT imaging for SLN mapping. We assessed and compared the number of nodes detected on each study, false positive and negative findings, changes in surgical approach and or patient management. In all cases where a sentinel node was identified, SPECT-CT was more accurate anatomically. There was a significant change in surgical approach in 30 cases - breast cancer (n = 13; P 0.001) and malignant melanoma (n = 17; P 0.0002). In 4 cases a node not identified on planar imaging was seen on SPECT-CT. In 16 cases additional echelon nodes were identified. False positives were excluded by SPECT-CT in 12 cases. The addition of SPECT-CT and use of intra-operative gamma-probe to planar imaging offers important benefits in patients who present with breast cancer and melanoma. These benefits include increased nodal detection, elimination of false positives and negatives and improved anatomical localization that ultimately aids and expedites surgical management. This has been demonstrated in the context of industrialized country previously and has now also been confirmed in the setting of a emerging-market nation.

  2. Quantitative single-photon emission computed tomography/computed tomography for technetium pertechnetate thyroid uptake measurement

    PubMed Central

    Lee, Hyunjong; Kim, Ji Hyun; Kang, Yeon-koo; Moon, Jae Hoon; So, Young; Lee, Won Woo

    2016-01-01

    Abstract Objectives: Technetium pertechnetate (99mTcO4) is a radioactive tracer used to assess thyroid function by thyroid uptake system (TUS). However, the TUS often fails to deliver accurate measurements of the percent of thyroid uptake (%thyroid uptake) of 99mTcO4. Here, we investigated the usefulness of quantitative single-photon emission computed tomography/computed tomography (SPECT/CT) after injection of 99mTcO4 in detecting thyroid function abnormalities. Materials and methods: We retrospectively reviewed data from 50 patients (male:female = 15:35; age, 46.2 ± 16.3 years; 17 Graves disease, 13 thyroiditis, and 20 euthyroid). All patients underwent 99mTcO4 quantitative SPECT/CT (185 MBq = 5 mCi), which yielded %thyroid uptake and standardized uptake value (SUV). Twenty-one (10 Graves disease and 11 thyroiditis) of the 50 patients also underwent conventional %thyroid uptake measurements using a TUS. Results: Quantitative SPECT/CT parameters (%thyroid uptake, SUVmean, and SUVmax) were the highest in Graves disease, second highest in euthyroid, and lowest in thyroiditis (P < 0.0001, Kruskal–Wallis test). TUS significantly overestimated the %thyroid uptake compared with SPECT/CT (P < 0.0001, paired t test) because other 99mTcO4 sources in addition to thyroid, such as salivary glands and saliva, contributed to the %thyroid uptake result by TUS, whereas %thyroid uptake, SUVmean and SUVmax from the SPECT/CT were associated with the functional status of thyroid. Conclusions: Quantitative SPECT/CT is more accurate than conventional TUS for measuring 99mTcO4 %thyroid uptake. Quantitative measurements using SPECT/CT may facilitate more accurate assessment of thyroid tracer uptake. PMID:27399139

  3. Relationship Between Coronary Contrast-Flow Quantitative Flow Ratio and Myocardial Ischemia Assessed by SPECT MPI.

    PubMed

    Smit, Jeff M; Koning, Gerhard; van Rosendael, Alexander R; Dibbets-Schneider, Petra; Mertens, Bart J; Jukema, J Wouter; Delgado, Victoria; Reiber, Johan H C; Bax, Jeroen J; Scholte, Arthur J

    2017-10-01

    A new method has been developed to calculate fractional flow reserve (FFR) from invasive coronary angiography, the so-called "contrast-flow quantitative flow ratio (cQFR)". Recently, cQFR was compared to invasive FFR in intermediate coronary lesions showing an overall diagnostic accuracy of 85%. The purpose of this study was to investigate the relationship between cQFR and myocardial ischemia assessed by single-photon emission computed tomography myocardial perfusion imaging (SPECT MPI). Patients who underwent SPECT MPI and coronary angiography within 3 months were included. The cQFR computation was performed offline, using dedicated software. The cQFR computation was based on 3-dimensional quantitative coronary angiography (QCA) and computational fluid dynamics. The standard 17-segment model was used to determine the vascular territories. Myocardial ischemia was defined as a summed difference score ≥2 in a vascular territory. A cQFR of ≤0.80 was considered abnormal. Two hundred and twenty-four coronary arteries were analysed in 85 patients. Overall accuracy of cQFR to detect ischemia on SPECT MPI was 90%. In multivariable analysis, cQFR was independently associated with ischemia on SPECT MPI (OR per 0.01 decrease of cQFR: 1.10; 95% CI 1.04-1.18, p = 0.002), whereas clinical and QCA parameters were not. Furthermore, cQFR showed incremental value for the detection of ischemia compared to clinical and QCA parameters (global chi square 48.7 to 62.6; p <0.001). A good relationship between cQFR and SPECT MPI was found. cQFR was independently associated with ischemia on SPECT MPI and showed incremental value to detect ischemia compared to clinical and QCA parameters.

  4. A SPECT Scanner for Rodent Imaging Based on Small-Area Gamma Cameras

    NASA Astrophysics Data System (ADS)

    Lage, Eduardo; Villena, José L.; Tapias, Gustavo; Martinez, Naira P.; Soto-Montenegro, Maria L.; Abella, Mónica; Sisniega, Alejandro; Pino, Francisco; Ros, Domènec; Pavia, Javier; Desco, Manuel; Vaquero, Juan J.

    2010-10-01

    We developed a cost-effective SPECT scanner prototype (rSPECT) for in vivo imaging of rodents based on small-area gamma cameras. Each detector consists of a position-sensitive photomultiplier tube (PS-PMT) coupled to a 30 x 30 Nal(Tl) scintillator array and electronics attached to the PS-PMT sockets for adapting the detector signals to an in-house developed data acquisition system. The detector components are enclosed in a lead-shielded case with a receptacle to insert the collimators. System performance was assessed using 99mTc for a high-resolution parallel-hole collimator, and for a 0.75-mm pinhole collimator with a 60° aperture angle and a 42-mm collimator length. The energy resolution is about 10.7% of the photopeak energy. The overall system sensitivity is about 3 cps/μCi/detector and planar spatial resolution ranges from 2.4 mm at 1 cm source-to-collimator distance to 4.1 mm at 4.5 cm with parallel-hole collimators. With pinhole collimators planar spatial resolution ranges from 1.2 mm at 1 cm source-to-collimator distance to 2.4 mm at 4.5 cm; sensitivity at these distances ranges from 2.8 to 0.5 cps/μCi/detector. Tomographic hot-rod phantom images are presented together with images of bone, myocardium and brain of living rodents to demonstrate the feasibility of preclinical small-animal studies with the rSPECT.

  5. Evaluation of the absorbed dose to the breast using radiochromic film in a dedicated CT mammotomography system employing a quasi-monochromatic x-ray beam.

    PubMed

    Crotty, Dominic J; Brady, Samuel L; Jackson, D'Vone C; Toncheva, Greta I; Anderson, Colin E; Yoshizumi, Terry T; Tornai, Martin P

    2011-06-01

    A dual modality SPECT-CT prototype system dedicated to uncompressed breast imaging (mammotomography) has been developed. The computed tomography subsystem incorporates an ultrathick K-edge filtration technique producing a quasi-monochromatic x-ray cone beam that optimizes the dose efficiency of the system for lesion imaging in an uncompressed breast. Here, the absorbed dose in various geometric phantoms and in an uncompressed and pendant cadaveric breast using a normal tomographic cone beam imaging protocol is characterized using both thermoluminescent dosimeter (TLD) measurements and ionization chamber-calibrated radiochromic film. Initially, two geometric phantoms and an anthropomorphic breast phantom are filled in turn with oil and water to simulate the dose to objects that mimic various breast shapes having effective density bounds of 100% fatty and glandular breast compositions, respectively. Ultimately, an excised human cadaver breast is tomographically scanned using the normal tomographic imaging protocol, and the dose to the breast tissue is evaluated and compared to the earlier phantom-based measurements. Measured trends in dose distribution across all breast geometric and anthropomorphic phantom volumes indicate lower doses in the medial breast and more proximal to the chest wall, with consequently higher doses near the lateral peripheries and nipple regions. Measured doses to the oil-filled phantoms are consistently lower across all volume shapes due to the reduced mass energy-absorption coefficient of oil relative to water. The mean measured dose to the breast cadaver, composed of adipose and glandular tissues, was measured to be 4.2 mGy compared to a mean whole-breast dose of 3.8 and 4.5 mGy for the oil- and water-filled anthropomorphic breast phantoms, respectively. Assuming rotational symmetry due to the tomographic acquisition exposures, these results characterize the 3D dose distributions in an uncompressed human breast tissue volume for this dedicated breast imaging device and illustrate advantages of using the novel ultrathick K-edge filtered beam to minimize the dose to the breast during fully-3D imaging.

  6. Evaluation of the absorbed dose to the breast using radiochromic film in a dedicated CT mammotomography system employing a quasi-monochromatic x-ray beam

    PubMed Central

    Crotty, Dominic J.; Brady, Samuel L.; Jackson, D’Vone C.; Toncheva, Greta I.; Anderson, Colin E.; Yoshizumi, Terry T.; Tornai, Martin P.

    2011-01-01

    Purpose: A dual modality SPECT-CT prototype system dedicated to uncompressed breast imaging (mammotomography) has been developed. The computed tomography subsystem incorporates an ultrathick K-edge filtration technique producing a quasi-monochromatic x-ray cone beam that optimizes the dose efficiency of the system for lesion imaging in an uncompressed breast. Here, the absorbed dose in various geometric phantoms and in an uncompressed and pendant cadaveric breast using a normal tomographic cone beam imaging protocol is characterized using both thermoluminescent dosimeter (TLD) measurements and ionization chamber-calibrated radiochromic film. Methods: Initially, two geometric phantoms and an anthropomorphic breast phantom are filled in turn with oil and water to simulate the dose to objects that mimic various breast shapes having effective density bounds of 100% fatty and glandular breast compositions, respectively. Ultimately, an excised human cadaver breast is tomographically scanned using the normal tomographic imaging protocol, and the dose to the breast tissue is evaluated and compared to the earlier phantom-based measurements. Results: Measured trends in dose distribution across all breast geometric and anthropomorphic phantom volumes indicate lower doses in the medial breast and more proximal to the chest wall, with consequently higher doses near the lateral peripheries and nipple regions. Measured doses to the oil-filled phantoms are consistently lower across all volume shapes due to the reduced mass energy-absorption coefficient of oil relative to water. The mean measured dose to the breast cadaver, composed of adipose and glandular tissues, was measured to be 4.2 mGy compared to a mean whole-breast dose of 3.8 and 4.5 mGy for the oil- and water-filled anthropomorphic breast phantoms, respectively. Conclusions: Assuming rotational symmetry due to the tomographic acquisition exposures, these results characterize the 3D dose distributions in an uncompressed human breast tissue volume for this dedicated breast imaging device and illustrate advantages of using the novel ultrathick K-edge filtered beam to minimize the dose to the breast during fully-3D imaging. PMID:21815398

  7. Forensic applications of cerebral single photon emission computed tomography in mild traumatic brain injury.

    PubMed

    Wortzel, Hal S; Filley, Christopher M; Anderson, C Alan; Oster, Timothy; Arciniegas, David B

    2008-01-01

    Traumatic brain injury (TBI) is a substantial source of mortality and morbidity world wide. Although most such injuries are relatively mild, accurate diagnosis and prognostication after mild TBI are challenging. These problems are complicated further when considered in medicolegal contexts, particularly civil litigation. Cerebral single photon emission computed tomography (SPECT) may contribute to the evaluation and treatment of persons with mild TBI. Cerebral SPECT is relatively sensitive to the metabolic changes produced by TBI. However, such changes are not specific to this condition, and their presence on cerebral SPECT imaging does not confirm a diagnosis of mild TBI. Conversely, the absence of abnormalities on cerebral SPECT imaging does not exclude a diagnosis of mild TBI, although such findings may be of prognostic value. The literature does not demonstrate consistent relationships between SPECT images and neuropsychological testing or neuropsychiatric symptoms. Using the rules of evidence shaped by Daubert v. Merrell Dow Pharmaceuticals, Inc., and its progeny to analyze the suitability of SPECT for forensic purposes, we suggest that expert testimony regarding SPECT findings should be admissible only as evidence to support clinical history, neuropsychological test results, and structural brain imaging findings and not as stand-alone diagnostic data.

  8. Wireless Synchronization of a Multi-Pinhole Small Animal SPECT Collimation Device With a Clinical Scanner

    NASA Astrophysics Data System (ADS)

    DiFilippo, Frank P.; Patel, Sagar

    2009-06-01

    A multi-pinhole collimation device for small animal single photon emission computed tomography (SPECT) uses the gamma camera detectors of a standard clinical SPECT scanner. The collimator and animal bed move independently of the detectors, and therefore their motions must be synchronized. One approach is manual triggering of the SPECT acquisition simultaneously with a programmed motion sequence for the device. However, some data blurring and loss of image quality result, and true electronic synchronization is preferred. An off-the-shelf digital gyroscope with integrated Bluetooth interface provides a wireless solution to device synchronization. The sensor attaches to the SPECT gantry and reports its rotational speed to a notebook computer controlling the device. Software processes the rotation data in real-time, averaging the signal and issuing triggers while compensating for baseline drift. Motion commands are sent to the collimation device with minimal delay, within approximately 0.5 second of the start of SPECT gantry rotation. Test scans of a point source demonstrate an increase in true counts and a reduction in background counts compared to manual synchronization. The wireless rotation sensor provides robust synchronization of the collimation device with the clinical SPECT scanner and enhances image quality.

  9. Use of quantitative SPECT/CT reconstruction in 99mTc-sestamibi imaging of patients with renal masses.

    PubMed

    Jones, Krystyna M; Solnes, Lilja B; Rowe, Steven P; Gorin, Michael A; Sheikhbahaei, Sara; Fung, George; Frey, Eric C; Allaf, Mohamad E; Du, Yong; Javadi, Mehrbod S

    2018-02-01

    Technetium-99m ( 99m Tc)-sestamibi single-photon emission computed tomography/computed tomography (SPECT/CT) has previously been shown to allow for the accurate differentiation of benign renal oncocytomas and hybrid oncocytic/chromophobe tumors (HOCTs) apart from other malignant renal tumor histologies, with oncocytomas/HOCTs showing high uptake and renal cell carcinoma (RCC) showing low uptake based on uptake ratios from non-quantitative single-photon emission computed tomography (SPECT) reconstructions. However, in this study, several tumors fell close to the uptake ratio cutoff, likely due to limitations in conventional SPECT/CT reconstruction methods. We hypothesized that application of quantitative SPECT/CT (QSPECT) reconstruction methods developed by our group would provide more robust separation of hot and cold lesions, serving as an imaging framework on which quantitative biomarkers can be validated for evaluation of renal masses with 99m Tc-sestamibi. Single-photon emission computed tomography data were reconstructed using the clinical Flash 3D reconstruction and QSPECT methods. Two blinded readers then characterized each tumor as hot or cold. Semi-quantitative uptake ratios were calculated by dividing lesion activity by background renal activity for both Flash 3D and QSPECT reconstructions. The difference between median (mean) hot and cold tumor uptake ratios measured 0.655 (0.73) with the QSPECT method and 0.624 (0.67) with the conventional method, resulting in increased separation between hot and cold tumors. Sub-analysis of 7 lesions near the separation point showed a higher absolute difference (0.16) between QPSECT and Flash 3D mean uptake ratios compared to the remaining lesions. Our finding of improved separation between uptake ratios of hot and cold lesions using QSPECT reconstruction lays the foundation for additional quantitative SPECT techniques such as SPECT-UV in the setting of renal 99m Tc-sestamibi and other SPECT/CT exams. With robust quantitative image reconstruction and biomarker analysis, there may be an expanded role for SPECT/CT imaging in renal masses and other pathologic conditions.

  10. Clinical, radiographic, ultrasonographic and computed tomographic features of nonseptic osteitis of the axial border of the proximal sesamoid bones.

    PubMed

    Vanderperren, K; Bergman, H J; Spoormakers, T J P; Pille, F; Duchateau, L; Puchalski, S M; Saunders, J H

    2014-07-01

    Lysis of the axial aspect of equine proximal sesamoid bones (PSBs) is a rare condition reported to have septic or traumatic origins. Limited information exists regarding imaging of nonseptic axial osteitis of a PSB. To report the clinical, radiographic, ultrasonographic, computed tomographic and intra-arterial contrast-enhanced computed tomographic abnormalities in horses with axial nonseptic osteitis of a PSB. Retrospective clinical study. Eighteen horses diagnosed with nonseptic osteitis of the axial border of a PSB between 2007 and 2012 were reviewed retrospectively. Case details, clinical examination, radiographic, ultrasonographic, computed tomographic and intra-arterial/intra-articular contrast-enhanced computed tomographic features were recorded, when available. Radiographic, ultrasonographic and computed tomographic evaluations of the fetlock region had been performed on 18, 15 and 9 horses, respectively. The effect of the degree of lysis on the grade and duration of lameness was determined. All horses had chronic unilateral lameness, 4 with forelimb and 14 with hindlimb signs. On radiographs, lysis was identified in both PSBs in 14 horses, one PSB in 3 horses and in one horse no lysis was identified. The degree of osteolysis was variable. Ultrasonography identified variably sized irregularities of the bone surface and alteration in echogenicity of the palmar/plantar ligament (PL). All horses undergoing computed tomographic examination (n = 9) had biaxial lysis. The lesions were significantly longer and deeper on computed tomographic images compared with radiographic images. Intra-arterial contrast-enhanced computed tomography may reveal moderate to marked contrast enhancement of the PL. There was no significant effect of the degree of lysis on the grade and duration of lameness. Lesions of nonseptic axial osteitis of a PSB can be identified using a combination of radiography and ultrasonography. Computed tomography provides additional information regarding the extent of the pathology. © 2013 EVJ Ltd.

  11. Voxel-based correlation between coregistered single-photon emission computed tomography and dynamic susceptibility contrast magnetic resonance imaging in subjects with suspected Alzheimer disease.

    PubMed

    Cavallin, L; Axelsson, R; Wahlund, L O; Oksengard, A R; Svensson, L; Juhlin, P; Wiberg, M Kristoffersen; Frank, A

    2008-12-01

    Current diagnosis of Alzheimer disease is made by clinical, neuropsychologic, and neuroimaging assessments. Neuroimaging techniques such as magnetic resonance imaging (MRI) and single-photon emission computed tomography (SPECT) could be valuable in the differential diagnosis of Alzheimer disease, as well as in assessing prognosis. To compare SPECT and MRI in a cohort of patients examined for suspected dementia, including patients with no objective cognitive impairment (control group), mild cognitive impairment (MCI), and Alzheimer disease (AD). 24 patients, eight with AD, 10 with MCI, and six controls, were investigated with SPECT using (99m)Tc-hexamethylpropyleneamine oxime (HMPAO, Ceretec; GE Healthcare Ltd., Little Chalsont UK) and dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) with a contrast-enhancing gadobutrol formula (Gadovist; Bayer Schering Pharma, Berlin, Germany). Voxel-based correlation between coregistered SPECT and DSC-MR images was calculated. Region-of-interest (ROI) analyses were then performed in 24 different brain areas using brain registration and analysis of SPECT studies (BRASS; Nuclear Diagnostics AB, Stockholm, Sweden) on both SPECT and DSC-MRI. Voxel-based correlation between coregistered SPECT and DSC-MR showed a high correlation, with a mean correlation coefficient of 0.94. ROI analyses of 24 regions showed significant differences between the control group and AD patients in 10 regions using SPECT and five regions in DSC-MR. SPECT remains superior to DSC-MRI in differentiating normal from pathological perfusion, and DSC-MRI could not replace SPECT in the diagnosis of patients with Alzheimer disease.

  12. Chamber dimensions and functional assessment with coronary computed tomographic angiography as compared to echocardiography using American Society of Echocardiography guidelines

    PubMed Central

    Rose, Michael; Rubal, Bernard; Hulten, Edward; Slim, Jennifer N; Steel, Kevin; Furgerson, James L; Villines, Todd C

    2014-01-01

    Background: The correlation between normal cardiac chamber linear dimensions measured during retrospective coronary computed tomographic angiography as compared to transthoracic echocardiography using the American Society of Echocardiography guidelines is not well established. Methods: We performed a review from January 2005 to July 2011 to identify subjects with retrospective electrocardiogram-gated coronary computed tomographic angiography scans for chest pain and transthoracic echocardiography with normal cardiac structures performed within 90 days. Dimensions were manually calculated in both imaging modalities in accordance with the American Society of Echocardiography published guidelines. Left ventricular ejection fraction was calculated on echocardiography manually using the Simpson’s formula and by coronary computed tomographic angiography using the end-systolic and end-diastolic volumes. Results: We reviewed 532 studies, rejected 412 and had 120 cases for review with a median time between studies of 7 days (interquartile range (IQR25,75) = 0–22 days) with no correlation between the measurements made by coronary computed tomographic angiography and transthoracic echocardiography using Bland–Altman analysis. We generated coronary computed tomographic angiography cardiac dimension reference ranges for both genders for our population. Conclusion: Our findings represent a step towards generating cardiac chamber dimensions’ reference ranges for coronary computed tomographic angiography as compared to transthoracic echocardiography in patients with normal cardiac morphology and function using the American Society of Echocardiography guideline measurements that are commonly used by cardiologists. PMID:26770706

  13. The early years of single photon emission computed tomography (SPECT): an anthology of selected reminiscences.

    PubMed

    Jaszczak, Ronald Jack

    2006-07-07

    The origin of SPECT can be found in pioneering experiments on emission tomography performed approximately 50 years ago. This historical review consists of a compilation of first person recollections from nine trailblazing scientists who shaped the early years of SPECT instrumentation during the 1960s and 1970s.

  14. Experience with single photon emission computerized tomography (SPECT) in follow-up of sternotomy healing.

    PubMed

    Harjula, A; Järvinen, A; Mattila, S; Porkka, L

    1985-01-01

    Single photon emission computerized tomography (SPECT) was performed thrice in ten patients undergoing open-heart surgery--preoperatively and 2 and 12 weeks postoperatively. The operations were done for ischemic heart disease (5), aortic valvular stenosis (2), aortic valvular insufficiency (1), leaking mitral prosthetic valve (1) and combined aortic and mitral valvular stenosis and insufficiency (1). The healing process in the longitudinally divided sternum was evaluated from the SPECT study. Four conventional static images in two dimensions were registered in anteroposterior, posteroanterior and left and right lateral projections. A tomographic study was done. Quantitative analyses were performed. The ratio of the sternal counts to the counts from a thoracic vertebra was calculated for use as a reference. The activity ratios showed a similar pattern in six cases, with initial increases and at 12 weeks slight decrease compared with the preoperative values. In two cases the activity was still increasing after 12 postoperative weeks. One patient, with sternotomy also one year previously, showed only slightly increased activity. The activity at the areas of the sternal wires was increased in six cases. The study thus revealed differing patterns of isotope uptake, although recovery was uneventful in all patients. The differences may reflect the possibility that the operative course and the preoperative clinical status can influence the healing mechanisms.

  15. MO-G-17A-02: Computer Simulation Studies for On-Board Functional and Molecular Imaging of the Prostate Using a Robotic Multi-Pinhole SPECT System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, L; Duke University Medical Center, Durham, NC; Fudan University Shanghai Cancer Center, Shanghai

    Purpose: To investigate prostate imaging onboard radiation therapy machines using a novel robotic, 49-pinhole Single Photon Emission Computed Tomography (SPECT) system. Methods: Computer-simulation studies were performed for region-of-interest (ROI) imaging using a 49-pinhole SPECT collimator and for broad cross-section imaging using a parallel-hole SPECT collimator. A male XCAT phantom was computersimulated in supine position with one 12mm-diameter tumor added in the prostate. A treatment couch was added to the phantom. Four-minute detector trajectories for imaging a 7cm-diameter-sphere ROI encompassing the tumor were investigated with different parameters, including pinhole focal length, pinhole diameter and trajectory starting angle. Pseudo-random Poisson noise wasmore » included in the simulated projection data, and SPECT images were reconstructed by OSEM with 4 subsets and up to 10 iterations. Images were evaluated by visual inspection, profiles, and Root-Mean- Square-Error (RMSE). Results: The tumor was well visualized above background by the 49-pinhole SPECT system with different pinhole parameters while it was not visible with parallel-hole SPECT imaging. Minimum RMSEs were 0.30 for 49-pinhole imaging and 0.41 for parallelhole imaging. For parallel-hole imaging, the detector trajectory from rightto- left yielded slightly lower RMSEs than that from posterior to anterior. For 49-pinhole imaging, near-minimum RMSEs were maintained over a broader range of OSEM iterations with a 5mm pinhole diameter and 21cm focal length versus a 2mm diameter pinhole and 18cm focal length. The detector with 21cm pinhole focal length had the shortest rotation radius averaged over the trajectory. Conclusion: On-board functional and molecular prostate imaging may be feasible in 4-minute scan times by robotic SPECT. A 49-pinhole SPECT system could improve such imaging as compared to broadcross-section parallel-hole collimated SPECT imaging. Multi-pinhole imaging can be improved by considering pinhole focal length, pinhole diameter, and trajectory starting angle. The project is supported by the NIH grant 5R21-CA156390.« less

  16. REVIEW: The early years of single photon emission computed tomography (SPECT): an anthology of selected reminiscences

    NASA Astrophysics Data System (ADS)

    Jaszczak, Ronald Jack

    2006-07-01

    The origin of SPECT can be found in pioneering experiments on emission tomography performed approximately 50 years ago. This historical review consists of a compilation of first person recollections from nine trailblazing scientists who shaped the early years of SPECT instrumentation during the 1960s and 1970s.

  17. Usefulness of Single Photon Emission Computed Tomography/Computed Tomography Fusion-Hybrid Imaging to Evaluate Coronary Artery Disorders in Patients with a History of Kawasaki Disease.

    PubMed

    Abe, Masanori; Fukazawa, Ryuji; Ogawa, Shunichi; Watanabe, Makoto; Fukushima, Yoshimitsu; Kiriyama, Tomonari; Hayashi, Hiromitsu; Itoh, Yasuhiko

    2016-01-01

    The coronary arterial lesions of Kawasaki disease are mainly dilative lesions, aneurysms, and stenotic lesions formed before, after, and between aneurysms; these lesions develop in multiple branches resulting in complex coronary hemodynamics. Diagnosis of myocardial ischemia and infarction and evaluation of the culprit coronary arteries and regions is critical to evaluating the treatment and prognosis of patients. This study used hybrid imaging, in which multidetector computed tomographic (CT) images for coronary CT angiography (CCTA) and stress myocardial perfusion single-photon emission CT (SPECT) images were fused. We investigated the diagnosis of blood vessels and regions responsible for myocardial ischemia and infarction in patients with complex coronary arterial lesions; in addition, we evaluated myocardial lesions that developed directly under giant coronary artery aneurysms. The subjects were 17 patients with Kawasaki disease with multiple coronary arterial lesions (median age, 18.0 years; 16 male). Both CCTA using 64-row CT and adenosine-loading myocardial SPECT were performed. Three branches, the right coronary artery (RCA), left anterior descending branch (LAD), and left circumflex branch, were evaluated with the conventional side-by-side interpretation, in which the images were lined up for diagnosis, and hybrid imaging, in which the CCTA and SPECT images were fused with computer processing. In addition, the myocardial lesions directly under giant coronary artery aneurysms were investigated with fusion imaging. Images sufficient for evaluation were acquired in all 17 patients. In the RCA, coronary arterial lesions were detected with CCTA in 16 patients. The evaluations were consistent between the side-by-side and fusion interpretation in 14 patients, and the blood vessel responsible for the myocardial ischemic region was identified in 2 patients. In the left circumflex branch, coronary arterial lesions were confirmed with 3-dimensional CT in 5 patients, and the the culprit coronary arteries for myocardial ischemia/infarction were confirmed with the fusion interpretation but not with the side-by-side interpretation. In the LAD, coronary arterial lesions were present in all patients, and the diagnosis was made with the fusion interpretation in 10 patients. In the LAD, small-range infarct lesions were detected directly under the giant coronary artery aneurysm in 8 patients, but were not confirmed with the side-by-side interpretation. Fusion imaging was capable of accurately evaluating myocardial ischemia/infarction as cardiovascular sequelae of Kawasaki disease and confirming the culprit coronary arteries. In addition, analysis of fusion images confirmed that small-range infarct lesions were concomitantly present directly under giant coronary artery aneurysms in the anterior descending coronary artery.

  18. Business aspects of cardiovascular computed tomography: tackling the challenges.

    PubMed

    Bateman, Timothy M

    2008-01-01

    The purpose of this article is to provide a comprehensive understanding of the business issues surrounding provision of dedicated cardiovascular computed tomographic imaging. Some of the challenges include high up-front costs, current low utilization relative to scanner capability, and inadequate payments. Cardiovascular computed tomographic imaging is a valuable clinical modality that should be offered by cardiovascular centers-of-excellence. With careful consideration of the business aspects, moderate-to-large size cardiology programs should be able to implement an economically viable cardiovascular computed tomographic service.

  19. Brain SPECT Imaging in Complex Psychiatric Cases: An Evidence-Based, Underutilized Tool

    PubMed Central

    Amen, Daniel G; Trujillo, Manuel; Newberg, Andrew; Willeumier, Kristen; Tarzwell, Robert; Wu, Joseph C; Chaitin, Barry

    2011-01-01

    Over the past 20 years brain Single Photon Emission Computed Tomography (SPECT) imaging has developed a substantial, evidence-based foundation and is now recommended by professional societies for numerous indications relevant to psychiatric practice. Unfortunately, SPECT in clinical practice is utilized by only a handful of clinicians. This article presents a rationale for a more widespread use of SPECT in clinical practice for complex cases, and includes seven clinical applications where it may help optimize patient care. PMID:21863144

  20. Vasodilator Stress Single-Photon Emission Computed Tomography or Contrast Stress Echocardiography Association with Hard Cardiac Events in Suspected Coronary Artery Disease.

    PubMed

    Gaibazzi, Nicola; Siniscalchi, Carmine; Porter, Thomas R; Crocamo, Antonio; Basaglia, Manuela; Boffetti, Francesca; Lorenzoni, Valentina

    2018-06-01

    We compared the long-term outcome of subjects without prior cardiac disease who underwent either vasodilator single-photon emission computed tomography (SPECT) or contrast stress-echocardiography (cSE) for suspected coronary artery disease (CAD). Subjects who underwent vasodilator SPECT or cSE between 2008 and 2012 for suspected CAD but no history of cardiac disease were included. We retrospectively compared the association of each method with combined all-cause death and nonfatal myocardial infarction and their positive predictive value (PPV) for angiographically obstructive CAD. A total of 1,387 subjects were selected: 497 who underwent SPECT and 890 who underwent cSE. During 4 years of mean follow-up there were 78 hard events in the cSE group and 51 in the SPECT group. Event-free survival in subjects testing positive for ischemia, either with SPECT or cSE, was significantly worse both in the overall population and after propensity matching patients. In multivariable analyses, vasodilator SPECT or cSE demonstrated significant stratification capability with an ischemic test doubling (SPECT) or more than doubling (cSE) the risk of future hard events independently from other variables. PPV of vasodilator SPECT for the diagnosis of obstructive CAD was inferior to vasodilator cSE (PPV = 63% vs 89%, respectively; P < .001). Our study suggests that the associations of vasodilator SPECT or cSE with outcome are comparable, with cSE demonstrating better diagnostic PPV for CAD. The absence of ionizing radiation and anticipated lower costs from higher PPV suggest that vasodilator cSE is a valid alternative to vasodilator SPECT as a gatekeeper in subjects without a prior history of CAD. Copyright © 2018 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.

  1. Case Report: SPECT/CT as the New Diagnostic Tool for Specific Wrist Pathology.

    PubMed

    Linde, Musters; Ten Broek, M; Kraan, G A

    2017-01-01

    Single photon emission computed tomography has been introduced as a promising new diagnostic tool in orthopaedic pathology since the early 90'. Computed tomography, the combined with SPECT, gives insight in the specific sight of wrist pathology. Literature already supports introduction of SPECT/CT in wrist pathology, but clinical application is lagging. A 40yr old patient reported first in 2004 with persisting pain after a right distal radius fracture. Several diagnostics and operative interventions were performed, all unsuccessful. Because of the persisting pain a SPECT-CT was performed which showed a cyst in the hamate bone, which was successfully enucleated. The patient was finally pain free at recent follow-up. With a QDash-score of 43 and a PRW (H) E-DLV-score of 58/150. In this case report, SPECT/CT proved a very sensitive diagnostic tool for specific pathology of the wrist. It offered precise localisation and thereby the clinically suspected diagnosis was confirmed and the patient successfully treated.

  2. Performance evaluation of a novel high performance pinhole array detector module using NEMA NU-4 image quality phantom for four head SPECT Imaging

    NASA Astrophysics Data System (ADS)

    Rahman, Tasneem; Tahtali, Murat; Pickering, Mark R.

    2015-03-01

    Radiolabeled tracer distribution imaging of gamma rays using pinhole collimation is considered promising for small animal imaging. The recent availability of various radiolabeled tracers has enhanced the field of diagnostic study and is simultaneously creating demand for high resolution imaging devices. This paper presents analyses to represent the optimized parameters of a high performance pinhole array detector module using two different characteristics phantoms. Monte Carlo simulations using the Geant4 application for tomographic emission (GATE) were executed to assess the performance of a four head SPECT system incorporated with pinhole array collimators. The system is based on a pixelated array of NaI(Tl) crystals coupled to an array of position sensitive photomultiplier tubes (PSPMTs). The detector module was simulated to have 48 mm by 48 mm active area along with different pinhole apertures on a tungsten plate. The performance of this system has been evaluated using a uniform shape cylindrical water phantom along with NEMA NU-4 image quality (IQ) phantom filled with 99mTc labeled radiotracers. SPECT images were reconstructed where activity distribution is expected to be well visualized. This system offers the combination of an excellent intrinsic spatial resolution, good sensitivity and signal-to-noise ratio along with high detection efficiency over an energy range between 20-160 keV. Increasing number of heads in a stationary system configuration offers increased sensitivity at a spatial resolution similar to that obtained with the current SPECT system design with four heads.

  3. Bone and Gallium Single-Photon Emission Computed Tomography-Computed Tomography is Equivalent to Magnetic Resonance Imaging in the Diagnosis of Infectious Spondylodiscitis: A Retrospective Study.

    PubMed

    Tamm, Alexander S; Abele, Jonathan T

    2017-02-01

    Spondylodiscitis has historically been a difficult clinical diagnosis. Two imaging techniques that address this problem are magnetic resonance imaging (MRI) and combined bone ( 99m Tc-methylene diphosphonate) and gallium-67 single-photon emission computed tomography-computed tomography (SPECT-CT). Their accuracies have not been adequately compared. The purpose of this study is to compare the sensitivities and specificities of bone and gallium SPECT-CT and MRI in infectious spondylodiscitis. This retrospective study assessed all patients who underwent a bone or gallium SPECT-CT of the spine to assess for infectious spondylodiscitis from January 1, 2010, to May 2, 2012, at a single tertiary care centre. Thirty-four patients (23 men; average 62 ± 14 years of age) were included. The results of the bone or gallium SPECT-CT were compared against MRI for all patients in the cohort who underwent an MRI within 12 weeks of the SPECT-CT. A diagnosis of spondylodiscitis in the discharge summary was considered the reference standard, and was based on a combination of clinical scenario, response to therapy, imaging, or microbiology. Spondylodiscitis was diagnosed in 18 patients and excluded in 16. Bone or gallium SPECT-CT and MRI had similar (P > .05; κ = 0.74) sensitivities (0.94 vs 0.94), specificities (1.00 vs 1.00), positive predictive values (1.00 vs 1.00), negative predictive values (0.94 vs 0.80), and accuracies (0.97 vs 0.95) when compared to the reference standard. Although MRI remains the initial modality of choice in diagnosing spondylodiscitis, bone and gallium SPECT-CT appears diagnostically equivalent and should be considered a viable supplementary or alternative imaging modality particularly if there is contraindication or inaccessibility to MRI. Copyright © 2016 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  4. Technetium-99m-HMPAO SPECT in the evaluation of patients with a remote history of traumatic brain injury: a comparison with x-ray computed tomography.

    PubMed

    Gray, B G; Ichise, M; Chung, D G; Kirsh, J C; Franks, W

    1992-01-01

    The functional imaging modality has potential for demonstrating parenchymal abnormalities not detectable by traditional morphological imaging. Fifty-three patients with a remote history of traumatic brain injury (TBI) were studied with SPECT using 99mTc-hexamethylpropyleneamineoxime (HMPAO) and x-ray computed tomography (CT). Overall, 42 patients (80%) showed regional cerebral blood flow (rCBF) deficits by HMPAO SPECT, whereas 29 patients (55%) showed morphological abnormalities by CT. Out of 20 patients with minor head injury, 12 patients (60%) showed rCBF deficits and 5 patients (25%) showed CT abnormalities. Of 33 patients with major head injury, 30 patients (90%) showed rCBF deficits and 24 patients (72%) showed CT abnormalities. Thus, HMPAO SPECT was more sensitive than CT in detecting abnormalities in patients with a history of TBI, particularly in the minor head injury group. In the major head injury group, three patients showed localized cortical atrophy by CT and normal rCBF by HMPAO SPECT. In the evaluation of TBI patients, HMPAO SPECT is a useful technique to demonstrate regional brain dysfunction in the presence of morphological integrity as assessed by CT.

  5. Acceptance test of a commercially available software for automatic image registration of computed tomography (CT), magnetic resonance imaging (MRI) and 99mTc-methoxyisobutylisonitrile (MIBI) single-photon emission computed tomography (SPECT) brain images.

    PubMed

    Loi, Gianfranco; Dominietto, Marco; Manfredda, Irene; Mones, Eleonora; Carriero, Alessandro; Inglese, Eugenio; Krengli, Marco; Brambilla, Marco

    2008-09-01

    This note describes a method to characterize the performances of image fusion software (Syntegra) with respect to accuracy and robustness. Computed tomography (CT), magnetic resonance imaging (MRI), and single-photon emission computed tomography (SPECT) studies were acquired from two phantoms and 10 patients. Image registration was performed independently by two couples composed of one radiotherapist and one physicist by means of superposition of anatomic landmarks. Each couple performed jointly and saved the registration. The two solutions were averaged to obtain the gold standard registration. A new set of estimators was defined to identify translation and rotation errors in the coordinate axes, independently from point position in image field of view (FOV). Algorithms evaluated were local correlation (LC) for CT-MRI, normalized mutual information (MI) for CT-MRI, and CT-SPECT registrations. To evaluate accuracy, estimator values were compared to limiting values for the algorithms employed, both in phantoms and in patients. To evaluate robustness, different alignments between images taken from a sample patient were produced and registration errors determined. LC algorithm resulted accurate in CT-MRI registrations in phantoms, but exceeded limiting values in 3 of 10 patients. MI algorithm resulted accurate in CT-MRI and CT-SPECT registrations in phantoms; limiting values were exceeded in one case in CT-MRI and never reached in CT-SPECT registrations. Thus, the evaluation of robustness was restricted to the algorithm of MI both for CT-MRI and CT-SPECT registrations. The algorithm of MI proved to be robust: limiting values were not exceeded with translation perturbations up to 2.5 cm, rotation perturbations up to 10 degrees and roto-translational perturbation up to 3 cm and 5 degrees.

  6. Endocrine radionuclide scintigraphy with fusion single photon emission computed tomography/computed tomography

    PubMed Central

    Wong, Ka-Kit; Gandhi, Arpit; Viglianti, Benjamin L; Fig, Lorraine M; Rubello, Domenico; Gross, Milton D

    2016-01-01

    AIM: To review the benefits of single photon emission computed tomography (SPECT)/computed tomography (CT) hybrid imaging for diagnosis of various endocrine disorders. METHODS: We performed MEDLINE and PubMed searches using the terms: “SPECT/CT”; “functional anatomic mapping”; “transmission emission tomography”; “parathyroid adenoma”; “thyroid cancer”; “neuroendocrine tumor”; “adrenal”; “pheochromocytoma”; “paraganglioma”; in order to identify relevant articles published in English during the years 2003 to 2015. Reference lists from the articles were reviewed to identify additional pertinent articles. Retrieved manuscripts (case reports, reviews, meta-analyses and abstracts) concerning the application of SPECT/CT to endocrine imaging were analyzed to provide a descriptive synthesis of the utility of this technology. RESULTS: The emergence of hybrid SPECT/CT camera technology now allows simultaneous acquisition of combined multi-modality imaging, with seamless fusion of three-dimensional volume datasets. The usefulness of combining functional information to depict the bio-distribution of radiotracers that map cellular processes of the endocrine system and tumors of endocrine origin, with anatomy derived from CT, has improved the diagnostic capability of scintigraphy for a range of disorders of endocrine gland function. The literature describes benefits of SPECT/CT for 99mTc-sestamibi parathyroid scintigraphy and 99mTc-pertechnetate thyroid scintigraphy, 123I- or 131I-radioiodine for staging of differentiated thyroid carcinoma, 111In- and 99mTc- labeled somatostatin receptor analogues for detection of neuroendocrine tumors, 131I-norcholesterol (NP-59) scans for assessment of adrenal cortical hyperfunction, and 123I- or 131I-metaiodobenzylguanidine imaging for evaluation of pheochromocytoma and paraganglioma. CONCLUSION: SPECT/CT exploits the synergism between the functional information from radiopharmaceutical imaging and anatomy from CT, translating to improved diagnostic accuracy and meaningful impact on patient care. PMID:27358692

  7. I-123 iomazenil single photon emission computed tomography for detecting loss of neuronal integrity in patients with traumatic brain injury.

    PubMed

    Abiko, Kagari; Ikoma, Katsunori; Shiga, Tohru; Katoh, Chietsugu; Hirata, Kenji; Kuge, Yuji; Kobayashi, Kentaro; Tamaki, Nagara

    2017-12-01

    Traumatic brain injury (TBI) causes brain dysfunction in many patients. Using C-11 flumazenil (FMZ) positron emission tomography (PET), we have detected and reported the loss of neuronal integrity, leading to brain dysfunction in TBI patients. Similarly to FMZ PET, I-123 iomazenil (IMZ) single photon emission computed tomography (SPECT) is widely used to determine the distribution of the benzodiazepine receptor (BZR) in the brain cortex. The purpose of this study is to examine whether IMZ SPECT is as useful as FMZ PET for evaluating the loss of neuronal integrity in TBI patients. The subjects of this study were seven patients who suffered from neurobehavioral disability. They underwent IMZ SPECT and FMZ PET. Nondisplaceable binding potential (BP ND ) was calculated from FMZ PET images. The uptake of IMZ was evaluated on the basis of lesion-to-pons ratio (LPR). The locations of low uptake levels were visually evaluated both in IMZ SPECT and FMZ PET images. We compared FMZ BP ND and (LPR-1) of IMZ SPECT. In the visual assessment, FMZ BP ND decreased in 11 regions. In IMZ SPECT, low uptake levels were observed in eight of the 11 regions. The rate of concordance between FMZ PET and IMZ SPECT was 72.7%. The mean values IMZ (LPR-1) (1.95 ± 1.01) was significantly lower than that of FMZ BP ND (2.95 ± 0.80 mL/mL). There was good correlation between FMZ BP ND and IMZ (LPR-1) (r = 0.80). IMZ SPECT findings were almost the same as FMZ PET findings in TBI patients. The results indicated that IMZ SPECT is useful for evaluating the loss of neuronal integrity. Because IMZ SPECT can be performed in various facilities, IMZ SPECT may become widely adopted for evaluating the loss of neuronal integrity.

  8. Potential advantage of studying the lymphatic drainage by sentinel node technique and SPECT-CT image fusion for pelvic irradiation of prostate cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krengli, Marco; Ballare, Andrea; Cannillo, Barbara

    2006-11-15

    Purpose: This study aims to investigate the in vivo drainage of lymphatic spread by using the sentinel node (SN) technique and single-photon emission computed tomography (SPECT)-computed tomography (CT) image fusion, and to analyze the impact of such information on conformal pelvic irradiation. Methods and Materials: Twenty-three prostate cancer patients, candidates for radical prostatectomy already included in a trial studying the SN technique, were enrolled. CT and SPECT images were obtained after intraprostate injection of 115 MBq of {sup 99m}Tc-nanocolloid, allowing identification of SN and other pelvic lymph nodes. Target and nontarget structures, including lymph nodes identified by SPECT, were drawnmore » on SPECT-CT fusion images. A three-dimensional conformal treatment plan was performed for each patient. Results: Single-photon emission computed tomography lymph nodal uptake was detected in 20 of 23 cases (87%). The SN was inside the pelvic clinical target volume (CTV{sub 2}) in 16 of 20 cases (80%) and received no less than the prescribed dose in 17 of 20 cases (85%). The most frequent locations of SN outside the CTV{sub 2} were the common iliac and presacral lymph nodes. Sixteen of the 32 other lymph nodes (50%) identified by SPECT were found outside the CTV{sub 2}. Overall, the SN and other intrapelvic lymph nodes identified by SPECT were not included in the CTV{sub 2} in 5 of 20 (25%) patients. Conclusions: The study of lymphatic drainage can contribute to a better knowledge of the in vivo potential pattern of lymph node metastasis in prostate cancer and can lead to a modification of treatment volume with consequent optimization of pelvic irradiation.« less

  9. The diagnostic accuracy and outcomes after coronary computed tomography angiography vs. conventional functional testing in patients with stable angina pectoris: a systematic review and meta-analysis.

    PubMed

    Nielsen, Lene H; Ortner, Nino; Nørgaard, Bjarne L; Achenbach, Stephan; Leipsic, Jonathon; Abdulla, Jawdat

    2014-09-01

    To systematically review and perform a meta-analysis of the diagnostic accuracy and post-test outcomes of conventional exercise electrocardiography (XECG) and single-photon emission computed tomography (SPECT) compared with coronary computed tomography angiography (coronary CTA) in patients suspected of stable coronary artery disease (CAD). We systematically searched for studies published from January 2002 to February 2013 examining the diagnostic accuracy (defined as at least ≥50% luminal obstruction on invasive coronary angiography) and outcomes of coronary CTA (≥16 slice) in comparison with XECG and SPECT. The search revealed 11 eligible studies (N = 1575) comparing the diagnostic accuracy and 7 studies (N = 216.603) the outcomes of coronary CTA vs. XECG or/and SPECT. The per-patient sensitivity [95% confidence interval (95% CI)] to identify significant CAD was 98% (93-99%) for coronary CTA vs. 67% (54-78%) (P < 0.001) for XECG and 99% (96-100%) vs. 73% (59-83%) (P = 0.001) for SPECT. The specificity (95% CI) of coronary CTA was 82% (63-93%) vs. 46% (30-64%) (P < 0.001) for XECG and 71% (60-80%) vs. 48% (31-64%) (P = 0.14) for SPECT. The odds ratio (OR) of downstream test utilization (DTU) for coronary CTA vs. XECG/SPECT was 1.38 (1.33-1.43, P < 0.001), for revascularization 2.63 (2.50-2.77, P < 0.001), for non-fatal myocardial infarction 0.53 (0.39-0.72, P < 0.001), and for all-cause mortality 1.01 (0.87-1.18, P = 0.87). The up-front diagnostic performance of coronary CTA is higher than of XECG and SPECT. When compared with XECG/SPECT testing, coronary CTA testing is associated with increased DTU and coronary revascularization. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  10. A Computer-Aided Analysis Method of SPECT Brain Images for Quantitative Treatment Monitoring: Performance Evaluations and Clinical Applications.

    PubMed

    Zheng, Xiujuan; Wei, Wentao; Huang, Qiu; Song, Shaoli; Wan, Jieqing; Huang, Gang

    2017-01-01

    The objective and quantitative analysis of longitudinal single photon emission computed tomography (SPECT) images are significant for the treatment monitoring of brain disorders. Therefore, a computer aided analysis (CAA) method is introduced to extract a change-rate map (CRM) as a parametric image for quantifying the changes of regional cerebral blood flow (rCBF) in longitudinal SPECT brain images. The performances of the CAA-CRM approach in treatment monitoring are evaluated by the computer simulations and clinical applications. The results of computer simulations show that the derived CRMs have high similarities with their ground truths when the lesion size is larger than system spatial resolution and the change rate is higher than 20%. In clinical applications, the CAA-CRM approach is used to assess the treatment of 50 patients with brain ischemia. The results demonstrate that CAA-CRM approach has a 93.4% accuracy of recovered region's localization. Moreover, the quantitative indexes of recovered regions derived from CRM are all significantly different among the groups and highly correlated with the experienced clinical diagnosis. In conclusion, the proposed CAA-CRM approach provides a convenient solution to generate a parametric image and derive the quantitative indexes from the longitudinal SPECT brain images for treatment monitoring.

  11. The AdaptiSPECT Imaging Aperture

    PubMed Central

    Chaix, Cécile; Moore, Jared W.; Van Holen, Roel; Barrett, Harrison H.; Furenlid, Lars R.

    2015-01-01

    In this paper, we present the imaging aperture of an adaptive SPECT imaging system being developed at the Center for Gamma Ray Imaging (AdaptiSPECT). AdaptiSPECT is designed to automatically change its configuration in response to preliminary data, in order to improve image quality for a particular task. In a traditional pinhole SPECT imaging system, the characteristics (magnification, resolution, field of view) are set by the geometry of the system, and any modification can be accomplished only by manually changing the collimator and the distance of the detector to the center of the field of view. Optimization of the imaging system for a specific task on a specific individual is therefore difficult. In an adaptive SPECT imaging system, on the other hand, the configuration can be conveniently changed under computer control. A key component of an adaptive SPECT system is its aperture. In this paper, we present the design, specifications, and fabrication of the adaptive pinhole aperture that will be used for AdaptiSPECT, as well as the controls that enable autonomous adaptation. PMID:27019577

  12. Recovered neuronal viability revealed by Iodine-123-iomazenil SPECT following traumatic brain injury.

    PubMed

    Koizumi, Hiroyasu; Fujisawa, Hirosuke; Kurokawa, Tetsu; Suehiro, Eiichi; Iwanaga, Hideyuki; Nakagawara, Jyoji; Suzuki, Michiyasu

    2010-10-01

    We evaluated cortical damages following traumatic brain injury (TBI) in the acute phase with [(123)I] iomazenil (IMZ) single photon emission computed tomography (SPECT). In all, 12 patients with cerebral contusion following TBI were recruited. All patients underwent IMZ SPECT within 1 week after TBI. To investigate the changes in distribution of IMZ in the cortex in the chronic phase, after conventional treatment, patients underwent IMZ SPECT again. A decrease in the accumulation of radioligand for the central benzodiazepine receptor in the cortex corresponding to the contusion revealed with computed tomography (CT) scans and magnetic resonance imaging (MRI) were shown on IMZ SPECT in the acute phase in all patients. In 9 of 12 patients (75%), images of IMZ SPECT obtained in the chronic phase of TBI showed that areas with a decreased distribution of IMZ were remarkably reduced in comparison with those obtained in the acute phase. Both CT scans and MRI showed a normal appearance of the cortex morphologically, where the binding potential of IMZ recovered in the chronic phase. Reduced binding potential of radioligand for the central benzodiazepine receptor is considered to be an irreversible reaction; however, in this study, IMZ accumulation in the cortex following TBI was recovered in the chronic phase in several patients. [(123)I] iomazenil SPECT may have a potential to disclose a reversible vulnerability of neurons following TBI.

  13. Recovered neuronal viability revealed by Iodine-123-iomazenil SPECT following traumatic brain injury

    PubMed Central

    Koizumi, Hiroyasu; Fujisawa, Hirosuke; Kurokawa, Tetsu; Suehiro, Eiichi; Iwanaga, Hideyuki; Nakagawara, Jyoji; Suzuki, Michiyasu

    2010-01-01

    We evaluated cortical damages following traumatic brain injury (TBI) in the acute phase with [123I] iomazenil (IMZ) single photon emission computed tomography (SPECT). In all, 12 patients with cerebral contusion following TBI were recruited. All patients underwent IMZ SPECT within 1 week after TBI. To investigate the changes in distribution of IMZ in the cortex in the chronic phase, after conventional treatment, patients underwent IMZ SPECT again. A decrease in the accumulation of radioligand for the central benzodiazepine receptor in the cortex corresponding to the contusion revealed with computed tomography (CT) scans and magnetic resonance imaging (MRI) were shown on IMZ SPECT in the acute phase in all patients. In 9 of 12 patients (75%), images of IMZ SPECT obtained in the chronic phase of TBI showed that areas with a decreased distribution of IMZ were remarkably reduced in comparison with those obtained in the acute phase. Both CT scans and MRI showed a normal appearance of the cortex morphologically, where the binding potential of IMZ recovered in the chronic phase. Reduced binding potential of radioligand for the central benzodiazepine receptor is considered to be an irreversible reaction; however, in this study, IMZ accumulation in the cortex following TBI was recovered in the chronic phase in several patients. [123I] iomazenil SPECT may have a potential to disclose a reversible vulnerability of neurons following TBI. PMID:20683454

  14. Magnetic particle imaging: advancements and perspectives for real-time in vivo monitoring and image-guided therapy

    NASA Astrophysics Data System (ADS)

    Pablico-Lansigan, Michele H.; Situ, Shu F.; Samia, Anna Cristina S.

    2013-05-01

    Magnetic particle imaging (MPI) is an emerging biomedical imaging technology that allows the direct quantitative mapping of the spatial distribution of superparamagnetic iron oxide nanoparticles. MPI's increased sensitivity and short image acquisition times foster the creation of tomographic images with high temporal and spatial resolution. The contrast and sensitivity of MPI is envisioned to transcend those of other medical imaging modalities presently used, such as magnetic resonance imaging (MRI), X-ray scans, ultrasound, computed tomography (CT), positron emission tomography (PET) and single photon emission computed tomography (SPECT). In this review, we present an overview of the recent advances in the rapidly developing field of MPI. We begin with a basic introduction of the fundamentals of MPI, followed by some highlights over the past decade of the evolution of strategies and approaches used to improve this new imaging technique. We also examine the optimization of iron oxide nanoparticle tracers used for imaging, underscoring the importance of size homogeneity and surface engineering. Finally, we present some future research directions for MPI, emphasizing the novel and exciting opportunities that it offers as an important tool for real-time in vivo monitoring. All these opportunities and capabilities that MPI presents are now seen as potential breakthrough innovations in timely disease diagnosis, implant monitoring, and image-guided therapeutics.

  15. Risk Stratification for Avascular Necrosis of the Femoral Head After Internal Fixation of Femoral Neck Fractures by Post-Operative Bone SPECT/CT.

    PubMed

    Han, Sangwon; Oh, Minyoung; Yoon, Seokho; Kim, Jinsoo; Kim, Ji-Wan; Chang, Jae-Suk; Ryu, Jin-Sook

    2017-03-01

    Avascular necrosis (AVN) of the femoral head is a major complication after internal fixation of a femoral neck fracture and determines the functional prognosis. We investigated postoperative bone single-photon emission computed tomography/computed tomography (SPECT/CT) for assessing the risk of femoral head AVN. We retrospectively reviewed 53 consecutive patients who underwent bone SPECT/CT within 2 weeks of internal fixation of a femoral neck fracture and follow-up serial hip radiographs over at least 12 months. Nine patients developed femoral head AVN. In 15 patients who showed normal uptake on immediate postoperative SPECT/CT, no AVN occurred, whereas 9 of 38 patients who showed cold defects of the femoral head later developed AVN. The negative predictive value of immediate postoperative SPECT/CT for AVN was 100 %, whereas the positive predictive value was 24 %. Among 38 patients with cold defects, 1 developed AVN 3 months postoperatively. A follow-up bone SPECT/CT was performed in the other 37 patients at 2-10 months postoperatively. The follow-up bone SPECT/CT revealed completely normalized femoral head uptake in 27, partially normalized uptake in 8, and persistent cold defects in 2 patients. AVN developed in 3.7 % (1/27), 62.5 % (5/8), and 100 % (2/2) of each group, respectively. According to the time point of imaging, radiotracer uptake patterns of the femoral head on postoperative bone SPECT/CT indicate the risk of AVN after internal fixation of femoral neck fractures differently. Postoperative bone SPECT/CT may help orthopedic surgeons determine the appropriate follow-up of these patients.

  16. Optimized 3D stitching algorithm for whole body SPECT based on transition error minimization (TEM)

    NASA Astrophysics Data System (ADS)

    Cao, Xinhua; Xu, Xiaoyin; Voss, Stephan

    2017-02-01

    Standard Single Photon Emission Computed Tomography (SPECT) has a limited field of view (FOV) and cannot provide a 3D image of an entire long whole body SPECT. To produce a 3D whole body SPECT image, two to five overlapped SPECT FOVs from head to foot are acquired and assembled using image stitching. Most commercial software from medical imaging manufacturers applies a direct mid-slice stitching method to avoid blurring or ghosting from 3D image blending. Due to intensity changes across the middle slice of overlapped images, direct mid-slice stitching often produces visible seams in the coronal and sagittal views and maximal intensity projection (MIP). In this study, we proposed an optimized algorithm to reduce the visibility of stitching edges. The new algorithm computed, based on transition error minimization (TEM), a 3D stitching interface between two overlapped 3D SPECT images. To test the suggested algorithm, four studies of 2-FOV whole body SPECT were used and included two different reconstruction methods (filtered back projection (FBP) and ordered subset expectation maximization (OSEM)) as well as two different radiopharmaceuticals (Tc-99m MDP for bone metastases and I-131 MIBG for neuroblastoma tumors). Relative transition errors of stitched whole body SPECT using mid-slice stitching and the TEM-based algorithm were measured for objective evaluation. Preliminary experiments showed that the new algorithm reduced the visibility of the stitching interface in the coronal, sagittal, and MIP views. Average relative transition errors were reduced from 56.7% of mid-slice stitching to 11.7% of TEM-based stitching. The proposed algorithm also avoids blurring artifacts by preserving the noise properties of the original SPECT images.

  17. Estimation of sensitivity and specificity of brain magnetic resonance imaging and single photon emission computed tomography in the diagnosis of olfactory dysfunction after head traumas.

    PubMed

    Atighechi, Saeid; Zolfaghari, Aliasghar; Baradaranfar, Mohammadhossein; Dadgarnia, Mohammadhossein

    2013-01-01

    Olfactory dysfunction has an incidence of 5-10% after head injury. Several objective and subjective tests had been proposed. Recent studies showed that brain single photon emission computed tomography (SPECT) and brain magnetic resonance imaging (MRI) have good diagnostic value in this era in which the most common sites of involvement were olfactory bulb and olfactory nerve in MRI and frontal lobe in SPECT. This study aimed to estimate the sensitivity and specificity of brain MRI and brain SPECT in the diagnosis of traumatic hyposmia and anosmia. From February 2009 to March 2011, 63 patients with head injury and smell complaint were selected for this study. Using an identification test and a threshold smell test, 28 were anosmic and 27 had hyposmia and the remaining 8 were normosmic. All of them underwent brain MRI and SPECT. The sensitivity of SPECT was 81.5 and 85.7% in hyposmia and anosmia, respectively. Its specificity was 87.5% in anosmia and 87.7% in anosmia. MRI sensitivity was 66.7% in hyposmia but 82.1% in anosmia. Its specificity was 85.7% in anosmia and 87.7% in anosmia. If MRI and SPECT were considered together, the sensitivity was 92.3% in hyposmia and 92% in anosmia, but the specificity was 87% in both cases. According to our study, both brain MRI and SPECT have high sensitivity and specificity in the diagnosis of traumatic anosmia, although brain SPECT is slightly superior to MRI. If the two techniques are applied together, the accuracy will be increased.

  18. 3D tomographic imaging with the γ-eye planar scintigraphic gamma camera

    NASA Astrophysics Data System (ADS)

    Tunnicliffe, H.; Georgiou, M.; Loudos, G. K.; Simcox, A.; Tsoumpas, C.

    2017-11-01

    γ-eye is a desktop planar scintigraphic gamma camera (100 mm × 50 mm field of view) designed by BET Solutions as an affordable tool for dynamic, whole body, small-animal imaging. This investigation tests the viability of using γ-eye for the collection of tomographic data for 3D SPECT reconstruction. Two software packages, QSPECT and STIR (software for tomographic image reconstruction), have been compared. Reconstructions have been performed using QSPECT’s implementation of the OSEM algorithm and STIR’s OSMAPOSL (Ordered Subset Maximum A Posteriori One Step Late) and OSSPS (Ordered Subsets Separable Paraboloidal Surrogate) algorithms. Reconstructed images of phantom and mouse data have been assessed in terms of spatial resolution, sensitivity to varying activity levels and uniformity. The effect of varying the number of iterations, the voxel size (1.25 mm default voxel size reduced to 0.625 mm and 0.3125 mm), the point spread function correction and the weight of prior terms were explored. While QSPECT demonstrated faster reconstructions, STIR outperformed it in terms of resolution (as low as 1 mm versus 3 mm), particularly when smaller voxel sizes were used, and in terms of uniformity, particularly when prior terms were used. Little difference in terms of sensitivity was seen throughout.

  19. Molecular SPECT Imaging: An Overview

    PubMed Central

    Khalil, Magdy M.; Tremoleda, Jordi L.; Bayomy, Tamer B.; Gsell, Willy

    2011-01-01

    Molecular imaging has witnessed a tremendous change over the last decade. Growing interest and emphasis are placed on this specialized technology represented by developing new scanners, pharmaceutical drugs, diagnostic agents, new therapeutic regimens, and ultimately, significant improvement of patient health care. Single photon emission computed tomography (SPECT) and positron emission tomography (PET) have their signature on paving the way to molecular diagnostics and personalized medicine. The former will be the topic of the current paper where the authors address the current position of the molecular SPECT imaging among other imaging techniques, describing strengths and weaknesses, differences between SPECT and PET, and focusing on different SPECT designs and detection systems. Radiopharmaceutical compounds of clinical as well-preclinical interest have also been reviewed. Moreover, the last section covers several application, of μSPECT imaging in many areas of disease detection and diagnosis. PMID:21603240

  20. Improved outcomes using brain SPECT-guided treatment versus treatment-as-usual in community psychiatric outpatients: a retrospective case-control study.

    PubMed

    Thornton, John F; Schneider, Howard; McLean, Mary K; van Lierop, Muriel J; Tarzwell, Robert

    2014-01-01

    Brain single-photon emission computed tomography (SPECT) scans indirectly show functional activity via measurement of regional cerebral blood flow. Thirty patients at a community-based psychiatric clinic underwent brain SPECT scans. Changes in scoring of before-treatment and after-treatment scans correlated well with changes in patient Global Assessment of Functioning (GAF) scores before treatment and after treatment. Patients were retrospectively matched with controls with similar diagnoses and pretreatment GAF scores, and those who underwent SPECT-guided treatment improved significantly more than the control patients.

  1. An incidentally found inflamed uterine myoma causing low abdominal pain, using Tc-99m-tektrotyd single photon emission computed tomography-CT hybrid imaging.

    PubMed

    Zandieh, Shahin; Schütz, Matthias; Bernt, Reinhard; Zwerina, Jochen; Haller, Joerg

    2013-01-01

    We report the case of a 50-year-old woman presented with a history of right hemicolectomy due to an ileocecal neuroendocrine tumor and left breast metastasis. Owing to a slightly elevated chromogranin A-level and lower abdominal pain, single photon emission computed tomography-computer tomography (SPECT-CT) was performed. There were no signs of recurrence on the SPECT-CT scan, but the patient was incidentally found to have an inflamed intramural myoma. We believe that the slightly elevated chromogranin A-level was caused by the hypertension that the patient presented. In the clinical context, this is a report of an inflamed uterine myoma seen as a false positive result detected by TC-99m-Tc-EDDA/HYNIC-Tyr3-Octreotide (Tektrotyd) SPECT-CT hybrid imaging.

  2. Visualization of tumor blockage and rerouting of lymphatic drainage in penile cancer patients by use of SPECT/CT.

    PubMed

    Leijte, Joost A P; van der Ploeg, Iris M C; Valdés Olmos, Renato A; Nieweg, Omgo E; Horenblas, Simon

    2009-03-01

    The reliability of sentinel node biopsy is dependent on the accurate visualization and identification of the sentinel node(s). It has been suggested that extensive metastatic involvement of a sentinel node can lead to blocked inflow and rerouting of lymph fluid to a "neo-sentinel node" that may not yet contain tumor cells, causing a false-negative result. However, there is little evidence to support this hypothesis. Recently introduced hybrid SPECT/CT scanners provide both tomographic lymphoscintigraphy and anatomic detail. Such a scanner enabled the present study of the concept of tumor blockage and rerouting of lymphatic drainage in patients with palpable groin metastases. Seventeen patients with unilateral palpable and cytologically proven metastases in the groin underwent bilateral conventional lymphoscintigraphy and SPECT/CT before sentinel node biopsy of the contralateral groin. The pattern of lymphatic drainage in the 17 palpable groin metastases was evaluated for signs of tumor blockage or rerouting. On the CT images, the palpable node metastases could be identified in all 17 groins. Four of the 17 palpable node metastases (24%) showed uptake of radioactivity on the SPECT/CT images. In 10 groins, rerouting of lymphatic drainage to a neo-sentinel node was seen; one neo-sentinel node was located in the contralateral groin. A complete absence of lymphatic drainage was seen in the remaining 3 groins. The concept of tumor blockage and rerouting was visualized in 76% of the groins with palpable metastases. Precise physical examination and preoperative ultrasound with fine-needle aspiration cytology may identify nodes with considerable tumor invasion at an earlier stage and thereby reduce the incidence of false-negative results.

  3. Tc-99m TRODAT uptake in an osteoid tumor of clivus.

    PubMed

    Taywade, Sameer; Tripathi, Madhavi; Tandon, Vivek; Das, Chandan Jyoti; Damle, Nishikant Avinash; Shamim, Shamim Ahmed; Thukral, Parul; Bal, Chandrasekhar

    2016-01-01

    Tc-99m TRODAT is cocaine analog and binds to the dopamine transporter in vivo . Tc-99m TRODAT single-photon emission computed tomography/computed tomography. (SPECT/CT) is useful for demonstrating presynaptic dopaminergic dysfunction in patients with Parkinsonism. However, few reports have shown extrastriatal uptake of Tc-99m TRODAT. We present the case of a 67-year-old male who underwent Tc-99m TRODAT SPECT/CT for evaluation of Parkinsonism. In addition to tracer binding in the striatum, tracer uptake was noted in an osteoid tumor of the clivus. Integrated SPECT/CT enabled precise localization and characterization of the extrastriatal site of tracer binding and emphasizes the importance of such coincidental findings.

  4. Realistic simulated MRI and SPECT databases. Application to SPECT/MRI registration evaluation.

    PubMed

    Aubert-Broche, Berengere; Grova, Christophe; Reilhac, Anthonin; Evans, Alan C; Collins, D Louis

    2006-01-01

    This paper describes the construction of simulated SPECT and MRI databases that account for realistic anatomical and functional variability. The data is used as a gold-standard to evaluate four SPECT/MRI similarity-based registration methods. Simulation realism was accounted for using accurate physical models of data generation and acquisition. MRI and SPECT simulations were generated from three subjects to take into account inter-subject anatomical variability. Functional SPECT data were computed from six functional models of brain perfusion. Previous models of normal perfusion and ictal perfusion observed in Mesial Temporal Lobe Epilepsy (MTLE) were considered to generate functional variability. We studied the impact noise and intensity non-uniformity in MRI simulations and SPECT scatter correction may have on registration accuracy. We quantified the amount of registration error caused by anatomical and functional variability. Registration involving ictal data was less accurate than registration involving normal data. MR intensity nonuniformity was the main factor decreasing registration accuracy. The proposed simulated database is promising to evaluate many functional neuroimaging methods, involving MRI and SPECT data.

  5. Molecular imaging of angiogenesis with SPECT

    PubMed Central

    Boerman, Otto C.

    2010-01-01

    Single-photon emission computed tomography (SPECT) and position emission tomography (PET) are the two main imaging modalities in nuclear medicine. SPECT imaging is more widely available than PET imaging and the radionuclides used for SPECT are easier to prepare and usually have a longer half-life than those used for PET. In addition, SPECT is a less expensive technique than PET. Commonly used gamma emitters are: 99mTc (Emax 141 keV, T1/2 6.02 h), 123I (Emax 529 keV, T1/2 13.0 h) and 111In (Emax 245 keV, T1/2 67.2 h). Compared to clinical SPECT, PET has a higher spatial resolution and the possibility to more accurately estimate the in vivo concentration of a tracer. In preclinical imaging, the situation is quite different. The resolution of microSPECT cameras (<0.5 mm) is higher than that of microPET cameras (>1.5 mm). In this report, studies on new radiolabelled tracers for SPECT imaging of angiogenesis in tumours are reviewed. PMID:20617435

  6. Breast imaging technology: Recent advances in imaging endogenous or transferred gene expression utilizing radionuclide technologies in living subjects - applications to breast cancer

    PubMed Central

    Berger, Frank; Sam Gambhir, Sanjiv

    2001-01-01

    A variety of imaging technologies is being investigated as tools for studying gene expression in living subjects. Two technologies that use radiolabeled isotopes are single photon emission computed tomography (SPECT) and positron emission tomography (PET). A relatively high sensitivity, a full quantitative tomographic capability, and the ability to extend small animal imaging assays directly into human applications characterize radionuclide approaches. Various radiolabeled probes (tracers) can be synthesized to target specific molecules present in breast cancer cells. These include antibodies or ligands to target cell surface receptors, substrates for intracellular enzymes, antisense oligodeoxynucleotide probes for targeting mRNA, probes for targeting intracellular receptors, and probes for genes transferred into the cell. We briefly discuss each of these imaging approaches and focus in detail on imaging reporter genes. In a PET reporter gene system for in vivo reporter gene imaging, the protein products of the reporter genes sequester positron emitting reporter probes. PET subsequently measures the PET reporter gene dependent sequestration of the PET reporter probe in living animals. We describe and review reporter gene approaches using the herpes simplex type 1 virus thymidine kinase and the dopamine type 2 receptor genes. Application of the reporter gene approach to animal models for breast cancer is discussed. Prospects for future applications of the transgene imaging technology in human gene therapy are also discussed. Both SPECT and PET provide unique opportunities to study animal models of breast cancer with direct application to human imaging. Continued development of new technology, probes and assays should help in the better understanding of basic breast cancer biology and in the improved management of breast cancer patients. PMID:11250742

  7. 99mTc-HMPAO SPECT of the brain in mild to moderate traumatic brain injury patients: compared with CT--a prospective study.

    PubMed

    Nedd, K; Sfakianakis, G; Ganz, W; Uricchio, B; Vernberg, D; Villanueva, P; Jabir, A M; Bartlett, J; Keena, J

    1993-01-01

    Single photon emission computed tomography (SPECT) with Technetium-99m hexamethyl propylenamine oxime (Tc-99m-HMPAO) was used in 20 patients with mild to moderate traumatic brain injury (TBI) to evaluate the effects of brain trauma on regional cerebral blood flow (rCBF). SPECT scan was compared with CT scan in 16 patients. SPECT showed intraparenchymal differences in rCBF more often than lesions diagnosed with CT scans (87.5% vs. 37.5%). In five of six patients with lesions in both modalities, the area of involvement was relatively larger on SPECT scans than on CT scans. Contrecoup changes were seen in five patients on SPECT alone, two patients with CT alone and one patient had contrecoup lesions on CT and SPECT. Of the eight patients (50%) with skull fractures, seven (43.7%) had rCBF findings on SPECT scan and five (31.3%) demonstrated decrease in rCBF in brain underlying the fracture. All these patients with fractures had normal brain on CT scans. Conversely, extra-axial lesions and fractures evident on CT did not visualize on SPECT, but SPECT demonstrated associated changes in rCBF. Although there is still lack of clinical and pathological correlation, SPECT appears to be a promising method for a more sensitive evaluation of axial lesions in patients with mild to moderate TBI.

  8. Investigation of dynamic SPECT measurements of the arterial input function in human subjects using simulation, phantom and human studies

    NASA Astrophysics Data System (ADS)

    Winant, Celeste D.; Aparici, Carina Mari; Zelnik, Yuval R.; Reutter, Bryan W.; Sitek, Arkadiusz; Bacharach, Stephen L.; Gullberg, Grant T.

    2012-01-01

    Computer simulations, a phantom study and a human study were performed to determine whether a slowly rotating single-photon computed emission tomography (SPECT) system could provide accurate arterial input functions for quantification of myocardial perfusion imaging using kinetic models. The errors induced by data inconsistency associated with imaging with slow camera rotation during tracer injection were evaluated with an approach called SPECT/P (dynamic SPECT from positron emission tomography (PET)) and SPECT/D (dynamic SPECT from database of SPECT phantom projections). SPECT/P simulated SPECT-like dynamic projections using reprojections of reconstructed dynamic 94Tc-methoxyisobutylisonitrile (94Tc-MIBI) PET images acquired in three human subjects (1 min infusion). This approach was used to evaluate the accuracy of estimating myocardial wash-in rate parameters K1 for rotation speeds providing 180° of projection data every 27 or 54 s. Blood input and myocardium tissue time-activity curves (TACs) were estimated using spatiotemporal splines. These were fit to a one-compartment perfusion model to obtain wash-in rate parameters K1. For the second method (SPECT/D), an anthropomorphic cardiac torso phantom was used to create real SPECT dynamic projection data of a tracer distribution derived from 94Tc-MIBI PET scans in the blood pool, myocardium, liver and background. This method introduced attenuation, collimation and scatter into the modeling of dynamic SPECT projections. Both approaches were used to evaluate the accuracy of estimating myocardial wash-in parameters for rotation speeds providing 180° of projection data every 27 and 54 s. Dynamic cardiac SPECT was also performed in a human subject at rest using a hybrid SPECT/CT scanner. Dynamic measurements of 99mTc-tetrofosmin in the myocardium were obtained using an infusion time of 2 min. Blood input, myocardium tissue and liver TACs were estimated using the same spatiotemporal splines. The spatiotemporal maximum-likelihood expectation-maximization (4D ML-EM) reconstructions gave more accurate reconstructions than did standard frame-by-frame static 3D ML-EM reconstructions. The SPECT/P results showed that 4D ML-EM reconstruction gave higher and more accurate estimates of K1 than did 3D ML-EM, yielding anywhere from a 44% underestimation to 24% overestimation for the three patients. The SPECT/D results showed that 4D ML-EM reconstruction gave an overestimation of 28% and 3D ML-EM gave an underestimation of 1% for K1. For the patient study the 4D ML-EM reconstruction provided continuous images as a function of time of the concentration in both ventricular cavities and myocardium during the 2 min infusion. It is demonstrated that a 2 min infusion with a two-headed SPECT system rotating 180° every 54 s can produce measurements of blood pool and myocardial TACs, though the SPECT simulation studies showed that one must sample at least every 30 s to capture a 1 min infusion input function.

  9. Coregistration of Magnetic Resonance and Single Photon Emission Computed Tomography Images for Noninvasive Localization of Stem Cells Grafted in the Infarcted Rat Myocardium

    PubMed Central

    Shen, Dinggang; Liu, Dengfeng; Cao, Zixiong; Acton, Paul D.; Zhou, Rong

    2008-01-01

    This paper demonstrates the application of mutual information based coregistration of radionuclide and magnetic resonance imaging (MRI) in an effort to use multimodality imaging for noninvasive localization of stem cells grafted in the infarcted myocardium in rats. Radionuclide imaging such as single photon emission computed tomography (SPECT) or positron emission tomography (PET) inherently has high sensitivity and is suitable for tracking of labeled stem cells, while high-resolution MRI is able to provide detailed anatomical and functional information of myocardium. Thus, coregistration of PET or SPECT images with MRI will map the location and distribution of stem cells on detailed myocardium structures. To validate this coregistration method, SPECT data were simulated by using a Monte Carlo-based projector that modeled the pinhole-imaging physics assuming nonzero diameter and photon penetration at the edge. Translational and rotational errors of the coregistration were examined with respect to various SPECT activities, and they are on average about 0.50 mm and 0.82°, respectively. Only the rotational error is dependent on activity of SPECT data. Stem cells were labeled with 111 Indium oxyquinoline and grafted in the ischemic myocardium of a rat model. Dual-tracer small-animal SPECT images were acquired, which allowed simultaneous detection of 111In-labeled stem cells and of [99mTc]sestamibi to assess myocardial perfusion deficit. The same animals were subjected to cardiac MRI. A mutual-information-based coregistration method was then applied to the SPECT and MRIs. By coregistration, the 111 In signal from labeled cells was mapped into the akinetic region identified on cine MRIs; the regional perfusion deficit on the SPECT images also coincided with the akinetic region on the MR image. PMID:17053860

  10. Prospective Evaluation of (99m)Tc-sestamibi SPECT/CT for the Diagnosis of Renal Oncocytomas and Hybrid Oncocytic/Chromophobe Tumors.

    PubMed

    Gorin, Michael A; Rowe, Steven P; Baras, Alexander S; Solnes, Lilja B; Ball, Mark W; Pierorazio, Phillip M; Pavlovich, Christian P; Epstein, Jonathan I; Javadi, Mehrbod S; Allaf, Mohamad E

    2016-03-01

    Nuclear imaging offers a potential noninvasive means of determining the histology of renal tumors. The aim of this study was to evaluate the accuracy of technetium-99m ((99m)Tc)-sestamibi single-photon emission computed tomography/x-ray computed tomography (SPECT/CT) for the differentiation of oncocytomas and hybrid oncocytic/chromophobe tumors (HOCTs) from other renal tumor histologies. In total, 50 patients with a solid clinical T1 renal mass were imaged with (99m)Tc-sestamibi SPECT/CT prior to surgical resection. Preoperative SPECT/CT scans were reviewed by two blinded readers, and their results were compared with centrally reviewed surgical pathology data. Following surgery, 6 (12%) tumors were classified as renal oncocytomas and 2 (4%) as HOCTs. With the exception of 1 (2%) angiomyolipoma, all other tumors were renal cell carcinomas (82%). (99m)Tc-sestamibi SPECT/CT correctly identified 5 of 6 (83.3%) oncocytomas and 2 of 2 (100%) HOCTs, resulting in an overall sensitivity of 87.5% (95% confidence interval [CI], 47.4-99.7%). Only two tumors were falsely positive on SPECT/CT, resulting in a specificity of 95.2% (95% CI, 83.8-99.4%). In summary, (99m)Tc-sestamibi SPECT/CT is a promising imaging test for the noninvasive diagnosis of renal oncocytomas and HOCTs. We found that the imaging test (99m)Tc-sestamibi SPECT/CT can be used to accurately diagnose two types of benign kidney tumors. This test may be eventually used to help better evaluate patients diagnosed with a renal tumor. Copyright © 2015 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  11. Monte Carlo simulation of PET and SPECT imaging of {sup 90}Y

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Akihiko, E-mail: takahsr@hs.med.kyushu-u.ac.jp; Sasaki, Masayuki; Himuro, Kazuhiko

    2015-04-15

    Purpose: Yittrium-90 ({sup 90}Y) is traditionally thought of as a pure beta emitter, and is used in targeted radionuclide therapy, with imaging performed using bremsstrahlung single-photon emission computed tomography (SPECT). However, because {sup 90}Y also emits positrons through internal pair production with a very small branching ratio, positron emission tomography (PET) imaging is also available. Because of the insufficient image quality of {sup 90}Y bremsstrahlung SPECT, PET imaging has been suggested as an alternative. In this paper, the authors present the Monte Carlo-based simulation–reconstruction framework for {sup 90}Y to comprehensively analyze the PET and SPECT imaging techniques and to quantitativelymore » consider the disadvantages associated with them. Methods: Our PET and SPECT simulation modules were developed using Monte Carlo simulation of Electrons and Photons (MCEP), developed by Dr. S. Uehara. PET code (MCEP-PET) generates a sinogram, and reconstructs the tomography image using a time-of-flight ordered subset expectation maximization (TOF-OSEM) algorithm with attenuation compensation. To evaluate MCEP-PET, simulated results of {sup 18}F PET imaging were compared with the experimental results. The results confirmed that MCEP-PET can simulate the experimental results very well. The SPECT code (MCEP-SPECT) models the collimator and NaI detector system, and generates the projection images and projection data. To save the computational time, the authors adopt the prerecorded {sup 90}Y bremsstrahlung photon data calculated by MCEP. The projection data are also reconstructed using the OSEM algorithm. The authors simulated PET and SPECT images of a water phantom containing six hot spheres filled with different concentrations of {sup 90}Y without background activity. The amount of activity was 163 MBq, with an acquisition time of 40 min. Results: The simulated {sup 90}Y-PET image accurately simulated the experimental results. PET image is visually superior to SPECT image because of the low background noise. The simulation reveals that the detected photon number in SPECT is comparable to that of PET, but the large fraction (approximately 75%) of scattered and penetration photons contaminates SPECT image. The lower limit of {sup 90}Y detection in SPECT image was approximately 200 kBq/ml, while that in PET image was approximately 100 kBq/ml. Conclusions: By comparing the background noise level and the image concentration profile of both the techniques, PET image quality was determined to be superior to that of bremsstrahlung SPECT. The developed simulation codes will be very useful in the future investigations of PET and bremsstrahlung SPECT imaging of {sup 90}Y.« less

  12. Low-dose computed tomography scans with automatic exposure control for patients of different ages undergoing cardiac PET/CT and SPECT/CT.

    PubMed

    Yang, Ching-Ching; Yang, Bang-Hung; Tu, Chun-Yuan; Wu, Tung-Hsin; Liu, Shu-Hsin

    2017-06-01

    This study aimed to evaluate the efficacy of automatic exposure control (AEC) in order to optimize low-dose computed tomography (CT) protocols for patients of different ages undergoing cardiac PET/CT and single-photon emission computed tomography/computed tomography (SPECT/CT). One PET/CT and one SPECT/CT were used to acquire CT images for four anthropomorphic phantoms representative of 1-year-old, 5-year-old and 10-year-old children and an adult. For the hybrid systems investigated in this study, the radiation dose and image quality of cardiac CT scans performed with AEC activated depend mainly on the selection of a predefined image quality index. Multiple linear regression methods were used to analyse image data from anthropomorphic phantom studies to investigate the effects of body size and predefined image quality index on CT radiation dose in cardiac PET/CT and SPECT/CT scans. The regression relationships have a coefficient of determination larger than 0.9, indicating a good fit to the data. According to the regression models, low-dose protocols using the AEC technique were optimized for patients of different ages. In comparison with the standard protocol with AEC activated for adult cardiac examinations used in our clinical routine practice, the optimized paediatric protocols in PET/CT allow 32.2, 63.7 and 79.2% CT dose reductions for anthropomorphic phantoms simulating 10-year-old, 5-year-old and 1-year-old children, respectively. The corresponding results for cardiac SPECT/CT are 8.4, 51.5 and 72.7%. AEC is a practical way to reduce CT radiation dose in cardiac PET/CT and SPECT/CT, but the AEC settings should be determined properly for optimal effect. Our results show that AEC does not eliminate the need for paediatric protocols and CT examinations using the AEC technique should be optimized for paediatric patients to reduce the radiation dose as low as reasonably achievable.

  13. LROC Investigation of Three Strategies for Reducing the Impact of Respiratory Motion on the Detection of Solitary Pulmonary Nodules in SPECT

    NASA Astrophysics Data System (ADS)

    Smyczynski, Mark S.; Gifford, Howard C.; Dey, Joyoni; Lehovich, Andre; McNamara, Joseph E.; Segars, W. Paul; King, Michael A.

    2016-02-01

    The objective of this investigation was to determine the effectiveness of three motion reducing strategies in diminishing the degrading impact of respiratory motion on the detection of small solitary pulmonary nodules (SPNs) in single-photon emission computed tomographic (SPECT) imaging in comparison to a standard clinical acquisition and the ideal case of imaging in the absence of respiratory motion. To do this nonuniform rational B-spline cardiac-torso (NCAT) phantoms based on human-volunteer CT studies were generated spanning the respiratory cycle for a normal background distribution of Tc-99 m NeoTect. Similarly, spherical phantoms of 1.0-cm diameter were generated to model small SPN for each of the 150 uniquely located sites within the lungs whose respiratory motion was based on the motion of normal structures in the volunteer CT studies. The SIMIND Monte Carlo program was used to produce SPECT projection data from these. Normal and single-lesion containing SPECT projection sets with a clinically realistic Poisson noise level were created for the cases of 1) the end-expiration (EE) frame with all counts, 2) respiration-averaged motion with all counts, 3) one fourth of the 32 frames centered around EE (Quarter Binning), 4) one half of the 32 frames centered around EE (Half Binning), and 5) eight temporally binned frames spanning the respiratory cycle. Each of the sets of combined projection data were reconstructed with RBI-EM with system spatial-resolution compensation (RC). Based on the known motion for each of the 150 different lesions, the reconstructed volumes of respiratory bins were shifted so as to superimpose the locations of the SPN onto that in the first bin (Reconstruct and Shift). Five human observers performed localization receiver operating characteristics (LROC) studies of SPN detection. The observer results were analyzed for statistical significance differences in SPN detection accuracy among the three correction strategies, the standard acquisition, and the ideal case of the absence of respiratory motion. Our human-observer LROC determined that Quarter Binning and Half Binning strategies resulted in SPN detection accuracy statistically significantly below ( ) that of standard clinical acquisition, whereas the Reconstruct and Shift strategy resulted in a detection accuracy not statistically significantly different from that of the ideal case. This investigation demonstrates that tumor detection based on acquisitions associated with less than all the counts which could potentially be employed may result in poorer detection despite limiting the motion of the lesion. The Reconstruct and Shift method results in tumor detection that is equivalent to ideal motion correction.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siman, W.; Mikell, J. K.; Kappadath, S. C., E-mail

    Purpose: To develop a practical background compensation (BC) technique to improve quantitative {sup 90}Y-bremsstrahlung single-photon emission computed tomography (SPECT)/computed tomography (CT) using a commercially available imaging system. Methods: All images were acquired using medium-energy collimation in six energy windows (EWs), ranging from 70 to 410 keV. The EWs were determined based on the signal-to-background ratio in planar images of an acrylic phantom of different thicknesses (2–16 cm) positioned below a {sup 90}Y source and set at different distances (15–35 cm) from a gamma camera. The authors adapted the widely used EW-based scatter-correction technique by modeling the BC as scaled images.more » The BC EW was determined empirically in SPECT/CT studies using an IEC phantom based on the sphere activity recovery and residual activity in the cold lung insert. The scaling factor was calculated from 20 clinical planar {sup 90}Y images. Reconstruction parameters were optimized in the same SPECT images for improved image quantification and contrast. A count-to-activity calibration factor was calculated from 30 clinical {sup 90}Y images. Results: The authors found that the most appropriate imaging EW range was 90–125 keV. BC was modeled as 0.53× images in the EW of 310–410 keV. The background-compensated clinical images had higher image contrast than uncompensated images. The maximum deviation of their SPECT calibration in clinical studies was lowest (<10%) for SPECT with attenuation correction (AC) and SPECT with AC + BC. Using the proposed SPECT-with-AC + BC reconstruction protocol, the authors found that the recovery coefficient of a 37-mm sphere (in a 10-mm volume of interest) increased from 39% to 90% and that the residual activity in the lung insert decreased from 44% to 14% over that of SPECT images with AC alone. Conclusions: The proposed EW-based BC model was developed for {sup 90}Y bremsstrahlung imaging. SPECT with AC + BC gave improved lesion detectability and activity quantification compared to SPECT with AC only. The proposed methodology can readily be used to tailor {sup 90}Y SPECT/CT acquisition and reconstruction protocols with different SPECT/CT systems for quantification and improved image quality in clinical settings.« less

  15. Hybrid-fusion SPECT/CT systems in parathyroid adenoma: Technological improvements and added clinical diagnostic value.

    PubMed

    Wong, K K; Chondrogiannis, S; Bowles, H; Fuster, D; Sánchez, N; Rampin, L; Rubello, D

    Nuclear medicine traditionally employs planar and single photon emission computed tomography (SPECT) imaging techniques to depict the biodistribution of radiotracers for the diagnostic investigation of a range of disorders of endocrine gland function. The usefulness of combining functional information with anatomy derived from computed tomography (CT), magnetic resonance imaging (MRI), and high resolution ultrasound (US), has long been appreciated, either using visual side-by-side correlation, or software-based co-registration. The emergence of hybrid SPECT/CT camera technology now allows the simultaneous acquisition of combined multi-modality imaging, with seamless fusion of 3D volume datasets. Thus, it is not surprising that there is growing literature describing the many advantages that contemporary SPECT/CT technology brings to radionuclide investigation of endocrine disorders, showing potential advantages for the pre-operative locating of the parathyroid adenoma using a minimally invasive surgical approach, especially in the presence of ectopic glands and in multiglandular disease. In conclusion, hybrid SPECT/CT imaging has become an essential tool to ensure the most accurate diagnostic in the management of patients with hyperparathyroidism. Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  16. Fully automatic multi-atlas segmentation of CTA for partial volume correction in cardiac SPECT/CT

    NASA Astrophysics Data System (ADS)

    Liu, Qingyi; Mohy-ud-Din, Hassan; Boutagy, Nabil E.; Jiang, Mingyan; Ren, Silin; Stendahl, John C.; Sinusas, Albert J.; Liu, Chi

    2017-05-01

    Anatomical-based partial volume correction (PVC) has been shown to improve image quality and quantitative accuracy in cardiac SPECT/CT. However, this method requires manual segmentation of various organs from contrast-enhanced computed tomography angiography (CTA) data. In order to achieve fully automatic CTA segmentation for clinical translation, we investigated the most common multi-atlas segmentation methods. We also modified the multi-atlas segmentation method by introducing a novel label fusion algorithm for multiple organ segmentation to eliminate overlap and gap voxels. To evaluate our proposed automatic segmentation, eight canine 99mTc-labeled red blood cell SPECT/CT datasets that incorporated PVC were analyzed, using the leave-one-out approach. The Dice similarity coefficient of each organ was computed. Compared to the conventional label fusion method, our proposed label fusion method effectively eliminated gaps and overlaps and improved the CTA segmentation accuracy. The anatomical-based PVC of cardiac SPECT images with automatic multi-atlas segmentation provided consistent image quality and quantitative estimation of intramyocardial blood volume, as compared to those derived using manual segmentation. In conclusion, our proposed automatic multi-atlas segmentation method of CTAs is feasible, practical, and facilitates anatomical-based PVC of cardiac SPECT/CT images.

  17. Functional mechanism of lung mosaic CT attenuation: assessment with deep-inspiration breath-hold perfusion SPECT-CT fusion imaging and non-breath-hold Technegas SPECT.

    PubMed

    Suga, K; Yasuhiko, K; Iwanaga, H; Tokuda, O; Matsunaga, N

    2009-01-01

    The functional mechanism of lung mosaic computed tomography attenuation (MCA) in pulmonary vascular disease (PVD) and obstructive airway disease (OAD) has not yet been fully clarified. To clarify the mechanism of MCA in these diseases by assessing the relationship between regional lung function and CT attenuation change at MCA sites with the use of automated deep-inspiratory breath-hold (DIBrH) perfusion single-photon emission computed tomography (SPECT)-CT fusion images and non-breath-hold Technegas SPECT. Subjects were 42 PVD patients (31 pulmonary thromboembolism, four primary/two secondary pulmonary hypertension, and five Takayasu arteritis), 12 OAD patients (five acute asthma, four obliterative bronchiolitis, and three bronchiectasis), and 12 normal controls, all of whom had MCA on DIBrH CT. The relationship between regional lung function and CT attenuation change at the lung slices with MCA was assessed using DIBrH perfusion SPECT-CT fusion images and non-breath-hold Technegas SPECT. The severity of perfusion defects with or without MCA was quantified by regions-of-interest analysis. On DIBrH CT and perfusion SPECT, in contrast to no noticeable CT attenuation abnormality and fairly uniform perfusion in controls, 60 MCA and 274 perfusion defects in PVD patients, and 18 MCA and 61 defects in OAD patients were identified, with a total of 77 ventilation defects on Technegas SPECT in all patients. SPECT-CT correlation showed that, throughout the 78 MCA sites of all patients, lung perfusion was persistently decreased at low CT attenuation and preserved at intervening high CT attenuation, while lung ventilation was poorly correlated with CT attenuation change. The radioactivity ratios of reduced perfusion and the intervening preserved perfusion at the 78 perfusion defects with MCA were significantly lower than those at the remaining 257 defects without MCA (P<0.0001). Although further validation is required, our results indicate that heterogeneous pulmonary arterial perfusion may be a dominant mechanism of MCA in PVD and OAD.

  18. Review of two years of experiences with SPECT among psychiatric patients in a rural hospital setting.

    PubMed

    Sheehan, William; Thurber, Steven

    2008-09-01

    We summarize single proton emission computed tomography (SPECT) findings from 63 psychiatric patients in a small rural hospital in western Minnesota. SPECT scans were ordered only for patients in whom documentation of hypoperfusion and functional deficits might be helpful in clarifying diagnoses and treatment planning. The patients referred for SPECT scans had histories of traumatic brain injuries, atypical psychiatric symptom presentations, or conditions that were refractory to standard treatments. In the context of strict referral guidelines and close psychiatrist-radiologist collaboration, a much higher yield of significant findings was obtained compared with those noted in other reports in the literature.

  19. Hybrid SPECT/CT imaging in neurology.

    PubMed

    Ciarmiello, Andrea; Giovannini, Elisabetta; Meniconi, Martina; Cuccurullo, Vincenzo; Gaeta, Maria Chiara

    2014-01-01

    In recent years, the SPECT/CT hybrid modality has led to a rapid development of imaging techniques in nuclear medicine, opening new perspectives for imaging staff and patients as well. However, while, the clinical role of positron emission tomography-computed tomography (PET-CT) is well consolidated, the diffusion and the consequent value of single-photon emission tomography-computed tomography (SPECT-CT) has yet to be weighed, Hence, there is a need for a careful analysis, comparing the "potential" benefits of the hybrid modality with the "established" ones of the standalone machine. The aim of this article is to analyze the impact of this hybrid tool on the diagnosis of diseases of the central nervous system, comparing strengths and weaknesses of both modalities through the use of SWOT analysis.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Sui, E-mail: sshen@uabmc.edu; Jacob, Rojymon; Bender, Luvenia W.

    Radiotherapy or stereotactic body radiosurgery (SBRT) requires a sufficient functional liver volume to tolerate the treatment. The current study extended the work of de Graaf et al. (2010) [3] on the use of {sup 99m}Tc-mebrofenin imaging for presurgery planning to radiotherapy planning for liver cancer or metastases. Patient was immobilized and imaged in an identical position on a single-photon emission computed tomography/computed tomography (SPECT-CT) system and a radiotherapy simulation CT system. {sup 99m}Tc-mebrofenin SPECT was registered to the planning CT through image registration of noncontrast CT from SPECT-CT system to the radiotherapy planning CT. The voxels with higher uptake ofmore » {sup 99m}Tc-mebrofenin were transferred to the planning CT as an avoidance structure in optimizing a 2-arc RapidArc plan for SBRT delivery. Excellent dose coverage to the target and sparing of the healthy remnant liver volume was achieved. This report illustrated a procedure for the use of {sup 99m}Tc-mebrofenin SPECT for optimizing radiotherapy for liver cancers and metastases.« less

  1. Multi-pinhole SPECT Imaging with Silicon Strip Detectors

    PubMed Central

    Peterson, Todd E.; Shokouhi, Sepideh; Furenlid, Lars R.; Wilson, Donald W.

    2010-01-01

    Silicon double-sided strip detectors offer outstanding instrinsic spatial resolution with reasonable detection efficiency for iodine-125 emissions. This spatial resolution allows for multiple-pinhole imaging at low magnification, minimizing the problem of multiplexing. We have conducted imaging studies using a prototype system that utilizes a detector of 300-micrometer thickness and 50-micrometer strip pitch together with a 23-pinhole collimator. These studies include an investigation of the synthetic-collimator imaging approach, which combines multiple-pinhole projections acquired at multiple magnifications to obtain tomographic reconstructions from limited-angle data using the ML-EM algorithm. Sub-millimeter spatial resolution was obtained, demonstrating the basic validity of this approach. PMID:20953300

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirasaka, Y.; Ito, M.; Okuno, T.

    Sequential {sup 123}I-N-isopropyl-p-iodoamphetamine (IMP) single-photon emission computed tomography (SPECT) was performed in 2 patients with acute infantile hemiplegia. In both patients, low uptake of IMP was detected in the targeted abnormal hemisphere. The {sup 123}I-IMP-SPECT findings indicative of a pathologic condition persisted even when the clinical findings and electroencephalographic abnormalities improved. Because of its sensitivity, noninvasiveness, and accurate reflection of the cerebral blood flow distribution, {sup 123}I-IMP-SPECT is useful in the examination of acute infantile hemiplegia and in the evaluation of prognosis.

  3. Single photon emission computed tomography (SPECT) in epilepsy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leroy, R.F.

    1991-12-31

    Epilepsy is a common neurologic disorder which has just begun to be studied with single photon emission computerized tomography (SPECT). Epilepsy usually is studied with electroencephalographic (EEG) techniques that demonstrate the physiologic changes that occur during seizures, and with neuroimaging techniques that show the brain structures where seizures originate. Neither method alone has been adequate to describe the pathophysiology of the patient with epilepsy. EEG techniques lack anatomic sensitivity, and there are no structural abnormalities shown by neuroimaging which are specific for epilepsy. Functional imaging (FI) has developed as a physiologic tool with anatomic sensitivity, and SPECT has been promotedmore » as a FI technique because of its potentially wide availability. However, SPECT is early in its development and its clinical utility for epilepsy still has to be demonstrated. To understand this role of SPECT, consideration must be given to the pathophysiology of epilepsy, brain physiology, types of seizure, epileptic syndromes, and the SPECT technique itself. 44 refs., 2 tabs.« less

  4. Computed Tomographic Blend Sign Is Associated With Computed Tomographic Angiography Spot Sign and Predicts Secondary Neurological Deterioration After Intracerebral Hemorrhage.

    PubMed

    Sporns, Peter B; Schwake, Michael; Schmidt, Rene; Kemmling, André; Minnerup, Jens; Schwindt, Wolfram; Cnyrim, Christian; Zoubi, Tarek; Heindel, Walter; Niederstadt, Thomas; Hanning, Uta

    2017-01-01

    Significant early hematoma growth in patients with intracerebral hemorrhage is an independent predictor of poor functional outcome. Recently, the novel blend sign (BS) has been introduced as a new imaging sign for predicting hematoma growth in noncontrast computed tomography. Another parameter predicting increasing hematoma size is the well-established spot sign (SS) visible in computed tomographic angiography. We, therefore, aimed to clarify the association between established SS and novel BS and their values predicting a secondary neurological deterioration. Retrospective study inclusion criteria were (1) spontaneous intracerebral hemorrhage confirmed on noncontrast computed tomography and (2) noncontrast computed tomography and computed tomographic angiography performed on admission within 6 hours after onset of symptoms. We defined a binary outcome (secondary neurological deterioration versus no secondary deterioration). As secondary neurological deterioration, we defined (1) early hemicraniectomy under standardized criteria or (2) secondary decrease of Glasgow Coma Scale of >3 points, both within the first 48 hours after symptom onset. Of 182 patients with spontaneous intracerebral hemorrhage, 37 (20.3%) presented with BS and 39 (21.4%) with SS. Of the 81 patients with secondary deterioration, 31 (38.3%) had BS and SS on admission. Multivariable logistic regression analysis identified hematoma volume (odds ratio, 1.07 per mL; P≤0.001), intraventricular hemorrhage (odds ratio, 3.08; P=0.008), and the presence of BS (odds ratio, 11.47; P≤0.001) as independent predictors of neurological deterioration. The BS, which is obtainable in noncontrast computed tomography, shows a high correlation with the computed tomographic angiography SS and is a reliable predictor of secondary neurological deterioration after spontaneous intracerebral hemorrhage. © 2016 American Heart Association, Inc.

  5. Core Binding Site of a Thioflavin-T-Derived Imaging Probe on Amyloid β Fibrils Predicted by Computational Methods.

    PubMed

    Kawai, Ryoko; Araki, Mitsugu; Yoshimura, Masashi; Kamiya, Narutoshi; Ono, Masahiro; Saji, Hideo; Okuno, Yasushi

    2018-05-16

    Development of new diagnostic imaging probes for Alzheimer's disease, such as positron emission tomography (PET) and single photon emission computed tomography (SPECT) probes, has been strongly desired. In this study, we investigated the most accessible amyloid β (Aβ) binding site of [ 123 I]IMPY, a Thioflavin-T-derived SPECT probe, using experimental and computational methods. First, we performed a competitive inhibition assay with Orange-G, which recognizes the KLVFFA region in Aβ fibrils, suggesting that IMPY and Orange-G bind to different sites in Aβ fibrils. Next, we precisely predicted the IMPY binding site on a multiple-protofilament Aβ fibril model using computational approaches, consisting of molecular dynamics and docking simulations. We generated possible IMPY-binding structures using docking simulations to identify candidates for probe-binding sites. The binding free energy of IMPY with the Aβ fibril was calculated by a free energy simulation method, MP-CAFEE. These computational results suggest that IMPY preferentially binds to an interfacial pocket located between two protofilaments and is stabilized mainly through hydrophobic interactions. Finally, our computational approach was validated by comparing it with the experimental results. The present study demonstrates the possibility of computational approaches to screen new PET/SPECT probes for Aβ imaging.

  6. IQ-SPECT for thallium-201 myocardial perfusion imaging: effect of normal databases on quantification.

    PubMed

    Konishi, Takahiro; Nakajima, Kenichi; Okuda, Koichi; Yoneyama, Hiroto; Matsuo, Shinro; Shibutani, Takayuki; Onoguchi, Masahisa; Kinuya, Seigo

    2017-07-01

    Although IQ-single-photon emission computed tomography (SPECT) provides rapid acquisition and attenuation-corrected images, the unique technology may create characteristic distribution different from the conventional imaging. This study aimed to compare the diagnostic performance of IQ-SPECT using Japanese normal databases (NDBs) with that of the conventional SPECT for thallium-201 ( 201 Tl) myocardial perfusion imaging (MPI). A total of 36 patients underwent 1-day 201 Tl adenosine stress-rest MPI. Images were acquired with IQ-SPECT at approximately one-quarter of the standard time of conventional SPECT. Projection data acquired with the IQ-SPECT system were reconstructed via an ordered subset conjugate gradient minimizer method with or without scatter and attenuation correction (SCAC). Projection data obtained using the conventional SPECT were reconstructed via a filtered back projection method without SCAC. The summed stress score (SSS) was calculated using NDBs created by the Japanese Society of Nuclear Medicine working group, and scores were compared between IQ-SPECT and conventional SPECT using the acquisition condition-matched NDBs. The diagnostic performance of the methods for the detection of coronary artery disease was also compared. SSSs were 6.6 ± 8.2 for the conventional SPECT, 6.6 ± 9.4 for IQ-SPECT without SCAC, and 6.5 ± 9.7 for IQ-SPECT with SCAC (p = n.s. for each comparison). The SSS showed a strong positive correlation between conventional SPECT and IQ-SPECT (r = 0.921 and p < 0.0001), and the correlation between IQ-SPECT with and without SCAC was also good (r = 0.907 and p < 0.0001). Regarding diagnostic performance, the sensitivity, specificity, and accuracy were 80.8, 78.9, and 79.4%, respectively, for the conventional SPECT; 80.8, 80.3, and 82.0%, respectively, for IQ-SPECT without SCAC; and 88.5, 86.8, and 87.3%, respectively, for IQ-SPECT with SCAC, respectively. The area under the curve obtained via receiver operating characteristic analysis were 0.77, 0.80, and 0.86 for conventional SPECT, IQ-SPECT without SCAC, and IQ-SPECT with SCAC, respectively (p = n.s. for each comparison). When appropriate NDBs were used, the diagnostic performance of 201 Tl IQ-SPECT was comparable with that of the conventional system regardless of different characteristics of myocardial accumulation in the conventional system.

  7. Quantifying regional cerebral blood flow by N-isopropyl-P-[I-123]iodoamphetamine (IMP) using a ring type single-photon emission computed tomography system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, N.; Odano, I.; Ohkubo, M.

    1994-05-01

    We developed a more accurate quantitative measurement of regional cerebral blood flow (rCBF) with the microsphere model using N-isopropyl-p-[I-123] iodoamphetamine (IMP) and a ring type single photon emission computed tomography (SPECT) system. SPECT studies were performed in 17 patients with brain diseases. A dose of 222 MBq (6 mCi) of [I-123]IMP was injected i.v., at the same time a 5 min period of arterial blood withdrawal was begun. SPECT data were acquired from 25 min to 60 min after tracer injection. For obtaining the brain activity concentration at 5 min after IMP injection, total brain counts collections and one minutemore » period short time SPECT studies were performed at 5, 20, and 60 min. Measurement of the values of rCBF was calculated using short time SPECT images at 5 min (rCBF), static SPECT images corrected with total cerebral counts (rCBF{sub Ct}.) and those corrected with reconstructed counts on short time SPECT images (rCBF{sub Cb}). There was a good relationship (r=0.69) between rCBF and rCBF{sub Ct}, however, rCBF{sub Ct} tends to be underestimated in high flow areas and overestimated in low flow areas. There was better relationship between rCBF and rCBF{sub Cb}(r=0.92). The overestimation and underestimation shown in rCBF{sub Ct} was considered to be due to the correction of reconstructed counts using a total cerebral time activity curve, because of the kinetic behavior of [I-123]IMP was different in each region. We concluded that more accurate rCBF values could be obtained using the regional time activity curves.« less

  8. SPECT/CT imaging in general orthopedic practice.

    PubMed

    Scharf, Stephen

    2009-09-01

    The availability of hybrid devices that combine the latest single-photon emission computed tomography (SPECT) imaging technology with multislice computed tomography (CT) scanning has allowed us to detect subtle, nonspecific abnormalities on bone scans and interpret them as specific focal areas of pathology. Abnormalities in the spine can be separated into those caused by pars fractures, facet joint arthritis, or osteophyte formation on vertebral bodies. Compression fractures can be distinguished from severe degenerative disease, both of which can cause intense activity across the spine on either planar or SPECT imaging. Localizing activity in patients who have had spinal fusion can provide tremendous insight into the causes of therapeutic failures. Infections of the spine now can be diagnosed with gallium SPECT/CT, despite the fact that gallium has long been abandoned because of its failure to detect spine infection on either planar or SPECT imaging. Small focal abnormalities in the feet and ankles can be localized well enough to make specific orthopedic diagnoses on the basis of their location. Moreover, when radiographic imaging provides equivocal or inadequate information, SPECT/CT can provide a road map for further diagnostic studies and has been invaluable in planning surgery. Our ability to localize activity within a bone or at an articular surface has allowed us to distinguish between fractures and joint disease. Increased activity associated with congenital anomalies, such as tarsal coalition and Bertolotti's syndrome have allowed us to understand the pathophysiology of these conditions, to confirm them as the cause of the patient's symptoms, and to provide information that is useful in determining appropriate clinical management. As our experience broadens, SPECT/CT will undoubtedly become an important tool in the evaluation and management of a wider variety of orthopedic patients.

  9. Lung ventilation-perfusion imbalance in pulmonary emphysema: assessment with automated V/Q quotient SPECT.

    PubMed

    Suga, Kazuyoshi; Kawakami, Yasuhiko; Koike, Hiroaki; Iwanaga, Hideyuki; Tokuda, Osamu; Okada, Munemasa; Matsunaga, Naofumi

    2010-05-01

    Tc-99m-Technegas-MAA single photon emission computed tomography (SPECT)-derived ventilation (V)/perfusion (Q) quotient SPECT was used to assess lung V-Q imbalance in patients with pulmonary emphysema. V/Q quotient SPECT and V/Q profile were automatically built in 38 patients with pulmonary emphysema and 12 controls, and V/Q distribution and V/Q profile parameters were compared. V/Q distribution on V/Q quotient SPECT was correlated with low attenuation areas (LAA) on density-mask computed tomography (CT). Parameters of V/Q profile such as the median, standard deviation (SD), kurtosis and skewness were proposed to objectively evaluate the severity of lung V-Q imbalance. In contrast to uniform V/Q distribution on V/Q quotient SPECT and a sharp peak with symmetrical V/Q distribution on V/Q profile in controls, lung areas showing heterogeneously high or low V/Q and flattened peaks with broadened V/Q distribution were frequently seen in patients with emphysema, including lung areas with only slight LAA. V/Q distribution was also often asymmetric regardless of symmetric LAA. All the proposed parameters of V/Q profile in entire lungs of patients with emphysema showed large variations compared with controls; SD and kurtosis were significantly different from controls (P < 0.0001 and P < 0.001, respectively), and a significant correlation was found between SD and A-aDO2 (P < 0.0001). V/Q quotient SPECT appears to be more sensitive to detect emphysematous lungs compared with morphologic CT in patients with emphysema. SD and kurtosis of V/Q profile can be adequate parameters to assess the severity of lung V-Q imbalance causing gas-exchange impairment in patients with emphysema.

  10. Optimization of SPECT-CT Hybrid Imaging Using Iterative Image Reconstruction for Low-Dose CT: A Phantom Study

    PubMed Central

    Grosser, Oliver S.; Kupitz, Dennis; Ruf, Juri; Czuczwara, Damian; Steffen, Ingo G.; Furth, Christian; Thormann, Markus; Loewenthal, David; Ricke, Jens; Amthauer, Holger

    2015-01-01

    Background Hybrid imaging combines nuclear medicine imaging such as single photon emission computed tomography (SPECT) or positron emission tomography (PET) with computed tomography (CT). Through this hybrid design, scanned patients accumulate radiation exposure from both applications. Imaging modalities have been the subject of long-term optimization efforts, focusing on diagnostic applications. It was the aim of this study to investigate the influence of an iterative CT image reconstruction algorithm (ASIR) on the image quality of the low-dose CT images. Methodology/Principal Findings Examinations were performed with a SPECT-CT scanner with standardized CT and SPECT-phantom geometries and CT protocols with systematically reduced X-ray tube currents. Analyses included image quality with respect to photon flux. Results were compared to the standard FBP reconstructed images. The general impact of the CT-based attenuation maps used during SPECT reconstruction was examined for two SPECT phantoms. Using ASIR for image reconstructions, image noise was reduced compared to FBP reconstructions for the same X-ray tube current. The Hounsfield unit (HU) values reconstructed by ASIR were correlated to the FBP HU values(R2 ≥ 0.88) and the contrast-to-noise ratio (CNR) was improved by ASIR. However, for a phantom with increased attenuation, the HU values shifted for low X-ray tube currents I ≤ 60 mA (p ≤ 0.04). In addition, the shift of the HU values was observed within the attenuation corrected SPECT images for very low X-ray tube currents (I ≤ 20 mA, p ≤ 0.001). Conclusion/Significance In general, the decrease in X-ray tube current up to 30 mA in combination with ASIR led to a reduction of CT-related radiation exposure without a significant decrease in image quality. PMID:26390216

  11. Radiotracer Imaging Allows for Noninvasive Detection and Quantification of Abnormalities in Angiosome Foot Perfusion in Diabetic Patients With Critical Limb Ischemia and Nonhealing Wounds

    PubMed Central

    Alvelo, Jessica L.; Papademetris, Xenophon; Mena-Hurtado, Carlos; Jeon, Sangchoon; Sumpio, Bauer E.; Sinusas, Albert J.

    2018-01-01

    Background: Single photon emission computed tomography (SPECT)/computed tomography (CT) imaging allows for assessment of skeletal muscle microvascular perfusion but has not been quantitatively assessed in angiosomes, or 3-dimensional vascular territories, of the foot. This study assessed and compared resting angiosome foot perfusion between healthy subjects and diabetic patients with critical limb ischemia (CLI). Additionally, the relationship between SPECT/CT imaging and the ankle–brachial index—a standard tool for evaluating peripheral artery disease—was assessed. Methods and Results: Healthy subjects (n=9) and diabetic patients with CLI and nonhealing ulcers (n=42) underwent SPECT/CT perfusion imaging of the feet. CT images were segmented into angiosomes for quantification of relative radiotracer uptake, expressed as standardized uptake values. Standardized uptake values were assessed in ulcerated angiosomes of patients with CLI and compared with whole-foot standardized uptake values in healthy subjects. Serial SPECT/CT imaging was performed to assess uptake kinetics of technetium-99m-tetrofosmin. The relationship between angiosome perfusion and ankle–brachial index was assessed via correlational analysis. Resting perfusion was significantly lower in CLI versus healthy subjects (P=0.0007). Intraclass correlation coefficients of 0.95 (healthy) and 0.93 (CLI) demonstrated excellent agreement between serial perfusion measurements. Correlational analysis, including healthy and CLI subjects, demonstrated a significant relationship between ankle–brachial index and SPECT/CT (P=0.01); however, this relationship was not significant for diabetic CLI patients only (P=0.2). Conclusions: SPECT/CT imaging assesses regional foot perfusion and detects abnormalities in microvascular perfusion that may be undetectable by conventional ankle–brachial index in patients with diabetes mellitus. SPECT/CT may provide a novel approach for evaluating responses to targeted therapies. PMID:29748311

  12. High-Resolution 4D Imaging of Technetium Transport in Porous Media using Preclinical SPECT-CT

    NASA Astrophysics Data System (ADS)

    Dogan, M.; DeVol, T. A.; Groen, H.; Moysey, S. M.; Ramakers, R.; Powell, B. A.

    2015-12-01

    Preclinical SPECT-CT (single-photon emission computed tomography with integrated X-ray computed tomography) offers the potential to quantitatively image the dynamic three-dimensional distribution of radioisotopes with sub-millimeter resolution, overlaid with structural CT images (20-200 micron resolution), making this an attractive method for studying transport in porous media. A preclinical SPECT-CT system (U-SPECT4CT, MILabs BV. Utrecht, The Netherlands) was evaluated for imaging flow and transport of 99mTc (t1/2=6hrs) using a 46,5mm by 156,4mm column packed with individual layers consisting of <0.2mm diameter silica gel, 0.2-0.25, 0.5, 1.0, 2.0, 3.0, and 4.0mm diameter glass beads, and a natural soil sample obtained from the Savannah River Site. The column was saturated with water prior to injecting the 99mTc solution. During the injection the flow was interrupted intermittently for 10 minute periods to allow for the acquisition of a SPECT image of the transport front. Non-uniformity of the front was clearly observed in the images as well as the retarded movement of 99mTc in the soil layer. The latter is suggesting good potential for monitoring transport processes occurring on the timescale of hours. After breakthrough of 99mTc was achieved, the flow was stopped and SPECT data were collected in one hour increments to evaluate the sensitivity of the instrument as the isotope decayed. Fused SPECT- CT images allowed for improved interpretation of 99mTc distributions within individual pore spaces. With ~3 MBq remaining in the column, the lowest activity imaged, it was not possible to clearly discriminate any of the pore spaces.

  13. Dual tracer imaging of SPECT and PET probes in living mice using a sequential protocol

    PubMed Central

    Chapman, Sarah E; Diener, Justin M; Sasser, Todd A; Correcher, Carlos; González, Antonio J; Avermaete, Tony Van; Leevy, W Matthew

    2012-01-01

    Over the past 20 years, multimodal imaging strategies have motivated the fusion of Positron Emission Tomography (PET) or Single Photon Emission Computed Tomography (SPECT) scans with an X-ray computed tomography (CT) image to provide anatomical information, as well as a framework with which molecular and functional images may be co-registered. Recently, pre-clinical nuclear imaging technology has evolved to capture multiple SPECT or multiple PET tracers to further enhance the information content gathered within an imaging experiment. However, the use of SPECT and PET probes together, in the same animal, has remained a challenge. Here we describe a straightforward method using an integrated trimodal imaging system and a sequential dosing/acquisition protocol to achieve dual tracer imaging with 99mTc and 18F isotopes, along with anatomical CT, on an individual specimen. Dosing and imaging is completed so that minimal animal manipulations are required, full trimodal fusion is conserved, and tracer crosstalk including down-scatter of the PET tracer in SPECT mode is avoided. This technique will enhance the ability of preclinical researchers to detect multiple disease targets and perform functional, molecular, and anatomical imaging on individual specimens to increase the information content gathered within longitudinal in vivo studies. PMID:23145357

  14. Effect of different thickness of material filter on Tc-99m spectra and performance parameters of gamma camera

    NASA Astrophysics Data System (ADS)

    Nazifah, A.; Norhanna, S.; Shah, S. I.; Zakaria, A.

    2014-11-01

    This study aimed to investigate the effects of material filter technique on Tc-99m spectra and performance parameters of Philip ADAC forte dual head gamma camera. Thickness of material filter was selected on the basis of percentage attenuation of various gamma ray energies by different thicknesses of zinc material. A cylindrical source tank of NEMA single photon emission computed tomography (SPECT) Triple Line Source Phantom filled with water and Tc-99m radionuclide injected was used for spectra, uniformity and sensitivity measurements. Vinyl plastic tube was used as a line source for spatial resolution. Images for uniformity were reconstructed by filtered back projection method. Butterworth filter of order 5 and cut off frequency 0.35 cycles/cm was selected. Chang's attenuation correction method was applied by selecting 0.13/cm linear attenuation coefficient. Count rate was decreased with material filter from the compton region of Tc-99m energy spectrum, also from the photopeak region. Spatial resolution was improved. However, uniformity of tomographic image was equivocal, and system volume sensitivity was reduced by material filter. Material filter improved system's spatial resolution. Therefore, the technique may be used for phantom studies to improve the image quality.

  15. Pulmonary Arterial Hypertension With Abnormal V/Q Single-Photon Emission Computed Tomography.

    PubMed

    Chan, Kenneth; Ioannidis, Stefanos; Coghlan, John G; Hall, Margaret; Schreiber, Benjamin E

    2017-10-16

    This study aimed to evaluate the incidence and clinical outcomes of abnormal ventilation/perfusion (V/Q) single-photon emission computed tomography (SPECT) without thromboembolism, especially in patients with group I pulmonary arterial hypertension (PAH). American Heart Association/American College of Cardiology and European Society of Cardiology guidelines recommend V/Q scan for screening for chronic thromboembolic pulmonary hypertension. The significance of patients with abnormal V/Q SPECT findings but no thromboembolism demonstrated in further investigations remained unclear. A distinct pattern of global patchy changes not typical of thromboembolism is recognized, but guidelines for reporting these in the context of PAH are lacking. A total of 136 patients who underwent V/Q SPECT and right-sided heart catheterization showing mean pulmonary arterial pressure ≥25 mm Hg were included. V/Q SPECT findings were reported using European Association of Nuclear Medicine criteria for pulmonary embolism followed by computed tomography pulmonary angiography screening for positive thromboembolism and further invasive pulmonary angiography for distal thromboembolism. The abnormal V/Q SPECT images were further analyzed according to perfusion pattern into focal or global perfusion defects. V/Q SPECT showed thromboembolic disease in 44 patients, but 19 of these patients had no thromboembolism demonstrated by pulmonary angiography. Among these patients, 15 of 19 (78.9%) had group I PAH, and the majority had diffuse, patchy perfusion defects. After redefining V/Q SPECT images according to the perfusion pattern, those patients with global perfusion defects had higher mean pulmonary arterial pressure compared with patients with focal perfusion defects and normal scans (mean difference +13.9 and +6.2 mm Hg, respectively; p = 0.0002), as well as higher pulmonary vascular resistance (mean difference +316.6 and +226.3 absolute resistance units, respectively; p = 0.004). Among patients with PAH, global perfusion defects were associated with higher all-cause mortality with a hazard ratio of 5.63 (95% confidence interval: 1.11 to 28.5) compared with patients with focal or no perfusion abnormalities. There is a high incidence of abnormal V/Q SPECT scans in nonthromboembolic PAH. Further studies are needed to investigate the poor outcome associated with abnormal V/Q SPECT findings in the context of PAH. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  16. Direct comparison of rest and adenosine stress myocardial perfusion CT with rest and stress SPECT

    PubMed Central

    Okada, David R.; Ghoshhajra, Brian B.; Blankstein, Ron; Rocha-Filho, Jose A.; Shturman, Leonid D.; Rogers, Ian S.; Bezerra, Hiram G.; Sarwar, Ammar; Gewirtz, Henry; Hoffmann, Udo; Mamuya, Wilfred S.; Brady, Thomas J.; Cury, Ricardo C.

    2010-01-01

    Introduction We have recently described a technique for assessing myocardial perfusion using adenosine-mediated stress imaging (CTP) with dual source computed tomography. SPECT myocardial perfusion imaging (SPECT-MPI) is a widely utilized and extensively validated method for assessing myocardial perfusion. The aim of this study was to determine the level of agreement between CTP and SPECT-MPI at rest and under stress on a per-segment, per-vessel, and per-patient basis. Methods Forty-seven consecutive patients underwent CTP and SPECT-MPI. Perfusion images were interpreted using the 17 segment AHA model and were scored on a 0 (normal) to 3 (abnormal) scale. Summed rest and stress scores were calculated for each vascular territory and patient by adding corresponding segmental scores. Results On a per-segment basis (n = 799), CTP and SPECT-MPI demonstrated excellent correlation: Goodman-Kruskall γ = .59 (P < .0001) for stress and .75 (P < .0001) for rest. On a per-vessel basis (n = 141), CTP and SPECT-MPI summed scores demonstrated good correlation: Pearson r = .56 (P < .0001) for stress and .66 (P < .0001) for rest. On a per-patient basis (n = 47), CTP and SPECT-MPI demonstrated good correlation: Pearson r = .60 (P < .0001) for stress and .76 (P < .0001) for rest. Conclusions CTP compares favorably with SPECT-MPI for detection, extent, and severity of myocardial perfusion defects at rest and stress. PMID:19936863

  17. SPECT3D - A multi-dimensional collisional-radiative code for generating diagnostic signatures based on hydrodynamics and PIC simulation output

    NASA Astrophysics Data System (ADS)

    MacFarlane, J. J.; Golovkin, I. E.; Wang, P.; Woodruff, P. R.; Pereyra, N. A.

    2007-05-01

    SPECT3D is a multi-dimensional collisional-radiative code used to post-process the output from radiation-hydrodynamics (RH) and particle-in-cell (PIC) codes to generate diagnostic signatures (e.g. images, spectra) that can be compared directly with experimental measurements. This ability to post-process simulation code output plays a pivotal role in assessing the reliability of RH and PIC simulation codes and their physics models. SPECT3D has the capability to operate on plasmas in 1D, 2D, and 3D geometries. It computes a variety of diagnostic signatures that can be compared with experimental measurements, including: time-resolved and time-integrated spectra, space-resolved spectra and streaked spectra; filtered and monochromatic images; and X-ray diode signals. Simulated images and spectra can include the effects of backlighters, as well as the effects of instrumental broadening and time-gating. SPECT3D also includes a drilldown capability that shows where frequency-dependent radiation is emitted and absorbed as it propagates through the plasma towards the detector, thereby providing insights on where the radiation seen by a detector originates within the plasma. SPECT3D has the capability to model a variety of complex atomic and radiative processes that affect the radiation seen by imaging and spectral detectors in high energy density physics (HEDP) experiments. LTE (local thermodynamic equilibrium) or non-LTE atomic level populations can be computed for plasmas. Photoabsorption rates can be computed using either escape probability models or, for selected 1D and 2D geometries, multi-angle radiative transfer models. The effects of non-thermal (i.e. non-Maxwellian) electron distributions can also be included. To study the influence of energetic particles on spectra and images recorded in intense short-pulse laser experiments, the effects of both relativistic electrons and energetic proton beams can be simulated. SPECT3D is a user-friendly software package that runs on Windows, Linux, and Mac platforms. A parallel version of SPECT3D is supported for Linux clusters for large-scale calculations. We will discuss the major features of SPECT3D, and present example results from simulations and comparisons with experimental data.

  18. Factors affecting the sensitivity of Tc-99m methoxyisobutylisonitrile dual-phase parathyroid single photon emission computed tomography in primary hyperparathyroidism.

    PubMed

    Araz, Mine; Çayir, Derya; Erdoğan, Mehmet; Uçan, Bekir; Çakal, Erman

    2017-02-01

    The aim of this study was to investigate the effects of thyroid diseases and regularly used medications on the sensitivity of Tc-99m methoxyisobutylisonitrile (MIBI) dual-phase parathyroid single photon emission computed tomography (SPECT) and to define indicatives of the result of the study. Overall, 218 primary hyperparathyroidism patients (190 women, 28 men, mean age: 57±14 years) with thyroid-parathyroid ultrasonography and Tc-99m MIBI dual-phase parathyroid SPECT were retrospectively enrolled. Patients were divided as follows: a positive SPECT group [119 (54.6%) patients] and a negative SPECT group [99 (45.4%) patients]. The effects of thyroid diseases and use of calcium channel blockers, β-blockers, angiotensin-converting enzyme inhibitors/angiotensin receptor blockers, oral antidiabetics, thyroid hormone preparates, nonsteroidal anti-inflammatory drugs, and proton pump inhibitors on the sensitivity of Tc-99m MIBI dual-phase parathyroid SPECT were investigated. The frequency of NSAID usage was higher in the negative scan group (P<0.001). No significant difference was detected in terms of coexisting thyroid disease or usage of other medications. Overall sensitivity, specificity, positive, and negative predictive value of Tc-99m MIBI dual-phase parathyroid SPECT were calculated to be 89.6, 92.5, 94.1, and 86.9%. The sensitivity was low only in nonsteroidal anti-inflammatory drug users (75.6%) compared with nonusers (96.5%). Logistic regression showed that ultrasonography was indicative of a positive scan and the possibility of a negative result was increased by regular usage of nonsteroid anti-inflammatory drugs (odds ratio: 0.262, confidence interval: 0.128-0.538; P<0.001) CONCLUSION: Among various drug groups, NSAIDs may decrease the sensitivity of Tc-99m MIBI SPECT and, provided that these novel data are supported by other studies, patient preparation may be modified to stop NSAIDs before Tc-99m MIBI dual-phase parathyroid SPECT.

  19. Incremental diagnostic accuracy of hybrid SPECT/CT coronary angiography in a population with an intermediate to high pre-test likelihood of coronary artery disease.

    PubMed

    Schaap, Jeroen; Kauling, Robert M; Boekholdt, S Matthijs; Nieman, Koen; Meijboom, W Bob; Post, Martijn C; Van der Heyden, Jan A; de Kroon, Thom L; van Es, H Wouter; Rensing, Benno J; Verzijlbergen, J Fred

    2013-07-01

    Hybrid myocardial perfusion imaging with single photon emission computed tomography (SPECT) and CT coronary angiography (CCTA) has the potential to play a major role in patients with non-conclusive SPECT or CCTA results. We evaluated the performance of hybrid SPECT/CCTA vs. standalone SPECT and CCTA for the diagnosis of significant coronary artery disease (CAD) in patients with an intermediate to high pre-test likelihood of CAD. In total, 98 patients (mean age 62.5 ± 10.1 years, 68.4% male) with stable anginal complaints and a median pre-test likelihood of 87% (range 22-95%) were prospectively included in this study. Hybrid SPECT/CCTA was performed prior to conventional coronary angiography (CA) including fractional flow reserve (FFR) measurements. Hybrid analysis was performed by combined interpretation of SPECT and CCTA images. The sensitivity, specificity, positive (PPV), and negative (NPV) predictive values were calculated for standalone SPECT, CCTA, and hybrid SPECT/CCTA on per patient level, using an FFR <0.80 as a reference for significant CAD. Significant CAD was demonstrated in 56 patients (57.9%). Non-conclusive SPECT or CCTA results were found in 32 (32.7%) patients. SPECT had a sensitivity of 93%, specificity 79%, PPV 85%, and NPV 89%. CCTA had a sensitivity of 98%, specificity 62%, PPV 77%, and NPV 96%. Hybrid analysis of SPECT and CCTA improved the overall performance: sensitivity, specificity, PPV, and NPV for the presence of significant CAD to 96, 95, 96, and 95%, respectively. In > 40% of the patients with a high pre-test likelihood no significant CAD was demonstrated, emphasizing the value of accurate pre-treatment cardiovascular imaging. Hybrid SPECT/CCTA was able to accurately diagnose and exclude significant CAD surpassing standalone myocardial SPECT and CCTA, vs. a reference standard of FFR measurements.

  20. Initial Investigation of preclinical integrated SPECT and MR imaging.

    PubMed

    Hamamura, Mark J; Ha, Seunghoon; Roeck, Werner W; Wagenaar, Douglas J; Meier, Dirk; Patt, Bradley E; Nalcioglu, Orhan

    2010-02-01

    Single-photon emission computed tomography (SPECT) can provide specific functional information while magnetic resonance imaging (MRI) can provide high-spatial resolution anatomical information as well as complementary functional information. In this study, we utilized a dual modality SPECT/MRI (MRSPECT) system to investigate the integration of SPECT and MRI for improved image accuracy. The MRSPECT system consisted of a cadmium-zinc-telluride (CZT) nuclear radiation detector interfaced with a specialized radiofrequency (RF) coil that was placed within a whole-body 4 T MRI system. The importance of proper corrections for non-uniform detector sensitivity and Lorentz force effects was demonstrated. MRI data were utilized for attenuation correction (AC) of the nuclear projection data and optimized Wiener filtering of the SPECT reconstruction for improved image accuracy. Finally, simultaneous dual-imaging of a nude mouse was performed to demonstrated the utility of co-registration for accurate localization of a radioactive source.

  1. Initial Investigation of Preclinical Integrated SPECT and MR Imaging

    PubMed Central

    Hamamura, Mark J.; Ha, Seunghoon; Roeck, Werner W.; Wagenaar, Douglas J.; Meier, Dirk; Patt, Bradley E.; Nalcioglu, Orhan

    2014-01-01

    Single-photon emission computed tomography (SPECT) can provide specific functional information while magnetic resonance imaging (MRI) can provide high-spatial resolution anatomical information as well as complementary functional information. In this study, we utilized a dual modality SPECT/MRI (MRSPECT) system to investigate the integration of SPECT and MRI for improved image accuracy. The MRSPECT system consisted of a cadmium-zinc-telluride (CZT) nuclear radiation detector interfaced with a specialized radiofrequency (RF) coil that was placed within a whole-body 4 T MRI system. The importance of proper corrections for non-uniform detector sensitivity and Lorentz force effects was demonstrated. MRI data were utilized for attenuation correction (AC) of the nuclear projection data and optimized Wiener filtering of the SPECT reconstruction for improved image accuracy. Finally, simultaneous dual-imaging of a nude mouse was performed to demonstrated the utility of co-registration for accurate localization of a radioactive source. PMID:20082527

  2. Practical implementation of tetrahedral mesh reconstruction in emission tomography

    PubMed Central

    Boutchko, R.; Sitek, A.; Gullberg, G. T.

    2014-01-01

    This paper presents a practical implementation of image reconstruction on tetrahedral meshes optimized for emission computed tomography with parallel beam geometry. Tetrahedral mesh built on a point cloud is a convenient image representation method, intrinsically three-dimensional and with a multi-level resolution property. Image intensities are defined at the mesh nodes and linearly interpolated inside each tetrahedron. For the given mesh geometry, the intensities can be computed directly from tomographic projections using iterative reconstruction algorithms with a system matrix calculated using an exact analytical formula. The mesh geometry is optimized for a specific patient using a two stage process. First, a noisy image is reconstructed on a finely-spaced uniform cloud. Then, the geometry of the representation is adaptively transformed through boundary-preserving node motion and elimination. Nodes are removed in constant intensity regions, merged along the boundaries, and moved in the direction of the mean local intensity gradient in order to provide higher node density in the boundary regions. Attenuation correction and detector geometric response are included in the system matrix. Once the mesh geometry is optimized, it is used to generate the final system matrix for ML-EM reconstruction of node intensities and for visualization of the reconstructed images. In dynamic PET or SPECT imaging, the system matrix generation procedure is performed using a quasi-static sinogram, generated by summing projection data from multiple time frames. This system matrix is then used to reconstruct the individual time frame projections. Performance of the new method is evaluated by reconstructing simulated projections of the NCAT phantom and the method is then applied to dynamic SPECT phantom and patient studies and to a dynamic microPET rat study. Tetrahedral mesh-based images are compared to the standard voxel-based reconstruction for both high and low signal-to-noise ratio projection datasets. The results demonstrate that the reconstructed images represented as tetrahedral meshes based on point clouds offer image quality comparable to that achievable using a standard voxel grid while allowing substantial reduction in the number of unknown intensities to be reconstructed and reducing the noise. PMID:23588373

  3. Practical implementation of tetrahedral mesh reconstruction in emission tomography

    NASA Astrophysics Data System (ADS)

    Boutchko, R.; Sitek, A.; Gullberg, G. T.

    2013-05-01

    This paper presents a practical implementation of image reconstruction on tetrahedral meshes optimized for emission computed tomography with parallel beam geometry. Tetrahedral mesh built on a point cloud is a convenient image representation method, intrinsically three-dimensional and with a multi-level resolution property. Image intensities are defined at the mesh nodes and linearly interpolated inside each tetrahedron. For the given mesh geometry, the intensities can be computed directly from tomographic projections using iterative reconstruction algorithms with a system matrix calculated using an exact analytical formula. The mesh geometry is optimized for a specific patient using a two stage process. First, a noisy image is reconstructed on a finely-spaced uniform cloud. Then, the geometry of the representation is adaptively transformed through boundary-preserving node motion and elimination. Nodes are removed in constant intensity regions, merged along the boundaries, and moved in the direction of the mean local intensity gradient in order to provide higher node density in the boundary regions. Attenuation correction and detector geometric response are included in the system matrix. Once the mesh geometry is optimized, it is used to generate the final system matrix for ML-EM reconstruction of node intensities and for visualization of the reconstructed images. In dynamic PET or SPECT imaging, the system matrix generation procedure is performed using a quasi-static sinogram, generated by summing projection data from multiple time frames. This system matrix is then used to reconstruct the individual time frame projections. Performance of the new method is evaluated by reconstructing simulated projections of the NCAT phantom and the method is then applied to dynamic SPECT phantom and patient studies and to a dynamic microPET rat study. Tetrahedral mesh-based images are compared to the standard voxel-based reconstruction for both high and low signal-to-noise ratio projection datasets. The results demonstrate that the reconstructed images represented as tetrahedral meshes based on point clouds offer image quality comparable to that achievable using a standard voxel grid while allowing substantial reduction in the number of unknown intensities to be reconstructed and reducing the noise.

  4. SPECT detectors: the Anger Camera and beyond

    PubMed Central

    Peterson, Todd E.; Furenlid, Lars R.

    2011-01-01

    The development of radiation detectors capable of delivering spatial information about gamma-ray interactions was one of the key enabling technologies for nuclear medicine imaging and, eventually, single-photon emission computed tomography (SPECT). The continuous NaI(Tl) scintillator crystal coupled to an array of photomultiplier tubes, almost universally referred to as the Anger Camera after its inventor, has long been the dominant SPECT detector system. Nevertheless, many alternative materials and configurations have been investigated over the years. Technological advances as well as the emerging importance of specialized applications, such as cardiac and preclinical imaging, have spurred innovation such that alternatives to the Anger Camera are now part of commercial imaging systems. Increased computing power has made it practical to apply advanced signal processing and estimation schemes to make better use of the information contained in the detector signals. In this review we discuss the key performance properties of SPECT detectors and survey developments in both scintillator and semiconductor detectors and their readouts with an eye toward some of the practical issues at least in part responsible for the continuing prevalence of the Anger Camera in the clinic. PMID:21828904

  5. A study on the value of computer-assisted assessment for SPECT/CT-scans in sentinel lymph node diagnostics of penile cancer as well as clinical reliability and morbidity of this procedure.

    PubMed

    Lützen, Ulf; Naumann, Carsten Maik; Marx, Marlies; Zhao, Yi; Jüptner, Michael; Baumann, René; Papp, László; Zsótér, Norbert; Aksenov, Alexey; Jünemann, Klaus-Peter; Zuhayra, Maaz

    2016-09-07

    Because of the increasing importance of computer-assisted post processing of image data in modern medical diagnostic we studied the value of an algorithm for assessment of single photon emission computed tomography/computed tomography (SPECT/CT)-data, which has been used for the first time for lymph node staging in penile cancer with non-palpable inguinal lymph nodes. In the guidelines of the relevant international expert societies, sentinel lymph node-biopsy (SLNB) is recommended as a diagnostic method of choice. The aim of this study is to evaluate the value of the afore-mentioned algorithm and in the clinical context the reliability and the associated morbidity of this procedure. Between 2008 and 2015, 25 patients with invasive penile cancer and inconspicuous inguinal lymph node status underwent SLNB after application of the radiotracer Tc-99m labelled nanocolloid. We recorded in a prospective approach the reliability and the complication rate of the procedure. In addition, we evaluated the results of an algorithm for SPECT/CT-data assessment of these patients. SLNB was carried out in 44 groins of 25 patients. In three patients, inguinal lymph node metastases were detected via SLNB. In one patient, bilateral lymph node recurrence of the groins occurred after negative SLNB. There was a false-negative rate of 4 % in relation to the number of patients (1/25), resp. 4.5 % in relation to the number of groins (2/44). Morbidity was 4 % in relation to the number of patients (1/25), resp. 2.3 % in relation to the number of groins (1/44). The results of computer-assisted assessment of SPECT/CT data for sentinel lymph node (SLN)-diagnostics demonstrated high sensitivity of 88.8 % and specificity of 86.7 %. SLNB is a very reliable method, associated with low morbidity. Computer-assisted assessment of SPECT/CT data of the SLN-diagnostics shows high sensitivity and specificity. While it cannot replace the assessment by medical experts, it can still provide substantial supplement and assistance.

  6. Development of an MR-compatible SPECT system (MRSPECT) for simultaneous data acquisition.

    PubMed

    Hamamura, Mark J; Ha, Seunghoon; Roeck, Werner W; Muftuler, L Tugan; Wagenaar, Douglas J; Meier, Dirk; Patt, Bradley E; Nalcioglu, Orhan

    2010-03-21

    In medical imaging, single-photon emission computed tomography (SPECT) can provide specific functional information while magnetic resonance imaging (MRI) can provide high spatial resolution anatomical information as well as complementary functional information. In this study, we developed a miniaturized dual-modality SPECT/MRI (MRSPECT) system and demonstrated the feasibility of simultaneous SPECT and MRI data acquisition, with the possibility of whole-body MRSPECT systems through suitable scaling of components. For our MRSPECT system, a cadmium-zinc-telluride (CZT) nuclear radiation detector was interfaced with a specialized radiofrequency (RF) coil and placed within a whole-body 4 T MRI system. Various phantom experiments characterized the interaction between the SPECT and MRI hardware components. The metallic components of the SPECT hardware altered the B(0) field and generated a non-uniform reduction in the signal-to-noise ratio (SNR) of the MR images. The presence of a magnetic field generated a position shift and resolution loss in the nuclear projection data. Various techniques were proposed to compensate for these adverse effects. Overall, our results demonstrate that accurate, simultaneous SPECT and MRI data acquisition is feasible, justifying the further development of MRSPECT for either small-animal imaging or whole-body human systems by using appropriate components.

  7. Development of an MR-compatible SPECT system (MRSPECT) for simultaneous data acquisition

    NASA Astrophysics Data System (ADS)

    Hamamura, Mark J.; Ha, Seunghoon; Roeck, Werner W.; Tugan Muftuler, L.; Wagenaar, Douglas J.; Meier, Dirk; Patt, Bradley E.; Nalcioglu, Orhan

    2010-03-01

    In medical imaging, single-photon emission computed tomography (SPECT) can provide specific functional information while magnetic resonance imaging (MRI) can provide high spatial resolution anatomical information as well as complementary functional information. In this study, we developed a miniaturized dual-modality SPECT/MRI (MRSPECT) system and demonstrated the feasibility of simultaneous SPECT and MRI data acquisition, with the possibility of whole-body MRSPECT systems through suitable scaling of components. For our MRSPECT system, a cadmium-zinc-telluride (CZT) nuclear radiation detector was interfaced with a specialized radiofrequency (RF) coil and placed within a whole-body 4 T MRI system. Various phantom experiments characterized the interaction between the SPECT and MRI hardware components. The metallic components of the SPECT hardware altered the B0 field and generated a non-uniform reduction in the signal-to-noise ratio (SNR) of the MR images. The presence of a magnetic field generated a position shift and resolution loss in the nuclear projection data. Various techniques were proposed to compensate for these adverse effects. Overall, our results demonstrate that accurate, simultaneous SPECT and MRI data acquisition is feasible, justifying the further development of MRSPECT for either small-animal imaging or whole-body human systems by using appropriate components.

  8. Effect of attenuation correction on image quality in emission tomography

    NASA Astrophysics Data System (ADS)

    Denisova, N. V.; Ondar, M. M.

    2017-10-01

    In this paper, mathematical modeling and computer simulations of myocardial perfusion SPECT imaging are performed. The main factors affecting the quality of reconstructed images in SPECT are anatomical structures, the diastolic volume of a myocardium and attenuation of gamma rays. The purpose of the present work is to study the effect of attenuation correction on image quality in emission tomography. The basic 2D model describing a Tc-99m distribution in a transaxial slice of the thoracic part of a patient body was designed. This model was used to construct four phantoms simulated various anatomical shapes: 2 male and 2 female patients with normal, obese and subtle physique were included in the study. Data acquisition model which includes the effect of non-uniform attenuation, collimator-detector response and Poisson statistics was developed. The projection data were calculated for 60 views in accordance with the standard myocardial perfusion SPECT imaging protocol. Reconstructions of images were performed using the OSEM algorithm which is widely used in modern SPECT systems. Two types of patient's examination procedures were simulated: SPECT without attenuation correction and SPECT/CT with attenuation correction. The obtained results indicate a significant effect of the attenuation correction on the SPECT images quality.

  9. The diagnostic value of single-photon emission computed tomography/computed tomography for severe sacroiliac joint dysfunction.

    PubMed

    Tofuku, Katsuhiro; Koga, Hiroaki; Komiya, Setsuro

    2015-04-01

    We aimed to evaluate the value of single-photon emission computed tomography (SPECT)/computed tomography (CT) for the diagnosis of sacroiliac joint (SIJ) dysfunction. SPECT/CT was performed in 32 patients with severe SIJ dysfunction, who did not respond to 1-year conservative treatment and had a score of >4 points on a 10-cm visual analog scale. We investigated the relationship between the presence of severe SIJ dysfunction and tracer accumulation, as confirmed by SPECT/CT. In cases of bilateral SIJ dysfunction, we also compared the intensity of tracer accumulation on each side. Moreover, we examined the relationship between the intensity of tracer accumulation and the different treatments the patients subsequently received. All 32 patients with severe SIJ dysfunction had tracer accumulation with a standardized uptake value (SUV) of >2.2 (mean SUV 4.7). In the 19 patients with lateralized symptom intensity, mean SUVs of the dominant side were significantly higher than those of the nondominant side. In 10 patients with no lateralization, the difference in the SUVs between sides was <0.6. Patients exhibiting higher levels of tracer accumulation required more advanced treatment. Patients with higher levels of tracer accumulation had greater symptom severity and also required more advanced treatment. Thus, we believe that SPECT/CT may be a suitable supplementary diagnostic modality for SIJ dysfunction as well as a useful technique for predicting the prognosis of this condition.

  10. Computed tomography hepatic arteriography has a hepatic falciform artery detection rate that is much higher than that of digital subtraction angiography and 99mTc-MAA SPECT/CT: implications for planning 90Y radioembolization?

    PubMed

    Burgmans, M C; Too, C W; Kao, Y H; Goh, A S W; Chow, P K H; Tan, B S; Tay, K H; Lo, R H G

    2012-12-01

    To compare the hepatic falciform artery (HFA) detection rates of digital subtraction angiography (DSA), computed tomography hepatic arteriography (CTHA) and 99mTc-macroaggregated albumin (99mTc-MAA) single photon emission computed tomography with integrated CT (SPECT/CT) and to correlate HFA patency with complication rates of yttrium-90 (90Y) radioembolization. From August 2008 to November 2010, 79 patients (range 23-83 years, mean 62.3 years; 67 male) underwent pre-treatment DSA, CTHA and 99mTc-MAA scintigraphy (planar/SPECT/CT) to assess suitability for radioembolization with 90Y resin microspheres. Thirty-seven patients were excluded from the study, because CTHA was performed with a catheter position that did not result in opacification of the liver parenchyma adjacent to the falciform ligament. DSA, CTHA and 99mTc-MAA SPECT/CT images and medical records were retrospectively reviewed. A patent HFA was detected in 22 of 42 patients (52.3%). The HFA detection rates of DSA, CTHA and 99mTc-MAA SPECT/CT were 11.9%, 52.3% and 13.3%, respectively (p<0.0001). An origin from the segment 4 artery was seen in 51.7% of HFAs. Prophylactic HFA coil-embolization prior to 90Y microspheres infusion was performed in 2 patients. Of the patients who underwent radioembolization with a patent HFA, none developed supra-umbilical radiation dermatitis. One patient experienced epigastric pain attributed to post-embolization syndrome and was managed conservatively. The HFA detection rate of CTHA is superior to that of DSA and 99mTc-MAA SPECT/CT. Complications related to non-target radiation of the HFA vascular territory rarely occur, even in patients undergoing radioembolization with a patent HFA. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. Cardiac involvement in facio-scapulo-humeral muscular dystrophy: a family study using Thallium-201 single-photon-emission-computed tomography.

    PubMed

    Faustmann, P M; Farahati, J; Rupilius, B; Dux, R; Koch, M C; Reiners, C

    1996-12-01

    Fifteen persons from two consecutive generations of one family affected with facio-scapulo-humeral muscular dystrophy (FSHD) were clinically and neurophysiologically examined. Diagnostic muscle biopsies were obtained from two members. Linkage analysis showed that all four affected members of the family inherit the same 4q35 haplotype giving a lod score of z = +1.44. Six family members were examined by ECG at rest and under stress, by two-dimensional echocardiography, and by cardiac Thallium-201 single-photon-emission computed tomography (Tl-201-SPECT) under dobutamine stress and at rest. Abnormal reduced Tl-201 uptake in cardiac SPECT was only found in the affected members of the family. Therefore we suggest that cardiac Tl-201-SPECT abnormalities in FSHD reflect cardiomyogenic changes in this type of muscular disease.

  12. Double match of 18F-fluorodeoxyglucose-PET and iomazenil-SPECT improves outcomes of focus resection surgery.

    PubMed

    Fujimoto, Ayataka; Okanishi, Tohru; Kanai, Sotaro; Sato, Keishiro; Itamura, Shinji; Baba, Shimpei; Nishimura, Mitsuyo; Masui, Takayuki; Enoki, Hideo

    2018-06-01

    When the results of electroencephalography (EEG), magnetic resonance imaging (MRI), and seizure semiology are discordant or no structural lesion is evident on MRI, single-photon emission computed tomography (SPECT) and positron emission tomography (PET) are important examinations for lateralization or localization of epileptic regions. We hypothesized that the concordance between interictal 2-[ 18 F]fluoro-2-deoxy-D-glucose ( 18 FDG)-PET and iomazenil (IMZ)-SPECT could suggest the epileptogenic lobe in patients with non-lesional findings on MRI. Fifty-nine patients (31 females, 28 males; mean age, 29 years; median age, 27 years; range, 7-56 years) underwent subdural electrode implantation followed by focus resection. All patients underwent 18 FDG-PET, IMZ-SPECT, and focus resection surgery. Follow-up was continued for ≥ 2 years. We evaluated surgical outcomes as seizure-free or not and analyzed correlations between outcomes and concordances of low-uptake lobes on PET, SPECT, or both PET and SPECT to the resection lobes. We used uni- and multivariate logistic regression analyses. In univariate analyses, all three concordances correlated significantly with seizure-free outcomes (PET, p = 0.017; SPECT, p = 0.030; both PET and SPECT, p = 0.006). In multivariate analysis, concordance between resection and low-uptake lobes in both PET and SPECT correlated significantly with seizure-free outcomes (p = 0.004). The odds ratio was 6.0. Concordance between interictal 18 FDG-PET and IMZ-SPECT suggested that the epileptogenic lobe is six times better than each examination alone among patients with non-lesional findings on MRI. IMZ-SPECT and 18 FDG-PET are complementary examinations in the assessment of localization-related epilepsy.

  13. Computed tomographic findings of cerebral fat embolism following multiple bone fractures.

    PubMed

    Law, Huong Ling; Wong, Siong Lung; Tan, Suzet

    2013-02-01

    Fat embolism to the lungs and brain is an uncommon complication following fractures. Few reports with descriptions of computed tomographic (CT) findings of emboli to the brain or cerebral fat embolism are available. We report a case of cerebral fat embolism following multiple skeletal fractures and present its CT findings here.

  14. A comparative study of brain perfusion single-photon emission computed tomography and magnetic resonance imaging in patients with post-traumatic anosmia.

    PubMed

    Atighechi, Saeid; Salari, Hadi; Baradarantar, Mohammad Hossein; Jafari, Rozita; Karimi, Ghasem; Mirjali, Mehdi

    2009-01-01

    Loss of smell is a problem that can occur in up to 30% of patients with head trauma. The olfactory function investigation methods so far in use have mostly relied on subjective responses given by patients. Recently, some studies have used magnetic resonance imaging (MRI) and single-photon emission computed tomography (SPECT) to evaluate patients with post-traumatic anosmia. The present study seeks to detect post-traumatic anosmia and the areas in the brain that are related to olfactory impairment by using SPECT and MRI as imaging techniques. The study was conducted on 21 patients suffering from head injury and consequently anosmia as defined by an olfactory identification test. Two control groups (traumatic normosmic and nontraumatic healthy individuals) were selected. Brain MRI, qualitative and semiquantitative SPECT with 99mtc-ethyl-cysteinate-dimer were taken from all the patients. Then the brain SPECT and MRI were compared with each other. Semi-quantitative assessment of the brain perfusion SPECT revealed frontal, left parietal, and left temporal hypoperfusion as compared with the two control groups. Eighty-five percent of the anosmic patients had abnormal brain MRI. Regarding the MRI, the main abnormality proved to be in the anterior inferior region of the frontal lobes and olfactory bulbs. The findings of this study suggest that damage to the frontal lobes and olfactory bulbs as shown in the brain MRI and hypoperfusion in the frontal, left parietal, and left temporal lobes in the semiquantitative SPECT corresponds to post-traumatic anosmia. Further neurophysiological and imaging studies are definitely needed to set the idea completely.

  15. Extension of the International Atomic Energy Agency phantom study in image quantification: results of multicentre evaluation in Croatia.

    PubMed

    Grošev, Darko; Gregov, Marin; Wolfl, Miroslava Radić; Krstonošić, Branislav; Debeljuh, Dea Dundara

    2018-06-07

    To make quantitative methods of nuclear medicine more available, four centres in Croatia participated in the national intercomparison study, following the materials and methods used in the previous international study organized by the International Atomic Energy Agency (IAEA). The study task was to calculate the activities of four Ba sources (T1/2=10.54 years; Eγ=356 keV) using planar and single-photon emission computed tomography (SPECT) or SPECT/CT acquisitions of the sources inside a water-filled cylindrical phantom. The sources were previously calibrated by the US National Institute of Standards and Technology. Triple-energy window was utilized for scatter correction. Planar studies were corrected for attenuation correction (AC) using the conjugate-view method. For SPECT/CT studies, data from X-ray computed tomography were used for attenuation correction (CT-AC), whereas for SPECT-only acquisition, the Chang-AC method was applied. Using the lessons learned from the IAEA study, data were acquired according to the harmonized data acquisition protocol, and the acquired images were then processed using centralized data analysis. The accuracy of the activity quantification was evaluated as the ratio R between the calculated activity and the value obtained from National Institute of Standards and Technology. For planar studies, R=1.06±0.08; for SPECT/CT study using CT-AC, R=1.00±0.08; and for Chang-AC, R=0.89±0.12. The results are in accordance with those obtained within the larger IAEA study and confirm that SPECT/CT method is the most appropriate for accurate activity quantification.

  16. SPECT in patients with cortical visual loss.

    PubMed

    Silverman, I E; Galetta, S L; Gray, L G; Moster, M; Atlas, S W; Maurer, A H; Alavi, A

    1993-09-01

    Single-photon emission computed tomography (SPECT) with 99mTc-hexamethylpropyleneamine oxime (HMPAO) was used to investigate changes in cerebral blood flow in seven patients with cortical visual impairment. Traumatic brain injury (TBI) was the cause of cortical damage in two patients, cerebral ischemia in two patients and carbon monoxide (CO) poisoning, status epilepticus and Alzheimer's Disease (AD) each in three separate patients. The SPECT scans of the seven patients were compared to T2-weighted magnetic resonance image (MRI) scans of the brain to determine the correlation between functional and anatomical findings. In six of the seven patients, the qualitative interpretation of the SPECT studies supported the clinical findings (i.e., the visual field defect) by revealing altered regional cerebral blood flow (rCBF) in the appropriate regions of the visual pathway. MR scans in all of the patients, on the other hand, were either normal or disclosed smaller lesions than those detected by SPECT. We conclude that SPECT may reveal altered rCBF in patients with cortical visual impairment of various etiologies, even when MRI studies are normal or nondiagnostic.

  17. Computed tomographic contrast tenography of the digital flexor tendon sheath of the equine hindlimb.

    PubMed

    Agass, Rachel; Dixon, Jonathon; Fraser, Barny

    2018-05-01

    Pre-surgical investigation of digital flexor tendon sheath pathology remains challenging with current standard imaging techniques. The aim of this prospective, anatomical, pilot study was to describe the anatomy of the equine hind limb digital flexor tendon sheath using a combination of computed tomography (CT) and computed tomographic contrast tenography in clinically normal cadaver limbs. Ten pairs of hind limbs with no external abnormalities were examined from the level of the tarsometatarsal joint distally. Limbs initially underwent non-contrast CT examination using 120 kVp, 300 mAs, and 1.5 mm slice thickness. Sixty millilitres of ioversol iodinated contrast media and saline (final concentration 100 mg/ml) were injected using a basilar sesamoidean approach. The computed tomographic contrast tenography examination was then repeated, before dissection of the specimens to compare gross and imaging findings. The combined CT and computed tomographic contrast tenography examinations provided excellent anatomical detail of intra-thecal structures. The borders of the superficial and deep digital flexor tendons, and the manica flexoria were consistently identifiable in all limbs. Detailed anatomy including that of the mesotenons, two of which are previously undescribed, and the plantar annular ligament were also consistently identifiable. Dissection of all 10 pairs of limbs revealed there to be no pathology, in accordance with the imaging findings. In conclusion, the combination of CT and computed tomographic contrast tenography may be useful adjunctive diagnostic techniques to define digital flexor tendon sheath pathology prior to surgical exploration in horses. © 2017 American College of Veterinary Radiology.

  18. Computed Tomographic Airway Morphology in Chronic Obstructive Pulmonary Disease. Remodeling or Innate Anatomy?

    PubMed

    Diaz, Alejandro A; Estépar, Raul San José; Washko, George R

    2016-01-01

    Computed tomographic measures of central airway morphology have been used in clinical, epidemiologic, and genetic investigation as an inference of the presence and severity of small-airway disease in smokers. Although several association studies have brought us to believe that these computed tomographic measures reflect airway remodeling, a careful review of such data and more recent evidence may reveal underappreciated complexity to these measures and limitations that prompt us to question that belief. This Perspective offers a review of seminal papers and alternative explanations of their data in the light of more recent evidence. The relationships between airway morphology and lung function are observed in subjects who never smoked, implying that native airway structure indeed contributes to lung function; computed tomographic measures of central airways such as wall area, lumen area, and total bronchial area are smaller in smokers with chronic obstructive pulmonary disease versus those without chronic obstructive pulmonary disease; and the airways are smaller as disease severity increases. The observations suggest that (1) native airway morphology likely contributes to the relationships between computed tomographic measures of airways and lung function; and (2) the presence of smaller airways in those with chronic obstructive pulmonary disease versus those without chronic obstructive pulmonary disease as well as their decrease with disease severity suggests that smokers with chronic obstructive pulmonary disease may simply have smaller airways to begin with, which put them at greater risk for the development of smoking-related disease.

  19. Optimization of tomographic reconstruction workflows on geographically distributed resources

    DOE PAGES

    Bicer, Tekin; Gursoy, Doga; Kettimuthu, Rajkumar; ...

    2016-01-01

    New technological advancements in synchrotron light sources enable data acquisitions at unprecedented levels. This emergent trend affects not only the size of the generated data but also the need for larger computational resources. Although beamline scientists and users have access to local computational resources, these are typically limited and can result in extended execution times. Applications that are based on iterative processing as in tomographic reconstruction methods require high-performance compute clusters for timely analysis of data. Here, time-sensitive analysis and processing of Advanced Photon Source data on geographically distributed resources are focused on. Two main challenges are considered: (i) modelingmore » of the performance of tomographic reconstruction workflows and (ii) transparent execution of these workflows on distributed resources. For the former, three main stages are considered: (i) data transfer between storage and computational resources, (i) wait/queue time of reconstruction jobs at compute resources, and (iii) computation of reconstruction tasks. These performance models allow evaluation and estimation of the execution time of any given iterative tomographic reconstruction workflow that runs on geographically distributed resources. For the latter challenge, a workflow management system is built, which can automate the execution of workflows and minimize the user interaction with the underlying infrastructure. The system utilizes Globus to perform secure and efficient data transfer operations. The proposed models and the workflow management system are evaluated by using three high-performance computing and two storage resources, all of which are geographically distributed. Workflows were created with different computational requirements using two compute-intensive tomographic reconstruction algorithms. Experimental evaluation shows that the proposed models and system can be used for selecting the optimum resources, which in turn can provide up to 3.13× speedup (on experimented resources). Furthermore, the error rates of the models range between 2.1 and 23.3% (considering workflow execution times), where the accuracy of the model estimations increases with higher computational demands in reconstruction tasks.« less

  20. Optimization of tomographic reconstruction workflows on geographically distributed resources

    PubMed Central

    Bicer, Tekin; Gürsoy, Doǧa; Kettimuthu, Rajkumar; De Carlo, Francesco; Foster, Ian T.

    2016-01-01

    New technological advancements in synchrotron light sources enable data acquisitions at unprecedented levels. This emergent trend affects not only the size of the generated data but also the need for larger computational resources. Although beamline scientists and users have access to local computational resources, these are typically limited and can result in extended execution times. Applications that are based on iterative processing as in tomographic reconstruction methods require high-performance compute clusters for timely analysis of data. Here, time-sensitive analysis and processing of Advanced Photon Source data on geographically distributed resources are focused on. Two main challenges are considered: (i) modeling of the performance of tomographic reconstruction workflows and (ii) transparent execution of these workflows on distributed resources. For the former, three main stages are considered: (i) data transfer between storage and computational resources, (i) wait/queue time of reconstruction jobs at compute resources, and (iii) computation of reconstruction tasks. These performance models allow evaluation and estimation of the execution time of any given iterative tomographic reconstruction workflow that runs on geographically distributed resources. For the latter challenge, a workflow management system is built, which can automate the execution of workflows and minimize the user interaction with the underlying infrastructure. The system utilizes Globus to perform secure and efficient data transfer operations. The proposed models and the workflow management system are evaluated by using three high-performance computing and two storage resources, all of which are geographically distributed. Workflows were created with different computational requirements using two compute-intensive tomographic reconstruction algorithms. Experimental evaluation shows that the proposed models and system can be used for selecting the optimum resources, which in turn can provide up to 3.13× speedup (on experimented resources). Moreover, the error rates of the models range between 2.1 and 23.3% (considering workflow execution times), where the accuracy of the model estimations increases with higher computational demands in reconstruction tasks. PMID:27359149

  1. Optimization of tomographic reconstruction workflows on geographically distributed resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bicer, Tekin; Gursoy, Doga; Kettimuthu, Rajkumar

    New technological advancements in synchrotron light sources enable data acquisitions at unprecedented levels. This emergent trend affects not only the size of the generated data but also the need for larger computational resources. Although beamline scientists and users have access to local computational resources, these are typically limited and can result in extended execution times. Applications that are based on iterative processing as in tomographic reconstruction methods require high-performance compute clusters for timely analysis of data. Here, time-sensitive analysis and processing of Advanced Photon Source data on geographically distributed resources are focused on. Two main challenges are considered: (i) modelingmore » of the performance of tomographic reconstruction workflows and (ii) transparent execution of these workflows on distributed resources. For the former, three main stages are considered: (i) data transfer between storage and computational resources, (i) wait/queue time of reconstruction jobs at compute resources, and (iii) computation of reconstruction tasks. These performance models allow evaluation and estimation of the execution time of any given iterative tomographic reconstruction workflow that runs on geographically distributed resources. For the latter challenge, a workflow management system is built, which can automate the execution of workflows and minimize the user interaction with the underlying infrastructure. The system utilizes Globus to perform secure and efficient data transfer operations. The proposed models and the workflow management system are evaluated by using three high-performance computing and two storage resources, all of which are geographically distributed. Workflows were created with different computational requirements using two compute-intensive tomographic reconstruction algorithms. Experimental evaluation shows that the proposed models and system can be used for selecting the optimum resources, which in turn can provide up to 3.13× speedup (on experimented resources). Furthermore, the error rates of the models range between 2.1 and 23.3% (considering workflow execution times), where the accuracy of the model estimations increases with higher computational demands in reconstruction tasks.« less

  2. NVIDIA OptiX ray-tracing engine as a new tool for modelling medical imaging systems

    NASA Astrophysics Data System (ADS)

    Pietrzak, Jakub; Kacperski, Krzysztof; Cieślar, Marek

    2015-03-01

    The most accurate technique to model the X- and gamma radiation path through a numerically defined object is the Monte Carlo simulation which follows single photons according to their interaction probabilities. A simplified and much faster approach, which just integrates total interaction probabilities along selected paths, is known as ray tracing. Both techniques are used in medical imaging for simulating real imaging systems and as projectors required in iterative tomographic reconstruction algorithms. These approaches are ready for massive parallel implementation e.g. on Graphics Processing Units (GPU), which can greatly accelerate the computation time at a relatively low cost. In this paper we describe the application of the NVIDIA OptiX ray-tracing engine, popular in professional graphics and rendering applications, as a new powerful tool for X- and gamma ray-tracing in medical imaging. It allows the implementation of a variety of physical interactions of rays with pixel-, mesh- or nurbs-based objects, and recording any required quantities, like path integrals, interaction sites, deposited energies, and others. Using the OptiX engine we have implemented a code for rapid Monte Carlo simulations of Single Photon Emission Computed Tomography (SPECT) imaging, as well as the ray-tracing projector, which can be used in reconstruction algorithms. The engine generates efficient, scalable and optimized GPU code, ready to run on multi GPU heterogeneous systems. We have compared the results our simulations with the GATE package. With the OptiX engine the computation time of a Monte Carlo simulation can be reduced from days to minutes.

  3. [Evaluation of left ventricular perfusion and regional wall motion in myocardial infarction: using 201Tl myocardial SPECT and 99mTc-HSAD multigated cardiac blood pool emission computed tomography].

    PubMed

    Nanjyo, S

    1994-09-01

    In order to evaluate left ventricular regional wall motion and regional myocardial perfusion, 99mTc-HSAD multigated cardiac blood pool emission computed tomography (cardiac pool SPECT) and 201Tl myocardial SPECT (Tl) were performed on 12 patients with acute myocardial infarction (AMI), 6 patients had treated with only thrombolysis in group I and 6 patients had treated with thrombolysis and selective PTCA in group II, 17 patients with old myocardial infarction (OMI) in group III and 5 normal volunteers (controls). The relationship between left ventricular regional wall motion and regional myocardial perfusion was estimated. The relationship between % length shortening (%LS) by cardiac pool SPECT and %Tl uptake (%TU) was good (r = 0.820) in group III. The value for %TU in the segments of akinesia was low (35%) and in the those of severe hypokinesia was higher (48%). In all phases, two groups showed significant relationships between %LS and %TU in group I and II. The %TU was unchanged in the akinetic segment, the %LS changed 30% in group I and the %LS changed to 49% in group II. If the %TU is more than 50% (AMI) or 40% (OMI), we would observe viable muscle. The combination of Tl and cardiac pool SPECT are useful for evaluating myocardial viability in the patients with AMI.

  4. Gender differences in the diagnostic accuracy of SPECT myocardial perfusion imaging: a bivariate meta-analysis.

    PubMed

    Iskandar, Aline; Limone, Brendan; Parker, Matthew W; Perugini, Andrew; Kim, Hyejin; Jones, Charles; Calamari, Brian; Coleman, Craig I; Heller, Gary V

    2013-02-01

    It remains controversial whether the diagnostic accuracy of single-photon emission computed tomography myocardial perfusion imaging (SPECT MPI) is different in men as compared to women. We performed a meta-analysis to investigate gender differences of SPECT MPI for the diagnosis of CAD (≥50% stenosis). Two investigators independently performed a systematic review of the MEDLINE and EMBASE databases from inception through January 2012 for English-language studies determining the diagnostic accuracy of SPECT MPI. We included prospective studies that compared SPECT MPI with conventional coronary angiography which provided sufficient data to calculate gender-specific true and false positives and negatives. Data from studies evaluating <20 patients of one gender were excluded. Bivariate meta-analysis was used to create summary receiver operating curves. Twenty-six studies met inclusion criteria, representing 1,148 women and 1,142 men. Bivariate meta-analysis yielded a mean sensitivity and specificity of 84.2% (95% confidence interval [CI] 78.7%-88.6%) and 78.7% (CI 70.0%-85.3%) for SPECT MPI in women and 89.1% (CI 84.0%-92.7%) and 71.2% (CI 60.8%-79.8%) for SPECT MPI in men. There was no significant difference in the sensitivity (P = .15) or specificity (P = .23) between male and female subjects. In a bivariate meta-analysis of the available literature, the diagnostic accuracy of SPECT MPI is similar for both men and women.

  5. Automatic and remote controlled ictal SPECT injection for seizure focus localization by use of a commercial contrast agent application pump.

    PubMed

    Feichtinger, Michael; Eder, Hans; Holl, Alexander; Körner, Eva; Zmugg, Gerda; Aigner, Reingard; Fazekas, Franz; Ott, Erwin

    2007-07-01

    In the presurgical evaluation of patients with partial epilepsy, the ictal single photon emission computed tomography (SPECT) is a useful noninvasive diagnostic tool for seizure focus localization. To achieve optimal SPECT scan quality, ictal tracer injection should be carried out as quickly as possible after the seizure onset and under highest safety conditions possible. Compared to the commonly used manual injection, an automatic administration of the radioactive tracer may provide higher quality standards for this procedure. In this study, therefore, we retrospectively analyzed efficiency and safety of an automatic injection system for ictal SPECT tracer application. Over a 31-month period, 26 patients underwent ictal SPECT by use of an automatic remote-controlled injection pump originally designed for CT-contrast agent application. Various factors were reviewed, including latency of ictal injection, radiation safety parameters, and ictal seizure onset localizing value. Times between seizure onset and tracer injection ranged between 3 and 48 s. In 21 of 26 patients ictal SPECT supported the localization of the epileptogenic focus in the course of the presurgical evaluation. In all cases ictal SPECT tracer injection was performed with a high degree of safety to patients and staff. Ictal SPECT by use of a remote-controlled CT-contrast agent injection system provides a high scan quality and is a safe and confirmatory presurgical evaluation technique in the epilepsy-monitoring unit.

  6. Novel Application of Quantitative Single-Photon Emission Computed Tomography/Computed Tomography to Predict Early Response to Methimazole in Graves' Disease

    PubMed Central

    Kim, Hyun Joo; Bang, Ji-In; Kim, Ji-Young; Moon, Jae Hoon; So, Young

    2017-01-01

    Objective Since Graves' disease (GD) is resistant to antithyroid drugs (ATDs), an accurate quantitative thyroid function measurement is required for the prediction of early responses to ATD. Quantitative parameters derived from the novel technology, single-photon emission computed tomography/computed tomography (SPECT/CT), were investigated for the prediction of achievement of euthyroidism after methimazole (MMI) treatment in GD. Materials and Methods A total of 36 GD patients (10 males, 26 females; mean age, 45.3 ± 13.8 years) were enrolled for this study, from April 2015 to January 2016. They underwent quantitative thyroid SPECT/CT 20 minutes post-injection of 99mTc-pertechnetate (5 mCi). Association between the time to biochemical euthyroidism after MMI treatment and %uptake, standardized uptake value (SUV), functional thyroid mass (SUVmean × thyroid volume) from the SPECT/CT, and clinical/biochemical variables, were investigated. Results GD patients had a significantly greater %uptake (6.9 ± 6.4%) than historical control euthyroid patients (n = 20, 0.8 ± 0.5%, p < 0.001) from the same quantitative SPECT/CT protocol. Euthyroidism was achieved in 14 patients at 156 ± 62 days post-MMI treatment, but 22 patients had still not achieved euthyroidism by the last follow-up time-point (208 ± 80 days). In the univariate Cox regression analysis, the initial MMI dose (p = 0.014), %uptake (p = 0.015), and functional thyroid mass (p = 0.016) were significant predictors of euthyroidism in response to MMI treatment. However, only %uptake remained significant in a multivariate Cox regression analysis (p = 0.034). A %uptake cutoff of 5.0% dichotomized the faster responding versus the slower responding GD patients (p = 0.006). Conclusion A novel parameter of thyroid %uptake from quantitative SPECT/CT is a predictive indicator of an early response to MMI in GD patients. PMID:28458607

  7. Pulmonary Ventilation Imaging Based on 4-Dimensional Computed Tomography: Comparison With Pulmonary Function Tests and SPECT Ventilation Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Tokihiro, E-mail: toyamamoto@ucdavis.edu; Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California; Kabus, Sven

    Purpose: 4-dimensional computed tomography (4D-CT)-based pulmonary ventilation imaging is an emerging functional imaging modality. The purpose of this study was to investigate the physiological significance of 4D-CT ventilation imaging by comparison with pulmonary function test (PFT) measurements and single-photon emission CT (SPECT) ventilation images, which are the clinical references for global and regional lung function, respectively. Methods and Materials: In an institutional review board–approved prospective clinical trial, 4D-CT imaging and PFT and/or SPECT ventilation imaging were performed in thoracic cancer patients. Regional ventilation (V{sub 4DCT}) was calculated by deformable image registration of 4D-CT images and quantitative analysis for regional volumemore » change. V{sub 4DCT} defect parameters were compared with the PFT measurements (forced expiratory volume in 1 second (FEV{sub 1}; % predicted) and FEV{sub 1}/forced vital capacity (FVC; %). V{sub 4DCT} was also compared with SPECT ventilation (V{sub SPECT}) to (1) test whether V{sub 4DCT} in V{sub SPECT} defect regions is significantly lower than in nondefect regions by using the 2-tailed t test; (2) to quantify the spatial overlap between V{sub 4DCT} and V{sub SPECT} defect regions with Dice similarity coefficient (DSC); and (3) to test ventral-to-dorsal gradients by using the 2-tailed t test. Results: Of 21 patients enrolled in the study, 18 patients for whom 4D-CT and either PFT or SPECT were acquired were included in the analysis. V{sub 4DCT} defect parameters were found to have significant, moderate correlations with PFT measurements. For example, V{sub 4DCT}{sup HU} defect volume increased significantly with decreasing FEV{sub 1}/FVC (R=−0.65, P<.01). V{sub 4DCT} in V{sub SPECT} defect regions was significantly lower than in nondefect regions (mean V{sub 4DCT}{sup HU} 0.049 vs 0.076, P<.01). The average DSCs for the spatial overlap with SPECT ventilation defect regions were only moderate (V{sub 4DCT}{sup HU}0.39 ± 0.11). Furthermore, ventral-to-dorsal gradients of V{sub 4DCT} were strong (V{sub 4DCT}{sup HU} R{sup 2} = 0.69, P=.08), which was similar to V{sub SPECT} (R{sup 2} = 0.96, P<.01). Conclusions: An 18-patient study demonstrated significant correlations between 4D-CT ventilation and PFT measurements as well as SPECT ventilation, providing evidence toward the validation of 4D-CT ventilation imaging.« less

  8. Accelerated GPU based SPECT Monte Carlo simulations.

    PubMed

    Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris

    2016-06-07

    Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: (99m) Tc, (111)In and (131)I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational efficiency of SPECT imaging simulations.

  9. GATE: a simulation toolkit for PET and SPECT.

    PubMed

    Jan, S; Santin, G; Strul, D; Staelens, S; Assié, K; Autret, D; Avner, S; Barbier, R; Bardiès, M; Bloomfield, P M; Brasse, D; Breton, V; Bruyndonckx, P; Buvat, I; Chatziioannou, A F; Choi, Y; Chung, Y H; Comtat, C; Donnarieix, D; Ferrer, L; Glick, S J; Groiselle, C J; Guez, D; Honore, P F; Kerhoas-Cavata, S; Kirov, A S; Kohli, V; Koole, M; Krieguer, M; van der Laan, D J; Lamare, F; Largeron, G; Lartizien, C; Lazaro, D; Maas, M C; Maigne, L; Mayet, F; Melot, F; Merheb, C; Pennacchio, E; Perez, J; Pietrzyk, U; Rannou, F R; Rey, M; Schaart, D R; Schmidtlein, C R; Simon, L; Song, T Y; Vieira, J M; Visvikis, D; Van de Walle, R; Wieërs, E; Morel, C

    2004-10-07

    Monte Carlo simulation is an essential tool in emission tomography that can assist in the design of new medical imaging devices, the optimization of acquisition protocols and the development or assessment of image reconstruction algorithms and correction techniques. GATE, the Geant4 Application for Tomographic Emission, encapsulates the Geant4 libraries to achieve a modular, versatile, scripted simulation toolkit adapted to the field of nuclear medicine. In particular, GATE allows the description of time-dependent phenomena such as source or detector movement, and source decay kinetics. This feature makes it possible to simulate time curves under realistic acquisition conditions and to test dynamic reconstruction algorithms. This paper gives a detailed description of the design and development of GATE by the OpenGATE collaboration, whose continuing objective is to improve, document and validate GATE by simulating commercially available imaging systems for PET and SPECT. Large effort is also invested in the ability and the flexibility to model novel detection systems or systems still under design. A public release of GATE licensed under the GNU Lesser General Public License can be downloaded at http:/www-lphe.epfl.ch/GATE/. Two benchmarks developed for PET and SPECT to test the installation of GATE and to serve as a tutorial for the users are presented. Extensive validation of the GATE simulation platform has been started, comparing simulations and measurements on commercially available acquisition systems. References to those results are listed. The future prospects towards the gridification of GATE and its extension to other domains such as dosimetry are also discussed.

  10. The use of combined single photon emission computed tomography and X-ray computed tomography to assess the fate of inhaled aerosol.

    PubMed

    Fleming, John; Conway, Joy; Majoral, Caroline; Tossici-Bolt, Livia; Katz, Ira; Caillibotte, Georges; Perchet, Diane; Pichelin, Marine; Muellinger, Bernhard; Martonen, Ted; Kroneberg, Philipp; Apiou-Sbirlea, Gabriela

    2011-02-01

    Gamma camera imaging is widely used to assess pulmonary aerosol deposition. Conventional planar imaging provides limited information on its regional distribution. In this study, single photon emission computed tomography (SPECT) was used to describe deposition in three dimensions (3D) and combined with X-ray computed tomography (CT) to relate this to lung anatomy. Its performance was compared to planar imaging. Ten SPECT/CT studies were performed on five healthy subjects following carefully controlled inhalation of radioaerosol from a nebulizer, using a variety of inhalation regimes. The 3D spatial distribution was assessed using a central-to-peripheral ratio (C/P) normalized to lung volume and for the right lung was compared to planar C/P analysis. The deposition by airway generation was calculated for each lung and the conducting airways deposition fraction compared to 24-h clearance. The 3D normalized C/P ratio correlated more closely with 24-h clearance than the 2D ratio for the right lung [coefficient of variation (COV), 9% compared to 15% p < 0.05]. Analysis of regional distribution was possible for both lungs in 3D but not in 2D due to overlap of the stomach on the left lung. The mean conducting airways deposition fraction from SPECT for both lungs was not significantly different from 24-h clearance (COV 18%). Both spatial and generational measures of central deposition were significantly higher for the left than for the right lung. Combined SPECT/CT enabled improved analysis of aerosol deposition from gamma camera imaging compared to planar imaging. 3D radionuclide imaging combined with anatomical information from CT and computer analysis is a useful approach for applications requiring regional information on deposition.

  11. TomoBank: a tomographic data repository for computational x-ray science

    DOE PAGES

    De Carlo, Francesco; Gürsoy, Doğa; Ching, Daniel J.; ...

    2018-02-08

    There is a widening gap between the fast advancement of computational methods for tomographic reconstruction and their successful implementation in production software at various synchrotron facilities. This is due in part to the lack of readily available instrument datasets and phantoms representative of real materials for validation and comparison of new numerical methods. Recent advancements in detector technology made sub-second and multi-energy tomographic data collection possible [1], but also increased the demand to develop new reconstruction methods able to handle in-situ [2] and dynamic systems [3] that can be quickly incorporated in beamline production software [4]. The X-ray Tomography Datamore » Bank, tomoBank, provides a repository of experimental and simulated datasets with the aim to foster collaboration among computational scientists, beamline scientists, and experimentalists and to accelerate the development and implementation of tomographic reconstruction methods for synchrotron facility production software by providing easy access to challenging dataset and their descriptors.« less

  12. SpectraPLOT, Visualization Package with a User-Friendly Graphical Interface

    NASA Astrophysics Data System (ADS)

    Sebald, James; Macfarlane, Joseph; Golovkin, Igor

    2017-10-01

    SPECT3D is a collisional-radiative spectral analysis package designed to compute detailed emission, absorption, or x-ray scattering spectra, filtered images, XRD signals, and other synthetic diagnostics. The spectra and images are computed for virtual detectors by post-processing the results of hydrodynamics simulations in 1D, 2D, and 3D geometries. SPECT3D can account for a variety of instrumental response effects so that direct comparisons between simulations and experimental measurements can be made. SpectraPLOT is a user-friendly graphical interface for viewing a wide variety of results from SPECT3D simulations, and applying various instrumental effects to the simulated images and spectra. We will present SpectraPLOT's ability to display a variety of data, including spectra, images, light curves, streaked spectra, space-resolved spectra, and drilldown plasma property plots, for an argon-doped capsule implosion experiment example. Future SpectraPLOT features and enhancements will also be discussed.

  13. NOTE: Acceleration of Monte Carlo-based scatter compensation for cardiac SPECT

    NASA Astrophysics Data System (ADS)

    Sohlberg, A.; Watabe, H.; Iida, H.

    2008-07-01

    Single proton emission computed tomography (SPECT) images are degraded by photon scatter making scatter compensation essential for accurate reconstruction. Reconstruction-based scatter compensation with Monte Carlo (MC) modelling of scatter shows promise for accurate scatter correction, but it is normally hampered by long computation times. The aim of this work was to accelerate the MC-based scatter compensation using coarse grid and intermittent scatter modelling. The acceleration methods were compared to un-accelerated implementation using MC-simulated projection data of the mathematical cardiac torso (MCAT) phantom modelling 99mTc uptake and clinical myocardial perfusion studies. The results showed that when combined the acceleration methods reduced the reconstruction time for 10 ordered subset expectation maximization (OS-EM) iterations from 56 to 11 min without a significant reduction in image quality indicating that the coarse grid and intermittent scatter modelling are suitable for MC-based scatter compensation in cardiac SPECT.

  14. Regional cerebral blood flow assessed by single photon emission computed tomography (SPECT) in dogs with congenital portosystemic shunt and hepatic encephalopathy.

    PubMed

    Or, Matan; Peremans, Kathelijne; Martlé, Valentine; Vandermeulen, Eva; Bosmans, Tim; Devriendt, Nausikaa; de Rooster, Hilde

    2017-02-01

    Regional cerebral blood flow (rCBF) in eight dogs with congenital portosystemic shunt (PSS) and hepatic encephalopathy (HE) was compared with rCBF in eight healthy control dogs using single photon emission computed tomography (SPECT) with a 99m technetium-hexamethylpropylene amine oxime ( 99m Tc-HMPAO) tracer. SPECT scans were abnormal in all PSS dogs. Compared to the control group, rCBF in PSS dogs was significantly decreased in the temporal lobes and increased in the subcortical (thalamic and striatal) area. Brain perfusion imaging alterations observed in the dogs with PSS and HE are similar to those in human patients with HE. These findings suggest that dogs with HE and PSS have altered perfusion of mainly the subcortical and the temporal regions of the brain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. SPECT reconstruction with nonuniform attenuation from highly under-sampled projection data

    NASA Astrophysics Data System (ADS)

    Li, Cuifen; Wen, Junhai; Zhang, Kangping; Shi, Donghao; Dong, Haixiang; Li, Wenxiao; Liang, Zhengrong

    2012-03-01

    Single photon emission computed tomography (SPECT) is an important nuclear medicine imaging technique and has been using in clinical diagnoses. The SPECT image can reflect not only organizational structure but also functional activities of human body, therefore diseases can be found much earlier. In SPECT, the reconstruction is based on the measurement of gamma photons emitted by the radiotracer. The number of gamma photons detected is proportional to the dose of radiopharmaceutical, but the dose is limited because of patient safety. There is an upper limit in the number of gamma photons that can be detected per unit time, so it takes a long time to acquire SPECT projection data. Sometimes we just can obtain highly under-sampled projection data because of the limit of the scanning time or imaging hardware. How to reconstruct an image using highly under-sampled projection data is an interesting problem. One method is to minimize the total variation (TV) of the reconstructed image during the iterative reconstruction. In this work, we developed an OSEM-TV SPECT reconstruction algorithm, which could reconstruct the image from highly under-sampled projection data with non-uniform attenuation. Simulation results demonstrate that the OSEM-TV algorithm performs well in SPECT reconstruction with non-uniform attenuation.

  16. Incidence of a single subsegmental mismatched perfusion defect in single-photon emission computed tomography and planar ventilation/perfusion scans.

    PubMed

    Stubbs, Matthew; Chan, Kenneth; McMeekin, Helena; Navalkissoor, Shaunak; Wagner, Thomas

    2017-02-01

    This study aims to compare the incidence of ventilation/perfusion (V/Q) scans interpreted as indeterminate for the diagnosis of pulmonary embolism (PE) using single-photon emission computed tomography (SPECT) versus planar scintigraphy and to consider the effect of variable interpretation of single subsegmental V/Q mismatch (SSM). A total of 1300 consecutive V/Q scans were retrospectively reviewed. After exclusion and matching for age and sex, 542 SPECT and 589 planar scans were included in the analysis. European Association of Nuclear Medicine guidelines were used to interpret the V/Q scans, initially interpreting SSM as negative scans. Patients with SSM were followed up for 3 months and further imaging for PE was collected. Indeterminate scans were significantly fewer in the SPECT than the planar group on the basis of the initial report (7.7 vs. 12.2%, P<0.05). This is irrespective of classification of SSM as a negative scan (4.6 vs. 12.1%, P<0.0001) or an indeterminate scan (8.3 vs. 12.2%, P<0.05). Of the 21 patients who had SSM, 19 underwent computer tomography pulmonary angiogram and embolism was found in one patient. None of these patients died at the 3-month follow-up. V/Q SPECT has greater diagnostic certainty of PE, with a 41% reduction in an indeterminate scan compared with planar scintigraphy. This is irrespective of the clinician's interpretation of SSM as negative or intermediate probability. Patients with SSM would not require further computer tomography pulmonary angiogram imaging.

  17. Creation and characterization of normal myocardial perfusion imaging databases using the IQ·SPECT system.

    PubMed

    Okuda, Koichi; Nakajima, Kenichi; Matsuo, Shinro; Kondo, Chisato; Sarai, Masayoshi; Horiguchi, Yoriko; Konishi, Takahiro; Onoguchi, Masahisa; Shimizu, Takeshi; Kinuya, Seigo

    2017-01-03

    Image acquisition by short-time single-photon emission-computed tomography (SPECT) has been made feasible by IQ·SPECT. The aim of this study was to generate normal databases (NDBs) of thallium-201 ( 201 Tl) myocardial perfusion imaging for IQ·SPECT, and characterize myocardial perfusion distribution. We retrospectively enrolled 159 patients with a low likelihood of cardiac diseases from four hospitals in Japan. All patients underwent short-time 201 Tl myocardial perfusion IQ·SPECT with or without attenuation and scatter correction (ACSC) in either supine or prone position. The mean myocardial counts were calculated using 17-segment polar maps. Three NDBs were derived from supine and prone images as well as supine images with ACSC. Differences between the supine and prone positions were observed in the uncorrected sex-segregated NDBs in the mid-inferolateral counts (p ≤ 0.016 for males and p ≤ 0.002 for females). Differences between IQ·SPECT and conventional SPECT were also observed in the mid-anterior, inferolateral, and apical lateral counts (p ≤ 0.009 for males and p ≤ 0.003 for females). Apical low counts attributed to myocardial thinning were observed in the apical anterior and apex segments in the supine IQ·SPECT NDB with ACSC. There were significant differences between uncorrected supine and prone NDBs, between uncorrected supine NDB and supine NDB with ACSC, and between uncorrected supine NDB and conventional SPECT NDB. Understanding the pattern of normal distribution in IQ-SPECT short-time acquisitions with and without ACSC will be helpful for interpretation of imaging findings in patients with coronary artery disease (CAD) or low likelihood of CAD and the NDBs will aid in quantitative analysis.

  18. Myocardial scintigraphy using a fatty acid analogue detects coronary artery disease in hemodialysis patients.

    PubMed

    Nishimura, Masato; Hashimoto, Tetsuya; Kobayashi, Hiroyuki; Fukuda, Toyofumi; Okino, Koji; Yamamoto, Noriyuki; Fujita, Hiroshi; Inoue Tsunehiko Nishimura, Naoto; Ono, Toshihiko

    2004-08-01

    Coronary artery disease contributes significantly to mortality in end-stage renal disease (ESRD) patients. Single-photon emission computed tomography (SPECT) using an iodinated fatty acid analogue, iodine-123-methyl iodophenylpentadecanoic acid (123I-BMIPP), can assess fatty acid metabolism in the myocardium. We investigated the ability of 123I-BMIPP SPECT to detect coronary artery disease in hemodialysis patients compared with 201thallium chloride (201Tl) SPECT. We prospectively studied 130 ESRD patients undergoing hemodialysis for a mean of 88.6 months (male/female, 77/53; mean age, 63.8 years). Dual SPECT using 123I-BMIPP and 201Tl was performed, followed by coronary angiography. SPECT findings were graded in 17 segments on a five-point scale (0, normal uptake; 4, none) and assessed as a summed score. By coronary angiography, 71.5% of patients (93/130) had significant coronary stenosis (> or =75%), and five patients showed coronary spasm without coronary stenosis. When a BMIPP summed score of 6 or more was defined as abnormal, sensitivity, specificity, and accuracy for detecting coronary artery disease by BMIPP SPECT were 98.0%, 65.6%, and 90.0%, respectively; in contrast, these parameters for detecting coronary artery disease by Tl SPECT were 84.7%, 46.9%, and 75.0%, respectively, when a Tl summed score of 1 or more was defined as abnormal. In receiver operating characteristic analysis, the area under the curve was 0.895 in BMIPP and 0.727 in Tl SPECT, respectively. Resting BMIPP SPECT is superior to Tl SPECT for detecting coronary lesions, and provides safe screening for coronary artery disease among maintenance hemodialysis patients.

  19. Hemimegalencephaly: Clinical, EEG, neuroimaging, and IMP-SPECT correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konkol, R.J.; Maister, B.H.; Wells, R.G.

    1990-11-01

    Iofetamine-single photon emission computed tomography (IMP-SPECT) was performed on 2 girls (5 1/2 and 6 years of age) with histories of intractable seizures, developmental delay, and unilateral hemiparesis secondary to hemimegalencephaly. Electroencephalography (EEG) revealed frequent focal discharges in 1 patient, while a nearly continuous burst suppression pattern over the malformed hemisphere was recorded in the other. IMP-SPECT demonstrated a good correlation with neuroimaging studies. In spite of the different EEG patterns, which had been proposed to predict contrasting clinical outcomes, both IMP-SPECT scans disclosed a similar decrease in tracer uptake in the malformed hemisphere. These results are consistent with themore » pattern of decreased tracer uptake found in other interictal studies of focal seizures without cerebral malformations. In view of recent recommendations for hemispherectomy in these patients, we suggest that the IMP-SPECT scan be used to compliment EEG as a method to define the extent of abnormality which may be more relevant to long-term prognosis than EEG alone.« less

  20. Prognostic Value of Cardiovascular Magnetic Resonance and Single-Photon Emission Computed Tomography in Suspected Coronary Heart Disease: Long-Term Follow-up of a Prospective, Diagnostic Accuracy Cohort Study.

    PubMed

    Greenwood, John P; Herzog, Bernhard A; Brown, Julia M; Everett, Colin C; Nixon, Jane; Bijsterveld, Petra; Maredia, Neil; Motwani, Manish; Dickinson, Catherine J; Ball, Stephen G; Plein, Sven

    2016-05-10

    There are no prospective, prognostic data comparing cardiovascular magnetic resonance (CMR) and single-photon emission computed tomography (SPECT) in the same population of patients with suspected coronary heart disease (CHD). To establish the ability of CMR and SPECT to predict major adverse cardiovascular events (MACEs). Annual follow-up of the CE-MARC (Clinical Evaluation of MAgnetic Resonance imaging in Coronary heart disease) study for a minimum of 5 years for MACEs (cardiovascular death, acute coronary syndrome, unscheduled revascularization or hospital admission for cardiovascular cause). (Current Controlled Trials registration: ISRCTN77246133). Secondary and tertiary care cardiology services. 752 patients from the CE-MARC study who were being investigated for suspected CHD. Prediction of time to MACE was assessed by using univariable (log-rank test) and multivariable (Cox proportional hazards regression) analysis. 744 (99%) of the 752 recruited patients had complete follow-up. Of 628 who underwent CMR, SPECT, and the reference standard test of X-ray angiography, 104 (16.6%) had at least 1 MACE. Abnormal findings on CMR (hazard ratio, 2.77 [95% CI, 1.85 to 4.16]; P < 0.001) and SPECT (hazard ratio, 1.62 [CI, 1.11 to 2.38; P = 0.014) were both strong and independent predictors of MACE. Only CMR remained a significant predictor after adjustment for other cardiovascular risk factors, angiography result, or stratification for initial patient treatment. Data are from a single-center observational study (albeit conducted in a high-volume institution for both CMR and SPECT). Five-year follow-up of the CE-MARC study indicates that compared with SPECT, CMR is a stronger predictor of risk for MACEs, independent of cardiovascular risk factors, angiography result, or initial patient treatment. This further supports the role of CMR as an alternative to SPECT for the diagnosis and management of patients with suspected CHD. British Heart Foundation.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    The purpose of the computer program is to generate system matrices that model data acquisition process in dynamic single photon emission computed tomography (SPECT). The application is for the reconstruction of dynamic data from projection measurements that provide the time evolution of activity uptake and wash out in an organ of interest. The measurement of the time activity in the blood and organ tissue provide time-activity curves (TACs) that are used to estimate kinetic parameters. The program provides a correct model of the in vivo spatial and temporal distribution of radioactive in organs. The model accounts for the attenuation ofmore » the internal emitting radioactivity, it accounts for the vary point response of the collimators, and correctly models the time variation of the activity in the organs. One important application where the software is being used in a measuring the arterial input function (AIF) in a dynamic SPECT study where the data are acquired from a slow camera rotation. Measurement of the arterial input function (AIF) is essential to deriving quantitative estimates of regional myocardial blood flow using kinetic models. A study was performed to evaluate whether a slowly rotating SPECT system could provide accurate AIF's for myocardial perfusion imaging (MPI). Methods: Dynamic cardiac SPECT was first performed in human subjects at rest using a Phillips Precedence SPECT/CT scanner. Dynamic measurements of Tc-99m-tetrofosmin in the myocardium were obtained using an infusion time of 2 minutes. Blood input, myocardium tissue and liver TACs were estimated using spatiotemporal splines. These were fit to a one-compartment perfusion model to obtain wash-in rate parameters K1. Results: The spatiotemporal 4D ML-EM reconstructions gave more accurate reconstructions that did standard frame-by-frame 3D ML-EM reconstructions. From additional computer simulations and phantom studies, it was determined that a 1 minute infusion with a SPECT system rotation speed providing 180 degrees of projection data every 54s can produce measurements of blood pool and myocardial TACs. This has important application in the circulation of coronary flow reserve using rest/stress dynamic cardiac SPECT. They system matrices are used in maximum likelihood and maximum a posterior formulations in estimation theory where through iterative algorithms (conjugate gradient, expectation maximization, or maximum a posteriori probability algorithms) the solution is determined that maximizes a likelihood or a posteriori probability function.« less

  2. Diagnostic value of thallium-201 myocardial perfusion IQ-SPECT without and with computed tomography-based attenuation correction to predict clinically significant and insignificant fractional flow reserve

    PubMed Central

    Tanaka, Haruki; Takahashi, Teruyuki; Ohashi, Norihiko; Tanaka, Koichi; Okada, Takenori; Kihara, Yasuki

    2017-01-01

    Abstract The aim of this study was to clarify the predictive value of fractional flow reserve (FFR) determined by myocardial perfusion imaging (MPI) using thallium (Tl)-201 IQ-SPECT without and with computed tomography-based attenuation correction (CT-AC) for patients with stable coronary artery disease (CAD). We assessed 212 angiographically identified diseased vessels using adenosine-stress Tl-201 MPI-IQ-SPECT/CT in 84 consecutive, prospectively identified patients with stable CAD. We compared the FFR in 136 of the 212 diseased vessels using visual semiquantitative interpretations of corresponding territories on MPI-IQ-SPECT images without and with CT-AC. FFR inversely correlated most accurately with regional summed difference scores (rSDS) in images without and with CT-AC (r = −0.584 and r = −0.568, respectively, both P < .001). Receiver-operating characteristics analyses using rSDS revealed an optimal FFR cut-off of <0.80 without and with CT-AC. Although the diagnostic accuracy of FFR <0.80 did not significantly differ, FFR ≥0.82 was significantly more accurate with, than without CT-AC. Regions with rSDS ≥2 without or with CT-AC predicted FFR <0.80, and those with rSDS ≤1 without and with CT-AC predicted FFR ≥0.81, with 73% and 83% sensitivity, 84% and 67% specificity, and 79% and 75% accuracy, respectively. Although limited by the sample size and the single-center design, these findings showed that the IQ-SPECT system can predict FFR at an optimal cut-off of <0.80, and we propose a novel application of CT-AC to MPI-IQ-SPECT for predicting clinically significant and insignificant FFR even in nonobese patients. PMID:29390486

  3. Real-time myocardial perfusion imaging for pharmacologic stress testing: added value to single photon emission computed tomography.

    PubMed

    Korosoglou, Grigorios; Dubart, Alain-Eric; DaSilva, K Gaspar C; Labadze, Nino; Hardt, Stefan; Hansen, Alexander; Bekeredjian, Raffi; Zugck, Christian; Zehelein, Joerg; Katus, Hugo A; Kuecherer, Helmut

    2006-01-01

    Little is known about the incremental value of real-time myocardial contrast echocardiography (MCE) as an adjunct to pharmacologic stress testing. This study was performed to evaluate the diagnostic value of MCE to detect abnormal myocardial perfusion by technetium Tc 99m sestamibi-single photon emission computed tomography (SPECT) and anatomically significant coronary artery disease (CAD) by angiography. Myocardial contrast echocardiography was performed at rest and during vasodilator stress in consecutive patients (N = 120) undergoing SPECT imaging for known or suspected CAD. Myocardial opacification, wall motion, and tracer uptake were visually analyzed in 12 myocardial segments by 2 pairs of blinded observers. Concordance between the 2 methods was assessed using the kappa statistic. Of 1356 segments, 1025 (76%) were interpretable by MCE, wall motion, and SPECT. Sensitivity of wall motion was 75%, specificity 83%, and accuracy 81% for detecting abnormal myocardial perfusion by SPECT (kappa = 0.53). Myocardial contrast echocardiography and wall motion together yielded significantly higher sensitivity (85% vs 74%, P < .05), specificity of 83%, and accuracy of 85% (kappa = 0.64) for the detection of abnormal myocardial perfusion. In 89 patients who underwent coronary angiography, MCE and wall motion together yielded higher sensitivity (83% vs 64%, P < .05) and accuracy (77% vs 68%, P < .05) but similar specificity (72%) compared with SPECT for the detection of high-grade, stenotic (> or = 75%) coronary lesions. Assessment of myocardial perfusion adds value to conventional stress echocardiography by increasing its sensitivity for the detection of functionally abnormal myocardial perfusion. Myocardial contrast echocardiography and wall motion together provide higher sensitivity and accuracy for detection of CAD compared with SPECT.

  4. An Analysis for Capital Expenditure Decisions at a Naval Regional Medical Center.

    DTIC Science & Technology

    1981-12-01

    Service Equipment Review Committee 1. Portable defibrilator Computed tomographic scanner and cardioscope 2. ECG cart Automated blood cell counter 3. Gas...system sterilizer Gas system sterilizer 4. Automated blood cell Portable defibrilator and counter cardioscope 5. Computed tomographic ECG cart scanner...dictating and automated typing) systems. e. Filing equipment f. Automatic data processing equipment including data communications equipment. g

  5. Scalp marking for a craniotomy using a laser pointer during preoperative computed tomographic imaging: technical note.

    PubMed

    Kubo, S; Nakata, H; Sugauchi, Y; Yokota, N; Yoshimine, T

    2000-05-01

    The preoperative localization of superficial intracranial lesions is often necessary for accurate burr hole placement or craniotomy siting. It is not always easy, however, to localize the lesions over the scalp working only from computed tomographic images. We developed a simple method for such localization using a laser pointer during the preoperative computed tomographic examination. The angle of incidence, extending from a point on the scalp to the center of the computed tomographic image, is measured by the software included with the scanner. In the gantry, at the same angle as on the image, a laser is beamed from a handmade projector onto the patient's scalp toward the center of the gantry. The point illuminated on the patient's head corresponds to that on the image. The device and the method are described in detail herein. We applied this technique to mark the area for the craniotomy before surgery in five patients with superficial brain tumors. At the time of surgery, it was confirmed that the tumors were circumscribed precisely. The technique is easy to perform and useful in the preoperative planning for a craniotomy. In addition, the device is easily constructed and inexpensive.

  6. TomoBank: a tomographic data repository for computational x-ray science

    NASA Astrophysics Data System (ADS)

    De Carlo, Francesco; Gürsoy, Doğa; Ching, Daniel J.; Joost Batenburg, K.; Ludwig, Wolfgang; Mancini, Lucia; Marone, Federica; Mokso, Rajmund; Pelt, Daniël M.; Sijbers, Jan; Rivers, Mark

    2018-03-01

    There is a widening gap between the fast advancement of computational methods for tomographic reconstruction and their successful implementation in production software at various synchrotron facilities. This is due in part to the lack of readily available instrument datasets and phantoms representative of real materials for validation and comparison of new numerical methods. Recent advancements in detector technology have made sub-second and multi-energy tomographic data collection possible (Gibbs et al 2015 Sci. Rep. 5 11824), but have also increased the demand to develop new reconstruction methods able to handle in situ (Pelt and Batenburg 2013 IEEE Trans. Image Process. 22 5238-51) and dynamic systems (Mohan et al 2015 IEEE Trans. Comput. Imaging 1 96-111) that can be quickly incorporated in beamline production software (Gürsoy et al 2014 J. Synchrotron Radiat. 21 1188-93). The x-ray tomography data bank, tomoBank, provides a repository of experimental and simulated datasets with the aim to foster collaboration among computational scientists, beamline scientists, and experimentalists and to accelerate the development and implementation of tomographic reconstruction methods for synchrotron facility production software by providing easy access to challenging datasets and their descriptors.

  7. Usefulness of coronary calcium scoring to myocardial perfusion SPECT in the diagnosis of coronary artery disease in a predominantly high risk population.

    PubMed

    Schaap, Jeroen; Kauling, Robert M; Boekholdt, S Matthijs; Post, Martijn C; Van der Heyden, Jan A; de Kroon, Thom L; van Es, H Wouter; Rensing, Benno J W M; Verzijlbergen, J Fred

    2013-03-01

    Coronary calcium scoring (CCS) adds to the diagnostic performance of myocardial perfusion single-photon emission computed tomography (SPECT) to assess the presence of significant coronary artery disease (CAD). Patients with a high pre-test likelihood are expected to have a high CCS which potentially could enhance the diagnostic performance of myocardial perfusion SPECT in this specific patient group. We evaluated the added value of CCS to SPECT in the diagnosis of significant CAD in patients with an intermediate to high pre-test likelihood. In total, 129 patients (mean age 62.7 ± 9.7 years, 65 % male) with stable anginal complaints and intermediate to high pre-test likelihood of CAD (median 87 %, range 22-95) were prospectively included in this study. All patients received SPECT and CCS imaging preceding invasive coronary angiography (CA). Fractional flow reserve (FFR) measurements were acquired from patients with angiographically estimated 50-95 % obstructive CAD. For SPECT a SSS > 3 was defined significant CAD. For CCS the optimal cut-off value for significant CAD was determined by ROC curve analysis. The reference standard for significant CAD was a FFR of <0.80 acquired by CA. Significant CAD was demonstrated in 64 patients (49.6 %). Optimal CCS cut-off value for significant CAD was >182.5. ROC curve analysis for prediction of the presence of significant CAD for SPECT, CCS and the combination of CCS and SPECT resulted in an area under the curve (AUC) of 0.88 (95 % CI 81-94), 0.75 (95 % CI 66-83 %) and 0.92 (95 % CI 87-97 %) respectively. The difference of the AUC between SPECT and the combination of CCS and SPECT was 0.05 (P = 0.12). The addition of CCS did not significantly improve the diagnostic performance of SPECT in the evaluation of patients with a predominantly high pre-test likelihood of CAD.

  8. Radiolabeled cyclic arginine-glycine-aspartic (RGD)-conjugated iron oxide nanoparticles as single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI) dual-modality agents for imaging of breast cancer

    NASA Astrophysics Data System (ADS)

    Deng, Shengming; Zhang, Wei; Zhang, Bin; Hong, Ruoyu; Chen, Qing; Dong, Jiajia; Chen, Yinyiin; Chen, Zhiqiang; Wu, Yiwei

    2015-01-01

    Ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) modified with a novel cyclic arginine-glycine-aspartate (RGD) peptide were made and radiolabeled as single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI) dual-modality agents for imaging of breast cancer. The probe was tested both in vitro and in vivo to determine its receptor targeting efficacy and feasibility for SPECT and MRI. The radiochemical syntheses of 125I-cRGD-USPIO were accomplished with a radiochemical purity of 96.05 ± 0.33 %. High radiochemical stability was found in fresh human serum and in phosphate-buffered saline. The average hydrodynamic size of 125I-cRGD-USPIO determined by dynamic light scattering was 51.3 nm. Results of in vitro experiments verified the specificity of the radiolabeled nanoparticles to tumor cells. Preliminary biodistribution studies of 125I-radiolabeled cRGD-USPIO in Bcap37-bearing nude mice showed that it had long circulation half-life, high tumor uptake, and high initial blood retention with moderate liver uptake. In vivo tumor targeting and uptake of the radiolabeled nanoparticles in mice model were visualized by SPECT and MRI collected at different time points. Our results strongly indicated that the 125I-cRGD-USPIO could be used as a promising bifunctional radiotracer for early clinical tumor detection with high sensitivity and high spatial resolution by SPECT and MRI.

  9. Ventilation/perfusion single-photon emission computed tomography: a service evaluation.

    PubMed

    Parekh, Amit; Graham, Richard; Redman, Stewart

    2017-08-01

    To identify the positive rate and negative predictive value (NPV) of our ventilation/perfusion (V/Q) single-photon emission computed tomography (SPECT) service as respective markers of overcalling (false positives) and undercalling (false negatives). We also identified the indeterminate rate as an indicator of the technical quality of the scans and reporter confidence. V/Q SPECT studies carried out over 5 years were classified into positive, negative and indeterminate results. Patients who had died or had pulmonary emboli on imaging within 3 months of a negative V/Q SPECT were identified as false negatives, from which the NPV was calculated. The total number of positive and indeterminate studies as a proportion of all studies was calculated as the positive and indeterminate rates. The positive rate, NPV and indeterminate rates in nonpregnant patients were 24, 98.7-100 and 3.6%, respectively. The positive rate, NPV and indeterminate rates in pregnant patients were 6.8, 100 and 2.3%, respectively. The positive rate and NPV for nonpregnant patients were similar to the published literature. This suggests that we provide a safe service. The indeterminate rate was slightly higher than the stated guidelines. The study shows that the positive rate and NPV are achievable indicators of potential overcalling and undercalling in a V/Q SPECT service.This is also one of the first studies to report a positive rate in pregnant patients undergoing V/Q SPECT that other institutions can use as a standard when evaluating their services.

  10. Trace: a high-throughput tomographic reconstruction engine for large-scale datasets.

    PubMed

    Bicer, Tekin; Gürsoy, Doğa; Andrade, Vincent De; Kettimuthu, Rajkumar; Scullin, William; Carlo, Francesco De; Foster, Ian T

    2017-01-01

    Modern synchrotron light sources and detectors produce data at such scale and complexity that large-scale computation is required to unleash their full power. One of the widely used imaging techniques that generates data at tens of gigabytes per second is computed tomography (CT). Although CT experiments result in rapid data generation, the analysis and reconstruction of the collected data may require hours or even days of computation time with a medium-sized workstation, which hinders the scientific progress that relies on the results of analysis. We present Trace, a data-intensive computing engine that we have developed to enable high-performance implementation of iterative tomographic reconstruction algorithms for parallel computers. Trace provides fine-grained reconstruction of tomography datasets using both (thread-level) shared memory and (process-level) distributed memory parallelization. Trace utilizes a special data structure called replicated reconstruction object to maximize application performance. We also present the optimizations that we apply to the replicated reconstruction objects and evaluate them using tomography datasets collected at the Advanced Photon Source. Our experimental evaluations show that our optimizations and parallelization techniques can provide 158× speedup using 32 compute nodes (384 cores) over a single-core configuration and decrease the end-to-end processing time of a large sinogram (with 4501 × 1 × 22,400 dimensions) from 12.5 h to <5 min per iteration. The proposed tomographic reconstruction engine can efficiently process large-scale tomographic data using many compute nodes and minimize reconstruction times.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammeschlag, S.B.; Hughes, S.; O'Reilly, G.V.

    Orbital blow-out fractures were experimentally created in eight human cadavers. Each orbit underwent conventional radiographic studies, complex motion tomography, and computed tomographic examinations. A comparison of the three modalities was made. Anatomical correlation was obtained by dissecting the orbits. The significance of medial-wall fractures and enophthalmos is discussed. Limitation of inferior rectus muscle mobility is thought to be a result of muscle kinking associated with orbital fat-pad prolapse at the fracture site, rather than muscle incarceration. Blow-out fractures should be evaluated by computed tomographic computer reformations in the oblique sagittal plane.

  12. Value of a Lower-Limb Immobilization Device for Optimization of SPECT/CT Image Fusion.

    PubMed

    Machado, Joana do Mar F; Monteiro, Marina S; Vieira, Victor Fernandes; Collinot, Jean-Aybert; Prior, John O; Vieira, Lina; Pires-Jorge, José A

    2015-06-01

    The foot and the ankle are small structures commonly affected by disorders, and their complex anatomy represents a significant diagnostic challenge. By providing information on anatomic and bone structure that cannot be obtained from functional imaging, SPECT/CT image fusion can be particularly useful in increasing diagnostic certainty about bone pathology. However, because of the lengthy duration of a SPECT acquisition, a patient's involuntary movements may lead to misalignment between SPECT and CT images. Patient motion can be reduced using a dedicated patient support. We designed an ankle- and foot-immobilizing device and measured its efficacy at improving image fusion. We enrolled 20 patients who underwent SPECT/CT of the ankle and foot with and without a foot support. The misalignment between SPECT and CT images was computed by manually measuring 14 fiducial markers chosen among anatomic landmarks also visible on bone scintigraphy. ANOVA was performed for statistical analysis. The absolute average difference without and with support was 5.1 ± 5.2 mm (mean ± SD) and 3.1 ± 2.7 mm, respectively, which is significant (P < 0.001). The introduction of the foot support significantly decreased misalignment between SPECT and CT images, which may have a positive clinical influence in the precise localization of foot and ankle pathology. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  13. Numerical study on simultaneous emission and transmission tomography in the MRI framework

    NASA Astrophysics Data System (ADS)

    Gjesteby, Lars; Cong, Wenxiang; Wang, Ge

    2017-09-01

    Multi-modality imaging methods are instrumental for advanced diagnosis and therapy. Specifically, a hybrid system that combines computed tomography (CT), nuclear imaging, and magnetic resonance imaging (MRI) will be a Holy Grail of medical imaging, delivering complementary structural/morphological, functional, and molecular information for precision medicine. A novel imaging method was recently demonstrated that takes advantage of radiotracer polarization to combine MRI principles with nuclear imaging. This approach allows the concentration of a polarized Υ-ray emitting radioisotope to be imaged with MRI resolution potentially outperforming the standard nuclear imaging mode at a sensitivity significantly higher than that of MRI. In our work, we propose to acquire MRI-modulated nuclear data for simultaneous image reconstruction of both emission and transmission parameters, suggesting the potential for simultaneous CT-SPECT-MRI. The synchronized diverse datasets allow excellent spatiotemporal registration and unique insight into physiological and pathological features. Here we describe the methodology involving the system design with emphasis on the formulation for tomographic images, even when significant radiotracer signals are limited to a region of interest (ROI). Initial numerical results demonstrate the feasibility of our approach for reconstructing concentration and attenuation images through a head phantom with various radio-labeled ROIs. Additional considerations regarding the radioisotope characteristics are also discussed.

  14. Nuclear myocardial perfusion imaging using thallium-201 with a novel multifocal collimator SPECT/CT: IQ-SPECT versus conventional protocols in normal subjects.

    PubMed

    Matsuo, Shinro; Nakajima, Kenichi; Onoguchi, Masahisa; Wakabayash, Hiroshi; Okuda, Koichi; Kinuya, Seigo

    2015-06-01

    A novel multifocal collimator, IQ-SPECT (Siemens) consists of SMARTZOOM, cardio-centric and 3D iterative SPECT reconstruction and makes it possible to perform MPI scans in a short time. The aims are to delineate the normal uptake in thallium-201 ((201)Tl) SPECT in each acquisition method and to compare the distribution between new and conventional protocol, especially in patients with normal imaging. Forty patients (eight women, mean age of 75 years) who underwent myocardial perfusion imaging were included in the study. All patients underwent one-day protocol perfusion scan after an adenosine-stress test and at rest after administering (201)Tl and showed normal results. Acquisition was performed on a Symbia T6 equipped with a conventional dual-headed gamma camera system (Siemens ECAM) and with a multifocal SMARTZOOM collimator. Imaging was performed with a conventional system followed by IQ-SPECT/computed tomography (CT). Reconstruction was performed with or without X-ray CT-derived attenuation correction (AC). Two nuclear physicians blinded to clinical information interpreted all myocardial perfusion images. A semi-quantitative myocardial perfusion was analyzed by a 17-segment model with a 5-point visual scoring. The uptake of each segment was measured and left ventricular functions were analyzed by QPS software. IQ-SPECT provided good or excellent image quality. The quality of IQ-SPECT images without AC was similar to those of conventional LEHR study. Mid-inferior defect score (0.3 ± 0.5) in the conventional LEHR study was increased significantly in IQ-SPECT with AC (0 ± 0). IQ-SPECT with AC improved the mid-inferior decreased perfusion shown in conventional images. The apical tracer count in IQ-SPECT with AC was decreased compared to that in LEHR (0.1 ± 0.3 vs. 0.5 ± 0.7, p < 0.05). The left ventricular ejection fraction from IQ-SPECT was significantly higher than that from the LEHR collimator (p = 0.0009). The images of IQ-SPECT acquired in a short time are equivalent to that of conventional LEHR. The results indicated that the IQ-SPECT system with AC is capable of correcting inferior artifacts with high image quality.

  15. Cost-effectiveness of coronary CT angiography in patients with chest pain: Comparison with myocardial single photon emission tomography.

    PubMed

    Lee, Seung-Pyo; Jang, Eun Jin; Kim, Yong-Jin; Cha, Myung-Jin; Park, Sun-Young; Song, Hyun Jin; Choi, Ji Eun; Shim, Jung-Im; Ahn, Jeonghoon; Lee, Hyun Joo

    2015-01-01

    Coronary CT angiography (CCTA) has been proven accurate and is incorporated in clinical recommendations for coronary artery disease (CAD) diagnosis workup, but cost-effectiveness data, especially in comparison to other methods such as myocardial single photon emission CT (SPECT) are insufficient. To compare the cost-effectiveness of CCTA and myocardial SPECT in a real-world setting. We performed a retrospective cohort study on consecutive patients with suspected CAD and a pretest probability between 10% and 90%. Test accuracy was compared by correcting referral bias to coronary angiography depending on noninvasive test results based on the Bayes' theorem and also by incorporating 1-year follow-up results. Cost-effectiveness was analyzed using test accuracy and quality-adjusted life year (QALY). The model using diagnostic accuracy used the number of patients accurately diagnosed among 1000 persons as the effect and contained only expenses for diagnostic testing as the cost. In the model using QALY, a decision tree was developed, and the time horizon was 1 year. CCTA was performed in 635 patients and SPECT in 997 patients. An accurate diagnosis per 1000 patients was achieved in 725 patients by CCTA vs 661 patients by SPECT. In the model using diagnostic accuracy, CCTA was more effective and less expensive than SPECT ($725.38 for CCTA vs $661.46 for SPECT). In the model using QALY, CCTA was generally more effective in terms of life quality (0.00221 QALY) and cost ($513) than SPECT. However, cost utility varied among subgroups, with SPECT outperforming CCTA in patients with a pretest probability of 30% to 60% (0.01890 QALY; $113). These results suggest that CCTA may be more cost-effective than myocardial SPECT. Copyright © 2015 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.

  16. Applying standardized uptake values in gallium-67-citrate single-photon emission computed tomography/computed tomography studies and their correlation with blood test results in representative organs.

    PubMed

    Toriihara, Akira; Daisaki, Hiromitsu; Yamaguchi, Akihiro; Yoshida, Katsuya; Isogai, Jun; Tateishi, Ukihide

    2018-05-21

    Recently, semiquantitative analysis using standardized uptake value (SUV) has been introduced in bone single-photon emission computed tomography/computed tomography (SPECT/CT). Our purposes were to apply SUV-based semiquantitative analytic method for gallium-67 (Ga)-citrate SPECT/CT and to evaluate correlation between SUV of physiological uptake and blood test results in representative organs. The accuracy of semiquantitative method was validated using an National Electrical Manufacturers Association body phantom study (radioactivity ratio of sphere : background=4 : 1). Thereafter, 59 patients (34 male and 25 female; mean age, 66.9 years) who had undergone Ga-citrate SPECT/CT were retrospectively enrolled in the study. A mean SUV of physiological uptake was calculated for the following organs: the lungs, right atrium, liver, kidneys, spleen, gluteal muscles, and bone marrow. The correlation between physiological uptakes and blood test results was evaluated using Pearson's correlation coefficient. The phantom study revealed only 1% error between theoretical and actual SUVs in the background, suggesting the sufficient accuracy of scatter and attenuation corrections. However, a partial volume effect could not be overlooked, particularly in small spheres with a diameter of less than 28 mm. The highest mean SUV was observed in the liver (range: 0.44-4.64), followed by bone marrow (range: 0.33-3.60), spleen (range: 0.52-2.12), and kidneys (range: 0.42-1.45). There was no significant correlation between hepatic uptake and liver function, renal uptake and renal function, or bone marrow uptake and blood cell count (P>0.05). The physiological uptake in Ga-citrate SPECT/CT can be represented as SUVs, which are not significantly correlated with corresponding blood test results.

  17. Evaluation of a Multicore-Optimized Implementation for Tomographic Reconstruction

    PubMed Central

    Agulleiro, Jose-Ignacio; Fernández, José Jesús

    2012-01-01

    Tomography allows elucidation of the three-dimensional structure of an object from a set of projection images. In life sciences, electron microscope tomography is providing invaluable information about the cell structure at a resolution of a few nanometres. Here, large images are required to combine wide fields of view with high resolution requirements. The computational complexity of the algorithms along with the large image size then turns tomographic reconstruction into a computationally demanding problem. Traditionally, high-performance computing techniques have been applied to cope with such demands on supercomputers, distributed systems and computer clusters. In the last few years, the trend has turned towards graphics processing units (GPUs). Here we present a detailed description and a thorough evaluation of an alternative approach that relies on exploitation of the power available in modern multicore computers. The combination of single-core code optimization, vector processing, multithreading and efficient disk I/O operations succeeds in providing fast tomographic reconstructions on standard computers. The approach turns out to be competitive with the fastest GPU-based solutions thus far. PMID:23139768

  18. High-resolution brain SPECT imaging by combination of parallel and tilted detector heads.

    PubMed

    Suzuki, Atsuro; Takeuchi, Wataru; Ishitsu, Takafumi; Morimoto, Yuichi; Kobashi, Keiji; Ueno, Yuichiro

    2015-10-01

    To improve the spatial resolution of brain single-photon emission computed tomography (SPECT), we propose a new brain SPECT system in which the detector heads are tilted towards the rotation axis so that they are closer to the brain. In addition, parallel detector heads are used to obtain the complete projection data set. We evaluated this parallel and tilted detector head system (PT-SPECT) in simulations. In the simulation study, the tilt angle of the detector heads relative to the axis was 45°. The distance from the collimator surface of the parallel detector heads to the axis was 130 mm. The distance from the collimator surface of the tilted detector heads to the origin on the axis was 110 mm. A CdTe semiconductor panel with a 1.4 mm detector pitch and a parallel-hole collimator were employed in both types of detector head. A line source phantom, cold-rod brain-shaped phantom, and cerebral blood flow phantom were evaluated. The projection data were generated by forward-projection of the phantom images using physics models, and Poisson noise at clinical levels was applied to the projection data. The ordered-subsets expectation maximization algorithm with physics models was used. We also evaluated conventional SPECT using four parallel detector heads for the sake of comparison. The evaluation of the line source phantom showed that the transaxial FWHM in the central slice for conventional SPECT ranged from 6.1 to 8.5 mm, while that for PT-SPECT ranged from 5.3 to 6.9 mm. The cold-rod brain-shaped phantom image showed that conventional SPECT could visualize up to 8-mm-diameter rods. By contrast, PT-SPECT could visualize up to 6-mm-diameter rods in upper slices of a cerebrum. The cerebral blood flow phantom image showed that the PT-SPECT system provided higher resolution at the thalamus and caudate nucleus as well as at the longitudinal fissure of the cerebrum compared with conventional SPECT. PT-SPECT provides improved image resolution at not only upper but also at central slices of the cerebrum.

  19. Permeability Surface of Deep Middle Cerebral Artery Territory on Computed Tomographic Perfusion Predicts Hemorrhagic Transformation After Stroke.

    PubMed

    Li, Qiao; Gao, Xinyi; Yao, Zhenwei; Feng, Xiaoyuan; He, Huijin; Xue, Jing; Gao, Peiyi; Yang, Lumeng; Cheng, Xin; Chen, Weijian; Yang, Yunjun

    2017-09-01

    Permeability surface (PS) on computed tomographic perfusion reflects blood-brain barrier permeability and is related to hemorrhagic transformation (HT). HT of deep middle cerebral artery (MCA) territory can occur after recanalization of proximal large-vessel occlusion. We aimed to determine the relationship between HT and PS of deep MCA territory. We retrospectively reviewed 70 consecutive acute ischemic stroke patients presenting with occlusion of the distal internal carotid artery or M1 segment of the MCA. All patients underwent computed tomographic perfusion within 6 hours after symptom onset. Computed tomographic perfusion data were postprocessed to generate maps of different perfusion parameters. Risk factors were identified for increased deep MCA territory PS. Receiver operating characteristic curve analysis was performed to calculate the optimal PS threshold to predict HT of deep MCA territory. Increased PS was associated with HT of deep MCA territory. After adjustments for age, sex, onset time to computed tomographic perfusion, and baseline National Institutes of Health Stroke Scale, poor collateral status (odds ratio, 7.8; 95% confidence interval, 1.67-37.14; P =0.009) and proximal MCA-M1 occlusion (odds ratio, 4.12; 95% confidence interval, 1.03-16.52; P =0.045) were independently associated with increased deep MCA territory PS. Relative PS most accurately predicted HT of deep MCA territory (area under curve, 0.94; optimal threshold, 2.89). Increased PS can predict HT of deep MCA territory after recanalization therapy for cerebral proximal large-vessel occlusion. Proximal MCA-M1 complete occlusion and distal internal carotid artery occlusion in conjunction with poor collaterals elevate deep MCA territory PS. © 2017 American Heart Association, Inc.

  20. Evolution of technetium-99m-HMPAO SPECT and brain mapping in a patient presenting with echolalia and palilalia.

    PubMed

    Dierckx, R A; Saerens, J; De Deyn, P P; Verslegers, W; Marien, P; Vandevivere, J

    1991-08-01

    A 78-yr-old woman presented with transient echolalia and palilalia. She had suffered from Parkinson's disease for 2 yr. Routine laboratory examination showed hypotonic hyponatremia, but was otherwise unremarkable. Brain mapping revealed a bifrontal delta focus, more pronounced on the right. Single photon emission computed tomography (SPECT) of the brain with technetium-99m labeled d,l hexamethylpropylene-amine oxime (99mTc-HMPAO), performed during the acute episode showed relative frontoparietal hypoactivity. Brain mapping performed after disappearance of the echolalia and palilalia, which persisted only for 1 day, was normal. By contrast, SPECT findings persisted for more than 3 wk. Features of particular interest in the presented patient are the extensive defects seen on brain SPECT despite the absence of morphologic lesions, the congruent electrophysiologic changes and their temporal relationship with the clinical evolution.

  1. Cortical damage following traumatic brain injury evaluated by iomazenil SPECT and in vivo microdialysis.

    PubMed

    Koizumi, Hiroyasu; Fujisawa, Hirosuke; Suehiro, Eiichi; Iwanaga, Hideyuki; Nakagawara, Jyoji; Suzuki, Michiyasu

    2013-01-01

    [(123)I] iomazenil (IMZ) single photon emission computed tomography (SPECT) has been reported to be a useful marker of neuronal integrity. We evaluated cortical damage following traumatic brain injury (TBI) with IMZ SPECT at the acute stage. After conventional therapy for a cranial trauma, an IMZ SPECT re-evaluation was performed at the chronic stage. A reduction in IMZ uptake in the location of cerebral contusions was observed during the TBI acute phase; however, images of IMZ SPECT obtained during the chronic phase showed that areas with decreased IMZ distribution were remarkably reduced compared with those obtained during the acute phase. As a result of in vivo microdialysis study, the extracellular levels of glutamate in the cortex, where decreased IMZ distribution was shown during the acute phase, were increased during the 168-h monitoring period. During the chronic phase, IMZ uptake in the region with the microdialysis probes was recovered. The results suggest that this reduction in IMZ uptake might not be a sign of irreversible tissue damage in TBI.

  2. [Follow-up of patients with good exercise capacity in stress test with myocardial single-photon emission computed tomography (SPECT)].

    PubMed

    González, Javiera; Prat, Hernán; Swett, Eduardo; Berrocal, Isabel; Fernández, René; Zhindon, Juan Pablo; Castro, Ariel; Massardo, Teresa

    2015-11-01

    The evaluation of coronary artery disease (CAD) can be performed with stress test and myocardial SPECT tomography. To assess the predictive value of myocardial SPECT using stress test for cardiovascular events in patients with good exercise capacity. We included 102 males aged 56 ± 10 years and 19 females aged 52 ± 10 years, all able to achieve 10 METs and ≥ 85% of the theoretical maximum heart rate and at least 8 min in their stress test with gated 99mTc-sestamibi SPECT. Eighty two percent of patients were followed clinically for 33 ± 17 months. Sixty seven percent of patients were studied for CAD screening and the rest for known disease assessment. Treadmill stress test was negative in 75.4%; 37% of patients with moderate to severe Duke Score presented ischemia. Normal myocardial perfusion SPECT was observed in 70.2%. Reversible defects appeared in 24.8% of cases, which were of moderate or severe degree (> 10% left ventricular extension) in 56.6%. Only seven cases had coronary events after the SPECT. Two major (myocardial infarction and emergency coronary revascularization) and 5 minor events (elective revascularization) ere observed in the follow-up. In a multivariate analysis, SPECT ischemia was the only statistically significant parameter that increased the probability of having a major or minor event. Nearly a quarter of our patients with good exercise capacity demonstrated reversible defects in their myocardial perfusion SPECT. In the intermediate-term follow-up, a low rate of cardiac events was observed, being the isotopic ischemia the only significant predictive parameter.

  3. Efficient determination of the uncertainty for the optimization of SPECT system design: a subsampled fisher information matrix.

    PubMed

    Fuin, Niccolo; Pedemonte, Stefano; Arridge, Simon; Ourselin, Sebastien; Hutton, Brian F

    2014-03-01

    System designs in single photon emission tomography (SPECT) can be evaluated based on the fundamental trade-off between bias and variance that can be achieved in the reconstruction of emission tomograms. This trade off can be derived analytically using the Cramer-Rao type bounds, which imply the calculation and the inversion of the Fisher information matrix (FIM). The inverse of the FIM expresses the uncertainty associated to the tomogram, enabling the comparison of system designs. However, computing, storing and inverting the FIM is not practical with 3-D imaging systems. In order to tackle the problem of the computational load in calculating the inverse of the FIM, a method based on the calculation of the local impulse response and the variance, in a single point, from a single row of the FIM, has been previously proposed for system design. However this approximation (circulant approximation) does not capture the global interdependence between the variables in shift-variant systems such as SPECT, and cannot account e.g., for data truncation or missing data. Our new formulation relies on subsampling the FIM. The FIM is calculated over a subset of voxels arranged in a grid that covers the whole volume. Every element of the FIM at the grid points is calculated exactly, accounting for the acquisition geometry and for the object. This new formulation reduces the computational complexity in estimating the uncertainty, but nevertheless accounts for the global interdependence between the variables, enabling the exploration of design spaces hindered by the circulant approximation. The graphics processing unit accelerated implementation of the algorithm reduces further the computation times, making the algorithm a good candidate for real-time optimization of adaptive imaging systems. This paper describes the subsampled FIM formulation and implementation details. The advantages and limitations of the new approximation are explored, in comparison with the circulant approximation, in the context of design optimization of a parallel-hole collimator SPECT system and of an adaptive imaging system (similar to the commercially available D-SPECT).

  4. Increased Pericardial Fat Volume Measured From Noncontrast CT Predicts Myocardial Ischemia by SPECT

    PubMed Central

    Tamarappoo, Balaji; Dey, Damini; Shmilovich, Haim; Nakazato, Ryo; Gransar, Heidi; Cheng, Victor Y.; Friedman, John D.; Hayes, Sean W.; Thomson, Louise EJ; Slomka, Piotr J.; Rozanski, Alan; Berman, Daniel S.

    2010-01-01

    OBJECTIVES We evaluated the association between pericardial fat and myocardial ischemia for risk stratification. BACK GROUND Pericardial fat volume (PFV) and thoracic fat volume (TFV) measured from noncontrast computed tomography (CT) performed for calculating coronary calcium score (CCS) are associated with increased CCS and risk for major adverse cardiovascular events. METHODS From a cohort of 1,777 consecutive patients without previously known coronary artery disease (CAD) with noncontrast CT performed within 6 months of single photon emission computed tomography (SPECT), we compared 73 patients with ischemia by SPECT (cases) with 146 patients with normal SPECT (controls) matched by age, gender, CCS category, and symptoms and risk factors for CAD. TFV was automatically measured. Pericardial contours were manually defined within which fat voxels were automatically identified to compute PFV. Computer-assisted visual interpretation of SPECT was performed using standard 17-segment and 5-point score model; perfusion defect was quantified as summed stress score (SSS) and summed rest score (SRS). Ischemia was defined by: SSS – SRS ≥4. Independent relationships of PFV and TFV to ischemia were examined. RESULTS Cases had higher mean PFV (99.1 ± 42.9 cm3 vs. 80.1 ± 31.8 cm3, p = 0.0003) and TFV (196.1 ± 82.7 cm3 vs. 160.8 ± 72.1 cm3, p = 0.001) and higher frequencies of PFV >125 cm3 (22% vs. 8%, p = 0.004) and TFV >200 cm3 (40% vs. 19%, p = 0.001) than controls. After adjustment for CCS, PFV and TFV remained the strongest predictors of ischemia (odds ratio [OR]: 2.91, 95% confidence interval [CI]: 1.53 to 5.52, p = 0.001 for each doubling of PFV; OR: 2.64, 95% CI: 1.48 to 4.72, p = 0.001 for TFV. Receiver operating characteristic analysis showed that prediction of ischemia, as indicated by receiver-operator characteristic area under the curve, improved significantly when PFV or TFV was added to CCS (0.75 vs. 0.68, p = 0.04 for both). CONCLUSIONS Pericardial fat was significantly associated with myocardial ischemia in patients without known CAD and may help improve risk assessment. PMID:21070997

  5. Technological advances in hybrid imaging and impact on dose.

    PubMed

    Mattsson, Sören; Andersson, Martin; Söderberg, Marcus

    2015-07-01

    New imaging technologies utilising X-rays and radiopharmaceuticals have developed rapidly. Clinical application of computed tomography (CT) has revolutionised medical imaging and plays an enormous role in medical care. Due to technical improvements, spatial, contrast and temporal resolutions have continuously improved. In spite of significant reduction of CT doses during recent years, CT is still a dominating source of radiation exposure to the population. Combinations with single photon emission computed tomography (SPECT) and positron emission tomography (PET) and especially the use of SPECT/CT and PET/CT, provide important additional information about physiology as well as cellular and molecular events. However, significant dose contributions from SPECT and PET occur, making PET/CT and SPECT/CT truly high dose procedures. More research should be done to find optimal activities of radiopharmaceuticals for various patient groups and investigations. The implementation of simple protocol adjustments, including individually based administration, encouraged hydration, forced diuresis and use of optimised voiding intervals, laxatives, etc., can reduce the radiation exposure to the patients. New data about staff doses to fingers, hands and eye lenses indicate that finger doses could be a problem, but not doses to the eye lenses and to the whole body. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Cardiac SPECT/CCTA hybrid imaging : One answer to two questions?

    PubMed

    Kaufmann, P A; Buechel, R R

    2016-08-01

    Noninvasive cardiac imaging has witnessed tremendous advances in the recent past, particularly with regard to coronary computed tomography angiography (CCTA) where substantial improvements in image quality have been achieved while at the same time patients' radiation dose exposure has been reduced to the sub-millisievert range. Similarly, for single-photon emission computed tomography (SPECT) the introduction of novel cadmium-zinc-telluride-based semiconductor detectors has significantly improved system sensitivity and image quality, enabling fast image acquisition within less than 2-3 min or reduction of radiation dose exposure to less than 5 mSv. However, neither imaging modality alone is able to fully cover the two aspects of coronary artery disease (CAD), that is, morphology and function. Both modalities have distinct advantages and shortcomings: While CCTA may prove a superb modality for excluding CAD through its excellent negative predictive value, it does not allow for assessment of hemodynamic relevance if obstructive coronary lesions are detected. Conversely, SPECT myocardial perfusion imaging cannot provide any information on the presence or absence of subclinical coronary atherosclerosis. This article aims to highlight the great potential of cardiac hybrid imaging that allows for a comprehensive evaluation of CAD through combination of both morphological and functional information by fusing SPECT with CCTA.

  7. MR-based keyhole SPECT for small animal imaging

    PubMed Central

    Lee, Keum Sil; Roeck, Werner W; Gullberg, Grant T; Nalcioglu, Orhan

    2011-01-01

    The rationale for multi-modality imaging is to integrate the strengths of different imaging technologies while reducing the shortcomings of an individual modality. The work presented here proposes a limited-field-of-view (LFOV) SPECT reconstruction technique that can be implemented on a multi-modality MR/SPECT system that can be used to obtain simultaneous MRI and SPECT images for small animal imaging. The reason for using a combined MR/SPECT system in this work is to eliminate any possible misregistration between the two sets of images when MR images are used as a priori information for SPECT. In nuclear imaging the target area is usually smaller than the entire object; thus, focusing the detector on the LFOV results in various advantages including the use of a smaller nuclear detector (less cost), smaller reconstruction region (faster reconstruction) and higher spatial resolution when used in conjunction with pinhole collimators with magnification. The MR/SPECT system can be used to choose a region of interest (ROI) for SPECT. A priori information obtained by the full field-of-view (FOV) MRI combined with the preliminary SPECT image can be used to reduce the dimensions of the SPECT reconstruction by limiting the computation to the smaller FOV while reducing artifacts resulting from the truncated data. Since the technique is based on SPECT imaging within the LFOV it will be called the keyhole SPECT (K-SPECT) method. At first MRI images of the entire object using a larger FOV are obtained to determine the location of the ROI covering the target organ. Once the ROI is determined, the animal is moved inside the radiofrequency (rf) coil to bring the target area inside the LFOV and then simultaneous MRI and SPECT are performed. The spatial resolution of the SPECT image is improved by employing a pinhole collimator with magnification >1 by having carefully calculated acceptance angles for each pinhole to avoid multiplexing. In our design all the pinholes are focused to the center of the LFOV. K-SPECT reconstruction is accomplished by generating an adaptive weighting matrix using a priori information obtained by simultaneously acquired MR images and the radioactivity distribution obtained from the ROI region of the SPECT image that is reconstructed without any a priori input. Preliminary results using simulations with numerical phantoms show that the image resolution of the SPECT image within the LFOV is improved while minimizing artifacts arising from parts of the object outside the LFOV due to the chosen magnification and the new reconstruction technique. The root-mean-square-error (RMSE) in the out-of-field artifacts was reduced by 60% for spherical phantoms using the K-SPECT reconstruction technique and by 48.5–52.6% for the heart in the case with the MOBY phantom. The KSPECT reconstruction technique significantly improved the spatial resolution and quantification while reducing artifacts from the contributions outside the LFOV as well as reducing the dimension of the reconstruction matrix. PMID:21220840

  8. Computed tomographic findings of trichuriasis

    PubMed Central

    Tokmak, Naime; Koc, Zafer; Ulusan, Serife; Koltas, Ismail Soner; Bal, Nebil

    2006-01-01

    In this report, we present computed tomographic findings of colonic trichuriasis. The patient was a 75-year-old man who complained of abdominal pain, and weight loss. Diagnosis was achieved by colonoscopic biopsy. Abdominal computed tomography showed irregular and nodular thickening of the wall of the cecum and ascending colon. Although these findings are nonspecific, they may be one of the findings of trichuriasis. These findings, confirmed by pathologic analysis of the biopsied tissue and Kato-Katz parasitological stool flotation technique, revealed adult Trichuris. To our knowledge, this is the first report of colonic trichuriasis indicated by computed tomography. PMID:16830393

  9. Iofetamine hydrochloride I 123: a new radiopharmaceutical for cerebral perfusion imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Druckenbrod, R.W.; Williams, C.C.; Gelfand, M.J.

    1989-01-01

    Iofetamine hydrochloride I-123 permits cerebral blood perfusion imaging with single photon emission computed tomography (SPECT). SPECT is more widely available than positron emission tomography, and complements anatomic visualization with X-ray computed tomography (CT) or magnetic resonance imaging. Iofetamine is an amphetamine analog that is rapidly taken up by the lungs, then redistributed principally to the liver and brain. The precise mechanism of localization has not been determined, but is believed to result from nonspecific receptor binding. Brain uptake peaks at 30 minutes postinjection and remains relatively constant through 60 minutes. The drug is metabolized and excreted in the urine, withmore » negligible activity remaining at 48 hours. When compared with CT in stroke patients, visualization may be performed sooner after symptom onset and a larger zone of involvement may be evident with iofetamine. Localization of seizure foci and diagnosis of Alzheimer's disease may also be possible. As CT has revolutionized noninvasive imaging of brain anatomy, SPECT with iofetamine permits routine cerebral blood flow imaging. 36 references.« less

  10. Muscarinic cholinergic receptor binding: in vivo depiction using single photon emission computed tomography and radioiodinated quinuclidinyl benzilate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drayer, B.; Jaszczak, R.; Coleman, E.

    1982-06-01

    An attempt was made to characterize, in vivo, specific binding to the muscarinic cholinergic receptor in the calf using the radioiodinated ligand quinuclidinyl benzilate (/sup 123/I-OH-QNB) and single photon detection emission computed tomography (SPECT). The supratentorial brain activity was significantly increased after the intravenous infusion of /sup 123/I-OH-QNB as compared to free /sup 123/I. Scopolamine, a muscarinic cholinergic receptor antagonist, decreased the measured brain activity when infused prior to /sup 123/I-OH-QNB consistent with pharmacologic blockade of specific receptor binding. Quantitative in vitro tissue distribution studies obtained following SPECT imaging were consistent with regionally distinct specific receptor binding in the striatummore » and cortical gray matter, nonspecific binding in the cerebellum, and pharmacologic blockade of specific binding sites with scopolamine. Although /sup 123/I-OH-QNB is not the ideal radioligand, our limited success will hopefully encourage the development of improved binding probes for SPECT imaging and quantitation.« less

  11. The Contribution of SPECT/CT in the Diagnosis of Stress Fracture of the Proximal Tibia.

    PubMed

    Okudan, Berna; Coşkun, Nazım; Arıcan, Pelin

    2018-02-01

    Stress fractures are injuries most commonly seen in the lower limbs and are usually caused by repetitive stress. While the distal and middle third of the tibia is the most frequent site for stress fractures (almost 50%), stress fractures of the proximal tibia is relatively rare and could be confused with other types of tibial fractures, thus altering management plans for the clinician. Early diagnosis of stress fractures is also important to avoid complications. Imaging plays an important role in the diagnosis of stress fractures, especially bone scan. Combined with single-photon emission computed tomography/computed tomography (SPECT/CT) it is an important imaging technique for stress fractures in both upper and lower extremities, and is widely preferred over other imaging techniques. In this case, we present the case of a 39-year-old male patient diagnosed with stress fracture of the proximal tibia and demonstrate the contribution of CT scan fused with SPECT imaging in the early diagnosis of stress fracture prior to other imaging modalities.

  12. A case of temporal lobe epilepsy with improvement of clinical symptoms and single photon emission computed tomography findings after treatment with clonazepam.

    PubMed

    Ide, M; Mizukami, K; Suzuki, T; Shiraishi, H

    2000-10-01

    A 26-year-old female presented psychomotor seizures, deja vu and amnestic syndrome after meningitis at the age of 14 years. Repeated electroencephalograms (EEG) demonstrated occasional spikes localized in the right temporal region in addition to a considerable amount of theta waves mainly in the right fronto-temporal region. Single photon emission computed tomography (SPECT) showed a marked hypoperfusion corresponding to the region in which the EEG showed abnormal findings, although magnetic resonance imaging (MRI) demonstrated no abnormal findings associated with the clinical features. Treatment with clonazepam in addition to sodium valproate resulted in a remarkable improvement of clinical symptoms (i.e. psychomotor seizures and deja vu), as well as of the EEG and SPECT findings. The present study suggests that SPECT is a useful method not only to determine the localization of regions associated with temporal lobe epilepsy but also to evaluate the effect of treatment in temporal lobe epilepsy.

  13. Brain single-photon emission computed tomography in fetal alcohol syndrome: a case report and study implications.

    PubMed

    Codreanu, Ion; Yang, JiGang; Zhuang, Hongming

    2012-12-01

    The indications of brain single-photon emission computed tomography (SPECT) in fetal alcohol syndrome are not clearly defined, even though the condition is recognized as one of the most common causes of mental retardation. This article reports a case of a 9-year-old adopted girl with developmental delay, mildly dysmorphic facial features, and behavioral and cognitive abnormalities. Extensive investigations including genetic studies and brain magnetic resonance imaging (MRI) revealed no abnormalities, and a diagnosis of fetal alcohol syndrome was considered since official diagnostic criteria were met. A brain SPECT was requested and showed severely decreased tracer activity in the thalami, basal ganglia, and temporal lobes on both sides, the overall findings being consistent with the established diagnosis of fetal alcohol syndrome. With increasing availability of functional brain imaging, the study indications and possible ethical implications in suspected prenatal alcohol exposure or even before adoption need further consideration. In this patient, SPECT was the only test to yield positive results.

  14. Simultaneous source and attenuation reconstruction in SPECT using ballistic and single scattering data

    NASA Astrophysics Data System (ADS)

    Courdurier, M.; Monard, F.; Osses, A.; Romero, F.

    2015-09-01

    In medical single-photon emission computed tomography (SPECT) imaging, we seek to simultaneously obtain the internal radioactive sources and the attenuation map using not only ballistic measurements but also first-order scattering measurements and assuming a very specific scattering regime. The problem is modeled using the radiative transfer equation by means of an explicit non-linear operator that gives the ballistic and scattering measurements as a function of the radioactive source and attenuation distributions. First, by differentiating this non-linear operator we obtain a linearized inverse problem. Then, under regularity hypothesis for the source distribution and attenuation map and considering small attenuations, we rigorously prove that the linear operator is invertible and we compute its inverse explicitly. This allows proof of local uniqueness for the non-linear inverse problem. Finally, using the previous inversion result for the linear operator, we propose a new type of iterative algorithm for simultaneous source and attenuation recovery for SPECT based on the Neumann series and a Newton-Raphson algorithm.

  15. The use of technetium-99m-labeled human serum albumin diethylenetriamine pentaacetic acid single-photon emission CT scan in the follow-up of type II endoleak treatment.

    PubMed

    Nakai, Motoki; Sato, Hirotatsu; Ikoma, Akira; Sonomura, Tetsuo; Sato, Morio

    2014-03-01

    An 84-year-old woman presented with persistent type II endoleak with sac expansion from 57 mm to 75 mm during 4-year follow-up after endovascular abdominal aortic aneurysm repair. The patient underwent transabdominal embolization with coils and N-butyl cyanoacrylate/ethiodized oil (Lipiodol; Guerbet, Villepinte, France) mixture (2.5 mL). Because of the anticipated embolization artifacts on follow-up computed tomography (CT), technetium-99m-labeled human serum albumin diethylenetriamine pentaacetic acid single-photon emission computed tomography ((99m)Tc-HSAD SPECT) was performed before and after the intervention. Perigraft accumulation on (99m)Tc-HSAD SPECT corresponding to the endoleak disappeared after embolization. CT scan performed 12 months after embolization showed no signs of sac expansion. (99m)Tc-HSAD SPECT may be useful for evaluating therapeutic effect after embolization for endoleak. Copyright © 2014 SIR. Published by Elsevier Inc. All rights reserved.

  16. CT venography: use in selecting a surgical approach for the treatment of petrous apex cholesterol granulomas.

    PubMed

    Isaacson, Brandon; Kutz, Joe Walter; Mendelsohn, Dianne; Roland, Peter S

    2009-04-01

    To demonstrate the use of computed tomographic (CT) venography in selecting a surgical approach for cholesterol granulomas. Retrospective case review. Tertiary referral center. Three patients presented with symptomatic petrous apex cholesterol granulomas with extensive bone erosion involving the jugular fossa. Computed tomographic venography was performed on each patient before selecting a surgical approach for drainage. Localization of the jugular bulb in relation to the petrous carotid artery and basal turn of the cochlea was ascertained in each subject. Three patients with large symptomatic cholesterol granulomas were identified. Conventional CT demonstrated extensive bone erosion involving the jugular fossa in each patient. The location of the jugular bulb and its proximity to the petrous carotid artery and basal turn of the cochlea could not be determined with conventional temporal bone CT and magnetic resonance imaging. Computed tomographic venography provided the exact location of the jugular bulb in all 3 patients. The favorable position of the jugular bulb in all 3 cases permitted drainage of these lesions using an infracochlear approach. Computed tomographic venography provided invaluable information in 3 patients with large symptomatic cholesterol granulomas. All 3 patients were previously thought to be unsuitable candidates for an infracochlear or infralabyrinthine approach because of the unknown location of the jugular bulb.

  17. Clinical Utility of SPECT Neuroimaging in the Diagnosis and Treatment of Traumatic Brain Injury: A Systematic Review

    PubMed Central

    Raji, Cyrus A.; Tarzwell, Robert; Pavel, Dan; Schneider, Howard; Uszler, Michael; Thornton, John; van Lierop, Muriel; Cohen, Phil; Amen, Daniel G.; Henderson, Theodore

    2014-01-01

    Purpose This systematic review evaluated the clinical utility of single photon emission computed tomography (SPECT) in traumatic brain injury (TBI). Methods After defining a PICO Statement (Population, Intervention, Comparison and Outcome Statement), PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) criteria were applied to identify 1600 articles. After screening, 374 articles were eligible for review. Inclusion for review was focus on SPECT in the setting of mild, moderate, or severe TBI with cerebral lobar specificity of SPECT findings. Other inclusion criteria were comparison modalities in the same subjects and articles in English. Foreign language articles, SPECT studies that did not include comparison modalities, and case reports were not included for review. Results We identified 19 longitudinal and 52 cross-sectional studies meeting inclusion criteria. Three longitudinal studies examined diagnostic predictive value. The first showed positive predictive value increases from initial SPECT scan shortly after trauma to one year follow up scans, from 59% to 95%. Subsequent work replicated these results in a larger cohort. Longitudinal and cross sectional studies demonstrated SPECT lesion localization not detected by CT or MRI. The most commonly abnormal regions revealed by SPECT in cross-sectional studies were frontal (94%) and temporal (77%) lobes. SPECT was found to outperform both CT and MRI in both acute and chronic imaging of TBI, particularly mild TBI. It was also found to have a near 100% negative predictive value. Conclusions This review demonstrates Level IIA evidence (at least one non-randomized controlled trial) for the value of SPECT in TBI. Given its advantages over CT and MRI in the detection of mild TBI in numerous studies of adequate quality, and given its excellent negative predictive value, it may be an important second test in settings where CT or MRI are negative after a closed head injury with post-injury neurological or psychiatric symptoms. PMID:24646878

  18. Clinical utility of SPECT neuroimaging in the diagnosis and treatment of traumatic brain injury: a systematic review.

    PubMed

    Raji, Cyrus A; Tarzwell, Robert; Pavel, Dan; Schneider, Howard; Uszler, Michael; Thornton, John; van Lierop, Muriel; Cohen, Phil; Amen, Daniel G; Henderson, Theodore

    2014-01-01

    This systematic review evaluated the clinical utility of single photon emission computed tomography (SPECT) in traumatic brain injury (TBI). After defining a PICO Statement (Population, Intervention, Comparison and Outcome Statement), PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) criteria were applied to identify 1600 articles. After screening, 374 articles were eligible for review. Inclusion for review was focus on SPECT in the setting of mild, moderate, or severe TBI with cerebral lobar specificity of SPECT findings. Other inclusion criteria were comparison modalities in the same subjects and articles in English. Foreign language articles, SPECT studies that did not include comparison modalities, and case reports were not included for review. We identified 19 longitudinal and 52 cross-sectional studies meeting inclusion criteria. Three longitudinal studies examined diagnostic predictive value. The first showed positive predictive value increases from initial SPECT scan shortly after trauma to one year follow up scans, from 59% to 95%. Subsequent work replicated these results in a larger cohort. Longitudinal and cross sectional studies demonstrated SPECT lesion localization not detected by CT or MRI. The most commonly abnormal regions revealed by SPECT in cross-sectional studies were frontal (94%) and temporal (77%) lobes. SPECT was found to outperform both CT and MRI in both acute and chronic imaging of TBI, particularly mild TBI. It was also found to have a near 100% negative predictive value. This review demonstrates Level IIA evidence (at least one non-randomized controlled trial) for the value of SPECT in TBI. Given its advantages over CT and MRI in the detection of mild TBI in numerous studies of adequate quality, and given its excellent negative predictive value, it may be an important second test in settings where CT or MRI are negative after a closed head injury with post-injury neurological or psychiatric symptoms.

  19. Identifying the heterogeneity of COPD by V/P SPECT: a new tool for improving the diagnosis of parenchymal defects and grading the severity of small airways disease.

    PubMed

    Bajc, M; Chen, Y; Wang, J; Li, X Y; Shen, W M; Wang, C Z; Huang, H; Lindqvist, A; He, X Y

    2017-01-01

    Airway obstruction and possible concomitant pulmonary diseases in COPD cannot be identified conventionally with any single diagnostic tool. We aimed to diagnose and grade COPD severity and identify pulmonary comorbidities associated with COPD with ventilation/perfusion single-photon emission computed tomography (V/P SPECT) using Technegas as the functional ventilation imaging agent. 94 COPD patients (aged 43-86 years, Global Initiative for Chronic Obstructive Lung Disease (GOLD) stages I-IV) were examined with V/P SPECT and spirometry. Ventilation and perfusion defects were analyzed blindly according to the European guidelines. Penetration grade of Technegas in V SPECT measured the degree of obstructive small airways disease. Total preserved lung function and penetration grade of Technegas in V SPECT were assessed by V/P SPECT and compared to GOLD stages and spirometry. Signs of small airway obstruction in the ventilation SPECT images were found in 92 patients. Emphysema was identified in 81 patients. Two patients had no signs of COPD, but both of them had a pulmonary embolism, and in one of them we also suspected a lung tumor. The penetration grade of Technegas in V SPECT and total preserved lung function correlated significantly to GOLD stages ( r =0.63 and -0.60, respectively, P <0.0001). V/P SPECT identified pulmonary embolism in 30 patients (32%). A pattern typical for heart failure was present in 26 patients (28%). Parenchymal changes typical for pneumonia or lung tumor were present in several cases. V/P SPECT, using Technegas as the functional ventilation imaging agent, is a new tool to diagnose COPD and to grade its severity. Additionally, it revealed heterogeneity of COPD caused by pulmonary comorbidities. The characteristics of these comorbidities suggest their significant impact in clarifying symptoms, and also their influence on the prognosis.

  20. Comparison of TOF-PET and Bremsstrahlung SPECT Images of Yttrium-90: A Monte Carlo Simulation Study.

    PubMed

    Takahashi, Akihiko; Himuro, Kazuhiko; Baba, Shingo; Yamashita, Yasuo; Sasaki, Masayuki

    2018-01-01

    Yttrium-90 ( 90 Y) is a beta particle nuclide used in targeted radionuclide therapy which is available to both single-photon emission computed tomography (SPECT) and time-of-flight (TOF) positron emission tomography (PET) imaging. The purpose of this study was to assess the image quality of PET and Bremsstrahlung SPECT by simulating PET and SPECT images of 90 Y using Monte Carlo simulation codes under the same conditions and to compare them. In-house Monte Carlo codes, MCEP-PET and MCEP-SPECT, were employed to simulate images. The phantom was a torso-shaped phantom containing six hot spheres of various sizes. The background concentrations of 90 Y were set to 50, 100, 150, and 200 kBq/mL, and the concentrations of the hot spheres were 10, 20, and 40 times of those of the background concentrations. The acquisition time was set to 30 min, and the simulated sinogram data were reconstructed using the ordered subset expectation maximization method. The contrast recovery coefficient (CRC) and contrast-to-noise ratio (CNR) were employed to evaluate the image qualities. The CRC values of SPECT images were less than 40%, while those of PET images were more than 40% when the hot sphere was larger than 20 mm in diameter. The CNR values of PET images of hot spheres of diameter smaller than 20 mm were larger than those of SPECT images. The CNR values mostly exceeded 4, which is a criterion to evaluate the discernibility of hot areas. In the case of SPECT, hot spheres of diameter smaller than 20 mm were not discernable. On the contrary, the CNR values of PET images decreased to the level of SPECT, in the case of low concentration. In almost all the cases examined in this investigation, the quantitative indexes of TOF-PET 90 Y images were better than those of Bremsstrahlung SPECT images. However, the superiority of PET image became critical in the case of low activity concentrations.

  1. Tomographic and analog 3-D simulations using NORA. [Non-Overlapping Redundant Image Array formed by multiple pinholes

    NASA Technical Reports Server (NTRS)

    Yin, L. I.; Trombka, J. I.; Bielefeld, M. J.; Seltzer, S. M.

    1984-01-01

    The results of two computer simulations demonstrate the feasibility of using the nonoverlapping redundant array (NORA) to form three-dimensional images of objects with X-rays. Pinholes admit the X-rays to nonoverlapping points on a detector. The object is reconstructed in the analog mode by optical correlation and in the digital mode by tomographic computations. Trials were run with a stick-figure pyramid and extended objects with out-of-focus backgrounds. Substitution of spherical optical lenses for the pinholes increased the light transmission sufficiently that objects could be easily viewed in a dark room. Out-of-focus aberrations in tomographic reconstruction could be eliminated using Chang's (1976) algorithm.

  2. Simulated Design Strategies for SPECT Collimators to Reduce the Eddy Currents Induced by MRI Gradient Fields

    NASA Astrophysics Data System (ADS)

    Samoudi, Amine M.; Van Audenhaege, Karen; Vermeeren, Günter; Verhoyen, Gregory; Martens, Luc; Van Holen, Roel; Joseph, Wout

    2015-10-01

    Combining single photon emission computed tomography (SPECT) with magnetic resonance imaging (MRI) requires the insertion of highly conductive SPECT collimators inside the MRI scanner, resulting in an induced eddy current disturbing the combined system. We reduced the eddy currents due to the insert of a novel tungsten collimator inside transverse and longitudinal gradient coils. The collimator was produced with metal additive manufacturing, that is part of a microSPECT insert for a preclinical SPECT/MRI scanner. We characterized the induced magnetic field due to the gradient field and adapted the collimators to reduce the induced eddy currents. We modeled the x-, y-, and z-gradient coil and the different collimator designs and simulated them with FEKO, a three-dimensional method of moments / finite element methods (MoM/FEM) full-wave simulation tool. We used a time analysis approach to generate the pulsed magnetic field gradient. Simulation results show that the maximum induced field can be reduced by 50.82% in the final design bringing the maximum induced magnetic field to less than 2% of the applied gradient for all the gradient coils. The numerical model was validated with measurements and was proposed as a tool for studying the effect of a SPECT collimator within the MRI gradient coils.

  3. A pilot study of SPECT/CT-based mixed-reality navigation towards the sentinel node in patients with melanoma or Merkel cell carcinoma of a lower extremity.

    PubMed

    van den Berg, Nynke S; Engelen, Thijs; Brouwer, Oscar R; Mathéron, Hanna M; Valdés-Olmos, Renato A; Nieweg, Omgo E; van Leeuwen, Fijs W B

    2016-08-01

    To explore the feasibility of an intraoperative navigation technology based on preoperatively acquired single photon emission computed tomography combined with computed tomography (SPECT/CT) images during sentinel node (SN) biopsy in patients with melanoma or Merkel cell carcinoma. Patients with a melanoma (n=4) or Merkel cell carcinoma (n=1) of a lower extremity scheduled for wide re-excision of the primary lesion site and SN biopsy were studied. Following a Tc-nanocolloid injection and lymphoscintigraphy, SPECT/CT images were acquired with a reference target (ReTp) fixed on the leg or the iliac spine. Intraoperatively, a sterile ReTp was placed at the same site to enable SPECT/CT-based mixed-reality navigation of a gamma ray detection probe also containing a reference target (ReTgp).The accuracy of the navigation procedure was determined in the coronal plane (x, y-axis) by measuring the discrepancy between standard gamma probe-based SN localization and mixed-reality-based navigation to the SN. To determine the depth accuracy (z-axis), the depth estimation provided by the navigation system was compared to the skin surface-to-node distance measured in the computed tomography component of the SPECT/CT images. In four of five patients, it was possible to navigate towards the preoperatively defined SN. The average navigational error was 8.0 mm in the sagittal direction and 8.5 mm in the coronal direction. Intraoperative sterile ReTp positioning and tissue movement during surgery exerted a distinct influence on the accuracy of navigation. Intraoperative navigation during melanoma or Merkel cell carcinoma surgery is feasible and can provide the surgeon with an interactive 3D roadmap towards the SN or SNs in the groin. However, further technical optimization of the modality is required before this technology can become routine practice.

  4. A new scalable modular data acquisition system for SPECT (PET)

    NASA Astrophysics Data System (ADS)

    Stenstrom, P.; Rillbert, A.; Bergquist, M.; Habte, F.; Bohm, C.; Larsson, S. A.

    1998-06-01

    Describes a modular decentralized data acquisition system that continuously samples shaped PMT pulses from a SPECT detector. The pulse waveform data are used by signal processors to accurately reconstruct amplitude and time for each scintillation event. Data acquisition for a PMT channel is triggered in two alternative ways, either when its own signal exceeds a selected digital threshold, or when it receives a trigger pulse from one of its neighboring PMTs. The triggered region is restricted to seven, thirteen or nineteen neighboring PMT channels. Each acquisition module supports three PMT channels and connects to all other modules and a reconstruction computer via Firewire to cover the 72 channels in the Stockholm University/Karolinska Hospital cylindrical SPECT camera.

  5. Semi-Quantitative Analysis of Post-Transarterial Radioembolization (90)Y Microsphere Positron Emission Tomography Combined with Computed Tomography (PET/CT) Images in Advanced Liver Malignancy: Comparison With (99m)Tc Macroaggregated Albumin (MAA) Single Photon Emission Computed Tomography (SPECT).

    PubMed

    Rhee, Seunghong; Kim, Sungeun; Cho, Jaehyuk; Park, Jukyung; Eo, Jae Seon; Park, Soyeon; Lee, Eunsub; Kim, Yun Hwan; Choe, Jae-Gol

    2016-03-01

    The purpose of this study is to evaluate the correlation between pretreatment planning technetium-99m ((99m)Tc) macroaggregated albumin (MAA) SPECT images and posttreatment transarterial radioembolization (TARE) yttirum-90 ((90)Y) PET/CT images by comparing the ratios of tumor-to-normal liver counts. Fifty-two patients with advanced hepatic malignancy who underwent (90)Y microsphere radioembolization from January 2010 to December 2012 were retrospectively reviewed. Patients had undergone (99m)Tc MAA intraarterial injection SPECT for a pretreatment evaluation of microsphere distribution and therapy planning. After the administration of (90)Y microspheres, the patients underwent posttreatment (90)Y PET/CT within 24 h. For semiquantitative analysis, the tumor-to-normal uptake ratios in (90)Y PET/CT (TNR-yp) and (99m)Tc MAA SPECT (TNR-ms) as well as the tumor volumes measured in angiographic CT were obtained and analyzed. The relationship of TNR-yp and TNR-ms was evaluated by Spearman's rank correlation and Wilcoxon's matched pairs test. In a total of 79 lesions of 52 patients, the distribution of microspheres was well demonstrated in both the SPECT and PET/CT images. A good correlation was observed of between TNR-ms and TNR-yp (rho value = 0.648, p < 0.001). The TNR-yp (median 2.78, interquartile range 2.43) tend to show significantly higher values than TNR-ms (median 2.49, interquartile range of 1.55) (p = 0.012). The TNR-yp showed weak correlation with tumor volume (rho = 0.230, p = 0.041). The (99m)Tc MAA SPECT showed a good correlation with (90)Y PET/CT in TNR values, suggesting that (99m)Tc MAA can be used as an adequate pretreatment evaluation method. However, the (99m)Tc MAA SPECT image consistently shows lower TNR values compared to (90)Y PET/CT, which means the possibility of underestimation of tumorous uptake in the partition dosimetry model using (99m)Tc MAA SPECT. Considering that (99m)Tc MAA is the only clinically available surrogate marker for distribution of microsphere, we recommend measurement of tumorous uptake using (90)Y PET/CT should be included routinely in the posttherapeutic evaluation.

  6. Quantification of myocardial infarction: a comparison of single photon-emission computed tomography with pyrophosphate to serial plasma MB-creatine kinase measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jansen, D.E.; Corbett, J.R.; Wolfe, C.L.

    1985-08-01

    Single photon-emission computed tomography (SPECT) with /sup 99m/Tc-pyrophosphate (PPi) has been shown to estimate size of myocardial infarction accurately in animals. The authors tested the hypothesis that SPECT with /sup /sup 99m//Tc-PPi and blood pool subtraction can provide prompt and accurate estimates of size of myocardial infarction in patients. SPECT estimates are potentially available early after the onset of infarction and should correlate with estimates of infarct size calculated from serial measurements of plasma MB-creatine kinase (CK) activity. Thirty-three patients with acute myocardial infarction and 16 control patients without acute myocardial infarction were studied. Eleven of the patients had transmuralmore » anterior myocardial infarction, 16 had transmural inferior myocardial infarction, and six had nontransmural myocardial infarction. SPECT was performed with a commercially available rotating gamma camera. Identical projection images of the distribution of 99mTc-PPi and the ungated cardiac blood pool were acquired sequentially over 180 degrees. Reconstructed sections were color coded and superimposed for purposes of localization of infarct. Areas of increased PPi uptake within myocardial infarcts were thresholded at 65% of peak activity. The blood pool was thresholded at 50% and subtracted to determine the endocardial border for the left ventricle. Myocardial infarcts ranged in size from 1 to 126 gram equivalents (geq) MB-CK. The correlation of MB-CK estimates of size of infarct with size determined by SPECT (both in geq) was good (r = .89 with a regression line of y = 13.1 + 1.5x).« less

  7. SPECT/CT localization of oral radioiodine activity: a retrospective study and in-vitro assessment.

    PubMed

    Burlison, Jared S; Hartshorne, Michael F; Voda, Alan M; Cocks, Franklin H; Fair, Joanna R

    2013-12-01

    We sought to further localize radioiodine activity in the mouth on post-thyroid cancer therapy imaging using single-photon emission computed tomography/computed tomography (SPECT/CT). We retrospectively reviewed all patients (58) who underwent thyroid cancer therapy with iodine-131 (131I) at our institution from August 2009 to March 2011 whose post-therapy radioiodine imaging included neck SPECT/CT. A small group (six) of diagnostic 131I scans including SPECT/CT was also reviewed. Separately, we performed in-vitro 131I (sodium iodide) binding assays with amalgam and Argenco HP 77 (77% dental gold alloy) as proof of principle for these interactions. Of the 58 post-therapy patients, 45 (78%) had undergone metallic dental restorations, and of them 41 (91%) demonstrated oral 131I activity localizing preferentially to those restorations. It was observed that radioiodine also localized to other dental restorations and to orthodontic hardware. Gum-line activity in edentulous patients suggests radioiodine interaction with denture adhesive. In vitro, dental amalgam and Argenco HP 77 bound 131I in a time-dependent manner over 1-16 days of exposure. Despite subsequent washings with normal saline, significant 131I activity (maximally 12% for amalgam and 68% for Argenco HP 77) was retained by these metals. Subsequent soaking in a saturated solution of potassium iodide partially displaced 131I from amalgam, with near-total displacement of I from Argenco HP 77. SPECT/CT shows that radioiodine in the oral cavity localizes to metallic dental restorations. Furthermore, in-vitro studies demonstrate partially reversible binding of 131I to common dental metals.

  8. SPECT-computed tomography in rats with TNBS-induced colitis: A first step toward functional imaging

    PubMed Central

    Marion-Letellier, Rachel; Bohn, Pierre; Modzelewski, Romain; Vera, Pierre; Aziz, Moutaz; Guérin, Charlène; Savoye, Guillaume; Savoye-Collet, Céline

    2017-01-01

    AIM To assess the feasibility of SPECT-computed tomography (CT) in rats with trinitrobenzene sulfonic acid (TNBS)-induced acute colitis and confront it with model inflammatory characteristics. METHODS Colitis was induced in Sprague-Dawley rats by intrarectal injection of TNBS (n = 10) while controls received vehicle (n = 10). SPECT-CT with intravenous injection of 10 MBq of 67Ga-Citrate was performed at day 2. SPECT-CT criteria were colon wall thickness and maximal wall signal intensity. Laboratory parameters were assessed: colon weight:length ratio, colon cyclooxygenase-2 expression by western blot and histological inflammatory score. RESULTS Colon weight/length ratio, colon COX-2 expression and histological inflammatory score were significantly higher in the TNBS group than in the control group (P = 0.0296, P < 0.0001, P = 0.0007 respectively). Pixel max tend to be higher in the TNBS group than in the control group but did not reach statistical significance (P = 0.0662). Maximal thickness is significantly increased in the TNBS group compared to the control group (P = 0.0016) while colon diameter is not (P = 0.1904). Maximal thickness and colon diameter were correlated to colon COX-2 expression (P = 0.0093, P = 0.009 respectively) while pixel max was not (P = 0.22). Maximal thickness was significantly increased when inflammation was histologically observed (P = 0.0043) while pixel max and colon diameter did not (P = 0.2452, P = 0.3541, respectively). CONCLUSION SPECT-CT is feasible and easily distinguished control from colitic rats. PMID:28127195

  9. Area at risk can be assessed by iodine-123-meta-iodobenzylguanidine single-photon emission computed tomography after myocardial infarction: a prospective study.

    PubMed

    Hedon, Christophe; Huet, Fabien; Ben Bouallegue, Fayçal; Vernhet, Hélène; Macia, Jean-Christophe; Cung, Thien-Tri; Leclercq, Florence; Cade, Stéphane; Cransac, Frédéric; Lattuca, Benoit; Vandenberghe, D'Arcy; Bourdon, Aurélie; Benkiran, Meriem; Vauchot, Fabien; Gervasoni, Richard; D'estanque, Emmanuel; Mariano-Goulart, Denis; Roubille, François

    2018-02-01

    Myocardial salvage is an important surrogate endpoint to estimate the impact of treatments in patients with ST-segment elevation myocardial infarction (STEMI). The aim of this study was to evaluate the correlation between cardiac sympathetic denervation area assessed by single-photon emission computed tomography (SPECT) using iodine-123-meta-iodobenzylguanidine (I-MIBG) and myocardial area at risk (AAR) assessed by cardiac magnetic resonance (CMR) (gold standard). A total of 35 postprimary reperfusion STEMI patients were enrolled prospectively to undergo SPECT using I-MIBG (evaluates cardiac sympathetic denervation) and thallium-201 (evaluates myocardial necrosis), and to undergo CMR imaging using T2-weighted spin-echo turbo inversion recovery for AAR and postgadolinium T1-weighted phase sensitive inversion recovery for scar assessment. I-MIBG imaging showed a wider denervated area (51.1±16.0% of left ventricular area) in comparison with the necrosis area on thallium-201 imaging (16.1±14.4% of left ventricular area, P<0.0001). CMR and SPECT provided similar evaluation of the transmural necrosis (P=0.10) with a good correlation (R=0.86, P<0.0001). AAR on CMR was not different compared with the denervated area (P=0.23) and was adequately correlated (R=0.56, P=0.0002). Myocardial salvage evaluated by SPECT imaging (mismatch denervated but viable myocardium) was significantly higher than by CMR (P=0.02). In patients with STEMI, I-MIBG SPECT, assessing cardiac sympathetic denervation may precisely evaluate the AAR, providing an alternative to CMR for AAR assessment.

  10. Decreased Lung Perfusion After Breast/Chest Wall Irradiation: Quantitative Results From a Prospective Clinical Trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liss, Adam L., E-mail: adamliss68@gmail.com; Marsh, Robin B.; Kapadia, Nirav S.

    Purpose: To quantify lung perfusion changes after breast/chest wall radiation therapy (RT) using pre- and post-RT single photon emission computed tomography/computed tomography (SPECT/CT) attenuation-corrected perfusion scans; and correlate decreased perfusion with adjuvant RT dose for breast cancer in a prospective clinical trial. Methods and Materials: As part of an institutional review board–approved trial studying the impact of RT technique on lung function in node-positive breast cancer, patients received breast/chest wall and regional nodal irradiation including superior internal mammary node RT to 50 to 52.2 Gy with a boost to the tumor bed/mastectomy scar. All patients underwent quantitative SPECT/CT lung perfusion scanningmore » before RT and 1 year after RT. The SPECT/CT scans were co-registered, and the ratio of decreased perfusion after RT relative to the pre-RT perfusion scan was calculated to allow for direct comparison of SPECT/CT perfusion changes with delivered RT dose. The average ratio of decreased perfusion was calculated in 10-Gy dose increments from 0 to 60 Gy. Results: Fifty patients had complete lung SPECT/CT perfusion data available. No patient developed symptoms consistent with pulmonary toxicity. Nearly all patients demonstrated decreased perfusion in the left lung according to voxel-based analyses. The average ratio of lung perfusion deficits increased for each 10-Gy increment in radiation dose to the lung, with the largest changes in regions of lung that received 50 to 60 Gy (ratio 0.72 [95% confidence interval 0.64-0.79], P<.001) compared with the 0- to 10-Gy region. For each increase in 10 Gy to the left lung, the lung perfusion ratio decreased by 0.06 (P<.001). Conclusions: In the assessment of 50 patients with node-positive breast cancer treated with RT in a prospective clinical trial, decreased lung perfusion by SPECT/CT was demonstrated. Our study allowed for quantification of lung perfusion defects in a prospective cohort of breast cancer patients for whom attenuation-corrected SPECT/CT scans could be registered directly to RT treatment fields for precise dose estimates.« less

  11. CT-based attenuation correction and resolution compensation for I-123 IMP brain SPECT normal database: a multicenter phantom study.

    PubMed

    Inui, Yoshitaka; Ichihara, Takashi; Uno, Masaki; Ishiguro, Masanobu; Ito, Kengo; Kato, Katsuhiko; Sakuma, Hajime; Okazawa, Hidehiko; Toyama, Hiroshi

    2018-06-01

    Statistical image analysis of brain SPECT images has improved diagnostic accuracy for brain disorders. However, the results of statistical analysis vary depending on the institution even when they use a common normal database (NDB), due to different intrinsic spatial resolutions or correction methods. The present study aimed to evaluate the correction of spatial resolution differences between equipment and examine the differences in skull bone attenuation to construct a common NDB for use in multicenter settings. The proposed acquisition and processing protocols were those routinely used at each participating center with additional triple energy window (TEW) scatter correction (SC) and computed tomography (CT) based attenuation correction (CTAC). A multicenter phantom study was conducted on six imaging systems in five centers, with either single photon emission computed tomography (SPECT) or SPECT/CT, and two brain phantoms. The gray/white matter I-123 activity ratio in the brain phantoms was 4, and they were enclosed in either an artificial adult male skull, 1300 Hounsfield units (HU), a female skull, 850 HU, or an acrylic cover. The cut-off frequency of the Butterworth filters was adjusted so that the spatial resolution was unified to a 17.9 mm full width at half maximum (FWHM), that of the lowest resolution system. The gray-to-white matter count ratios were measured from SPECT images and compared with the actual activity ratio. In addition, mean, standard deviation and coefficient of variation images were calculated after normalization and anatomical standardization to evaluate the variability of the NDB. The gray-to-white matter count ratio error without SC and attenuation correction (AC) was significantly larger for higher bone densities (p < 0.05). The count ratio error with TEW and CTAC was approximately 5% regardless of bone density. After adjustment of the spatial resolution in the SPECT images, the variability of the NDB decreased and was comparable to that of the NDB without correction. The proposed protocol showed potential for constructing an appropriate common NDB from SPECT images with SC, AC and spatial resolution compensation.

  12. Multimodality imaging using SPECT/CT and MRI and ligand functionalized 99mTc-labeled magnetic microbubbles

    PubMed Central

    2013-01-01

    Background In the present study, we used multimodal imaging to investigate biodistribution in rats after intravenous administration of a new 99mTc-labeled delivery system consisting of polymer-shelled microbubbles (MBs) functionalized with diethylenetriaminepentaacetic acid (DTPA), thiolated poly(methacrylic acid) (PMAA), chitosan, 1,4,7-triacyclononane-1,4,7-triacetic acid (NOTA), NOTA-super paramagnetic iron oxide nanoparticles (SPION), or DTPA-SPION. Methods Examinations utilizing planar dynamic scintigraphy and hybrid imaging were performed using a commercially available single-photon emission computed tomography (SPECT)/computed tomography (CT) system. For SPION containing MBs, the biodistribution pattern of 99mTc-labeled NOTA-SPION and DTPA-SPION MBs was investigated and co-registered using fusion SPECT/CT and magnetic resonance imaging (MRI). Moreover, to evaluate the biodistribution, organs were removed and radioactivity was measured and calculated as percentage of injected dose. Results SPECT/CT and MRI showed that the distribution of 99mTc-labeled ligand-functionalized MBs varied with the type of ligand as well as with the presence of SPION. The highest uptake was observed in the lungs 1 h post injection of 99mTc-labeled DTPA and chitosan MBs, while a similar distribution to the lungs and the liver was seen after the administration of PMAA MBs. The highest counts of 99mTc-labeled NOTA-SPION and DTPA-SPION MBs were observed in the lungs, liver, and kidneys 1 h post injection. The highest counts were observed in the liver, spleen, and kidneys as confirmed by MRI 24 h post injection. Furthermore, the results obtained from organ measurements were in good agreement with those obtained from SPECT/CT. Conclusions In conclusion, microbubbles functionalized by different ligands can be labeled with radiotracers and utilized for SPECT/CT imaging, while the incorporation of SPION in MB shells enables imaging using MR. Our investigation revealed that biodistribution may be modified using different ligands. Furthermore, using a single contrast agent with fusion SPECT/CT/MR multimodal imaging enables visualization of functional and anatomical information in one image, thus improving the diagnostic benefit for patients. PMID:23442550

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    It has been five years since the last in-depth American College of Nuclear Physicians/Society of Nuclear Medicine Symposium on the subject of single photon emission computed tomography (SPECT) was held. Because this subject was nominated as the single most desired topic we have selected SPECT imaging as the basis for this year's program. The objectives of this symposium are to survey the progress of SPECT clinical applications that have taken place over the last five years and to provide practical and timely guidelines to users of SPECT so that this exciting imaging modality can be fully integrated into the evaluationmore » of pathologic processes. The first half was devoted to a consideration of technical factors important in SPECT acquisition and the second half was devoted to those organ systems about which sufficient clinical SPECT imaging data are available. With respect to the technical aspect of the program we have selected the key areas which demand awareness and attention in order to make SPECT operational in clinical practice. These include selection of equipment, details of uniformity correction, utilization of phantoms for equipment acceptance and quality assurance, the major aspect of algorithms, an understanding of filtered back projection and appropriate choice of filters and an awareness of the most commonly generated artifacts and how to recognize them. With respect to the acquisition and interpretation of organ images, the faculty will present information on the major aspects of hepatic, brain, cardiac, skeletal, and immunologic imaging techniques. Individual papers are processed separately for the data base. (TEM)« less

  14. Radiopharmaceuticals for SPECT cancer detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chernov, V. I., E-mail: chernov@oncology.tomsk.ru; Medvedeva, A. A., E-mail: tickayaAA@oncology.tomsk.ru; Zelchan, R. V., E-mail: r.zelchan@yandex.ru

    2016-08-02

    The purpose of the study was to assess the efficacy of single photon emission computed tomography (SPECT) with {sup 199}Tl and {sup 99}mTc-MIBI in the detection of breast, laryngeal and hypopharyngeal cancers. A total of 220 patients were included into the study: 120 patients with breast lesions (100 patients with breast cancer and 20 patients with benign breast tumors) and 100 patients with laryngeal/hypopharyngeal diseases (80 patients with laryngeal/hypopharyngeal cancer and 20 patients with benign laryngeal/hypopharyngeal lesions). No abnormal {sup 199}Tl uptake was seen in all patients with benign breast and laryngeal lesions, indicating a 100% specificity of {sup 199}Tlmore » SPECT. In the breast cancer patients, the increased {sup 199}Tl uptake in the breast was visualized in 94.8% patients, {sup 99m}Tc-MIBI—in 93.4% patients. The increased {sup 199}Tl uptake in axillary lymph nodes was detected in 60% patients, and {sup 99m}Tc-MIBI—in 93.1% patients. In patients with laryngeal/hypopharyngeal cancer, the sensitivity of SPECT with {sup 199}Tl and {sup 99m}Tc-MIBI was 95%. The {sup 199}Tl SPECT sensitivity in identification of regional lymph node metastases in the patients with laryngeal/hypopharyngeal cancer was 75% and the {sup 99m}Tc-MIBI SPECT sensitivity was 17%. The data obtained showed that SPECT with {sup 199}Tl and {sup 99m}Tc-MIBI can be used as one of the additional imaging methods in detection of tumors.« less

  15. LV dyssynchrony as assessed by phase analysis of gated SPECT myocardial perfusion imaging in patients with Wolff-Parkinson-White syndrome.

    PubMed

    Chen, Chun; Li, Dianfu; Miao, Changqing; Feng, Jianlin; Zhou, Yanli; Cao, Kejiang; Lloyd, Michael S; Chen, Ji

    2012-07-01

    The purpose of this study was to evaluate left ventricular (LV) mechanical dyssynchrony in patients with Wolff-Parkinson-White (WPW) syndrome pre- and post-radiofrequency catheter ablation (RFA) using phase analysis of gated single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI). Forty-five WPW patients were enrolled and had gated SPECT MPI pre- and 2-3 days post-RFA. Electrophysiological study (EPS) was used to locate accessory pathways (APs) and categorize the patients according to the AP locations (septal, left and right free wall). Electrocardiography (ECG) was performed pre- and post-RFA to confirm successful elimination of the APs. Phase analysis of gated SPECT MPI was used to assess LV dyssynchrony pre- and post-RFA. Among the 45 patients, 3 had gating errors, and thus 42 had SPECT phase analysis. Twenty-two patients (52.4%) had baseline LV dyssynchrony. Baseline LV dyssynchrony was more prominent in the patients with septal APs than in the patients with left or right APs (p < 0.05). RFA improved LV synchrony in the entire cohort and in the patients with septal APs (p < 0.01). Phase analysis of gated SPECT MPI demonstrated that LV mechanical dyssynchrony can be present in patients with WPW syndrome. Septal APs result in the greatest degree of LV mechanical dyssynchrony and afford the most benefit after RFA. This study supports further investigation in the relationship between electrical and mechanical activation using EPS and phase analysis of gated SPECT MPI.

  16. SIRT-FILTER v1.0.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PELT, DANIEL

    2017-04-21

    Small Python package to compute tomographic reconstructions using a reconstruction method published in: Pelt, D.M., & De Andrade, V. (2017). Improved tomographic reconstruction of large-scale real-world data by filter optimization. Advanced Structural and Chemical Imaging 2: 17; and Pelt, D. M., & Batenburg, K. J. (2015). Accurately approximating algebraic tomographic reconstruction by filtered backprojection. In Proceedings of The 13th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine (pp. 158-161).

  17. Single-shot ultrafast tomographic imaging by spectral multiplexing

    NASA Astrophysics Data System (ADS)

    Matlis, N. H.; Axley, A.; Leemans, W. P.

    2012-10-01

    Computed tomography has profoundly impacted science, medicine and technology by using projection measurements scanned over multiple angles to permit cross-sectional imaging of an object. The application of computed tomography to moving or dynamically varying objects, however, has been limited by the temporal resolution of the technique, which is set by the time required to complete the scan. For objects that vary on ultrafast timescales, traditional scanning methods are not an option. Here we present a non-scanning method capable of resolving structure on femtosecond timescales by using spectral multiplexing of a single laser beam to perform tomographic imaging over a continuous range of angles simultaneously. We use this technique to demonstrate the first single-shot ultrafast computed tomography reconstructions and obtain previously inaccessible structure and position information for laser-induced plasma filaments. This development enables real-time tomographic imaging for ultrafast science, and offers a potential solution to the challenging problem of imaging through scattering surfaces.

  18. Computed tomographic atlas for the new international lymph node map for lung cancer: A radiation oncologist perspective.

    PubMed

    Lynch, Rod; Pitson, Graham; Ball, David; Claude, Line; Sarrut, David

    2013-01-01

    To develop a reproducible definition for each mediastinal lymph node station based on the new TNM classification for lung cancer. This paper proposes an atlas using the new international lymph node map used in the seventh edition of the TNM classification for lung cancer. Four radiation oncologists and 1 diagnostic radiologist were involved in the project to put forward a reproducible radiologic description for the lung lymph node stations. The International Association for the Study of Lung Cancer lymph node definitions for stations 1 to 11 have been described and illustrated on axial computed tomographic scan images using a certified radiotherapy planning system. This atlas will assist both diagnostic radiologists and radiation oncologists in accurately defining the lymph node stations on computed tomographic scan in patients diagnosed with lung cancer. Copyright © 2013 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  19. Fast projection/backprojection and incremental methods applied to synchrotron light tomographic reconstruction.

    PubMed

    de Lima, Camila; Salomão Helou, Elias

    2018-01-01

    Iterative methods for tomographic image reconstruction have the computational cost of each iteration dominated by the computation of the (back)projection operator, which take roughly O(N 3 ) floating point operations (flops) for N × N pixels images. Furthermore, classical iterative algorithms may take too many iterations in order to achieve acceptable images, thereby making the use of these techniques unpractical for high-resolution images. Techniques have been developed in the literature in order to reduce the computational cost of the (back)projection operator to O(N 2 logN) flops. Also, incremental algorithms have been devised that reduce by an order of magnitude the number of iterations required to achieve acceptable images. The present paper introduces an incremental algorithm with a cost of O(N 2 logN) flops per iteration and applies it to the reconstruction of very large tomographic images obtained from synchrotron light illuminated data.

  20. Temporal trends in compliance with appropriateness criteria for stress single-photon emission computed tomography sestamibi studies in an academic medical center.

    PubMed

    Gibbons, Raymond J; Askew, J Wells; Hodge, David; Miller, Todd D

    2010-03-01

    The purpose of this study was to apply published appropriateness criteria for single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) in a single academic medical center to determine if the percentage of inappropriate studies was changing over time. In a previous study, we applied the American College of Cardiology Foundation/American Society of Nuclear Cardiology (ASNC) appropriateness criteria for stress SPECT MPI and reported that 14% of stress SPECT studies were performed for inappropriate reasons. Using similar methodology, we retrospectively examined 284 patients who underwent stress SPECT MPI in October 2006 and compared the findings to the previous cohort of 284 patients who underwent stress SPECT MPI in May 2005. The indications for testing in the 2 cohorts were very similar. The overall level of agreement in characterizing categories of appropriateness between 2 experienced cardiovascular nurse abstractors was good (kappa = 0.68), which represented an improvement from our previous study (kappa = 0.56). There was a significant change between May 2005 and October 2006 in the overall classification of categories for appropriateness (P = .024 by chi(2) statistic). There were modest, but insignificant, increases in the number of patients who were unclassified (15% in the current study vs 11% previously), appropriate (66% vs 64%), and uncertain (12% vs 11%). Only 7% of the studies in the current study were inappropriate, which represented a significant (P = .004) decrease from the 14% reported in the 2005 cohort. In the absence of any specific intervention, there was a significant change in the overall classification of SPECT appropriateness in an academic medical center over 17 months. The only significant difference in individual categories was a decrease in inappropriate studies. Additional measurements over time will be required to determine if this trend is sustainable or generalizable.

  1. Efficient control schemes with limited computation complexity for Tomographic AO systems on VLTs and ELTs

    NASA Astrophysics Data System (ADS)

    Petit, C.; Le Louarn, M.; Fusco, T.; Madec, P.-Y.

    2011-09-01

    Various tomographic control solutions have been proposed during the last decades to ensure efficient or even optimal closed-loop correction to tomographic Adaptive Optics (AO) concepts such as Laser Tomographic AO (LTAO), Multi-Conjugate AO (MCAO). The optimal solution, based on Linear Quadratic Gaussian (LQG) approach, as well as suboptimal but efficient solutions such as Pseudo-Open Loop Control (POLC) require multiple Matrix Vector Multiplications (MVM). Disregarding their respective performance, these efficient control solutions thus exhibit strong increase of on-line complexity and their implementation may become difficult in demanding cases. Among them, two cases are of particular interest. First, the system Real-Time Computer architecture and implementation is derived from past or present solutions and does not support multiple MVM. This is the case of the AO Facility which RTC architecture is derived from the SPARTA platform and inherits its simple MVM architecture, which does not fit with LTAO control solutions for instance. Second, considering future systems such as Extremely Large Telescopes, the number of degrees of freedom is twenty to one hundred times bigger than present systems. In these conditions, tomographic control solutions can hardly be used in their standard form and optimized implementation shall be considered. Single MVM tomographic control solutions represent a potential solution, and straightforward solutions such as Virtual Deformable Mirrors have been already proposed for LTAO but with tuning issues. We investigate in this paper the possibility to derive from tomographic control solutions, such as POLC or LQG, simplified control solutions ensuring simple MVM architecture and that could be thus implemented on nowadays systems or future complex systems. We theoretically derive various solutions and analyze their respective performance on various systems thanks to numerical simulation. We discuss the optimization of their performance and stability issues with respect to classic control solutions. We finally discuss off-line computation and implementation constraints.

  2. Usefulness and pitfalls of MAA SPECT/CT in identifying digestive extrahepatic uptake when planning liver radioembolization.

    PubMed

    Lenoir, Laurence; Edeline, Julien; Rolland, Yann; Pracht, Marc; Raoul, Jean-Luc; Ardisson, Valérie; Bourguet, Patrick; Clément, Bruno; Boucher, Eveline; Garin, Etienne

    2012-05-01

    Identifying gastroduodenal uptake of (99m)Tc-macroaggregated albumin (MAA), which is associated with an increased risk of ulcer disease, is a crucial part of the therapeutic management of patients undergoing radioembolization for liver tumours. Given this context, the use of MAA single photon emission computed tomography (SPECT)/CT may be essential, but the procedure has still not been thoroughly evaluated. The aim of this retrospective study was to determine the effectiveness of MAA SPECT/CT in identifying digestive extrahepatic uptake, while determining potential diagnostic pitfalls. Overall, 139 MAA SPECT/CT scans were performed on 103 patients with different hepatic tumour types. Patients were followed up for at least 6 months according to standard requirements. Digestive, or digestive-like, uptake other than free pertechnetate was identified in 5.7% of cases using planar imaging and in 36.6% of cases using SPECT/CT. Uptake sites identified by SPECT/CT included the gastroduodenal region (3.6%), gall bladder (12.2%), portal vein thrombosis (6.5%), hepatic artery (6.5%), coil embolization site (2.1%) as well as falciform artery (5.0%). For 2.1% of explorations, a coregistration error between SPECT and CT imaging could have led to a false diagnosis by erroneously attributing an uptake site to the stomach or gall bladder, when the uptake actually occurred in the liver. SPECT/CT is more efficacious than planar imaging in identifying digestive extrahepatic uptake sites, with extrahepatic uptake observed in one third of scans using the former procedure. However, more than half of the uptake sites in our study were vascular in nature, without therapeutic implications. The risk of coregistration errors must also be kept in mind.

  3. Invisible Base Electrode Coordinates Approximation for Simultaneous SPECT and EEG Data Visualization

    NASA Astrophysics Data System (ADS)

    Kowalczyk, L.; Goszczynska, H.; Zalewska, E.; Bajera, A.; Krolicki, L.

    2014-04-01

    This work was performed as part of a larger research concerning the feasibility of improving the localization of epileptic foci, as compared to the standard SPECT examination, by applying the technique of EEG mapping. The presented study extends our previous work on the development of a method for superposition of SPECT images and EEG 3D maps when these two examinations are performed simultaneously. Due to the lack of anatomical data in SPECT images it is a much more difficult task than in the case of MRI/EEG study where electrodes are visible in morphological images. Using the appropriate dose of radioisotope we mark five base electrodes to make them visible in the SPECT image and then approximate the coordinates of the remaining electrodes using properties of the 10-20 electrode placement system and the proposed nine-ellipses model. This allows computing a sequence of 3D EEG maps spanning on all electrodes. It happens, however, that not all five base electrodes can be reliably identified in SPECT data. The aim of the current study was to develop a method for determining the coordinates of base electrode(s) missing in the SPECT image. The algorithm for coordinates approximation has been developed and was tested on data collected for three subjects with all visible electrodes. To increase the accuracy of the approximation we used head surface models. Freely available model from Oostenveld research based on data from SPM package and our own model based on data from our EEG/SPECT studies were used. For data collected in four cases with one electrode not visible we compared the invisible base electrode coordinates approximation for Oostenveld and our models. The results vary depending on the missing electrode placement, but application of the realistic head model significantly increases the accuracy of the approximation.

  4. Robust statistical reconstruction for charged particle tomography

    DOEpatents

    Schultz, Larry Joe; Klimenko, Alexei Vasilievich; Fraser, Andrew Mcleod; Morris, Christopher; Orum, John Christopher; Borozdin, Konstantin N; Sossong, Michael James; Hengartner, Nicolas W

    2013-10-08

    Systems and methods for charged particle detection including statistical reconstruction of object volume scattering density profiles from charged particle tomographic data to determine the probability distribution of charged particle scattering using a statistical multiple scattering model and determine a substantially maximum likelihood estimate of object volume scattering density using expectation maximization (ML/EM) algorithm to reconstruct the object volume scattering density. The presence of and/or type of object occupying the volume of interest can be identified from the reconstructed volume scattering density profile. The charged particle tomographic data can be cosmic ray muon tomographic data from a muon tracker for scanning packages, containers, vehicles or cargo. The method can be implemented using a computer program which is executable on a computer.

  5. Comparison of 18F SPECT with PET in myocardial imaging: a realistic thorax-cardiac phantom study.

    PubMed

    Knešaurek, Karin; Machac, Josef

    2006-10-31

    Positron emission tomography (PET) imaging with fluorine-18 (18F) Fluorodeoxyglucose (FDG) and flow tracer such as Rubidium-82 (82Rb) is an established method for evaluating an ischemic but viable myocardium. However, the high cost of PET imaging restricts its wider clinical use. Therefore, less expensive 18F FDG single photon emission computed tomography (SPECT) imaging has been considered as an alternative to 18F FDG PET imaging. The purpose of the work is to compare SPECT with PET in myocardial perfusion/viability imaging. A nonuniform RH-2 thorax-heart phantom was used in the SPECT and PET acquisitions. Three inserts, 3 cm, 2 cm and 1 cm in diameter, were placed in the left ventricular (LV) wall to simulate infarcts. The phantom acquisition was performed sequentially with 7.4 MBq of 18F and 22.2 MBq of Technetium-99m (99mTc) in the SPECT study and with 7.4 MBq of 18F and 370 MBq of 82Rb in the PET study. SPECT and PET data were processed using standard reconstruction software provided by vendors. Circumferential profiles of the short-axis slices, the contrast and viability of the inserts were used to evaluate the SPECT and PET images. The contrast for 3 cm, 2 cm and 1 cm inserts were for 18F PET data, 1.0 +/- 0.01, 0.67 +/- 0.02 and 0.25 +/- 0.01, respectively. For 82Rb PET data, the corresponding contrast values were 0.61 +/- 0.02, 0.37 +/- 0.02 and 0.19 +/- 0.01, respectively. For 18F SPECT the contrast values were, 0.31 +/- 0.03 and 0.20 +/- 0.05 for 3 cm and 2 cm inserts, respectively. For 99mTc SPECT the contrast values were, 0.63 +/- 0.04 and 0.24 +/- 0.05 for 3 cm and 2 cm inserts respectively. In SPECT, the 1 cm insert was not detectable. In the SPECT study, all three inserts were falsely diagnosed as "viable", while in the PET study, only the 1 cm insert was diagnosed falsely "viable". For smaller defects the 99mTc/18F SPECT imaging cannot entirely replace the more expensive 82Rb/18F PET for myocardial perfusion/viability imaging, due to poorer image spatial resolution and poorer defect contrast.

  6. Applications of penetrating radiation for small animal imaging

    NASA Astrophysics Data System (ADS)

    Hasegawa, Bruce H.; Wu, Max C.; Iwata, Koji; Hwang, Andrew B.; Wong, Kenneth H.; Barber, William C.; Dae, Michael W.; Sakdinawat, Anne E.

    2002-11-01

    Researchers long have relied on research involving small animals to unravel scientific mysteries in the biological sciences, and to develop new diagnostic and therapeutic techniques in the medical and health sciences. Within the past 2 decades, new techniques have been developed to manipulate the genome of the mouse, allowing the development of transgenic and knockout models of mammalian and human disease, development, and physiology. Traditionally, much biological research involving small animals has relied on the use of invasive methods such as organ harvesting, tissue sampling, and autoradiography during which the animal was sacrificed to perform a single measurement. More recently, imaging techniques have been developed that assess anatomy and physiology in the intact animal, in a way that allows the investigator to follow the progression of disease, or to monitor the response to therapeutic interventions. Imaging techniques that use penetrating radiation at millimeter or submillimeter levels to image small animals include x-ray computed tomography (microCT), single-photon emission computed tomography (microSPECT), and imaging positron emission computed tomography (microPET). MicroCT generates cross-sectional slices which reveal the structure of the object with spatial resolution in the range of 50 to 100 microns. MicroSPECT and microPET are radionuclide imaging techniques in which a radiopharmaceutical is injected into the animal that is accumulated to metabolism, blood flow, bone remodeling, tumor growth, or other biological processes. Both microSPECT and microPET offer spatial resolutions in the range of 1-2 millimeters. However, microPET records annihilation photons produced by a positron-emitting radiopharmaceutical using electronic coincidence, and has a sensitivity approximately two orders of magnitude better than microSPECT, while microSPECT is compatible with gamma-ray emitting radiopharmaceuticals that are less expensive and more readily available than those used with microPET. High-resolution dual-modality imaging systems now are being developed that combine microPET or microSPECT with microCT in a way that facilitates more direct correlation of anatomy and physiology in the same animal. Small animal imaging allows researchers to perform experiments that are not possible with conventional invasive techniques, and thereby are becoming increasingly important tools for discovery of fundamental biological information, and development of new diagnostic and therapeutic techniques in the biomedical sciences.

  7. Molecular Imaging of Hydrolytic Enzymes Using PET and SPECT

    PubMed Central

    Rempel, Brian P.; Price, Eric W.

    2017-01-01

    Hydrolytic enzymes are a large class of biological catalysts that play a vital role in a plethora of critical biochemical processes required to maintain human health. However, the expression and/or activity of these important enzymes can change in many different diseases and therefore represent exciting targets for the development of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radiotracers. This review focuses on recently reported radiolabeled substrates, reversible inhibitors, and irreversible inhibitors investigated as PET and SPECT tracers for imaging hydrolytic enzymes. By learning from the most successful examples of tracer development for hydrolytic enzymes, it appears that an early focus on careful enzyme kinetics and cell-based studies are key factors for identifying potentially useful new molecular imaging agents. PMID:28927325

  8. Molecular Imaging of Hydrolytic Enzymes Using PET and SPECT.

    PubMed

    Rempel, Brian P; Price, Eric W; Phenix, Christopher P

    2017-01-01

    Hydrolytic enzymes are a large class of biological catalysts that play a vital role in a plethora of critical biochemical processes required to maintain human health. However, the expression and/or activity of these important enzymes can change in many different diseases and therefore represent exciting targets for the development of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radiotracers. This review focuses on recently reported radiolabeled substrates, reversible inhibitors, and irreversible inhibitors investigated as PET and SPECT tracers for imaging hydrolytic enzymes. By learning from the most successful examples of tracer development for hydrolytic enzymes, it appears that an early focus on careful enzyme kinetics and cell-based studies are key factors for identifying potentially useful new molecular imaging agents.

  9. Applications of iQID cameras

    NASA Astrophysics Data System (ADS)

    Han, Ling; Miller, Brian W.; Barrett, Harrison H.; Barber, H. Bradford; Furenlid, Lars R.

    2017-09-01

    iQID is an intensified quantum imaging detector developed in the Center for Gamma-Ray Imaging (CGRI). Originally called BazookaSPECT, iQID was designed for high-resolution gamma-ray imaging and preclinical gamma-ray single-photon emission computed tomography (SPECT). With the use of a columnar scintillator, an image intensifier and modern CCD/CMOS sensors, iQID cameras features outstanding intrinsic spatial resolution. In recent years, many advances have been achieved that greatly boost the performance of iQID, broadening its applications to cover nuclear and particle imaging for preclinical, clinical and homeland security settings. This paper presents an overview of the recent advances of iQID technology and its applications in preclinical and clinical scintigraphy, preclinical SPECT, particle imaging (alpha, neutron, beta, and fission fragment), and digital autoradiography.

  10. Early In-Theater Management of Combat-Related Traumatic Brain Injury: A Prospective, Observational Study to Identify Opportunities for Performance Improvement

    DTIC Science & Technology

    2015-05-18

    Head computed tomographic scan most commonly found skull fracture (68.9%), subdural hematoma (54.1%), and cerebral contusion (51.4%). Hypertonic saline...were common on presentation. Head computed tomographic scan most commonly found skull fracture (68.9%), subdural hematoma (54.1%), and cerebral con...reported was skull fracture, occurring in 68.9% of patients. The most common type of intracranial hemorrhage was subdural hematoma (54.1%). Multiple

  11. Computer tomographic evaluation of digestive tract non-Hodgkin lymphomas.

    PubMed

    Lupescu, Ioana G; Grasu, Mugur; Goldis, Gheorghe; Popa, Gelu; Gheorghe, Cristian; Vasilescu, Catalin; Moicean, Andreea; Herlea, Vlad; Georgescu, Serban A

    2007-09-01

    Computer Tomographic (CT) study is crucial for defining distribution, characteristics and staging of primary gastrointestinal lymphomas. The presence of multifocal sites, the wall thickening with diffuse infiltration of the affected gastrointestinal (GI) segment in association with regional adenopathies, permit the orientation of the CT diagnosis for primary GI lymphomas. The gold standard for diagnosis remains, in all cases of digestive tract non-Hodgkin lymphomas (NHL), the histological examination, which allows a tissue diagnosis, performed preferably by transmural biopsy.

  12. Development and validation of technique for in-vivo 3D analysis of cranial bone graft survival

    NASA Astrophysics Data System (ADS)

    Bernstein, Mark P.; Caldwell, Curtis B.; Antonyshyn, Oleh M.; Ma, Karen; Cooper, Perry W.; Ehrlich, Lisa E.

    1997-05-01

    Bone autografts are routinely employed in the reconstruction of facial deformities resulting from trauma, tumor ablation or congenital malformations. The combined use of post- operative 3D CT and SPECT imaging provides a means for quantitative in vivo evaluation of bone graft volume and osteoblastic activity. The specific objectives of this study were: (1) Determine the reliability and accuracy of interactive computer-assisted analysis of bone graft volumes based on 3D CT scans; (2) Determine the error in CT/SPECT multimodality image registration; (3) Determine the error in SPECT/SPECT image registration; and (4) Determine the reliability and accuracy of CT-guided SPECT uptake measurements in cranial bone grafts. Five human cadaver heads served as anthropomorphic models for all experiments. Four cranial defects were created in each specimen with inlay and onlay split skull bone grafts and reconstructed to skull and malar recipient sites. To acquire all images, each specimen was CT scanned and coated with Technetium doped paint. For purposes of validation, skulls were landmarked with 1/16-inch ball-bearings and Indium. This study provides a new technique relating anatomy and physiology for the analysis of cranial bone graft survival.

  13. Old wine in new bottles: validating the clinical utility of SPECT in predicting cognitive performance in mild traumatic brain injury.

    PubMed

    Romero, Kristoffer; Lobaugh, Nancy J; Black, Sandra E; Ehrlich, Lisa; Feinstein, Anthony

    2015-01-30

    The neural underpinnings of cognitive dysfunction in mild traumatic brain injury (TBI) are not fully understood. Consequently, patient prognosis using existing clinical imaging is somewhat imprecise. Single photon emission computed tomography (SPECT) is a frequently employed investigation in this population, notwithstanding uncertainty over the clinical utility of the data obtained. In this study, subjects with mild TBI underwent (99m)Tc-ECD SPECT scanning, and were administered a brief battery of cognitive tests and self-report symptom scales of concussion and emotional distress. Testing took place 2 weeks (n=84) and 1 year (n=49) post-injury. Multivariate analysis (i.e., partial least squares analysis) revealed that frontal perfusion in right superior frontal and middle frontal gyri predicted poorer performance on the Stroop test, an index of executive function, both at initial and follow-up testing. Conversely, SPECT scans categorized as normal or abnormal by radiologists did not differentiate cognitively impaired from intact subjects. These results demonstrate the clinical utility of SPECT in mild TBI, but only when data are subjected to blood flow quantification analysis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Magnetoencephalography and ictal SPECT in patients with failed epilepsy surgery.

    PubMed

    El Tahry, Riёm; Wang, Z Irene; Thandar, Aung; Podkorytova, Irina; Krishnan, Balu; Tousseyn, Simon; Guiyun, Wu; Burgess, Richard C; Alexopoulos, Andreas V

    2018-06-06

    Selected patients with intractable focal epilepsy who have failed a previous epilepsy surgery can become seizure-free with reoperation. Preoperative evaluation is exceedingly challenging in this cohort. We aim to investigate the diagnostic value of two noninvasive approaches, magnetoencephalography (MEG) and ictal single-photon emission computed tomography (SPECT), in patients with failed epilepsy surgery. We retrospectively included a consecutive cohort of patients who failed prior resective epilepsy surgery, underwent re-evaluation including MEG and ictal SPECT, and had another surgery after the re-evaluation. The relationship between resection and localization from each test was determined, and their association with seizure outcomes was analyzed. A total of 46 patients were included; 21 (46%) were seizure-free at 1-year followup after reoperation. Twenty-seven (58%) had a positive MEG and 31 (67%) had a positive ictal SPECT. The resection of MEG foci was significantly associated with seizure-free outcome (p = 0.002). Overlap of ictal SPECT hyperperfusion zones with resection was significantly associated with seizure-free outcome in the subgroup of patients with injection time ≤20 seconds(p = 0.03), but did not show significant association in the overall cohort (p = 0.46) although all injections were ictal. Patients whose MEG and ictal SPECT were concordant on a sublobar level had a significantly higher chance of seizure freedom (p = 0.05). MEG alone achieved successful localization in patients with failed epilepsy surgery with a statistical significance. Only ictal SPECT with early injection (≤20 seconds) had good localization value. Sublobar concordance between both tests was significantly associated with seizure freedom. SPECT can provide essential information in MEG-negative cases and vice versa. Our results emphasize the importance of considering a multimodal presurgical evaluation including MEG and SPECT in all patients with a previous failed epilepsy surgery. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  15. Inter-relation between "classic" motor neuron disease and frontotemporal dementia: neuropsychological and single photon emission computed tomography study.

    PubMed Central

    Talbot, P R; Goulding, P J; Lloyd, J J; Snowden, J S; Neary, D; Testa, H J

    1995-01-01

    The purpose of this study was to examine the possible association between "classic" motor neuron disease (cMND) and frontotemporal dementia (FTD), using neuropsychological evaluation and single photon emission computed tomography (SPECT). Psychological tests assessing language, perceptuospatial, memory, and "frontal lobe" functions were given to patients with cMND and test scores were compared with those of normal control subjects. 99mTc-HMPAO SPECT was performed on patients with cMND, FTD and motor neuron disease (FTD/MND), FTD alone, and normal control subjects. Regional cerebral blood flow indices (rCBFi) were determined in 36 cortical regions, and differences between grouped rCBFi data were investigated by canonical discriminant analysis. There were significant group differences in the scores of picture sequencing and token tests in patients with cMND compared with normal controls. Regional CBFi data showed frontal and anterior temporal reductions in patients with cMND compared with normal controls. A similar pattern of SPECT abnormality was seen in patients with FTD/MND and FTD alone, but to a more pronounced degree than in patients with cMND. Neuropsychological and SPECT findings in cMND, FTD/MND, and FTD showed a common pattern of cerebral involvement, most pronounced in the second two conditions. It is suggested that cMND, FTD/MND, and FTD represent a clinical range of a pathological continuum. Images PMID:7745399

  16. Pinhole Micro-SPECT/CT for Noninvasive Monitoring and Quantitation of Oncolytic Virus Dispersion and Percent Infection in Solid Tumors

    PubMed Central

    Penheiter, Alan R.; Griesmann, Guy E.; Federspiel, Mark J.; Dingli, David; Russell, Stephen J.; Carlson, Stephanie K.

    2011-01-01

    The purpose of our study was to validate the ability of pinhole micro-single-photon emission computed tomography/computed tomography (SPECT/CT) to 1) accurately resolve the intratumoral dispersion pattern and 2) quantify the infection percentage in solid tumors of an oncolytic measles virus encoding the human sodium iodide symporter (MV-NIS). NIS RNA level and dispersion pattern were determined in control and MV-NIS infected BxPC-3 pancreatic tumor cells and mouse xenografts using quantitative, real-time, reverse transcriptase, polymerase chain reaction, autoradiography, and immunohistochemistry (IHC). Mice with BxPC-3 xenografts were imaged with 123I or 99TcO4 micro-SPECT/CT. Tumor dimensions and radionuclide localization were determined with imaging software. Linear regression and correlation analyses were performed to determine the relationship between tumor infection percentage and radionuclide uptake (% injected dose per gram) above background and a highly significant correlation was observed (r2 = 0.947). A detection threshold of 1.5-fold above the control tumor uptake (background) yielded a sensitivity of 2.7% MV-NIS infected tumor cells. We reliably resolved multiple distinct intratumoral zones of infection from noninfected regions. Pinhole micro-SPECT/CT imaging using the NIS reporter demonstrated precise localization and quantitation of oncolytic MV-NIS infection and can replace more time-consuming and expensive analyses (eg, autoradiography and IHC) that require animal sacrifice. PMID:21753796

  17. Effects of atrial fibrillation on myocardial washout rate of thallium-201 on myocardial perfusion single-photon emission computed tomography.

    PubMed

    Kurisu, Satoshi; Nitta, Kazuhiro; Sumimoto, Yoji; Ikenaga, Hiroki; Ishibashi, Ken; Fukuda, Yukihiro; Kihara, Yasuki

    2018-04-20

    Myocardial perfusion single-photon emission computed tomography (SPECT) with thallium (Tl)-201 is an established modality for evaluating myocardial ischemia. We assessed the effects of atrial fibrillation (AF) on the myocardial washout rate (WR) of Tl-201 on myocardial perfusion SPECT. A total of 231 patients with no evidence of myocardial ischemia were enrolled retrospectively in this study. Patients were divided into two groups on the basis of the ECG at the time of myocardial perfusion SPECT. The mean myocardial WR of Tl-201 was calculated from the stress and the redistribution Bull's eye maps. There were 34 patients with AF and 197 patients with sinus rhythm. There were no significant differences in clinical variables, except for older age and higher heart rate in patients with AF. Myocardial WR of Tl-201 was significantly lower in patients with AF than those with sinus rhythm (46±12 vs. 51±8%, P=0.03). Multivariate analysis including these factors showed that female sex (β=0.18, P=0.02), AF (β=-0.14 P=0.03), hemoglobin (β=-0.18, P<0.01), and serum creatinine (β=0.24, P<0.01) were determinants of myocardial WR of Tl-201. Our data suggest that AF is associated with reduced myocardial WR of Tl-201 on myocardial perfuison SPECT.

  18. Single-Photon Emission Computed Tomography Is an Ambiguous Imaging Method on Initial Diagnosis for Acute Encephalopathy.

    PubMed

    Yamanaka, Gaku; Morishita, Nastumi; Oana, Shingo; Takeshita, Mika; Morichi, Shinichiro; Ishida, Yu; Kashiwagi, Yasuyo; Kawashima, Hisashi

    2016-01-01

    The distinction between acute encephalopathy (AE) and convulsive disorders with pyrexia may be problematic. We analyzed the clinical and laboratory features in 127 children who were admitted for suspected AE. They were categorized into (1) definite acute encephalopathy group (DAEG; n = 17, abnormal findings on electroencephalography [EEG], magnetic resonance imaging, or single-photon emission computed tomography [SPECT] with prolonged impaired consciousness), (2) probable acute encephalopathy group (PAEG; n = 21, abnormal findings without prolonged impaired consciousness), and (3) nonacute encephalopathy group (NAEG; n = 89). Cerebrospinal fluid interleukin-6 (CSF IL-6), and serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and creatine phosphokinase levels were significantly higher in DAEG compared with NAEG but not PAEG. No significant differences were observed between DAEG and PAEG except for serum creatinine levels. In PAEG, an area of hypoperfusion was observed on SPECT images of nine patients with normal CSF IL-6 levels. AE was suspected in two PAEG patients who exhibited high CSF IL-6 levels and abnormal EEG findings without abnormal SPECT findings. All seven patients with severe neurological sequelae were categorized to DAEG. CSF IL-6 and serum AST, ALT, and creatine kinase levels may be valid predictors of typical AE; prolonged impaired consciousness is an important sign of AE. However, SPECT may not be suitable for initial diagnosis of AE. Georg Thieme Verlag KG Stuttgart · New York.

  19. Quantification of the spatial distribution of rectally applied surrogates for microbicide and semen in colon with SPECT and magnetic resonance imaging

    PubMed Central

    Cao, Ying J; Caffo, Brian S; Fuchs, Edward J; Lee, Linda A; Du, Yong; Li, Liye; Bakshi, Rahul P; Macura, Katarzyna; Khan, Wasif A; Wahl, Richard L; Grohskopf, Lisa A; Hendrix, Craig W

    2012-01-01

    AIMS We sought to describe quantitatively the distribution of rectally administered gels and seminal fluid surrogates using novel concentration–distance parameters that could be repeated over time. These methods are needed to develop rationally rectal microbicides to target and prevent HIV infection. METHODS Eight subjects were dosed rectally with radiolabelled and gadolinium-labelled gels to simulate microbicide gel and seminal fluid. Rectal doses were given with and without simulated receptive anal intercourse. Twenty-four hour distribution was assessed with indirect single photon emission computed tomography (SPECT)/computed tomography (CT) and magnetic resonance imaging (MRI), and direct assessment via sigmoidoscopic brushes. Concentration–distance curves were generated using an algorithm for fitting SPECT data in three dimensions. Three novel concentration–distance parameters were defined to describe quantitatively the distribution of radiolabels: maximal distance (Dmax), distance at maximal concentration (DCmax) and mean residence distance (Dave). RESULTS The SPECT/CT distribution of microbicide and semen surrogates was similar. Between 1 h and 24 h post dose, the surrogates migrated retrograde in all three parameters (relative to coccygeal level; geometric mean [95% confidence interval]): maximal distance (Dmax), 10 cm (8.6–12) to 18 cm (13–26), distance at maximal concentration (DCmax), 3.8 cm (2.7–5.3) to 4.2 cm (2.8–6.3) and mean residence distance (Dave), 4.3 cm (3.5–5.1) to 7.6 cm (5.3–11). Sigmoidoscopy and MRI correlated only roughly with SPECT/CT. CONCLUSIONS Rectal microbicide surrogates migrated retrograde during the 24 h following dosing. Spatial kinetic parameters estimated using three dimensional curve fitting of distribution data should prove useful for evaluating rectal formulations of drugs for HIV prevention and other indications. PMID:22404308

  20. The Addition of SPECT/CT Lymphoscintigraphy to Breast Cancer Radiation Planning Spares Lymph Nodes Critical for Arm Drainage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheville, Andrea L., E-mail: Cheville.andrea@mayo.edu; Brinkmann, Debra H.; Ward, Shelly B.

    2013-03-15

    Background: This prospective cohort study was designed to determine whether the amount of radiation delivered to the nonpathological lymph nodes (LNs) that drain the arm can be significantly reduced by integrating single-photon emission computed tomography (SPECT)/computed tomography (CT) scans into radiation treatment planning. Methods: SPECT-CT scans were acquired for the 28 patients with stage I or II breast cancer and fused with the routinely obtained radiation oncology planning CT scans. Arm-draining LNs were contoured with 0.5-cm margins automatically using a threshold of 50% maximum intensity. Two treatment plans were generated: 1 per routine clinical practice (standard; STD) and the secondmore » (modified; MOD) with treatment fields modified to minimize dose to the arm-draining LNs visible on SPECT/CT images without interfering with the dosage delivered to target tissues. Participants were treated per the MOD plans. Arm volumes were measured prior to radiation and thereafter at least three subsequent 6-month intervals. Results: Sixty-eight level I-III arm-draining LNs were identified, 57% of which were inside the STD plan fields but could be blocked in the MOD plan fields. Sixty-five percent of arm-draining LNs in the STD versus 16% in the MOD plans received a mean of ≥10 Gy, and 26% in the STD versus 4% in the MOD plans received a mean of ≥40 Gy. Mean LN radiation exposure was 23.6 Gy (standard deviation 18.2) with the STD and 7.7 Gy (standard deviation 11.3) with the MOD plans (P<.001). No participant developed lymphedema. Conclusions: The integration of SPECT/CT scans into breast cancer radiation treatment planning reduces unnecessary arm-draining LN radiation exposure and may lessen the risk of lymphedema.« less

  1. The addition of SPECT/CT lymphoscintigraphy to breast cancer radiation planning spares lymph nodes critical for arm drainage.

    PubMed

    Cheville, Andrea L; Brinkmann, Debra H; Ward, Shelly B; Durski, Jolanta; Laack, Nadia N; Yan, Elizabeth; Schomberg, Paula J; Garces, Yolanda I; Suman, Vera J; Petersen, Ivy A

    2013-03-15

    This prospective cohort study was designed to determine whether the amount of radiation delivered to the nonpathological lymph nodes (LNs) that drain the arm can be significantly reduced by integrating single-photon emission computed tomography (SPECT)/computed tomography (CT) scans into radiation treatment planning. SPECT-CT scans were acquired for the 28 patients with stage I or II breast cancer and fused with the routinely obtained radiation oncology planning CT scans. Arm-draining LNs were contoured with 0.5-cm margins automatically using a threshold of 50% maximum intensity. Two treatment plans were generated: 1 per routine clinical practice (standard; STD) and the second (modified; MOD) with treatment fields modified to minimize dose to the arm-draining LNs visible on SPECT/CT images without interfering with the dosage delivered to target tissues. Participants were treated per the MOD plans. Arm volumes were measured prior to radiation and thereafter at least three subsequent 6-month intervals. Sixty-eight level I-III arm-draining LNs were identified, 57% of which were inside the STD plan fields but could be blocked in the MOD plan fields. Sixty-five percent of arm-draining LNs in the STD versus 16% in the MOD plans received a mean of ≥10 Gy, and 26% in the STD versus 4% in the MOD plans received a mean of ≥40 Gy. Mean LN radiation exposure was 23.6 Gy (standard deviation 18.2) with the STD and 7.7 Gy (standard deviation 11.3) with the MOD plans (P<.001). No participant developed lymphedema. The integration of SPECT/CT scans into breast cancer radiation treatment planning reduces unnecessary arm-draining LN radiation exposure and may lessen the risk of lymphedema. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Sestamibi technetium-99m brain single-photon emission computed tomography to identify recurrent glioma in adults: 201 studies.

    PubMed

    Le Jeune, Florence Prigent; Dubois, François; Blond, Serge; Steinling, Marc

    2006-04-01

    In the follow-up of treated gliomas, CT and MRI can often not differentiate radionecrosis from recurrent tumor. The aim of this study was to assess the interest of functional imaging with (99m)Tc-MIBI SPECT in a large series of 201 examinations. MIBI SPECT were performed in 81 patients treated for brain gliomas. A MIBI uptake index was computed as the ratio of counts in the lesion to counts in the controlateral region. SPECT was compared to stereotactic biopsy in 14 cases, or in the others cases to imaging evolution or clinical course at 6 months after the last tomoscintigraphy Two hundred and one tomoscintigraphies were performed. One hundred and two scans were true positive, 82 scans were true negative. Six scans were false positive (corresponding to 3 patients): 2 patients with an inflammatory reaction after radiosurgery, 1 with no explanation up to now. Eleven scans were false negative (5 patients): 1 patient with a deep peri-ventricular lesion, 2 patients with no contrast enhancement on MRI, 2 patients with a temporal tumor. The sensitivity for tumor recurrence was 90%, specificity 91.5% and accuracy 90.5%. We studied separately low and high grade glioma: sensitivity for tumor recurrence was respectively 91% and 89%, specificity 100% and 83% and accuracy 95% and 87%. MIBI SPECT allowed the diagnose of anaplasic degenerence of low grade sometimes earlier than clinical (5 cases) or MRI signs (7 cases). Our results confirm the usefullness of MIBI SPECT in the follow-up of treated gliomas for the differential diagnosis between radiation necrosis and tumor recurrence.

  3. SPECT/CT localization of oral radioiodine activity: a retrospective study and in-vitro assessment

    PubMed Central

    Burlison, Jared S.; Hartshorne, Michael F.; Voda, Alan M.; Cocks, Franklin H.

    2013-01-01

    Purpose We sought to further localize radioiodine activity in the mouth on post-thyroid cancer therapy imaging using single-photon emission computed tomography/computed tomography (SPECT/CT). Materials and methods We retrospectively reviewed all patients (58) who underwent thyroid cancer therapy with iodine-131 (131I) at our institution from August 2009 to March 2011 whose post-therapy radioiodine imaging included neck SPECT/CT. A small group (six) of diagnostic 123I scans including SPECT/CT was also reviewed. Separately, we performed in-vitro 131I (sodium iodide) binding assays with amalgam and Argenco HP 77 (77% dental gold alloy) as proof of principle for these interactions. Results Of the 58 post-therapy patients, 45 (78%) had undergone metallic dental restorations, and of them 41 (91%) demonstrated oral 131I activity localizing preferentially to those restorations. It was observed that radioiodine also localized to other dental restorations and to orthodontic hardware. Gum-line activity in edentulous patients suggests radioiodine interaction with denture adhesive. In vitro, dental amalgam and Argenco HP 77 bound 131I in a time-dependent manner over 1–16 days of exposure. Despite subsequent washings with normal saline, significant 131I activity (maximally 12% for amalgam and 68% for Argenco HP 77) was retained by these metals. Subsequent soaking in a saturated solution of potassium iodide partially displaced 131I from amalgam, with near-total displacement of 131I from Argenco HP 77. Conclusion SPECT/CT shows that radioiodine in the oral cavity localizes to metallic dental restorations. Furthermore, in-vitro studies demonstrate partially reversible binding of 131I to common dental metals. PMID:24128897

  4. Cerebrovascular Events During Pregnancy and Puerperium Resulting from Preexisting Moyamoya Disease: Determining the Risk of Ischemic Events Based on Hemodynamic Status Assessment Using Brain Perfusion Single-Photon Emission Computed Tomography.

    PubMed

    Lee, Si Un; Chung, Young Seob; Oh, Chang Wan; Kwon, O-Ki; Bang, Jae Seung; Hwang, Gyojun; Kim, Tackeun; Ahn, Seong Yeol

    2016-06-01

    The purposes of this study were to review the cerebrovascular events (CVE) during pregnancy and puerperium in adults with moyamoya disease (MMD) and to evaluate its risk factors. We reviewed electronic medical records on 141 pregnancies in 71 women diagnosed with MMD and this study included only 27 pregnancies (23 patients) diagnosed with MMD before pregnancy. Basal and acetazolamide-stress brain perfusion single-photon emission computed tomography (SPECT) was conducted for 40 hemispheres in 21 pregnancies within 1 year of the gestational period, ranging from 22 months before delivery to 12 months after delivery for evaluation of the hemodynamic status of the patients to devise the MMD treatment strategy. Twelve pregnancies (44.4%) showed CVE during pregnancy or puerperium in the group diagnosed with MMD before pregnancy. All the 12 CVE were ischemic, without any hemorrhagic events. A decreased cerebral vascular reserve capacity (CVRC) on stress SPECT was observed in 25 (62.5%) of the 40 hemispheres, and 18 of these 25 hemispheres showed TIA. In contrast, only 2 of 15 hemispheres which revealed normal CVRC on stress SPECT showed TIA. Overall, a decreased CVRC on stress SPECT imaging was statistically associated with development of CVE (P < 0.001). Furthermore, the clinical type of MMD was also regarded as predictive factor for CVE in this study. Especially, ischemic type MMD revealed a statistical association with the development of CVE (P = 0.014, odds ratio = 16.50). Assessment of cerebral hemodynamic status with stress SPECT may predict CVE during pregnancy and puerperium. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Impact of scar thickness on the assessment of viability using dobutamine echocardiography and thallium single-photon emission computed tomography: a comparison with contrast-enhanced magnetic resonance imaging.

    PubMed

    Nelson, Charles; McCrohon, Jane; Khafagi, Frederick; Rose, Stephen; Leano, Rodel; Marwick, Thomas H

    2004-04-07

    We sought to determine whether the transmural extent of scar (TES) explains discordances between dobutamine echocardiography (DbE) and thallium single-photon emission computed tomography (Tl-SPECT) in the detection of viable myocardium (VM). Discrepancies between DbE and Tl-SPECT are often attributed to differences between contractile reserve and membrane integrity, but may also reflect a disproportionate influence of nontransmural scar on thickening at DbE. Sixty patients (age 62 +/- 12 years; 10 women and 50 men) with postinfarction left ventricular dysfunction underwent standard rest-late redistribution Tl-SPECT and DbE. Viable myocardium was identified when dysfunctional segments showed Tl activity >60% on the late-redistribution image or by low-dose augmentation at DbE. Contrast-enhanced magnetic resonance imaging (ceMRI) was used to divide TES into five groups: 0%, <25%, 26% to 50%, 51% to 75%, and >75% of the wall thickness replaced by scar. As TES increased, both the mean Tl uptake and change in wall motion score decreased significantly (both p < 0.001). However, the presence of subendocardial scar was insufficient to prevent thickening; >50% of segments still showed contractile function with TES of 25% to 75%, although residual function was uncommon with TES >75%. The relationship of both tests to increasing TES was similar, but Tl-SPECT identified VM more frequently than DbE in all groups. Among segments without scar or with small amounts of scar (<25% TES), >50% were viable by SPECT. Both contractile reserve and perfusion are sensitive to the extent of scar. However, contractile reserve may be impaired in the face of no or minor scar, and thickening may still occur with extensive scar.

  6. Use of radiography, computed tomography and magnetic resonance imaging for evaluation of navicular syndrome in the horse.

    PubMed

    Widmer, W R; Buckwalter, K A; Fessler, J F; Hill, M A; VanSickle, D C; Ivancevich, S

    2000-01-01

    Radiographic evaluation of navicular syndrome is problematic because of its inconsistent correlation with clinical signs. Scintigraphy often yields false positive and false negative results and diagnostic ultrasound is of limited value. Therefore, we assessed the use of computed tomography and magnetic resonance imaging in a horse with clinical and radiographic signs of navicular syndrome. Cadaver specimens were examined with spiral computed tomographic and high-field magnetic resonance scanners and images were correlated with pathologic findings. Radiographic changes consisted of bony remodeling, which included altered synovial fossae, increased medullary opacity, cyst formation and shape change. These osseous changes were more striking and more numerous on computed tomographic and magnetic resonance images. They were most clearly defined with computed tomography. Many osseous changes seen with computed tomography and magnetic resonance imaging were not radiographically evident. Histologically confirmed soft tissue alterations of the deep digital flexor tendon, impar ligament and marrow were identified with magnetic resonance imaging, but not with conventional radiography. Because of their multiplanar capability and tomographic nature, computed tomography and magnetic resonance imaging surpass conventional radiography for navicular imaging, facilitating earlier, more accurate diagnosis. Current advances in imaging technology should make these imaging modalities available to equine practitioners in the future.

  7. Improvement of Cerebral Hypoperfusion with Levothyroxine Therapy in Hashimoto's Encephalopathy Demonstrated by 99mTc-HMPAO-SPECT

    PubMed Central

    Schnedl, Wolfgang J.; Mirzaei, Siroos; Wallner-Liebmann, Sandra J.; Tafeit, Erwin; Mangge, Harald; Krause, Robert; Lipp, Rainer W.

    2013-01-01

    Background Hashimoto's encephalopathy (HE) is a rare immune-mediated encephalopathy associated with autoimmune Hashimoto's thyroiditis. Objectives and Methods We report on a patient with HE and significant clinical improvement correlating with an increase in cerebral blood flow demonstrated by hexamethylpropyleneamine oxime (HMPAO) single-photon emission computed tomography (SPECT). HMPAO-SPECT was performed with 740 MBq of technetium-99m-HMPAO. To demonstrate the improvement in regional cerebral blood flow, individual regions of interest were drawn around visually diminished HMPAO uptake, the lesion to reference region ratio was calculated and transverse section images and semi-quantitative measurements were performed. Results We show a 5-year follow-up with significant clinical improvement, a 10-fold reduction in autoantibodies to thyroid peroxidase and an approximately 20% improvement in cerebral blood flow with HMPAO-SPECT. Conclusion Adequate levothyroxine treatment achieving and maintaining euthyroidism should be considered as therapy to lower autoantibodies and improve clinical outcome in patients with Hashimoto's thyroiditis and encephalopathy. PMID:24783049

  8. Evaluation of Timepix3 based CdTe photon counting detector for fully spectroscopic small animal SPECT imaging

    NASA Astrophysics Data System (ADS)

    Trojanova, E.; Jakubek, J.; Turecek, D.; Sykora, V.; Francova, P.; Kolarova, V.; Sefc, L.

    2018-01-01

    The imaging method of SPECT (Single Photon Emission Computed Tomography) is used in nuclear medicine for diagnostics of various diseases or organs malfunctions. The distribution of medically injected, inhaled, or ingested radionuclides (radiotracers) in the patient body is imaged using gamma-ray sensitive camera with suitable imaging collimator. The 3D image is then calculated by combining many images taken from different observation angles. Most of SPECT systems use scintillator based cameras. These cameras do not provide good energy resolution and do not allow efficient suppression of unwanted signals such as those caused by Compton scattering. The main goal of this work is evaluation of Timepix3 detector properties for SPECT method for functional imaging of small animals during preclinical studies. Advantageous Timepix3 properties such as energy and spatial resolution are exploited for significant image quality improvement. Preliminary measurements were performed on specially prepared plastic phantom with cavities filled by radioisotopes and then repeated with in vivo mouse sample.

  9. Early and delayed pinhole MIBI SPECT in detecting hyperfunctioning parathyroid glands: a comparison with peroperative γ probe.

    PubMed

    Gültekin, Salih Sinan; Kir, Metin; Tuğ, Tuğbay; Demirer, Seher; Genç, Yasemin

    2011-10-01

    This study was conducted to evaluate the early and delayed pinhole MIBI single photon emission computed tomography (pSPECT) images in detecting hyperfunctioning parathyroid glands, to make a comparison with peroperative γ probe (GP) findings. Planar, early, and delayed pSPECT scans and skin in-vivo and ex-vivo GP counts were obtained in 22 patients with hyperparathyroidism. All data were analyzed statistically on the basis of localization of the lesions, using the histopathological findings as the gold standard. Histopathological examinations revealed 18 of 44 adenomas, 18 of 44 hyperplasic glands, two of 44 lymph nodules, five of 44 thyroid nodules, and one of 44 normal parathyroid glands. Sensitivity and specificity were found to be 36 and 100% for planar, 69 and 75% for early pSPECT, 86 and 88% for delayed pSPECT scans, and similarly, 78 and 75% on skin, 92 and 75% in-vivo and 83 and 100% ex-vivo GP counts, respectively. For distinction ability of GP counts between three groups of lesions, there was a statistically significant difference among the three groups for ex-vivo GP counts but not between groups of adenomas and hyperplasic lesions for in-vivo GP counts. Early and delayed pSPECT scans play a complementary role on the planar scans. Delayed pSPECT scans and in-vivo GP counts are equally valuable to localize both single and multiple hyperfunctioning parathyroid glands. Ex-vivo GP counts seem to be better for making a distinction among types of lesions.

  10. CT-SPECT fusion plus conjugate views for determining dosimetry in iodine-131-monoclonal antibody therapy of lymphoma patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koral, K.F.; Zasadny, K.R.; Kessler, M.L.

    A method of performing {sup 131}I quantitative SPECT imaging is described which uses the superimposition of markers placed on the skin to accomplish fusion of computed tomography (CT) and SPECT image sets. To calculate mean absorbed dose after administration of one of two {sup 131}I-labeled monoclonal antibodies (Mabs), the shape of the time-activity curve is measured by daily diagnostic conjugate views, the y-axis of that curve is normalized by a quantitative SPECT measurement (usually intra-therapy), and the tumor mass is deduced from a concurrent CT volume measurement. The method is applied to six B-cell non-Hodgkin`s lymphoma patients. For four tumorsmore » in three patients treated with the MB1 Mab, a correlation appears to be present between resulting mean absorbed dose and disease response. Including all dosimetric estimates for both antibodies, the range for the specific absorbed dose is within that found by others in treating B-cell lymphoma patients. Excluding a retreated anti-B1 patient, the tumor-specific absorbed dose during anti-B1 therapy is from 1.4 to 1.7 mGy/MBq. For the one anti-B1 patient, where quantitative SPECT and conjugate-view imaging was carried out back to back , the quantitative SPECT-measured activity was somewhat less for the spleen and much less for the tumor than that from conjugate views. The quantitative SPECT plus conjugate views method may be of general utility for macro-dosimetry of {sup 131}If therapies. 18 refs., 3 figs., 5 tabs.« less

  11. [Development of a Striatal and Skull Phantom for Quantitative 123I-FP-CIT SPECT].

    PubMed

    Ishiguro, Masanobu; Uno, Masaki; Miyazaki, Takuma; Kataoka, Yumi; Toyama, Hiroshi; Ichihara, Takashi

    123 Iodine-labelled N-(3-fluoropropyl) -2β-carbomethoxy-3β-(4-iodophenyl) nortropane ( 123 I-FP-CIT) single photon emission computerized tomography (SPECT) images are used for differential diagnosis such as Parkinson's disease (PD). Specific binding ratio (SBR) is affected by scattering and attenuation in SPECT imaging, because gender and age lead to changes in skull density. It is necessary to clarify and correct the influence of the phantom simulating the the skull. The purpose of this study was to develop phantoms that can evaluate scattering and attenuation correction. Skull phantoms were prepared based on the measuring the results of the average computed tomography (CT) value, average skull thickness of 12 males and 16 females. 123 I-FP-CIT SPECT imaging of striatal phantom was performed with these skull phantoms, which reproduced normal and PD. SPECT images, were reconstructed with scattering and attenuation correction. SBR with partial volume effect corrected (SBR act ) and conventional SBR (SBR Bolt ) were measured and compared. The striatum and the skull phantoms along with 123 I-FP-CIT were able to reproduce the normal accumulation and disease state of PD and further those reproduced the influence of skull density on SPECT imaging. The error rate with the true SBR, SBR act was much smaller than SBR Bolt . The effect on SBR could be corrected by scattering and attenuation correction even if the skull density changes with 123 I-FP-CIT on SPECT imaging. The combination of triple energy window method and CT-attenuation correction method would be the best correction method for SBR act .

  12. LV dyssynchrony as assessed by phase analysis of gated SPECT myocardial perfusion imaging in patients with Wolff-Parkinson-White syndrome

    PubMed Central

    Chen, Chun; Miao, Changqing; Feng, Jianlin; Zhou, Yanli; Cao, Kejiang; Lloyd, Michael S.; Chen, Ji

    2013-01-01

    Purpose The purpose of this study was to evaluate left ventricular (LV) mechanical dyssynchrony in patients with Wolff-Parkinson-White (WPW) syndrome pre- and post-radiofrequency catheter ablation (RFA) using phase analysis of gated single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI). Methods Forty-five WPW patients were enrolled and had gated SPECT MPI pre- and 2–3 days post-RFA. Electrophysiological study (EPS) was used to locate accessory pathways (APs) and categorize the patients according to the AP locations (septal, left and right free wall). Electrocardiography (ECG) was performed pre- and post-RFA to confirm successful elimination of the APs. Phase analysis of gated SPECT MPI was used to assess LV dyssynchrony pre- and post-RFA. Results Among the 45 patients, 3 had gating errors, and thus 42 had SPECT phase analysis. Twenty-two patients (52.4 %) had baseline LV dyssynchrony. Baseline LV dyssynchrony was more prominent in the patients with septal APs than in the patients with left or right APs (p<0.05). RFA improved LV synchrony in the entire cohort and in the patients with septal APs (p<0.01). Conclusion Phase analysis of gated SPECT MPI demonstrated that LV mechanical dyssynchrony can be present in patients with WPW syndrome. Septal APs result in the greatest degree of LV mechanical dyssynchrony and afford the most benefit after RFA. This study supports further investigation in the relationship between electrical and mechanical activation using EPS and phase analysis of gated SPECT MPI. PMID:22532253

  13. Collimator design for a multipinhole brain SPECT insert for MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Audenhaege, Karen; Van Holen, Roel; Vanhove, Christian

    Purpose: Brain single photon emission computed tomography (SPECT) imaging is an important clinical tool, with unique tracers for studying neurological diseases. Nowadays, most commercial SPECT systems are combined with x-ray computed tomography (CT) in so-called SPECT/CT systems to obtain an anatomical background for the functional information. However, while CT images have a high spatial resolution, they have a low soft-tissue contrast, which is an important disadvantage for brain imaging. Magnetic resonance imaging (MRI), on the other hand, has a very high soft-tissue contrast and does not involve extra ionizing radiation. Therefore, the authors designed a brain SPECT insert that canmore » operate inside a clinical MRI. Methods: The authors designed and simulated a compact stationary multipinhole SPECT insert based on digital silicon photomultiplier detector modules, which have shown to be MR-compatible and have an excellent intrinsic resolution (0.5 mm) when combined with a monolithic 2 mm thick LYSO crystal. First, the authors optimized the different parameters of the SPECT system to maximize sensitivity for a given target resolution of 7.2 mm in the center of the field-of-view, given the spatial constraints of the MR system. Second, the authors performed noiseless simulations of two multipinhole configurations to evaluate sampling and reconstructed resolution. Finally, the authors performed Monte Carlo simulations and compared the SPECT insert with a clinical system with ultrahigh-resolution (UHR) fan beam collimators, based on contrast-to-noise ratio and a visual comparison of a Hoffman phantom with a 9 mm cold lesion. Results: The optimization resulted in a stationary multipinhole system with a collimator radius of 150.2 mm and a detector radius of 172.67 mm, which corresponds to four rings of 34 diSPM detector modules. This allows the authors to include eight rings of 24 pinholes, which results in a system volume sensitivity of 395 cps/MBq. Noiseless simulations show sufficient axial sampling (in a Defrise phantom) and a reconstructed resolution of 5.0 mm (in a cold-rod phantom). The authors compared the 24-pinhole setup with a 34-pinhole system (with the same detector radius but a collimator radius of 156.63 mm) and found that 34 pinholes result in better uniformity but a worse reconstruction of the cold-rod phantom. The authors also compared the 24-pinhole system with a clinical triple-head UHR fan beam system based on contrast-to-noise ratio and found that the 24-pinhole setup performs better for the 6 mm hot and the 16 mm cold lesions and worse for the 8 and 10 mm hot lesions. Finally, the authors reconstructed noisy projection data of a Hoffman phantom with a 9 mm cold lesion and found that the lesion was slightly better visible on the multipinhole image compared to the fan beam image. Conclusions: The authors have optimized a stationary multipinhole SPECT insert for MRI and showed the feasibility of doing brain SPECT imaging inside a MRI with an image quality similar to the best clinical SPECT systems available.« less

  14. Arterial Obstruction on Computed Tomographic or Magnetic Resonance Angiography and Response to Intravenous Thrombolytics in Ischemic Stroke

    PubMed Central

    Mair, Grant; von Kummer, Rüdiger; Adami, Alessandro; White, Philip M.; Adams, Matthew E.; Yan, Bernard; Demchuk, Andrew M.; Farrall, Andrew J.; Sellar, Robin J.; Sakka, Eleni; Palmer, Jeb; Perry, David; Lindley, Richard I.; Sandercock, Peter A.G.

    2017-01-01

    Background and Purpose— Computed tomographic angiography and magnetic resonance angiography are used increasingly to assess arterial patency in patients with ischemic stroke. We determined which baseline angiography features predict response to intravenous thrombolytics in ischemic stroke using randomized controlled trial data. Methods— We analyzed angiograms from the IST-3 (Third International Stroke Trial), an international, multicenter, prospective, randomized controlled trial of intravenous alteplase. Readers, masked to clinical, treatment, and outcome data, assessed prerandomization computed tomographic angiography and magnetic resonance angiography for presence, extent, location, and completeness of obstruction and collaterals. We compared angiography findings to 6-month functional outcome (Oxford Handicap Scale) and tested for interactions with alteplase, using ordinal regression in adjusted analyses. We also meta-analyzed all available angiography data from other randomized controlled trials of intravenous thrombolytics. Results— In IST-3, 300 patients had prerandomization angiography (computed tomographic angiography=271 and magnetic resonance angiography=29). On multivariable analysis, more extensive angiographic obstruction and poor collaterals independently predicted poor outcome (P<0.01). We identified no significant interaction between angiography findings and alteplase effect on Oxford Handicap Scale (P≥0.075) in IST-3. In meta-analysis (5 trials of alteplase or desmoteplase, including IST-3, n=591), there was a significantly increased benefit of thrombolytics on outcome (odds ratio>1 indicates benefit) in patients with (odds ratio, 2.07; 95% confidence interval, 1.18–3.64; P=0.011) versus without (odds ratio, 0.88; 95% confidence interval, 0.58–1.35; P=0.566) arterial obstruction (P for interaction 0.017). Conclusions— Intravenous thrombolytics provide benefit to stroke patients with computed tomographic angiography or magnetic resonance angiography evidence of arterial obstruction, but the sample was underpowered to demonstrate significant treatment benefit or harm among patients with apparently patent arteries. Clinical Trial Registration— URL: http://www.isrctn.com. Unique identifier: ISRCTN25765518. PMID:28008093

  15. Arterial Obstruction on Computed Tomographic or Magnetic Resonance Angiography and Response to Intravenous Thrombolytics in Ischemic Stroke.

    PubMed

    Mair, Grant; von Kummer, Rüdiger; Adami, Alessandro; White, Philip M; Adams, Matthew E; Yan, Bernard; Demchuk, Andrew M; Farrall, Andrew J; Sellar, Robin J; Sakka, Eleni; Palmer, Jeb; Perry, David; Lindley, Richard I; Sandercock, Peter A G; Wardlaw, Joanna M

    2017-02-01

    Computed tomographic angiography and magnetic resonance angiography are used increasingly to assess arterial patency in patients with ischemic stroke. We determined which baseline angiography features predict response to intravenous thrombolytics in ischemic stroke using randomized controlled trial data. We analyzed angiograms from the IST-3 (Third International Stroke Trial), an international, multicenter, prospective, randomized controlled trial of intravenous alteplase. Readers, masked to clinical, treatment, and outcome data, assessed prerandomization computed tomographic angiography and magnetic resonance angiography for presence, extent, location, and completeness of obstruction and collaterals. We compared angiography findings to 6-month functional outcome (Oxford Handicap Scale) and tested for interactions with alteplase, using ordinal regression in adjusted analyses. We also meta-analyzed all available angiography data from other randomized controlled trials of intravenous thrombolytics. In IST-3, 300 patients had prerandomization angiography (computed tomographic angiography=271 and magnetic resonance angiography=29). On multivariable analysis, more extensive angiographic obstruction and poor collaterals independently predicted poor outcome (P<0.01). We identified no significant interaction between angiography findings and alteplase effect on Oxford Handicap Scale (P≥0.075) in IST-3. In meta-analysis (5 trials of alteplase or desmoteplase, including IST-3, n=591), there was a significantly increased benefit of thrombolytics on outcome (odds ratio>1 indicates benefit) in patients with (odds ratio, 2.07; 95% confidence interval, 1.18-3.64; P=0.011) versus without (odds ratio, 0.88; 95% confidence interval, 0.58-1.35; P=0.566) arterial obstruction (P for interaction 0.017). Intravenous thrombolytics provide benefit to stroke patients with computed tomographic angiography or magnetic resonance angiography evidence of arterial obstruction, but the sample was underpowered to demonstrate significant treatment benefit or harm among patients with apparently patent arteries. URL: http://www.isrctn.com. Unique identifier: ISRCTN25765518. © 2016 The Authors.

  16. Imaging and modeling of flow in porous media using clinical nuclear emission tomography systems and computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Boutchko, Rostyslav; Rayz, Vitaliy L.; Vandehey, Nicholas T.; O'Neil, James P.; Budinger, Thomas F.; Nico, Peter S.; Druhan, Jennifer L.; Saloner, David A.; Gullberg, Grant T.; Moses, William W.

    2012-01-01

    This paper presents experimental and modeling aspects of applying nuclear emission tomography to study fluid flow in laboratory packed porous media columns of the type frequently used in geophysics, geochemistry and hydrology research. Positron emission tomography (PET) and single photon emission computed tomography (SPECT) are used as non-invasive tools to obtain dynamic 3D images of radioactive tracer concentrations. Dynamic sequences obtained using 18F-FDG PET are used to trace flow through a 5 cm diameter × 20 cm tall sand packed column with and without an impermeable obstacle. In addition, a custom-made rotating column setup placed in a clinical two-headed SPECT camera is used to image 99mTc-DTPA tracer propagation in a through-flowing column (10 cm diameter × 30 cm tall) packed with recovered aquifer sediments. A computational fluid dynamics software package FLUENT is used to model the observed flow dynamics. Tracer distributions obtained in the simulations in the smaller column uniformly packed with sand and in the column with an obstacle are remarkably similar to the reconstructed images in the PET experiments. SPECT results demonstrate strongly non-uniform flow patterns for the larger column slurry-packed with sub-surface sediment and slow upward flow. In the numerical simulation of the SPECT study, two symmetric channels with increased permeability are prescribed along the column walls, which result in the emergence of two well-defined preferential flow paths. Methods and results of this work provide new opportunities in hydrologic and biogeochemical research. The primary target application for developed technologies is non-destructive, non-perturbing, quantitative imaging of flow dynamics within laboratory scale porous media systems.

  17. Imaging and modeling of flow in porous media using clinical nuclear emission tomography systems and computational fluid dynamics.

    PubMed

    Boutchko, Rostyslav; Rayz, Vitaliy L; Vandehey, Nicholas T; O'Neil, James P; Budinger, Thomas F; Nico, Peter S; Druhan, Jennifer L; Saloner, David A; Gullberg, Grant T; Moses, William W

    2012-01-01

    This paper presents experimental and modeling aspects of applying nuclear emission tomography to study fluid flow in laboratory packed porous media columns of the type frequently used in geophysics, geochemistry and hydrology research. Positron emission tomography (PET) and single photon emission computed tomography (SPECT) are used as non-invasive tools to obtain dynamic 3D images of radioactive tracer concentrations. Dynamic sequences obtained using 18 F-FDG PET are used to trace flow through a 5 cm diameter × 20 cm tall sand packed column with and without an impermeable obstacle. In addition, a custom-made rotating column setup placed in a clinical two-headed SPECT camera is used to image 99m Tc-DTPA tracer propagation in a through-flowing column (10 cm diameter × 30 cm tall) packed with recovered aquifer sediments. A computational fluid dynamics software package FLUENT is used to model the observed flow dynamics. Tracer distributions obtained in the simulations in the smaller column uniformly packed with sand and in the column with an obstacle are remarkably similar to the reconstructed images in the PET experiments. SPECT results demonstrate strongly non-uniform flow patterns for the larger column slurry-packed with sub-surface sediment and slow upward flow. In the numerical simulation of the SPECT study, two symmetric channels with increased permeability are prescribed along the column walls, which result in the emergence of two well-defined preferential flow paths. Methods and results of this work provide new opportunities in hydrologic and biogeochemical research. The primary target application for developed technologies is non-destructive, non-perturbing, quantitative imaging of flow dynamics within laboratory scale porous media systems.

  18. Quantitative accuracy of the closed-form least-squares solution for targeted SPECT.

    PubMed

    Shcherbinin, S; Celler, A

    2010-10-07

    The aim of this study is to investigate the quantitative accuracy of the closed-form least-squares solution (LSS) for single photon emission computed tomography (SPECT). The main limitation for employing this method in actual clinical reconstructions is the computational cost related to operations with a large-sized system matrix. However, in some clinical situations, the size of the system matrix can be decreased using targeted reconstruction. For example, some oncology SPECT studies are characterized by intense tracer uptakes that are localized in relatively small areas, while the remaining parts of the patient body have only a low activity background. Conventional procedures reconstruct the activity distribution in the whole object, which leads to relatively poor image accuracy/resolution for tumors while computer resources are wasted, trying to rebuild diagnostically useless background. In this study, we apply a concept of targeted reconstruction to SPECT phantom experiments imitating such oncology scans. Our approach includes two major components: (i) disconnection of the entire imaging system of equations and extraction of only those parts that correspond to the targets, i.e., regions of interest (ROI) encompassing active containers/tumors and (ii) generation of the closed-form LSS for each target ROI. We compared these ROI-based LSS with those reconstructed by the conventional MLEM approach. The analysis of the five processed cases from two phantom experiments demonstrated that the LSS approach outperformed MLEM in terms of the noise level inside ROI. On the other hand, MLEM better recovered total activity if the number of iterations was large enough. For the experiment without background activity, the ROI-based LSS led to noticeably better spatial activity distribution inside ROI. However, the distributions pertaining to both approaches were practically identical for the experiment with the concentration ratio 7:1 between the containers and the background.

  19. Comparative evaluation of the cadaveric and computed tomographic features of the coelomic cavity in the green iguana (Iguana iguana), black and white tegu (Tupinambis merianae) and bearded dragon (Pogona vitticeps).

    PubMed

    Banzato, T; Selleri, P; Veladiano, I A; Zotti, A

    2013-12-01

    Contrast-enhanced computed tomographic studies of the coelomic cavity in four green iguanas, four black and white tegus and four bearded dragons were performed using a conventional CT scanner. Anatomical reference cross sections were obtained from four green iguana, four black and white tegu and six bearded dragon cadavers; the specimens were stored in a -20°C freezer for 24 h then sliced into 5-mm intervals. The frozen sections were cleaned with water and photographed on both sides. The individual anatomical structures were identified by means of the available literature; these were labelled first on the anatomical images and then matched to the corresponding computed tomography images. The results provide an atlas of the normal cross-sectional and computed tomographic anatomy of the coelomic cavity in the green iguana, the black and white tegu and the bearded dragon, which is useful in the interpretation of any imaging modality. © 2013 Blackwell Verlag GmbH.

  20. Three-dimensional reconstructions from computed tomographic scans on smartphones and tablets: a simple tutorial for the ward and operating room using public domain software.

    PubMed

    Ketoff, Serge; Khonsari, Roman Hossein; Schouman, Thomas; Bertolus, Chloé

    2014-11-01

    Handling 3-dimensional reconstructions of computed tomographic scans on portable devices is problematic because of the size of the Digital Imaging and Communications in Medicine (DICOM) stacks. The authors provide a user-friendly method allowing the production, transfer, and sharing of good-quality 3-dimensional reconstructions on smartphones and tablets. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  1. An overview of contemporary nuclear cardiology.

    PubMed

    Lewin, Howard C; Sciammarella, Maria G; Watters, Thomas A; Alexander, Herbert G

    2004-01-01

    Myocardial perfusion single photon emission computed tomography (SPECT) is a widely utilized noninvasive imaging modality for the diagnosis, prognosis, and risk stratification of coronary artery disease. It is clearly superior to the traditional planar technique in terms of imaging contrast and consequent diagnostic and prognostic yield. The strength of SPECT images is largely derived from the three-dimensional, volumetric nature of its image. Thus, this modality permits three-dimensional assessment and quantitation of the perfused myocardium and functional assessment through electrocardiographic gating of the perfusion images.

  2. Combined single photon emission computerized tomography and conventional computerized tomography: Clinical value for the shoulder surgeons?

    PubMed Central

    Hirschmann, Michael T.; Schmid, Rahel; Dhawan, Ranju; Skarvan, Jiri; Rasch, Helmut; Friederich, Niklaus F.; Emery, Roger

    2011-01-01

    With the cases described, we strive to introduce single photon emission computerized tomography in combination with conventional computer tomography (SPECT/CT) to shoulder surgeons, illustrate the possible clinical value it may offer as new diagnostic radiologic modality, and discuss its limitations. SPECT/CT may facilitate the establishment of diagnosis, process of decision making, and further treatment for complex shoulder pathologies. Some of these advantages were highlighted in cases that are frequently seen in most shoulder clinics. PMID:22058640

  3. Utility of cervical spinal and abdominal computed tomography in diagnosing occult pneumothorax in patients with blunt trauma: Computed tomographic imaging protocol matters.

    PubMed

    Akoglu, Haldun; Akoglu, Ebru Unal; Evman, Serdar; Akoglu, Tayfun; Denizbasi, Arzu; Guneysel, Ozlem; Onur, Ozge; Onur, Ender

    2012-10-01

    Small pneumothoraces (PXs), which are not initially recognized with a chest x-ray film and diagnosed by a thoracic computed tomography (CT), are described as occult PX (OCPX). The objective of this study was to evaluate cervival spine (C-spine) and abdominal CT (ACT) for diagnosing OCPX and overt PX (OVPX). All patients with blunt trauma who presented consecutively to the emergency department during a 26-months period were included. Among all the chest CTs (CCTs) (6,155 patients) conducted during that period, 254 scans were confirmed to have a true PX. The findings in their C-spine CT and ACT were compared with the findings in CCTs. Among these patients, 254 had a diagnosis of PX confirmed with CCT. OCPXs were identified on the chest computed tomographic scan of 128 patients (70.3%), whereas OVPXs were evident in 54 patients (29.7%). Computed tomographic imaging of the C-spine was performed in 74% of patients with OCPX and 66.7% of patients with OVPX trauma. Only 45 (35.2%) cases of OCPX and 42 (77.8%) cases of OVPX were detected by C-spine CT. ACT was performed in almost all patients, and 121 (95.3%) of 127 of these correctly identified an existing OCPX. Sensitivity of C-spine CT and ACT was 35.1% and 96.5%, respectively; specificity was 100% and 100%, respectively. Almost all OCPXs, regardless of intrathoracic location, could be detected by ACT or by combining C-spine and abdominal computed tomographic screening for patients. If the junction of the first and second vertebra is used as the caudad extent, C-spine CT does not have sufficient power to diagnose more than a third of the cases. Diagnostic study, level III.

  4. vECTlab—A fully integrated multi-modality Monte Carlo simulation framework for the radiological imaging sciences

    NASA Astrophysics Data System (ADS)

    Peter, Jörg; Semmler, Wolfhard

    2007-10-01

    Alongside and in part motivated by recent advances in molecular diagnostics, the development of dual-modality instruments for patient and dedicated small animal imaging has gained attention by diverse research groups. The desire for such systems is high not only to link molecular or functional information with the anatomical structures, but also for detecting multiple molecular events simultaneously at shorter total acquisition times. While PET and SPECT have been integrated successfully with X-ray CT, the advance of optical imaging approaches (OT) and the integration thereof into existing modalities carry a high application potential, particularly for imaging small animals. A multi-modality Monte Carlo (MC) simulation approach at present has been developed that is able to trace high-energy (keV) as well as optical (eV) photons concurrently within identical phantom representation models. We show that the involved two approaches for ray-tracing keV and eV photons can be integrated into a unique simulation framework which enables both photon classes to be propagated through various geometry models representing both phantoms and scanners. The main advantage of such integrated framework for our specific application is the investigation of novel tomographic multi-modality instrumentation intended for in vivo small animal imaging through time-resolved MC simulation upon identical phantom geometries. Design examples are provided for recently proposed SPECT-OT and PET-OT imaging systems.

  5. Correlation of Tc-99 m ethyl cysteinate dimer single-photon emission computed tomography and clinical presentations in patients with low cobalamin status.

    PubMed

    Tu, Min-Chien; Lo, Chung-Ping; Chen, Ching-Yuan; Huang, Ching-Feng

    2015-12-03

    Cobalamin (Cbl) deficiency has been associated with various neuropsychiatric symptoms of different severities. While some studies dedicated in structural neuroimaging credibly address negative impact of low Cbl status, functional imaging reports are limited. We herein retrospectively review the correlation of Tc-99 m ethyl cysteinate dimer single-photon emission computed tomography (Tc-99 m-ECD SPECT) and clinical presentations among patients with low serum cobalamin (Cbl) status (<250 pg/ml). Twelve symptomatic patients with low serum Cbl status were enrolled. Clinical presentations, Tc-99 m-ECD SPECT, and neuropsychological tests were reviewed. Dysexecutive syndrome (67 %), forgetfulness (50 %), attention deficits (42 %), and sleep disorders (33 %) constituted the major clinical presentations. All patients (100 %) had temporal hypoperfusion on the Tc-99 m-ECD SPECT. Five patients (42 %) had hypoperfusion restricted within temporal regions and deep nuclei; seven patients (58 %) had additional frontal hypoperfusion. In patients with hypoperfusion restricted within temporal regions and deep nuclei, psychiatric symptoms with spared cognition were their main presentations. Among patients with additional frontal hypoperfusion, six of seven patients (86 %) showed impaired cognitive performances (two of them were diagnosed as having dementia). Among ten patients who finished neuropsychological tests, abstract thinking (70 %) was the most commonly affected, followed by verbal fluency (60 %), short-term memory (50 %), and attention (50 %). Anxiety and sleep problems were the major clinically remarkable psychiatric features (33 % both). Four Tc-99 m-ECD SPECT follow-up studies were available; the degree and extent of signal reversal correlated with cognitive changes after Cbl replacement therapy. Our TC-99 m-ECD SPECT observations provide pivotal information of neurobiological changes within basal ganglia and fronto-temporal regions in conjunction with disease severity among patients with Cbl deficiency. Hypoperfusion within thalamus/basal ganglia and temporal regions may be seen in the earlier state of Cbl deficiency, when psychiatric symptoms predominate. Hypoperfusion beyond thalamus/basal ganglia and involving frontal regions appears when cognitive problems, mostly dysexecutive syndrome, are manifested. Symmetric hypofrontality of SPECT in the context of dysexcutive syndrome serves as a distinguishing feature of non-amnestic mild cognitive impairment attributed to Cbl deficiency. Concordant with TC-99 m-ECD SPECT findings, the psychiatric symptoms and dysexcutive syndrome undergird impaired limbic and dorsolateral prefrontal circuits originating from basal ganglia respectively.

  6. Tuning the cache memory usage in tomographic reconstruction on standard computers with Advanced Vector eXtensions (AVX)

    PubMed Central

    Agulleiro, Jose-Ignacio; Fernandez, Jose-Jesus

    2015-01-01

    Cache blocking is a technique widely used in scientific computing to minimize the exchange of information with main memory by reusing the data kept in cache memory. In tomographic reconstruction on standard computers using vector instructions, cache blocking turns out to be central to optimize performance. To this end, sinograms of the tilt-series and slices of the volumes to be reconstructed have to be divided into small blocks that fit into the different levels of cache memory. The code is then reorganized so as to operate with a block as much as possible before proceeding with another one. This data article is related to the research article titled Tomo3D 2.0 – Exploitation of Advanced Vector eXtensions (AVX) for 3D reconstruction (Agulleiro and Fernandez, 2015) [1]. Here we present data of a thorough study of the performance of tomographic reconstruction by varying cache block sizes, which allows derivation of expressions for their automatic quasi-optimal tuning. PMID:26217710

  7. Tuning the cache memory usage in tomographic reconstruction on standard computers with Advanced Vector eXtensions (AVX).

    PubMed

    Agulleiro, Jose-Ignacio; Fernandez, Jose-Jesus

    2015-06-01

    Cache blocking is a technique widely used in scientific computing to minimize the exchange of information with main memory by reusing the data kept in cache memory. In tomographic reconstruction on standard computers using vector instructions, cache blocking turns out to be central to optimize performance. To this end, sinograms of the tilt-series and slices of the volumes to be reconstructed have to be divided into small blocks that fit into the different levels of cache memory. The code is then reorganized so as to operate with a block as much as possible before proceeding with another one. This data article is related to the research article titled Tomo3D 2.0 - Exploitation of Advanced Vector eXtensions (AVX) for 3D reconstruction (Agulleiro and Fernandez, 2015) [1]. Here we present data of a thorough study of the performance of tomographic reconstruction by varying cache block sizes, which allows derivation of expressions for their automatic quasi-optimal tuning.

  8. Nanoparticles and Radiotracers: Advances toward Radio-Nanomedicine

    PubMed Central

    Pratt, Edwin C.; Shaffer, Travis M.; Grimm, Jan

    2016-01-01

    Here, we cover the convergence of radiochemistry for imaging and therapy with advances in nanoparticle (NP) design for biomedical applications. We first explore NP properties relevant for therapy and theranostics and emphasize the need for biocompatibility. We then explore radionuclide-imaging modalities such as Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT), and Cerenkov Luminescence (CL) with examples utilizing radiolabeled NP for imaging. PET and SPECT have served as diagnostic workhorses in the clinic, while preclinical NP design examples of multimodal imaging with radiotracers show promise in imaging and therapy. CL expands the types of radionuclides beyond PET and SPECT tracers to include high-energy electrons (β−) for imaging purposes. These advances in radionanomedicine will be discussed, showing the potential for radiolabeled NPs as theranostic agents. PMID:27006133

  9. A line-source method for aligning on-board and other pinhole SPECT systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Susu; Bowsher, James; Yin, Fang-Fang

    2013-12-15

    Purpose: In order to achieve functional and molecular imaging as patients are in position for radiation therapy, a robotic multipinhole SPECT system is being developed. Alignment of the SPECT system—to the linear accelerator (LINAC) coordinate frame and to the coordinate frames of other on-board imaging systems such as cone-beam CT (CBCT)—is essential for target localization and image reconstruction. An alignment method that utilizes line sources and one pinhole projection is proposed and investigated to achieve this goal. Potentially, this method could also be applied to the calibration of the other pinhole SPECT systems.Methods: An alignment model consisting of multiple alignmentmore » parameters was developed which maps line sources in three-dimensional (3D) space to their two-dimensional (2D) projections on the SPECT detector. In a computer-simulation study, 3D coordinates of line-sources were defined in a reference room coordinate frame, such as the LINAC coordinate frame. Corresponding 2D line-source projections were generated by computer simulation that included SPECT blurring and noise effects. The Radon transform was utilized to detect angles (α) and offsets (ρ) of the line-source projections. Alignment parameters were then estimated by a nonlinear least squares method, based on the α and ρ values and the alignment model. Alignment performance was evaluated as a function of number of line sources, Radon transform accuracy, finite line-source width, intrinsic camera resolution, Poisson noise, and acquisition geometry. Experimental evaluations were performed using a physical line-source phantom and a pinhole-collimated gamma camera attached to a robot.Results: In computer-simulation studies, when there was no error in determining angles (α) and offsets (ρ) of the measured projections, six alignment parameters (three translational and three rotational) were estimated perfectly using three line sources. When angles (α) and offsets (ρ) were provided by the Radon transform, estimation accuracy was reduced. The estimation error was associated with rounding errors of Radon transform, finite line-source width, Poisson noise, number of line sources, intrinsic camera resolution, and detector acquisition geometry. Statistically, the estimation accuracy was significantly improved by using four line sources rather than three and by thinner line-source projections (obtained by better intrinsic detector resolution). With five line sources, median errors were 0.2 mm for the detector translations, 0.7 mm for the detector radius of rotation, and less than 0.5° for detector rotation, tilt, and twist. In experimental evaluations, average errors relative to a different, independent registration technique were about 1.8 mm for detector translations, 1.1 mm for the detector radius of rotation (ROR), 0.5° and 0.4° for detector rotation and tilt, respectively, and 1.2° for detector twist.Conclusions: Alignment parameters can be estimated using one pinhole projection of line sources. Alignment errors are largely associated with limited accuracy of the Radon transform in determining angles (α) and offsets (ρ) of the line-source projections. This alignment method may be important for multipinhole SPECT, where relative pinhole alignment may vary during rotation. For pinhole and multipinhole SPECT imaging on-board radiation therapy machines, the method could provide alignment of SPECT coordinates with those of CBCT and the LINAC.« less

  10. A line-source method for aligning on-board and other pinhole SPECT systems

    PubMed Central

    Yan, Susu; Bowsher, James; Yin, Fang-Fang

    2013-01-01

    Purpose: In order to achieve functional and molecular imaging as patients are in position for radiation therapy, a robotic multipinhole SPECT system is being developed. Alignment of the SPECT system—to the linear accelerator (LINAC) coordinate frame and to the coordinate frames of other on-board imaging systems such as cone-beam CT (CBCT)—is essential for target localization and image reconstruction. An alignment method that utilizes line sources and one pinhole projection is proposed and investigated to achieve this goal. Potentially, this method could also be applied to the calibration of the other pinhole SPECT systems. Methods: An alignment model consisting of multiple alignment parameters was developed which maps line sources in three-dimensional (3D) space to their two-dimensional (2D) projections on the SPECT detector. In a computer-simulation study, 3D coordinates of line-sources were defined in a reference room coordinate frame, such as the LINAC coordinate frame. Corresponding 2D line-source projections were generated by computer simulation that included SPECT blurring and noise effects. The Radon transform was utilized to detect angles (α) and offsets (ρ) of the line-source projections. Alignment parameters were then estimated by a nonlinear least squares method, based on the α and ρ values and the alignment model. Alignment performance was evaluated as a function of number of line sources, Radon transform accuracy, finite line-source width, intrinsic camera resolution, Poisson noise, and acquisition geometry. Experimental evaluations were performed using a physical line-source phantom and a pinhole-collimated gamma camera attached to a robot. Results: In computer-simulation studies, when there was no error in determining angles (α) and offsets (ρ) of the measured projections, six alignment parameters (three translational and three rotational) were estimated perfectly using three line sources. When angles (α) and offsets (ρ) were provided by the Radon transform, estimation accuracy was reduced. The estimation error was associated with rounding errors of Radon transform, finite line-source width, Poisson noise, number of line sources, intrinsic camera resolution, and detector acquisition geometry. Statistically, the estimation accuracy was significantly improved by using four line sources rather than three and by thinner line-source projections (obtained by better intrinsic detector resolution). With five line sources, median errors were 0.2 mm for the detector translations, 0.7 mm for the detector radius of rotation, and less than 0.5° for detector rotation, tilt, and twist. In experimental evaluations, average errors relative to a different, independent registration technique were about 1.8 mm for detector translations, 1.1 mm for the detector radius of rotation (ROR), 0.5° and 0.4° for detector rotation and tilt, respectively, and 1.2° for detector twist. Conclusions: Alignment parameters can be estimated using one pinhole projection of line sources. Alignment errors are largely associated with limited accuracy of the Radon transform in determining angles (α) and offsets (ρ) of the line-source projections. This alignment method may be important for multipinhole SPECT, where relative pinhole alignment may vary during rotation. For pinhole and multipinhole SPECT imaging on-board radiation therapy machines, the method could provide alignment of SPECT coordinates with those of CBCT and the LINAC. PMID:24320537

  11. A line-source method for aligning on-board and other pinhole SPECT systems.

    PubMed

    Yan, Susu; Bowsher, James; Yin, Fang-Fang

    2013-12-01

    In order to achieve functional and molecular imaging as patients are in position for radiation therapy, a robotic multipinhole SPECT system is being developed. Alignment of the SPECT system-to the linear accelerator (LINAC) coordinate frame and to the coordinate frames of other on-board imaging systems such as cone-beam CT (CBCT)-is essential for target localization and image reconstruction. An alignment method that utilizes line sources and one pinhole projection is proposed and investigated to achieve this goal. Potentially, this method could also be applied to the calibration of the other pinhole SPECT systems. An alignment model consisting of multiple alignment parameters was developed which maps line sources in three-dimensional (3D) space to their two-dimensional (2D) projections on the SPECT detector. In a computer-simulation study, 3D coordinates of line-sources were defined in a reference room coordinate frame, such as the LINAC coordinate frame. Corresponding 2D line-source projections were generated by computer simulation that included SPECT blurring and noise effects. The Radon transform was utilized to detect angles (α) and offsets (ρ) of the line-source projections. Alignment parameters were then estimated by a nonlinear least squares method, based on the α and ρ values and the alignment model. Alignment performance was evaluated as a function of number of line sources, Radon transform accuracy, finite line-source width, intrinsic camera resolution, Poisson noise, and acquisition geometry. Experimental evaluations were performed using a physical line-source phantom and a pinhole-collimated gamma camera attached to a robot. In computer-simulation studies, when there was no error in determining angles (α) and offsets (ρ) of the measured projections, six alignment parameters (three translational and three rotational) were estimated perfectly using three line sources. When angles (α) and offsets (ρ) were provided by the Radon transform, estimation accuracy was reduced. The estimation error was associated with rounding errors of Radon transform, finite line-source width, Poisson noise, number of line sources, intrinsic camera resolution, and detector acquisition geometry. Statistically, the estimation accuracy was significantly improved by using four line sources rather than three and by thinner line-source projections (obtained by better intrinsic detector resolution). With five line sources, median errors were 0.2 mm for the detector translations, 0.7 mm for the detector radius of rotation, and less than 0.5° for detector rotation, tilt, and twist. In experimental evaluations, average errors relative to a different, independent registration technique were about 1.8 mm for detector translations, 1.1 mm for the detector radius of rotation (ROR), 0.5° and 0.4° for detector rotation and tilt, respectively, and 1.2° for detector twist. Alignment parameters can be estimated using one pinhole projection of line sources. Alignment errors are largely associated with limited accuracy of the Radon transform in determining angles (α) and offsets (ρ) of the line-source projections. This alignment method may be important for multipinhole SPECT, where relative pinhole alignment may vary during rotation. For pinhole and multipinhole SPECT imaging on-board radiation therapy machines, the method could provide alignment of SPECT coordinates with those of CBCT and the LINAC.

  12. Dipyridamole stress myocardial perfusion by computed tomography in patients with left bundle branch block.

    PubMed

    Cabeda, Estêvan Vieira; Falcão, Andréa Maria Gomes; Soares, José; Rochitte, Carlos Eduardo; Nomura, César Higa; Ávila, Luiz Francisco Rodrigues; Parga, José Rodrigues

    2015-12-01

    Functional tests have limited accuracy for identifying myocardial ischemia in patients with left bundle branch block (LBBB). To assess the diagnostic accuracy of dipyridamole-stress myocardial computed tomography perfusion (CTP) by 320-detector CT in patients with LBBB using invasive quantitative coronary angiography (QCA) (stenosis ≥ 70%) as reference; to investigate the advantage of adding CTP to coronary computed tomography angiography (CTA) and compare the results with those of single photon emission computed tomography (SPECT) myocardial perfusion scintigraphy. Thirty patients with LBBB who had undergone SPECT for the investigation of coronary artery disease were referred for stress tomography. Independent examiners performed per-patient and per-coronary territory assessments. All patients gave written informed consent to participate in the study that was approved by the institution's ethics committee. The patients' mean age was 62 ± 10 years. The mean dose of radiation for the tomography protocol was 9.3 ± 4.6 mSv. With regard to CTP, the per-patient values for sensitivity, specificity, positive and negative predictive values, and accuracy were 86%, 81%, 80%, 87%, and 83%, respectively (p = 0.001). The per-territory values were 63%, 86%, 65%, 84%, and 79%, respectively (p < 0.001). In both analyses, the addition of CTP to CTA achieved higher diagnostic accuracy for detecting myocardial ischemia than SPECT (p < 0.001). The use of the stress tomography protocol is feasible and has good diagnostic accuracy for assessing myocardial ischemia in patients with LBBB.

  13. Safety and biodistribution of 111In-amatuximab in patients with mesothelin expressing cancers using Single Photon Emission Computed Tomography-Computed Tomography (SPECT-CT) imaging

    PubMed Central

    Adler, Stephen; Mena, Esther; Kurdziel, Karen; Maltzman, Julia; Wallin, Bruce; Hoffman, Kimberly; Pastan, Ira; Paik, Chang Hum; Choyke, Peter; Hassan, Raffit

    2015-01-01

    Amatuximab is a chimeric high-affinity monoclonal IgG1/k antibody targeting mesothelin that is being developed for treatment of mesothelin-expressing cancers. Considering the ongoing clinical development of amatuximab in these cancers, our objective was to characterize the biodistribution, and dosimetry of 111Indium (111In) radiolabelled amatuximab in mesothelin-expressing cancers. Between October 2011 and February 2013, six patients including four with malignant mesothelioma and two with pancreatic adenocarcinoma underwent Single Photon Emission Computed Tomography-Computed Tomography (SPECT/CT) imaging following administration of 111In amatuximab. SPECT/CT images were obtained at 2–4 hours, 24–48 hours and 96–168 hours after radiotracer injection. In all patients, tumor to background ratios (TBR) consistently met or exceeded an uptake of 1.2 (range 1.2–62.0) which is considered the minimum TBR that can be visualized. TBRs were higher in tumors of patients with mesothelioma than pancreatic adenocarcinoma. 111In-amatuximab uptake was noted in both primary tumors and metastatic sites. The radiotracer dose was generally well-tolerated and demonstrated physiologic uptake in the heart, liver, kidneys and spleen. This is the first study to show tumor localization of an anti-mesothelin antibody in humans. Our results show that 111In-amatuximab was well tolerated with a favorable dosimetry profile. It localizes to mesothelin expressing cancers with a higher uptake in mesothelioma than pancreatic cancer. PMID:25756664

  14. Reciprocating vs Rotary Instrumentation in Pediatric Endodontics: Cone Beam Computed Tomographic Analysis of Deciduous Root Canals using Two Single-file Systems.

    PubMed

    Prabhakar, Attiguppe R; Yavagal, Chandrashekar; Dixit, Kratika; Naik, Saraswathi V

    2016-01-01

    Primary root canals are considered to be most challenging due to their complex anatomy. "Wave one" and "one shape" are single-file systems with reciprocating and rotary motion respectively. The aim of this study was to evaluate and compare dentin thickness, centering ability, canal transportation, and instrumentation time of wave one and one shape files in primary root canals using a cone beam computed tomographic (CBCT) analysis. This is an experimental, in vitro study comparing the two groups. A total of 24 extracted human primary teeth with minimum 7 mm root length were included in the study. Cone beam computed tomographic images were taken before and after the instrumentation for each group. Dentin thickness, centering ability, canal transportation, and instrumentation times were evaluated for each group. A significant difference was found in instrumentation time and canal transportation measures between the two groups. Wave one showed less canal transportation as compared with one shape, and the mean instrumentation time of wave one was significantly less than one shape. Reciprocating single-file systems was found to be faster with much less procedural errors and can hence be recommended for shaping the root canals of primary teeth. How to cite this article: Prabhakar AR, Yavagal C, Dixit K, Naik SV. Reciprocating vs Rotary Instrumentation in Pediatric Endodontics: Cone Beam Computed Tomographic Analysis of Deciduous Root Canals using Two Single-File Systems. Int J Clin Pediatr Dent 2016;9(1):45-49.

  15. Computed tomographic-based quantification of emphysema and correlation to pulmonary function and mechanics.

    PubMed

    Washko, George R; Criner, Gerald J; Mohsenifar, Zab; Sciurba, Frank C; Sharafkhaneh, Amir; Make, Barry J; Hoffman, Eric A; Reilly, John J

    2008-06-01

    Computed tomographic based indices of emphysematous lung destruction may highlight differences in disease pathogenesis and further enable the classification of subjects with Chronic Obstructive Pulmonary Disease. While there are multiple techniques that can be utilized for such radiographic analysis, there is very little published information comparing the performance of these methods in a clinical case series. Our objective was to examine several quantitative and semi-quantitative methods for the assessment of the burden of emphysema apparent on computed tomographic scans and compare their ability to predict lung mechanics and function. Automated densitometric analysis was performed on 1094 computed tomographic scans collected upon enrollment into the National Emphysema Treatment Trial. Trained radiologists performed an additional visual grading of emphysema on high resolution CT scans. Full pulmonary function test results were available for correlation, with a subset of subjects having additional measurements of lung static recoil. There was a wide range of emphysematous lung destruction apparent on the CT scans and univariate correlations to measures of lung function were of modest strength. No single method of CT scan analysis clearly outperformed the rest of the group. Quantification of the burden of emphysematous lung destruction apparent on CT scan is a weak predictor of lung function and mechanics in severe COPD with no uniformly superior method found to perform this analysis. The CT based quantification of emphysema may augment pulmonary function testing in the characterization of COPD by providing complementary phenotypic information.

  16. SPECT bone scintigraphy for the assessment of condylar growth activity in mandibular asymmetry: is it accurate?

    PubMed

    Chan, B H; Leung, Y Y

    2018-04-01

    The comparison of serial radiographs and clinical photographs is considered the current accepted standard for the diagnosis of active condylar hyperplasia in patients with facial asymmetry. Single photon emission computed tomography (SPECT) has recently been proposed as an alternative method. SPECT can be interpreted using three reported methods absolute difference in uptake, uptake ratio, and relative uptake. SPECT findings were compared to those from serial comparisons of radiographs and clinical photographs taken at the time of SPECT and a year later; the sensitivities and specificities were determined. Two hundred patient scans were evaluated. Thirty-four patients showed active growth on serial growth assessment. On comparison with serial growth assessment, the sensitivity and specificity of the three methods ranged between 32.4% and 67.6%, and 36.1% and 78.3%, respectively. Analysis using receiver operating characteristic (ROC) curves revealed area under the curve (AUC) values of <0.58. The average age (mean±standard deviation) of patients with active growth was 18.6±2.8 years, and average growth in the anteroposterior, vertical, and transverse directions was 0.94±0.91mm, 0.88±0.86mm, and 1.4±0.66 mm, respectively. With such low sensitivity and specificity values, it is not justifiable to use SPECT in place of serial growth assessment for the determination of condylar growth status. Copyright © 2017 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  17. Use Of Clinical Decision Analysis In Predicting The Efficacy Of Newer Radiological Imaging Modalities: Radioscintigraphy Versus Single Photon Transverse Section Emission Computed Tomography

    NASA Astrophysics Data System (ADS)

    Prince, John R.

    1982-12-01

    Sensitivity, specificity, and predictive accuracy have been shown to be useful measures of the clinical efficacy of diagnostic tests and can be used to predict the potential improvement in diagnostic certitude resulting from the introduction of a competing technology. This communication demonstrates how the informal use of clinical decision analysis may guide health planners in the allocation of resources, purchasing decisions, and implementation of high technology. For didactic purposes the focus is on a comparison between conventional planar radioscintigraphy (RS) and single photon transverse section emission conputed tomography (SPECT). For example, positive predictive accuracy (PPA) for brain RS in a specialist hospital with a 50% disease prevalance is about 95%. SPECT should increase this predicted accuracy to 96%. In a primary care hospital with only a 15% disease prevalance the PPA is only 77% and SPECT may increase this accuracy to about 79%. Similar calculations based on published data show that marginal improvements are expected with SPECT in the liver. It is concluded that: a) The decision to purchase a high technology imaging modality such as SPECT for clinical purposes should be analyzed on an individual organ system and institutional basis. High technology may be justified in specialist hospitals but not necessarily in primary care hospitals. This is more dependent on disease prevalance than procedure volume; b) It is questionable whether SPECT imaging will be competitive with standard RS procedures. Research should concentrate on the development of different medical applications.

  18. Integration of SimSET photon history generator in GATE for efficient Monte Carlo simulations of pinhole SPECT.

    PubMed

    Chen, Chia-Lin; Wang, Yuchuan; Lee, Jason J S; Tsui, Benjamin M W

    2008-07-01

    The authors developed and validated an efficient Monte Carlo simulation (MCS) workflow to facilitate small animal pinhole SPECT imaging research. This workflow seamlessly integrates two existing MCS tools: simulation system for emission tomography (SimSET) and GEANT4 application for emission tomography (GATE). Specifically, we retained the strength of GATE in describing complex collimator/detector configurations to meet the anticipated needs for studying advanced pinhole collimation (e.g., multipinhole) geometry, while inserting the fast SimSET photon history generator (PHG) to circumvent the relatively slow GEANT4 MCS code used by GATE in simulating photon interactions inside voxelized phantoms. For validation, data generated from this new SimSET-GATE workflow were compared with those from GATE-only simulations as well as experimental measurements obtained using a commercial small animal pinhole SPECT system. Our results showed excellent agreement (e.g., in system point response functions and energy spectra) between SimSET-GATE and GATE-only simulations, and, more importantly, a significant computational speedup (up to approximately 10-fold) provided by the new workflow. Satisfactory agreement between MCS results and experimental data were also observed. In conclusion, the authors have successfully integrated SimSET photon history generator in GATE for fast and realistic pinhole SPECT simulations, which can facilitate research in, for example, the development and application of quantitative pinhole and multipinhole SPECT for small animal imaging. This integrated simulation tool can also be adapted for studying other preclinical and clinical SPECT techniques.

  19. Diagnostic utility of 99mTc-EDDA-tricine-HYNIC-Tyr3-octreotate SPECT for differentiation of active from inactive pulmonary tuberculosis.

    PubMed

    Ahmadihosseini, Hossein; Abedi, Javad; Ghodsi Rad, Mohammad A; Zakavi, Seyed R; Knoll, Peter; Mirzaei, Siroos; Sadeghi, Ramin

    2014-12-01

    The current study was performed to evaluate the impact of Tc-EDDA-tricine-HYNIC-Tyr-octreotate in the differentiation of active from inactive pulmonary tuberculosis lesions. Ten consecutive patients (six male and four female, age range 24-83 years) with proven pulmonary tuberculosis (with a positive smear or culture) were enrolled in the study. At 120 min after injection of 740 MBq of Tc-EDDA-tricine-HYNIC-Tyr-octreotate, planar and single-photon emission computed tomography (SPECT) images of the thorax were taken. A semiquantitative evaluation of lesion and nonlesion areas was performed. The scan was repeated following the same protocol after standard treatment for tuberculosis after a negative sputum culture. Semiquantitative evaluation of the lesions showed a statistically significant higher uptake before treatment in both planar and SPECT images (P=0.005 and 0.007, respectively). Lesion-to-nonlesion ratios were also higher in the pretreatment sets on both planar and SPECT images (1.4±0.2 vs. 1.19±0.15, P=0.001, for planar images and 2.32±0.55 vs. 1.32±0.32, P=0.0001, for SPECT images). Tc-EDDA-tricine-HYNIC-Tyr-octreotate scintigraphy may help to differentiate between active and inactive pulmonary tuberculosis. SPECT imaging and semiquantitative evaluation are indispensable for increasing the diagnostic yield of this method. Larger studies are needed to corroborate our results.

  20. [123I]beta-CIT SPECT visualizes dopamine transporter loss in de novo parkinsonian patients.

    PubMed

    Müller, T; Farahati, J; Kuhn, W; Eising, E G; Przuntek, H; Reiners, C; Coenen, H H

    1998-01-01

    Parkinson's disease (PD) is characterized by degeneration of dopaminergic neurons in the basal ganglia, which may be visualized by single photon emission computed tomography (SPECT) in combination with the cocaine analog methyl-3-beta-(4-beta[123I]iodophenyl)tropane-2beta-carboxylate ([123I]beta-CIT). The aim of our study was to correlate findings of SPECT with clinical data of 34 previously untreated, idiopathic parkinsonian patients [age: 59.58+/-10.03 (mean+/-SD) years; Hoehn and Yahr Scale (HYS) mean range: 1.97+/-0.83, ranges I-III; Unified PD Rating Scale 3.0 (UPDRS, 30.64+/-18.68) and 15 healthy controls (age 47.93+/-10.47 years). SPECT scans were performed with a single-head gamma-camera 24 h after intravenous injection of [123I]beta-CIT. Comparison of the striatum/cerebellum (S/C) ratio of [123I]beta-CIT uptake of controls and parkinsonian subjects, subdivided according to their HYS range, was significant. No influence of age or sex was observed. Significant correlations were found between scores of the HYS, UPDRS parts I-III, part II, part III, and the S/C ratio of [123I]-CIT uptake. Moreover, SPECT with the radiotracer [123I]beta-CIT revealed side-to-side differences in parkinsonian patients and significant associations to contralateral clinical extrapyramidal symptomatology. Our data show that SPECT with [123I]beta-CIT is a valuable tool for estimating disease severity in PD.

  1. Quantitation of benzodiazepine receptor binding with PET [11C]iomazenil and SPECT [123I]iomazenil: preliminary results of a direct comparison in healthy human subjects.

    PubMed

    Bremner, J D; Baldwin, R; Horti, A; Staib, L H; Ng, C K; Tan, P Z; Zea-Ponce, Y; Zoghbi, S; Seibyl, J P; Soufer, R; Charney, D S; Innis, R B

    1999-08-31

    Although positron emission tomography (PET) and single photon emission computed tomography (SPECT) are increasingly used for quantitation of neuroreceptor binding, almost no studies to date have involved a direct comparison of the two. One study found a high level of agreement between the two techniques, although there was a systematic 30% increase in measures of benzodiazepine receptor binding in SPECT compared with PET. The purpose of the current study was to directly compare quantitation of benzodiazepine receptor binding in the same human subjects using PET and SPECT with high specific activity [11C]iomazenil and [123I]iomazenil, respectively. All subjects were administered a single bolus of high specific activity iomazenil labeled with 11C or 123I followed by dynamic PET or SPECT imaging of the brain. Arterial blood samples were obtained for measurement of metabolite-corrected radioligand in plasma. Compartmental modeling was used to fit values for kinetic rate constants of transfer of radioligand between plasma and brain compartments. These values were used for calculation of binding potential (BP = Bmax/Kd) and product of BP and the fraction of free non-protein-bound parent compound (V3'). Mean values for V3' in PET and SPECT were as follows: temporal cortex 23+/-5 and 22+/-3 ml/g, frontal cortex23+/-6 and 22+/-3 ml/g, occipital cortex 28+/-3 and 31+/-5 ml/g, and striatum 4+/-4 and 7+/-4 ml/g. These preliminary findings indicate that PET and SPECT provide comparable results in quantitation of neuroreceptor binding in the human brain.

  2. Clinical application of 3D arterial spin-labeled brain perfusion imaging for Alzheimer disease: comparison with brain perfusion SPECT.

    PubMed

    Takahashi, H; Ishii, K; Hosokawa, C; Hyodo, T; Kashiwagi, N; Matsuki, M; Ashikaga, R; Murakami, T

    2014-05-01

    Alzheimer disease is the most common neurodegenerative disorder with dementia, and a practical and economic biomarker for diagnosis of Alzheimer disease is needed. Three-dimensional arterial spin-labeling, with its high signal-to-noise ratio, enables measurement of cerebral blood flow precisely without any extrinsic tracers. We evaluated the performance of 3D arterial spin-labeling compared with SPECT, and demonstrated the 3D arterial spin-labeled imaging characteristics in the diagnosis of Alzheimer disease. This study included 68 patients with clinically suspected Alzheimer disease who underwent both 3D arterial spin-labeling and SPECT imaging. Two readers independently assessed both images. Kendall W coefficients of concordance (K) were computed, and receiver operating characteristic analyses were performed for each reader. The differences between the images in regional perfusion distribution were evaluated by means of statistical parametric mapping, and the incidence of hypoperfusion of the cerebral watershed area, referred to as "borderzone sign" in the 3D arterial spin-labeled images, was determined. Readers showed K = 0.82/0.73 for SPECT/3D arterial spin-labeled imaging, and the respective areas under the receiver operating characteristic curve were 0.82/0.69 for reader 1 and 0.80/0.69 for reader 2. Statistical parametric mapping showed that the perisylvian and medial parieto-occipital perfusion in the arterial spin-labeled images was significantly higher than that in the SPECT images. Borderzone sign was observed on 3D arterial spin-labeling in 70% of patients misdiagnosed with Alzheimer disease. The diagnostic performance of 3D arterial spin-labeling and SPECT for Alzheimer disease was almost equivalent. Three-dimensional arterial spin-labeled imaging was more influenced by hemodynamic factors than was SPECT imaging. © 2014 by American Journal of Neuroradiology.

  3. Activity concentration measurements using a conjugate gradient (Siemens xSPECT) reconstruction algorithm in SPECT/CT.

    PubMed

    Armstrong, Ian S; Hoffmann, Sandra A

    2016-11-01

    The interest in quantitative single photon emission computer tomography (SPECT) shows potential in a number of clinical applications and now several vendors are providing software and hardware solutions to allow 'SUV-SPECT' to mirror metrics used in PET imaging. This brief technical report assesses the accuracy of activity concentration measurements using a new algorithm 'xSPECT' from Siemens Healthcare. SPECT/CT data were acquired from a uniform cylinder with 5, 10, 15 and 20 s/projection and NEMA image quality phantom with 25 s/projection. The NEMA phantom had hot spheres filled with an 8 : 1 activity concentration relative to the background compartment. Reconstructions were performed using parameters defined by manufacturer presets available with the algorithm. The accuracy of activity concentration measurements was assessed. A dose calibrator-camera cross-calibration factor (CCF) was derived from the uniform phantom data. In uniform phantom images, a positive bias was observed, ranging from ∼6% in the lower count images to ∼4% in the higher-count images. On the basis of the higher-count data, a CCF of 0.96 was derived. As expected, considerable negative bias was measured in the NEMA spheres using region mean values whereas positive bias was measured in the four largest NEMA spheres. Nonmonotonically increasing recovery curves for the hot spheres suggested the presence of Gibbs edge enhancement from resolution modelling. Sufficiently accurate activity concentration measurements can easily be measured on images reconstructed with the xSPECT algorithm without a CCF. However, the use of a CCF is likely to improve accuracy further. A manual conversion of voxel values into SUV should be possible, provided that the patient weight, injected activity and time between injection and imaging are all known accurately.

  4. Performance index: A method for quantitative evaluation of filters used in clinical SPECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Contino, J.; Touya, J.J.; Corbus, H.F.

    1984-01-01

    The purpose of this study was to design a method for optimal filter selection during the reconstruction of clinical SPECT images. Hamming, Bartlett, Parzen and Butterworth filters were evaluated at different cutoff frequencies when applied to reconstruction of the Jaszczak phantom and liver SPECTs. The phantom filled with 6 mCi of Tc-99m was imaged following 4 different protocols which varied in matrix sizes (128 x 128 or 64 x 64) and in number of steps (128 or 64). Total imaging time in the 4 protocols was 24 minutes. A total of 160 reconstructions were analyzed. Liver SPECTs from 2 patientsmore » with small metastatic lesions from colon Ca were similarly studied. An ECT Performance Index (ECT PI) was defined as the product of the contrast efficiency function (ECT C) and uniformity (ECT U). ECT C as a function of the radius was measured following Rollo's approach. ECT U was measured as the ratio between min. and max. counts per pixel in a known uniform region. ECT PI was computed on a slice through the void spheres region of the phantom. In liver SPECTs the ECT U was measured over the spleen. The most favorable ECT PI (0.35, radius 7.9 mm) was obtained with images in 128 x 128 matrices, 128 steps, processed with a Butterworth cutoff frequency of 0.19, filter order 4. When images were acquired in 64 x 64 matrices using 64 steps the ECT PI was lower and influenced to a lesser degree by both choice of filter and cutoff frequency. Results in the two liver SPECT examinations were parallel to those found in the phantom studies confirming the clinical usefulness of the ECT PI in the evaluation of filters for reconstruction of SPECT images.« less

  5. Ejection fraction in myocardial perfusion imaging assessed with a dynamic phantom: comparison between IQ-SPECT and LEHR.

    PubMed

    Hippeläinen, Eero; Mäkelä, Teemu; Kaasalainen, Touko; Kaleva, Erna

    2017-12-01

    Developments in single photon emission tomography instrumentation and reconstruction methods present a potential for decreasing acquisition times. One of such recent options for myocardial perfusion imaging (MPI) is IQ-SPECT. This study was motivated by the inconsistency in the reported ejection fraction (EF) and left ventricular (LV) volume results between IQ-SPECT and more conventional low-energy high-resolution (LEHR) collimation protocols. IQ-SPECT and LEHR quantitative results were compared while the equivalent number of iterations (EI) was varied. The end-diastolic (EDV) and end-systolic volumes (ESV) and the derived EF values were investigated. A dynamic heart phantom was used to produce repeatable ESVs, EDVs and EFs. Phantom performance was verified by comparing the set EF values to those measured from a gated multi-slice X-ray computed tomography (CT) scan (EF True ). The phantom with an EF setting of 45, 55, 65 and 70% was imaged with both IQ-SPECT and LEHR protocols. The data were reconstructed with different EI, and two commonly used clinical myocardium delineation software were used to evaluate the LV volumes. The CT verification showed that the phantom EF settings were repeatable and accurate with the EF True being within 1% point from the manufacture's nominal value. Depending on EI both MPI protocols can be made to produce correct EF estimates, but IQ-SPECT protocol produced on average 41 and 42% smaller EDV and ESV when compared to the phantom's volumes, while LEHR protocol underestimated volumes by 24 and 21%, respectively. The volume results were largely similar between the delineation methods used. The reconstruction parameters can greatly affect the volume estimates obtained from perfusion studies. IQ-SPECT produces systematically smaller LV volumes than the conventional LEHR MPI protocol. The volume estimates are also software dependent.

  6. A patient with type I CD36 deficiency whose myocardium accumulated 123I-BMIPP after 4 years.

    PubMed

    Ito, K; Sugihara, H; Tanabe, T; Zen, K; Hikosaka, T; Adachi, Y; Katoh, S; Azuma, A; Nakagawa, M

    2001-06-01

    A 73-year-old man with aortic regurgitation was examined by 123I-alpha-methyl-p-iodophenylpentadecanoic acid (BMIPP) myocardial single photon emission computed tomography (SPECT) in 1995. Myocardial accumulation was not evident on either the early or the delayed image obtained 15 minutes and 3 hours, respectively, after injecting 123I-BMIPP. Flow cytometric analysis of CD36 expression in monocytes and platelets identified a type I CD36 deficiency. The patient was hospitalized for severe heart failure in 1999. Upon admission, the cardiothoracic ratio on chest X-rays was 73%, and the left ventricular end-diastolic diameter on echocardiograms was enlarged to 77 mm. On the second day, we performed 123I-BMIPP myocardial SPECT. Myocardial accumulation was evident in the delayed, but not in the early image. We repeated 123I-BMIPP myocardial SPECT on the 10th day after admission. Myocardial accumulation was evident on both early and delayed images. 99mTc-tetrofosmin myocardial SPECT was immediately performed after 123I-BMIPP myocardial SPECT to distinguish myocardial from pooling images in the left ventricle, but, because the images from both 99Tc-tetrofosmin and 123I-BMIPP myocardial SPECT were idential, we considered that the 123I-BMIPP myocardial SPECT images reflected the actual myocardial condition. The CD36 molecule transports long-chain fatty acid (LCFA) on the myocardial membrane, but 123I-BMIPP scintigraphy does not show any myocardial accumulation in patients with type I CD36 deficiency, indicating that myocardial LCFA uptake occurs through CD36 on the human myocardial membrane. Even though our patient had type I CD36 deficiency, BMIPP was uptaken by the myocardium during heart failure, suggesting a variant pathway on the human myocardial membrane for LCFA uptake.

  7. SPECT System Optimization Against A Discrete Parameter Space

    PubMed Central

    Meng, L. J.; Li, N.

    2013-01-01

    In this paper, we present an analytical approach for optimizing the design of a static SPECT system or optimizing the sampling strategy with a variable/adaptive SPECT imaging hardware against an arbitrarily given set of system parameters. This approach has three key aspects. First, it is designed to operate over a discretized system parameter space. Second, we have introduced an artificial concept of virtual detector as the basic building block of an imaging system. With a SPECT system described as a collection of the virtual detectors, one can convert the task of system optimization into a process of finding the optimum imaging time distribution (ITD) across all virtual detectors. Thirdly, the optimization problem (finding the optimum ITD) could be solved with a block-iterative approach or other non-linear optimization algorithms. In essence, the resultant optimum ITD could provide a quantitative measure of the relative importance (or effectiveness) of the virtual detectors and help to identify the system configuration or sampling strategy that leads to an optimum imaging performance. Although we are using SPECT imaging as a platform to demonstrate the system optimization strategy, this development also provides a useful framework for system optimization problems in other modalities, such as positron emission tomography (PET) and X-ray computed tomography (CT) [1, 2]. PMID:23587609

  8. Do X-ray-occult fractures play a role in chronic pain following a whiplash injury?

    PubMed

    Hertzum-Larsen, Rasmus; Petersen, Henrik; Kasch, Helge; Bendix, Tom

    2014-08-01

    Whiplash trauma in motor vehicle accidents (MVA) may involve various painful soft tissue damages, but weeks/months later a minority of victims still suffers from various long-lasting and disabling symptoms, whiplash-associated disorders (WAD). The etiology is currently unknown, but X-ray-occult fractures may be one cause in some cases. The purpose of this prospective study was to examine the association between occult fractures, as seen on bone single photon emission computed tomography (SPECT), with neck-, head- and arm pain. An inception cohort of 107 patients presenting with acute whiplash symptoms following an MVA was invited to have a cervical SPECT shortly post injury and again 6 months later. Associations between occult fractures and pain levels at baseline, 6 and 12 months of follow-up were analyzed. Eighty-eight patients had baseline SPECT performed at median 15 days (range 3-28) post injury, but only 49 patients accepted to have the follow-up SPECT at 6 months. Abnormal SPECT, defined as minimum one area of focal uptake, was seen in 32 patients at baseline, reflecting an occult fracture. Occult fractures were not associated with pain levels, neither at baseline nor at follow-up. Occult fractures do not seem to play a role for development of chronic pain after whiplash.

  9. Image-Guided Drug Delivery with Single-Photon Emission Computed Tomography: A Review of Literature

    PubMed Central

    Chakravarty, Rubel; Hong, Hao; Cai, Weibo

    2014-01-01

    Tremendous resources are being invested all over the world for prevention, diagnosis, and treatment of various types of cancer. Successful cancer management depends on accurate diagnosis of the disease along with precise therapeutic protocol. The conventional systemic drug delivery approaches generally cannot completely remove the competent cancer cells without surpassing the toxicity limits to normal tissues. Therefore, development of efficient drug delivery systems holds prime importance in medicine and healthcare. Also, molecular imaging can play an increasingly important and revolutionizing role in disease management. Synergistic use of molecular imaging and targeted drug delivery approaches provides unique opportunities in a relatively new area called `image-guided drug delivery' (IGDD). Single-photon emission computed tomography (SPECT) is the most widely used nuclear imaging modality in clinical context and is increasingly being used to guide targeted therapeutics. The innovations in material science have fueled the development of efficient drug carriers based on, polymers, liposomes, micelles, dendrimers, microparticles, nanoparticles, etc. Efficient utilization of these drug carriers along with SPECT imaging technology have the potential to transform patient care by personalizing therapy to the individual patient, lessening the invasiveness of conventional treatment procedures and rapidly monitoring the therapeutic efficacy. SPECT-IGDD is not only effective for treatment of cancer but might also find utility in management of several other diseases. Herein, we provide a concise overview of the latest advances in SPECT-IGDD procedures and discuss the challenges and opportunities for advancement of the field. PMID:25182469

  10. Ventilation/perfusion SPECT/CT in patients with pulmonary emphysema. Evaluation of software-based analysing.

    PubMed

    Schreiter, V; Steffen, I; Huebner, H; Bredow, J; Heimann, U; Kroencke, T J; Poellinger, A; Doellinger, F; Buchert, R; Hamm, B; Brenner, W; Schreiter, N F

    2015-01-01

    The purpose of this study was to evaluate the reproducibility of a new software based analysing system for ventilation/perfusion single-photon emission computed tomography/computed tomography (V/P SPECT/CT) in patients with pulmonary emphysema and to compare it to the visual interpretation. 19 patients (mean age: 68.1 years) with pulmonary emphysema who underwent V/P SPECT/CT were included. Data were analysed by two independent observers in visual interpretation (VI) and by software based analysis system (SBAS). SBAS PMOD version 3.4 (Technologies Ltd, Zurich, Switzerland) was used to assess counts and volume per lung lobe/per lung and to calculate the count density per lung, lobe ratio of counts and ratio of count density. VI was performed using a visual scale to assess the mean counts per lung lobe. Interobserver variability and association for SBAS and VI were analysed using Spearman's rho correlation coefficient. Interobserver agreement correlated highly in perfusion (rho: 0.982, 0.957, 0.90, 0.979) and ventilation (rho: 0.972, 0.924, 0.941, 0.936) for count/count density per lobe and ratio of counts/count density in SBAS. Interobserver agreement correlated clearly for perfusion (rho: 0.655) and weakly for ventilation (rho: 0.458) in VI. SBAS provides more reproducible measures than VI for the relative tracer uptake in V/P SPECT/CTs in patients with pulmonary emphysema. However, SBAS has to be improved for routine clinical use.

  11. Concordance between (99m)Tc-ECD SPECT and 18F-FDG PET interpretations in patients with cognitive disorders diagnosed according to NIA-AA criteria.

    PubMed

    Ito, Kimiteru; Shimano, Yasumasa; Imabayashi, Etsuko; Nakata, Yasuhiro; Omachi, Yoshie; Sato, Noriko; Arima, Kunimasa; Matsuda, Hiroshi

    2014-10-01

    The purpose of this study was to clarify the concordance of diagnostic abilities and interobserver agreement between 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) and brain perfusion single photon-emission computed tomography (SPECT) in patients with Alzheimer's disease (AD) who were diagnosed according to the research criteria of the National Institute of Aging-Alzheimer's Association Workshop. Fifty-five patients with "AD and mild cognitive impairment (MCI)" (n = 40) and "non-AD" (n = 15) were evaluated with 18F-FDG PET and (99m)Tc-ethyl cysteinate dimer (ECD) SPECT during an 8-week period. Three radiologists independently graded the regional uptake in the frontal, temporal, parietal, and occipital lobes as well as the precuneus/posterior cingulate cortex in both images. Kappa values were used to determine the interobserver reliability regarding regional uptake. The regions with better interobserver reliability between 18F-FDG PET and (99m)Tc-ECD SPECT were the frontal, parietal, and temporal lobes. The (99m)Tc-ECD SPECT agreement in the occipital lobes was not significant. The frontal, temporal, and parietal lobes showed good correlations between 18F-FDG PET and (99m)Tc-ECD SPECT in the degree of uptake, but the occipital lobe and precuneus/posterior cingulate cortex did not show good correlations. The diagnostic accuracy rates of "AD and MCI" ranged from 60% to 70% in both of the techniques. The degree of uptake on 18F-FDG PET and (99m)Tc-ECD SPECT showed significant correlations in the frontal, temporal, and parietal lobes. The diagnostic abilities of 18F-FDG PET and (99m)Tc-ECD SPECT for "AD and MCI," when diagnosed according to the National Institute of Aging-Alzheimer's Association Workshop criteria, were nearly identical. Copyright © 2014 John Wiley & Sons, Ltd.

  12. HaNDL syndrome: Correlation between focal deficits topography and EEG or SPECT abnormalities in a series of 5 new cases.

    PubMed

    Barón, J; Mulero, P; Pedraza, M I; Gamazo, C; de la Cruz, C; Ruiz, M; Ayuso, M; Cebrián, M C; García-Talavera, P; Marco, J; Guerrero, A L

    2016-06-01

    Transient headache and neurological deficits with cerebrospinal fluid lymphocytosis (HaNDL) is characterised by migraine-like headache episodes accompanied by neurological deficits consisting of motor, sensory, or aphasic symptoms. Electroencephalogram (EEG) and single photon emission computed tomography (SPECT) may show focal abnormalities that correspond to the neurological deficits. We aim to evaluate the correlation between focal deficit topography and EEG or SPECT abnormalities in 5 new cases. We retrospectively reviewed patients attended in a tertiary hospital (January 2010-May 2014) and identified 5 patients (3 men, 2 women) with a mean age of 30.6 ± 7.7 (21-39) years. They presented 3.4 ± 2.6 episodes of headache (range, 2-8) of moderate to severe intensity and transient neurological deficits over a maximum of 5 weeks. Pleocytosis was detected in CSF in all cases (70 to 312 cells/mm3, 96.5-100% lymphocytes) with negative results from aetiological studies. At least one EEG was performed in 4 patients and SPECT in 3 patients. Patient 1: 8 episodes; 4 left hemisphere, 3 right hemisphere, and 1 brainstem; 2 EEGs showing left temporal and bilateral temporal slowing; normal SPECT. Patient 2: 2 episodes, left hemisphere and right hemisphere; SPECT showed decreased left temporal blood flow. Patient 3: 3 left hemisphere deficits; EEG with bilateral frontal and temporal slowing. Patient 4: 2 episodes with right parieto-occipital topography and right frontal slowing in EEG. Patient 5: 2 episodes, right hemisphere and left hemisphere, EEG with right temporal slowing; normal SPECT. The neurological deficits accompanying headache in HaNDL demonstrate marked clinical heterogeneity. SPECT abnormalities and most of all EEG abnormalities were not uncommon in our series and they did not always correlate to the topography of focal déficits. Copyright © 2014 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  13. Parallel Computing for the Computed-Tomography Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon

    2008-01-01

    This software computes the tomographic reconstruction of spatial-spectral data from raw detector images of the Computed-Tomography Imaging Spectrometer (CTIS), which enables transient-level, multi-spectral imaging by capturing spatial and spectral information in a single snapshot.

  14. Clinical evaluation of reducing acquisition time on single-photon emission computed tomography image quality using proprietary resolution recovery software.

    PubMed

    Aldridge, Matthew D; Waddington, Wendy W; Dickson, John C; Prakash, Vineet; Ell, Peter J; Bomanji, Jamshed B

    2013-11-01

    A three-dimensional model-based resolution recovery (RR) reconstruction algorithm that compensates for collimator-detector response, resulting in an improvement in reconstructed spatial resolution and signal-to-noise ratio of single-photon emission computed tomography (SPECT) images, was tested. The software is said to retain image quality even with reduced acquisition time. Clinically, any improvement in patient throughput without loss of quality is to be welcomed. Furthermore, future restrictions in radiotracer supplies may add value to this type of data analysis. The aims of this study were to assess improvement in image quality using the software and to evaluate the potential of performing reduced time acquisitions for bone and parathyroid SPECT applications. Data acquisition was performed using the local standard SPECT/CT protocols for 99mTc-hydroxymethylene diphosphonate bone and 99mTc-methoxyisobutylisonitrile parathyroid SPECT imaging. The principal modification applied was the acquisition of an eight-frame gated data set acquired using an ECG simulator with a fixed signal as the trigger. This had the effect of partitioning the data such that the effect of reduced time acquisitions could be assessed without conferring additional scanning time on the patient. The set of summed data sets was then independently reconstructed using the RR software to permit a blinded assessment of the effect of acquired counts upon reconstructed image quality as adjudged by three experienced observers. Data sets reconstructed with the RR software were compared with the local standard processing protocols; filtered back-projection and ordered-subset expectation-maximization. Thirty SPECT studies were assessed (20 bone and 10 parathyroid). The images reconstructed with the RR algorithm showed improved image quality for both full-time and half-time acquisitions over local current processing protocols (P<0.05). The RR algorithm improved image quality compared with local processing protocols and has been introduced into routine clinical use. SPECT acquisitions are now acquired at half of the time previously required. The method of binning the data can be applied to any other camera system to evaluate the reduction in acquisition time for similar processes. The potential for dose reduction is also inherent with this approach.

  15. High Resolution Pre-Clinical CT and SPECT Imaging Techniques for Investigating Flow and Transport Mechanisms in Porous Media

    NASA Astrophysics Data System (ADS)

    Dogan, M.; Moysey, S. M.; Mamun, A. A.; DeVol, T. A.; Powell, B. A.; Murdoch, L. C.

    2017-12-01

    Single Photon Emission Computed Tomography (SPECT) and x-ray Computed Tomography (CT) are both high-resolution imaging methods for investigating laboratory scale samples. We have recently conducted several experiments to determine the capabilities of two preclinical imaging systems; the imaging resolution of the two systems studied were found to be 0.2 mm for CT and 2-4 mm for SPECT depending on the tracer and scan times. While the resolution of these instruments is not sufficient for imaging the pore structure of most soils, it is sufficient to resolve macropore structures such as cracks and root channels and to observe their impact on transport. For example, we have used CT scans to monitor the formation of desiccation cracks within soils obtained from the Savannah River Site. We were then able to observe the interaction between the crack network and pore matrix during an infiltration experiment by spiking the infiltrating water with an iodide contrast agent as a tracer. We found a complex interaction between the flow systems, where flow shifted from matrix dominated at low flow rates to macropore dominated at high flow rates. SPECT imaging is capable of monitoring the distribution of gamma-ray emitting radionuclides in 3D. It is therefore also a useful tool for monitoring transport processes, but is particularly powerful when a redox sensitive isotope like 99mTc is used as the tracer. We show an example of a transport experiment where a 99mTc solution is passed through a column containing zones with different redox properties, i.e., a zone amended with titanomagnetite, another with anatase, and a third with silica flour. The 99mTc is captured by the strongly reducing materials, but not the zone with silica flour. The example illustrates how these imaging modalities can be used to discriminate between chemical and physical processes controlling fate and transport of the radionuclide. In particular, CT and SPECT can be used to image contaminant transport in lab scale columns by combining the structural information obtained from CT with the concentration distributions from SPECT.

  16. (99m)Tc-3PRGD 2 SPECT/CT predicts the outcome of advanced nonsquamous non-small cell lung cancer receiving chemoradiotherapy plus bevacizumab.

    PubMed

    Ma, Qingjie; Min, Kaiyin; Wang, Ting; Chen, Bin; Wen, Qiang; Wang, Fan; Ji, Tiefeng; Gao, Shi

    2015-07-01

    Functional imaging can help clinicians assess the individual response of advanced nonsquamous non-small cell lung cancer (NSCLC) to chemoradiation therapy plus bevacizumab. Our purpose is to investigate the ability of (99m)Tc-3PRGD2 single photon emission computed tomography/computed tomography (SPECT/CT) in predicting the early response to treatment. Patients with advanced nonsquamous NSCLC diagnosed by histological or cytological examination were imaged with (99m)Tc-3PRGD2 SPECT/CT at 3 time points: 1-3 days before the start of treatment (SPECT1), 40 Gy radiotherapy with 2 cycles of chemotherapy plus bevacizumab (SPECT2) and 4 weeks after chemoradiotherapy plus bevacizumab (SPECT3). The images were evaluated semiquantitatively by measuring the tumor to non-tumor ratio (T/N) and calculating the percentage change in T/N ratio. Short-term outcome was assessed by the treatment response evaluation according to the Response Evaluation Criteria in Solid Tumors criteria as: complete response (CR), partial response (PR), stable disease (SD) and progressive disease (PD). Patients were divided two groups: responders (CR and PR) and nonresponders (SD and PD). To determine a threshold for percent reduction in T/N ratios, receiver-operating characteristic (ROC) curve analysis was used. Patients were grouped again based on the threshold of P1 (the change percentage from SPECT1 to SPECT2) and P2 (the change percentage from SPECT1 to SPECT3): P1 responders and P1 nonresponders; P2 responders and P2 nonresponders. Patients were followed up starting 4 weeks after completion of therapy and then every 3 months for the first 2 years and every 6 months after 2 years. OS of P1 responders, P1 nonresponders, P2 responders and P2 nonresponders was estimated and graphically illustrated using the Kaplan-Meier method and the log-rank test was used to test the null hypotheses of equal OS in subgroups of patients. A total of 28 patients completed all imaging and treatment. All primary lung tumors were well visualized on SPECT1. The mean T/N ratio of SPECT1 in responders and nonresponders was not statistically different (2.73 ± 0.59 vs. 2.59 ± 0.52, p > 0.05). At SPECT2 and SPECT3, the mean T/N ratios were both lower in the responders compared with the nonresponders and had statistical significance (p < 0.05). P1 and P2 in the responders was larger than the nonresponders with significant difference (P1: 34.18 ± 21.55 % vs. 9.02 ± 14.02 %, p < 0.05; P2: 53.02 ± 15.50 % vs. 7.74 ± 37.95 %, p < 0.05). The optimal threshold of P1 that can discriminate between P1 responders and P1 nonresponders was greater than 25.9 % reduction, and that of P2 that can discriminate between P2 responders and P2 nonresponders was 34.0 % reduction. The area under the ROC curve (AUC) of P1 and P2 for determining residual disease was 0.856 and 0.909, respectively; but there was no statistical significance between them (p > 0.05). There was a significant difference for OS between P1 responders and P1 nonresponders (p < 0.05), and also for OS between P2 responders and P2 nonresponders (p < 0.05). But there was no difference between the P1 responders and P2 responders (p > 0.05), or between the P1 nonresponders and P2 nonresponders (p > 0.05). A (99m)Tc-3PRGD2 SPECT/CT after two cycles of chemoradiotherapy plus bevacizumab can predict patients who will have a better response to treatment and survival.

  17. Measurement of absolute myocardial blood flow in humans using dynamic cardiac SPECT and 99mTc-tetrofosmin: Method and validation

    DOE PAGES

    Shrestha, Uttam; Sciammarella, Maria; Alhassen, Fares; ...

    2015-12-29

    The objective of this study was to measure myocardial blood flow (MBF) in humans using 99mTc-tetrofosmin and dynamic single-photon emission computed tomography (SPECT). Dynamic SPECT using 99mTc-tetrofosmin and dynamic positron emission tomography (PET) was performed on a group of 16 patients. The SPECT data were reconstructed using a 4D-spatiotemporal iterative reconstruction method. The data corresponding to 9 patients were used to determine the flow-extraction curve for 99mTc-tefrofosmin while data from the remaining 7 patients were used for method validation. The nonlinear tracer correction parameters A and B for 99mTc-tefrofosmin were estimated for the 9 patients by fitting the flow-extraction curvemore » K 1 = F(1–Aexp(–B/F)) for K 1 values estimated with 99mTc-tefrofosmin using SPECT and MBF values estimated with 13N-NH 3 using PET. These parameters were then used to calculate MBF and coronary flow reserve (CFR) in three coronary territories (LAD, RCA, and LCX) using SPECT for an independent cohort of 7 patients. The results were then compared with that estimated with 13N-NH 3 PET. The flow-dependent permeability surface-area product (PS) for 99mTc-tefrofosmin was also estimated. The estimated flow-extraction parameters for 99mTc-tefrofosmin were found to be A = 0.91 ± 0.11, B = 0.34 ± 0.20 (R 2 = 0.49). The range of MBF in LAD, RCA, and LCX was 0.44-3.81 mL/min/g. The MBF between PET and SPECT in the group of independent cohort of 7 patients showed statistically significant correlation, r = 0.71 (P < .001). However, the corresponding CFR correlation was moderate r = 0.39 yet statistically significant (P = .037). The PS for 99mTc-tefrofosmin was (0.019 ± 0.10)*MBF + (0.32 ± 0.16). Dynamic cardiac SPECT using 99mTc-tetrofosmin and a clinical two-headed SPECT/CT scanner can be a useful tool for estimation of MBF.« less

  18. Measurement of absolute myocardial blood flow in humans using dynamic cardiac SPECT and 99mTc-tetrofosmin: Method and validation.

    PubMed

    Shrestha, Uttam; Sciammarella, Maria; Alhassen, Fares; Yeghiazarians, Yerem; Ellin, Justin; Verdin, Emily; Boyle, Andrew; Seo, Youngho; Botvinick, Elias H; Gullberg, Grant T

    2017-02-01

    The objective of this study was to measure myocardial blood flow (MBF) in humans using 99m Tc-tetrofosmin and dynamic single-photon emission computed tomography (SPECT). Dynamic SPECT using 99m Tc-tetrofosmin and dynamic positron emission tomography (PET) was performed on a group of 16 patients. The SPECT data were reconstructed using a 4D-spatiotemporal iterative reconstruction method. The data corresponding to 9 patients were used to determine the flow-extraction curve for 99m Tc-tefrofosmin while data from the remaining 7 patients were used for method validation. The nonlinear tracer correction parameters A and B for 99m Tc-tefrofosmin were estimated for the 9 patients by fitting the flow-extraction curve [Formula: see text] for K 1 values estimated with 99m Tc-tefrofosmin using SPECT and MBF values estimated with 13 N-NH 3 using PET. These parameters were then used to calculate MBF and coronary flow reserve (CFR) in three coronary territories (LAD, RCA, and LCX) using SPECT for an independent cohort of 7 patients. The results were then compared with that estimated with 13 N-NH 3 PET. The flow-dependent permeability surface-area product (PS) for 99m Tc-tefrofosmin was also estimated. The estimated flow-extraction parameters for 99m Tc-tefrofosmin were found to be A = 0.91 ± 0.11, B = 0.34 ± 0.20 (R 2  = 0.49). The range of MBF in LAD, RCA, and LCX was 0.44-3.81 mL/min/g. The MBF between PET and SPECT in the group of independent cohort of 7 patients showed statistically significant correlation, r = 0.71 (P < .001). However, the corresponding CFR correlation was moderate r = 0.39 yet statistically significant (P = .037). The PS for 99m Tc-tefrofosmin was (0.019 ± 0.10)*MBF + (0.32 ± 0.16). Dynamic cardiac SPECT using 99m Tc-tetrofosmin and a clinical two-headed SPECT/CT scanner can be a useful tool for estimation of MBF.

  19. Measurement of Absolute Myocardial Blood Flow in Humans Using Dynamic Cardiac SPECT and 99mTc-tetrofosmin: Method and Validation

    PubMed Central

    Shrestha, Uttam; Sciammarella, Maria; Alhassen, Fares; Yeghiazarians, Yerem; Ellin, Justin; Verdin, Emily; Boyle, Andrew; Seo, Youngho; Botvinick, Elias H.; Gullberg, Grant T.

    2015-01-01

    Background The objective of this study was to measure myocardial blood flow (MBF) in humans using 99mTc-tetrofosmin and dynamic single photon emission computed tomography (SPECT). Methods Dynamic SPECT using 99mTc-tetrofosmin and dynamic positron emission tomography (PET) was performed on a group of 16 patients. The SPECT data were reconstructed using a 4D-spatiotemporal iterative reconstruction method. The data corresponding to 9 patients were used to determine the flow-extraction curve for 99mTc-tefrofosmin while data from the remaining 7 patients were used for method validation. The nonlinear tracer correction parameters A and B for 99mTc-tefrofosmin were estimated for the 9 patients by fitting the flow-extraction curve K1=F(1−Aexp(−BF)) for K1 values estimated with 99mTc-tefrofosmin using SPECT and MBF values estimated with 13N-NH3 using PET. These parameters were then used to calculate MBF and coronary flow reserve (CFR) in three coronary territories (LAD, RCA, and LCX) using SPECT for an independent cohort of 7 patients. The results were then compared with that estimated with 13N-NH3 PET. The flow dependent permeability surface-area product (PS) for 99mTc-tefrofosmin was also estimated. Results The estimated flow extraction parameters for 99mTc-tefrofosmin was found to be A=0.91±0.11, B=0.34±0.20 (R2 = 0.49). The range of MBF in LAD, RCA, and LCX was 0.44 ml/min/g to 3.81 ml/min/g. The MBF between PET and SPECT in the group of independent cohort of 7 patients showed statistically significant correlation, r = 0.71 (p < 0.001). However, the corresponding CFR correlation was moderate r = 0.39 yet statistically significant (p = 0.037). The PS for 99mTc-tefrofosmin was (0.091 ± 0.10) * MBF = (0.32 ± 0.16). Conclusions Dynamic cardiac SPECT using 99mTc-tetrofosmin and a clinical two-headed SPECT/CT scanner can be a useful tool for estimation of MBF. PMID:26715603

  20. Measurement of absolute myocardial blood flow in humans using dynamic cardiac SPECT and 99mTc-tetrofosmin: Method and validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrestha, Uttam; Sciammarella, Maria; Alhassen, Fares

    The objective of this study was to measure myocardial blood flow (MBF) in humans using 99mTc-tetrofosmin and dynamic single-photon emission computed tomography (SPECT). Dynamic SPECT using 99mTc-tetrofosmin and dynamic positron emission tomography (PET) was performed on a group of 16 patients. The SPECT data were reconstructed using a 4D-spatiotemporal iterative reconstruction method. The data corresponding to 9 patients were used to determine the flow-extraction curve for 99mTc-tefrofosmin while data from the remaining 7 patients were used for method validation. The nonlinear tracer correction parameters A and B for 99mTc-tefrofosmin were estimated for the 9 patients by fitting the flow-extraction curvemore » K 1 = F(1–Aexp(–B/F)) for K 1 values estimated with 99mTc-tefrofosmin using SPECT and MBF values estimated with 13N-NH 3 using PET. These parameters were then used to calculate MBF and coronary flow reserve (CFR) in three coronary territories (LAD, RCA, and LCX) using SPECT for an independent cohort of 7 patients. The results were then compared with that estimated with 13N-NH 3 PET. The flow-dependent permeability surface-area product (PS) for 99mTc-tefrofosmin was also estimated. The estimated flow-extraction parameters for 99mTc-tefrofosmin were found to be A = 0.91 ± 0.11, B = 0.34 ± 0.20 (R 2 = 0.49). The range of MBF in LAD, RCA, and LCX was 0.44-3.81 mL/min/g. The MBF between PET and SPECT in the group of independent cohort of 7 patients showed statistically significant correlation, r = 0.71 (P < .001). However, the corresponding CFR correlation was moderate r = 0.39 yet statistically significant (P = .037). The PS for 99mTc-tefrofosmin was (0.019 ± 0.10)*MBF + (0.32 ± 0.16). Dynamic cardiac SPECT using 99mTc-tetrofosmin and a clinical two-headed SPECT/CT scanner can be a useful tool for estimation of MBF.« less

  1. Tomographic diagnostics of nonthermal plasmas

    NASA Astrophysics Data System (ADS)

    Denisova, Natalia

    2009-10-01

    In the previous work [1], we discussed a ``technology'' of tomographic method and relations between the tomographic diagnostics in thermal (equilibrium) and nonthermal (nonequilibrium) plasma sources. The conclusion has been made that tomographic reconstruction in thermal plasma sources is the standard procedure at present, which can provide much useful information on the plasma structure and its evolution in time, while the tomographic reconstruction of nonthermal plasma has a great potential at making a contribution to understanding the fundamental problem of substance behavior in strongly nonequilibrium conditions. Using medical terminology, one could say, that tomographic diagnostics of the equilibrium plasma sources studies their ``anatomic'' structure, while reconstruction of the nonequilibrium plasma is similar to the ``physiological'' examination: it is directed to study the physical mechanisms and processes. The present work is focused on nonthermal plasma research. The tomographic diagnostics is directed to study spatial structures formed in the gas discharge plasmas under the influence of electrical and gravitational fields. The ways of plasma ``self-organization'' in changing and extreme conditions are analyzed. The analysis has been made using some examples from our practical tomographic diagnostics of nonthermal plasma sources, such as low-pressure capacitive and inductive discharges. [0pt] [1] Denisova N. Plasma diagnostics using computed tomography method // IEEE Trans. Plasma Sci. 2009 37 4 502.

  2. Analysis of computer images in the presence of metals

    NASA Astrophysics Data System (ADS)

    Buzmakov, Alexey; Ingacheva, Anastasia; Prun, Victor; Nikolaev, Dmitry; Chukalina, Marina; Ferrero, Claudio; Asadchikov, Victor

    2018-04-01

    Artifacts caused by intensely absorbing inclusions are encountered in computed tomography via polychromatic scanning and may obscure or simulate pathologies in medical applications. To improve the quality of reconstruction if high-Z inclusions in presence, previously we proposed and tested with synthetic data an iterative technique with soft penalty mimicking linear inequalities on the photon-starved rays. This note reports a test at the tomographic laboratory set-up at the Institute of Crystallography FSRC "Crystallography and Photonics" RAS in which tomographic scans were successfully made of temporary tooth without inclusion and with Pb inclusion.

  3. Nose and Nasal Planum Neoplasia, Reconstruction.

    PubMed

    Worley, Deanna R

    2016-07-01

    Most intranasal lesions are best treated with radiation therapy. Computed tomographic imaging with intravenous contrast is critical for treatment planning. Computed tomographic images of the nose will best assess the integrity of the cribriform plate for central nervous system invasion by a nasal tumor. Because of an owner's emotional response to an altered appearance of their dog's face, discussions need to include the entire family before proceeding with nasal planectomy or radical planectomy. With careful case selection, nasal planectomy and radical planectomy surgeries can be locally curative. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Structural and Perfusion Abnormalities of Brain on MRI and Technetium-99m-ECD SPECT in Children With Cerebral Palsy: A Comparative Study.

    PubMed

    Rana, Kamer Singh; Narwal, Varun; Chauhan, Lokesh; Singh, Giriraj; Sharma, Monica; Chauhan, Suneel

    2016-04-01

    Cerebral palsy has traditionally been associated with hypoxic ischemic brain damage. This study was undertaken to demonstrate structural and perfusion brain abnormalities. Fifty-six children diagnosed clinically as having cerebral palsy were studied between 1 to 14 years of age and were subjected to 3 Tesla magnetic resonance imaging (MRI). Brain and Technetium-99m-ECD brain single-photon emission computed tomography (SPECT) scan. Male to female ratio was 1.8:1 with a mean age of 4.16 ± 2.274 years. Spastic cerebral palsy was the most common type, observed in 91%. Birth asphyxia was the most common etiology (69.6%). White matter changes (73.2%) such as periventricular leukomalacia and corpus callosal thinning were the most common findings on MRI. On SPECT all cases except one revealed perfusion impairments in different regions of brain. MRI is more sensitive in detecting white matter changes, whereas SPECT is better in detecting cortical and subcortical gray matter abnormalities of perfusion. © The Author(s) 2015.

  5. Prognostic study of cardiac events in Japanese high risk hemodialysis patients using I-BMIPP-SPECT: B-SAFE study design.

    PubMed

    Hasebe, Naoyuki; Moroi, Masao; Nishimura, Masato; Hara, Kazuhiro; Hase, Hiroki; Hashimoto, Akiyoshi; Kumita, Shinichiro; Haze, Kazuo; Momose, Mitsuru; Nagai, Yoji; Sugimoto, Tokuichiro; Kusano, Eiji; Akiba, Takashi; Nakata, Tomoaki; Nishimura, Tsunehiko; Tamaki, Nagara; Kikuchi, Kenjiro

    2008-12-01

    Cardiovascular disease is the leading cause of morbidity and mortality in patients undergoing hemodialysis. Such patients frequently develop complications such as asymptomatic coronary artery disease (CAD). Accordingly, CAD must ideally be diagnosed at an early stage to improve prognosis. Although myocardial perfusion single photon emission computed tomography (SPECT) is valuable for diagnosing CAD, the stress test is not always applicable to patients on hemodialysis. Thus, we proposed a multicenter, prospective cohort study called "B-SAFE" to investigate the applicability of resting (123)I-labeled beta-methyl-iodophenylpentadecanoic acid ((123)I-BMIPP)-SPECT will be used to diagnose cardiac disease and evaluate the prognosis of hemodialysis patients by imaging myocardial fatty acid metabolism. B-SAFE began enrolling patients from June 2006 at 48 facilities. We performed (123)I-BMIPP-SPECT on 702 hemodialysis patients with risk factors for CAD until 30 November 2007 and plan to follow up for three years. The primary endpoints will be cardiac death and sudden death. This study should end in 2010.

  6. Left ventricular eccentricity index measured with SPECT myocardial perfusion imaging: An additional parameter of adverse cardiac remodeling.

    PubMed

    Gimelli, Alessia; Liga, Riccardo; Clemente, Alberto; Marras, Gavino; Kusch, Annette; Marzullo, Paolo

    2017-01-12

    Single-photon emission computed-tomography (SPECT) allows the quantification of LV eccentricity index (EI), a measure of cardiac remodeling. We sought to evaluate the feasibility of EI measurement with SPECT myocardial perfusion imaging and its interactions with relevant LV functional and structural parameters. Four-hundred and fifty-six patients underwent myocardial perfusion imaging on a Cadmium-Zinc-Telluride (CZT) camera. The summed rest, stress, and difference scores were calculated. From rest images, the LV end-diastolic (EDV) and end-systolic volumes, ejection fraction (EF), and peak filling rate (PFR) were calculated. In every patient, the EI, ranging from 0 (sphere) to 1 (line), was computed using a dedicated software (QGS/QPS; Cedars-Sinai Medical Center). Three-hundred and thirty-eight/456 (74%) patients showed a normal EF (>50%), while 26% had LV systolic dysfunction. The EI was computed from CZT images with excellent reproducibility (interclass correlation coefficient: 0.99, 95% CI 0.98-0.99). More impaired EI values correlated with the presence of a more abnormal LV perfusion (P < .001), function (EF and PFR, P < .001), and structure (EDV, P < .001). On multivariate analysis, higher EDV (P < .001) and depressed EF (P = .014) values were independent predictors of abnormal EI. The evaluation of LV eccentricity is feasible on gated CZT images. Abnormal EI associates with significant cardiac structural and functional abnormalities.

  7. Computer aided diagnosis system for the Alzheimer's disease based on partial least squares and random forest SPECT image classification.

    PubMed

    Ramírez, J; Górriz, J M; Segovia, F; Chaves, R; Salas-Gonzalez, D; López, M; Alvarez, I; Padilla, P

    2010-03-19

    This letter shows a computer aided diagnosis (CAD) technique for the early detection of the Alzheimer's disease (AD) by means of single photon emission computed tomography (SPECT) image classification. The proposed method is based on partial least squares (PLS) regression model and a random forest (RF) predictor. The challenge of the curse of dimensionality is addressed by reducing the large dimensionality of the input data by downscaling the SPECT images and extracting score features using PLS. A RF predictor then forms an ensemble of classification and regression tree (CART)-like classifiers being its output determined by a majority vote of the trees in the forest. A baseline principal component analysis (PCA) system is also developed for reference. The experimental results show that the combined PLS-RF system yields a generalization error that converges to a limit when increasing the number of trees in the forest. Thus, the generalization error is reduced when using PLS and depends on the strength of the individual trees in the forest and the correlation between them. Moreover, PLS feature extraction is found to be more effective for extracting discriminative information from the data than PCA yielding peak sensitivity, specificity and accuracy values of 100%, 92.7%, and 96.9%, respectively. Moreover, the proposed CAD system outperformed several other recently developed AD CAD systems. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  8. Comparison of Gated SPECT Myocardial Perfusion Imaging with Echocardiography for the Measurement of Left Ventricular Volumes and Ejection Fraction in Patients With Severe Heart Failure

    PubMed Central

    Shojaeifard, Maryam; Ghaedian, Tahereh; Yaghoobi, Nahid; Malek, Hadi; Firoozabadi, Hasan; Bitarafan-Rajabi, Ahmad; Haghjoo, Majid; Amin, Ahmad; Azizian, Nasrin; Rastgou, Feridoon

    2015-01-01

    Background: Gated single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) is known as a feasible tool for the measurement of left ventricular ejection fraction (EF) and volumes, which are of great importance in the management and follow-up of patients with coronary artery diseases. However, considering the technical shortcomings of SPECT in the presence of perfusion defect, the accuracy of this method in heart failure patients is still controversial. Objectives: The aim of the present study was to compare the results from gated SPECT MPI with those from echocardiography in heart failure patients to compare echocardiographically-derived left ventricular dimension and function data to those from gated SPECT MPI in heart failure patients. Patients and Methods: Forty-one patients with severely reduced left ventricular systolic function (EF ≤ 35%) who were referred for gated SPECT MPI were prospectively enrolled. Quantification of EF, end-diastolic volume (EDV), and end-systolic volume (ESV) was performed by using quantitative gated spect (QGS) (QGS, version 0.4, May 2009) and emory cardiac toolbox (ECTb) (ECTb, revision 1.0, copyright 2007) software packages. EF, EDV, and ESV were also measured with two-dimensional echocardiography within 3 days after MPI. Results: A good correlation was found between echocardiographically-derived EF, EDV, and ESV and the values derived using QGS (r = 0.67, r = 0.78, and r = 0.80 for EF, EDV, and ESV, respectively; P < 0.001) and ECTb (r = 0.68, 0.79, and r = 0.80 for EF, EDV, and ESV, respectively; P < 0.001). However, Bland-Altman plots indicated significantly different mean values for EF, 11.4 and 20.9 using QGS and ECTb, respectively, as compared with echocardiography. ECTb-derived EDV was also significantly higher than the EDV measured with echocardiography and QGS. The highest correlation between echocardiography and gated SPECT MPI was found for mean values of ESV different. Conclusions: Gated SPECT MPI has a good correlation with echocardiography for the measurement of left ventricular EF, EDV, and ESV in patients with severe heart failure. However, the absolute values of these functional parameters from echocardiography and gated SPECT MPI measured with different software packages should not be used interchangeably. PMID:26889455

  9. New Radiotracers for Imaging of Vascular Targets in Angiogenesis-related Diseases

    PubMed Central

    Hong, Hao; Chen, Feng; Zhang, Yin; Cai, Weibo

    2014-01-01

    Tremendous advances over the last several decades in positron emission tomography (PET) and single photon emission computed tomography (SPECT) allow for targeted imaging of molecular and cellular events in the living systems. Angiogenesis, a multistep process regulated by the network of different angiogenic factors, has attracted world-wide interests, due to its pivotal role in the formation and progression of different diseases including cancer, cardiovascular diseases (CVD), and inflammation. In this review article, we will summarize the recent progress in PET or SPECT imaging of a wide variety of vascular targets in three major angiogenesis-related diseases: cancer, cardiovascular diseases, and inflammation. Faster drug development and patient stratification for a specific therapy will become possible with the facilitation of PET or SPECT imaging and it will be critical for the maximum benefit of patients. PMID:25086372

  10. Trace: a high-throughput tomographic reconstruction engine for large-scale datasets

    DOE PAGES

    Bicer, Tekin; Gursoy, Doga; Andrade, Vincent De; ...

    2017-01-28

    Here, synchrotron light source and detector technologies enable scientists to perform advanced experiments. These scientific instruments and experiments produce data at such scale and complexity that large-scale computation is required to unleash their full power. One of the widely used data acquisition technique at light sources is Computed Tomography, which can generate tens of GB/s depending on x-ray range. A large-scale tomographic dataset, such as mouse brain, may require hours of computation time with a medium size workstation. In this paper, we present Trace, a data-intensive computing middleware we developed for implementation and parallelization of iterative tomographic reconstruction algorithms. Tracemore » provides fine-grained reconstruction of tomography datasets using both (thread level) shared memory and (process level) distributed memory parallelization. Trace utilizes a special data structure called replicated reconstruction object to maximize application performance. We also present the optimizations we have done on the replicated reconstruction objects and evaluate them using a shale and a mouse brain sinogram. Our experimental evaluations show that the applied optimizations and parallelization techniques can provide 158x speedup (using 32 compute nodes) over single core configuration, which decreases the reconstruction time of a sinogram (with 4501 projections and 22400 detector resolution) from 12.5 hours to less than 5 minutes per iteration.« less

  11. Trace: a high-throughput tomographic reconstruction engine for large-scale datasets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bicer, Tekin; Gursoy, Doga; Andrade, Vincent De

    Here, synchrotron light source and detector technologies enable scientists to perform advanced experiments. These scientific instruments and experiments produce data at such scale and complexity that large-scale computation is required to unleash their full power. One of the widely used data acquisition technique at light sources is Computed Tomography, which can generate tens of GB/s depending on x-ray range. A large-scale tomographic dataset, such as mouse brain, may require hours of computation time with a medium size workstation. In this paper, we present Trace, a data-intensive computing middleware we developed for implementation and parallelization of iterative tomographic reconstruction algorithms. Tracemore » provides fine-grained reconstruction of tomography datasets using both (thread level) shared memory and (process level) distributed memory parallelization. Trace utilizes a special data structure called replicated reconstruction object to maximize application performance. We also present the optimizations we have done on the replicated reconstruction objects and evaluate them using a shale and a mouse brain sinogram. Our experimental evaluations show that the applied optimizations and parallelization techniques can provide 158x speedup (using 32 compute nodes) over single core configuration, which decreases the reconstruction time of a sinogram (with 4501 projections and 22400 detector resolution) from 12.5 hours to less than 5 minutes per iteration.« less

  12. An efficient and accurate approach to MTE-MART for time-resolved tomographic PIV

    NASA Astrophysics Data System (ADS)

    Lynch, K. P.; Scarano, F.

    2015-03-01

    The motion-tracking-enhanced MART (MTE-MART; Novara et al. in Meas Sci Technol 21:035401, 2010) has demonstrated the potential to increase the accuracy of tomographic PIV by the combined use of a short sequence of non-simultaneous recordings. A clear bottleneck of the MTE-MART technique has been its computational cost. For large datasets comprising time-resolved sequences, MTE-MART becomes unaffordable and has been barely applied even for the analysis of densely seeded tomographic PIV datasets. A novel implementation is proposed for tomographic PIV image sequences, which strongly reduces the computational burden of MTE-MART, possibly below that of regular MART. The method is a sequential algorithm that produces a time-marching estimation of the object intensity field based on an enhanced guess, which is built upon the object reconstructed at the previous time instant. As the method becomes effective after a number of snapshots (typically 5-10), the sequential MTE-MART (SMTE) is most suited for time-resolved sequences. The computational cost reduction due to SMTE simply stems from the fewer MART iterations required for each time instant. Moreover, the method yields superior reconstruction quality and higher velocity field measurement precision when compared with both MART and MTE-MART. The working principle is assessed in terms of computational effort, reconstruction quality and velocity field accuracy with both synthetic time-resolved tomographic images of a turbulent boundary layer and two experimental databases documented in the literature. The first is the time-resolved data of flow past an airfoil trailing edge used in the study of Novara and Scarano (Exp Fluids 52:1027-1041, 2012); the second is a swirling jet in a water flow. In both cases, the effective elimination of ghost particles is demonstrated in number and intensity within a short temporal transient of 5-10 frames, depending on the seeding density. The increased value of the velocity space-time correlation coefficient demonstrates the increased velocity field accuracy of SMTE compared with MART.

  13. Monte Carlo Optimization of Crystal Configuration for Pixelated Molecular SPECT Scanners

    NASA Astrophysics Data System (ADS)

    Mahani, Hojjat; Raisali, Gholamreza; Kamali-Asl, Alireza; Ay, Mohammad Reza

    2017-02-01

    Resolution-sensitivity-PDA tradeoff is the most challenging problem in design and optimization of pixelated preclinical SPECT scanners. In this work, we addressed such a challenge from a crystal point-of-view by looking for an optimal pixelated scintillator using GATE Monte Carlo simulation. Various crystal configurations have been investigated and the influence of different pixel sizes, pixel gaps, and three scintillators on tomographic resolution, sensitivity, and PDA of the camera were evaluated. The crystal configuration was then optimized using two objective functions: the weighted-sum and the figure-of-merit methods. The CsI(Na) reveals the highest sensitivity of the order of 43.47 cps/MBq in comparison to the NaI(Tl) and the YAP(Ce), for a 1.5×1.5 mm2 pixel size and 0.1 mm gap. The results show that the spatial resolution, in terms of FWHM, improves from 3.38 to 2.21 mm while the sensitivity simultaneously deteriorates from 42.39 cps/MBq to 27.81 cps/MBq when pixel size varies from 2×2 mm2 to 0.5×0.5 mm2 for a 0.2 mm gap, respectively. The PDA worsens from 0.91 to 0.42 when pixel size decreases from 0.5×0.5 mm2 to 1×1 mm2 for a 0.2 mm gap at 15° incident-angle. The two objective functions agree that the 1.5×1.5 mm2 pixel size and 0.1 mm Epoxy gap CsI(Na) configuration provides the best compromise for small-animal imaging, using the HiReSPECT scanner. Our study highlights that crystal configuration can significantly affect the performance of the camera, and thereby Monte Carlo optimization of pixelated detectors is mandatory in order to achieve an optimal quality tomogram.

  14. High Sensitivity SPECT for Small Animals and Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Gregory S.

    Imaging systems using single gamma-ray emitting radioisotopes typically implement collimators in order to form the images. However, a tradeoff in sensitivity is inherent in the use of collimators, and modern preclinical single-photon emission computed tomography (SPECT) systems detect a very small fraction of emitted gamma-rays (<0.3%). We have built a collimator-less system, which can reach sensitivity of 40% for 99mTc imaging, while still producing images of sufficient spatial resolution for certain applications in thin objects such as mice, small plants, and well plates used for in vitro experiments.

  15. Tumour detection and localization using 99Tcm-labelled OV-TL 3 Fab' in patients suspected of ovarian cancer.

    PubMed

    Tibben, J G; Massuger, L F; Claessens, R A; Schijf, C P; Pak, K Y; Strijk, S P; Kenemans, P; Corstens, F H

    1992-12-01

    Fab' fragments of the monoclonal antibody OV-TL 3, that recognizes an ovarian carcinoma-associated antigen (OA3), were labelled with 99Tcm using D-glucarate as a ligand. Twenty patients suspected of having primary or recurrent ovarian cancer received intravenously 1 mg of the Fab' labelled with 740 MBq 99Tcm. Both planar and single photon emission computed tomographic (SPECT) scintigraphy were performed up to 30 h after intravenous infusion. In 19 out of 20 patients surgical and histopathological evaluation was performed between 2 and 6 days postinfusion. Imaging results were compared with X-ray computed tomography (CT), ultrasonography (US) and CA 125 serum level. Blood clearance was fast with median t1/2 beta of 9.5 h. Thirty-seven per cent of the injected dose (% ID) was excreted in the urine within the first 24 h, whereas 7% ID was excreted in the 24 h faeces. In one patient with an OA3 negative ovarian carcinoma, radioimmunoscintigraphy (RIS) did not visualize the tumour. In two other patients a benign ovarian cyst was found, also showing no elevated uptake. In 13 out of 17 patients ovarian cancer lesions were detected with RIS, whereas CT and US detected lesions in, respectively, 15 and 12 patients. Of 36 surgically defined tumour deposits larger than 1 cm in diameter, 53% were detected and localized with RIS, whereas CT and US detected 61 and 40%, respectively. Radioimmunoscintigraphy with 99Tcm-OV-TL 3 Fab' is less distressing for the patients but the overall imaging performance is not improved when compared with 111In-OV-TL 3 F(ab')2.

  16. Rapid tomographic reconstruction based on machine learning for time-resolved combustion diagnostics

    NASA Astrophysics Data System (ADS)

    Yu, Tao; Cai, Weiwei; Liu, Yingzheng

    2018-04-01

    Optical tomography has attracted surged research efforts recently due to the progress in both the imaging concepts and the sensor and laser technologies. The high spatial and temporal resolutions achievable by these methods provide unprecedented opportunity for diagnosis of complicated turbulent combustion. However, due to the high data throughput and the inefficiency of the prevailing iterative methods, the tomographic reconstructions which are typically conducted off-line are computationally formidable. In this work, we propose an efficient inversion method based on a machine learning algorithm, which can extract useful information from the previous reconstructions and build efficient neural networks to serve as a surrogate model to rapidly predict the reconstructions. Extreme learning machine is cited here as an example for demonstrative purpose simply due to its ease of implementation, fast learning speed, and good generalization performance. Extensive numerical studies were performed, and the results show that the new method can dramatically reduce the computational time compared with the classical iterative methods. This technique is expected to be an alternative to existing methods when sufficient training data are available. Although this work is discussed under the context of tomographic absorption spectroscopy, we expect it to be useful also to other high speed tomographic modalities such as volumetric laser-induced fluorescence and tomographic laser-induced incandescence which have been demonstrated for combustion diagnostics.

  17. Rapid tomographic reconstruction based on machine learning for time-resolved combustion diagnostics.

    PubMed

    Yu, Tao; Cai, Weiwei; Liu, Yingzheng

    2018-04-01

    Optical tomography has attracted surged research efforts recently due to the progress in both the imaging concepts and the sensor and laser technologies. The high spatial and temporal resolutions achievable by these methods provide unprecedented opportunity for diagnosis of complicated turbulent combustion. However, due to the high data throughput and the inefficiency of the prevailing iterative methods, the tomographic reconstructions which are typically conducted off-line are computationally formidable. In this work, we propose an efficient inversion method based on a machine learning algorithm, which can extract useful information from the previous reconstructions and build efficient neural networks to serve as a surrogate model to rapidly predict the reconstructions. Extreme learning machine is cited here as an example for demonstrative purpose simply due to its ease of implementation, fast learning speed, and good generalization performance. Extensive numerical studies were performed, and the results show that the new method can dramatically reduce the computational time compared with the classical iterative methods. This technique is expected to be an alternative to existing methods when sufficient training data are available. Although this work is discussed under the context of tomographic absorption spectroscopy, we expect it to be useful also to other high speed tomographic modalities such as volumetric laser-induced fluorescence and tomographic laser-induced incandescence which have been demonstrated for combustion diagnostics.

  18. Estimating crustal heterogeneity from double-difference tomography

    USGS Publications Warehouse

    Got, J.-L.; Monteiller, V.; Virieux, J.; Okubo, P.

    2006-01-01

    Seismic velocity parameters in limited, but heterogeneous volumes can be inferred using a double-difference tomographic algorithm, but to obtain meaningful results accuracy must be maintained at every step of the computation. MONTEILLER et al. (2005) have devised a double-difference tomographic algorithm that takes full advantage of the accuracy of cross-spectral time-delays of large correlated event sets. This algorithm performs an accurate computation of theoretical travel-time delays in heterogeneous media and applies a suitable inversion scheme based on optimization theory. When applied to Kilauea Volcano, in Hawaii, the double-difference tomography approach shows significant and coherent changes to the velocity model in the well-resolved volumes beneath the Kilauea caldera and the upper east rift. In this paper, we first compare the results obtained using MONTEILLER et al.'s algorithm with those obtained using the classic travel-time tomographic approach. Then, we evaluated the effect of using data series of different accuracies, such as handpicked arrival-time differences ("picking differences"), on the results produced by double-difference tomographic algorithms. We show that picking differences have a non-Gaussian probability density function (pdf). Using a hyperbolic secant pdf instead of a Gaussian pdf allows improvement of the double-difference tomographic result when using picking difference data. We completed our study by investigating the use of spatially discontinuous time-delay data. ?? Birkha??user Verlag, Basel, 2006.

  19. Three-dimensional ordered-subset expectation maximization iterative protocol for evaluation of left ventricular volumes and function by quantitative gated SPECT: a dynamic phantom study.

    PubMed

    Ceriani, Luca; Ruberto, Teresa; Delaloye, Angelika Bischof; Prior, John O; Giovanella, Luca

    2010-03-01

    The purposes of this study were to characterize the performance of a 3-dimensional (3D) ordered-subset expectation maximization (OSEM) algorithm in the quantification of left ventricular (LV) function with (99m)Tc-labeled agent gated SPECT (G-SPECT), the QGS program, and a beating-heart phantom and to optimize the reconstruction parameters for clinical applications. A G-SPECT image of a dynamic heart phantom simulating the beating left ventricle was acquired. The exact volumes of the phantom were known and were as follows: end-diastolic volume (EDV) of 112 mL, end-systolic volume (ESV) of 37 mL, and stroke volume (SV) of 75 mL; these volumes produced an LV ejection fraction (LVEF) of 67%. Tomographic reconstructions were obtained after 10-20 iterations (I) with 4, 8, and 16 subsets (S) at full width at half maximum (FWHM) gaussian postprocessing filter cutoff values of 8-15 mm. The QGS program was used for quantitative measurements. Measured values ranged from 72 to 92 mL for EDV, from 18 to 32 mL for ESV, and from 54 to 63 mL for SV, and the calculated LVEF ranged from 65% to 76%. Overall, the combination of 10 I, 8 S, and a cutoff filter value of 10 mm produced the most accurate results. The plot of the measures with respect to the expectation maximization-equivalent iterations (I x S product) revealed a bell-shaped curve for the LV volumes and a reverse distribution for the LVEF, with the best results in the intermediate range. In particular, FWHM cutoff values exceeding 10 mm affected the estimation of the LV volumes. The QGS program is able to correctly calculate the LVEF when used in association with an optimized 3D OSEM algorithm (8 S, 10 I, and FWHM of 10 mm) but underestimates the LV volumes. However, various combinations of technical parameters, including a limited range of I and S (80-160 expectation maximization-equivalent iterations) and low cutoff values (< or =10 mm) for the gaussian postprocessing filter, produced results with similar accuracies and without clinically relevant differences in the LV volumes and the estimated LVEF.

  20. Interlaced X-ray diffraction computed tomography

    PubMed Central

    Vamvakeros, Antonios; Jacques, Simon D. M.; Di Michiel, Marco; Senecal, Pierre; Middelkoop, Vesna; Cernik, Robert J.; Beale, Andrew M.

    2016-01-01

    An X-ray diffraction computed tomography data-collection strategy that allows, post experiment, a choice between temporal and spatial resolution is reported. This strategy enables time-resolved studies on comparatively short timescales, or alternatively allows for improved spatial resolution if the system under study, or components within it, appear to be unchanging. The application of the method for studying an Mn–Na–W/SiO2 fixed-bed reactor in situ is demonstrated. Additionally, the opportunities to improve the data-collection strategy further, enabling post-collection tuning between statistical, temporal and spatial resolutions, are discussed. In principle, the interlaced scanning approach can also be applied to other pencil-beam tomographic techniques, like X-ray fluorescence computed tomography, X-ray absorption fine structure computed tomography, pair distribution function computed tomography and tomographic scanning transmission X-ray microscopy. PMID:27047305

  1. TomoEED: Fast Edge-Enhancing Denoising of Tomographic Volumes.

    PubMed

    Moreno, J J; Martínez-Sánchez, A; Martínez, J A; Garzón, E M; Fernández, J J

    2018-05-29

    TomoEED is an optimized software tool for fast feature-preserving noise filtering of large 3D tomographic volumes on CPUs and GPUs. The tool is based on the anisotropic nonlinear diffusion method. It has been developed with special emphasis in the reduction of the computational demands by using different strategies, from the algorithmic to the high performance computing perspectives. TomoEED manages to filter large volumes in a matter of minutes in standard computers. TomoEED has been developed in C. It is available for Linux platforms at http://www.cnb.csic.es/%7ejjfernandez/tomoeed. gmartin@ual.es, JJ.Fernandez@csic.es. Supplementary data are available at Bioinformatics online.

  2. Prognostic value of coronary computed tomographic angiography findings in asymptomatic individuals: a 6-year follow-up from the prospective multicentre international CONFIRM study.

    PubMed

    Cho, Iksung; Al'Aref, Subhi J; Berger, Adam; Ó Hartaigh, Bríain; Gransar, Heidi; Valenti, Valentina; Lin, Fay Y; Achenbach, Stephan; Berman, Daniel S; Budoff, Matthew J; Callister, Tracy Q; Al-Mallah, Mouaz H; Cademartiri, Filippo; Chinnaiyan, Kavitha; Chow, Benjamin J W; DeLago, Augustin; Villines, Todd C; Hadamitzky, Martin; Hausleiter, Joerg; Leipsic, Jonathon; Shaw, Leslee J; Kaufmann, Philipp A; Feuchtner, Gudrun; Kim, Yong-Jin; Maffei, Erica; Raff, Gilbert; Pontone, Gianluca; Andreini, Daniele; Marques, Hugo; Rubinshtein, Ronen; Chang, Hyuk-Jae; Min, James K

    2018-03-14

    The long-term prognostic benefit of coronary computed tomographic angiography (CCTA) findings of coronary artery disease (CAD) in asymptomatic populations is unknown. From the prospective multicentre international CONFIRM long-term study, we evaluated asymptomatic subjects without known CAD who underwent both coronary artery calcium scoring (CACS) and CCTA (n = 1226). Coronary computed tomographic angiography findings included the severity of coronary artery stenosis, plaque composition, and coronary segment location. Using the C-statistic and likelihood ratio tests, we evaluated the incremental prognostic utility of CCTA findings over a base model that included a panel of traditional risk factors (RFs) as well as CACS to predict long-term all-cause mortality. During a mean follow-up of 5.9 ± 1.2 years, 78 deaths occurred. Compared with the traditional RF alone (C-statistic 0.64), CCTA findings including coronary stenosis severity, plaque composition, and coronary segment location demonstrated improved incremental prognostic utility beyond traditional RF alone (C-statistics range 0.71-0.73, all P < 0.05; incremental χ2 range 20.7-25.5, all P < 0.001). However, no added prognostic benefit was offered by CCTA findings when added to a base model containing both traditional RF and CACS (C-statistics P > 0.05, for all). Coronary computed tomographic angiography improved prognostication of 6-year all-cause mortality beyond a set of conventional RF alone, although, no further incremental value was offered by CCTA when CCTA findings were added to a model incorporating RF and CACS.

  3. Maxillary sinusitis and periapical abscess following periodontal therapy: a case report using three-dimensional evaluation.

    PubMed

    Huang, Chih-Hao; Brunsvold, Michael A

    2006-01-01

    Maxillary sinusitis may develop from the extension of periodontal disease. In this case, reconstructed three-dimensional images from multidetector spiral computed tomographs were helpful in evaluating periodontal bony defects and their relationship with the maxillary sinus. A 42-year-old woman in good general health presented with a chronic deep periodontal pocket on the palatal and interproximal aspects of tooth #14. Probing depths of the tooth ranged from 2 to 9 mm, and it exhibited a Class 1 mobility. Radiographs revealed a close relationship between the root apex and the maxillary sinus. The patient's periodontal diagnosis was localized severe chronic periodontitis. Treatment of the tooth consisted of cause-related therapy, surgical exploration, and bone grafting. A very deep circumferential bony defect at the palatal root of tooth #14 was noted during surgery. After the operation, the wound healed without incidence, but 10 days later, a maxillary sinusitis and periapical abscess developed. To control the infection, an evaluation of sinus and alveolus using computed tomographs was performed, systemic antibiotics were prescribed, and endodontic treatment was initiated. Two weeks after surgical treatment, the infection was relieved with the help of antibiotics and endodontic treatment. Bilateral bony communications between the maxillary sinus and periodontal bony defect of maxillary first molars were shown on three-dimensional computed tomographs. The digitally reconstructed images added valuable information for evaluating the periodontal defects. Three-dimensional images from spiral computed tomographs (CT) aided in evaluating and treating the close relationship between maxillary sinus disease and adjacent periodontal defects.

  4. Reciprocating vs Rotary Instrumentation in Pediatric Endodontics: Cone Beam Computed Tomographic Analysis of Deciduous Root Canals using Two Single-file Systems

    PubMed Central

    Prabhakar, Attiguppe R; Yavagal, Chandrashekar; Naik, Saraswathi V

    2016-01-01

    ABSTRACT Background: Primary root canals are considered to be most challenging due to their complex anatomy. "Wave one" and "one shape" are single-file systems with reciprocating and rotary motion respectively. The aim of this study was to evaluate and compare dentin thickness, centering ability, canal transportation, and instrumentation time of wave one and one shape files in primary root canals using a cone beam computed tomographic (CBCT) analysis. Study design: This is an experimental, in vitro study comparing the two groups. Materials and methods: A total of 24 extracted human primary teeth with minimum 7 mm root length were included in the study. Cone beam computed tomographic images were taken before and after the instrumentation for each group. Dentin thickness, centering ability, canal transportation, and instrumentation times were evaluated for each group. Results: A significant difference was found in instrumentation time and canal transportation measures between the two groups. Wave one showed less canal transportation as compared with one shape, and the mean instrumentation time of wave one was significantly less than one shape. Conclusion: Reciprocating single-file systems was found to be faster with much less procedural errors and can hence be recommended for shaping the root canals of primary teeth. How to cite this article: Prabhakar AR, Yavagal C, Dixit K, Naik SV. Reciprocating vs Rotary Instrumentation in Pediatric Endodontics: Cone Beam Computed Tomographic Analysis of Deciduous Root Canals using Two Single-File Systems. Int J Clin Pediatr Dent 2016;9(1):45-49. PMID:27274155

  5. Myocardial multilayer strain does not provide additional value for detection of myocardial viability assessed by SPECT imaging over and beyond standard strain.

    PubMed

    Orloff, Elisabeth; Fournier, Pauline; Bouisset, Frédéric; Moine, Thomas; Cournot, Maxime; Elbaz, Meyer; Carrié, Didier; Galinier, Michel; Lairez, Olivier; Cognet, Thomas

    2018-05-14

    The aim of this study was to evaluate the value of multilayer strain analysis to the assessment of myocardial viability (MV) through the comparison of both speckle tracking echocardiography and single-photon emission computed tomography (SPECT) imaging. We also intended to determine which segmental longitudinal strain (LS) cutoff value would be optimal to discriminate viable myocardium. We included 47 patients (average age: 61 ± 11 years) referred to our cardiac imaging center for MV evaluation. All patients underwent transthoracic echocardiography with measures of LS, SPECT, and coronary angiography. In all, 799 segments were analyzed. We correlated myocardial tracer uptake by SPECT with sub-endocardial, sub-epicardial, and mid-segmental LS values with r = .514 P < .0001, r = .501 P < .0001, and r = .520 P < .0001, respectively. The measurements of each layer strain (sub-endocardial, sub-epicardial, and mid) had the same performance to predict MV viability as defined by SPECT with areas under curve of 0.819 [0.778-0.861, P < .0001], 0.809 [0.764-0.854, P < .0001], and 0.817 [0.773-0.860, P < .0001], respectively. The receiver-operating characteristic analysis yielded a cutoff value of -6.5% for mid-segmental LS with a sensitivity of 76% and specificity of 76% to predict segmental MV as defined by SPECT. Multilayer strain analysis does not evaluate MV with more accuracy than standard segmental LS analysis. © 2018 Wiley Periodicals, Inc.

  6. An automatic alignment tool to improve repeatability of left ventricular function and dyssynchrony parameters in serial gated myocardial perfusion SPECT studies

    PubMed Central

    Zhou, Yanli; Faber, Tracy L.; Patel, Zenic; Folks, Russell D.; Cheung, Alice A.; Garcia, Ernest V.; Soman, Prem; Li, Dianfu; Cao, Kejiang; Chen, Ji

    2013-01-01

    Objective Left ventricular (LV) function and dyssynchrony parameters measured from serial gated single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) using blinded processing had a poorer repeatability than when manual side-by-side processing was used. The objective of this study was to validate whether an automatic alignment tool can reduce the variability of LV function and dyssynchrony parameters in serial gated SPECT MPI. Methods Thirty patients who had undergone serial gated SPECT MPI were prospectively enrolled in this study. Thirty minutes after the first acquisition, each patient was repositioned and a gated SPECT MPI image was reacquired. The two data sets were first processed blinded from each other by the same technologist in different weeks. These processed data were then realigned by the automatic tool, and manual side-by-side processing was carried out. All processing methods used standard iterative reconstruction and Butterworth filtering. The Emory Cardiac Toolbox was used to measure the LV function and dyssynchrony parameters. Results The automatic tool failed in one patient, who had a large, severe scar in the inferobasal wall. In the remaining 29 patients, the repeatability of the LV function and dyssynchrony parameters after automatic alignment was significantly improved from blinded processing and was comparable to manual side-by-side processing. Conclusion The automatic alignment tool can be an alternative method to manual side-by-side processing to improve the repeatability of LV function and dyssynchrony measurements by serial gated SPECT MPI. PMID:23211996

  7. Nuclear medicine imaging of locally advanced laryngeal and hypopharyngeal cancer

    NASA Astrophysics Data System (ADS)

    Medvedeva, A.; Chernov, V.; Zeltchan, R.; Sinilkin, I.; Bragina, O.; Chijevskaya, S.; Choynzonov, E.; Goldberg, A.

    2017-09-01

    The diagnostic capabilities of nuclear medicine imaging in the detection and assessment of the spread of laryngeal/hypopharyngeal cancer were studied. A total of 40 patients with histologically verified laryngeal and hypopharyngeal cancer and 20 patients with benign laryngeal lesions were included into the study. Submucosal injections of 99mTc-MIBI and 99mTc-Alotech were made around the tumor. Single photon emission computed tomography (SPECT) was performed 20 minutes after the injection of 99mTc-MIBI. Sentinel lymph nodes (SLNs) were detected in 26 patients. In 18 hours after the injection of 99mTc-Alotech, SPECT was performed. In 24 hours after the injection of 99mTc-Alotech, intraoperative SLN detection was performed using Gamma Finder II. SPECT with 99mTc-MIBI revealed laryngeal and hypopharyngeal tumors in 38 of the 40 patients. The 99mTc-MIBI uptake in metastatic lymph nodes was visualized in 2 (17%) of the 12 patients. Twenty eight SLNs were detected by SPECT and 31 SLNs were identified using the intraoperative gamma probe. The percentage of 99mTc-Alotech in the SLN was 5-10% of the radioactivity in the injection site by SPECT and 18-33% by intraoperative gamma probe detection. Thus, SPECT with 99mTc-MIBI is an effective tool for the diagnosis of laryngeal/hypopharyngeal cancer. The sensitivity, specificity and accuracy of this technique were 95%, 80% and 92%, respectively. The use of 99mTc-Alotech for the detection of SLNs in patients with laryngeal/hypopharyngeal cancer is characterized by 92.8% sensitivity.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Carlo, Francesco; Gürsoy, Doğa; Ching, Daniel J.

    There is a widening gap between the fast advancement of computational methods for tomographic reconstruction and their successful implementation in production software at various synchrotron facilities. This is due in part to the lack of readily available instrument datasets and phantoms representative of real materials for validation and comparison of new numerical methods. Recent advancements in detector technology made sub-second and multi-energy tomographic data collection possible [1], but also increased the demand to develop new reconstruction methods able to handle in-situ [2] and dynamic systems [3] that can be quickly incorporated in beamline production software [4]. The X-ray Tomography Datamore » Bank, tomoBank, provides a repository of experimental and simulated datasets with the aim to foster collaboration among computational scientists, beamline scientists, and experimentalists and to accelerate the development and implementation of tomographic reconstruction methods for synchrotron facility production software by providing easy access to challenging dataset and their descriptors.« less

  9. Quantification of the spatial distribution of rectally applied surrogates for microbicide and semen in colon with SPECT and magnetic resonance imaging.

    PubMed

    Cao, Ying J; Caffo, Brian S; Fuchs, Edward J; Lee, Linda A; Du, Yong; Li, Liye; Bakshi, Rahul P; Macura, Katarzyna; Khan, Wasif A; Wahl, Richard L; Grohskopf, Lisa A; Hendrix, Craig W

    2012-12-01

    We sought to describe quantitatively the distribution of rectally administered gels and seminal fluid surrogates using novel concentration-distance parameters that could be repeated over time. These methods are needed to develop rationally rectal microbicides to target and prevent HIV infection. Eight subjects were dosed rectally with radiolabelled and gadolinium-labelled gels to simulate microbicide gel and seminal fluid. Rectal doses were given with and without simulated receptive anal intercourse. Twenty-four hour distribution was assessed with indirect single photon emission computed tomography (SPECT)/computed tomography (CT) and magnetic resonance imaging (MRI), and direct assessment via sigmoidoscopic brushes. Concentration-distance curves were generated using an algorithm for fitting SPECT data in three dimensions. Three novel concentration-distance parameters were defined to describe quantitatively the distribution of radiolabels: maximal distance (D(max) ), distance at maximal concentration (D(Cmax) ) and mean residence distance (D(ave) ). The SPECT/CT distribution of microbicide and semen surrogates was similar. Between 1 h and 24 h post dose, the surrogates migrated retrograde in all three parameters (relative to coccygeal level; geometric mean [95% confidence interval]): maximal distance (D(max) ), 10 cm (8.6-12) to 18 cm (13-26), distance at maximal concentration (D(Cmax) ), 3.8 cm (2.7-5.3) to 4.2 cm (2.8-6.3) and mean residence distance (D(ave) ), 4.3 cm (3.5-5.1) to 7.6 cm (5.3-11). Sigmoidoscopy and MRI correlated only roughly with SPECT/CT. Rectal microbicide surrogates migrated retrograde during the 24 h following dosing. Spatial kinetic parameters estimated using three dimensional curve fitting of distribution data should prove useful for evaluating rectal formulations of drugs for HIV prevention and other indications. © 2012 The Authors. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  10. Tc-99m Radiolabeled Peptide p5 + 14 is an Effective Probe for SPECT Imaging of Systemic Amyloidosis.

    PubMed

    Kennel, Stephen J; Stuckey, Alan; McWilliams-Koeppen, Helen P; Richey, Tina; Wall, Jonathan S

    2016-08-01

    Systemic peripheral amyloidosis is a rare disease in which misfolded proteins deposit in various organs. We have previously developed I-124 labeled peptide p5 + 14 as a tracer for positron emission tomography imaging of amyloid in patients. In this report, we now document the labeling efficiency, bioactivity, and stability of Tc-99m labeled p5 + 14 for single-photon emission computed tomography (SPECT) imaging of amyloidosis, validated in a mouse model of systemic amyloidosis. Radiochemical yield, purity, and biological activity of [(99m)Tc]p5 + 14 were documented by instant thin-layer chromatography (ITLC), SDS-PAGE and a quantitative amyloid fibril pulldown assay. The efficacy and stability were documented in serum amyloid protein A (AA) amyloid-bearing or wild-type (WT) control mice imaged with SPECT/X-ray computed tomography (CT) at two time points. The uptake and retention of [(99m)Tc]p5 + 14 in hepatosplenic amyloid was evaluated using region of interest (ROI) and tissue counting measurements. Tc-99m p5 + 14 was produced with a radiochemical yield of 75 % with greater than 90 % purity and biological activity comparable to that of radioiodinated peptide. AA amyloid was visualized by SPECT/CT imaging with specific uptake seen in amyloid-laden organs at levels ∼5 folds higher than in healthy mice. ROI analyses of decay-corrected SPECT/CT images showed <20 % loss of radiolabel from the 1 to 4 h imaging time points. Biodistribution data confirmed the specificity of the probe accumulation by amyloid-laden organs as compared to non-diseased tissues. [(99m)Tc]p5 + 14 is a specific and stable radiotracer for systemic amyloid in mice and may provide a convenient and inexpensive alternative to imaging of peripheral amyloidosis in patients.

  11. Spatial correspondence of 4D CT ventilation and SPECT pulmonary perfusion defects in patients with malignant airway stenosis

    NASA Astrophysics Data System (ADS)

    Castillo, Richard; Castillo, Edward; McCurdy, Matthew; Gomez, Daniel R.; Block, Alec M.; Bergsma, Derek; Joy, Sarah; Guerrero, Thomas

    2012-04-01

    To determine the spatial overlap agreement between four-dimensional computed tomography (4D CT) ventilation and single photon emission computed tomography (SPECT) perfusion hypo-functioning pulmonary defect regions in a patient population with malignant airway stenosis. Treatment planning 4D CT images were obtained retrospectively for ten lung cancer patients with radiographically demonstrated airway obstruction due to gross tumor volume. Each patient also received a SPECT perfusion study within one week of the planning 4D CT, and prior to the initiation of treatment. Deformable image registration was used to map corresponding lung tissue elements between the extreme component phase images, from which quantitative three-dimensional (3D) images representing the local pulmonary specific ventilation were constructed. Semi-automated segmentation of the percentile perfusion distribution was performed to identify regional defects distal to the known obstructing lesion. Semi-automated segmentation was similarly performed by multiple observers to delineate corresponding defect regions depicted on 4D CT ventilation. Normalized Dice similarity coefficient (NDSC) indices were determined for each observer between SPECT perfusion and 4D CT ventilation defect regions to assess spatial overlap agreement. Tidal volumes determined from 4D CT ventilation were evaluated versus measurements obtained from lung parenchyma segmentation. Linear regression resulted in a linear fit with slope = 1.01 (R2 = 0.99). Respective values for the average DSC, NDSC1 mm and NDSC2 mm for all cases and multiple observers were 0.78, 0.88 and 0.99, indicating that, on average, spatial overlap agreement between ventilation and perfusion defect regions was comparable to the threshold for agreement within 1-2 mm uncertainty. Corresponding coefficients of variation for all metrics were similarly in the range: 0.10%-19%. This study is the first to quantitatively assess 3D spatial overlap agreement between clinically acquired SPECT perfusion and specific ventilation from 4D CT. Results suggest high correlation between methods within the sub-population of lung cancer patients with malignant airway stenosis.

  12. Dynamic single photon emission computed tomography—basic principles and cardiac applications

    PubMed Central

    Gullberg, Grant T; Reutter, Bryan W; Sitek, Arkadiusz; Maltz, Jonathan S; Budinger, Thomas F

    2011-01-01

    The very nature of nuclear medicine, the visual representation of injected radiopharmaceuticals, implies imaging of dynamic processes such as the uptake and wash-out of radiotracers from body organs. For years, nuclear medicine has been touted as the modality of choice for evaluating function in health and disease. This evaluation is greatly enhanced using single photon emission computed tomography (SPECT), which permits three-dimensional (3D) visualization of tracer distributions in the body. However, to fully realize the potential of the technique requires the imaging of in vivo dynamic processes of flow and metabolism. Tissue motion and deformation must also be addressed. Absolute quantification of these dynamic processes in the body has the potential to improve diagnosis. This paper presents a review of advancements toward the realization of the potential of dynamic SPECT imaging and a brief history of the development of the instrumentation. A major portion of the paper is devoted to the review of special data processing methods that have been developed for extracting kinetics from dynamic cardiac SPECT data acquired using rotating detector heads that move as radiopharmaceuticals exchange between biological compartments. Recent developments in multi-resolution spatiotemporal methods enable one to estimate kinetic parameters of compartment models of dynamic processes using data acquired from a single camera head with slow gantry rotation. The estimation of kinetic parameters directly from projection measurements improves bias and variance over the conventional method of first reconstructing 3D dynamic images, generating time–activity curves from selected regions of interest and then estimating the kinetic parameters from the generated time–activity curves. Although the potential applications of SPECT for imaging dynamic processes have not been fully realized in the clinic, it is hoped that this review illuminates the potential of SPECT for dynamic imaging, especially in light of new developments that enable measurement of dynamic processes directly from projection measurements. PMID:20858925

  13. TOPICAL REVIEW: Dynamic single photon emission computed tomography—basic principles and cardiac applications

    NASA Astrophysics Data System (ADS)

    Gullberg, Grant T.; Reutter, Bryan W.; Sitek, Arkadiusz; Maltz, Jonathan S.; Budinger, Thomas F.

    2010-10-01

    The very nature of nuclear medicine, the visual representation of injected radiopharmaceuticals, implies imaging of dynamic processes such as the uptake and wash-out of radiotracers from body organs. For years, nuclear medicine has been touted as the modality of choice for evaluating function in health and disease. This evaluation is greatly enhanced using single photon emission computed tomography (SPECT), which permits three-dimensional (3D) visualization of tracer distributions in the body. However, to fully realize the potential of the technique requires the imaging of in vivo dynamic processes of flow and metabolism. Tissue motion and deformation must also be addressed. Absolute quantification of these dynamic processes in the body has the potential to improve diagnosis. This paper presents a review of advancements toward the realization of the potential of dynamic SPECT imaging and a brief history of the development of the instrumentation. A major portion of the paper is devoted to the review of special data processing methods that have been developed for extracting kinetics from dynamic cardiac SPECT data acquired using rotating detector heads that move as radiopharmaceuticals exchange between biological compartments. Recent developments in multi-resolution spatiotemporal methods enable one to estimate kinetic parameters of compartment models of dynamic processes using data acquired from a single camera head with slow gantry rotation. The estimation of kinetic parameters directly from projection measurements improves bias and variance over the conventional method of first reconstructing 3D dynamic images, generating time-activity curves from selected regions of interest and then estimating the kinetic parameters from the generated time-activity curves. Although the potential applications of SPECT for imaging dynamic processes have not been fully realized in the clinic, it is hoped that this review illuminates the potential of SPECT for dynamic imaging, especially in light of new developments that enable measurement of dynamic processes directly from projection measurements.

  14. Parathyroid Cancer Treatment

    MedlinePlus

    ... of the head and neck. SPECT scan (single photon emission computed tomography scan) : A procedure that uses ... a recurrence. The parathyroid cancer usually recurs between 2 and 5 years after the first surgery , but ...

  15. A maximum entropy reconstruction technique for tomographic particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Bilsky, A. V.; Lozhkin, V. A.; Markovich, D. M.; Tokarev, M. P.

    2013-04-01

    This paper studies a novel approach for reducing tomographic PIV computational complexity. The proposed approach is an algebraic reconstruction technique, termed MENT (maximum entropy). This technique computes the three-dimensional light intensity distribution several times faster than SMART, using at least ten times less memory. Additionally, the reconstruction quality remains nearly the same as with SMART. This paper presents the theoretical computation performance comparison for MENT, SMART and MART, followed by validation using synthetic particle images. Both the theoretical assessment and validation of synthetic images demonstrate significant computational time reduction. The data processing accuracy of MENT was compared to that of SMART in a slot jet experiment. A comparison of the average velocity profiles shows a high level of agreement between the results obtained with MENT and those obtained with SMART.

  16. Virtual endoscopic imaging of the spine.

    PubMed

    Kotani, Toshiaki; Nagaya, Shigeyuki; Sonoda, Masaru; Akazawa, Tsutomu; Lumawig, Jose Miguel T; Nemoto, Tetsuharu; Koshi, Takana; Kamiya, Koshiro; Hirosawa, Naoya; Minami, Shohei

    2012-05-20

    Prospective trial of virtual endoscopy in spinal surgery. To investigate the utility of virtual endoscopy of the spine in conjunction with spinal surgery. Several studies have described clinical applications of virtual endoscopy to visualize the inside of the bronchi, paranasal sinus, stomach, small intestine, pancreatic duct, and bile duct, but, to date, no study has described the use of virtual endoscopy in the spine. Virtual endoscopy is a realistic 3-dimensional intraluminal simulation of tubular structures that is generated by postprocessing of computed tomographic data sets. Five patients with spinal disease were selected: 2 patients with degenerative disease, 2 patients with spinal deformity, and 1 patient with spinal injury. Virtual endoscopy software allows an observer to explore the spinal canal with a mouse, using multislice computed tomographic data. Our study found that virtual endoscopy of the spine has advantages compared with standard imaging methods because surgeons can noninvasively explore the spinal canal in all directions. Virtual endoscopy of the spine may be useful to surgeons for diagnosis, preoperative planning, and postoperative assessment by obviating the need to mentally construct a 3-dimensional picture of the spinal canal from 2-dimensional computed tomographic scans.

  17. Lamb wave tomographic imaging system for aircraft structural health assessment

    NASA Astrophysics Data System (ADS)

    Schwarz, Willi G.; Read, Michael E.; Kremer, Matthew J.; Hinders, Mark K.; Smith, Barry T.

    1999-01-01

    A tomographic imaging system using ultrasonic Lamb waves for the nondestructive inspection of aircraft components such as wings and fuselage is being developed. The computer-based system provides large-area inspection capability by electronically scanning an array of transducers that can be easily attached to flat and curved surface without moving parts. Images of the inspected area are produced in near real time employing a tomographic reconstruction method adapted from seismological applications. Changes in material properties caused by structural flaws such as disbonds, corrosion, and fatigue cracks can be effectively detected and characterized utilizing this fast NDE technique.

  18. The impacts of acute carbon monoxide poisoning on the brain: Longitudinal clinical and 99mTc ethyl cysteinate brain SPECT characterization of patients with persistent and delayed neurological sequelae.

    PubMed

    Tsai, Chung-Fen; Yip, Ping-Keung; Chen, Shao-Yuan; Lin, Jen-Cheng; Yeh, Zai-Ting; Kung, Lan-Yu; Wang, Cheng-Yi; Fan, Yu-Ming

    2014-04-01

    Acute carbon monoxide (CO) poisoning poses a significant threat to the central nervous system. It can cause brain injury and diverse neurological deficits including persistent neurological sequelae (PNS) and delayed neurological sequelae (DNS). The study aimed to investigate the long-term impacts of acute CO poisoning on brain perfusion and neurological function, and to explore potential differences between PNS and DNS patients. We evaluated brain perfusion using (99m)Tc ethyl cysteinate (ECD) brain single photon emission computed tomography (SPECT) and assessed clinical neurological symptoms and signs one month following acute poisoning. For DNS patients, ECD SPECT and clinical evaluation were performed when their delayed symptoms appeared. All patients had follow-up SPECT imaging, along with clinical assessments six months following poisoning. 12 PNS and 12 DNS patients were recruited between 2007 and 2010. Clinically, the main characteristic presentations were cognitive decline, emotional instability, and gait disturbance. SPECT imaging demonstrated consistent frontal hypoperfusion of varying severities in all patients, which decreased in severity at follow-up imaging. DNS patients usually had more severe symptoms and perfusion defects, along with worse clinical outcomes than the PNS group. These results suggest that acute CO poisoning might lead to long term brain injuries and neurological sequelae, particularly in DNS patients. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Appropriate test selection for single-photon emission computed tomography imaging: association with clinical risk, posttest management, and outcomes.

    PubMed

    Aldweib, Nael; Negishi, Kazuaki; Seicean, Sinziana; Jaber, Wael A; Hachamovitch, Rory; Cerqueira, Manuel; Marwick, Thomas H

    2013-09-01

    Appropriate use criteria (AUC) for stress single-photon emission computed tomography (SPECT) are only one step in appropriate use of imaging. Other steps include pretest clinical risk evaluation and optimal management responses. We sought to understand the link between AUC, risk evaluation, management, and outcome. We used AUC to classify 1,199 consecutive patients (63.8 ± 12.5 years, 56% male) undergoing SPECT as inappropriate, uncertain, and appropriate. Framingham score for asymptomatic patients and Bethesda angina score for symptomatic patients were used to classify patients into high (≥5%/y), intermediate, and low (≤1%/y) risk. Subsequent patient management was defined as appropriate or inappropriate based on the concordance between management decisions and the SPECT result. Patients were followed up for a median of 4.8 years, and cause of death was obtained from the social security death registry. Overall, 62% of SPECTs were appropriate, 18% inappropriate, and 20% uncertain (only 5 were unclassified). Of 324 low-risk studies, 108 (33%) were inappropriate, compared with 94 (15%) of 621 intermediate-risk and 1 (1%) of 160 high-risk studies (P < .001). There were 79 events, with outcomes of inappropriate patients better than uncertain and appropriate patients. Management was appropriate in 986 (89%), and appropriateness of patient management was unrelated to AUC (P = .65). Pretest clinical risk evaluation may be helpful in appropriateness assessment because very few high-risk patients are inappropriate, but almost half of low-risk patients are inappropriate or uncertain. Appropriate patient management is independent of appropriateness of testing. © 2013.

  20. Dynamic imaging in mild traumatic brain injury: support for the theory of medial temporal vulnerability.

    PubMed

    Umile, Eric M; Sandel, M Elizabeth; Alavi, Abass; Terry, Charles M; Plotkin, Rosette C

    2002-11-01

    To determine whether patients with mild traumatic brain injury (TBI) and persistent postconcussive symptoms have evidence of temporal lobe injury on dynamic imaging. Case series. An academic medical center. Twenty patients with a clinical diagnosis of mild TBI and persistent postconcussive symptoms were referred for neuropsychologic evaluation and dynamic imaging. Fifteen (75%) had normal magnetic resonance imaging (MRI) and/or computed tomography (CT) scans at the time of injury. Neuropsychologic testing, positron-emission tomography (PET), and single-photon emission-computed tomography (SPECT). Temporal lobe findings on static imaging (MRI, CT) and dynamic imaging (PET, SPECT); neuropsychologic test findings on measures of verbal and visual memory. Testing documented neurobehavioral deficits in 19 patients (95%). Dynamic imaging documented abnormal findings in 18 patients (90%). Fifteen patients (75%) had temporal lobe abnormalities on PET and SPECT (primarily in medial temporal regions); abnormal findings were bilateral in 10 patients (50%) and unilateral in 5 (25%). Six patients (30%) had frontal abnormalities, and 8 (40%) had nonfrontotemporal abnormalities. Correlations between neuropsychologic testing and dynamic imaging could be established but not consistently across the whole group. Patients with mild TBI and persistent postconcussive symptoms have a high incidence of temporal lobe injury (presumably involving the hippocampus and related structures), which may explain the frequent finding of memory disorders in this population. The abnormal temporal lobe findings on PET and SPECT in humans may be analogous to the neuropathologic evidence of medial temporal injury provided by animal studies after mild TBI. Copyright 2002 by the American Congress of Rehabilitation Medicine and the American Academy of Physical Medicine and Rehabilitation

  1. Stages of Parathyroid Cancer

    MedlinePlus

    ... of the head and neck. SPECT scan (single photon emission computed tomography scan) : A procedure that uses ... a recurrence. The parathyroid cancer usually recurs between 2 and 5 years after the first surgery , but ...

  2. Fast simulation of yttrium-90 bremsstrahlung photons with GATE.

    PubMed

    Rault, Erwann; Staelens, Steven; Van Holen, Roel; De Beenhouwer, Jan; Vandenberghe, Stefaan

    2010-06-01

    Multiple investigators have recently reported the use of yttrium-90 (90Y) bremsstrahlung single photon emission computed tomography (SPECT) imaging for the dosimetry of targeted radionuclide therapies. Because Monte Carlo (MC) simulations are useful for studying SPECT imaging, this study investigates the MC simulation of 90Y bremsstrahlung photons in SPECT. To overcome the computationally expensive simulation of electrons, the authors propose a fast way to simulate the emission of 90Y bremsstrahlung photons based on prerecorded bremsstrahlung photon probability density functions (PDFs). The accuracy of bremsstrahlung photon simulation is evaluated in two steps. First, the validity of the fast bremsstrahlung photon generator is checked. To that end, fast and analog simulations of photons emitted from a 90Y point source in a water phantom are compared. The same setup is then used to verify the accuracy of the bremsstrahlung photon simulations, comparing the results obtained with PDFs generated from both simulated and measured data to measurements. In both cases, the energy spectra and point spread functions of the photons detected in a scintillation camera are used. Results show that the fast simulation method is responsible for a 5% overestimation of the low-energy fluence (below 75 keV) of the bremsstrahlung photons detected using a scintillation camera. The spatial distribution of the detected photons is, however, accurately reproduced with the fast method and a computational acceleration of approximately 17-fold is achieved. When measured PDFs are used in the simulations, the simulated energy spectrum of photons emitted from a point source of 90Y in a water phantom and detected in a scintillation camera closely approximates the measured spectrum. The PSF of the photons imaged in the 50-300 keV energy window is also accurately estimated with a 12.4% underestimation of the full width at half maximum and 4.5% underestimation of the full width at tenth maximum. Despite its limited accuracy, the fast bremsstrahlung photon generator is well suited for the simulation of bremsstrahlung photons emitted in large homogeneous organs, such as the liver, and detected in a scintillation camera. The computational acceleration makes it very useful for future investigations of 90Y bremsstrahlung SPECT imaging.

  3. Research in Image Understanding as Applied to 3-D Microwave Tomographic Imaging with Near Optical Resolution.

    DTIC Science & Technology

    1986-03-10

    and P. Frangos , "Inverse Scattering for Dielectric Media", Annual OSA Meeting, Wash. D.C., Oct. 1985. Invited Presentations 1. N. Farhat, "Tomographic...Optical Computing", DARPA Briefing, ~~April 1985. ... -7--.. , 1% If .% P . .% .% *-. 7777~14e 7-7. K-7 77 Theses 0 P.V. Frangos , "The Electromagnetic

  4. Misalignments calibration in small-animal PET scanners based on rotating planar detectors and parallel-beam geometry.

    PubMed

    Abella, M; Vicente, E; Rodríguez-Ruano, A; España, S; Lage, E; Desco, M; Udias, J M; Vaquero, J J

    2012-11-21

    Technological advances have improved the assembly process of PET detectors, resulting in quite small mechanical tolerances. However, in high-spatial-resolution systems, even submillimetric misalignments of the detectors may lead to a notable degradation of image resolution and artifacts. Therefore, the exact characterization of misalignments is critical for optimum reconstruction quality in such systems. This subject has been widely studied for CT and SPECT scanners based on cone beam geometry, but this is not the case for PET tomographs based on rotating planar detectors. The purpose of this work is to analyze misalignment effects in these systems and to propose a robust and easy-to-implement protocol for geometric characterization. The result of the proposed calibration method, which requires no more than a simple calibration phantom, can then be used to generate a correct 3D-sinogram from the acquired list mode data.

  5. Comparison of LVEF assessed by 2D echocardiography, gated blood pool SPECT, 99mTc tetrofosmin gated SPECT, and 18F-FDG gated PET with ERNV in patients with CAD and severe LV dysfunction.

    PubMed

    Raja, Senthil; Mittal, Bhagwant R; Santhosh, Sampath; Bhattacharya, Anish; Rohit, Manoj K

    2014-11-01

    Left ventricular ejection fraction (LVEF) is the single most important predictor of prognosis in patients with coronary artery disease (CAD) and left ventricular (LV) dysfunction. Equilibrium radionuclide ventriculography (ERNV) is considered the most reliable technique for assessing LVEF. Most of these patients undergo two dimensional (2D) echocardiography and myocardial viability study using gated myocardial perfusion imaging (MPI) or gated F-fluorodeoxyglucose (F-FDG) PET. However, the accuracy of LVEF assessed by these methods is not clear. This study has been designed to assess the correlation and agreement between the LVEF measured by 2D echocardiography, gated blood pool single photon emission computed tomography (SPECT), Tc tetrofosmin gated SPECT, and F-FDG gated PET with ERNV in CAD patients with severe LV dysfunction. Patients with CAD and severe LV dysfunction [ejection fraction (EF) <35 assessed by 2D echocardiography] were prospectively included in the study. These patients underwent ERNV along with gated blood pool SPECT, Tc tetrofosmin gated SPECT, and F-FDG gated PET as per the standard protocol for myocardial viability assessment and LVEF calculation. Spearman's coefficient of correlation (r) was calculated for the different sets of values with significance level kept at a P-value less than 0.05. Bland-Altman plots were inspected to visually assess the between-agreement measurements from different methods. Forty-one patients were prospectively included. LVEF calculated by various radionuclide methods showed good correlation with ERNV as follows: gated blood pool SPECT, r=0.92; MPI gated SPECT, r=0.85; and F-FDG gated PET, r=0.76. However, the correlation between 2D echocardiography and ERNV was poor (r=0.520). The Bland-Altman plot for LVEF measured by all radionuclide methods showed good agreement with ERNV. However, agreement between 2D echocardiography and ERNV is poor, as most of the values in this plot gave a negative difference for low EF and a positive difference for high EF. The mean difference between various techniques [2D echocardiography (a), gated blood pool SPECT (b), MPI gated SPECT (c), F-FDG gated PET (d)] and ERNV (e) was as follows: (a)-(e), 3.3; (b)-(e), 5; (c)-(e), 1.1; and (d)-(e), 2.9. The best possible correlation and agreement was found between MPI gated SPECT and ERNV. This study showed good correlation and agreement between MPI gated SPECT and F-FDG gated PET with ERNV for LVEF calculation in CAD patients with severe LV dysfunction. Thus, subjecting patients who undergo viability assessment by MPI gated SPECT or F-FDG gated PET to a separate procedure like ERNV for LVEF assessment may not be warranted. As the gated blood pool SPECT also showed good correlation and agreement with ERNV for LVEF assessment in CAD patients with severe LV dysfunction, with better characteristics than ERNV, it can be routinely used whenever accurate LVEF assessment is needed.

  6. Patient- and clinician-reported satisfaction with pharmacological stress agents for single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI).

    PubMed

    Hudgens, Stacie; Breeze, Janis; Spalding, James

    2013-01-01

    The objective of this study was to compare clinician and patient measures of satisfaction with two pharmacological stress agents (PSA), regadenoson and dipyridamole, used in Single Photon Emission Computed Tomography (SPECT) Myocardial Perfusion Imaging (MPI). This observational study included patients who had undergone SPECT MPI with regadenoson or dipyridamole, as well as the clinician/clinical technologist who performed the test. Mean scores for individual item and domain scores of the main outcome measures were computed as well as the effect sizes (ES) of the mean difference in scores between treatment groups. Statistical significance of the mean item and domain score differences were assessed via Mann-Whitney tests. Two self-report questionnaires which had beeb previously developed and validated: Patient Satisfaction/Preference Questionnaire (PSPQ) and Clinician Satisfaction/Preference Questionnaire (CSPQ). A total of 87 patients (68 received regadenoson, 19 received dipyridamole) and nine clinicians/clinical technologists took part in the study. Patients had a mean age of 66.8 ± 12.2 years, and 56.3% were male. Compared to dipyridamole, use of regadenoson was associated with greater clinician satisfaction on all items and domains of the CSPQ (p < 0.001 for all comparisons). Among patients, regadenoson was associated with less bother and greater satisfaction than dipyridamole for all items on the PSPQ. These patients reported less stinging at the injection site (ES = -0.66) and less nervousness during injection (ES = -0.60). The PSPQ found that regadenoson patients were more satisfied with their PSA than dipyridamole patients in all areas. This study utilized a relatively small sample size of dipyridamole patients and lacked an adenosine group. A broader sampling of professionals would also help demonstrate generalizability. Both patients and clinicians reported higher satisfaction with regadenoson compared to dipyridamole for SPECT-MPI. Clinicians were particularly satisfied with the preparation and administration aspects of the drug, while patients rated it highly on convenience and reduced incidence of side-effects.

  7. Brain single-photon emission CT physics principles.

    PubMed

    Accorsi, R

    2008-08-01

    The basic principles of scintigraphy are reviewed and extended to 3D imaging. Single-photon emission computed tomography (SPECT) is a sensitive and specific 3D technique to monitor in vivo functional processes in both clinical and preclinical studies. SPECT/CT systems are becoming increasingly common and can provide accurately registered anatomic information as well. In general, SPECT is affected by low photon-collection efficiency, but in brain imaging, not all of the large FOV of clinical gamma cameras is needed: The use of fan- and cone-beam collimation trades off the unused FOV for increased sensitivity and resolution. The design of dedicated cameras aims at increased angular coverage and resolution by minimizing the distance from the patient. The corrections needed for quantitative imaging are challenging but can take advantage of the relative spatial uniformity of attenuation and scatter. Preclinical systems can provide submillimeter resolution in small animal brain imaging with workable sensitivity.

  8. [Coronary artery disease and cardiac ischemic disease: two different pathologies with different diagnostic procedures].

    PubMed

    Vallejo, Enrique

    2009-01-01

    Coronary artery disease (CAD) remains the leading cause of death in the Western world, and early detection of CAD allows optimal therapeutic management. The gold standard has always been invasive coronary angiography, but over the years various non-invasive techniques have been developed to detect CAD, including cardiac SPECT and cardiac computed tomography (Cardiac CT). Cardiac SPECT permitted visualization of myocardial perfusion and have focused on the assessment of the hemodynamic consequences of obstructive coronary lesions as a marker of CAD. Cardiac CT focuses on the detection of atherosclerosis rather than ischemia, and permit detection of CAD at an earlier stage. Objectives of this manuscript are to discuss the clinical experience with both modalities and to provide a critical review of the strengths and limitations of Cardiac SPECT and Cardiac CT for the diagnostic and management of patients with suspected CAD or cardiac ischemic disease.

  9. The utility of 99mTc-EDDA/HYNIC-TOC scintigraphy for assessment of lung lesions in patients with neuroendocrine tumors.

    PubMed

    Pavlovic, S; Artiko, V; Sobic-Saranovic, D; Damjanovic, S; Popovic, B; Jakovic, R; Petrasinovic, Z; Jaksic, E; Todorovic-Tirnanic, M; Saranovic, D; Micev, M; Novosel, S; Nikolic, N; Obradovic, V

    2010-01-01

    Our aim was to assess clinical utility of 99mTc-EDDA/HYNIC-TOC scintigraphy for evaluation of lung lesions in patients with neuroendocrine tumors (NETs). Single photon emission computed tomography (SPECT) of the thorax and whole body scintigraphy were performed in 34 patients using 99mTc-EDDA/HYNIC-TOC. Visual assessment was complemented by semiquantitative evaluation based on tumor to non-tumor (T/NT) ratio. Clinical, laboratory, and histological findings served as the standard for comparison. Enhanced tracer uptake was observed on both SPECT and whole body scintigraphy in 29 of 34 patients (88% sensitivity). T/NT ratios were significantly higher on SPECT than whole body images (2.96+/-1.07 vs.1.70+/-0.43, p 99mTc-EDDA/Hynic-TOC, lung involvement of NETs, T/NT ratio.

  10. Treatment Option Overview (Parathyroid Cancer)

    MedlinePlus

    ... of the head and neck. SPECT scan (single photon emission computed tomography scan) : A procedure that uses ... a recurrence. The parathyroid cancer usually recurs between 2 and 5 years after the first surgery , but ...

  11. Nuclear Heart Scan

    MedlinePlus

    ... into your blood and travels to your heart. Nuclear heart scans use single photon emission computed tomography (SPECT) or cardiac positron emission tomography (PET) to detect the energy from the tracer to make pictures of your ...

  12. Fast GPU-based Monte Carlo code for SPECT/CT reconstructions generates improved 177Lu images.

    PubMed

    Rydén, T; Heydorn Lagerlöf, J; Hemmingsson, J; Marin, I; Svensson, J; Båth, M; Gjertsson, P; Bernhardt, P

    2018-01-04

    Full Monte Carlo (MC)-based SPECT reconstructions have a strong potential for correcting for image degrading factors, but the reconstruction times are long. The objective of this study was to develop a highly parallel Monte Carlo code for fast, ordered subset expectation maximum (OSEM) reconstructions of SPECT/CT images. The MC code was written in the Compute Unified Device Architecture language for a computer with four graphics processing units (GPUs) (GeForce GTX Titan X, Nvidia, USA). This enabled simulations of parallel photon emissions from the voxels matrix (128 3 or 256 3 ). Each computed tomography (CT) number was converted to attenuation coefficients for photo absorption, coherent scattering, and incoherent scattering. For photon scattering, the deflection angle was determined by the differential scattering cross sections. An angular response function was developed and used to model the accepted angles for photon interaction with the crystal, and a detector scattering kernel was used for modeling the photon scattering in the detector. Predefined energy and spatial resolution kernels for the crystal were used. The MC code was implemented in the OSEM reconstruction of clinical and phantom 177 Lu SPECT/CT images. The Jaszczak image quality phantom was used to evaluate the performance of the MC reconstruction in comparison with attenuated corrected (AC) OSEM reconstructions and attenuated corrected OSEM reconstructions with resolution recovery corrections (RRC). The performance of the MC code was 3200 million photons/s. The required number of photons emitted per voxel to obtain a sufficiently low noise level in the simulated image was 200 for a 128 3 voxel matrix. With this number of emitted photons/voxel, the MC-based OSEM reconstruction with ten subsets was performed within 20 s/iteration. The images converged after around six iterations. Therefore, the reconstruction time was around 3 min. The activity recovery for the spheres in the Jaszczak phantom was clearly improved with MC-based OSEM reconstruction, e.g., the activity recovery was 88% for the largest sphere, while it was 66% for AC-OSEM and 79% for RRC-OSEM. The GPU-based MC code generated an MC-based SPECT/CT reconstruction within a few minutes, and reconstructed patient images of 177 Lu-DOTATATE treatments revealed clearly improved resolution and contrast.

  13. [A computer tomography assisted method for the automatic detection of region of interest in dynamic kidney images].

    PubMed

    Jing, Xueping; Zheng, Xiujuan; Song, Shaoli; Liu, Kai

    2017-12-01

    Glomerular filtration rate (GFR), which can be estimated by Gates method with dynamic kidney single photon emission computed tomography (SPECT) imaging, is a key indicator of renal function. In this paper, an automatic computer tomography (CT)-assisted detection method of kidney region of interest (ROI) is proposed to achieve the objective and accurate GFR calculation. In this method, the CT coronal projection image and the enhanced SPECT synthetic image are firstly generated and registered together. Then, the kidney ROIs are delineated using a modified level set algorithm. Meanwhile, the background ROIs are also obtained based on the kidney ROIs. Finally, the value of GFR is calculated via Gates method. Comparing with the clinical data, the GFR values estimated by the proposed method were consistent with the clinical reports. This automatic method can improve the accuracy and stability of kidney ROI detection for GFR calculation, especially when the kidney function has been severely damaged.

  14. Radionuclide Ventriculography or Radionuclide Angiography (MUGA Scan)

    MedlinePlus

    ... Attack Heart Failure Myocardial Perfusion Imaging (MPI) Single Photon Emission Computed Tomography (SPECT) Positron Emission Tomography (PET) ... stroke. Popular Articles 1 Understanding Blood Pressure Readings 2 Sodium and Salt 3 Heart Attack Symptoms in ...

  15. Single Photon Emission Computed Tomography (SPECT)

    MedlinePlus

    ... for Heart.org Arrhythmia About Arrhythmia Why Arrhythmia Matters Understand Your Risk for Arrhythmia Symptoms, Diagnosis & Monitoring ... How HBP Harms Your Health Make Changes That Matter Find HBP Tools & Resources Stroke Vascular Health Peripheral ...

  16. Lymphoscintigraphy

    MedlinePlus

    ... The special camera and imaging techniques used in nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, also called a scintillation camera, detects radioactive energy that is emitted from the patient's body and ...

  17. Hepatobiliary

    MedlinePlus

    ... The special camera and imaging techniques used in nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, also called a scintillation camera, detects radioactive energy that is emitted from the patient's body and ...

  18. Automatic estimation of detector radial position for contoured SPECT acquisition using CT images on a SPECT/CT system.

    PubMed

    Liu, Ruijie Rachel; Erwin, William D

    2006-08-01

    An algorithm was developed to estimate noncircular orbit (NCO) single-photon emission computed tomography (SPECT) detector radius on a SPECT/CT imaging system using the CT images, for incorporation into collimator resolution modeling for iterative SPECT reconstruction. Simulated male abdominal (arms up), male head and neck (arms down) and female chest (arms down) anthropomorphic phantom, and ten patient, medium-energy SPECT/CT scans were acquired on a hybrid imaging system. The algorithm simulated inward SPECT detector radial motion and object contour detection at each projection angle, employing the calculated average CT image and a fixed Hounsfield unit (HU) threshold. Calculated radii were compared to the observed true radii, and optimal CT threshold values, corresponding to patient bed and clothing surfaces, were found to be between -970 and -950 HU. The algorithm was constrained by the 45 cm CT field-of-view (FOV), which limited the detected radii to < or = 22.5 cm and led to occasional radius underestimation in the case of object truncation by CT. Two methods incorporating the algorithm were implemented: physical model (PM) and best fit (BF). The PM method computed an offset that produced maximum overlap of calculated and true radii for the phantom scans, and applied that offset as a calculated-to-true radius transformation. For the BF method, the calculated-to-true radius transformation was based upon a linear regression between calculated and true radii. For the PM method, a fixed offset of +2.75 cm provided maximum calculated-to-true radius overlap for the phantom study, which accounted for the camera system's object contour detect sensor surface-to-detector face distance. For the BF method, a linear regression of true versus calculated radius from a reference patient scan was used as a calculated-to-true radius transform. Both methods were applied to ten patient scans. For -970 and -950 HU thresholds, the combined overall average root-mean-square (rms) error in radial position for eight patient scans without truncation were 3.37 cm (12.9%) for PM and 1.99 cm (8.6%) for BF, indicating BF is superior to PM in the absence of truncation. For two patient scans with truncation, the rms error was 3.24 cm (12.2%) for PM and 4.10 cm (18.2%) for BF. The slightly better performance of PM in the case of truncation is anomalous, due to FOV edge truncation artifacts in the CT reconstruction, and thus is suspect. The calculated NCO contour for a patient SPECT/CT scan was used with an iterative reconstruction algorithm that incorporated compensation for system resolution. The resulting image was qualitatively superior to the image obtained by reconstructing the data using the fixed radius stored by the scanner. The result was also superior to the image reconstructed using the iterative algorithm provided with the system, which does not incorporate resolution modeling. These results suggest that, under conditions of no or only mild lateral truncation of the CT scan, the algorithm is capable of providing radius estimates suitable for iterative SPECT reconstruction collimator geometric resolution modeling.

  19. Changes in Functional Lung Regions During the Course of Radiation Therapy and Their Potential Impact on Lung Dosimetry for Non-Small Cell Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Xue; Department of Radiation Oncology, Shandong Cancer Hospital, Shandong University, Jinan; Frey, Kirk

    2014-05-01

    Purpose: To study changes in functional activity on ventilation (V)/perfusion (Q) single-photon emission computed tomography (SPECT) during radiation therapy (RT) and explore the impact of such changes on lung dosimetry in patients with non-small cell lung cancer (NSCLC). Methods and Materials: Fifteen NSCLC patients with centrally located tumors were enrolled. All patients were treated with definitive RT dose of ≥60 Gy. V/Q SPECT-CT scans were performed prior to and after delivery of 45 Gy of fractionated RT. SPECT images were used to define temporarily dysfunctional regions of lung caused by tumor or other potentially reversible conditions as B3. The functional lung (FL)more » was defined on SPECT by 2 separate approaches: FL1, a threshold of 30% of the maximum uptake of the patient's lung; and FL2, FL1 plus B3 region. The impact of changes in FL between initiation of RT and delivery of 45 Gy on lung dosimetry were analyzed. Results: Fourteen patients (93%) had larger FL2 volumes than FL1 pre-RT (P<.001). Dysfunctional lung became functional in 11 patients (73%) on V SPECT and in 10 patients (67%) on Q SPECT. The dosimetric parameters generated from CT-based anatomical lung had significantly lower values in FL1 than FL2, with a median reduction in the volume of lung receiving a dose of at least 20 Gy (V{sub 20}) of 3%, 5.6%, and mean lung dose of 0.95 and 1.55 on V and Q SPECT respectively. Conclusions: Regional ventilation and perfusion function improve significantly during RT in centrally located NSCLC. Lung dosimetry values vary notably between different definitions of functional lung.« less

  20. [Tumoral calcinoses in a chronic hemodialysis patient: The role of SPECT/CT hybrid imaging].

    PubMed

    Matrane, Aboubakr; Hiroual, Soufiane; Bsiss, Mohamed Aziz; Doubli, Safa Bennani

    2018-05-01

    Tumoral calcinosis is a rare benign disease, defined by the presence of calcified deposits in periarticular tissues. It can be hereditary or secondary at chronic renal failure at the stage of dialysis. This work illustrates the contribution of single-photon emission computed tomography (SPECT/CT) in the diagnosis and management of tumoral calcinoses in a chronic hemodialysis patient, based on a clinical case. A 62-year-old patient, chronic hemodialysis since 24 years, presented a mechanical pain shoulders, knees and hips with limitation of joint mobility. The clinical exam found a mass of soft tissue in the buttocks. The radiological exam showed the presence of periarticular calcifications with no bone involvement. The SPECT/CT revealed a multifocal tumoral calcinosis affecting shoulders, elbows, wrists, hips and knees, associated with alveolar and abdominal calcinosis. Tumoral calcinosis is a distinct clinicopathological entity characterised by periarticular soft tissue calcium deposits. The SPECT/CT is important in the diagnosis, the assessment of extension and monitoring of tumoral calcinosis after treatment. Copyright © 2017 Société francophone de néphrologie, dialyse et transplantation. Published by Elsevier Masson SAS. All rights reserved.

  1. SPECT and PET in ischemic heart failure.

    PubMed

    Angelidis, George; Giamouzis, Gregory; Karagiannis, Georgios; Butler, Javed; Tsougos, Ioannis; Valotassiou, Varvara; Giannakoulas, George; Dimakopoulos, Nikolaos; Xanthopoulos, Andrew; Skoularigis, John; Triposkiadis, Filippos; Georgoulias, Panagiotis

    2017-03-01

    Heart failure is a common clinical syndrome associated with significant morbidity and mortality worldwide. Ischemic heart disease is the leading cause of heart failure, at least in the industrialized countries. Proper diagnosis of the syndrome and management of patients with heart failure require anatomical and functional information obtained through various imaging modalities. Nuclear cardiology techniques play a main role in the evaluation of heart failure. Myocardial single photon emission computed tomography (SPECT) with thallium-201 or technetium-99 m labelled tracers offer valuable data regarding ventricular function, myocardial perfusion, viability, and intraventricular synchronism. Moreover, positron emission tomography (PET) permits accurate evaluation of myocardial perfusion, metabolism, and viability, providing high-quality images and the ability of quantitative analysis. As these imaging techniques assess different parameters of cardiac structure and function, variations of sensitivity and specificity have been reported among them. In addition, the role of SPECT and PET guided therapy remains controversial. In this comprehensive review, we address these controversies and report the advances in patient's investigation with SPECT and PET in ischemic heart failure. Furthermore, we present the innovations in technology that are expected to strengthen the role of nuclear cardiology modalities in the investigation of heart failure.

  2. New Trends in Radionuclide Myocardial Perfusion Imaging

    PubMed Central

    Hung, Guang-Uei; Wang, Yuh-Feng; Su, Hung-Yi; Hsieh, Te-Chun; Ko, Chi-Lun; Yen, Ruoh-Fang

    2016-01-01

    Radionuclide myocardial perfusion imaging (MPI) with single photon emission computed tomography (SPECT) has been widely used clinically as one of the major functional imaging modalities for patients with coronary artery disease (CAD) for decades. Ample evidence has supported the use of MPI as a useful and important tool in the diagnosis, risk stratification and treatment planning for CAD. Although popular in the United States, MPI has become the most frequently used imaging modality among all nuclear medicine tests in Taiwan. However, it should be acknowledged that MPI SPECT does have its limitations. These include false-positive results due to certain artifacts, false-negative due to balanced ischemia, complexity and adverse reaction arising from current pharmacological stressors, time consuming nature of the imaging procedure, no blood flow quantitation and relatively high radiation exposure. The purpose of this article was to review the recent trends in nuclear cardiology, including the utilization of positron emission tomography (PET) for MPI, new stressor, new SPECT camera with higher resolution and higher sensitivity, dynamic SPECT protocol for blood flow quantitation, new software of phase analysis for evaluation of LV dyssynchrony, and measures utilized for reducing radiation exposure of MPI. PMID:27122946

  3. The Thermodynamics of Thorium-Oxygen and Uranium-Oxygen Systems

    DTIC Science & Technology

    1975-02-19

    mass effusion 1600-2200 AGT(6) 2.17 x 10-6 147.1 42.2 " " 1920-2220 Ivanov(l0) 4.08 147.8 42.0 " " 2200-2800 Ohse(8) 3.14 141.2 39.4 mass spect . 1890...iverage deviation of Tout 2.4 cal/mole K. The uncertainty in the entropy of tbis proce:is will be reflected in the computation of ASo f U02(g). ’,ing...Selectionees Donees 1,pectroscopique Relatives Aux Molecules Diatomique Pergamon Press, 1970. 11. T. Wentink, Jr., R. J. Spindler, Jr., 3. Quant. Spect

  4. Diagnostic utility, safety, and cost-effectiveness of emergency department-initiated early scheduled technetium-99m single photon emission computed tomography imaging followed by expedited outpatient cardiac clinic visits in acute chest pain syndromes.

    PubMed

    Wong, Raymond C; Sinha, Arvind Kumar; Mahadevan, Malcolm; Yeo, Tiong Cheng

    2010-09-01

    Conventional emergency department (EMD) approach to triaging acute chest pain syndromes may lead to unnecessary admissions, resulting to in-hospital bed occupancy and increased healthcare costs. We explore the diagnostic utility of early (less than a week) outpatient scheduled single photon emission computed tomography (SPECT) in intermediate-risk chest pain subjects who presented to EMD with non-diagnostic electrocardiogram and negative serum troponin level. Additionally, we intend to study the safety and cost-effectiveness of such a strategy. We conduct a prospective, non-randomized study of 108 subjects who fit the inclusion criteria. After SPECT studies, all subjects were evaluated in the cardiac clinic within 2 weeks of EMD visits. Final diagnosis of coronary artery disease and subsequent disposition to standard medical therapy or follow-on angiography were decided by incorporating pre-test clinical data and SPECT results. Adverse events defined as myocardial infarction and cardiac death was tracked between EMD visit and eventual therapy (either medical therapy or coronary revascularization). Finally, cost-effectiveness was determined based on estimated cost and days of hospitalization saved between standard strategies of ward admission for further evaluation versus the present early outpatient SPECT-based workflow. Among 108 subjects (mean age 58 years, 59% male) included for analysis, 82 (76%) had normal perfusion status. There was no statistical difference in baseline characteristics and prior ischemic heart disease history between groups. In the 26 abnormal perfusion subjects, seven had follow-on coronary angiography in which three were found to have significant stenotic coronary lesions, but only one had intervention performed. There was an unscheduled coronary angiography in the normal perfusion group that yielded normal coronary anatomy. There was no adverse clinical event in both groups. Compared with standard strategy, early outpatient SPECT initiated by EMD physicians followed by cardiac clinic evaluation resulted in 2.9 days of hospitalization or $781.23 saved per patient per EMD visit. EMD-initiated early SPECT studies followed by cardiac clinic evaluation in intermediate-risk acute chest pain syndromes with non-diagnostic ECG and negative serum troponin levels carries excellent diagnostic and therapeutic utility, in addition to being safe and cost-effective.

  5. Development of a combined microSPECT/CT system for small animal imaging

    NASA Astrophysics Data System (ADS)

    Sun, Mingshan

    Modern advances in the biomedical sciences have placed increased attention on small animals such as mice and rats as models of human biology and disease in biological research and pharmaceutical development. Their small size and fast breeding rate, their physiologic similarity to human, and, more importantly, the availability of sophisticated genetic manipulations, all have made mice and rats the laboratory mammals of choice in these experimental studies. However, the increased use of small animals in biomedical research also calls for new instruments that can measure the anatomic and metabolic information noninvasively with adequate spatial resolution and measurement sensitivity to facilitate these studies. This dissertation describes the engineering development of a combined single photon emission computed tomography (SPECT) and X-ray computed tomography (CT) system dedicated for small animals imaging. The system aims to obtain both the anatomic and metabolic images with submillimeter spatial resolution in a way that the data can be correlated to provide improved image quality and to offer more complete biological evaluation for biomedical studies involving small animals. The project requires development of complete microSPECT and microCT subsystems. Both subsystems are configured with a shared gantry and animal bed with integrated instrumentation for data acquisition and system control. The microCT employs a microfocus X-ray tube and a CCD-based detector for low noise, high resolution imaging. The microSPECT utilizes three semiconductor detectors coupled with pinhole collimators. A significant contribution of this dissertation project is the development of iterative algorithms with geometrical compensation that allows radionuclide images to be reconstructed at submillimeter spatial resolution, but with significantly higher detection efficiency than conventional methods. Both subsystems are capable of helical scans, offering lengthened field of view and improved axial resolution. System performance of both modalities is characterized with phantoms and animals. The microSPECT shows 0.6 mm resolution and 60 cps/MBq detection efficiency for imaging mice with 0.5 mm pinholes. The microCT achieves 120 mum spatial resolution on detector but with a relatively low detective quantum efficiency of 0.2 at the zero frequency. The combined system demonstrates a flexible platform for instrumentation development and a valuable tool for biomedical research. In summary, this dissertation describes the development of a combined SPECT/CT system for imaging the physiological function and anatomical structure in small animals.

  6. Task-based design of a synthetic-collimator SPECT system used for small animal imaging.

    PubMed

    Lin, Alexander; Kupinski, Matthew A; Peterson, Todd E; Shokouhi, Sepideh; Johnson, Lindsay C

    2018-05-07

    In traditional multipinhole SPECT systems, image multiplexing - the overlapping of pinhole projection images - may occur on the detector, which can inhibit quality image reconstructions due to photon-origin uncertainty. One proposed system to mitigate the effects of multiplexing is the synthetic-collimator SPECT system. In this system, two detectors, a silicon detector and a germanium detector, are placed at different distances behind the multipinhole aperture, allowing for image detection to occur at different magnifications and photon energies, resulting in higher overall sensitivity while maintaining high resolution. The unwanted effects of multiplexing are reduced by utilizing the additional data collected from the front silicon detector. However, determining optimal system configurations for a given imaging task requires efficient parsing of the complex parameter space, to understand how pinhole spacings and the two detector distances influence system performance. In our simulation studies, we use the ensemble mean-squared error of the Wiener estimator (EMSE W ) as the figure of merit to determine optimum system parameters for the task of estimating the uptake of an 123 I-labeled radiotracer in three different regions of a computer-generated mouse brain phantom. The segmented phantom map is constructed by using data from the MRM NeAt database and allows for the reduction in dimensionality of the system matrix which improves the computational efficiency of scanning the system's parameter space. To contextualize our results, the Wiener estimator is also compared against a region of interest estimator using maximum-likelihood reconstructed data. Our results show that the synthetic-collimator SPECT system outperforms traditional multipinhole SPECT systems in this estimation task. We also find that image multiplexing plays an important role in the system design of the synthetic-collimator SPECT system, with optimal germanium detector distances occurring at maxima in the derivative of the percent multiplexing function. Furthermore, we report that improved task performance can be achieved by using an adaptive system design in which the germanium detector distance may vary with projection angle. Finally, in our comparative study, we find that the Wiener estimator outperforms the conventional region of interest estimator. Our work demonstrates how this optimization method has the potential to quickly and efficiently explore vast parameter spaces, providing insight into the behavior of competing factors, which are otherwise very difficult to calculate and study using other existing means. © 2018 American Association of Physicists in Medicine.

  7. Small-Animal SPECT/CT of the Progression and Recovery of Rat Liver Fibrosis by Using an Integrin αvβ3-targeting Radiotracer.

    PubMed

    Yu, Xinhe; Wu, Yue; Liu, Hao; Gao, Liquan; Sun, Xianlei; Zhang, Chenran; Shi, Jiyun; Zhao, Huiyun; Jia, Bing; Liu, Zhaofei; Wang, Fan

    2016-05-01

    To assess the potential utility of an integrin αvβ3-targeting radiotracer, technetium 99m-PEG4-E[PEG4-cyclo(arginine-glycine-aspartic acid-D-phenylalanine-lysine)]2 ((99m)Tc-3PRGD2), for single photon emission computed tomography (SPECT)/computed tomography (CT) for monitoring of the progression and prognosis of liver fibrosis in a rat model. All animal experiments were performed by following the protocol approved by the institutional animal care and use committee. (99m)Tc-3PRGD2 was prepared and longitudinal SPECT/CT was performed to monitor the progression (n = 8) and recovery (n = 5) of liver fibrosis induced in a rat model by means of thioacetamide (TAA) administration. The mean liver-to-background radioactivity per unit volume ratio was analyzed for comparisons between the TAA and control (saline) groups at different stages of liver fibrosis. Data were compared by using Student t and Mann-Whitney tests. Results:of SPECT/CT were compared with those of ex vivo biodistribution analysis (n = 5). Accumulation of (99m)Tc-3PRGD2 in the liver increased in proportion to the progression of fibrosis and TAA exposure time; accumulation levels were significantly different between the TAA and control groups as early as week 4 of TAA administration (liver-to-background ratio: 32.30 ± 3.39 vs 19.01 ± 3.31; P = .0002). Results of ex vivo immunofluorescence staining demonstrated the positive expression of integrin αvβ3 on the activated hepatic stellate cells, and the integrin αvβ3 levels in the liver corresponded to the results of SPECT/CT (R(2) = 0.75, P < .0001). (99m)Tc-3PRGD2 uptake in the fibrotic liver decreased after antifibrotic therapy with interferon α2b compared with that in the control group (relative liver-to-background ratio: 0.45 ± 0.05 vs 1.01 ± 0.05; P < .0001) or spontaneous recovery (relative liver-to-background ratio: 0.56 ± 0.06 vs 1.01 ± 0.05; P < .0001). (99m)Tc-3PRGD2 SPECT/CT was successfully used to monitor the progression and recovery of liver fibrosis and shows potential applications for noninvasive diagnosis of early stage liver fibrosis. (©) RSNA, 2015 Online supplemental material is available for this article.

  8. SPECT/CT of lung nodules using 111In-DOTA-c(RGDfK) in a mouse lung carcinogenesis model.

    PubMed

    Hayakawa, Takuya; Mutoh, Michihiro; Imai, Toshio; Tsuta, Koji; Yanaka, Akinori; Fujii, Hirofumi; Yoshimoto, Mitsuyoshi

    2013-08-01

    Lung cancer is one of the leading causes of cancer-related deaths worldwide, including Japan. Although computed tomography (CT) can detect small lung lesions such as those appearing as ground glass opacity, it cannot differentiate between malignant and non-malignant lesions. Previously, we have shown that single photon emission computed tomography (SPECT) imaging using (111)In-1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid-cyclo-(Arg-Gly-Asp-D-Phe-Lys) (DOTA-c(RGDfK)), an imaging probe of αvβ3 integrin, is useful for the early detection of pancreatic cancer in a hamster pancreatic carcinogenesis model. In this study, we aimed to assess the usefulness of SPECT/CT with (111)In-DOTA-c(RGDfK) for the evaluation of the malignancy of lung cancer. Lung tumors were induced by a single intraperitoneal injection (250 mg/kg) of urethane in male A/J mice. Twenty-six weeks after the urethane treatment, SPECT was performed an hour after injection of (111)In-DOTA-c(RGDfK). Following this, the radioactivity ratios of tumor to normal lung tissue were measured by autoradiography (ARG) in the excised lung samples. We also examined the expression of αvβ3 integrin in mouse and human lung samples. Urethane treatment induced 5 hyperplasias, 41 adenomas and 12 adenocarcinomas in the lungs of 8 A/J mice. SPECT with (111)In-DOTA-c(RGDfK) could clearly visualize lung nodules, though we failed to detect small lung nodules like adenoma and hyperplasias (adenocarcinoma: 66.7%, adenoma: 33.6%, hyperplasia: 0.0%). ARG analysis revealed significant uptake of (111)In-DOTA-c(RGDfK) in all the lesions. Moreover, tumor to normal lung tissue ratios increased along with the progression of carcinogenesis. Histopathological examination using human lung tissue samples revealed clear up-regulation of αvβ3 integrin in well-differentiated adenocarcinoma (Noguchi type B and C) rather than atypical adenomatous hyperplasia. Although there are some limitations in evaluating the malignancy of small lung tumors using (111)In-DOTA-c(RGDfK), SPECT with (111)In-DOTA-c(RGDfK) might be a useful non-invasive imaging approach for evaluating the characteristics of lung tumors in mice, thus showing potential for use in humans.

  9. A Novel Quantitative Computed Tomographic Analysis Suggests How Sirolimus Stabilizes Progressive Air Trapping in Lymphangioleiomyomatosis

    PubMed Central

    Kokosi, Maria; Lo, Pechin; Kim, Hyun J.; Ravenel, James G.; Meyer, Cristopher; Goldin, Jonathan; Lee, Hye-Seung; Strange, Charlie; McCormack, Francis X.

    2016-01-01

    Rationale: The Multicenter International Lymphangioleiomyomatosis Efficacy and Safety of Sirolimus (MILES) trial demonstrated that sirolimus stabilized lung function and improved measures of functional performance and quality of life in patients with lymphangioleiomyomatosis. The physiologic mechanisms of these beneficial actions of sirolimus are incompletely understood. Objectives: To prospectively determine the longitudinal computed tomographic lung imaging correlates of lung function change in MILES patients treated with placebo or sirolimus. Methods: We determined the baseline to 12-month change in computed tomographic image–derived lung volumes and the volume of the lung occupied by cysts in the 31 MILES participants (17 in sirolimus group, 14 in placebo group) with baseline and 12-month scans. Measurements and Main Results: There was a trend toward an increase in median expiratory cyst volume percentage in the placebo group and a reduction in the sirolimus group (+2.68% vs. +0.97%, respectively; P = 0.10). The computed tomographic image–derived residual volume and the ratio of residual volume to total lung capacity increased more in the placebo group than in the sirolimus group (+214.4 ml vs. +2.9 ml [P = 0.054] and +0.05 ml vs. −0.01 ml [P = 0.0498], respectively). A Markov transition chain analysis of respiratory cycle cyst volume changes revealed greater dynamic variation in the sirolimus group than in the placebo group at the 12-month time point. Conclusions: Collectively, these data suggest that sirolimus attenuates progressive gas trapping in lymphangioleiomyomatosis, consistent with a beneficial effect of the drug on airflow obstruction. We speculate that a reduction in lymphangioleiomyomatosis cell burden around small airways and cyst walls alleviates progressive airflow limitation and facilitates cyst emptying. PMID:26799509

  10. A Novel Quantitative Computed Tomographic Analysis Suggests How Sirolimus Stabilizes Progressive Air Trapping in Lymphangioleiomyomatosis.

    PubMed

    Argula, Rahul G; Kokosi, Maria; Lo, Pechin; Kim, Hyun J; Ravenel, James G; Meyer, Cristopher; Goldin, Jonathan; Lee, Hye-Seung; Strange, Charlie; McCormack, Francis X

    2016-03-01

    The Multicenter International Lymphangioleiomyomatosis Efficacy and Safety of Sirolimus (MILES) trial demonstrated that sirolimus stabilized lung function and improved measures of functional performance and quality of life in patients with lymphangioleiomyomatosis. The physiologic mechanisms of these beneficial actions of sirolimus are incompletely understood. To prospectively determine the longitudinal computed tomographic lung imaging correlates of lung function change in MILES patients treated with placebo or sirolimus. We determined the baseline to 12-month change in computed tomographic image-derived lung volumes and the volume of the lung occupied by cysts in the 31 MILES participants (17 in sirolimus group, 14 in placebo group) with baseline and 12-month scans. There was a trend toward an increase in median expiratory cyst volume percentage in the placebo group and a reduction in the sirolimus group (+2.68% vs. +0.97%, respectively; P = 0.10). The computed tomographic image-derived residual volume and the ratio of residual volume to total lung capacity increased more in the placebo group than in the sirolimus group (+214.4 ml vs. +2.9 ml [P = 0.054] and +0.05 ml vs. -0.01 ml [P = 0.0498], respectively). A Markov transition chain analysis of respiratory cycle cyst volume changes revealed greater dynamic variation in the sirolimus group than in the placebo group at the 12-month time point. Collectively, these data suggest that sirolimus attenuates progressive gas trapping in lymphangioleiomyomatosis, consistent with a beneficial effect of the drug on airflow obstruction. We speculate that a reduction in lymphangioleiomyomatosis cell burden around small airways and cyst walls alleviates progressive airflow limitation and facilitates cyst emptying.

  11. The Use of Chest Computed Tomographic Angiography in Blunt Trauma Pediatric Population.

    PubMed

    Hasadia, Rabea; DuBose, Joseph; Peleg, Kobi; Stephenson, Jacob; Givon, Adi; Kessel, Boris

    2018-02-05

    Blunt chest trauma in children is common. Although rare, associated major thoracic vascular injuries (TVIs) are lethal potential sequelae of these mechanisms. The preferred study for definitive diagnosis of TVI in stable patients is computed tomographic angiography imaging of the chest. This imaging modality is, however, associated with high doses of ionizing radiation that represent significant carcinogenic risk for pediatric patients. The aim of the present investigation was to define the incidence of TVI among blunt pediatric trauma patients in an effort to better elucidate the usefulness of computed tomographic angiography use in this population. A retrospective cohort study was conducted including all blunt pediatric (age < 14 y) trauma victims registered in Israeli National Trauma Registry maintained by Gertner Institute for Epidemiology and Health Policy Research between the years 1997 and 2015. Data collected included age, sex, mechanism of injury, Glasgow Coma Scale, Injury Severity Score, and incidence of chest named vessel injuries. Statistical analysis was performed using SAS statistical software version 9.2 (SAS Institute Inc, Cary, NC). Among 433,325 blunt trauma victims, 119,821patients were younger than 14 years. Twelve (0.0001%, 12/119821) of these children were diagnosed with TVI. The most common mechanism in this group was pedestrian hit by a car. Mortality was 41.7% (5/12). Thoracic vascular injury is exceptionally rare among pediatric blunt trauma victims but does contribute to the high morbidity and mortality seen with blunt chest trauma. Computed tomographic angiography, with its associated radiation exposure risk, should not be used as a standard tool after trauma in injured children. Clinical protocols are needed in this population to minimize radiation risk while allowing prompt identification of life-threatening injuries.

  12. Influence of using a single facial vein as outflow in full-face transplantation: A three-dimensional computed tomographic study.

    PubMed

    Rodriguez-Lorenzo, Andres; Audolfsson, Thorir; Wong, Corrine; Cheng, Angela; Arbique, Gary; Nowinski, Daniel; Rozen, Shai

    2015-10-01

    The aim of this study was to evaluate the contribution of a single unilateral facial vein in the venous outflow of total-face allograft using three-dimensional computed tomographic imaging techniques to further elucidate the mechanisms of venous complications following total-face transplant. Full-face soft-tissue flaps were harvested from fresh adult human cadavers. A single facial vein was identified and injected distally to the submandibular gland with a radiopaque contrast (barium sulfate/gelatin mixture) in every specimen. Following vascular injections, three-dimensional computed tomographic venographies of the faces were performed. Images were viewed using TeraRecon Software (Teracon, Inc., San Mateo, CA, USA) allowing analysis of the venous anatomy and perfusion in different facial subunits by observing radiopaque filling venous patterns. Three-dimensional computed tomographic venographies demonstrated a venous network with different degrees of perfusion in subunits of the face in relation to the facial vein injection side: 100% of ipsilateral and contralateral forehead units, 100% of ipsilateral and 75% of contralateral periorbital units, 100% of ipsilateral and 25% of contralateral cheek units, 100% of ipsilateral and 75% of contralateral nose units, 100% of ipsilateral and 75% of contralateral upper lip units, 100% of ipsilateral and 25% of contralateral lower lip units, and 50% of ipsilateral and 25% of contralateral chin units. Venographies of the full-face grafts revealed better perfusion in the ipsilateral hemifaces from the facial vein in comparison with the contralateral hemifaces. Reduced perfusion was observed mostly in the contralateral cheek unit and contralateral lower face including the lower lip and chin units. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  13. Computed tomographic analysis of temporal maxillary stability and pterygomaxillary generate formation following pediatric Le Fort III distraction advancement.

    PubMed

    Hopper, Richard A; Sandercoe, Gavin; Woo, Albert; Watts, Robyn; Kelley, Patrick; Ettinger, Russell E; Saltzman, Babette

    2010-11-01

    Le Fort III distraction requires generation of bone in the pterygomaxillary region. The authors performed retrospective digital analysis on temporal fine-cut computed tomographic images to quantify both radiographic evidence of pterygomaxillary region bone formation and relative maxillary stability. Fifteen patients with syndromic midface hypoplasia were included in the study. The average age of the patients was 8.7 years; 11 had either Crouzon or Apert syndrome. The average displacement of the maxilla during distraction was 16.2 mm (range, 7 to 31 mm). Digital analysis was performed on fine-cut computed tomographic scans before surgery, at device removal, and at annual follow-up. Seven patients also had mid-consolidation computed tomographic scans. Relative maxillary stability and density of radiographic bone in the pterygomaxillary region were calculated between each scan. There was no evidence of clinically significant maxillary relapse, rotation, or growth between the end of consolidation and 1-year follow-up, other than a relatively small 2-mm subnasal maxillary vertical growth. There was an average radiographic ossification of 0.5 mm/mm advancement at the time of device removal, with a 25th percentile value of 0.3 mm/mm. The time during consolidation that each patient reached the 25th percentile of pterygomaxillary region bone density observed in this series of clinically stable advancements ranged from 1.3 to 9.8 weeks (average, 3.7 weeks). There was high variability in the amount of bone formed in the pterygomaxillary region associated with clinical stability of the advanced Le Fort III segment. These data suggest that a subsection of patients generate the minimal amount of pterygomaxillary region bone formation associated with advancement stability as early as 4 weeks into consolidation.

  14. Liver perfusion imaging in patients with primary and metastatic liver malignancy: prospective comparison between 99mTc-MAA spect and dynamic CT perfusion.

    PubMed

    Reiner, Caecilia S; Goetti, Robert; Burger, Irene A; Fischer, Michael A; Frauenfelder, Thomas; Knuth, Alexander; Pfammatter, Thomas; Schaefer, Niklaus; Alkadhi, Hatem

    2012-05-01

    To prospectively analyze the correlation between parameters of liver perfusion from technetium99m-macroaggregates of albumin (99mTc-MAA) single photon emission computed tomography (SPECT) with those obtained from dynamic CT perfusion in patients with primary or metastatic liver malignancy. Twenty-five consecutive patients (11 women, 14 men; mean age 60.9 ± 10.8; range: 32-78 years) with primary (n = 5) or metastatic (n = 20) liver malignancy planned to undergo selective internal radiotherapy underwent dynamic contrast-enhanced CT liver perfusion imaging (four-dimensional spiral mode, scan range 14.8 cm, 15 scans, cycle time 3 seconds) and 99m)Tc-MAA SPECT after intraarterial injection of 180 MBq 99mTc-MAA on the same day. Data were evaluated by two blinded and independent readers for the parameters arterial liver perfusion (ALP), portal venous perfusion (PVP), and total liver perfusion (TLP) from CT, and the 99mTc-MAA uptake-ratio of tumors in relation to normal liver parenchyma from SPECT. Interreader agreements for quantitative perfusion parameters were high for dynamic CT (r = 0.90-0.98, each P < .01) and 99mTc -MAA SPECT (r = 0.91, P < .01). Significant correlation was found between 99mTc-MAA uptake ratio and ALP (r = 0.7, P < .01) in liver tumors. No significant correlation was found between 99mTc-MAA uptake ratio, PVP (r = -0.381, P = .081), and TLP (r = 0.039, P = .862). This study indicates that in patients with primary and metastatic liver malignancy, ALP obtained by dynamic CT liver perfusion significantly correlates with the 99mTc-MAA uptake ratio obtained by SPECT. Copyright © 2012 AUR. Published by Elsevier Inc. All rights reserved.

  15. A novel computer-assisted image analysis of [123I]β-CIT SPECT images improves the diagnostic accuracy of parkinsonian disorders.

    PubMed

    Goebel, Georg; Seppi, Klaus; Donnemiller, Eveline; Warwitz, Boris; Wenning, Gregor K; Virgolini, Irene; Poewe, Werner; Scherfler, Christoph

    2011-04-01

    The purpose of this study was to develop an observer-independent algorithm for the correct classification of dopamine transporter SPECT images as Parkinson's disease (PD), multiple system atrophy parkinson variant (MSA-P), progressive supranuclear palsy (PSP) or normal. A total of 60 subjects with clinically probable PD (n = 15), MSA-P (n = 15) and PSP (n = 15), and 15 age-matched healthy volunteers, were studied with the dopamine transporter ligand [(123)I]β-CIT. Parametric images of the specific-to-nondisplaceable equilibrium partition coefficient (BP(ND)) were generated. Following a voxel-wise ANOVA, cut-off values were calculated from the voxel values of the resulting six post-hoc t-test maps. The percentages of the volume of an individual BP(ND) image remaining below and above the cut-off values were determined. The higher percentage of image volume from all six cut-off matrices was used to classify an individual's image. For validation, the algorithm was compared to a conventional region of interest analysis. The predictive diagnostic accuracy of the algorithm in the correct assignment of a [(123)I]β-CIT SPECT image was 83.3% and increased to 93.3% on merging the MSA-P and PSP groups. In contrast the multinomial logistic regression of mean region of interest values of the caudate, putamen and midbrain revealed a diagnostic accuracy of 71.7%. In contrast to a rater-driven approach, this novel method was superior in classifying [(123)I]β-CIT-SPECT images as one of four diagnostic entities. In combination with the investigator-driven visual assessment of SPECT images, this clinical decision support tool would help to improve the diagnostic yield of [(123)I]β-CIT SPECT in patients presenting with parkinsonism at their initial visit.

  16. Global scaling for semi-quantitative analysis in FP-CIT SPECT.

    PubMed

    Kupitz, D; Apostolova, I; Lange, C; Ulrich, G; Amthauer, H; Brenner, W; Buchert, R

    2014-01-01

    Semi-quantitative characterization of dopamine transporter availability from single photon emission computed tomography (SPECT) with 123I-ioflupane (FP-CIT) is based on uptake ratios relative to a reference region. The aim of this study was to evaluate the whole brain as reference region for semi-quantitative analysis of FP-CIT SPECT. The rationale was that this might reduce statistical noise associated with the estimation of non-displaceable FP-CIT uptake. 150 FP-CIT SPECTs were categorized as neurodegenerative or non-neurodegenerative by an expert. Semi-quantitative analysis of specific binding ratios (SBR) was performed with a custom-made tool based on the Statistical Parametric Mapping software package using predefined regions of interest (ROIs) in the anatomical space of the Montreal Neurological Institute. The following reference regions were compared: predefined ROIs for frontal and occipital lobe and whole brain (without striata, thalamus and brainstem). Tracer uptake in the reference region was characterized by the mean, median or 75th percentile of its voxel intensities. The area (AUC) under the receiver operating characteristic curve was used as performance measure. The highest AUC of 0.973 was achieved by the SBR of the putamen with the 75th percentile in the whole brain as reference. The lowest AUC for the putamen SBR of 0.937 was obtained with the mean in the frontal lobe as reference. We recommend the 75th percentile in the whole brain as reference for semi-quantitative analysis in FP-CIT SPECT. This combination provided the best agreement of the semi-quantitative analysis with visual evaluation of the SPECT images by an expert and, therefore, is appropriate to support less experienced physicians.

  17. Combined visual and semi-quantitative assessment of 123I-FP-CIT SPECT for the diagnosis of dopaminergic neurodegenerative diseases.

    PubMed

    Ueda, Jun; Yoshimura, Hajime; Shimizu, Keiji; Hino, Megumu; Kohara, Nobuo

    2017-07-01

    Visual and semi-quantitative assessments of 123 I-FP-CIT single-photon emission computed tomography (SPECT) are useful for the diagnosis of dopaminergic neurodegenerative diseases (dNDD), including Parkinson's disease, dementia with Lewy bodies, progressive supranuclear palsy, multiple system atrophy, and corticobasal degeneration. However, the diagnostic value of combined visual and semi-quantitative assessment in dNDD remains unclear. Among 239 consecutive patients with a newly diagnosed possible parkinsonian syndrome who underwent 123 I-FP-CIT SPECT in our medical center, 114 patients with a disease duration less than 7 years were diagnosed as dNDD with the established criteria or as non-dNDD according to clinical judgment. We retrospectively examined their clinical characteristics and visual and semi-quantitative assessments of 123 I-FP-CIT SPECT. The striatal binding ratio (SBR) was used as a semi-quantitative measure of 123 I-FP-CIT SPECT. We calculated the sensitivity and specificity of visual assessment alone, semi-quantitative assessment alone, and combined visual and semi-quantitative assessment for the diagnosis of dNDD. SBR was correlated with visual assessment. Some dNDD patients with a normal visual assessment had an abnormal SBR, and vice versa. There was no statistically significant difference between sensitivity of the diagnosis with visual assessment alone and semi-quantitative assessment alone (91.2 vs. 86.8%, respectively, p = 0.29). Combined visual and semi-quantitative assessment demonstrated superior sensitivity (96.7%) to visual assessment (p = 0.03) or semi-quantitative assessment (p = 0.003) alone with equal specificity. Visual and semi-quantitative assessments of 123 I-FP-CIT SPECT are helpful for the diagnosis of dNDD, and combined visual and semi-quantitative assessment shows superior sensitivity with equal specificity.

  18. Impact of basal inferolateral scar burden determined by automatic analysis of 99mTc-MIBI myocardial perfusion SPECT on the long-term prognosis of cardiac resynchronization therapy.

    PubMed

    Morishima, Itsuro; Okumura, Kenji; Tsuboi, Hideyuki; Morita, Yasuhiro; Takagi, Kensuke; Yoshida, Ruka; Nagai, Hiroaki; Tomomatsu, Toshiro; Ikai, Yoshihiro; Terada, Kazushi; Sone, Takahito; Murohara, Toyoaki

    2017-04-01

    Left-ventricular (LV) scarring may be associated with a poor response to cardiac resynchronization therapy (CRT). The automatic analysis of myocardial perfusion single-photon emission computed tomography (MP-SPECT) may provide objective quantification of LV scarring. We investigated the impact of LV scarring determined by an automatic analysis of MP-SPECT on short-term LV volume response as well as long-term outcome. We studied consecutive 51 patients who were eligible to undergo 99mTc-MIBI MP-SPECT both at baseline and 6 months after CRT (ischaemic cardiomyopathies 31%). Quantitative perfusion SPECT was used to evaluate the defect extent (an index of global scarring) and the LV 17-segment regional uptake ratio (an inverse index of regional scar burden). The primary outcome was the composite of overall mortality or first hospitalization for worsening heart failure. A high global scar burden and a low mid/basal inferolateral regional uptake ratio were associated with volume non-responders to CRT at 6 months. The basal inferolateral regional uptake ratio remained as a predictor of volume non-response after adjusting for the type of cardiomyopathy. During a median follow-up of 36.1 months, the outcome occurred in 28 patients. The patients with a low basal inferolateral regional uptake ratio with a cutoff value of 57% showed poor prognosis (log-rank P= 0.006). The scarring determined by automatic analysis of MP-SPECT images may predict a poor response to CRT regardless of the pathogenesis of cardiomyopathy. The basal inferolateral scar burden in particular may have an adverse impact on long-term prognosis. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  19. Isthmocervical labelling and SPECT/CT for optimized sentinel detection in endometrial cancer: technique, experience and results.

    PubMed

    Mücke, J; Klapdor, R; Schneider, M; Länger, F; Gratz, K F; Hillemanns, P; Hertel, H

    2014-08-01

    We evaluated the clinical feasibility of a new injection technique for sentinel detection in endometrial carcinoma (EC), transcervical subepithelial injection into the isthmocervical region of the myometrium. We compared detection of sentinel lymph nodes (SLN) by single photon emission computed tomography with CT (SPECT/CT) with planar lymphoscintigraphy. This is a unicentric prospective study. In all patients, transcervical injection of 10 MBq Technetium-99m-nanocolloid was performed into the isthmocervical myometrium without anaesthesia. After 40 (30-60) min, lymphoscintigraphy and SPECT/CT were performed. Patent blue was administered before surgery. The number and localisation of SLN detected in SPECT/CT and lymphoscintigraphy were recorded and compared to the SLN and non-SLN dissected intra-operatively. Between August 2008 and March 2012, 31 patients with EC were enrolled. The new transcervical injection of labelling substances led to high intra-operative (90.3%) detection rates, pelvic bilateral (57%), para-aortic (25%). SPECT/CT significantly identified more SLN than lymphoscintigraphy (mean 2.2 (1-8) to 1.3 (1-7)) in more patients (29/31 (93.5%) to 21/31 (68%), p<0.01). If SLN were identified in one hemi-pelvis, the histological evaluation of the SLN correctly predicted lymph node (LN) metastases for this basin which led to sensitivity 100%, negative predictive value (NPV) 100%, and false negative results 0%. Transcervical SLN marking in combination with SPECT/CT is easily applicable and leads to high physiologic detection rates in pelvic and para-aortic lymphatic drainage areas. Non-affected SLN truly predicted a non-affected LN basin. Combining both methods SLN dissection may be a safe and feasible staging technique for clinical routine in EC. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Assessment of left ventricular mechanical dyssynchrony by phase analysis of gated-SPECT myocardial perfusion imaging and tissue Doppler imaging: comparison between QGS and ECTb software packages.

    PubMed

    Rastgou, Fereydoon; Shojaeifard, Maryam; Amin, Ahmad; Ghaedian, Tahereh; Firoozabadi, Hasan; Malek, Hadi; Yaghoobi, Nahid; Bitarafan-Rajabi, Ahmad; Haghjoo, Majid; Amouzadeh, Hedieh; Barati, Hossein

    2014-12-01

    Recently, the phase analysis of gated single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) has become feasible via several software packages for the evaluation of left ventricular mechanical dyssynchrony. We compared two quantitative software packages, quantitative gated SPECT (QGS) and Emory cardiac toolbox (ECTb), with tissue Doppler imaging (TDI) as the conventional method for the evaluation of left ventricular mechanical dyssynchrony. Thirty-one patients with severe heart failure (ejection fraction ≤35%) and regular heart rhythm, who referred for gated-SPECT MPI, were enrolled. TDI was performed within 3 days after MPI. Dyssynchrony parameters derived from gated-SPECT MPI were analyzed by QGS and ECTb and were compared with the Yu index and septal-lateral wall delay measured by TDI. QGS and ECTb showed a good correlation for assessment of phase histogram bandwidth (PHB) and phase standard deviation (PSD) (r = 0.664 and r = 0.731, P < .001, respectively). However, the mean value of PHB and PSD by ECTb was significantly higher than that of QGS. No significant correlation was found between ECTb and QGS and the Yu index. Nevertheless, PHB, PSD, and entropy derived from QGS revealed a significant (r = 0.424, r = 0.478, r = 0.543, respectively; P < .02) correlation with septal-lateral wall delay. Despite a good correlation between QGS and ECTb software packages, different normal cut-off values of PSD and PHB should be defined for each software package. There was only a modest correlation between phase analysis of gated-SPECT MPI and TDI data, especially in the population of heart failure patients with both narrow and wide QRS complex.

  1. Silent myocardial ischemia in patients with symptomatic intracranial atherosclerosis: associated factors.

    PubMed

    Arenillas, Juan F; Candell-Riera, Jaume; Romero-Farina, Guillermo; Molina, Carlos A; Chacón, Pilar; Aguadé-Bruix, Santiago; Montaner, Joan; de León, Gustavo; Castell-Conesa, Joan; Alvarez-Sabín, José

    2005-06-01

    Optimization of coronary risk evaluation in stroke patients has been encouraged. The relationship between symptomatic intracranial atherosclerosis and occult coronary artery disease (CAD) has not been evaluated sufficiently. We aimed to investigate the prevalence of silent myocardial ischemia in patients with symptomatic intracranial atherosclerosis and to identify factors associated with its presence. From 186 first-ever transient ischemic attack or ischemic stroke patients with intracranial stenoses, 65 fulfilled selection criteria, including angiographic confirmation of a symptomatic atherosclerotic stenosis and absence of known CAD. All patients underwent a maximal-stress myocardial perfusion single-photon emission computed tomography (SPECT). Lipoprotein(a) [Lp(a)], C-reactive protein, and homocysteine (Hcy) levels were determined before SPECT. Stress-rest SPECT detected reversible myocardial perfusion defects in 34 (52%) patients. Vascular risk factors associated with a pathologic SPECT were hypercholesterolemia (P=0.045), presence of >2 risk factors (P=0.004) and high Lp(a) (P=0.023) and Hcy levels (P=0.018). Ninety percent of patients with high Lp(a) and Hcy levels had a positive SPECT. Existence of a stenosed intracranial internal carotid artery (ICA; odds ratio [OR], 7.22, 2.07 to 25.23; P=0.002) and location of the symptomatic stenosis in vertebrobasilar arteries (OR, 4.89, 1.19 to 20.12; P=0.027) were independently associated with silent myocardial ischemia after adjustment by age, sex, and risk factors. More than 50% of the patients with symptomatic intracranial atherosclerosis and not overt CAD show myocardial perfusion defects on stress-rest SPECT. Stenosed intracranial ICA, symptomatic vertebrobasilar stenosis and presence of high Lp(a) and Hcy levels may characterize the patients at a higher risk for occult CAD.

  2. [123I]N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane single-photon emission computed tomography brain imaging in the diagnosis of dementia with Lewy bodies.

    PubMed

    Walker, Zuzana; Cummings, Jeffrey L

    2012-01-01

    Early, accurate diagnosis of dementia with Lewy bodies (DLB), in particular its differentiation from Alzheimer's disease, is important for optimal management, providing patients/carers with information about the likely symptomatology and illness course, allowing initiation of effective pharmacotherapy, and avoiding the consequences of neuroleptic sensitivity. Clinical diagnosis of DLB has high specificity but low sensitivity. Clinical trials of [(123)I]N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane single-photon emission computed tomography ([(123)I]FP-CIT SPECT) indicate high positive and negative percent agreement with reference to clinical diagnosis, and high sensitivity and specificity in patients with neuropathologically confirmed diagnoses of DLB. An abnormal [(123)I]FP-CIT SPECT image in patients fulfilling criteria for possible DLB advances the certainty of a diagnosis to probable DLB. [(123)I]FP-CIT SPECT, by identifying the striatal dopaminergic deficit, can be a valuable diagnostic aid and can provide support to a clinical diagnosis of DLB in patients with dementia. The technique is likely to be of particular utility in patients with dementia with an uncertain diagnosis. Copyright © 2012 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  3. Liver Function in Areas of Hepatic Venous Congestion After Hepatectomy for Liver Cancer: 99mTc-GSA SPECT/CT Fused Imaging Study.

    PubMed

    Yoshida, Morikatsu; Beppu, Toru; Shiraishi, Shinya; Tsuda, Noriko; Sakamoto, Fumi; Kuramoto, Kunitaka; Okabe, Hirohisa; Nitta, Hidetoshi; Imai, Katsunori; Tomiguchi, Seiji; Baba, Hideo; Yamashita, Yasuyuki

    2018-05-01

    Background/Aim: The sacrifice of a major hepatic vein can cause hepatic venous congestion (HVC). We evaluated the effects of HVC on regional liver function using the liver uptake value (LUV), that was calculated from 99m Tc-labeled-galactosyl-human-serum-albumin ( 99m Tc-GSA) single-photon emission computed tomography (SPECT) /contrast-enhanced computed tomography (CE-CT) fused images. Patients and Methods: Sixty-two patients underwent 99m Tc-GSA SPECT/CE-CT prior to hepatectomy for liver cancer and at 7 days after surgery were divided into groups with (n=8) and without HVC (n=54). In the HVC group, CT volume (CTv) and LUV were separately calculated in both congested and non-congested areas. Results: The remnant LUV/CTv of the HVC group was significantly smaller than that of the non-HVC group (p<0.01). The mean functional ratio was 0.47±0.05, and all ratios were ≥0.39. Conclusion: After hepatectomy with sacrifice of major hepatic vein, liver function per unit volume in the congested areas was approximately 40% of that in the non-congested areas. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  4. Longitudinal in vivo evaluation of bone regeneration by combined measurement of multi-pinhole SPECT and micro-CT for tissue engineering

    NASA Astrophysics Data System (ADS)

    Lienemann, Philipp S.; Metzger, Stéphanie; Kiveliö, Anna-Sofia; Blanc, Alain; Papageorgiou, Panagiota; Astolfo, Alberto; Pinzer, Bernd R.; Cinelli, Paolo; Weber, Franz E.; Schibli, Roger; Béhé, Martin; Ehrbar, Martin

    2015-05-01

    Over the last decades, great strides were made in the development of novel implants for the treatment of bone defects. The increasing versatility and complexity of these implant designs request for concurrent advances in means to assess in vivo the course of induced bone formation in preclinical models. Since its discovery, micro-computed tomography (micro-CT) has excelled as powerful high-resolution technique for non-invasive assessment of newly formed bone tissue. However, micro-CT fails to provide spatiotemporal information on biological processes ongoing during bone regeneration. Conversely, due to the versatile applicability and cost-effectiveness, single photon emission computed tomography (SPECT) would be an ideal technique for assessing such biological processes with high sensitivity and for nuclear imaging comparably high resolution (<1 mm). Herein, we employ modular designed poly(ethylene glycol)-based hydrogels that release bone morphogenetic protein to guide the healing of critical sized calvarial bone defects. By combined in vivo longitudinal multi-pinhole SPECT and micro-CT evaluations we determine the spatiotemporal course of bone formation and remodeling within this synthetic hydrogel implant. End point evaluations by high resolution micro-CT and histological evaluation confirm the value of this approach to follow and optimize bone-inducing biomaterials.

  5. General Nuclear Medicine

    MedlinePlus

    ... The special camera and imaging techniques used in nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, also called a scintillation camera, detects radioactive energy that is emitted from the patient's body and ...

  6. Imaging discordance between hepatic angiography versus Tc-99m-MAA SPECT/CT: a case series, technical discussion and clinical implications.

    PubMed

    Kao, Yung Hsiang; Tan, Eik Hock; Teo, Terence Kiat Beng; Ng, Chee Eng; Goh, Soon Whatt

    2011-11-01

    During pre-therapy evaluation for yttrium-90 (Y-90) radioembolization, it is uncommon to find severe imaging discordance between hepatic angiography versus technetium-99m-macroaggregated albumin (Tc-99m-MAA) single photon emission computed tomography with integrated low-dose CT (SPECT/CT). The reasons for severe imaging discordance are unclear, and literature is scarce. We describe 3 patients with severe imaging discordance, whereby tumor angiographic contrast hypervascularity was markedly mismatched to the corresponding Tc-99m-MAA SPECT/CT, and its clinical impact. The incidence of severe imaging discordance at our institution was 4% (3 of 74 cases). We postulate that imaging discordance could be due to a combination of 3 factors: (1) different injection rates between soluble contrast molecules versus Tc-99m-MAA; (2) different arterial flow hemodynamics between soluble contrast molecules versus Tc-99m-MAA; (3) eccentric release position of Tc-99m-MAA due to microcatheter tip location, inadvertently selecting non-target microparticle trajectories. Tc-99m-MAA SPECT/CT more accurately represents hepatic microparticle biodistribution than soluble contrast hepatic angiography and should be a key criterion in patient selection for Y-90 radioembolization. Tc-99m-MAA SPECT/CT provides more information than planar scintigraphy to guide radiation planning and clinical decision making. Severe imaging discordance at pre-therapy evaluation is ominous and should be followed up by changes to the final vascular approach during Y-90 radioembolization.

  7. Fuzzy C-mean clustering on kinetic parameter estimation with generalized linear least square algorithm in SPECT

    NASA Astrophysics Data System (ADS)

    Choi, Hon-Chit; Wen, Lingfeng; Eberl, Stefan; Feng, Dagan

    2006-03-01

    Dynamic Single Photon Emission Computed Tomography (SPECT) has the potential to quantitatively estimate physiological parameters by fitting compartment models to the tracer kinetics. The generalized linear least square method (GLLS) is an efficient method to estimate unbiased kinetic parameters and parametric images. However, due to the low sensitivity of SPECT, noisy data can cause voxel-wise parameter estimation by GLLS to fail. Fuzzy C-Mean (FCM) clustering and modified FCM, which also utilizes information from the immediate neighboring voxels, are proposed to improve the voxel-wise parameter estimation of GLLS. Monte Carlo simulations were performed to generate dynamic SPECT data with different noise levels and processed by general and modified FCM clustering. Parametric images were estimated by Logan and Yokoi graphical analysis and GLLS. The influx rate (K I), volume of distribution (V d) were estimated for the cerebellum, thalamus and frontal cortex. Our results show that (1) FCM reduces the bias and improves the reliability of parameter estimates for noisy data, (2) GLLS provides estimates of micro parameters (K I-k 4) as well as macro parameters, such as volume of distribution (Vd) and binding potential (BP I & BP II) and (3) FCM clustering incorporating neighboring voxel information does not improve the parameter estimates, but improves noise in the parametric images. These findings indicated that it is desirable for pre-segmentation with traditional FCM clustering to generate voxel-wise parametric images with GLLS from dynamic SPECT data.

  8. Objective evaluation of reconstruction methods for quantitative SPECT imaging in the absence of ground truth.

    PubMed

    Jha, Abhinav K; Song, Na; Caffo, Brian; Frey, Eric C

    2015-04-13

    Quantitative single-photon emission computed tomography (SPECT) imaging is emerging as an important tool in clinical studies and biomedical research. There is thus a need for optimization and evaluation of systems and algorithms that are being developed for quantitative SPECT imaging. An appropriate objective method to evaluate these systems is by comparing their performance in the end task that is required in quantitative SPECT imaging, such as estimating the mean activity concentration in a volume of interest (VOI) in a patient image. This objective evaluation can be performed if the true value of the estimated parameter is known, i.e. we have a gold standard. However, very rarely is this gold standard known in human studies. Thus, no-gold-standard techniques to optimize and evaluate systems and algorithms in the absence of gold standard are required. In this work, we developed a no-gold-standard technique to objectively evaluate reconstruction methods used in quantitative SPECT when the parameter to be estimated is the mean activity concentration in a VOI. We studied the performance of the technique with realistic simulated image data generated from an object database consisting of five phantom anatomies with all possible combinations of five sets of organ uptakes, where each anatomy consisted of eight different organ VOIs. Results indicate that the method provided accurate ranking of the reconstruction methods. We also demonstrated the application of consistency checks to test the no-gold-standard output.

  9. Introspections on the Semantic Gap

    DTIC Science & Technology

    2015-04-14

    cloud comput - ing. Zhang received an MS in computer science from Stony Brook University. Contact him at dozhang@ cs.stonybrook.edu. Donald E. Porter...designated by other documentation. ... 2 March/April 2015 Copublished by the IEEE Computer and Reliability Societies 1540-7993/15/$31.00 © 2015 IEEE IEEE S...pauses the VM, and the VMI tool introspects the process descriptor list. In contrast, an asynchronous mechanism would intro - spect memory

  10. Assessment of a New High-Performance Small-Animal X-Ray Tomograph

    NASA Astrophysics Data System (ADS)

    Vaquero, J. J.; Redondo, S.; Lage, E.; Abella, M.; Sisniega, A.; Tapias, G.; Montenegro, M. L. Soto; Desco, M.

    2008-06-01

    We have developed a new X-ray cone-beam tomograph for in vivo small-animal imaging using a flat panel detector (CMOS technology with a microcolumnar CsI scintillator plate) and a microfocus X-ray source. The geometrical configuration was designed to achieve a spatial resolution of about 12 lpmm with a field of view appropriate for laboratory rodents. In order to achieve high performance with regard to per-animal screening time and cost, the acquisition software takes advantage of the highest frame rate of the detector and performs on-the-fly corrections on the detector raw data. These corrections include geometrical misalignments, sensor non-uniformities, and defective elements. The resulting image is then converted to attenuation values. We measured detector modulation transfer function (MTF), detector stability, system resolution, quality of the reconstructed tomographic images and radiated dose. The system resolution was measured following the standard test method ASTM E 1695 -95. For image quality evaluation, we assessed signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) as a function of the radiated dose. Dose studies for different imaging protocols were performed by introducing TLD dosimeters in representative organs of euthanized laboratory rats. Noise figure, measured as standard deviation, was 50 HU for a dose of 10 cGy. Effective dose with standard research protocols is below 200 mGy, confirming that the system is appropriate for in vivo imaging. Maximum spatial resolution achieved was better than 50 micron. Our experimental results obtained with image quality phantoms as well as with in-vivo studies show that the proposed configuration based on a CMOS flat panel detector and a small micro-focus X-ray tube leads to a compact design that provides good image quality and low radiated dose, and it could be used as an add-on for existing PET or SPECT scanners.

  11. Measurement of acute Q-wave myocardial infarct size with single photon emission computed tomography imaging of indium-111 antimyosin.

    PubMed

    Antunes, M L; Seldin, D W; Wall, R M; Johnson, L L

    1989-04-01

    Myocardial infarct size was measured by single photon emission computed tomography (SPECT) following injection of indium-111 antimyosin in 27 patients (18 male and 9 female; mean age 57.4 +/- 10.5 years, range 37 to 75) who had acute transmural myocardial infarction (MI). These 27 patients represent 27 of 35 (77%) consecutive patients with acute Q-wave infarctions who were injected with indium-111 antimyosin. In the remaining 8 patients either tracer uptake was too faint or the scans were technically inadequate to permit infarct sizing from SPECT reconstructions. In the 27 patients studied, infarct location by electrocardiogram was anterior in 15 and inferoposterior in 12. Nine patients had a history of prior infarction. Each patient received 2 mCi of indium-111 antimyosin followed by SPECT imaging 48 hours later. Infarct mass was determined from coronal slices using a threshold value obtained from a human torso/cardiac phantom. Infarct size ranged from 11 to 87 g mean 48.5 +/- 24). Anterior infarcts were significantly (p less than 0.01) larger (60 +/- 20 g) than inferoposterior infarcts (34 +/- 21 g). For patients without prior MI, there were significant inverse correlations between infarct size and ejection fraction (r = 0.71, p less than 0.01) and wall motion score (r = 0.58, p less than 0.01) obtained from predischarge gated blood pool scans. Peak creatine kinase-MB correlated significantly with infarct size for patients without either reperfusion or right ventricular infarction (r = 0.66). Seven patients without prior infarcts had additional simultaneous indium-111/thallium-201 SPECT studies using dual energy windows.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Assessment of Myocardial Infarct Size by Three-Dimensional and Two-Dimensional Speckle Tracking Echocardiography: A Comparative Study to Single Photon Emission Computed Tomography.

    PubMed

    Wang, Qiushuang; Huang, Dangsheng; Zhang, Liwei; Shen, Dong; Ouyang, Qiaohong; Duan, Zhongxiang; An, Xiuzhi; Zhang, Meiqing; Zhang, Chunhong; Yang, Feifei; Zhi, Guang

    2015-10-01

    To compare three-dimensional (3D) and two-dimensional (2D) speckle tracking echocardiography (STE) techniques in the assessment of left ventricular function and myocardial infarct size (MIS). Thirty-two patients diagnosed with ST elevation myocardial infarction and 18 healthy control patients underwent 2D echocardiography, 3D echocardiography, and single photon emission computed tomography (SPECT). 3D left ventricular global area strain (GAS), 2D and 3D global longitudinal strain (GLS), global radial strain (GRS) as well as global circumferential strain (GCS) were analyzed to correlate with myocardial infarct size detected by SPECT. 2D and 3D left ventricular ejection fraction (LVEF) as well as 2D and 3D wall motion score index (WMSI) also were measured using conventional echocardiography. The 2D-GLS values were significantly higher than that of 3D-GLS, while 2D-GCS and GRS were significantly lower than 3D-GCS and GRS, respectively. However, no significant differences in LVEF and WMSI could be observed between 2D and 3D echocardiography. Myocardial strain indices, LVEF, and WMSI using 2D and 3D echocardiography also had good correlations with MIS as measured by SPECT. ROC curve analysis showed that the 3D and 2D myocardial indices, LVEF, and WMSI could distinguish between small and large MIS, while 2D-GLS had the highest AUC. The 2D and 3D myocardial strain indices correlated well with MIS by SPECT. Among them, the 2D-GLS showed the highest diagnostic value, while 3D-GRS and GCS had better diagnostic value than 2D-GRS and GCS. © 2015, Wiley Periodicals, Inc.

  13. Postoperative myocardial infarction documented by technetium pyrophosphate scan using single-photon emission computed tomography: Significance of intraoperative myocardial ischemia and hemodynamic control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, D.C.; Chung, F.; Burns, R.J.

    The aim of this prospective study was to document postoperative myocardial infarction (PMI) by technetium pyrophosphate scan using single-photon emission computed tomography (TcPPi-SPECT) in 28 patients undergoing elective coronary bypass grafting (CABG). The relationships of intraoperative electrocardiographic myocardial ischemia, hemodynamic responses, and pharmacological requirements to this incidence of PMI were correlated. Radionuclide cardioangiography and TcPPi-SPECT were performed 24 h preoperatively and 48 h postoperatively. A standard high-dose fentanyl anesthetic protocol was used. Twenty-five percent of elective CABG patients were complicated with PMI, as documented by TcPPi-SPECT with an infarcted mass of 38.0 +/- 5.5 g. No significant difference in demographic,more » preoperative right and left ventricular function, number of coronary vessels grafted, or aortic cross-clamp time was observed between the PMI and non-PMI groups. The distribution of patients using preoperative beta-adrenergic blocking drugs or calcium channel blocking drugs was found to have no correlation with the outcome of PMI. As well, no significant differences in hemodynamic changes or pharmacological requirements were observed in the PMI and non-PMI groups during prebypass or postbypass periods, indicating careful intraoperative control of hemodynamic indices did not prevent the outcome of PMI in these patients. However, the incidence of prebypass ischemia was 39.3% and significantly correlated with the outcome of positive TcPPi-SPECT, denoting a 3.9-fold increased risk of developing PMI. Prebypass ischemic changes in leads II and V5 were shown to correlate with increased CPK-MB release (P less than 0.05) and tends to occur more frequently with lateral myocardial infarction.« less

  14. Development and Validation of a Monte Carlo Simulation Tool for Multi-Pinhole SPECT

    PubMed Central

    Mok, Greta S. P.; Du, Yong; Wang, Yuchuan; Frey, Eric C.; Tsui, Benjamin M. W.

    2011-01-01

    Purpose In this work, we developed and validated a Monte Carlo simulation (MCS) tool for investigation and evaluation of multi-pinhole (MPH) SPECT imaging. Procedures This tool was based on a combination of the SimSET and MCNP codes. Photon attenuation and scatter in the object, as well as penetration and scatter through the collimator detector, are modeled in this tool. It allows accurate and efficient simulation of MPH SPECT with focused pinhole apertures and user-specified photon energy, aperture material, and imaging geometry. The MCS method was validated by comparing the point response function (PRF), detection efficiency (DE), and image profiles obtained from point sources and phantom experiments. A prototype single-pinhole collimator and focused four- and five-pinhole collimators fitted on a small animal imager were used for the experimental validations. We have also compared computational speed among various simulation tools for MPH SPECT, including SimSET-MCNP, MCNP, SimSET-GATE, and GATE for simulating projections of a hot sphere phantom. Results We found good agreement between the MCS and experimental results for PRF, DE, and image profiles, indicating the validity of the simulation method. The relative computational speeds for SimSET-MCNP, MCNP, SimSET-GATE, and GATE are 1: 2.73: 3.54: 7.34, respectively, for 120-view simulations. We also demonstrated the application of this MCS tool in small animal imaging by generating a set of low-noise MPH projection data of a 3D digital mouse whole body phantom. Conclusions The new method is useful for studying MPH collimator designs, data acquisition protocols, image reconstructions, and compensation techniques. It also has great potential to be applied for modeling the collimator-detector response with penetration and scatter effects for MPH in the quantitative reconstruction method. PMID:19779896

  15. Estimating Lymphodynamic Conditions and Lymphovenous Anastomosis Efficacy Using 99mTc-phytate Lymphoscintigraphy with SPECT-CT in Patients with Lower-limb Lymphedema

    PubMed Central

    Fukushima, Yoshimitsu; Kumita, Shinichiro; Ogawa, Rei; Hyakusoku, Hiko

    2015-01-01

    Background: Diagnostic and therapeutic strategies for lower-limb lymphedema have not yet been established. The purpose of this study was to estimate the lymphodynamic condition and therapeutic efficacy of lymphovenous anastomosis (LVA) in lower-limb lymphedema patients using 2-phase 99mTc-phytate lymphoscintigraphy with single-photon emission computed tomography-computed tomography (SPECT-CT). Methods: In this study, consecutive patients with lower-limb lymphedema who underwent 2-phase lymphoscintigraphy using 99mTc-phytate were enrolled between June 2013 and June 2014. SPECT-CT was also performed to clarify the relationships between functional and morphological information. In both the early and delayed images, inguinal lymph node accumulation, dermal backflow, and their sequential alternations were evaluated, and liver-to-blood ratio and inguinal lymph node-to-blood ratio were calculated. All participants were classified into 6 types of lymphodynamic conditions based on the image findings. Patients with both dermal backflow and associated normal lymphatic vessel accumulation proceeded to LVA and underwent a second lymphoscintigraphy after the operation. Results: Of all 30 participants, the largest population was categorized as type 4, which had consistent inguinal lymph node accumulation defect with dermal backflow. In 12 operated cases, dermal backflow was degraded in 10 cases by LVA. Liver-to-blood ratio in both early and delayed images and inguinal lymph node-to-blood ratio in delayed image significantly increased after LVA. Conclusions: Lymphoscintigraphy with SPECT-CT can provide both functional and morphological information simultaneously in patients with lower-limb lymphedema. Using these procedures, a type categorization for the patients was devised, which reflects their lymphodynamic conditions. The therapeutic efficacy of LVA could also be estimated quantitatively by the derived findings. PMID:26090294

  16. The utility of two somatostatin analog radiopharmaceuticals in assessment of radiologically indeterminate pulmonary lesions.

    PubMed

    Sobic-Saranovic, Dragana P; Pavlovic, Smiljana V; Artiko, Vera M; Saranovic, Djordjije Z; Jaksic, Emilija D; Subotic, Dragan; Nagorni-Obradovic, Ljudmila; Kozarevic, Nebojsa; Petrovic, Nebojsa; Grozdic, Isidora T; Obradovic, Vladimir B

    2012-01-01

    The aim of our study was to assess diagnostic accuracy of Tc-99m depreotide and Tc-99m-EDDA/HYNIC-TOC scintigraphy for evaluation of pulmonary lesions that appeared ambiguous on computed tomography (CT). Forty-nine consecutive patients (37 men and 12 women; mean age, 60 ± 11 years) with 60 pulmonary lesions on chest radiography and CT were referred for nuclear imaging. They were prospectively allocated to undergo whole-body scintigraphy (WBS) and single photon emission computed tomography (SPECT) using either Tc-99m depreotide (26 patients, group 1) or Tc-99m-EDDA/HYNIC-TOC imaging (23 patients, group 2). Histologic findings after tissue biopsy served as a gold standard for determining diagnostic accuracy of the 2 somatostatin analogs. Visual assessment was complemented by semiquantitative analysis based on target to background ratio. Among the 32 pulmonary lesions scanned with Tc-99m depreotide, focal uptake was increased in 22 of 25 malignancies, whereas no uptake was found in 6 of 7 benign lesions (88% sensitivity, 85% specificity, and 88% accuracy) on both WBS and SPECT. Imaging of 28 pulmonary lesions with Tc-99m-EDDA/HYNIC-TOC had a similar diagnostic yield (sensitivity 87%, specificity 84%, and accuracy 86%). Overall, target to background ratios were higher on SPECT than WBS but not significantly different between groups 1 and 2 (SPECT 2.72 ± 0.70 vs. 2.71 ± 0.50, WBS 1.61 ± 0.32 vs. 1.62 ± 0.28, respectively). This study demonstrates that Tc-99m depreotide and Tc-99m-EDDA/HYNIC-TOC have similar diagnostic value for characterizing pulmonary lesions that appear ambiguous on CT.

  17. Present assessment of myocardial viability by nuclear imaging.

    PubMed

    Saha, G B; MacIntyre, W J; Brunken, R C; Go, R T; Raja, S; Wong, C O; Chen, E Q

    1996-10-01

    Prospective delineation of viable from nonviable myocardium in patients with coronary artery disease in an important factor in deciding whether a patient should be revascularized or treated medically. Two common techniques--single-photon emission computed tomography (SPECT) and positron-emission computed tomography (PET)--are used in nuclear medicine using various radiopharmaceuticals for the detection of myocardial viability in patients. Thallium-201 (201Tl) and technetium-99m (99mTc)-sestamibi are the common radiopharmaceuticals used in different protocols using SPECT, whereas fluoride-18 (18F)-fluorodeoxyglucose (FDG) and rubidium-82 (82Rb) are most widely used in PET. The SPECT protocols involve stress/redistribution, stress/redistribution/reinjection, and rest/redistribution imaging techniques. Many studies have compared the results of 201Tl and (99mTc)-sestamibi SPECT with those of FDG PET; in some studies, concordant results have been found between delayed thallium and FDG results, indicating that 201Tl, although considered a perfusion agent, shows myocardial viability. Discordant results in a number of studies have been found between sestamibi and FDG, suggesting that the efficacy of sestamibi as a viability marker has yet to be established. Radiolabeled fatty acids such as iodine-123 (123I)-para-iodophenylpentadecanoic acid and carbon-11 (11C)-palmitic acid have been used for the assessment of myocardial viability with limited success. 11C-labeled acetate is a good marker of oxidative metabolism in the heart and has been used to predict the reversibility of wall motion abnormalities. (18F)-FDG is considered the marker of choice for myocardial viability, although variable results are obtained under different physiological conditions. Detection of myocardial viability can be greatly improved by developing new equipment and radiopharmaceuticals of better quality.

  18. Time-Dependent Computed Tomographic Perfusion Thresholds for Patients With Acute Ischemic Stroke.

    PubMed

    d'Esterre, Christopher D; Boesen, Mari E; Ahn, Seong Hwan; Pordeli, Pooneh; Najm, Mohamed; Minhas, Priyanka; Davari, Paniz; Fainardi, Enrico; Rubiera, Marta; Khaw, Alexander V; Zini, Andrea; Frayne, Richard; Hill, Michael D; Demchuk, Andrew M; Sajobi, Tolulope T; Forkert, Nils D; Goyal, Mayank; Lee, Ting Y; Menon, Bijoy K

    2015-12-01

    Among patients with acute ischemic stroke, we determine computed tomographic perfusion (CTP) thresholds associated with follow-up infarction at different stroke onset-to-CTP and CTP-to-reperfusion times. Acute ischemic stroke patients with occlusion on computed tomographic angiography were acutely imaged with CTP. Noncontrast computed tomography and magnectic resonance diffusion-weighted imaging between 24 and 48 hours were used to delineate follow-up infarction. Reperfusion was assessed on conventional angiogram or 4-hour repeat computed tomographic angiography. Tmax, cerebral blood flow, and cerebral blood volume derived from delay-insensitive CTP postprocessing were analyzed using receiver-operator characteristic curves to derive optimal thresholds for combined patient data (pooled analysis) and individual patients (patient-level analysis) based on time from stroke onset-to-CTP and CTP-to-reperfusion. One-way ANOVA and locally weighted scatterplot smoothing regression was used to test whether the derived optimal CTP thresholds were different by time. One hundred and thirty-two patients were included. Tmax thresholds of >16.2 and >15.8 s and absolute cerebral blood flow thresholds of <8.9 and <7.4 mL·min(-1)·100 g(-1) were associated with infarct if reperfused <90 min from CTP with onset <180 min. The discriminative ability of cerebral blood volume was modest. No statistically significant relationship was noted between stroke onset-to-CTP time and the optimal CTP thresholds for all parameters based on discrete or continuous time analysis (P>0.05). A statistically significant relationship existed between CTP-to-reperfusion time and the optimal thresholds for cerebral blood flow (P<0.001; r=0.59 and 0.77 for gray and white matter, respectively) and Tmax (P<0.001; r=-0.68 and -0.60 for gray and white matter, respectively) parameters. Optimal CTP thresholds associated with follow-up infarction depend on time from imaging to reperfusion. © 2015 American Heart Association, Inc.

  19. Pineal region tumors: computed tomographic-pathologic spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Futrell, N.N.; Osborn, A.G.; Cheson. B.D.

    While several computed tomographic (CT) studies of posterior third ventricular neoplasms have included descriptions of pineal tumors, few reports have concentrated on these uncommon lesions. Some authors have asserted that the CT appearance of many pineal tumors is virtually pathognomonic. A series of nine biopsy-proved pineal gland and eight other presumed tumors is presented that illustrates their remarkable heterogeneity in both histopathologic and CT appearance. These tumors included germinomas, teratocarcinomas, hamartomas, and other varieties. They had variable margination, attentuation, calcification, and suprasellar extension. Germinomas have the best response to radiation therapy. Biopsy of pineal region tumors is now feasible andmore » is recommended for treatment planning.« less

  20. Normal cord in infants and children examined with computed tomographic metrizamide myelography.

    PubMed

    Resjö, I M; Harwood-Nash, D C; Fitz, C R; Chuang, S

    1979-03-01

    Computed tomographic metrizamide myelography (CTMM) was performed on 25 infants and children and 2 adults with normal spinal cords. Both the cord and the cauda equina were precisely outlined. The most detailed information was obtained with a small window setting, with the image subsequently magnified and color-reversed. Hounsfield-unit measurements alone were inaccurate. Advantages of CTMM include: high accuracy in demonstrating the intrathecal contents of the spine; less need for general anesthesia; and the need for a smaller amount of water-soluble contrast material than in conventional myelography. In selected cases of intraspinal abnormality in children, CTMM is recommended.

  1. Continuous Regional Arterial Infusion Therapy for Acute Necrotizing Pancreatitis Due to Mycoplasma pneumoniae Infection in a Child

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakagawa, Motoo, E-mail: lmloltlolol@gmail.com; Ogino, Hiroyuki; Shimohira, Masashi

    2009-05-15

    A case of acute necrotizing pancreatitis due to Mycoplasma pneumoniae infection was treated in an 8-year-old girl. She experienced acute pancreatitis during treatment for M. pneumoniae. Contrast-enhanced computed tomographic scan revealed necrotizing pancreatitis. The computed tomographic severity index was 8 points (grade E). A protease inhibitor, ulinastatin, was provided via intravenous infusion but was ineffective. Continuous regional arterial infusion therapy was provided with gabexate mesilate (FOY-007, a protease inhibitor) and meropenem trihydrate, and the pancreatitis improved. This case suggests that infusion therapy is safe and useful in treating necrotizing pancreatitis in children.

  2. Contralateral decubitus positioning enhances computed tomographic angiographic evaluation of pulmonary vasculature in a patient with a pulmonary arteriovenous malformation.

    PubMed

    Tafti, Bashir Akhavan; Berenji, Gholam R; Santiago, Silverio; Barack, Bruce M

    2012-11-01

    Computed tomographic pulmonary angiography has become the diagnostic procedure of choice in patients suspected of having a pulmonary embolus. However, intrapulmonary shunting of blood in a variety of pathologic conditions can cause suboptimal opacification of the pulmonary arterial circulation and result in a suboptimal or even nondiagnostic study. Radiologists should be aware of these conditions and be familiar with positioning techniques to minimize such shunting. We report a patient suspected of having pulmonary embolism, in whom a preexisting unilateral arteriovenous malformation prevented adequate evaluation of the pulmonary circulation. Positioning the patient in the contralateral decubitus position significantly enhanced image quality.

  3. Lumbar artery perforators: an anatomical study based on computed tomographic angiography imaging.

    PubMed

    Sommeling, Casper Emile; Colebunders, Britt; Pardon, Heleen E; Stillaert, Filip B; Blondeel, Phillip N; van Landuyt, Koenraad

    2017-08-01

    The free lumbar artery perforator flap has recently been introduced as a potentially valuable option for autologous breast reconstruction in a subset of patients. Up to date, few anatomical studies, exploring the lumbar region as a donor site for perforator- based flaps, have been conducted. An anatomical study of the position of the dominant lumbar artery perforator was performed, using the preoperative computed tomographic angiography images of 24 autologous breast reconstruction patients. In total, 61 dominant perforators were determined, 28 on the left and 33 on the right side. A radiologist defined the position of the perforator as coordinates in an xy-grid. Dominant perforators were shown to originate from the lumbar arteries at the level of lumbar vertebrae three or four. Remarkably, approximately 85% of these lumbar artery perforators enter the skin at 7-10 cm lateral from the midline (mean left 8.6 cm, right 8.2 cm). This study concludes a rather constant position of the dominant perforator. Therefore, preoperative-computed tomographic angiography is not always essential to find this perforator and Doppler ultrasound could be considered as an alternative, thereby carefully assessing all advantages and disadvantages inherent to either of these imaging methods.

  4. Muscle tension line concept in nasolabial muscle complex--based on 3-dimensional reconstruction of nasolabial muscle fibers.

    PubMed

    Yin, Ningbei; Wu, Jiajun; Chen, Bo; Song, Tao; Ma, Hengyuan; Zhao, Zhenmin; Wang, Yongqian; Li, Haidong; Wu, Di

    2015-03-01

    Plastic surgeons have attempted various ways to rebuild the aesthetic subunits of the upper lip in patients with cleft lip with less than perfect results in most cases. We propose that repairing the 3 muscle tension line groups in the nasolabial complex will have improved aesthetic results. Micro-computed tomographic scans were performed on the nasolabial tissues of 5 normal aborted fetuses and used to construct a 3-dimensional model to study the nasolabial muscle complex structure. The micro-computed tomographic (CT) scans showed the close relationship and interaction between the muscle fibers of nasalis, pars peripheralis, levator labii superioris, and pars marginalis. Based on the 2-dimensional images obtained from the micro-computed tomographic scans, we suggest the concept of nasolabial muscle complex and muscle tension line group theory: there is a close relationship among the alar part of the nasalis, depressor septi muscle, orbicularis oris muscle, and levator labii superioris alaeque nasi. The tension line groups are 3 tension line structures in the nasolabial muscle complex that interlock with each other at the intersections and maintain the specific shape and aesthetics of the lip and nose.

  5. Osteochondroma of the mandibular condyle: a classification system based on computed tomographic appearances.

    PubMed

    Chen, Min-jie; Yang, Chi; Qiu, Ya-ting; Zhou, Qin; Huang, Dong; Shi, Hui-min

    2014-09-01

    The objectives of this study were to introduce the classification of osteochondroma of the mandibular condyle based on computed tomographic images and to present our treatment experiences. From January 2002 and December 2012, a total of 61 patients with condylar osteochondroma were treated in our division. Both clinical and radiologic aspects were reviewed. The average follow-up period was 24.3 months with a range of 6 to 120 months. Two types of condylar osteochondroma were presented: type 1 (protruding expansion) in 50 patients (82.0%) and type 2 (globular expansion) in 11 patients (18.0%). Type 1 condylar osteochondroma presented 5 forms: anterior/anteromedial (58%), posterior/posteromedial (6%), medial (16%), lateral (6%), and gigantic (14%). Local resection was performed on patients with type 1 condylar osteochondroma. Subtotal condylectomy/total condylectomy using costochondral graft reconstruction with/without orthognathic surgeries was performed on patients with type 2 condylar osteochondroma. During the follow-up period, tumor reformation, condyle absorption, and new deformity were not detected. The patients almost reattained facial symmetry. Preoperative classification based on computed tomographic images will help surgeons to choose the suitable surgical procedure to treat the condylar osteochondroma.

  6. 3D Printing of Plant Golgi Stacks from Their Electron Tomographic Models.

    PubMed

    Mai, Keith Ka Ki; Kang, Madison J; Kang, Byung-Ho

    2017-01-01

    Three-dimensional (3D) printing is an effective tool for preparing tangible 3D models from computer visualizations to assist in scientific research and education. With the recent popularization of 3D printing processes, it is now possible for individual laboratories to convert their scientific data into a physical form suitable for presentation or teaching purposes. Electron tomography is an electron microscopy method by which 3D structures of subcellular organelles or macromolecular complexes are determined at nanometer-level resolutions. Electron tomography analyses have revealed the convoluted membrane architectures of Golgi stacks, chloroplasts, and mitochondria. But the intricacy of their 3D organizations is difficult to grasp from tomographic models illustrated on computer screens. Despite the rapid development of 3D printing technologies, production of organelle models based on experimental data with 3D printing has rarely been documented. In this chapter, we present a simple guide to creating 3D prints of electron tomographic models of plant Golgi stacks using the two most accessible 3D printing technologies.

  7. Skeletal Scintigraphy (Bone Scan)

    MedlinePlus

    ... The special camera and imaging techniques used in nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, also called a scintillation camera, detects radioactive energy that is emitted from the patient's body and ...

  8. Radiological and Radionuclide Imaging of Degenerative Disease of the Facet Joints

    PubMed Central

    Shur, Natalie; Corrigan, Alexis; Agrawal, Kanhaiyalal; Desai, Amidevi; Gnanasegaran, Gopinath

    2015-01-01

    The facet joint has been increasingly implicated as a potential source of lower back pain. Diagnosis can be challenging as there is not a direct correlation between facet joint disease and clinical or radiological features. The purpose of this article is to review the diagnosis, treatment, and current imaging modality options in the context of degenerative facet joint disease. We describe each modality in turn with a pictorial review using current evidence. Newer hybrid imaging techniques such as single photon emission computed tomography/computed tomography (SPECT/CT) provide additional information relative to the historic gold standard magnetic resonance imaging. The diagnostic benefits of SPECT/CT include precise localization and characterization of spinal lesions and improved diagnosis for lower back pain. It may have a role in selecting patients for local therapeutic injections, as well as guiding their location with increased precision. PMID:26170560

  9. Recurrent malignant pheochromocytoma with unusual omental metastasis: 68Ga-DOTANOC PET/CT and 131I-MIBG SPECT/CT scintigraphy findings

    PubMed Central

    Arora, Saurabh; Agarwal, Krishan Kant; Karunanithi, Sellam; Tripathi, Madhavi; Kumar, Rakesh

    2014-01-01

    Pheochromocytomas are rare catecholamine-secreting tumors derived from the sympathetic nervous system. The most common sites of metastasis for pheochromocytoma or extra-adrenal paraganglioma are lymph nodes, bones, lungs, and liver. Patients with known or suspected malignancy should undergo staging with computed tomography (CT) or magnetic resonance imaging as well as functional imaging (e.g. with 123I/131I-MIBG (131I-metaiodobenzylguanidine) and 68Ga-DOTANOC (68Ga-labeled [1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid]-1-NaI3-octreotide) positron emission tomography (PET)/CT) to determine the extent and location of disease. We present a case of recurrent malignant pheochromocytoma with unusual site of metastasis in omentum, which was positive on 68Ga-DOTANOC PET/CT and 131I-MIBG single-photon emission computed tomography (SPECT/)/CT scintigraphy. PMID:25400380

  10. Recurrent malignant pheochromocytoma with unusual omental metastasis: (68)Ga-DOTANOC PET/CT and (131)I-MIBG SPECT/CT scintigraphy findings.

    PubMed

    Arora, Saurabh; Agarwal, Krishan Kant; Karunanithi, Sellam; Tripathi, Madhavi; Kumar, Rakesh

    2014-10-01

    Pheochromocytomas are rare catecholamine-secreting tumors derived from the sympathetic nervous system. The most common sites of metastasis for pheochromocytoma or extra-adrenal paraganglioma are lymph nodes, bones, lungs, and liver. Patients with known or suspected malignancy should undergo staging with computed tomography (CT) or magnetic resonance imaging as well as functional imaging (e.g. with (123)I/(131)I-MIBG ((131)I-metaiodobenzylguanidine) and (68)Ga-DOTANOC ((68)Ga-labeled [1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid]-1-NaI3-octreotide) positron emission tomography (PET)/CT) to determine the extent and location of disease. We present a case of recurrent malignant pheochromocytoma with unusual site of metastasis in omentum, which was positive on (68)Ga-DOTANOC PET/CT and (131)I-MIBG single-photon emission computed tomography (SPECT/)/CT scintigraphy.

  11. Coronary Plaque Morphology and the Anti-Inflammatory Impact of Atorvastatin: A Multicenter 18F-Fluorodeoxyglucose Positron Emission Tomographic/Computed Tomographic Study.

    PubMed

    Singh, Parmanand; Emami, Hamed; Subramanian, Sharath; Maurovich-Horvat, Pal; Marincheva-Savcheva, Gergana; Medina, Hector M; Abdelbaky, Amr; Alon, Achilles; Shankar, Sudha S; Rudd, James H F; Fayad, Zahi A; Hoffmann, Udo; Tawakol, Ahmed

    2016-12-01

    Nonobstructive coronary plaques manifesting high-risk morphology (HRM) associate with an increased risk of adverse clinical cardiovascular events. We sought to test the hypothesis that statins have a greater anti-inflammatory effect within coronary plaques containing HRM. In this prospective multicenter study, 55 subjects with or at high risk for atherosclerosis underwent 18 F-fluorodeoxyglucose positron emission tomographic/computed tomographic imaging at baseline and after 12 weeks of treatment with atorvastatin. Coronary arterial inflammation ( 18 F-fluorodeoxyglucose uptake, expressed as target-to-background ratio) was assessed in the left main coronary artery (LMCA). While blinded to the PET findings, contrast-enhanced computed tomographic angiography was performed to characterize the presence of HRM (defined as noncalcified or partially calcified plaques) in the LMCA. Arterial inflammation (target-to-background ratio) was higher in LMCA segments with HRM than those without HRM (mean±SEM: 1.95±0.43 versus 1.67±0.32 for LMCA with versus without HRM, respectively; P=0.04). Moreover, atorvastatin treatment for 12 weeks reduced target-to-background ratio more in LMCA segments with HRM than those without HRM (12 week-baseline Δtarget-to-background ratio [95% confidence interval]: -0.18 [-0.35 to -0.004] versus 0.09 [-0.06 to 0.26]; P=0.02). Furthermore, this relationship between coronary plaque morphology and change in LMCA inflammatory activity remained significant after adjusting for baseline low-density lipoprotein and statin dose (β=-0.27; P=0.038). In this first study to evaluate the impact of statins on coronary inflammation, we observed that the anti-inflammatory impact of statins is substantially greater within coronary plaques that contain HRM features. These findings suggest an additional mechanism by which statins disproportionately benefit individuals with more advanced atherosclerotic disease. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00703261. © 2016 The Authors.

  12. Investigating the dose distribution in the uncompressed breast with a dedicated CT mammotomography system

    NASA Astrophysics Data System (ADS)

    Crotty, Dominic J.; Brady, Samuel L.; Jackson, D'Vone C.; Toncheva, Greta I.; Anderson, Colin E.; Yoshizumi, Terry T.; Tornai, Martin P.

    2010-04-01

    A dual modality SPECT-CT prototype dedicated to uncompressed breast imaging (mammotomography) has been developed. The CT subsystem incorporates an ultra-thick K-edge filtration technique producing a quasi-monochromatic x-ray cone beam to optimize the dose efficiency for uncompressed breast tomography. We characterize the absorbed dose to the breast under normal tomographic cone beam image acquisition protocols using both TLD measurements and ionization chamber-calibrated radiochromic film. Geometric and anthropomorphic breast phantoms are filled with 1000mL of water and oil to simulate different breast compositions and varying object shapes having density bounds of 100% glandular and fatty breast compositions, respectively. Doses to the water filled geometric and anthropomorphic breast phantoms for a tomographic scan range from 1.3-7.3mGy and 1.7-6.3mGy, respectively, with a mean whole-breast dose of 4.5mGy for the water-filled anthropomorphic phantom. Measured dose distribution trends indicate lower doses in the center of the breast phantoms towards the chest wall along with higher doses near the peripheries and nipple regions. Measured doses to the oil-filled phantoms are consistently lower across all volume shapes (mean dose, 3.8mGy for the anthropomorphic breast). Results agree with Monte Carlo dose estimates generated for uncompressed breast imaging and illustrate the advantages of using the novel K-edge filtered beam to minimize absorbed dose to the breast during fully-3D imaging.

  13. Left Ventricular Function Parameters in a Hispanic Population: Comparison of Planar & Tomographic Radionuclide Ventriculography (MUGA).

    PubMed

    Martin, Ralph J; Santiago, Bartolo

    2015-09-01

    Left ventricular (LV) function parameters have major diagnostic and prognostic importance in heart disease. Measurement of ventricular function with tomographic (SPECT) radionuclide ventriculography (MUGA) decreases camera time, improves contrast resolution, accuracy of interpretation and the overall reliability of the study as compared to planar MUGA. The relationship between these techniques is well established particularly with LV ejection fraction (LVEF), while there is limited data comparing the diastolic function parameters. Our goal was to validate the LV function parameters in our Hispanic population. Studies from 44 patients, available from 2009-2010, were retrospectively evaluated. LVEF showed a good correlation between the techniques (r=0.94) with an average difference of 3.8%. In terms of categorizing the results as normal or abnormal, this remained unchanged in 95% of the cases (p=0.035). For the peak filling rate, there was a moderate correlation between the techniques (r=0.71), whereas the diagnosis remained unchanged in 89% of cases (p=0.0004). Time to peak filling values only demonstrated a weak correlation (r=0.22). Nevertheless, the diagnosis remained the same in 68% of the cases (p=0.089). Systolic function results in our study were well below the 7-10% difference reported in the literature. Only a weak to moderate correlation was observed with the diastolic function parameters. Comparison with echocardiogram (not available) may be of benefit to evaluate which of these techniques results in more accurate diastolic function parameters.

  14. A new variable parallel holes collimator for scintigraphic device with validation method based on Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Trinci, G.; Massari, R.; Scandellari, M.; Boccalini, S.; Costantini, S.; Di Sero, R.; Basso, A.; Sala, R.; Scopinaro, F.; Soluri, A.

    2010-09-01

    The aim of this work is to show a new scintigraphic device able to change automatically the length of its collimator in order to adapt the spatial resolution value to gamma source distance. This patented technique replaces the need for collimator change that standard gamma cameras still feature. Monte Carlo simulations represent the best tool in searching new technological solutions for such an innovative collimation structure. They also provide a valid analysis on response of gamma cameras performances as well as on advantages and limits of this new solution. Specifically, Monte Carlo simulations are realized with GEANT4 (GEometry ANd Tracking) framework and the specific simulation object is a collimation method based on separate blocks that can be brought closer and farther, in order to reach and maintain specific spatial resolution values for all source-detector distances. To verify the accuracy and the faithfulness of these simulations, we have realized experimental measurements with identical setup and conditions. This confirms the power of the simulation as an extremely useful tool, especially where new technological solutions need to be studied, tested and analyzed before their practical realization. The final aim of this new collimation system is the improvement of the SPECT techniques, with the real control of the spatial resolution value during tomographic acquisitions. This principle did allow us to simulate a tomographic acquisition of two capillaries of radioactive solution, in order to verify the possibility to clearly distinguish them.

  15. 3D SPECT/CT fusion using image data projection of bone SPECT onto 3D volume-rendered CT images: feasibility and clinical impact in the diagnosis of bone metastasis.

    PubMed

    Ogata, Yuji; Nakahara, Tadaki; Ode, Kenichi; Matsusaka, Yohji; Katagiri, Mari; Iwabuchi, Yu; Itoh, Kazunari; Ichimura, Akira; Jinzaki, Masahiro

    2017-05-01

    We developed a method of image data projection of bone SPECT into 3D volume-rendered CT images for 3D SPECT/CT fusion. The aims of our study were to evaluate its feasibility and clinical usefulness. Whole-body bone scintigraphy (WB) and SPECT/CT scans were performed in 318 cancer patients using a dedicated SPECT/CT systems. Volume data of bone SPECT and CT were fused to obtain 2D SPECT/CT images. To generate our 3D SPECT/CT images, colored voxel data of bone SPECT were projected onto the corresponding location of the volume-rendered CT data after a semi-automatic bone extraction. Then, the resultant 3D images were blended with conventional volume-rendered CT images, allowing to grasp the three-dimensional relationship between bone metabolism and anatomy. WB and SPECT (WB + SPECT), 2D SPECT/CT fusion, and 3D SPECT/CT fusion were evaluated by two independent reviewers in the diagnosis of bone metastasis. The inter-observer variability and diagnostic accuracy in these three image sets were investigated using a four-point diagnostic scale. Increased bone metabolism was found in 744 metastatic sites and 1002 benign changes. On a per-lesion basis, inter-observer agreements in the diagnosis of bone metastasis were 0.72 for WB + SPECT, 0.90 for 2D SPECT/CT, and 0.89 for 3D SPECT/CT. Receiver operating characteristic analyses for the diagnostic accuracy of bone metastasis showed that WB + SPECT, 2D SPECT/CT, and 3D SPECT/CT had an area under the curve of 0.800, 0.983, and 0.983 for reader 1, 0.865, 0.992, and 0.993 for reader 2, respectively (WB + SPECT vs. 2D or 3D SPECT/CT, p < 0.001; 2D vs. 3D SPECT/CT, n.s.). The durations of interpretation of WB + SPECT, 2D SPECT/CT, and 3D SPECT/CT images were 241 ± 75, 225 ± 73, and 182 ± 71 s for reader 1 and 207 ± 72, 190 ± 73, and 179 ± 73 s for reader 2, respectively. As a result, it took shorter time to read 3D SPECT/CT images than 2D SPECT/CT (p < 0.0001) or WB + SPECT images (p < 0.0001). 3D SPECT/CT fusion offers comparable diagnostic accuracy to 2D SPECT/CT fusion. The visual effect of 3D SPECT/CT fusion facilitates reduction of reading time compared to 2D SPECT/CT fusion.

  16. Image processing pipeline for synchrotron-radiation-based tomographic microscopy.

    PubMed

    Hintermüller, C; Marone, F; Isenegger, A; Stampanoni, M

    2010-07-01

    With synchrotron-radiation-based tomographic microscopy, three-dimensional structures down to the micrometer level can be visualized. Tomographic data sets typically consist of 1000 to 1500 projections of 1024 x 1024 to 2048 x 2048 pixels and are acquired in 5-15 min. A processing pipeline has been developed to handle this large amount of data efficiently and to reconstruct the tomographic volume within a few minutes after the end of a scan. Just a few seconds after the raw data have been acquired, a selection of reconstructed slices is accessible through a web interface for preview and to fine tune the reconstruction parameters. The same interface allows initiation and control of the reconstruction process on the computer cluster. By integrating all programs and tools, required for tomographic reconstruction into the pipeline, the necessary user interaction is reduced to a minimum. The modularity of the pipeline allows functionality for new scan protocols to be added, such as an extended field of view, or new physical signals such as phase-contrast or dark-field imaging etc.

  17. Do Chondral Lesions of the Knee Correlate with Bone Tracer Uptake by Using SPECT/CT?

    PubMed

    Dordevic, Milos; Hirschmann, Michael T; Rechsteiner, Jan; Falkowski, Anna; Testa, Enrique; Hirschmann, Anna

    2016-01-01

    To evaluate the correlation of bone tracer uptake as determined with single photon emission computed tomography (SPECT)/computed tomography (CT) and the size and severity of chondral lesions detected with magnetic resonance (MR) imaging of the knee. MR imaging and SPECT/CT images of 63 knee joints in 63 patients (mean age ± standard deviation, 49.2 years ± 12.7) with chondral or osteochondral lesions were prospectively collected and retrospectively analyzed after approval by the ethics committee. Chondral lesions were graded on MR images by using a modified Noyes grading scale (grade 0, intact; grade 1, fibrillations; grade 2, <50% defect; grade 3, >50% defect; and grade 4, grade three plus subchondral changes) and measured in two dimensions. Technetium 99m hydroxymethane diphosphonate SPECT/CT bone tracer uptake was volumetrically quantified by using validated software. Maximum values of each subchondral area (patellofemoral or medial and lateral femorotibial) were quantified, and a ratio was calculated in relation to a reference region in the femoral shaft, which represented the bone tracer uptake background activity. Grades and sizes of chondral lesions and bone tracer uptake were correlated by using an independent t test and analysis of variance (P < .05). Bone tracer uptake was low (mean relative uptake, 1.64 ± 0.95) in knees without any present chondral lesion. In knees with grade 3 and 4 chondral lesions, the relative ratio was significantly higher (3.62 ± 2.18, P = .002) than in knees with grade 1 and 2 lesions (2.95 ± 2.07). The larger the diameter of the chondral lesion, the higher the bone tracer uptake. Higher grades of chondral lesions (grades 3 and 4) larger than 4 cm(2) (4.96 ± 2.43) showed a significantly higher bone tracer uptake than smaller lesions (<1 cm(2), 2.72 ± 1.43 [P = .011]; and 1-4 cm(2), 3.28 ± 2.15 [P = .004]). SPECT/CT findings significantly correlate with the degree and size of chondral lesions on MR images. Grade 3 and 4 chondral lesions of the knee, as well as larger lesions, correlate with a high bone tracer uptake. © RSNA, 2015.

  18. Impact of ventilation/perfusion single-photon emission computed tomography on treatment duration of pulmonary embolism

    PubMed Central

    Begic, Amela; Opanković, Emina; Čukić, Vesna; Rustempašić, Medzida; Bašić, Amila; Miniati, Massimo; Jögi, Jonas

    2015-01-01

    Purpose The aim of the study was to establish whether the duration of anticoagulant (AC) therapy can be tailored, on an objective basis, by using ventilation/perfusion single-photon emission computed tomography (V/P SPECT) and to assess the extent of residual perfusion defects over time. In particular, we addressed the following: (a) is the extent of perfusion recovery at 3 months of initial pulmonary embolism (PE) diagnosis a satisfactory criterion for deciding the duration of oral AC? (b) Is it safe to withdraw AC at 3 months if perfusion recovery is complete? Patients and methods Of 269 consecutive patients with suspected PE, 100 patients were diagnosed with PE using V/P SPECT. Sixty-seven patients with acute PE were followed up clinically and with V/P SPECT at 3 months. Sixty-four patients were subject to review and examination using V/P SPECT for a period of 6 months and 33 were followed up only clinically. Therapy was terminated after 3 months if perfusion was normalized, and patients were free of symptoms and the risk of hypercoagulability. Initial extension of PE did not have an impact on decision making. Results PE extension varied from 10 to 70% in the acute stage. After 3 months, complete resolution of PE was found in 48 patients. The treating pulmonologist decided to terminate therapy in 35 (73%) patients and to continue AC in 13 patients because of persistent risk factors. Six months later, at the second control stage, 53 patients had complete recovery of pulmonary perfusion. Eleven patients still had perfusion defects at 6 months. No recurrence was identified at 6 months in the 35 patients whose therapy was terminated after 3 months. No bleeding effects were observed in any of the patients during the 6-month follow-up. Conclusion This study shows that AC therapy can be tailored, on an objective basis, by using V/P SPECT. Normalization of perfusion at 3 months of initial PE diagnosis was a reliable indicator that AC could be safely withdrawn in patients who were without hypercoagulability risk. PMID:25321156

  19. [Application of SPECT/CT in neurosurgical practice].

    PubMed

    Golanov, A V; Kotel'nikova, T M; Melikian, A G; Dolgushin, M B; Sorokin, V S; Soboleva, O I; Khokhlova, E V; Gorlachev, G E; Krasnianskiĭ, S A

    2012-01-01

    The paper presents the experience of application of single-photon emission computed tomography (SPECT) and CT in neurosurgery. Combination of these two techniques in the single system provides higher precision of both methods. The novel technique allows assessment of tumor spread in the brain, differential diagnosis of tumor regrowth and radiation-induced necrosis, evaluation of cerebral perfusion in epilepsy, traumatic brain injury (TBI), and diagnostics of secondary CNS lesions. Examples of primary diagnosis, dynamic follow-up and differential diagnosis of cerebral neoplasms, localization of epileptogenic foci in planning of surgery, prediction of outcome after TBI and evaluation of spread of metastatic skeletal involvement and further application of acquire data are presented.

  20. Browsing Software of the Visible Korean Data Used for Teaching Sectional Anatomy

    ERIC Educational Resources Information Center

    Shin, Dong Sun; Chung, Min Suk; Park, Hyo Seok; Park, Jin Seo; Hwang, Sung Bae

    2011-01-01

    The interpretation of computed tomographs (CTs) and magnetic resonance images (MRIs) to diagnose clinical conditions requires basic knowledge of sectional anatomy. Sectional anatomy has traditionally been taught using sectioned cadavers, atlases, and/or computer software. The computer software commonly used for this subject is practical and…

  1. Towards simultaneous single emission microscopy and magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Cai, Liang

    In recent years, the combined nuclear imaging and magnetic resonance imaging (MRI) has drawn extensive research effort. They can provide simultaneously acquired anatomical and functional information inside the human/small animal body in vivo. In this dissertation, the development of an ultrahigh resolution MR-compatible SPECT (Single Photon Emission Computed Tomography) system that can be operated inside a pre-existing clinical MR scanner for simultaneous dual-modality imaging of small animals will be discussed. This system is constructed with 40 small pixel CdTe detector modules assembled in a fully stationary ring SPECT geometry. Series of experiments have demonstrated that this system is capable of providing an imaging resolution of <500?m, when operated inside MR scanners. The ultrahigh resolution MR-compatible SPECT system is built around a small pixel CdTe detector module that we recently developed. Each module consists of CdTe detectors having an overall size of 2.2 cm x 1.1 cm, divided into 64 x 32 pixels of 350 mum in size. A novel hybrid pixel-waveform (HPWF) readout system is also designed to alleviate several challenges for using small-pixel CdTe detectors in ultrahigh-resolution SPECT imaging applications. The HPWF system utilizes a modified version of a 2048-channel 2-D CMOS ASIC to readout the anode pixel, and a digitizing circuitry to sample the signal waveform induced on the cathode. The cathode waveform acquired with the HPWF circuitry offers excellent spatial resolution, energy resolution and depth of interaction (DOI) information, even with the presence of excessive charge-sharing/charge-loss between the small anode pixels. The HPWF CdTe detector is designed and constructed with a minimum amount of ferromagnetic materials, to ensure the MR-compatibility. To achieve sub-500?m imaging resolution, two special designed SPECT apertures have been constructed with different pinhole sizes of 300?m and 500?m respectively. It has 40 pinhole inserts that are made of cast platinum (90%)-iridium (10%) alloy, which provides the maximum stopping power and are compatible with MR scanners. The SPECT system is installed on a non-metal gantry constructed with 3-D printing using nylon powder material. This compact system can work as a "low-cost" desktop ultrahigh resolution SPECT system. It can also be directly operated inside an MR scanner. Accurate system geometrical calibration and corresponding image reconstruction methods for the MRC-SPECT system is developed. In order to account for the magnetic field induced distortion in the SPECT image, a comprehensive charge collection model inside strong magnetic field is adopted to produce high resolution SPECT image inside MR scanner.

  2. rCBF-SPECT in brain infarction: When does it predict outcome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Limburg, M.; van Royen, E.A.; Hijdra, A.

    1991-03-01

    We prospectively studied 26 patients with ischemic stroke within 24 hr, after 2 wk, and after 6 mo with thallium-201-diethyldithiocarbamate single-photon emission computed tomography (SPECT) and neurologic and functional assessments. The admission flow deficits correlated with outcome. The admission and 6-mo scores correlated with clinical conditions at each time. At 2 wk, the flow deficits were smaller and did not correlate with clinical parameters. Nor did the presence or absence of hyperfixation of the radiopharmaceutical. Six months after the infarct, the flow defect had decreased in 9 of 15 patients in whom three serial scans were available, with better clinicalmore » improvement than in the remaining six whose flow deficits increased. More patients in the first group had been treated randomly with the calcium-entry blocker flunarizine. SPECT imaging of rCBF within 24 hr after stroke correlates with clinical outcome and condition, whereas rCBF imaging at 2 wk after the stroke shows no clinical correlation.« less

  3. Simultaneous CT and SPECT tomography using CZT detectors

    DOEpatents

    Paulus, Michael J.; Sari-Sarraf, Hamed; Simpson, Michael L.; Britton, Jr., Charles L.

    2002-01-01

    A method for simultaneous transmission x-ray computed tomography (CT) and single photon emission tomography (SPECT) comprises the steps of: injecting a subject with a tracer compound tagged with a .gamma.-ray emitting nuclide; directing an x-ray source toward the subject; rotating the x-ray source around the subject; emitting x-rays during the rotating step; rotating a cadmium zinc telluride (CZT) two-sided detector on an opposite side of the subject from the source; simultaneously detecting the position and energy of each pulsed x-ray and each emitted .gamma.-ray captured by the CZT detector; recording data for each position and each energy of each the captured x-ray and .gamma.-ray; and, creating CT and SPECT images from the recorded data. The transmitted energy levels of the x-rays lower are biased lower than energy levels of the .gamma.-rays. The x-ray source is operated in a continuous mode. The method can be implemented at ambient temperatures.

  4. Determination of Three-Dimensional Left Ventricle Motion to Analyze Ventricular Dyssyncrony in SPECT Images

    NASA Astrophysics Data System (ADS)

    Rebelo, Marina de Sá; Aarre, Ann Kirstine Hummelgaard; Clemmesen, Karen-Louise; Brandão, Simone Cristina Soares; Giorgi, Maria Clementina; Meneghetti, José Cláudio; Gutierrez, Marco Antonio

    2009-12-01

    A method to compute three-dimension (3D) left ventricle (LV) motion and its color coded visualization scheme for the qualitative analysis in SPECT images is proposed. It is used to investigate some aspects of Cardiac Resynchronization Therapy (CRT). The method was applied to 3D gated-SPECT images sets from normal subjects and patients with severe Idiopathic Heart Failure, before and after CRT. Color coded visualization maps representing the LV regional motion showed significant difference between patients and normal subjects. Moreover, they indicated a difference between the two groups. Numerical results of regional mean values representing the intensity and direction of movement in radial direction are presented. A difference of one order of magnitude in the intensity of the movement on patients in relation to the normal subjects was observed. Quantitative and qualitative parameters gave good indications of potential application of the technique to diagnosis and follow up of patients submitted to CRT.

  5. Correlative studies of structural and functional imaging in primary progressive aphasia.

    PubMed

    Panegyres, P K; McCarthy, M; Campbell, A; Lenzo, N; Fallon, M; Thompson, J

    2008-01-01

    To compare and contrast structural and functional imaging in primary progressive aphasia (PPA). A cohort of 8 patients diagnosed with PPA presenting with nonfluency were prospectively evaluated. All patients had structural imaging in the form of MRI and in 1 patient CAT scanning on account of a cardiac pacemaker. All patients had single-photon emission computed tomography (SPECT) and positron emission tomography (PET) imaging. SPECT and PET imaging had 100% correlation. Anatomical imaging was abnormal in only 6 of the 8 patients. Wernicke's area showed greater peak Z score reduction and extent of area affected than Broca's area (McNemar paired test: P = .008 for Z score reduction; P = .0003 for extent). PET scanning revealed significant involvement of the anterior cingulum. Functional imaging in PPA: (a) identified more patients correctly than anatomic imaging highlighting the importance of SPECT and PET in the diagnosis; and (b) demonstrated the heterogeneous involvement of disordered linguistic networks in PPA suggesting its syndromic nature.

  6. SPECT Imaging of Mice with 99mTc-Radiopharmaceuticals Obtained from 99Mo Produced by 100Mo(n,2n)99Mo and Fission of 235U

    NASA Astrophysics Data System (ADS)

    Hashimoto, Kazuyuki; Nagai, Yasuki; Kawabata, Masako; Sato, Nozomi; Hatsukawa, Yuichi; Saeki, Hideya; Motoishi, Shoji; Ohta, Masayuki; Konno, Chikara; Ochiai, Kentaro; Kawauchi, Yukimasa; Ohta, Akio; Shiina, Takayuki; Takeuchi, Nobuhiro; Ashino, Hiroki; Nakahara, Yuto

    2015-04-01

    The distribution of 99mTc-radiopharmaceutical in mouse was determined by single photon emission computed tomography (SPECT) for the first time using 99mTc, which was separated by thermochromatography from 99Mo produced via the 100Mo(n,2n)99Mo reaction with accelerator neutrons. The SPECT image was comparable to that obtained using the fission product 99Mo. Radionuclidic and radiochemical purities of the separated 99mTc and its aluminum concentration met the United States Pharmacopeia regulatory requirements for 99mTc from the fission product 99Mo. These results provide important evidence that the 99mTc-radiopharmaceutical formulated using the (n,2n) 99Mo can be a promising substitute for the fission product 99Mo. The current and forthcoming problem of ensuring a reliable and constant supply of 99Mo in Japan can be partially mitigated.

  7. Validation of the Monte Carlo simulator GATE for indium-111 imaging.

    PubMed

    Assié, K; Gardin, I; Véra, P; Buvat, I

    2005-07-07

    Monte Carlo simulations are useful for optimizing and assessing single photon emission computed tomography (SPECT) protocols, especially when aiming at measuring quantitative parameters from SPECT images. Before Monte Carlo simulated data can be trusted, the simulation model must be validated. The purpose of this work was to validate the use of GATE, a new Monte Carlo simulation platform based on GEANT4, for modelling indium-111 SPECT data, the quantification of which is of foremost importance for dosimetric studies. To that end, acquisitions of (111)In line sources in air and in water and of a cylindrical phantom were performed, together with the corresponding simulations. The simulation model included Monte Carlo modelling of the camera collimator and of a back-compartment accounting for photomultiplier tubes and associated electronics. Energy spectra, spatial resolution, sensitivity values, images and count profiles obtained for experimental and simulated data were compared. An excellent agreement was found between experimental and simulated energy spectra. For source-to-collimator distances varying from 0 to 20 cm, simulated and experimental spatial resolution differed by less than 2% in air, while the simulated sensitivity values were within 4% of the experimental values. The simulation of the cylindrical phantom closely reproduced the experimental data. These results suggest that GATE enables accurate simulation of (111)In SPECT acquisitions.

  8. Movement disorders: role of imaging in diagnosis.

    PubMed

    Mascalchi, Mario; Vella, Alessandra; Ceravolo, Roberto

    2012-02-01

    Magnetic resonance imaging (MRI and single-photon emission computed tomography (SPECT) have a considerable role in the diagnosis of the single patient with movement disorders. Conventional MRI demonstrates symptomatic causes of parkinsonism but does not show any specific finding in Parkinson's disease (PD). However, SPECT using tracers of the dopamine transporter (DAT) demonstrates an asymmetric decrease of the uptake in the putamen and caudate from the earliest clinical stages. In other degenerative forms of parkinsonism, including progressive supranuclear palsy (PSP), multisystem atrophy (MSA), and corticobasal degeneration (CBD), MRI reveals characteristic patterns of regional atrophy combined with signal changes or microstructural changes in the basal ganglia, pons, middle and superior cerebellar peduncles, and cerebral subcortical white matter. SPECT demonstrates a decreased uptake of tracers of the dopamine D2 receptors in the striata of patients with PSP and MSA, which is not observed in early PD. MRI also significantly contributes to the diagnosis of some inherited hyperkinetic conditions including neurodegeneration with brain iron accumulation and fragile-X tremor/ataxia syndrome by revealing characteristic symmetric signal changes in the basal ganglia and middle cerebellar peduncles, respectively. A combination of the clinical features with MRI and SPECT is recommended for optimization of the diagnostic algorithm in movement disorders. Copyright © 2011 Wiley Periodicals, Inc.

  9. [Imaging analysis of jaw defects reparation with antigen-extracted porcine cancellous bone].

    PubMed

    Chen, Xufeng; Lu, Lihong; Feng, Zhiqiang; Yin, Zhongda; Lai, Renfa

    2017-12-01

    At present, most of the bone xenograft for clinical application comes from bovine. In recent years, many studies have been done on the clinical application of porcine xenograft bone. The goal of this study was to evaluate the effect of canine mandibular defects reparation with antigen-extracted porcine cancellous bone by imaging examination. Four dogs' bilateral mandibular defects were created, with one side repaired with autologous bone (set as control group) while the other side repaired with antigen-extracted porcine cancellous bone (set as experimental group). Titanium plates and titanium screws were used for fixation. Cone beam computed tomography (CBCT), computed tomography (CT), single-photon emission computed tomography (SPECT) were undertaken at week 12 and 24 postoperatively, and SPECT and CT images were fused. The results demonstrated that the remodeling of antigen-extracted porcine cancellous bone was slower than that of autologous bone, but it can still be used as scaffold for jaw defects. The results in this study provide a new choice for materials required for clinical reparation of jaw defects.

  10. Conventional metrizamide myelography (MM) and computed tomographic metrizamide myelography (CTMM) in scoliosis: a comparative study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pettersson, H.; Harwood-Nash, D.C.; Fitz, C.R.

    1982-01-01

    A retrospective examination was performed to assess the accuracy of metrizamide myelography (MM) and computed tomographic metrizamide myelography (CTMM) in scoliosis. Of 81 consecutive scoliotic children studied by myelography, 30 had only MM while the remaining 51 had CTMM immediately afterward. CTMM added esential diagnostic information in 13 cases of dysraphism and 4 cases, both methods gave the same imformation. The outhors conclude that in patients with severe scoliosis, dysraphism, and scoliosis with localized neurological disturbances, CTMM should always be added to MM or be the only examination; while in idiopathic scoliosis with vague neurological disturbances a survey of themore » entire spine is essential, preferably with MM.« less

  11. Root Canal Treatment of Mandibular Second Premolar with Three Separate Roots and Canals Using Spiral Computed Tomographic

    PubMed Central

    Hariharavel, V. P.; Kumar, A. Ashok; Ganesh, C.; Aravindhan, R.

    2014-01-01

    Anatomic and internal morphology of a root canal system is more complex and differs for each individual tooth of which mandibular premolars have earned the reputation for having aberrant anatomy. The occurrence of three canals with three separate foramina in mandibular second premolars is very rare. A wider knowledge on both clinical and radiological anatomy especially spiral computed tomographic is absolutely essential for the success of endodontic treatment. These teeth may require skillful and special root canal special shaping and obturating techniques. This paper reports an unusual case of a mandibular second premolar with atypical canal pattern that was successfully treated endodontically. PMID:25101187

  12. Dual-energy micro-CT imaging of pulmonary airway obstruction: correlation with micro-SPECT

    NASA Astrophysics Data System (ADS)

    Badea, C. T.; Befera, N.; Clark, D.; Qi, Y.; Johnson, G. A.

    2014-03-01

    To match recent clinical dual energy (DE) CT studies focusing on the lung, similar developments for DE micro-CT of the rodent lung are required. Our group has been actively engaged in designing pulmonary gating techniques for micro- CT, and has also introduced the first DE micro-CT imaging method of the rodent lung. The aim of this study was to assess the feasibility of DE micro-CT imaging for the evaluation of airway obstruction in mice, and to compare the method with micro single photon emission computed tomography (micro-SPECT) using technetium-99m labeled macroaggregated albumin (99mTc-MAA). The results suggest that the induced pulmonary airway obstruction causes either atelectasis, or air-trapping similar to asthma or chronic bronchitis. Atelectasis could only be detected at early time points in DE micro-CT images, and is associated with a large increase in blood fraction and decrease in air fraction. Air trapping had an opposite effect with larger air fraction and decreased blood fraction shown by DE micro-CT. The decrease in perfusion to the hypoventilated lung (hypoxic vasoconstriction) is also seen in micro-SPECT. The proposed DE micro-CT technique for imaging localized airway obstruction performed well in our evaluation, and provides a higher resolution compared to micro-SPECT. Both DE micro-CT and micro-SPECT provide critical, quantitative lung biomarkers for image-based anatomical and functional information in the small animal. The methods are readily linked to clinical methods allowing direct comparison of preclinical and clinical results.

  13. Perfusion status of the stroke-like lesion at the hyperacute stage in MELAS.

    PubMed

    Yeh, Hsu-Ling; Chen, Yen-Kung; Chen, Wei-Hung; Wang, Han-Cheng; Chiu, Hou-Chang; Lien, Li-Ming; Wei, Yau-Huei

    2013-02-01

    Hypoperfusion on single-photon emission computed tomography (SPECT) of the stroke-like lesion (SLL) at the hyperacute stage of mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS) is considered to be a supportive evidence of the mitochondrial angiopathy theory. Our objectives were to examine whether other neuroimages, especially transcranial color-coded sonography (TCCS), done at the hyperacute stage of stroke-like episode (SLE) is consistent with hypoperfusion of the SLL. We reviewed the magnetic resonance imaging (MRI), SPECT, cerebral angiography, and TCCS of a patient with MELAS syndrome, all of which were performed at the hyperacute stage of one SLE. MRI on the 1st day post SLE showed right temporoparietal lesion with vasogenic edema. SPECT on the 2nd day showed focal decreased uptake of technetium-99m hexamethylpropyleneamine oxime ((99m)Tc-HMPAO) in the same region, but cerebral angiography and TCCS on the 3rd day showed increased regional cerebral blood flow (rCBF) and distal arteriole dilation in the same region. TCCS can delineate increased rCBF of the SLL at the hyperacute stage of SLE. We propose that the discrepancy between the decreased (99m)Tc-HMPAO uptake and increased rCBF might be caused by mitochondrial dysfunction. The phenomenon of "hypoperfusion" on SPECT might be caused by cell dysfunction but not decreased rCBF. We suggest that SPECT can be complemented by angiography and TCCS in future studies to delineate the perfusion status of SLLs. Copyright © 2012 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  14. Evaluation of reconstruction techniques in regional cerebral blood flow SPECT using trade-off plots: a Monte Carlo study.

    PubMed

    Olsson, Anna; Arlig, Asa; Carlsson, Gudrun Alm; Gustafsson, Agnetha

    2007-09-01

    The image quality of single photon emission computed tomography (SPECT) depends on the reconstruction algorithm used. The purpose of the present study was to evaluate parameters in ordered subset expectation maximization (OSEM) and to compare systematically with filtered back-projection (FBP) for reconstruction of regional cerebral blood flow (rCBF) SPECT, incorporating attenuation and scatter correction. The evaluation was based on the trade-off between contrast recovery and statistical noise using different sizes of subsets, number of iterations and filter parameters. Monte Carlo simulated SPECT studies of a digital human brain phantom were used. The contrast recovery was calculated as measured contrast divided by true contrast. Statistical noise in the reconstructed images was calculated as the coefficient of variation in pixel values. A constant contrast level was reached above 195 equivalent maximum likelihood expectation maximization iterations. The choice of subset size was not crucial as long as there were > or = 2 projections per subset. The OSEM reconstruction was found to give 5-14% higher contrast recovery than FBP for all clinically relevant noise levels in rCBF SPECT. The Butterworth filter, power 6, achieved the highest stable contrast recovery level at all clinically relevant noise levels. The cut-off frequency should be chosen according to the noise level accepted in the image. Trade-off plots are shown to be a practical way of deciding the number of iterations and subset size for the OSEM reconstruction and can be used for other examination types in nuclear medicine.

  15. Brain SPECT can differentiate between essential tremor and early-stage tremor-dominant Parkinson's disease.

    PubMed

    Song, In-Uk; Park, Jeong-Wook; Chung, Sung-Woo; Chung, Yong-An

    2014-09-01

    There are no confirmatory or diagnostic tests or tools to differentiate between essential tremor (ET) and tremor in idiopathic Parkinson's disease (PD). Although a number of imaging studies have indicated that there are differences between ET and PD, the functional imaging study findings are controversial. Therefore, we analyzed regional cerebral blood flow (CBF) by perfusion brain single-photon emission computed tomography (SPECT) to identify differences between ET and tremor-dominant Parkinson's disease (TPD). We recruited 33 patients with TPD, 16 patients with ET, and 33 healthy controls. We compared the severity of tremor symptoms by comparing the Fahn-Tolosa-Marin rating scale (FTM) score and the tremor score from Unified Parkinson's Disease Rating Scale (UPDRS) between TPD and ET patients. Subjects were evaluated by neuropsychological assessments, MRI and perfusion SPECT of the brain. Total FTM score was significantly higher in ET patients than TPD patients. However, there was no significant difference in FTM Part A scores between the two patient groups, while the scores for FTM Part B and C were significantly higher in ET patients than TPD patients. Brain SPECT analysis of the TPD group demonstrated significant hypoperfusion of both the lentiform nucleus and thalamus compared to the ET group. Brain perfusion SPECT may be a useful clinical method to differentiate between TPD and ET even during early-phase PD, because the lentiform nucleus and thalamus show differences in regional perfusion between these two groups during this time period. Additionally, we found evidence of cerebellar dysfunction in both TPT and ET. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Iodine-131 imaging using 284 keV photons with a small animal CZT-SPECT system dedicated to low-medium-energy photon detection.

    PubMed

    Kojima, Akihiro; Gotoh, Kumiko; Shimamoto, Masako; Hasegawa, Koki; Okada, Seiji

    2016-02-01

    Iodine-131 is widely used for radionuclide therapy because of its β-particle and for diagnostic imaging employing its principal gamma ray. Since that principal gamma ray has the relatively high energy of 364 keV, small animal single-photon emission computed tomography (SPECT) imaging systems may be required to possess the ability to image such higher energy photons. The aim of this study was to investigate the possibility of imaging I-131 using its 284 keV photons instead of its 364 keV photons in a small animal SPECT imaging system dedicated to the detection of low-medium-energy photons (below 300 keV). The imaging system used was a commercially available preclinical SPECT instrument with CZT detectors that was equipped with multi-pinhole collimators and was accompanied by a CT imager. An energy window for I-131 imaging was set to a photopeak of 284 keV with a low abundance compared with 364 keV photons. Small line sources and two mice, one of each of two types, that were injected with NaI-131 were scanned. Although higher counts occurred at the peripheral region of the reconstructed images due to the collimator penetration by the 364 keV photons, the shape of the small line sources could be well visualized. The measured spatial resolution was relatively poor (~1.9 mm for full width at half maximum and ~3.9 mm for full width at tenth maximum). However, a good linear correlation between SPECT values and the level of I-131 radioactivity was observed. Furthermore, the uptake of NaI-131 to the thyroid gland for the two mice was clearly identified in the 3D-SPECT image fused with the X-ray CT image. We conclude that the use of an energy window set on the photopeak of 284 keV and the multi-pinhole collimator may permit I-131 imaging for a preclinical CZT-SPECT system that does not have the ability to acquire images using the 364 keV photons.

  17. Can DCE-MRI Explain the Heterogeneity in Radiopeptide Uptake Imaged by SPECT in a Pancreatic Neuroendocrine Tumor Model?

    PubMed Central

    Groen, Harald C.; Niessen, Wiro J.; Bernsen, Monique R.; de Jong, Marion; Veenland, Jifke F.

    2013-01-01

    Although efficient delivery and distribution of treatment agents over the whole tumor is essential for successful tumor treatment, the distribution of most of these agents cannot be visualized. However, with single-photon emission computed tomography (SPECT), both delivery and uptake of radiolabeled peptides can be visualized in a neuroendocrine tumor model overexpressing somatostatin receptors. A heterogeneous peptide uptake is often observed in these tumors. We hypothesized that peptide distribution in the tumor is spatially related to tumor perfusion, vessel density and permeability, as imaged and quantified by DCE-MRI in a neuroendocrine tumor model. Four subcutaneous CA20948 tumor-bearing Lewis rats were injected with the somatostatin-analog 111In-DTPA-Octreotide (50 MBq). SPECT-CT and MRI scans were acquired and MRI was spatially registered to SPECT-CT. DCE-MRI was analyzed using semi-quantitative and quantitative methods. Correlation between SPECT and DCE-MRI was investigated with 1) Spearman’s rank correlation coefficient; 2) SPECT uptake values grouped into deciles with corresponding median DCE-MRI parametric values and vice versa; and 3) linear regression analysis for median parameter values in combined datasets. In all tumors, areas with low peptide uptake correlated with low perfusion/density/ /permeability for all DCE-MRI-derived parameters. Combining all datasets, highest linear regression was found between peptide uptake and semi-quantitative parameters (R2>0.7). The average correlation coefficient between SPECT and DCE-MRI-derived parameters ranged from 0.52-0.56 (p<0.05) for parameters primarily associated with exchange between blood and extracellular extravascular space. For these parameters a linear relation with peptide uptake was observed. In conclusion, the ‘exchange-related’ DCE-MRI-derived parameters seemed to predict peptide uptake better than the ‘contrast amount- related’ parameters. Consequently, fast and efficient diffusion through the vessel wall into tissue is an important factor for peptide delivery. DCE-MRI helps to elucidate the relation between vascular characteristics, peptide delivery and treatment efficacy, and may form a basis to predict targeting efficiency. PMID:24116203

  18. Investigating line- versus point-laser excitation for three-dimensional fluorescence imaging and tomography employing a trimodal imaging system

    NASA Astrophysics Data System (ADS)

    Cao, Liji; Peter, Jörg

    2013-06-01

    The adoption of axially oriented line illumination patterns for fluorescence excitation in small animals for fluorescence surface imaging (FSI) and fluorescence optical tomography (FOT) is being investigated. A trimodal single-photon-emission-computed-tomography/computed-tomography/optical-tomography (SPECT-CT-OT) small animal imaging system is being modified for employment of point- and line-laser excitation sources. These sources can be arbitrarily positioned around the imaged object. The line source is set to illuminate the object along its entire axial direction. Comparative evaluation of point and line illumination patterns for FSI and FOT is provided involving phantom as well as mouse data. Given the trimodal setup, CT data are used to guide the optical approaches by providing boundary information. Furthermore, FOT results are also being compared to SPECT. Results show that line-laser illumination yields a larger axial field of view (FOV) in FSI mode, hence faster data acquisition, and practically acceptable FOT reconstruction throughout the whole animal. Also, superimposed SPECT and FOT data provide additional information on similarities as well as differences in the distribution and uptake of both probe types. Fused CT data enhance further the anatomical localization of the tracer distribution in vivo. The feasibility of line-laser excitation for three-dimensional fluorescence imaging and tomography is demonstrated for initiating further research, however, not with the intention to replace one by the other.

  19. Iodine-123 metaiodobenzylguanidine scintigraphy and iodine-123 ioflupane single photon emission computed tomography in Lewy body diseases: complementary or alternative techniques?

    PubMed

    Treglia, Giorgio; Cason, Ernesto; Cortelli, Pietro; Gabellini, Anna; Liguori, Rocco; Bagnato, Antonio; Giordano, Alessandro; Fagioli, Giorgio

    2014-01-01

    To compare myocardial sympathetic imaging using (123)I-Metaiodobenzylguanidine (MIBG) scintigraphy and striatal dopaminergic imaging using (123)I-Ioflupane (FP-CIT) single photon emission computed tomography (SPECT) in patients with suspected Lewy body diseases (LBD). Ninety-nine patients who performed both methods within 2 months for differential diagnosis between Parkinson's disease (PD) and other parkinsonism (n = 68) or between dementia with Lewy bodies (DLB) and other dementia (n = 31) were enrolled. Sensitivity, specificity, accuracy, positive and negative predictive values of both methods were calculated. For (123) I-MIBG scintigraphy, the overall sensitivity, specificity, accuracy, positive and negative predictive values in LBD were 83%, 79%, 82%, 86%, and 76%, respectively. For (123)I-FP-CIT SPECT, the overall sensitivity, specificity, accuracy, positive and negative predictive values in LBD were 93%, 41%, 73%, 71%, and 80%, respectively. There was a statistically significant difference between these two methods in patients without LBD, but not in patients with LBD. LBD usually present both myocardial sympathetic and striatal dopaminergic impairments. (123)I-FP-CIT SPECT presents high sensitivity in the diagnosis of LBD; (123)I-MIBG scintigraphy may have a complementary role in differential diagnosis between PD and other parkinsonism. These scintigraphic methods showed similar diagnostic accuracy in differential diagnosis between DLB and other dementia. Copyright © 2012 by the American Society of Neuroimaging.

  20. Java-based remote viewing and processing of nuclear medicine images: toward "the imaging department without walls".

    PubMed

    Slomka, P J; Elliott, E; Driedger, A A

    2000-01-01

    In nuclear medicine practice, images often need to be reviewed and reports prepared from locations outside the department, usually in the form of hard copy. Although hard-copy images are simple and portable, they do not offer electronic data search and image manipulation capabilities. On the other hand, picture archiving and communication systems or dedicated workstations cannot be easily deployed at numerous locations. To solve this problem, we propose a Java-based remote viewing station (JaRViS) for the reading and reporting of nuclear medicine images using Internet browser technology. JaRViS interfaces to the clinical patient database of a nuclear medicine workstation. All JaRViS software resides on a nuclear medicine department server. The contents of the clinical database can be searched by a browser interface after providing a password. Compressed images with the Java applet and color lookup tables are downloaded on the client side. This paradigm does not require nuclear medicine software to reside on remote computers, which simplifies support and deployment of such a system. To enable versatile reporting of the images, color tables and thresholds can be interactively manipulated and images can be displayed in a variety of layouts. Image filtering, frame grouping (adding frames), and movie display are available. Tomographic mode displays are supported, including gated SPECT. The time to display 14 lung perfusion images in 128 x 128 matrix together with the Java applet and color lookup tables over a V.90 modem is <1 min. SPECT and PET slice reorientation is interactive (<1 s). JaRViS could run on a Windows 95/98/NT or a Macintosh platform with Netscape Communicator or Microsoft Intemet Explorer. The performance of Java code for bilinear interpolation, cine display, and filtering approaches that of a standard imaging workstation. It is feasible to set up a remote nuclear medicine viewing station using Java and an Internet or intranet browser. Images can be made easily and cost-effectively available to referring physicians and ambulatory clinics within and outside of the hospital, providing a convenient alternative to film media. We also find this system useful in home reporting of emergency procedures such as lung ventilation-perfusion scans or dynamic studies.

  1. Handheld single photon emission computed tomography (handheld SPECT) navigated video-assisted thoracoscopic surgery of computer tomography-guided radioactively marked pulmonary lesions.

    PubMed

    Müller, Joachim; Putora, Paul Martin; Schneider, Tino; Zeisel, Christoph; Brutsche, Martin; Baty, Florent; Markus, Alexander; Kick, Jochen

    2016-09-01

    Radioactive marking can be a valuable extension to minimally invasive surgery. The technique has been clinically applied in procedures involving sentinel lymph nodes, parathyroidectomy as well as interventions in thoracic surgery. Improvements in equipment and techniques allow one to improve the limits. Pulmonary nodules are frequently surgically removed for diagnostic or therapeutic reasons; here video-assisted thoracoscopic surgery (VATS) is the preferred technique. VATS might be impossible with nodules that are small or located deep in the lung. In this study, we examined the clinical application and safety of employing the newly developed handheld single photon emission tomography (handheld SPECT) device in combination with CT-guided radioactive marking of pulmonary nodules. In this pilot study, 10 subjects requiring surgical resection of a pulmonary nodule were included. The technique involved CT-guided marking of the target nodule with a 20-G needle, with subsequent injection of 25-30 MBq (effective: 7-14 MBq) Tc-99m MAA (Macro Albumin Aggregate). Quality control was made with conventional SPECT-CT to confirm the correct localization and exclude possible complications related to the puncture procedure. VATS was subsequently carried out using the handheld SPECT to localize the radioactivity intraoperatively and therefore the target nodule. A 3D virtual image was superimposed on the intraoperative visual image for surgical guidance. In 9 of the 10 subjects, the radioactive application was successfully placed directly in or in the immediate vicinity of the target nodule. The average size of the involved nodules was 9 mm (range 4-15). All successfully marked nodules were subsequently completely excised (R0) using VATS. The procedure was well tolerated. An asymptomatic clinically insignificant pneumothorax occurred in 5 subjects. Two subjects were found to have non-significant discrete haemorrhage in the infiltration canal of the needle. In a single subject, the radioactive marking was unsuccessful because the radioactivity spread into the pleural space. In our series of 10 patients, it was demonstrated that using handheld SPECT in conjunction with VATS to remove radioactively marked pulmonary nodules is feasible. The combination of proven surgical techniques with a novel localization device (handheld SPECT) allowed successful VATS excision of pulmonary nodules which, due to their localization and small size, would typically have required thoracotomy. ClinicalTrials.gov, NCT02050724, Public 01/29/214, Joachim Müller. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  2. Unlocking the Secrets of the Brain, Part II: A Continuing Look at Techniques for Exploring the Brain.

    ERIC Educational Resources Information Center

    Powledge, Tabitha M.

    1997-01-01

    Describes techniques for delving into the brain including positron emission tomography (PET), single photon emission computed tomography (SPECT), electroencephalogram (EEG), magnetoencephalography (MEG), transcranial magnetic stimulation (TMS), and low-tech indirect studies. (JRH)

  3. A Method for Identifying Contours in Processing Digital Images from Computer Tomograph

    NASA Astrophysics Data System (ADS)

    Roşu, Şerban; Pater, Flavius; Costea, Dan; Munteanu, Mihnea; Roşu, Doina; Fratila, Mihaela

    2011-09-01

    The first step in digital processing of two-dimensional computed tomography images is to identify the contour of component elements. This paper deals with the collective work of specialists in medicine and applied mathematics in computer science on elaborating new algorithms and methods in medical 2D and 3D imagery.

  4. Computed Tomographic Analysis of Ventral Atlantoaxial Optimal Safe Implantation Corridors in 27 Dogs.

    PubMed

    Leblond, Guillaume; Gaitero, Luis; Moens, Noel M M; Zur Linden, Alex; James, Fiona M K; Monteith, Gabrielle J; Runciman, John

    2017-11-01

    Objectives  Ventral atlantoaxial stabilization techniques are challenging surgical procedures in dogs. Available surgical guidelines are based upon subjective anatomical landmarks, and limited radiographic and computed tomographic data. The aims of this study were (1) to provide detailed anatomical descriptions of atlantoaxial optimal safe implantation corridors to generate objective recommendations for optimal implant placements and (2) to compare anatomical data obtained in non-affected Toy breed dogs, affected Toy breed dogs suffering from atlantoaxial instability and non-affected Beagle dogs. Methods  Anatomical data were collected from a prospectively recruited population of 27 dogs using a previously validated method of optimal safe implantation corridor analysis using computed tomographic images. Results  Optimal implant positions and three-dimensional numerical data were generated successfully in all cases. Anatomical landmarks could be used to generate objective definitions of optimal insertion points which were applicable across all three groups. Overall the geometrical distribution of all implant sites was similar in all three groups with a few exceptions. Clinical Significance  This study provides extensive anatomical data available to facilitate surgical planning of implant placement for atlantoaxial stabilization. Our data suggest that non-affected Toy breed dogs and non-affected Beagle dogs constitute reasonable research models to study atlantoaxial stabilization constructs. Schattauer GmbH Stuttgart.

  5. Carotid-bulb atypical fibromuscular dysplasia in young Afro-Caribbean patients with stroke.

    PubMed

    Joux, Julien; Chausson, Nicolas; Jeannin, Séverine; Saint-Vil, Martine; Mejdoubi, Mehdi; Hennequin, Jean-Luc; Deschamps, Lydia; Smadja, Didier; Olindo, Stéphane

    2014-12-01

    An atypical form of fibromuscular dysplasia located in the internal carotid-bulb (CaFMD) is thought to be uncommon and is poorly described as a cause of ischemic stroke in the young. This study aimed to obtain a better description of CaFMD in Afro-Caribbean population, who could be particularly affected by it. This study included consecutive patients <55 years consulting at Fort-de-France University Hospital Stroke Center (Martinique, FWI) found to have CaFMD as the only cause after a comprehensive work-up. CaFMD was diagnosed when computed tomographic angiography showed a bulbar spur without calcification. Twenty-five patients with stroke and CaFMD were identified. Computed tomographic angiography showed 2 CaFMD patterns: a thin (n=15) or thick (n=10) spur. Three patients initial computed tomographic angiography images showed a mural thrombus overlying the CaFMD. CaFMD was surgically removed from 7 of 25 and 20 of 25 patients who received antiplatelet therapy; after mean follow-up of 25.3±19.5 months, their respective recurrence rates were 0% and 30%. CaFMD could be a common condition in young Afro-Caribbeans with carotid-territory ischemic stroke. Recurrences were frequent under antiplatelet treatment, while surgical CaFMD removal seemed more effective. © 2014 American Heart Association, Inc.

  6. Validation of gated blood-pool SPECT cardiac measurements tested using a biventricular dynamic physical phantom.

    PubMed

    De Bondt, Pieter; Nichols, Kenneth; Vandenberghe, Stijn; Segers, Patrick; De Winter, Olivier; Van de Wiele, Christophe; Verdonck, Pascal; Shazad, Arsalan; Shoyeb, Abu H; De Sutter, Johan

    2003-06-01

    We have developed a biventricular dynamic physical cardiac phantom to test gated blood-pool (GBP) SPECT image-processing algorithms. Such phantoms provide absolute values against which to assess accuracy of both right and left computed ventricular volume and ejection fraction (EF) measurements. Two silicon-rubber chambers driven by 2 piston pumps simulated crescent-shaped right ventricles wrapped partway around ellopsoid left ventricles. Twenty experiments were performed at Ghent University, for which right and left ventricular true volume and EF ranges were 65-275 mL and 55-165 mL and 7%-49% and 12%-69%, respectively. Resulting 64 x 64 simulated GBP SPECT images acquired at 16 frames per R-R interval were sent to Columbia University, where 2 observers analyzed images independently of each other, without knowledge of true values. Algorithms automatically segmented right ventricular activity volumetrically from left ventricular activity. Automated valve planes, midventricular planes, and segmentation regions were presented to observers, who accepted these choices or modified them as necessary. One observer repeated measurements >1 mo later without reference to previous determinations. Linear correlation coefficients (r) of the mean of the 3 GBP SPECT observations versus true values for right and left ventricles were 0.80 and 0.94 for EF and 0.94 and 0.95 for volumes, respectively. Correlations for right and left ventricles were 0.97 and 0.97 for EF and 0.96 and 0.89 for volumes, respectively, for interobserver agreement and 0.97 and 0.98 for EF and 0.96 and 0.90 for volumes, respectively, for intraobserver agreement. No trends were detected, though volumes and right ventricular EFs were significantly higher than true values. Overall, GBP SPECT measurements correlated strongly with true values. The phantom evaluated shows considerable promise for helping to guide algorithm developments for improved GBP SPECT accuracy.

  7. Development of a Position Decoding ASIC for SPECT using Silicon Photomultiplier

    NASA Astrophysics Data System (ADS)

    Cho, M.; Kim, H.; Lim, K. T.; Cho, G.

    2016-01-01

    Single Photon Emission Computed Tomography(SPECT) is a widely used diagnosis modality for detecting metabolic diseases. In general, SPECT system is consisted of a sensor, a pre-amplifier, position decoding circuits(PDC) and a data acquisition(DAQ) system. Due to such complexity, it is quite costly to assemble SPECT system by putting discrete components together. Moreover, using discrete components would make the system rather bulky. In this work, we designed a channel module ASIC for SPECT system. This system was composed of a transimpedance amplifier(TIA), comparators and digital logics. In this particular module, a TIA was selected as a preamplifier because the decay time and the rise time are shorter than that of other preamplifier topologies. In the proposed module, the amplified pulse from the TIA was split into two separate signals and each signal was then fed into two comparators with different reference levels, e.g., a low and high level. Then an XOR gate combined the comparator outputs and the output of XOR gate was sent to the suceeding digital logic. Furthermore, the output of each component in the module is composed of a signal packet. The packet includes the information on the energy, the time and the position of the incident photon. The energy and position information of a detected radiation can be derived from the output of the D-flipflop(DFF) in the module via time-over-threshold(TOT). The timing information was measured using a delayed rising edge from the low-level referenced comparator. There are several advantages in developing the channel module ASIC. First of all, the ASIC has only digital outputs and thus a correction circuit for analog signal distortion can be neglected. In addition, it is possible to cut down the system production cost because the volume of the system can be reduced due to the compactness of ASIC. The benefits of channel module is not only limited to SPECT but also beneficial to many other radiation detecting systems.

  8. Implementation of a cardiac PET stress program: comparison of outcomes to the preceding SPECT era.

    PubMed

    Knight, Stacey; Min, David B; Le, Viet T; Meredith, Kent G; Dhar, Ritesh; Biswas, Santanu; Jensen, Kurt R; Mason, Steven M; Ethington, Jon-David; Lappe, Donald L; Muhlestein, Joseph B; Anderson, Jeffrey L; Knowlton, Kirk U

    2018-05-03

    Cardiac positron emission testing (PET) is more accurate than single photon emission computed tomography (SPECT) at identifying coronary artery disease (CAD); however, the 2 modalities have not been thoroughly compared in a real-world setting. We conducted a retrospective analysis of 60-day catheterization outcomes and 1-year major adverse cardiovascular events (MACE) after the transition from a SPECT- to a PET-based myocardial perfusion imaging (MPI) program. MPI patients at Intermountain Medical Center from January 2011-December 2012 (the SPECT era, n = 6,777) and January 2014-December 2015 (the PET era, n = 7,817) were studied. Outcomes studied were 60-day coronary angiography, high-grade obstructive CAD, left main/severe 3-vessel disease, revascularization, and 1-year MACE-revascularization (MACE-revasc; death, myocardial infarction [MI], or revascularization >60 days). Patients were 64 ± 13 years old; 54% were male and 90% were of European descent; and 57% represented a screening population (no prior MI, revascularization, or CAD). During the PET era, compared with the SPECT era, a higher percentage of patients underwent coronary angiography (13.2% vs. 9.7%, P < 0.0001), had high-grade obstructive CAD (10.5% vs. 6.9%, P < 0.0001), had left main or severe 3-vessel disease (3.0% vs. 2.3%, P = 0.012), and had coronary revascularization (56.7% vs. 47.1%, P = 0.0001). Similar catheterization outcomes were seen when restricted to the screening population. There was no difference in 1-year MACE-revasc (PET [5.8%] vs. SPECT [5.3%], P = 0.31). The PET-based MPI program resulted in improved identification of patients with high-grade obstructive CAD, as well as a larger percentage of revascularization, thus resulting in fewer patients undergoing coronary angiography without revascularization. This observational study was funded using internal departmental funds.

  9. Preoperative 4D CT Localization of Nonlocalizing Parathyroid Adenomas by Ultrasound and SPECT-CT.

    PubMed

    Hinson, Andrew M; Lee, David R; Hobbs, Bradley A; Fitzgerald, Ryan T; Bodenner, Donald L; Stack, Brendan C

    2015-11-01

    To evaluate 4-dimensional (4D) computed tomography (CT) for the localization of parathyroid adenomas previously considered nonlocalizing on ultrasound and single-photon emission CT with CT scanning (SPECT-CT). To measure radiation exposure associated with 4D-CT and compared it with SPECT-CT. Case series with chart review. University tertiary hospital. Nineteen adults with primary hyperparathyroidism who underwent preoperative 4D CT from November 2013 through July 2014 after nonlocalizing preoperative ultrasound and technetium-99m SPECT-CT scans. Sensitivity, specificity, predictive values, and accuracy of 4D CT were evaluated. Nineteen patients (16 women and 3 men) were included with a mean age of 66 years (range, 39-80 years). Mean preoperative parathyroid hormone level was 108.5 pg/mL (range, 59.3-220.9 pg/mL), and mean weight of the excised gland was 350 mg (range, 83-797 mg). 4D CT sensitivity and specificity for localization to the patient's correct side of the neck were 84.2% and 81.8%, respectively; accuracy was 82.9%. The sensitivity for localizing adenomas to the correct quadrant was 76.5% and 91.5%, respectively; accuracy was 88.2%. 4D CT radiation exposure was significantly less than the radiation associated with SPECT-CT (13.8 vs 18.4 mSv, P = 0.04). 4D CT localizes parathyroid adenomas with relatively high sensitivity and specificity and allows for the localization of some adenomas not observed on other sestamibi-based scans. 4D CT was also associated with less radiation exposure when compared with SPECT-CT based on our study protocol. 4D CT may be considered as first- or second-line imaging for localizing parathyroid adenomas in the setting of primary hyperparathyroidism. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  10. Early detection of radiation-induced heart disease using (99m)Tc-MIBI SPECT gated myocardial perfusion imaging in patients with oesophageal cancer during radiotherapy.

    PubMed

    Zhang, Peng; Hu, Xudong; Yue, Jinbo; Meng, Xue; Han, Dali; Sun, Xindong; Yang, Guoren; Wang, Shijiang; Wang, Xiaohui; Yu, Jinming

    2015-05-01

    The primary aim of this prospective study was to investigate the value of (99m)Tc-methoxyisobutylisonitrile (MIBI) single photon emission computed tomography (SPECT) gated myocardial perfusion imaging (GMPI) in the detection of radiation-induced heart disease (RIHD) as early as during radiotherapy (RT) for oesophageal cancer (EC). The second aim was to analyse the correlation between cardiac toxicity and the dose-volume factors. The (99m)Tc-MIBI SPECT GMPI was performed both pre-RT and during RT (40Gray). The results of the SPECT were quantitatively analysed with QGS/QPS software and read by two experienced nuclear medicine physicians. The correlation between the changes in the SPECT parameters and the RT dosimetric data was analysed. Eighteen patients with locally advanced EC were enrolled in the study. Compared with the baseline, the imaging during RT showed not only significant decreases in the wall motion (WM) (1/20 segments), wall thickening (WT) (2/20 segments), end-diastolic perfusion (EDP) (5/20 segments) and end-systolic perfusion (ESP) (8/20 segments) (p<0.05) but also a significant increase in the heart rate (74.63±7.79 vs 81.49±9.90, p=0.036). New myocardial perfusion defects were observed in 8 of the 18 patients. The V37-V40 was significantly higher (p<0.05) in the patients with the new perfusion defects during RT than in the patients who did not exhibit these defects. Radiotherapy for EC induces cardiac damage from an early stage. (99m)Tc-MIBI SPECT GMPI can detect the occurrence of cardiac impairment during RT. The WM, WT, EDP and ESP may be valuable as early indicators of RIHD. The percentage of the heart volume that receives a high dose is an important factor that is correlated with RIHD. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Interdisciplinary Study of Egyptian Mummies from the Pushkin State Museum of Fine Arts Collection at the National Research Centre ``Kurchatov Institute''

    NASA Astrophysics Data System (ADS)

    Yatsishina, E. B.; Kovalchuk, M. V.; Loshak, M. D.; Vasilyev, S. V.; Vasilieva, O. A.; Dyuzheva, O. P.; Pojidaev, V. M.; Ushakov, V. L.

    2018-05-01

    Nine ancient Egyptian mummies (dated preliminarily to the period from the 1st mill. BCE to the first centuries CE) from the collection of the State Pushkin Museum of Fine Arts have been studied at the National Research Centre "Kurchatov Institute" (NRC KI) on the base of the complex of NBICS technologies. Tomographic scanning is performed using a magneto-resonance tomograph (3 T) and a hybrid positron emission tomography/computed tomography (PET-CT) scanner. Three-dimensional reconstructions of mummies and their anthropological measurements are carried out. Some medical conclusions are drawn based on the tomographic data. In addition, the embalming composition and tissue of one of the mummies are preliminarily analyzed.

  12. Singular value decomposition: a diagnostic tool for ill-posed inverse problems in optical computed tomography

    NASA Astrophysics Data System (ADS)

    Lanen, Theo A.; Watt, David W.

    1995-10-01

    Singular value decomposition has served as a diagnostic tool in optical computed tomography by using its capability to provide insight into the condition of ill-posed inverse problems. Various tomographic geometries are compared to one another through the singular value spectrum of their weight matrices. The number of significant singular values in the singular value spectrum of a weight matrix is a quantitative measure of the condition of the system of linear equations defined by a tomographic geometery. The analysis involves variation of the following five parameters, characterizing a tomographic geometry: 1) the spatial resolution of the reconstruction domain, 2) the number of views, 3) the number of projection rays per view, 4) the total observation angle spanned by the views, and 5) the selected basis function. Five local basis functions are considered: the square pulse, the triangle, the cubic B-spline, the Hanning window, and the Gaussian distribution. Also items like the presence of noise in the views, the coding accuracy of the weight matrix, as well as the accuracy of the accuracy of the singular value decomposition procedure itself are assessed.

  13. Incremental value of 99mTc-HYNIC-TOC SPECT/CT over whole-body planar scintigraphy and SPECT in patients with neuroendocrine tumours.

    PubMed

    Trogrlic, Mate; Težak, Stanko

    2017-06-12

    The aim of this study was to evaluate the additional value of 99m Tc-HYNIC-TOC SPECT/CT over planar whole-body (WB) scintigraphy and SPECT alone in the detection and accurate localisation of neuroendocrine tumour (NET) lesions. This study included 65 patients with a definitive histological diagnosis of NET prior to scintigraphy. Planar WB scintigraphy, SPECT, and SPECT/CT images were acquired at 4 h post-administration of 670 MBq 99m Tc-HYNIC-TOC. Additional SPECT images at 10 min after tracer administration were also acquired. Clinical and imaging follow-up findings were considered as the reference standards (minimum follow-up period, 15 months). Patient and lesion-based analyses of the efficacies of the imaging modalities were performed. While 38 patients exhibited metastasis of NETs, 27 presented no evidence of metastasis. Upon patient-based analysis, the sensitivity and specificity of SPECT/CT were found to be 88.9 and 79.3 %, respectively. The diagnostic accuracies of WB scintigraphy, 4h-SPECT, and SPECT/CT were 72.3, 73.8, and 84.6 %, respectively. The area under curve (AUC) value for SPECT/CT (0.84) was the highest, followed by those for 4h-SPECT (0.75) and WB scintigraphy (0.74). The accuracy and AUC values of SPECT/CT were significantly better compared to those of WB scintigraphy (p < 0.001), 10 min-SPECT (p < 0.001), and 4 h-SPECT (p = 0.001). The findings of SPECT/CT led to the change in treatment plan of 11 patients (16.9 %). The sensitivity and diagnostic accuracy of SPECT/CT in the evaluation of NET lesions outperforms planar WB imaging or SPECT alone.

  14. Radionuclide 131I-labeled multifunctional dendrimers for targeted SPECT imaging and radiotherapy of tumors

    NASA Astrophysics Data System (ADS)

    Zhu, Jingyi; Zhao, Lingzhou; Cheng, Yongjun; Xiong, Zhijuan; Tang, Yueqin; Shen, Mingwu; Zhao, Jinhua; Shi, Xiangyang

    2015-10-01

    We report the synthesis, characterization, and utilization of radioactive 131I-labeled multifunctional dendrimers for targeted single-photon emission computed tomography (SPECT) imaging and radiotherapy of tumors. In this study, amine-terminated poly(amidoamine) dendrimers of generation 5 (G5.NH2) were sequentially modified with 3-(4'-hydroxyphenyl)propionic acid-OSu (HPAO) and folic acid (FA) linked with polyethylene glycol (PEG), followed by acetylation modification of the dendrimer remaining surface amines and labeling of radioactive iodine-131 (131I). The generated multifunctional 131I-G5.NHAc-HPAO-PEG-FA dendrimers were characterized via different methods. We show that prior to 131I labeling, the G5.NHAc-HPAO-PEG-FA dendrimers conjugated with approximately 9.4 HPAO moieties per dendrimer are noncytotoxic at a concentration up to 20 μM and are able to target cancer cells overexpressing FA receptors (FAR), thanks to the modified FA ligands. In the presence of a phenol group, radioactive 131I is able to be efficiently labeled onto the dendrimer platform with good stability and high radiochemical purity, and render the platform with an ability for targeted SPECT imaging and radiotherapy of an FAR-overexpressing xenografted tumor model in vivo. The designed strategy to use the facile dendrimer nanotechnology may be extended to develop various radioactive theranostic nanoplatforms for targeted SPECT imaging and radiotherapy of different types of cancer.We report the synthesis, characterization, and utilization of radioactive 131I-labeled multifunctional dendrimers for targeted single-photon emission computed tomography (SPECT) imaging and radiotherapy of tumors. In this study, amine-terminated poly(amidoamine) dendrimers of generation 5 (G5.NH2) were sequentially modified with 3-(4'-hydroxyphenyl)propionic acid-OSu (HPAO) and folic acid (FA) linked with polyethylene glycol (PEG), followed by acetylation modification of the dendrimer remaining surface amines and labeling of radioactive iodine-131 (131I). The generated multifunctional 131I-G5.NHAc-HPAO-PEG-FA dendrimers were characterized via different methods. We show that prior to 131I labeling, the G5.NHAc-HPAO-PEG-FA dendrimers conjugated with approximately 9.4 HPAO moieties per dendrimer are noncytotoxic at a concentration up to 20 μM and are able to target cancer cells overexpressing FA receptors (FAR), thanks to the modified FA ligands. In the presence of a phenol group, radioactive 131I is able to be efficiently labeled onto the dendrimer platform with good stability and high radiochemical purity, and render the platform with an ability for targeted SPECT imaging and radiotherapy of an FAR-overexpressing xenografted tumor model in vivo. The designed strategy to use the facile dendrimer nanotechnology may be extended to develop various radioactive theranostic nanoplatforms for targeted SPECT imaging and radiotherapy of different types of cancer. Electronic supplementary information (ESI) available: Part of the experimental details and additional experimental results. See DOI: 10.1039/c5nr05585g

  15. Detection of lymph node metastases in pediatric and adolescent/young adult sarcoma: Sentinel lymph node biopsy versus fludeoxyglucose positron emission tomography imaging-A prospective trial.

    PubMed

    Wagner, Lars M; Kremer, Nathalie; Gelfand, Michael J; Sharp, Susan E; Turpin, Brian K; Nagarajan, Rajaram; Tiao, Gregory M; Pressey, Joseph G; Yin, Julie; Dasgupta, Roshni

    2017-01-01

    Lymph node metastases are an important cause of treatment failure for pediatric and adolescent/young adult (AYA) sarcoma patients. Nodal sampling is recommended for certain sarcoma subtypes that have a predilection for lymphatic spread. Sentinel lymph node biopsy (SLNB) may improve the diagnostic yield of nodal sampling, particularly when single-photon emission computed tomography/computed tomography (SPECT-CT) is used to facilitate anatomic localization. Functional imaging with positron emission tomography/computed tomography (PET-CT) is increasingly used for sarcoma staging and is a less invasive alternative to SLNB. To assess the utility of these 2 staging methods, this study prospectively compared SLNB plus SPECT-CT with PET-CT for the identification of nodal metastases in pediatric and AYA patients. Twenty-eight pediatric and AYA sarcoma patients underwent SLNB with SPECT-CT. The histological findings of the excised lymph nodes were then correlated with preoperative PET-CT imaging. A median of 2.4 sentinel nodes were sampled per patient. No wound infections or chronic lymphedema occurred. SLNB identified tumors in 7 of the 28 patients (25%), including 3 patients who had normal PET-CT imaging of the nodal basin. In contrast, PET-CT demonstrated hypermetabolic regional nodes in 14 patients, and this resulted in a positive predictive value of only 29%. The sensitivity and specificity of PET-CT for detecting histologically confirmed nodal metastases were only 57% and 52%, respectively. SLNB can safely guide the rational selection of nodes for biopsy in pediatric and AYA sarcoma patients and can identify therapy-changing nodal disease not appreciated with PET-CT. Cancer 2017;155-160. © 2016 American Cancer Society. © 2016 American Cancer Society.

  16. Comparative evaluation of the cadaveric, radiographic and computed tomographic anatomy of the heads of green iguana (Iguana iguana), common tegu (Tupinambis merianae) and bearded dragon (Pogona vitticeps).

    PubMed

    Banzato, Tommaso; Selleri, Paolo; Veladiano, Irene A; Martin, Andrea; Zanetti, Emanuele; Zotti, Alessandro

    2012-05-11

    Radiology and computed tomography are the most commonly available diagnostic tools for the diagnosis of pathologies affecting the head and skull in veterinary practice. Nevertheless, accurate interpretation of radiographic and CT studies requires a thorough knowledge of the gross and the cross-sectional anatomy. Despite the increasing success of reptiles as pets, only a few reports over their normal imaging features are currently available. The aim of this study is to describe the normal cadaveric, radiographic and computed tomographic features of the heads of the green iguana, tegu and bearded dragon. 6 adult green iguanas, 4 tegus, 3 bearded dragons, and, the adult cadavers of: 4 green iguana, 4 tegu, 4 bearded dragon were included in the study. 2 cadavers were dissected following a stratigraphic approach and 2 cadavers were cross-sectioned for each species. These latter specimens were stored in a freezer (-20°C) until completely frozen. Transversal sections at 5 mm intervals were obtained by means of an electric band-saw. Each section was cleaned and photographed on both sides. Radiographs of the head of each subject were obtained. Pre- and post- contrast computed tomographic studies of the head were performed on all the live animals. CT images were displayed in both bone and soft tissue windows. Individual anatomic structures were first recognised and labelled on the anatomic images and then matched on radiographs and CT images. Radiographic and CT images of the skull provided good detail of the bony structures in all species. In CT contrast medium injection enabled good detail of the soft tissues to be obtained in the iguana whereas only the eye was clearly distinguishable from the remaining soft tissues in both the tegu and the bearded dragon. The results provide an atlas of the normal anatomical and in vivo radiographic and computed tomographic features of the heads of lizards, and this may be useful in interpreting any imaging modality involving these species.

  17. Comparative evaluation of the cadaveric, radiographic and computed tomographic anatomy of the heads of green iguana (Iguana iguana) , common tegu ( Tupinambis merianae) and bearded dragon ( Pogona vitticeps)

    PubMed Central

    2012-01-01

    Background Radiology and computed tomography are the most commonly available diagnostic tools for the diagnosis of pathologies affecting the head and skull in veterinary practice. Nevertheless, accurate interpretation of radiographic and CT studies requires a thorough knowledge of the gross and the cross-sectional anatomy. Despite the increasing success of reptiles as pets, only a few reports over their normal imaging features are currently available. The aim of this study is to describe the normal cadaveric, radiographic and computed tomographic features of the heads of the green iguana, tegu and bearded dragon. Results 6 adult green iguanas, 4 tegus, 3 bearded dragons, and, the adult cadavers of : 4 green iguana, 4 tegu, 4 bearded dragon were included in the study. 2 cadavers were dissected following a stratigraphic approach and 2 cadavers were cross-sectioned for each species. These latter specimens were stored in a freezer (−20°C) until completely frozen. Transversal sections at 5 mm intervals were obtained by means of an electric band-saw. Each section was cleaned and photographed on both sides. Radiographs of the head of each subject were obtained. Pre- and post- contrast computed tomographic studies of the head were performed on all the live animals. CT images were displayed in both bone and soft tissue windows. Individual anatomic structures were first recognised and labelled on the anatomic images and then matched on radiographs and CT images. Radiographic and CT images of the skull provided good detail of the bony structures in all species. In CT contrast medium injection enabled good detail of the soft tissues to be obtained in the iguana whereas only the eye was clearly distinguishable from the remaining soft tissues in both the tegu and the bearded dragon. Conclusions The results provide an atlas of the normal anatomical and in vivo radiographic and computed tomographic features of the heads of lizards, and this may be useful in interpreting any imaging modality involving these species. PMID:22578088

  18. Diagnostic Accuracy of Periapical Radiography and Cone-beam Computed Tomography in Identifying Root Canal Configuration of Human Premolars.

    PubMed

    Sousa, Thiago Oliveira; Haiter-Neto, Francisco; Nascimento, Eduarda Helena Leandro; Peroni, Leonardo Vieira; Freitas, Deborah Queiroz; Hassan, Bassam

    2017-07-01

    The aim of this study was to assess the diagnostic accuracy of periapical radiography (PR) and cone-beam computed tomographic (CBCT) imaging in the detection of the root canal configuration (RCC) of human premolars. PR and CBCT imaging of 114 extracted human premolars were evaluated by 2 oral radiologists. RCC was recorded according to Vertucci's classification. Micro-computed tomographic imaging served as the gold standard to determine RCC. Accuracy, sensitivity, specificity, and predictive values were calculated. The Friedman test compared both PR and CBCT imaging with the gold standard. CBCT imaging showed higher values for all diagnostic tests compared with PR. Accuracy was 0.55 and 0.89 for PR and CBCT imaging, respectively. There was no difference between CBCT imaging and the gold standard, whereas PR differed from both CBCT and micro-computed tomographic imaging (P < .0001). CBCT imaging was more accurate than PR for evaluating different types of RCC individually. Canal configuration types III, VII, and "other" were poorly identified on CBCT imaging with a detection accuracy of 50%, 0%, and 43%, respectively. With PR, all canal configurations except type I were poorly visible. PR presented low performance in the detection of RCC in premolars, whereas CBCT imaging showed no difference compared with the gold standard. Canals with complex configurations were less identifiable using both imaging methods, especially PR. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Computed Tomography Angiography in Microsurgery: Indications, Clinical Utility, and Pitfalls

    PubMed Central

    Lee, Gordon K.; Fox, Paige M.; Riboh, Jonathan; Hsu, Charles; Saber, Sepideh; Rubin, Geoffrey D.; Chang, James

    2013-01-01

    Objective: Computed tomographic angiography (CTA) can be used to obtain 3-dimensional vascular images and soft-tissue definition. The goal of this study was to evaluate the reliability, usefulness, and pitfalls of CTA in preoperative planning of microvascular reconstructive surgery. Methods: A retrospective review of patients who obtained preoperative CTA in preparation for planned microvascular reconstruction was performed over a 5-year period (2001–2005). The influence of CTA on the original operative plan was assessed for each patient, and CTA results were correlated to the operative findings. Results: Computed tomographic angiography was performed on 94 patients in preparation for microvascular reconstruction. In 48 patients (51%), vascular abnormalities were noted on CTA. Intraoperative findings correlated with CTA results in 97% of cases. In 42 patients (45%), abnormal CTA findings influenced the original operative plan, such as the choice of vessels, side of harvest, or nature of the reconstruction (local flap instead of free tissue transfer). Technical difficulties in performing CTA were encountered in 5 patients (5%) in whom interference from external fixation devices was the main cause. Conclusions: This large study of CTA obtained for preoperative planning of reconstructive microsurgery at both donor and recipient sites study demonstrates that CTA is safe and highly accurate. Computed tomographic angiography can alter the surgeon's reconstructive plan when abnormalities are noted preoperatively and consequently improve results by decreasing vascular complication rates. The use of CTA should be considered for cases of microsurgical reconstruction where the vascular anatomy may be questionable. PMID:24023972

  20. A PC-controlled microwave tomographic scanner for breast imaging

    NASA Astrophysics Data System (ADS)

    Padhi, Shantanu; Howard, John; Fhager, A.; Bengtsson, Sebastian

    2011-01-01

    This article presents the design and development of a personal computer based controller for a microwave tomographic system for breast cancer detection. The system uses motorized, dual-polarized antennas and a custom-made GUI interface to control stepper motors, a wideband vector network analyzer (VNA) and to coordinate data acquisition and archival in a local MDSPlus database. Both copolar and cross-polar scattered field components can be measured directly. Experimental results are presented to validate the various functionalities of the scanner.

Top