Sample records for computed tomography applicable

  1. Dual-Energy Computed Tomography in Cardiothoracic Vascular Imaging.

    PubMed

    De Santis, Domenico; Eid, Marwen; De Cecco, Carlo N; Jacobs, Brian E; Albrecht, Moritz H; Varga-Szemes, Akos; Tesche, Christian; Caruso, Damiano; Laghi, Andrea; Schoepf, Uwe Joseph

    2018-07-01

    Dual energy computed tomography is becoming increasingly widespread in clinical practice. It can expand on the traditional density-based data achievable with single energy computed tomography by adding novel applications to help reach a more accurate diagnosis. The implementation of this technology in cardiothoracic vascular imaging allows for improved image contrast, metal artifact reduction, generation of virtual unenhanced images, virtual calcium subtraction techniques, cardiac and pulmonary perfusion evaluation, and plaque characterization. The improved diagnostic performance afforded by dual energy computed tomography is not associated with an increased radiation dose. This review provides an overview of dual energy computed tomography cardiothoracic vascular applications. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. [Cardiac computed tomography: new applications of an evolving technique].

    PubMed

    Martín, María; Corros, Cecilia; Calvo, Juan; Mesa, Alicia; García-Campos, Ana; Rodríguez, María Luisa; Barreiro, Manuel; Rozado, José; Colunga, Santiago; de la Hera, Jesús M; Morís, César; Luyando, Luis H

    2015-01-01

    During the last years we have witnessed an increasing development of imaging techniques applied in Cardiology. Among them, cardiac computed tomography is an emerging and evolving technique. With the current possibility of very low radiation studies, the applications have expanded and go further coronariography In the present article we review the technical developments of cardiac computed tomography and its new applications. Copyright © 2014 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  3. Computed Tomography

    NASA Astrophysics Data System (ADS)

    Castellano, Isabel; Geleijns, Jacob

    After its clinical introduction in 1973, computed tomography developed from an x-ray modality for axial imaging in neuroradiology into a versatile three dimensional imaging modality for a wide range of applications in for example oncology, vascular radiology, cardiology, traumatology and even in interventional radiology. Computed tomography is applied for diagnosis, follow-up studies and screening of healthy subpopulations with specific risk factors. This chapter provides a general introduction in computed tomography, covering a short history of computed tomography, technology, image quality, dosimetry, room shielding, quality control and quality criteria.

  4. Development of computational small animal models and their applications in preclinical imaging and therapy research.

    PubMed

    Xie, Tianwu; Zaidi, Habib

    2016-01-01

    The development of multimodality preclinical imaging techniques and the rapid growth of realistic computer simulation tools have promoted the construction and application of computational laboratory animal models in preclinical research. Since the early 1990s, over 120 realistic computational animal models have been reported in the literature and used as surrogates to characterize the anatomy of actual animals for the simulation of preclinical studies involving the use of bioluminescence tomography, fluorescence molecular tomography, positron emission tomography, single-photon emission computed tomography, microcomputed tomography, magnetic resonance imaging, and optical imaging. Other applications include electromagnetic field simulation, ionizing and nonionizing radiation dosimetry, and the development and evaluation of new methodologies for multimodality image coregistration, segmentation, and reconstruction of small animal images. This paper provides a comprehensive review of the history and fundamental technologies used for the development of computational small animal models with a particular focus on their application in preclinical imaging as well as nonionizing and ionizing radiation dosimetry calculations. An overview of the overall process involved in the design of these models, including the fundamental elements used for the construction of different types of computational models, the identification of original anatomical data, the simulation tools used for solving various computational problems, and the applications of computational animal models in preclinical research. The authors also analyze the characteristics of categories of computational models (stylized, voxel-based, and boundary representation) and discuss the technical challenges faced at the present time as well as research needs in the future.

  5. Development of computational small animal models and their applications in preclinical imaging and therapy research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Tianwu; Zaidi, Habib, E-mail: habib.zaidi@hcuge.ch; Geneva Neuroscience Center, Geneva University, Geneva CH-1205

    The development of multimodality preclinical imaging techniques and the rapid growth of realistic computer simulation tools have promoted the construction and application of computational laboratory animal models in preclinical research. Since the early 1990s, over 120 realistic computational animal models have been reported in the literature and used as surrogates to characterize the anatomy of actual animals for the simulation of preclinical studies involving the use of bioluminescence tomography, fluorescence molecular tomography, positron emission tomography, single-photon emission computed tomography, microcomputed tomography, magnetic resonance imaging, and optical imaging. Other applications include electromagnetic field simulation, ionizing and nonionizing radiation dosimetry, and themore » development and evaluation of new methodologies for multimodality image coregistration, segmentation, and reconstruction of small animal images. This paper provides a comprehensive review of the history and fundamental technologies used for the development of computational small animal models with a particular focus on their application in preclinical imaging as well as nonionizing and ionizing radiation dosimetry calculations. An overview of the overall process involved in the design of these models, including the fundamental elements used for the construction of different types of computational models, the identification of original anatomical data, the simulation tools used for solving various computational problems, and the applications of computational animal models in preclinical research. The authors also analyze the characteristics of categories of computational models (stylized, voxel-based, and boundary representation) and discuss the technical challenges faced at the present time as well as research needs in the future.« less

  6. Application of multidetector-row computed tomography in propeller flap planning.

    PubMed

    Ono, Shimpei; Chung, Kevin C; Hayashi, Hiromitsu; Ogawa, Rei; Takami, Yoshihiro; Hyakusoku, Hiko

    2011-02-01

    The propeller flap is defined as (1) being island-shaped, (2) having an axis that includes the perforators, and (3) having the ability to be rotated around an axis. The advantage of the propeller flap is that it is a pedicle flap that can be applied to cover defects located at the distal ends of the extremities. The specific aims of the authors' study were (1) to evaluate the usefulness of multidetector-row computed tomography in the planning of propeller flaps and (2) to present a clinical case series of propeller flap reconstructions that were planned preoperatively using multidetector-row computed tomography. The authors retrospectively analyzed all cases between April of 2007 and April of 2010 at Nippon Medical School Hospital in Tokyo, where multidetector-row computed tomography was used preoperatively to plan surgical reconstructions using propeller flaps. Thirteen patients underwent 16 flaps using the propeller flap technique. The perforators were identified accurately by multidetector-row computed tomography preoperatively in all cases. This is the first report describing the application of multidetector-row computed tomography in the planning of propeller flaps. Multidetector-row computed tomography is superior to other imaging methods because it demonstrates more precisely the perforator's position and subcutaneous course using high-resolution three-dimensional images. By using multidetector-row computed tomography to preoperatively identify a flap's perforators, the surgeon can better plan the flap design to efficiently conduct the flap surgery.

  7. Cone beam computed tomography in the diagnosis of dental disease.

    PubMed

    Tetradis, Sotirios; Anstey, Paul; Graff-Radford, Steven

    2011-07-01

    Conventional radiographs provide important information for dental disease diagnosis. However, they represent 2-D images of 3-D objects with significant structure superimposition and unpredictable magnification. Cone beam computed tomography, however, allows true 3-D visualization of the dentoalveolar structures, avoiding major limitations of conventional radiographs. Cone beam computed tomography images offer great advantages in disease detection for selected patients. The authors discuss cone beam computed tomography applications in dental disease diagnosis, reviewing the pertinent literature when available.

  8. Tomography in Geology: 3D Modeling and Analysis of Structural Features of Rocks Using Computed MicroTomography

    NASA Astrophysics Data System (ADS)

    Ponomarev, A. A.; Mamadaliev, R. A.; Semenova, T. V.

    2016-10-01

    The article presents a brief overview of the current state of computed tomography in the sphere of oil and gas production in Russia and in the world. Operation of computed microtomograph Skyscan 1172 is also provided, as well as personal examples of its application in solving geological problems.

  9. Computed Tomography Measuring Inside Machines

    NASA Technical Reports Server (NTRS)

    Wozniak, James F.; Scudder, Henry J.; Anders, Jeffrey E.

    1995-01-01

    Computed tomography applied to obtain approximate measurements of radial distances from centerline of turbopump to leading edges of diffuser vanes in turbopump. Use of computed tomography has significance beyond turbopump application: example of general concept of measuring internal dimensions of assembly of parts without having to perform time-consuming task of taking assembly apart and measuring internal parts on coordinate-measuring machine.

  10. Cone beam computed tomography: basics and applications in dentistry.

    PubMed

    Venkatesh, Elluru; Elluru, Snehal Venkatesh

    2017-01-01

    The introduction of cone beam computed tomography (CBCT) devices, changed the way oral and maxillofacial radiology is practiced. CBCT was embraced into the dental settings very rapidly due to its compact size, low cost, low ionizing radiation exposure when compared to medical computed tomography. Alike medical CT, 3 dimensional evaluation of the maxillofacial region with minimal distortion is offered by the CBCT. This article provides an overview of basics of CBCT technology and reviews the specific application of CBCT technology to oral and maxillofacial region with few illustrations.

  11. Clinical applications of cone beam computed tomography in endodontics: A comprehensive review.

    PubMed

    Cohenca, Nestor; Shemesh, Hagay

    2015-09-01

    The use of cone beam computed tomography (CBCT) in endodontics has been extensively reported in the literature. Compared with the traditional spiral computed tomography, limited field of view (FOV) CBCT results in a fraction of the effective absorbed dose of radiation. The purpose of this manuscript is to review the application and advantages associated with advanced endodontic problems and complications, while reducing radiation exposure during complex endodontic procedures. The benefits of the added diagnostic information provided by intraoperative CBCT images in select cases justify the risk associated with the limited level of radiation exposure.

  12. Accuracy and Precision of Radioactivity Quantification in Nuclear Medicine Images

    PubMed Central

    Frey, Eric C.; Humm, John L.; Ljungberg, Michael

    2012-01-01

    The ability to reliably quantify activity in nuclear medicine has a number of increasingly important applications. Dosimetry for targeted therapy treatment planning or for approval of new imaging agents requires accurate estimation of the activity in organs, tumors, or voxels at several imaging time points. Another important application is the use of quantitative metrics derived from images, such as the standard uptake value commonly used in positron emission tomography (PET), to diagnose and follow treatment of tumors. These measures require quantification of organ or tumor activities in nuclear medicine images. However, there are a number of physical, patient, and technical factors that limit the quantitative reliability of nuclear medicine images. There have been a large number of improvements in instrumentation, including the development of hybrid single-photon emission computed tomography/computed tomography and PET/computed tomography systems, and reconstruction methods, including the use of statistical iterative reconstruction methods, which have substantially improved the ability to obtain reliable quantitative information from planar, single-photon emission computed tomography, and PET images. PMID:22475429

  13. Dental application of novel finite element analysis software for three-dimensional finite element modeling of a dentulous mandible from its computed tomography images.

    PubMed

    Nakamura, Keiko; Tajima, Kiyoshi; Chen, Ker-Kong; Nagamatsu, Yuki; Kakigawa, Hiroshi; Masumi, Shin-ich

    2013-12-01

    This study focused on the application of novel finite-element analysis software for constructing a finite-element model from the computed tomography data of a human dentulous mandible. The finite-element model is necessary for evaluating the mechanical response of the alveolar part of the mandible, resulting from occlusal force applied to the teeth during biting. Commercially available patient-specific general computed tomography-based finite-element analysis software was solely applied to the finite-element analysis for the extraction of computed tomography data. The mandibular bone with teeth was extracted from the original images. Both the enamel and the dentin were extracted after image processing, and the periodontal ligament was created from the segmented dentin. The constructed finite-element model was reasonably accurate using a total of 234,644 nodes and 1,268,784 tetrahedral and 40,665 shell elements. The elastic moduli of the heterogeneous mandibular bone were determined from the bone density data of the computed tomography images. The results suggested that the software applied in this study is both useful and powerful for creating a more accurate three-dimensional finite-element model of a dentulous mandible from the computed tomography data without the need for any other software.

  14. Advanced Computed-Tomography Inspection System

    NASA Technical Reports Server (NTRS)

    Harris, Lowell D.; Gupta, Nand K.; Smith, Charles R.; Bernardi, Richard T.; Moore, John F.; Hediger, Lisa

    1993-01-01

    Advanced Computed Tomography Inspection System (ACTIS) is computed-tomography x-ray apparatus revealing internal structures of objects in wide range of sizes and materials. Three x-ray sources and adjustable scan geometry gives system unprecedented versatility. Gantry contains translation and rotation mechanisms scanning x-ray beam through object inspected. Distance between source and detector towers varied to suit object. System used in such diverse applications as development of new materials, refinement of manufacturing processes, and inspection of components.

  15. A multiresolution approach to iterative reconstruction algorithms in X-ray computed tomography.

    PubMed

    De Witte, Yoni; Vlassenbroeck, Jelle; Van Hoorebeke, Luc

    2010-09-01

    In computed tomography, the application of iterative reconstruction methods in practical situations is impeded by their high computational demands. Especially in high resolution X-ray computed tomography, where reconstruction volumes contain a high number of volume elements (several giga voxels), this computational burden prevents their actual breakthrough. Besides the large amount of calculations, iterative algorithms require the entire volume to be kept in memory during reconstruction, which quickly becomes cumbersome for large data sets. To overcome this obstacle, we present a novel multiresolution reconstruction, which greatly reduces the required amount of memory without significantly affecting the reconstructed image quality. It is shown that, combined with an efficient implementation on a graphical processing unit, the multiresolution approach enables the application of iterative algorithms in the reconstruction of large volumes at an acceptable speed using only limited resources.

  16. Interlaced X-ray diffraction computed tomography

    PubMed Central

    Vamvakeros, Antonios; Jacques, Simon D. M.; Di Michiel, Marco; Senecal, Pierre; Middelkoop, Vesna; Cernik, Robert J.; Beale, Andrew M.

    2016-01-01

    An X-ray diffraction computed tomography data-collection strategy that allows, post experiment, a choice between temporal and spatial resolution is reported. This strategy enables time-resolved studies on comparatively short timescales, or alternatively allows for improved spatial resolution if the system under study, or components within it, appear to be unchanging. The application of the method for studying an Mn–Na–W/SiO2 fixed-bed reactor in situ is demonstrated. Additionally, the opportunities to improve the data-collection strategy further, enabling post-collection tuning between statistical, temporal and spatial resolutions, are discussed. In principle, the interlaced scanning approach can also be applied to other pencil-beam tomographic techniques, like X-ray fluorescence computed tomography, X-ray absorption fine structure computed tomography, pair distribution function computed tomography and tomographic scanning transmission X-ray microscopy. PMID:27047305

  17. APPLICATION OF COMPUTER AIDED TOMOGRAPHY (CAT) TO THE STUDY OF MARINE BENTIC COMMUNITIES

    EPA Science Inventory

    Sediment cores were imaged using a Computer-Aided Tomography (CT) scanner at Massachusetts General Hospital, Boston, Massachusetts, United States. Procedures were developed, using the attenuation of X-rays, to differentiate between sediment and the water contained in macrobenthic...

  18. Cone beam computed tomography in Endodontics - a review.

    PubMed

    Patel, S; Durack, C; Abella, F; Shemesh, H; Roig, M; Lemberg, K

    2015-01-01

    Cone beam computed tomography (CBCT) produces undistorted three-dimensional information of the maxillofacial skeleton, including the teeth and their surrounding tissues with a lower effective radiation dose than computed tomography. The aim of this paper is to: (i) review the current literature on the applications and limitations of CBCT; (ii) make recommendations for the use of CBCT in Endodontics; (iii) highlight areas of further research of CBCT in Endodontics. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  19. The Power of Computer-aided Tomography to Investigate Marine Benthic Communities

    EPA Science Inventory

    Utilization of Computer-aided-Tomography (CT) technology is a powerful tool to investigate benthic communities in aquatic systems. In this presentation, we will attempt to summarize our 15 years of experience in developing specific CT methods and applications to marine benthic co...

  20. The Applications of Cone-Beam Computed Tomography in Endodontics: A Review of Literature

    PubMed Central

    Kiarudi, Amir Hosein; Eghbal, Mohammad Jafar; Safi, Yaser; Aghdasi, Mohammad Mehdi; Fazlyab, Mahta

    2015-01-01

    By producing undistorted three-dimensional images of the area under examination, cone-beam computed tomography (CBCT) systems have met many of the limitations of conventional radiography. These systems produce images with small field of view at low radiation doses with adequate spatial resolution that are suitable for many applications in endodontics from diagnosis to treatment and follow-up. This review article comprehensively assembles all the data from literature regarding the potential applications of CBCT in endodontics. PMID:25598804

  1. Free and open-source software application for the evaluation of coronary computed tomography angiography images.

    PubMed

    Hadlich, Marcelo Souza; Oliveira, Gláucia Maria Moraes; Feijóo, Raúl A; Azevedo, Clerio F; Tura, Bernardo Rangel; Ziemer, Paulo Gustavo Portela; Blanco, Pablo Javier; Pina, Gustavo; Meira, Márcio; Souza e Silva, Nelson Albuquerque de

    2012-10-01

    The standardization of images used in Medicine in 1993 was performed using the DICOM (Digital Imaging and Communications in Medicine) standard. Several tests use this standard and it is increasingly necessary to design software applications capable of handling this type of image; however, these software applications are not usually free and open-source, and this fact hinders their adjustment to most diverse interests. To develop and validate a free and open-source software application capable of handling DICOM coronary computed tomography angiography images. We developed and tested the ImageLab software in the evaluation of 100 tests randomly selected from a database. We carried out 600 tests divided between two observers using ImageLab and another software sold with Philips Brilliance computed tomography appliances in the evaluation of coronary lesions and plaques around the left main coronary artery (LMCA) and the anterior descending artery (ADA). To evaluate intraobserver, interobserver and intersoftware agreements, we used simple and kappa statistics agreements. The agreements observed between software applications were generally classified as substantial or almost perfect in most comparisons. The ImageLab software agreed with the Philips software in the evaluation of coronary computed tomography angiography tests, especially in patients without lesions, with lesions < 50% in the LMCA and < 70% in the ADA. The agreement for lesions > 70% in the ADA was lower, but this is also observed when the anatomical reference standard is used.

  2. RADIAL COMPUTED TOMOGRAPHY OF AIR CONTAMINANTS USING OPTICAL REMOTE SENSING

    EPA Science Inventory

    The paper describes the application of an optical remote-sensing (ORS) system to map air contaminants and locate fugitive emissions. Many ORD systems may utilize radial non-overlapping beam geometry and a computed tomography (CT) algorithm to map the concentrations in a plane. In...

  3. Basic principles of cone beam computed tomography.

    PubMed

    Abramovitch, Kenneth; Rice, Dwight D

    2014-07-01

    At the end of the millennium, cone-beam computed tomography (CBCT) heralded a new dental technology for the next century. Owing to the dramatic and positive impact of CBCT on implant dentistry and orthognathic/orthodontic patient care, additional applications for this technology soon evolved. New software programs were developed to improve the applicability of, and access to, CBCT for dental patients. Improved, rapid, and cost-effective computer technology, combined with the ability of software engineers to develop multiple dental imaging applications for CBCT with broad diagnostic capability, have played a large part in the rapid incorporation of CBCT technology into dentistry. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. APPLICATION OF 3D COMPUTER-AIDED TOMOGRAPHY TO THE QUANTIFICATION OF MARINE SEDIMENT COMMUNITIES IN POLLUTION GRADIENTS

    EPA Science Inventory

    Computer-Aided Tomography (CT) has been demonstrated to be a cost efficient tool for the qualitative and quantitative study of estuarine benthic communities along pollution gradients.
    Now we have advanced this technology to successfully visualize and discriminate three dimen...

  5. Progress of projection computed tomography by upgrading of the beamline 37XU of SPring-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terada, Yasuko, E-mail: yterada@spring8.or.jp; Suzuki, Yoshio; Uesugi, Kentaro

    2016-01-28

    Beamline 37XU at SPring-8 has been upgraded for nano-focusing applications. The length of the beamline has been extended to 80 m. By utilizing this length, the beamline has advantages for experiments such as X-ray focusing, X-ray microscopic imaging and X-ray computed tomography. Projection computed tomography measurements were carried out at experimental hutch 3 located 80 m from the light source. CT images of a microcapsule have been successfully obtained with a wide X-ray energy range.

  6. Italian Chapter of the International Society of Cardiovascular Ultrasound expert consensus document on coronary computed tomography angiography: overview and new insights.

    PubMed

    Sozzi, Fabiola B; Maiello, Maria; Pelliccia, Francesco; Parato, Vito Maurizio; Canetta, Ciro; Savino, Ketty; Lombardi, Federico; Palmiero, Pasquale

    2016-09-01

    Coronary computed tomography angiography is a noninvasive heart imaging test currently undergoing rapid development and advancement. The high resolution of the three-dimensional pictures of the moving heart and great vessels is performed during a coronary computed tomography to identify coronary artery disease and classify patient risk for atherosclerotic cardiovascular disease. The technique provides useful information about the coronary tree and atherosclerotic plaques beyond simple luminal narrowing and plaque type defined by calcium content. This application will improve image-guided prevention, medical therapy, and coronary interventions. The ability to interpret coronary computed tomography images is of utmost importance as we develop personalized medical care to enable therapeutic interventions stratified on the bases of plaque characteristics. This overview provides available data and expert's recommendations in the utilization of coronary computed tomography findings. We focus on the use of coronary computed tomography to detect coronary artery disease and stratify patients at risk, illustrating the implications of this test on patient management. We describe its diagnostic power in identifying patients at higher risk to develop acute coronary syndrome and its prognostic significance. Finally, we highlight the features of the vulnerable plaques imaged by coronary computed tomography angiography. © 2016, Wiley Periodicals, Inc.

  7. APPLICATION OF COMPUTER-AIDED TOMOGRAPHY TO VISUALIZE AND QUANTIFY BIOGENIC STRUCTURES IN MARINE SEDIMENTS

    EPA Science Inventory

    We used computer-aided tomography (CT) for 3D visualization and 2D analysis of

    marine sediment cores from 3 stations (at 10, 75 and 118 m depths) with different environmental

    impact. Biogenic structures such as tubes and burrows were quantified and compared among st...

  8. USE OF COMPUTED TOMOGRAPHY FOR INVESTIGATION OF HEPATIC LIPIDOSIS IN CAPTIVE CHELONOIDIS CARBONARIA (SPIX, 1824).

    PubMed

    Marchiori, Adriano; da Silva, Ieverton Cleiton Correia; de Albuquerque Bonelli, Marília; de Albuquerque Zanotti, Luciana Carla Rameh; Siqueira, Daniel B; Zanotti, Alexandre Pinheiro; Costa, Fabiano Séllos

    2015-06-01

    Computed tomography is a sensitive and highly applicable technique for determining the degree of radiographic attenuation of the hepatic parenchyma. Radiodensity measurements of the liver can help in the diagnosis of hepatic lipidosis in humans and animals. The objective was to investigate the presence of hepatic lipidosis in captive red-footed tortoises (Chelonoidis carbonaria) using computed tomography. Computed tomography was performed in 10 male red-footed tortoises. Mean radiographic attenuation values for the hepatic parenchyma were 11.2±3.0 Hounsfield units (HU). Seven red-footed tortoises had values lower than 20 HU, which is compatible with C. carbonaria hepatic lipidosis. These results allowed an early diagnosis of the hepatic changes and suggested corrective measures regarding feeding and management protocols.

  9. Recent Scientific Evidence and Technical Developments in Cardiovascular Computed Tomography.

    PubMed

    Marcus, Roy; Ruff, Christer; Burgstahler, Christof; Notohamiprodjo, Mike; Nikolaou, Konstantin; Geisler, Tobias; Schroeder, Stephen; Bamberg, Fabian

    2016-05-01

    In recent years, coronary computed tomography angiography has become an increasingly safe and noninvasive modality for the evaluation of the anatomical structure of the coronary artery tree with diagnostic benefits especially in patients with a low-to-intermediate pretest probability of disease. Currently, increasing evidence from large randomized diagnostic trials is accumulating on the diagnostic impact of computed tomography angiography for the management of patients with acute and stable chest pain syndrome. At the same time, technical advances have substantially reduced adverse effects and limiting factors, such as radiation exposure, the amount of iodinated contrast agent, and scanning time, rendering the technique appropriate for broader clinical applications. In this work, we review the latest developments in computed tomography technology and describe the scientific evidence on the use of cardiac computed tomography angiography to evaluate patients with acute and stable chest pain syndrome. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  10. C-arm Cone Beam Computed Tomography: A New Tool in the Interventional Suite.

    PubMed

    Raj, Santhosh; Irani, Farah Gillan; Tay, Kiang Hiong; Tan, Bien Soo

    2013-11-01

    C-arm Cone Beam CT (CBCT) is a technology that is being integrated into many of the newer angiography systems in the interventional suite. Due to its ability to provide cross sectional imaging, it has opened a myriad of opportunities for creating new clinical applications. We review the technical aspects, current reported clinical applications and potential benefits of this technology. Searches were made via PubMed using the string "CBCT", "Cone Beam CT", "Cone Beam Computed Tomography" and "C-arm Cone Beam Computed Tomography". All relevant articles in the results were reviewed. CBCT clinical applications have been reported in both vascular and non-vascular interventions. They encompass many aspects of a procedure including preprocedural planning, intraprocedural guidance and postprocedural assessment. As a result, they have allowed the interventionalist to be safer and more accurate in performing image guided procedures. There are however several technical limitations. The quality of images produced is not comparable to conventional computed tomography (CT). Radiation doses are also difficult to quantify when compared to CT and fluoroscopy. CBCT technology in the interventional suite has contributed significant benefits to the patient despite its current limitations. It is a tool that will evolve and potentially become an integral part of imaging guidance for intervention.

  11. PET and Single-Photon Emission Computed Tomography in Brain Concussion.

    PubMed

    Raji, Cyrus A; Henderson, Theodore A

    2018-02-01

    This article offers an overview of the application of PET and single photon emission computed tomography brain imaging to concussion, a type of mild traumatic brain injury and traumatic brain injury, in general. The article reviews the application of these neuronuclear imaging modalities in cross-sectional and longitudinal studies. Additionally, this article frames the current literature with an overview of the basic physics and radiation exposure risks of each modality. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. SPECT/CT in imaging foot and ankle pathology-the demise of other coregistration techniques.

    PubMed

    Mohan, Hosahalli K; Gnanasegaran, Gopinath; Vijayanathan, Sanjay; Fogelman, Ignac

    2010-01-01

    Disorders of the ankle and foot are common and given the complex anatomy and function of the foot, they present a significant clinical challenge. Imaging plays a crucial role in the management of these patients, with multiple imaging options available to the clinician. The American College of radiology has set the appropriateness criteria for the use of the available investigating modalities in the management of foot and ankle pathologies. These are broadly classified into anatomical and functional imaging modalities. Recently, single-photon emission computed tomography and/or computed tomography scanners, which can elegantly combine functional and anatomical images have been introduced, promising an exciting and important development. This review describes our clinical experience with single-photon emission computed tomography and/or computed tomography and discusses potential applications of these techniques.

  13. Development of a Simple Image Processing Application that Makes Abdominopelvic Tumor Visible on Positron Emission Tomography/Computed Tomography Image.

    PubMed

    Pandey, Anil Kumar; Saroha, Kartik; Sharma, Param Dev; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh

    2017-01-01

    In this study, we have developed a simple image processing application in MATLAB that uses suprathreshold stochastic resonance (SSR) and helps the user to visualize abdominopelvic tumor on the exported prediuretic positron emission tomography/computed tomography (PET/CT) images. A brainstorming session was conducted for requirement analysis for the program. It was decided that program should load the screen captured PET/CT images and then produces output images in a window with a slider control that should enable the user to view the best image that visualizes the tumor, if present. The program was implemented on personal computer using Microsoft Windows and MATLAB R2013b. The program has option for the user to select the input image. For the selected image, it displays output images generated using SSR in a separate window having a slider control. The slider control enables the user to view images and select one which seems to provide the best visualization of the area(s) of interest. The developed application enables the user to select, process, and view output images in the process of utilizing SSR to detect the presence of abdominopelvic tumor on prediuretic PET/CT image.

  14. Medical Imaging.

    ERIC Educational Resources Information Center

    Jaffe, C. Carl

    1982-01-01

    Describes principle imaging techniques, their applications, and their limitations in terms of diagnostic capability and possible adverse biological effects. Techniques include film radiography, computed tomography, nuclear medicine, positron emission tomography (PET), ultrasonography, nuclear magnetic resonance, and digital radiography. PET has…

  15. Examples of Current and Future Uses of Neural-Net Image Processing for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    2004-01-01

    Feed forward artificial neural networks are very convenient for performing correlated interpolation of pairs of complex noisy data sets as well as detecting small changes in image data. Image-to-image, image-to-variable and image-to-index applications have been tested at Glenn. Early demonstration applications are summarized including image-directed alignment of optics, tomography, flow-visualization control of wind-tunnel operations and structural-model-trained neural networks. A practical application is reviewed that employs neural-net detection of structural damage from interference fringe patterns. Both sensor-based and optics-only calibration procedures are available for this technique. These accomplishments have generated the knowledge necessary to suggest some other applications for NASA and Government programs. A tomography application is discussed to support Glenn's Icing Research tomography effort. The self-regularizing capability of a neural net is shown to predict the expected performance of the tomography geometry and to augment fast data processing. Other potential applications involve the quantum technologies. It may be possible to use a neural net as an image-to-image controller of an optical tweezers being used for diagnostics of isolated nano structures. The image-to-image transformation properties also offer the potential for simulating quantum computing. Computer resources are detailed for implementing the black box calibration features of the neural nets.

  16. Computed tomography for non-destructive evaluation of composites: Applications and correlations

    NASA Technical Reports Server (NTRS)

    Goldberg, B.; Hediger, L.; Noel, E.

    1985-01-01

    The state-of-the-art fabrication techniques for composite materials are such that stringent species-specific acceptance criteria must be generated to insure product reliability. Non-destructive evaluation techniques including computed tomography (CT), X-ray radiography (RT), and ultrasonic scanning (UT) are investigated and compared to determine their applicability and limitations to graphite epoxy, carbon-carbon, and carbon-phenolic materials. While the techniques appear complementary, CT is shown to provide significant, heretofore unattainable data. Finally, a correlation of NDE techniques to destructive analysis is presented.

  17. Radioactive Nanomaterials for Multimodality Imaging

    PubMed Central

    Chen, Daiqin; Dougherty, Casey A.; Yang, Dongzhi; Wu, Hongwei; Hong, Hao

    2016-01-01

    Nuclear imaging techniques, including primarily positron emission tomography (PET) and single-photon emission computed tomography (SPECT), can provide quantitative information for a biological event in vivo with ultra-high sensitivity, however, the comparatively low spatial resolution is their major limitation in clinical application. By convergence of nuclear imaging with other imaging modalities like computed tomography (CT), magnetic resonance imaging (MRI) and optical imaging, the hybrid imaging platforms can overcome the limitations from each individual imaging technique. Possessing versatile chemical linking ability and good cargo-loading capacity, radioactive nanomaterials can serve as ideal imaging contrast agents. In this review, we provide a brief overview about current state-of-the-art applications of radioactive nanomaterials in the circumstances of multimodality imaging. We present strategies for incorporation of radioisotope(s) into nanomaterials along with applications of radioactive nanomaterials in multimodal imaging. Advantages and limitations of radioactive nanomaterials for multimodal imaging applications are discussed. Finally, a future perspective of possible radioactive nanomaterial utilization is presented for improving diagnosis and patient management in a variety of diseases. PMID:27227167

  18. Space shuttle main engine computed tomography applications

    NASA Technical Reports Server (NTRS)

    Sporny, Richard F.

    1990-01-01

    For the past two years the potential applications of computed tomography to the fabrication and overhaul of the Space Shuttle Main Engine were evaluated. Application tests were performed at various government and manufacturer facilities with equipment produced by four different manufacturers. The hardware scanned varied in size and complexity from a small temperature sensor and turbine blades to an assembled heat exchanger and main injector oxidizer inlet manifold. The evaluation of capabilities included the ability to identify and locate internal flaws, measure the depth of surface cracks, measure wall thickness, compare manifold design contours to actual part contours, perform automatic dimensional inspections, generate 3D computer models of actual parts, and image the relationship of the details in a complex assembly. The capabilities evaluated, with the exception of measuring the depth of surface flaws, demonstrated the existing and potential ability to perform many beneficial Space Shuttle Main Engine applications.

  19. Motion-compensated cone beam computed tomography using a conjugate gradient least-squares algorithm and electrical impedance tomography imaging motion data.

    PubMed

    Pengpen, T; Soleimani, M

    2015-06-13

    Cone beam computed tomography (CBCT) is an imaging modality that has been used in image-guided radiation therapy (IGRT). For applications such as lung radiation therapy, CBCT images are greatly affected by the motion artefacts. This is mainly due to low temporal resolution of CBCT. Recently, a dual modality of electrical impedance tomography (EIT) and CBCT has been proposed, in which the high temporal resolution EIT imaging system provides motion data to a motion-compensated algebraic reconstruction technique (ART)-based CBCT reconstruction software. High computational time associated with ART and indeed other variations of ART make it less practical for real applications. This paper develops a motion-compensated conjugate gradient least-squares (CGLS) algorithm for CBCT. A motion-compensated CGLS offers several advantages over ART-based methods, including possibilities for explicit regularization, rapid convergence and parallel computations. This paper for the first time demonstrates motion-compensated CBCT reconstruction using CGLS and reconstruction results are shown in limited data CBCT considering only a quarter of the full dataset. The proposed algorithm is tested using simulated motion data in generic motion-compensated CBCT as well as measured EIT data in dual EIT-CBCT imaging. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  20. Clinical applications of cone beam computed tomography in endodontics: A comprehensive review.

    PubMed

    Cohenca, Nestor; Shemesh, Hagay

    2015-06-01

    Cone beam computed tomography (CBCT) is a new technology that produces three-dimensional (3D) digital imaging at reduced cost and less radiation for the patient than traditional CT scans. It also delivers faster and easier image acquisition. By providing a 3D representation of the maxillofacial tissues in a cost- and dose-efficient manner, a better preoperative assessment can be obtained for diagnosis and treatment. This comprehensive review presents current applications of CBCT in endodontics. Specific case examples illustrate the difference in treatment planning with traditional periapical radiography versus CBCT technology.

  1. Stress Computed Tomography Myocardial Perfusion Imaging: A New Topic in Cardiology.

    PubMed

    Seitun, Sara; Castiglione Morelli, Margherita; Budaj, Irilda; Boccalini, Sara; Galletto Pregliasco, Athena; Valbusa, Alberto; Cademartiri, Filippo; Ferro, Carlo

    2016-02-01

    Since its introduction about 15 years ago, coronary computed tomography angiography has become today the most accurate clinical instrument for noninvasive assessment of coronary atherosclerosis. Important technical developments have led to a continuous stream of new clinical applications together with a significant reduction in radiation dose exposure. Latest generation computed tomography scanners (≥ 64 slices) allow the possibility of performing static or dynamic perfusion imaging during stress by using coronary vasodilator agents (adenosine, dipyridamole, or regadenoson), combining both functional and anatomical information in the same examination. In this article, the emerging role and state-of-the-art of myocardial computed tomography perfusion imaging are reviewed and are illustrated by clinical cases from our experience with a second-generation dual-source 128-slice scanner (Somatom Definition Flash, Siemens; Erlangen, Germany). Technical aspects, data analysis, diagnostic accuracy, radiation dose and future prospects are reviewed. Copyright © 2015 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  2. Fundamentals and recent advances in X-ray micro computed tomography (microCT) applied on thermal-fluid dynamics and multiphase flows

    NASA Astrophysics Data System (ADS)

    Santini, Maurizio

    2015-11-01

    X-ray computed tomography (CT) is a well-known technique nowadays, since its first practical application by Sir. G. Hounsfield (Nobel price for medicine 1979) has continually benefited from optimising improvements, especially in medical applications. Indeed, also application of CT in various engineering research fields provides fundamental informations on a wide range of applications, considering that the technique is not destructive, allowing 3D visualization without perturbation of the analysed material. Nowadays, it is technologically possible to design and realize an equipment that achieve a micrometric resolution and even improve the sensibility in revealing differences in materials having very radiotransparency, allowing i.e. to distinguish between different fluids (with different density) or states of matter (like with two-phase flows). At the University of Bergamo, a prototype of an X-ray microCT system was developed since 2008, so being fully operative from 2012, with specific customizations for investigations in thermal-fluid dynamics and multiphase flow researches. A technical session held at the UIT International Conference in L'Aquila (Italy), at which this paper is referring, has presented some microCT fundamentals, to allow the audience to gain basics to follow the “fil-rouge” that links all the instrumentation developments, till the recent applications. Hereinafter are reported some applications currently developed at Bergamo University at the X-ray computed micro-tomography laboratory.

  3. [CONE BEAM COMPUTED TOMOGRAPHY IN DIAGNOSTICS OF ODONTOGENIC MAXILLARY SINUSITIS (CASE REPORTS)].

    PubMed

    Demidova, E; Khurdzidze, G

    2017-06-01

    Diagnostic studies performed by cone beam computed tomography Morita 3D made possible to obtain high resolution images of hard tissues of upper jawbone and maxillary sinus, to detect bony tissue defects, such as odontogenic cysts, cystogranulomas and granulomas. High-resolution and three dimensional tomographic image reconstructions allowed for optimal and prompt determination of the scope of surgical treatment and planning of effective conservative treatment regimen. Interactive diagnostics helped to estimate cosmetic and functional results of surgical treatment, to prevent the occurrence of surgical complications, and to evaluate the efficacy of conservative treatment. The obtained data contributed to determination of particular applications of cone beam computed tomography in the diagnosis of odontogenic maxillary sinusitis, detection of specific defects with cone beam tomography as the most informative method of diagnosis; as well as to determination of weak and strong sides, and helped to offer mechanisms of x-ray diagnostics to dental surgeons and ENT specialists.

  4. Computed tomography, magnetic resonance, and ultrasound imaging: basic principles, glossary of terms, and patient safety.

    PubMed

    Cogbill, Thomas H; Ziegelbein, Kurt J

    2011-02-01

    The basic principles underlying computed tomography, magnetic resonance, and ultrasound are reviewed to promote better understanding of the properties and appropriate applications of these 3 common imaging modalities. A glossary of frequently used terms for each technique is appended for convenience. Risks to patient safety including contrast-induced nephropathy, radiation-induced malignancy, and nephrogenic systemic fibrosis are discussed. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Use of Cone Beam Computed Tomography in Endodontics

    PubMed Central

    Scarfe, William C.; Levin, Martin D.; Gane, David; Farman, Allan G.

    2009-01-01

    Cone Beam Computed Tomography (CBCT) is a diagnostic imaging modality that provides high-quality, accurate three-dimensional (3D) representations of the osseous elements of the maxillofacial skeleton. CBCT systems are available that provide small field of view images at low dose with sufficient spatial resolution for applications in endodontic diagnosis, treatment guidance, and posttreatment evaluation. This article provides a literature review and pictorial demonstration of CBCT as an imaging adjunct for endodontics. PMID:20379362

  6. Validation of a computational knee joint model using an alignment method for the knee laxity test and computed tomography.

    PubMed

    Kang, Kyoung-Tak; Kim, Sung-Hwan; Son, Juhyun; Lee, Young Han; Koh, Yong-Gon

    2017-01-01

    Computational models have been identified as efficient techniques in the clinical decision-making process. However, computational model was validated using published data in most previous studies, and the kinematic validation of such models still remains a challenge. Recently, studies using medical imaging have provided a more accurate visualization of knee joint kinematics. The purpose of the present study was to perform kinematic validation for the subject-specific computational knee joint model by comparison with subject's medical imaging under identical laxity condition. The laxity test was applied to the anterior-posterior drawer under 90° flexion and the varus-valgus under 20° flexion with a series of stress radiographs, a Telos device, and computed tomography. The loading condition in the computational subject-specific knee joint model was identical to the laxity test condition in the medical image. Our computational model showed knee laxity kinematic trends that were consistent with the computed tomography images, except for negligible differences because of the indirect application of the subject's in vivo material properties. Medical imaging based on computed tomography with the laxity test allowed us to measure not only the precise translation but also the rotation of the knee joint. This methodology will be beneficial in the validation of laxity tests for subject- or patient-specific computational models.

  7. Using synchrotron X-ray phase-contrast micro-computed tomography to study tissue damage by laser irradiation.

    PubMed

    Robinson, Alan M; Stock, Stuart R; Soriano, Carmen; Xiao, Xianghui; Richter, Claus-Peter

    2016-11-01

    The aim of this study was to determine if X-ray micro-computed tomography could be used to locate and characterize tissue damage caused by laser irradiation and to describe its advantages over classical histology for this application. A surgical CO 2 laser, operated in single pulse mode (100 milliseconds) at different power settings, was used to ablate different types of cadaveric animal tissues. Tissue samples were then harvested and imaged with synchrotron X-ray phase-contrast and micro-computed tomography to generate stacks of virtual sections of the tissues. Subsequently, Fiji (ImageJ) software was used to locate tissue damage, then to quantify volumes of laser ablation cones and thermal coagulation damage from 3D renderings of tissue image stacks. Visual comparisons of tissue structures in X-ray images with those visible by classic light microscopy histology were made. We demonstrated that micro-computed tomography could be used to rapidly identify areas of surgical laser ablation, vacuolization, carbonization, and thermally coagulated tissue. Quantification and comparison of the ablation crater, which represents the volume of ablated tissue, and the thermal coagulation zone volumes were performed faster than we could by classical histology. We demonstrated that these procedures can be performed on fresh hydrated and non-sectioned plastic embedded tissue. We demonstrated that the application of non-destructive micro-computed tomography to the visualization and analysis of laser induced tissue damage without tissue sectioning is possible. This will improve evaluation of new surgical lasers and their corresponding effect on tissues. Lasers Surg. Med. 48:866-877, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Implementation and applications of dual-modality imaging

    NASA Astrophysics Data System (ADS)

    Hasegawa, Bruce H.; Barber, William C.; Funk, Tobias; Hwang, Andrew B.; Taylor, Carmen; Sun, Mingshan; Seo, Youngho

    2004-06-01

    In medical diagnosis, functional or physiological data can be acquired using radionuclide imaging with positron emission tomography or with single-photon emission computed tomography. However, anatomical or structural data can be acquired using X-ray computed tomography. In dual-modality imaging, both radionuclide and X-ray detectors are incorporated in an imaging system to allow both functional and structural data to be acquired in a single procedure without removing the patient from the imaging system. In a clinical setting, dual-modality imaging systems commonly are used to localize radiopharmaceutical uptake with respect to the patient's anatomy. This helps the clinician to differentiate disease from regions of normal radiopharmaceutical accumulation, to improve diagnosis or cancer staging, or to facilitate planning for radiation therapy or surgery. While initial applications of dual-modality imaging were developed for clinical imaging on humans, it now is recognized that these systems have potentially important applications for imaging small animals involved in experimental studies including basic investigations of mammalian biology and development of new pharmaceuticals for diagnosis or treatment of disease.

  9. Fabricating High-Resolution X-Ray Collimators

    NASA Technical Reports Server (NTRS)

    Appleby, Michael; Atkinson, James E.; Fraser, Iain; Klinger, Jill

    2008-01-01

    A process and method for fabricating multi-grid, high-resolution rotating modulation collimators for arcsecond and sub-arcsecond x-ray and gamma-ray imaging involves photochemical machining and precision stack lamination. The special fixturing and etching techniques that have been developed are used for the fabrication of multiple high-resolution grids on a single array substrate. This technology has application in solar and astrophysics and in a number of medical imaging applications including mammography, computed tomography (CT), single photon emission computed tomography (SPECT), and gamma cameras used in nuclear medicine. This collimator improvement can also be used in non-destructive testing, hydrodynamic weapons testing, and microbeam radiation therapy.

  10. Broadband Terahertz Computed Tomography Using a 5k-pixel Real-time THz Camera

    NASA Astrophysics Data System (ADS)

    Trichopoulos, Georgios C.; Sertel, Kubilay

    2015-07-01

    We present a novel THz computed tomography system that enables fast 3-dimensional imaging and spectroscopy in the 0.6-1.2 THz band. The system is based on a new real-time broadband THz camera that enables rapid acquisition of multiple cross-sectional images required in computed tomography. Tomographic reconstruction is achieved using digital images from the densely-packed large-format (80×64) focal plane array sensor located behind a hyper-hemispherical silicon lens. Each pixel of the sensor array consists of an 85 μm × 92 μm lithographically fabricated wideband dual-slot antenna, monolithically integrated with an ultra-fast diode tuned to operate in the 0.6-1.2 THz regime. Concurrently, optimum impedance matching was implemented for maximum pixel sensitivity, enabling 5 frames-per-second image acquisition speed. As such, the THz computed tomography system generates diffraction-limited resolution cross-section images as well as the three-dimensional models of various opaque and partially transparent objects. As an example, an over-the-counter vitamin supplement pill is imaged and its material composition is reconstructed. The new THz camera enables, for the first time, a practical application of THz computed tomography for non-destructive evaluation and biomedical imaging.

  11. Computed tomography-based finite element analysis to assess fracture risk and osteoporosis treatment

    PubMed Central

    Imai, Kazuhiro

    2015-01-01

    Finite element analysis (FEA) is a computer technique of structural stress analysis and developed in engineering mechanics. FEA has developed to investigate structural behavior of human bones over the past 40 years. When the faster computers have acquired, better FEA, using 3-dimensional computed tomography (CT) has been developed. This CT-based finite element analysis (CT/FEA) has provided clinicians with useful data. In this review, the mechanism of CT/FEA, validation studies of CT/FEA to evaluate accuracy and reliability in human bones, and clinical application studies to assess fracture risk and effects of osteoporosis medication are overviewed. PMID:26309819

  12. Tomography by iterative convolution - Empirical study and application to interferometry

    NASA Technical Reports Server (NTRS)

    Vest, C. M.; Prikryl, I.

    1984-01-01

    An algorithm for computer tomography has been developed that is applicable to reconstruction from data having incomplete projections because an opaque object blocks some of the probing radiation as it passes through the object field. The algorithm is based on iteration between the object domain and the projection (Radon transform) domain. Reconstructions are computed during each iteration by the well-known convolution method. Although it is demonstrated that this algorithm does not converge, an empirically justified criterion for terminating the iteration when the most accurate estimate has been computed is presented. The algorithm has been studied by using it to reconstruct several different object fields with several different opaque regions. It also has been used to reconstruct aerodynamic density fields from interferometric data recorded in wind tunnel tests.

  13. 3D chemical imaging in the laboratory by hyperspectral X-ray computed tomography

    PubMed Central

    Egan, C. K.; Jacques, S. D. M.; Wilson, M. D.; Veale, M. C.; Seller, P.; Beale, A. M.; Pattrick, R. A. D.; Withers, P. J.; Cernik, R. J.

    2015-01-01

    We report the development of laboratory based hyperspectral X-ray computed tomography which allows the internal elemental chemistry of an object to be reconstructed and visualised in three dimensions. The method employs a spectroscopic X-ray imaging detector with sufficient energy resolution to distinguish individual elemental absorption edges. Elemental distributions can then be made by K-edge subtraction, or alternatively by voxel-wise spectral fitting to give relative atomic concentrations. We demonstrate its application to two material systems: studying the distribution of catalyst material on porous substrates for industrial scale chemical processing; and mapping of minerals and inclusion phases inside a mineralised ore sample. The method makes use of a standard laboratory X-ray source with measurement times similar to that required for conventional computed tomography. PMID:26514938

  14. The Inside View

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Bio-Imaging Research, Inc., has been included in Spinoff 1990 and 1993 with spinoffs from their ACTIS (Advanced Computed Tomography Inspection System) product developed under a Marshall Space Flight Center SBIR (Small Business Innovative Research) contract. The latest application is for noninvasive nuclear waste drum inspection. With the ACTIS CT (computed tomography, CATScan) scanner, radioactive waste is examined to prove that they do not contain one-half percent free liquid or that the drum wall has lost integrity before being moved across state lines or before being permanently disposed.

  15. The feasibility study on 3-dimensional fluorescent x-ray computed tomography using the pinhole effect for biomedical applications.

    PubMed

    Sunaguchi, Naoki; Yuasa, Tetsuya; Hyodo, Kazuyuki; Zeniya, Tsutomu

    2013-01-01

    We propose a 3-dimensional fluorescent x-ray computed tomography (CT) pinhole collimator, aimed at providing molecular imaging with quantifiable measures and sub-millimeter spatial resolution. In this study, we demonstrate the feasibility of this concept and investigate imaging properties such as spatial resolution, contrast resolution and quantifiable measures, by imaging physical phantoms using a preliminary imaging system developed with monochromatic synchrotron x rays constructed at the BLNE-7A experimental line at KEK, Japan.

  16. Applicability of Cone Beam Computed Tomography to the Assessment of the Vocal Tract before and after Vocal Exercises in Normal Subjects.

    PubMed

    Garcia, Elisângela Zacanti; Yamashita, Hélio Kiitiro; Garcia, Davi Sousa; Padovani, Marina Martins Pereira; Azevedo, Renata Rangel; Chiari, Brasília Maria

    2016-01-01

    Cone beam computed tomography (CBCT), which represents an alternative to traditional computed tomography and magnetic resonance imaging, may be a useful instrument to study vocal tract physiology related to vocal exercises. This study aims to evaluate the applicability of CBCT to the assessment of variations in the vocal tract of healthy individuals before and after vocal exercises. Voice recordings and CBCT images before and after vocal exercises performed by 3 speech-language pathologists without vocal complaints were collected and compared. Each participant performed 1 type of exercise, i.e., Finnish resonance tube technique, prolonged consonant "b" technique, or chewing technique. The analysis consisted of an acoustic analysis and tomographic imaging. Modifications of the vocal tract settings following vocal exercises were properly detected by CBCT, and changes in the acoustic parameters were, for the most part, compatible with the variations detected in image measurements. CBCT was shown to be capable of properly assessing the changes in vocal tract settings promoted by vocal exercises. © 2017 S. Karger AG, Basel.

  17. [Imaging analysis of jaw defects reparation with antigen-extracted porcine cancellous bone].

    PubMed

    Chen, Xufeng; Lu, Lihong; Feng, Zhiqiang; Yin, Zhongda; Lai, Renfa

    2017-12-01

    At present, most of the bone xenograft for clinical application comes from bovine. In recent years, many studies have been done on the clinical application of porcine xenograft bone. The goal of this study was to evaluate the effect of canine mandibular defects reparation with antigen-extracted porcine cancellous bone by imaging examination. Four dogs' bilateral mandibular defects were created, with one side repaired with autologous bone (set as control group) while the other side repaired with antigen-extracted porcine cancellous bone (set as experimental group). Titanium plates and titanium screws were used for fixation. Cone beam computed tomography (CBCT), computed tomography (CT), single-photon emission computed tomography (SPECT) were undertaken at week 12 and 24 postoperatively, and SPECT and CT images were fused. The results demonstrated that the remodeling of antigen-extracted porcine cancellous bone was slower than that of autologous bone, but it can still be used as scaffold for jaw defects. The results in this study provide a new choice for materials required for clinical reparation of jaw defects.

  18. 76 FR 74121 - Medicare and Medicaid Programs: Hospital Outpatient Prospective Payment; Ambulatory Surgical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-30

    ... Radiation Therapy (IMRT) (APC 0305) f. Computed Tomography of Abdomen/Pelvic (APCs 0331 and 0334) g. Complex Interstitial Radiation Source Application (APC 0651) h. Radioelement Applications (APC 0312) 8. Respiratory...

  19. Nonlinear optical THz generation and sensing applications

    NASA Astrophysics Data System (ADS)

    Kawase, Kodo

    2012-03-01

    We have suggested a wide range of real-life applications using novel terahertz imaging techniques. A high-resolution terahertz tomography was demonstrated by ultra short terahertz pulses using optical fiber and a nonlinear organic crystal. We also report on the thickness measurement of very thin films using high-sensitivity metal mesh filter. Further we have succeeded in a non-destructive inspection that can monitor the soot distribution in the ceramic filter using millimeter-to-terahertz wave computed tomography. These techniques are directly applicable to the non-destructive testing in industries.

  20. Positron Emission Tomography - Computed Tomography (PET/CT)

    MedlinePlus

    ... A-Z Positron Emission Tomography - Computed Tomography (PET/CT) Positron emission tomography (PET) uses small amounts of ... What is Positron Emission Tomography – Computed Tomography (PET/CT) Scanning? Positron emission tomography, also called PET imaging ...

  1. X-ray micro computed tomography characterization of cellular SiC foams for their applications in chemical engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ou, Xiaoxia

    Open-cell SiC foams clearly are promising materials for continuous-flow chemical applications such as heterogeneous catalysis and distillation. X-ray micro computed tomography characterization of cellular β-SiC foams at a spatial voxel size of 13.6{sup 3} μm{sup 3} and the interpretation of morphological properties of SiC open-cell foams with implications to their transport properties are presented. Static liquid hold-up in SiC foams was investigated through in-situ draining experiments for the first time using the μ-CT technique providing thorough 3D information about the amount and distribution of liquid hold-up inside the foam. This will enable better modeling and design of structured reactors basedmore » on SiC foams in the future. In order to see more practical uses, μ-CT data of cellular foams must be exploited to optimize the design of the morphology of foams for a specific application. - Highlights: •Characterization of SiC foams using novel X-ray micro computed tomography. •Interpretation of structural properties of SiC foams regarding to their transport properties. •Static liquid hold-up analysis of SiC foams through in-situ draining experiments.« less

  2. An application framework of three-dimensional reconstruction and measurement for endodontic research.

    PubMed

    Gao, Yuan; Peters, Ove A; Wu, Hongkun; Zhou, Xuedong

    2009-02-01

    The purpose of this study was to customize an application framework by using the MeVisLab image processing and visualization platform for three-dimensional reconstruction and assessment of tooth and root canal morphology. One maxillary first molar was scanned before and after preparation with ProTaper by using micro-computed tomography. With a customized application framework based on MeVisLab, internal and external anatomy was reconstructed. Furthermore, the dimensions of root canal and radicular dentin were quantified, and effects of canal preparation were assessed. Finally, a virtual preparation with risk analysis was performed to simulate the removal of a broken instrument. This application framework provided an economical platform and met current requirements of endodontic research. The broad-based use of high-quality free software and the resulting exchange of experience might help to improve the quality of endodontic research with micro-computed tomography.

  3. CT Image Sequence Processing For Wood Defect Recognition

    Treesearch

    Dongping Zhu; R.W. Conners; Philip A. Araman

    1991-01-01

    The research reported in this paper explores a non-destructive testing application of x-ray computed tomography (CT) in the forest products industry. This application involves a computer vision system that uses CT to locate and identify internal defects in hardwood logs. The knowledge of log defects is critical in deciding whether to veneer or to saw up a log, and how...

  4. Active and passive computed tomography mixed waste focus area final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberson, G P

    1998-08-19

    The Mixed Waste Focus Area (MWFA) Characterization Development Strategy delineates an approach to resolve technology deficiencies associated with the characterization of mixed wastes. The intent of this strategy is to ensure the availability of technologies to support the Department of Energy's (DOE) mixed waste low-level or transuranic (TRU) contaminated waste characterization management needs. To this end the MWFA has defined and coordinated characterization development programs to ensure that data and test results necessary to evaluate the utility of non-destructive assay technologies are available to meet site contact handled waste management schedules. Requirements used as technology development project benchmarks are basedmore » in the National TRU Program Quality Assurance Program Plan. These requirements include the ability to determine total bias and total measurement uncertainty. These parameters must be completely evaluated for waste types to be processed through a given nondestructive waste assay system constituting the foundation of activities undertaken in technology development projects. Once development and testing activities have been completed, Innovative Technology Summary Reports are generated to provide results and conclusions to support EM-30, -40, or -60 end user/customer technology selection. The Active and Passive Computed Tomography non-destructive assay system is one of the technologies selected for development by the MWFA. Lawrence Livermore National Laboratory's (LLNL) is developing the Active and Passive Computed Tomography (A&PCT) nondestructive assay (NDA) technology to identify and accurately quantify all detectable radioisotopes in closed containers of waste. This technology will be applicable to all types of waste regardless of .their classification; low level, transuranic or provide results and conclusions to support EM-30, -40, or -60 end user/customer technology selection. The Active and Passive Computed Tomography non-destructive assay system is one of the technologies selected for development by the MWFA. Lawrence Livermore National Laboratory's (LLNL) is developing the Active and Passive Computed Tomography (A&PCT) nondestructive assay (NDA) technology to identify and accurately quantify all detectable radioisotopes in closed containers of waste. This technology will be applicable to all types of waste regardless of .their classification; low level, transuranic or mixed, which contains radioactivity and hazardous organic species. The scope of our technology is to develop a non-invasive waste-drum scanner that employs the principles of computed tomography and gamma-ray spectral analysis to identify and quantify all of the detectable radioisotopes. Once this and other applicable technologies are developed, waste drums can be non- destructively and accurately characterized to satisfy repository and regulatory guidelines prior to disposal.« less

  5. Single-Photon Emission Computed Tomography/Computed Tomography Imaging in a Rabbit Model of Emphysema Reveals Ongoing Apoptosis In Vivo

    PubMed Central

    Goldklang, Monica P.; Tekabe, Yared; Zelonina, Tina; Trischler, Jordis; Xiao, Rui; Stearns, Kyle; Romanov, Alexander; Muzio, Valeria; Shiomi, Takayuki; Johnson, Lynne L.

    2016-01-01

    Evaluation of lung disease is limited by the inability to visualize ongoing pathological processes. Molecular imaging that targets cellular processes related to disease pathogenesis has the potential to assess disease activity over time to allow intervention before lung destruction. Because apoptosis is a critical component of lung damage in emphysema, a functional imaging approach was taken to determine if targeting apoptosis in a smoke exposure model would allow the quantification of early lung damage in vivo. Rabbits were exposed to cigarette smoke for 4 or 16 weeks and underwent single-photon emission computed tomography/computed tomography scanning using technetium-99m–rhAnnexin V-128. Imaging results were correlated with ex vivo tissue analysis to validate the presence of lung destruction and apoptosis. Lung computed tomography scans of long-term smoke–exposed rabbits exhibit anatomical similarities to human emphysema, with increased lung volumes compared with controls. Morphometry on lung tissue confirmed increased mean linear intercept and destructive index at 16 weeks of smoke exposure and compliance measurements documented physiological changes of emphysema. Tissue and lavage analysis displayed the hallmarks of smoke exposure, including increased tissue cellularity and protease activity. Technetium-99m–rhAnnexin V-128 single-photon emission computed tomography signal was increased after smoke exposure at 4 and 16 weeks, with confirmation of increased apoptosis through terminal deoxynucleotidyl transferase dUTP nick end labeling staining and increased tissue neutral sphingomyelinase activity in the tissue. These studies not only describe a novel emphysema model for use with future therapeutic applications, but, most importantly, also characterize a promising imaging modality that identifies ongoing destructive cellular processes within the lung. PMID:27483341

  6. A Dictionary Learning Approach with Overlap for the Low Dose Computed Tomography Reconstruction and Its Vectorial Application to Differential Phase Tomography

    PubMed Central

    Mirone, Alessandro; Brun, Emmanuel; Coan, Paola

    2014-01-01

    X-ray based Phase-Contrast Imaging (PCI) techniques have been demonstrated to enhance the visualization of soft tissues in comparison to conventional imaging methods. Nevertheless the delivered dose as reported in the literature of biomedical PCI applications often equals or exceeds the limits prescribed in clinical diagnostics. The optimization of new computed tomography strategies which include the development and implementation of advanced image reconstruction procedures is thus a key aspect. In this scenario, we implemented a dictionary learning method with a new form of convex functional. This functional contains in addition to the usual sparsity inducing and fidelity terms, a new term which forces similarity between overlapping patches in the superimposed regions. The functional depends on two free regularization parameters: a coefficient multiplying the sparsity-inducing norm of the patch basis functions coefficients, and a coefficient multiplying the norm of the differences between patches in the overlapping regions. The solution is found by applying the iterative proximal gradient descent method with FISTA acceleration. The gradient is computed by calculating projection of the solution and its error backprojection at each iterative step. We study the quality of the solution, as a function of the regularization parameters and noise, on synthetic data for which the solution is a-priori known. We apply the method on experimental data in the case of Differential Phase Tomography. For this case we use an original approach which consists in using vectorial patches, each patch having two components: one per each gradient component. The resulting algorithm, implemented in the European Synchrotron Radiation Facility tomography reconstruction code PyHST, has proven to be efficient and well-adapted to strongly reduce the required dose and the number of projections in medical tomography. PMID:25531987

  7. A dictionary learning approach with overlap for the low dose computed tomography reconstruction and its vectorial application to differential phase tomography.

    PubMed

    Mirone, Alessandro; Brun, Emmanuel; Coan, Paola

    2014-01-01

    X-ray based Phase-Contrast Imaging (PCI) techniques have been demonstrated to enhance the visualization of soft tissues in comparison to conventional imaging methods. Nevertheless the delivered dose as reported in the literature of biomedical PCI applications often equals or exceeds the limits prescribed in clinical diagnostics. The optimization of new computed tomography strategies which include the development and implementation of advanced image reconstruction procedures is thus a key aspect. In this scenario, we implemented a dictionary learning method with a new form of convex functional. This functional contains in addition to the usual sparsity inducing and fidelity terms, a new term which forces similarity between overlapping patches in the superimposed regions. The functional depends on two free regularization parameters: a coefficient multiplying the sparsity-inducing L1 norm of the patch basis functions coefficients, and a coefficient multiplying the L2 norm of the differences between patches in the overlapping regions. The solution is found by applying the iterative proximal gradient descent method with FISTA acceleration. The gradient is computed by calculating projection of the solution and its error backprojection at each iterative step. We study the quality of the solution, as a function of the regularization parameters and noise, on synthetic data for which the solution is a-priori known. We apply the method on experimental data in the case of Differential Phase Tomography. For this case we use an original approach which consists in using vectorial patches, each patch having two components: one per each gradient component. The resulting algorithm, implemented in the European Synchrotron Radiation Facility tomography reconstruction code PyHST, has proven to be efficient and well-adapted to strongly reduce the required dose and the number of projections in medical tomography.

  8. Diagnostic imaging applications; Proceedings of the Meeting, Amsterdam, Netherlands, October 8, 9, 1984

    NASA Technical Reports Server (NTRS)

    Beckenbach, E. S. (Editor)

    1984-01-01

    It is more important than ever that engineers have an understanding of the future needs of clinical and research medicine, and that physicians know somthing about probable future developments in instrumentation capabilities. Only by maintaining such a dialog can the most effective application of technological advances to medicine be achieved. This workshop attempted to provide this kind of information transfer in the limited field of diagnostic imaging. Biomedical research at the Jet Propulsion Laboratory is discussed, taking into account imaging results from space exploration missions, as well as biomedical research tasks based in these technologies. Attention is also given to current and future indications for magnetic resonance in medicine, high speed quantitative digital microscopy, computer processing of radiographic images, computed tomography and its modern applications, position emission tomography, and developments related to medical ultrasound.

  9. The application of X-ray microtomography for the assessement of root resorption caused by the orthodontic treatment of premolars.

    PubMed

    Sawicka, Monika; Bedini, Rossella; Pecci, Raffaella; Pameijer, Cornelis Hans; Kmiec, Zbigniew

    2012-01-01

    The purpose of this study was to demonstrate potential application of micro-computed tomography in the morphometric analysis of the root resorption in extracted human first premolars subjected to the orthodontic force. In one patient treated in the orthodontic clinic two mandibular first premolars subjected to orthodontic force for 4 weeks and one control tooth were selected for micro-computed tomographic analysis. The hardware device used in this study was a desktop X-ray microfocus CT scanner (SkyScan 1072). The morphology of root's surfaces was assessed by TView and Computer Tomography Analyzer (CTAn) softwares (SkyScan, bvba) which allowed analysis of all microscans, identification of root resorption craters and measurement of their length, width and volume. Microscans showed in details the surface morphology of the investigated teeth. The analysis of microscans allowed to detect 3 root resorption cavities in each of the orthodontically moved tooth and only one resorption crater in the control tooth. The volumes of the resorption craters in orthodontically-treated teeth were much larger than in a control tooth. Micro-computed tomography is a reproducible technique for the three-dimensional non-invasive assessment of root's morphology ex vivo. TView and CTan softwares are useful in accurate morphometric measurements of root's resorption.

  10. Imaging Strategies for Tissue Engineering Applications

    PubMed Central

    Nam, Seung Yun; Ricles, Laura M.; Suggs, Laura J.

    2015-01-01

    Tissue engineering has evolved with multifaceted research being conducted using advanced technologies, and it is progressing toward clinical applications. As tissue engineering technology significantly advances, it proceeds toward increasing sophistication, including nanoscale strategies for material construction and synergetic methods for combining with cells, growth factors, or other macromolecules. Therefore, to assess advanced tissue-engineered constructs, tissue engineers need versatile imaging methods capable of monitoring not only morphological but also functional and molecular information. However, there is no single imaging modality that is suitable for all tissue-engineered constructs. Each imaging method has its own range of applications and provides information based on the specific properties of the imaging technique. Therefore, according to the requirements of the tissue engineering studies, the most appropriate tool should be selected among a variety of imaging modalities. The goal of this review article is to describe available biomedical imaging methods to assess tissue engineering applications and to provide tissue engineers with criteria and insights for determining the best imaging strategies. Commonly used biomedical imaging modalities, including X-ray and computed tomography, positron emission tomography and single photon emission computed tomography, magnetic resonance imaging, ultrasound imaging, optical imaging, and emerging techniques and multimodal imaging, will be discussed, focusing on the latest trends of their applications in recent tissue engineering studies. PMID:25012069

  11. XDesign: an open-source software package for designing X-ray imaging phantoms and experiments.

    PubMed

    Ching, Daniel J; Gürsoy, Dogˇa

    2017-03-01

    The development of new methods or utilization of current X-ray computed tomography methods is impeded by the substantial amount of expertise required to design an X-ray computed tomography experiment from beginning to end. In an attempt to make material models, data acquisition schemes and reconstruction algorithms more accessible to researchers lacking expertise in some of these areas, a software package is described here which can generate complex simulated phantoms and quantitatively evaluate new or existing data acquisition schemes and image reconstruction algorithms for targeted applications.

  12. XDesign: An open-source software package for designing X-ray imaging phantoms and experiments

    DOE PAGES

    Ching, Daniel J.; Gursoy, Dogˇa

    2017-02-21

    Here, the development of new methods or utilization of current X-ray computed tomography methods is impeded by the substantial amount of expertise required to design an X-ray computed tomography experiment from beginning to end. In an attempt to make material models, data acquisition schemes and reconstruction algorithms more accessible to researchers lacking expertise in some of these areas, a software package is described here which can generate complex simulated phantoms and quantitatively evaluate new or existing data acquisition schemes and image reconstruction algorithms for targeted applications.

  13. Micro Computer Tomography for medical device and pharmaceutical packaging analysis.

    PubMed

    Hindelang, Florine; Zurbach, Raphael; Roggo, Yves

    2015-04-10

    Biomedical device and medicine product manufacturing are long processes facing global competition. As technology evolves with time, the level of quality, safety and reliability increases simultaneously. Micro Computer Tomography (Micro CT) is a tool allowing a deep investigation of products: it can contribute to quality improvement. This article presents the numerous applications of Micro CT for medical device and pharmaceutical packaging analysis. The samples investigated confirmed CT suitability for verification of integrity, measurements and defect detections in a non-destructive manner. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Single-shot ultrafast tomographic imaging by spectral multiplexing

    NASA Astrophysics Data System (ADS)

    Matlis, N. H.; Axley, A.; Leemans, W. P.

    2012-10-01

    Computed tomography has profoundly impacted science, medicine and technology by using projection measurements scanned over multiple angles to permit cross-sectional imaging of an object. The application of computed tomography to moving or dynamically varying objects, however, has been limited by the temporal resolution of the technique, which is set by the time required to complete the scan. For objects that vary on ultrafast timescales, traditional scanning methods are not an option. Here we present a non-scanning method capable of resolving structure on femtosecond timescales by using spectral multiplexing of a single laser beam to perform tomographic imaging over a continuous range of angles simultaneously. We use this technique to demonstrate the first single-shot ultrafast computed tomography reconstructions and obtain previously inaccessible structure and position information for laser-induced plasma filaments. This development enables real-time tomographic imaging for ultrafast science, and offers a potential solution to the challenging problem of imaging through scattering surfaces.

  15. Attenuation correction in emission tomography using the emission data—A review

    PubMed Central

    Li, Yusheng

    2016-01-01

    The problem of attenuation correction (AC) for quantitative positron emission tomography (PET) had been considered solved to a large extent after the commercial availability of devices combining PET with computed tomography (CT) in 2001; single photon emission computed tomography (SPECT) has seen a similar development. However, stimulated in particular by technical advances toward clinical systems combining PET and magnetic resonance imaging (MRI), research interest in alternative approaches for PET AC has grown substantially in the last years. In this comprehensive literature review, the authors first present theoretical results with relevance to simultaneous reconstruction of attenuation and activity. The authors then look back at the early history of this research area especially in PET; since this history is closely interwoven with that of similar approaches in SPECT, these will also be covered. We then review algorithmic advances in PET, including analytic and iterative algorithms. The analytic approaches are either based on the Helgason–Ludwig data consistency conditions of the Radon transform, or generalizations of John’s partial differential equation; with respect to iterative methods, we discuss maximum likelihood reconstruction of attenuation and activity (MLAA), the maximum likelihood attenuation correction factors (MLACF) algorithm, and their offspring. The description of methods is followed by a structured account of applications for simultaneous reconstruction techniques: this discussion covers organ-specific applications, applications specific to PET/MRI, applications using supplemental transmission information, and motion-aware applications. After briefly summarizing SPECT applications, we consider recent developments using emission data other than unscattered photons. In summary, developments using time-of-flight (TOF) PET emission data for AC have shown promising advances and open a wide range of applications. These techniques may both remedy deficiencies of purely MRI-based AC approaches in PET/MRI and improve standalone PET imaging. PMID:26843243

  16. Attenuation correction in emission tomography using the emission data—A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berker, Yannick, E-mail: berker@mail.med.upenn.edu; Li, Yusheng

    2016-02-15

    The problem of attenuation correction (AC) for quantitative positron emission tomography (PET) had been considered solved to a large extent after the commercial availability of devices combining PET with computed tomography (CT) in 2001; single photon emission computed tomography (SPECT) has seen a similar development. However, stimulated in particular by technical advances toward clinical systems combining PET and magnetic resonance imaging (MRI), research interest in alternative approaches for PET AC has grown substantially in the last years. In this comprehensive literature review, the authors first present theoretical results with relevance to simultaneous reconstruction of attenuation and activity. The authors thenmore » look back at the early history of this research area especially in PET; since this history is closely interwoven with that of similar approaches in SPECT, these will also be covered. We then review algorithmic advances in PET, including analytic and iterative algorithms. The analytic approaches are either based on the Helgason–Ludwig data consistency conditions of the Radon transform, or generalizations of John’s partial differential equation; with respect to iterative methods, we discuss maximum likelihood reconstruction of attenuation and activity (MLAA), the maximum likelihood attenuation correction factors (MLACF) algorithm, and their offspring. The description of methods is followed by a structured account of applications for simultaneous reconstruction techniques: this discussion covers organ-specific applications, applications specific to PET/MRI, applications using supplemental transmission information, and motion-aware applications. After briefly summarizing SPECT applications, we consider recent developments using emission data other than unscattered photons. In summary, developments using time-of-flight (TOF) PET emission data for AC have shown promising advances and open a wide range of applications. These techniques may both remedy deficiencies of purely MRI-based AC approaches in PET/MRI and improve standalone PET imaging.« less

  17. Feasibility studies on explosive detection and homeland security applications using a neutron and x-ray combined computed tomography system

    NASA Astrophysics Data System (ADS)

    Sinha, V.; Srivastava, A.; Lee, H. K.; Liu, X.

    2013-05-01

    The successful creation and operation of a neutron and X-ray combined computed tomography (NXCT) system has been demonstrated by researchers at the Missouri University of Science and Technology. The NXCT system has numerous applications in the field of material characterization and object identification in materials with a mixture of atomic numbers represented. Presently, the feasibility studies have been performed for explosive detection and homeland security applications, particularly in concealed material detection and determination of the light atomic number materials. These materials cannot be detected using traditional X-ray imaging. The new system has the capability to provide complete structural and compositional information due to the complementary nature of X-ray and neutron interactions with materials. The design of the NXCT system facilitates simultaneous and instantaneous imaging operation, promising enhanced detection capabilities of explosive materials, low atomic number materials and illicit materials for homeland security applications. In addition, a sample positioning system allowing the user to remotely and automatically manipulate the sample makes the system viable for commercial applications. Several explosives and weapon simulants have been imaged and the results are provided. The fusion algorithms which combine the data from the neutron and X-ray imaging produce superior images. This paper is a compete overview of the NXCT system for feasibility studies of explosive detection and homeland security applications. The design of the system, operation, algorithm development, and detection schemes are provided. This is the first combined neutron and X-ray computed tomography system in operation. Furthermore, the method of fusing neutron and X-ray images together is a new approach which provides high contrast images of the desired object. The system could serve as a standardized tool in nondestructive testing of many applications, especially in explosives detection and homeland security research.

  18. Database tomography for commercial application

    NASA Technical Reports Server (NTRS)

    Kostoff, Ronald N.; Eberhart, Henry J.

    1994-01-01

    Database tomography is a method for extracting themes and their relationships from text. The algorithms, employed begin with word frequency and word proximity analysis and build upon these results. When the word 'database' is used, think of medical or police records, patents, journals, or papers, etc. (any text information that can be computer stored). Database tomography features a full text, user interactive technique enabling the user to identify areas of interest, establish relationships, and map trends for a deeper understanding of an area of interest. Database tomography concepts and applications have been reported in journals and presented at conferences. One important feature of the database tomography algorithm is that it can be used on a database of any size, and will facilitate the users ability to understand the volume of content therein. While employing the process to identify research opportunities it became obvious that this promising technology has potential applications for business, science, engineering, law, and academe. Examples include evaluating marketing trends, strategies, relationships and associations. Also, the database tomography process would be a powerful component in the area of competitive intelligence, national security intelligence and patent analysis. User interests and involvement cannot be overemphasized.

  19. Non-Conventional Applications of Computerized Tomography: Analysis of Solid Dosage Forms Produced by Pharmaceutical Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martins de Oliveira, Jose Jr.; Germano Martins, Antonio Cesar

    X-ray computed tomography (CT) refers to the cross-sectional imaging of an object measuring the transmitted radiation at different directions. In this work, we describe a non-conventional application of computerized tomography: visualization and improvements in the understanding of some internal structural features of solid dosage forms. A micro-CT X-ray scanner, with a minimum resolution of 30 mum was used to characterize some pharmaceutical tablets, granules, controlled-release osmotic tablet and liquid-filled soft-gelatin capsules. The analysis presented in this work are essentially qualitative, but quantitative parameters, such as porosity, density distribution, tablets dimensions, etc. could also be obtained using the related CT techniques.

  20. A novel method for NDT applications using NXCT system at the Missouri University of Science & Technology

    NASA Astrophysics Data System (ADS)

    Sinha, Vaibhav; Srivastava, Anjali; Koo Lee, Hyoung

    2014-06-01

    A novel method for non-destructive analysis has been developed using a neutron/X-ray combined computed tomography (NXCT) system at the Missouri University of Science and Technology Reactor (MSTR). This imaging system takes advantage of the fact that neutrons and X-rays have characteristically different interactions with same materials. NXCT fuses the imaging capabilities of both systems at one location and allows instant evaluation for nondestructive testing (NDT) applications. This technique promises viable advances in the field of NDT. In this paper, the complete design criteria and procedures are provided. The described design criteria and procedures can effectively be utilized to design and develop advanced combined computed tomography system. The successful operation of the high resolution X-ray and neutron computed tomography has been demonstrated in this paper. The utility and importance of the NXCT system has been shown by nondestructive evaluation of various phantoms constituting different materials, geometrical, structural and compositional information. The concept of NXCT can be useful for concealed material detection, material characterization, investigation of complex geometries involving different atomic number materials and real time imaging for in-situ studies.

  1. Relationship between the Self-Rating Anxiety Scale score and the success rate of 64-slice computed tomography coronary angiography.

    PubMed

    Li, Hui; Jin, Dan; Qiao, Fang; Chen, Jianchang; Gong, Jianping

    Computed tomography coronary angiography, a key method for obtaining coronary artery images, is widely used to screen for coronary artery diseases due to its noninvasive nature. In China, 64-slice computed tomography systems are now the most common models. As factors that directly affect computed tomography performance, heart rate and rhythm control are regulated by the autonomic nervous system and are highly related to the emotional state of the patient. The aim of this prospective study is to use a pre-computed tomography scan Self-Rating Anxiety Scale assessment to analyze the effects of tension and anxiety on computed tomography coronary angiography success. Subjects aged 18-85 years who were planned to undergo computed tomography coronary angiography were enrolled; 1 to 2 h before the computed tomography scan, basic patient data (gender, age, heart rate at rest, and family history) and Self-Rating Anxiety Scale score were obtained. The same group of imaging department doctors, technicians, and nurses performed computed tomography coronary angiography for all the enrolled subjects and observed whether those subjects could finish the computed tomography coronary angiography scan and provide clear, diagnostically valuable images. Participants were divided into successful (obtained diagnostically useful coronary images) and unsuccessful groups. Basic data and Self-Rating Anxiety Scale scores were compared between the groups. The Self-Rating Anxiety Scale standard score of the successful group was lower than that of the unsuccessful group (P = 0.001). As the Self-Rating Anxiety Scale standard score rose, the success rate of computed tomography coronary angiography decreased. The Self-Rating Anxiety Scale score has a negative relationship with computed tomography coronary angiography success. Anxiety can be a disadvantage in computed tomography coronary angiography examination. The pre-computed tomography coronary angiography scan Self-Rating Anxiety Scale score may be a useful tool for assessing whether a computed tomography coronary angiography scan will be successful or not. © The Author(s) 2015.

  2. Computed Tomography (CT) - Spine

    MedlinePlus

    ... Resources Professions Site Index A-Z Computed Tomography (CT) - Spine Computed tomography (CT) of the spine is ... of CT Scanning of the Spine? What is CT Scanning of the Spine? Computed tomography, more commonly ...

  3. Three-dimensional surface reconstruction for industrial computed tomography

    NASA Technical Reports Server (NTRS)

    Vannier, M. W.; Knapp, R. H.; Gayou, D. E.; Sammon, N. P.; Butterfield, R. L.; Larson, J. W.

    1985-01-01

    Modern high resolution medical computed tomography (CT) scanners can produce geometrically accurate sectional images of many types of industrial objects. Computer software has been developed to convert serial CT scans into a three-dimensional surface form, suitable for display on the scanner itself. This software, originally developed for imaging the skull, has been adapted for application to industrial CT scanning, where serial CT scans thrrough an object of interest may be reconstructed to demonstrate spatial relationships in three dimensions that cannot be easily understood using the original slices. The methods of three-dimensional reconstruction and solid modeling are reviewed, and reconstruction in three dimensions from CT scans through familiar objects is demonstrated.

  4. Micro-CT of rodents: state-of-the-art and future perspectives

    PubMed Central

    Clark, D. P.; Badea, C. T.

    2014-01-01

    Micron-scale computed tomography (micro-CT) is an essential tool for phenotyping and for elucidating diseases and their therapies. This work is focused on preclinical micro-CT imaging, reviewing relevant principles, technologies, and applications. Commonly, micro-CT provides high-resolution anatomic information, either on its own or in conjunction with lower-resolution functional imaging modalities such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT). More recently, however, advanced applications of micro-CT produce functional information by translating clinical applications to model systems (e.g. measuring cardiac functional metrics) and by pioneering new ones (e.g. measuring tumor vascular permeability with nanoparticle contrast agents). The primary limitations of micro-CT imaging are the associated radiation dose and relatively poor soft tissue contrast. We review several image reconstruction strategies based on iterative, statistical, and gradient sparsity regularization, demonstrating that high image quality is achievable with low radiation dose given ever more powerful computational resources. We also review two contrast mechanisms under intense development. The first is spectral contrast for quantitative material discrimination in combination with passive or actively targeted nanoparticle contrast agents. The second is phase contrast which measures refraction in biological tissues for improved contrast and potentially reduced radiation dose relative to standard absorption imaging. These technological advancements promise to develop micro-CT into a commonplace, functional and even molecular imaging modality. PMID:24974176

  5. [Development of analysis software package for the two kinds of Japanese fluoro-d-glucose-positron emission tomography guideline].

    PubMed

    Matsumoto, Keiichi; Endo, Keigo

    2013-06-01

    Two kinds of Japanese guidelines for the data acquisition protocol of oncology fluoro-D-glucose-positron emission tomography (FDG-PET)/computed tomography (CT) scans were created by the joint task force of the Japanese Society of Nuclear Medicine Technology (JSNMT) and the Japanese Society of Nuclear Medicine (JSNM), and published in Kakuigaku-Gijutsu 27(5): 425-456, 2007 and 29(2): 195-235, 2009. These guidelines aim to standardize PET image quality among facilities and different PET/CT scanner models. The objective of this study was to develop a personal computer-based performance measurement and image quality processor for the two kinds of Japanese guidelines for oncology (18)F-FDG PET/CT scans. We call this software package the "PET quality control tool" (PETquact). Microsoft Corporation's Windows(™) is used as the operating system for PETquact, which requires 1070×720 image resolution and includes 12 different applications. The accuracy was examined for numerous applications of PETquact. For example, in the sensitivity application, the system sensitivity measurement results were equivalent when comparing two PET sinograms obtained from the PETquact and the report. PETquact is suited for analysis of the two kinds of Japanese guideline, and it shows excellent spec to performance measurements and image quality analysis. PETquact can be used at any facility if the software package is installed on a laptop computer.

  6. Computer-aided classification of lung nodules on computed tomography images via deep learning technique

    PubMed Central

    Hua, Kai-Lung; Hsu, Che-Hao; Hidayati, Shintami Chusnul; Cheng, Wen-Huang; Chen, Yu-Jen

    2015-01-01

    Lung cancer has a poor prognosis when not diagnosed early and unresectable lesions are present. The management of small lung nodules noted on computed tomography scan is controversial due to uncertain tumor characteristics. A conventional computer-aided diagnosis (CAD) scheme requires several image processing and pattern recognition steps to accomplish a quantitative tumor differentiation result. In such an ad hoc image analysis pipeline, every step depends heavily on the performance of the previous step. Accordingly, tuning of classification performance in a conventional CAD scheme is very complicated and arduous. Deep learning techniques, on the other hand, have the intrinsic advantage of an automatic exploitation feature and tuning of performance in a seamless fashion. In this study, we attempted to simplify the image analysis pipeline of conventional CAD with deep learning techniques. Specifically, we introduced models of a deep belief network and a convolutional neural network in the context of nodule classification in computed tomography images. Two baseline methods with feature computing steps were implemented for comparison. The experimental results suggest that deep learning methods could achieve better discriminative results and hold promise in the CAD application domain. PMID:26346558

  7. Computer-aided classification of lung nodules on computed tomography images via deep learning technique.

    PubMed

    Hua, Kai-Lung; Hsu, Che-Hao; Hidayati, Shintami Chusnul; Cheng, Wen-Huang; Chen, Yu-Jen

    2015-01-01

    Lung cancer has a poor prognosis when not diagnosed early and unresectable lesions are present. The management of small lung nodules noted on computed tomography scan is controversial due to uncertain tumor characteristics. A conventional computer-aided diagnosis (CAD) scheme requires several image processing and pattern recognition steps to accomplish a quantitative tumor differentiation result. In such an ad hoc image analysis pipeline, every step depends heavily on the performance of the previous step. Accordingly, tuning of classification performance in a conventional CAD scheme is very complicated and arduous. Deep learning techniques, on the other hand, have the intrinsic advantage of an automatic exploitation feature and tuning of performance in a seamless fashion. In this study, we attempted to simplify the image analysis pipeline of conventional CAD with deep learning techniques. Specifically, we introduced models of a deep belief network and a convolutional neural network in the context of nodule classification in computed tomography images. Two baseline methods with feature computing steps were implemented for comparison. The experimental results suggest that deep learning methods could achieve better discriminative results and hold promise in the CAD application domain.

  8. Tomographic methods in flow diagnostics

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    1993-01-01

    This report presents a viewpoint of tomography that should be well adapted to currently available optical measurement technology as well as the needs of computational and experimental fluid dynamists. The goals in mind are to record data with the fastest optical array sensors; process the data with the fastest parallel processing technology available for small computers; and generate results for both experimental and theoretical data. An in-depth example treats interferometric data as it might be recorded in an aeronautics test facility, but the results are applicable whenever fluid properties are to be measured or applied from projections of those properties. The paper discusses both computed and neural net calibration tomography. The report also contains an overview of key definitions and computational methods, key references, computational problems such as ill-posedness, artifacts, missing data, and some possible and current research topics.

  9. Clinical value of whole body fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography in the detection of metastatic bladder cancer.

    PubMed

    Yang, Zhongyi; Pan, Lingling; Cheng, Jingyi; Hu, Silong; Xu, Junyan; Ye, Dingwei; Zhang, Yingjian

    2012-07-01

    To investigate the value of whole-body fluorine-18 2-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography for the detection of metastatic bladder cancer. From December 2006 to August 2010, 60 bladder cancer patients (median age 60.5 years old, range 32-96) underwent whole body positron emission tomography/computed tomography positron emission tomography/computed tomography. The diagnostic accuracy was assessed by performing both organ-based and patient-based analyses. Identified lesions were further studied by biopsy or clinically followed for at least 6 months. One hundred and thirty-four suspicious lesions were identified. Among them, 4 primary cancers (2 pancreatic cancers, 1 colonic and 1 nasopharyngeal cancer) were incidentally detected, and the patients could be treated on time. For the remaining 130 lesions, positron emission tomography/computed tomography detected 118 true positive lesions (sensitivity = 95.9%). On the patient-based analysis, the overall sensitivity and specificity resulted to be 87.1% and 89.7%, respectively. There was no difference of sensitivity and specificity in patients with or without adjuvant treatment in terms of detection of metastatic sites by positron emission tomography/computed tomography. Compared with conventional imaging modality, positron emission tomography/computed tomography correctly changed the management in 15 patients (25.0%). Positron emission tomography/computed tomography has excellent sensitivity and specificity in the detection of metastatic bladder cancer and it provides additional diagnostic information compared to standard imaging techniques. © 2012 The Japanese Urological Association.

  10. Tomography reconstruction methods for damage diagnosis of wood structure in construction field

    NASA Astrophysics Data System (ADS)

    Qiu, Qiwen; Lau, Denvid

    2018-03-01

    The structural integrity of wood building element plays a critical role in the public safety, which requires effective methods for diagnosis of internal damage inside the wood body. Conventionally, the non-destructive testing (NDT) methods such as X-ray computed tomography, thermography, radar imaging reconstruction method, ultrasonic tomography, nuclear magnetic imaging techniques, and sonic tomography have been used to obtain the information about the internal structure of wood. In this paper, the applications, advantages and disadvantages of these traditional tomography methods are reviewed. Additionally, the present article gives an overview of recently developed tomography approach that relies on the use of mechanical and electromagnetic waves for assessing the structural integrity of wood buildings. This developed tomography reconstruction method is believed to provide a more accurate, reliable, and comprehensive assessment of wood structural integrity

  11. System Matrix Analysis for Computed Tomography Imaging

    PubMed Central

    Flores, Liubov; Vidal, Vicent; Verdú, Gumersindo

    2015-01-01

    In practical applications of computed tomography imaging (CT), it is often the case that the set of projection data is incomplete owing to the physical conditions of the data acquisition process. On the other hand, the high radiation dose imposed on patients is also undesired. These issues demand that high quality CT images can be reconstructed from limited projection data. For this reason, iterative methods of image reconstruction have become a topic of increased research interest. Several algorithms have been proposed for few-view CT. We consider that the accurate solution of the reconstruction problem also depends on the system matrix that simulates the scanning process. In this work, we analyze the application of the Siddon method to generate elements of the matrix and we present results based on real projection data. PMID:26575482

  12. Magnetic resonance imaging of the central nervous system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-02-26

    This report reviews the current applications of magnetic resonance imaging of the central nervous system. Since its introduction into the clinical environment in the early 1980's, this technology has had a major impact on the practice of neurology. It has proved to be superior to computed tomography for imaging many diseases of the brain and spine. In some instances it has clearly replaced computed tomography. It is likely that it will replace myelography for the assessment of cervicomedullary junction and spinal regions. The magnetic field strengths currently used appear to be entirely safe for clinical application in neurology except inmore » patients with cardiac pacemakers or vascular metallic clips. Some shortcomings of magnetic resonance imaging include its expense, the time required for scanning, and poor visualization of cortical bone.« less

  13. Laboratory x-ray micro-computed tomography: a user guideline for biological samples

    PubMed Central

    2017-01-01

    Abstract Laboratory x-ray micro–computed tomography (micro-CT) is a fast-growing method in scientific research applications that allows for non-destructive imaging of morphological structures. This paper provides an easily operated “how to” guide for new potential users and describes the various steps required for successful planning of research projects that involve micro-CT. Background information on micro-CT is provided, followed by relevant setup, scanning, reconstructing, and visualization methods and considerations. Throughout the guide, a Jackson's chameleon specimen, which was scanned at different settings, is used as an interactive example. The ultimate aim of this paper is make new users familiar with the concepts and applications of micro-CT in an attempt to promote its use in future scientific studies. PMID:28419369

  14. Phase-contrast x-ray computed tomography for biological imaging

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji

    1997-10-01

    We have shown so far that 3D structures in biological sot tissues such as cancer can be revealed by phase-contrast x- ray computed tomography using an x-ray interferometer. As a next step, we aim at applications of this technique to in vivo observation, including radiographic applications. For this purpose, the size of view field is desired to be more than a few centimeters. Therefore, a larger x-ray interferometer should be used with x-rays of higher energy. We have evaluated the optimal x-ray energy from an aspect of does as a function of sample size. Moreover, desired spatial resolution to an image sensor is discussed as functions of x-ray energy and sample size, basing on a requirement in the analysis of interference fringes.

  15. A novel structured dictionary for fast processing of 3D medical images, with application to computed tomography restoration and denoising

    NASA Astrophysics Data System (ADS)

    Karimi, Davood; Ward, Rabab K.

    2016-03-01

    Sparse representation of signals in learned overcomplete dictionaries has proven to be a powerful tool with applications in denoising, restoration, compression, reconstruction, and more. Recent research has shown that learned overcomplete dictionaries can lead to better results than analytical dictionaries such as wavelets in almost all image processing applications. However, a major disadvantage of these dictionaries is that their learning and usage is very computationally intensive. In particular, finding the sparse representation of a signal in these dictionaries requires solving an optimization problem that leads to very long computational times, especially in 3D image processing. Moreover, the sparse representation found by greedy algorithms is usually sub-optimal. In this paper, we propose a novel two-level dictionary structure that improves the performance and the speed of standard greedy sparse coding methods. The first (i.e., the top) level in our dictionary is a fixed orthonormal basis, whereas the second level includes the atoms that are learned from the training data. We explain how such a dictionary can be learned from the training data and how the sparse representation of a new signal in this dictionary can be computed. As an application, we use the proposed dictionary structure for removing the noise and artifacts in 3D computed tomography (CT) images. Our experiments with real CT images show that the proposed method achieves results that are comparable with standard dictionary-based methods while substantially reducing the computational time.

  16. Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle-Pock algorithm

    PubMed Central

    Sidky, Emil Y.; Jørgensen, Jakob H.; Pan, Xiaochuan

    2012-01-01

    The primal-dual optimization algorithm developed in Chambolle and Pock (CP), 2011 is applied to various convex optimization problems of interest in computed tomography (CT) image reconstruction. This algorithm allows for rapid prototyping of optimization problems for the purpose of designing iterative image reconstruction algorithms for CT. The primal-dual algorithm is briefly summarized in the article, and its potential for prototyping is demonstrated by explicitly deriving CP algorithm instances for many optimization problems relevant to CT. An example application modeling breast CT with low-intensity X-ray illumination is presented. PMID:22538474

  17. Image Guided Biodistribution and Pharmacokinetic Studies of Theranostics

    PubMed Central

    Ding, Hong; Wu, Fang

    2012-01-01

    Image guided technique is playing an increasingly important role in the investigation of the biodistribution and pharmacokinetics of drugs or drug delivery systems in various diseases, especially cancers. Besides anatomical imaging modalities such as computed tomography (CT), magnetic resonance imaging (MRI), molecular imaging strategy including optical imaging, positron emission tomography (PET) and single-photon emission computed tomography (SPECT) will facilitate the localization and quantization of radioisotope or optical probe labeled nanoparticle delivery systems in the category of theranostics. The quantitative measurement of the bio-distribution and pharmacokinetics of theranostics in the fields of new drug/probe development, diagnosis and treatment process monitoring as well as tracking the brain-blood-barrier (BBB) breaking through by high sensitive imaging method, and the applications of the representative imaging modalities are summarized in this review. PMID:23227121

  18. New Developments and Geoscience Applications of Synchrotron Computed Microtomography (Invited)

    NASA Astrophysics Data System (ADS)

    Rivers, M. L.; Wang, Y.; Newville, M.; Sutton, S. R.; Yu, T.; Lanzirotti, A.

    2013-12-01

    Computed microtomography is the extension to micron spatial resolution of the CAT scanning technique developed for medical imaging. Synchrotron sources are ideal for the method, since they provide a monochromatic, parallel beam with high intensity. High energy storage rings such as the Advanced Photon Source at Argonne National Laboratory produce x-rays with high energy, high brilliance, and high coherence. All of these factors combine to produce an extremely powerful imaging tool for earth science research. Techniques that have been developed include: - Absorption and phase contrast computed tomography with spatial resolution below one micron. - Differential contrast computed tomography, imaging above and below the absorption edge of a particular element. - High-pressure tomography, imaging inside a pressure cell at pressures above 10GPa. - High speed radiography and tomography, with 100 microsecond temporal resolution. - Fluorescence tomography, imaging the 3-D distribution of elements present at ppm concentrations. - Radiographic strain measurements during deformation at high confining pressure, combined with precise x-ray diffraction measurements to determine stress. These techniques have been applied to important problems in earth and environmental sciences, including: - The 3-D distribution of aqueous and organic liquids in porous media, with applications in contaminated groundwater and petroleum recovery. - The kinetics of bubble formation in magma chambers, which control explosive volcanism. - Studies of the evolution of the early solar system from 3-D textures in meteorites - Accurate crystal size distributions in volcanic systems, important for understanding the evolution of magma chambers. - The equation-of-state of amorphous materials at high pressure using both direct measurements of volume as a function of pressure and also by measuring the change x-ray absorption coefficient as a function of pressure. - The location and chemical speciation of toxic elements such as arsenic and nickel in soils and in plant tissues in contaminated Superfund sites. - The strength of earth materials under the pressure and temperature conditions of the Earth's mantle, providing insights into plate tectonics and the generation of earthquakes.

  19. Advanced imaging of the macrostructure and microstructure of bone

    NASA Technical Reports Server (NTRS)

    Genant, H. K.; Gordon, C.; Jiang, Y.; Link, T. M.; Hans, D.; Majumdar, S.; Lang, T. F.

    2000-01-01

    Noninvasive and/or nondestructive techniques are capable of providing more macro- or microstructural information about bone than standard bone densitometry. Although the latter provides important information about osteoporotic fracture risk, numerous studies indicate that bone strength is only partially explained by bone mineral density. Quantitative assessment of macro- and microstructural features may improve our ability to estimate bone strength. The methods available for quantitatively assessing macrostructure include (besides conventional radiographs) quantitative computed tomography (QCT) and volumetric quantitative computed tomography (vQCT). Methods for assessing microstructure of trabecular bone noninvasively and/or nondestructively include high-resolution computed tomography (hrCT), micro-computed tomography (muCT), high-resolution magnetic resonance (hrMR), and micromagnetic resonance (muMR). vQCT, hrCT and hrMR are generally applicable in vivo; muCT and muMR are principally applicable in vitro. Although considerable progress has been made in the noninvasive and/or nondestructive imaging of the macro- and microstructure of bone, considerable challenges and dilemmas remain. From a technical perspective, the balance between spatial resolution versus sampling size, or between signal-to-noise versus radiation dose or acquisition time, needs further consideration, as do the trade-offs between the complexity and expense of equipment and the availability and accessibility of the methods. The relative merits of in vitro imaging and its ultrahigh resolution but invasiveness versus those of in vivo imaging and its modest resolution but noninvasiveness also deserve careful attention. From a clinical perspective, the challenges for bone imaging include balancing the relative advantages of simple bone densitometry against the more complex architectural features of bone or, similarly, the deeper research requirements against the broader clinical needs. The considerable potential biological differences between the peripheral appendicular skeleton and the central axial skeleton have to be addressed further. Finally, the relative merits of these sophisticated imaging techniques have to be weighed with respect to their applications as diagnostic procedures requiring high accuracy or reliability on one hand and their monitoring applications requiring high precision or reproducibility on the other. Copyright 2000 S. Karger AG, Basel.

  20. Computational adaptive optics for broadband optical interferometric tomography of biological tissue

    NASA Astrophysics Data System (ADS)

    Boppart, Stephen A.

    2015-03-01

    High-resolution real-time tomography of biological tissues is important for many areas of biological investigations and medical applications. Cellular level optical tomography, however, has been challenging because of the compromise between transverse imaging resolution and depth-of-field, the system and sample aberrations that may be present, and the low imaging sensitivity deep in scattering tissues. The use of computed optical imaging techniques has the potential to address several of these long-standing limitations and challenges. Two related techniques are interferometric synthetic aperture microscopy (ISAM) and computational adaptive optics (CAO). Through three-dimensional Fourierdomain resampling, in combination with high-speed OCT, ISAM can be used to achieve high-resolution in vivo tomography with enhanced depth sensitivity over a depth-of-field extended by more than an order-of-magnitude, in realtime. Subsequently, aberration correction with CAO can be performed in a tomogram, rather than to the optical beam of a broadband optical interferometry system. Based on principles of Fourier optics, aberration correction with CAO is performed on a virtual pupil using Zernike polynomials, offering the potential to augment or even replace the more complicated and expensive adaptive optics hardware with algorithms implemented on a standard desktop computer. Interferometric tomographic reconstructions are characterized with tissue phantoms containing sub-resolution scattering particles, and in both ex vivo and in vivo biological tissue. This review will collectively establish the foundation for high-speed volumetric cellular-level optical interferometric tomography in living tissues.

  1. Nano-Computed Tomography: Technique and Applications.

    PubMed

    Kampschulte, M; Langheinirch, A C; Sender, J; Litzlbauer, H D; Althöhn, U; Schwab, J D; Alejandre-Lafont, E; Martels, G; Krombach, G A

    2016-02-01

    Nano-computed tomography (nano-CT) is an emerging, high-resolution cross-sectional imaging technique and represents a technical advancement of the established micro-CT technology. Based on the application of a transmission target X-ray tube, the focal spot size can be decreased down to diameters less than 400 nanometers (nm). Together with specific detectors and examination protocols, a superior spatial resolution up to 400 nm (10 % MTF) can be achieved, thereby exceeding the resolution capacity of typical micro-CT systems. The technical concept of nano-CT imaging as well as the basics of specimen preparation are demonstrated exemplarily. Characteristics of atherosclerotic plaques (intraplaque hemorrhage and calcifications) in a murine model of atherosclerosis (ApoE (-/-)/LDLR(-/-) double knockout mouse) are demonstrated in the context of superior spatial resolution in comparison to micro-CT. Furthermore, this article presents the application of nano-CT for imaging cerebral microcirculation (murine), lung structures (porcine), and trabecular microstructure (ovine) in contrast to micro-CT imaging. This review shows the potential of nano-CT as a radiological method in biomedical basic research and discusses the application of experimental, high resolution CT techniques in consideration of other high resolution cross-sectional imaging techniques. Nano-computed tomography is a high resolution CT-technology for 3D imaging at sub-micrometer resolution. The technical concept bases on a further development of the established ex-vivo-micro-CT technology. By improvement of the spatial resolution, structures at a cellular level become visible (e.g. osteocyte lacunae). © Georg Thieme Verlag KG Stuttgart · New York.

  2. [Diagnostic possibilities of digital volume tomography].

    PubMed

    Lemkamp, Michael; Filippi, Andreas; Berndt, Dorothea; Lambrecht, J Thomas

    2006-01-01

    Cone beam computed tomography allows high quality 3D images of cranio-facial structures. Although detail resolution is increased, x-ray exposition is reduced compared to classic computer tomography. The volume is analysed in three orthogonal plains, which can be rotated independently without quality loss. Cone beam computed tomography seems to be a less expensive and less x-ray exposing alternative to classic computer tomography.

  3. Multi-GPU Jacobian Accelerated Computing for Soft Field Tomography

    PubMed Central

    Borsic, A.; Attardo, E. A.; Halter, R. J.

    2012-01-01

    Image reconstruction in soft-field tomography is based on an inverse problem formulation, where a forward model is fitted to the data. In medical applications, where the anatomy presents complex shapes, it is common to use Finite Element Models to represent the volume of interest and to solve a partial differential equation that models the physics of the system. Over the last decade, there has been a shifting interest from 2D modeling to 3D modeling, as the underlying physics of most problems are three-dimensional. Though the increased computational power of modern computers allows working with much larger FEM models, the computational time required to reconstruct 3D images on a fine 3D FEM model can be significant, on the order of hours. For example, in Electrical Impedance Tomography applications using a dense 3D FEM mesh with half a million elements, a single reconstruction iteration takes approximately 15 to 20 minutes with optimized routines running on a modern multi-core PC. It is desirable to accelerate image reconstruction to enable researchers to more easily and rapidly explore data and reconstruction parameters. Further, providing high-speed reconstructions are essential for some promising clinical application of EIT. For 3D problems 70% of the computing time is spent building the Jacobian matrix, and 25% of the time in forward solving. In the present work, we focus on accelerating the Jacobian computation by using single and multiple GPUs. First, we discuss an optimized implementation on a modern multi-core PC architecture and show how computing time is bounded by the CPU-to-memory bandwidth; this factor limits the rate at which data can be fetched by the CPU. Gains associated with use of multiple CPU cores are minimal, since data operands cannot be fetched fast enough to saturate the processing power of even a single CPU core. GPUs have a much faster memory bandwidths compared to CPUs and better parallelism. We are able to obtain acceleration factors of 20 times on a single NVIDIA S1070 GPU, and of 50 times on 4 GPUs, bringing the Jacobian computing time for a fine 3D mesh from 12 minutes to 14 seconds. We regard this as an important step towards gaining interactive reconstruction times in 3D imaging, particularly when coupled in the future with acceleration of the forward problem. While we demonstrate results for Electrical Impedance Tomography, these results apply to any soft-field imaging modality where the Jacobian matrix is computed with the Adjoint Method. PMID:23010857

  4. Recent Advances in X-ray Cone-beam Computed Laminography.

    PubMed

    O'Brien, Neil S; Boardman, Richard P; Sinclair, Ian; Blumensath, Thomas

    2016-10-06

    X-ray computed tomography is an established volume imaging technique used routinely in medical diagnosis, industrial non-destructive testing, and a wide range of scientific fields. Traditionally, computed tomography uses scanning geometries with a single axis of rotation together with reconstruction algorithms specifically designed for this setup. Recently there has however been increasing interest in more complex scanning geometries. These include so called X-ray computed laminography systems capable of imaging specimens with large lateral dimensions or large aspect ratios, neither of which are well suited to conventional CT scanning procedures. Developments throughout this field have thus been rapid, including the introduction of novel system trajectories, the application and refinement of various reconstruction methods, and the use of recently developed computational hardware and software techniques to accelerate reconstruction times. Here we examine the advances made in the last several years and consider their impact on the state of the art.

  5. Applications of cone beam computed tomography for a prosthodontist.

    PubMed

    John, George Puthenpurayil; Joy, Tatu Elenjickal; Mathew, Justin; Kumar, Vinod R B

    2016-01-01

    Cone beam computed tomography (CBCT) is a medical imaging technique of X-ray computed tomography where the X-rays are divergent, forming a cone. CBCT systems have been designed for imaging hard tissues of the maxillofacial region. The increasing availability of this technology provides the dental clinician with an imaging modality capable of providing a three-dimensional representation of the maxillofacial skeleton with minimal distortion. This article is intended to elaborate and enunciate on the various applications and benefits of CBCT, in the realm of maxillofacial prosthodontics, over and beyond its obvious benefits in the rehabilitation of patients with implants. With the onus of meticulous reconstruction of near ideal occlusion resting on the prosthodontist, CBCT provides a unique imaging option, which can be a boon in various aspects of prosthodontic practice - from imaging of the temporomandibular joint for accurate movement simulation, to template assisted maxillofacial reconstruction or even over denture therapy. CBCT could play a crucial role in lessening the burden of a hectic prosthodontic routine for the clinician and critically contribute to accurate and effective treatment for the patient. Apart from the authors' clinical experiences shared here, a web-based search for relevant articles in this specific area of interest was also conducted. The selected articles were critically reviewed and the data acquired were systematically compiled.

  6. Breast tumor segmentation in high resolution x-ray phase contrast analyzer based computed tomography.

    PubMed

    Brun, E; Grandl, S; Sztrókay-Gaul, A; Barbone, G; Mittone, A; Gasilov, S; Bravin, A; Coan, P

    2014-11-01

    Phase contrast computed tomography has emerged as an imaging method, which is able to outperform present day clinical mammography in breast tumor visualization while maintaining an equivalent average dose. To this day, no segmentation technique takes into account the specificity of the phase contrast signal. In this study, the authors propose a new mathematical framework for human-guided breast tumor segmentation. This method has been applied to high-resolution images of excised human organs, each of several gigabytes. The authors present a segmentation procedure based on the viscous watershed transform and demonstrate the efficacy of this method on analyzer based phase contrast images. The segmentation of tumors inside two full human breasts is then shown as an example of this procedure's possible applications. A correct and precise identification of the tumor boundaries was obtained and confirmed by manual contouring performed independently by four experienced radiologists. The authors demonstrate that applying the watershed viscous transform allows them to perform the segmentation of tumors in high-resolution x-ray analyzer based phase contrast breast computed tomography images. Combining the additional information provided by the segmentation procedure with the already high definition of morphological details and tissue boundaries offered by phase contrast imaging techniques, will represent a valuable multistep procedure to be used in future medical diagnostic applications.

  7. Applications of cone beam computed tomography for a prosthodontist

    PubMed Central

    John, George Puthenpurayil; Joy, Tatu Elenjickal; Mathew, Justin; Kumar, Vinod R. B.

    2016-01-01

    Cone beam computed tomography (CBCT) is a medical imaging technique of X-ray computed tomography where the X-rays are divergent, forming a cone. CBCT systems have been designed for imaging hard tissues of the maxillofacial region. The increasing availability of this technology provides the dental clinician with an imaging modality capable of providing a three-dimensional representation of the maxillofacial skeleton with minimal distortion. This article is intended to elaborate and enunciate on the various applications and benefits of CBCT, in the realm of maxillofacial prosthodontics, over and beyond its obvious benefits in the rehabilitation of patients with implants. With the onus of meticulous reconstruction of near ideal occlusion resting on the prosthodontist, CBCT provides a unique imaging option, which can be a boon in various aspects of prosthodontic practice – from imaging of the temporomandibular joint for accurate movement simulation, to template assisted maxillofacial reconstruction or even over denture therapy. CBCT could play a crucial role in lessening the burden of a hectic prosthodontic routine for the clinician and critically contribute to accurate and effective treatment for the patient. Apart from the authors’ clinical experiences shared here, a web-based search for relevant articles in this specific area of interest was also conducted. The selected articles were critically reviewed and the data acquired were systematically compiled. PMID:27134420

  8. New solutions and applications of 3D computer tomography image processing

    NASA Astrophysics Data System (ADS)

    Effenberger, Ira; Kroll, Julia; Verl, Alexander

    2008-02-01

    As nowadays the industry aims at fast and high quality product development and manufacturing processes a modern and efficient quality inspection is essential. Compared to conventional measurement technologies, industrial computer tomography (CT) is a non-destructive technology for 3D-image data acquisition which helps to overcome their disadvantages by offering the possibility to scan complex parts with all outer and inner geometric features. In this paper new and optimized methods for 3D image processing, including innovative ways of surface reconstruction and automatic geometric feature detection of complex components, are presented, especially our work of developing smart online data processing and data handling methods, with an integrated intelligent online mesh reduction. Hereby the processing of huge and high resolution data sets is guaranteed. Besides, new approaches for surface reconstruction and segmentation based on statistical methods are demonstrated. On the extracted 3D point cloud or surface triangulation automated and precise algorithms for geometric inspection are deployed. All algorithms are applied to different real data sets generated by computer tomography in order to demonstrate the capabilities of the new tools. Since CT is an emerging technology for non-destructive testing and inspection more and more industrial application fields will use and profit from this new technology.

  9. Application of process tomography in gas-solid fluidised beds in different scales and structures

    NASA Astrophysics Data System (ADS)

    Wang, H. G.; Che, H. Q.; Ye, J. M.; Tu, Q. Y.; Wu, Z. P.; Yang, W. Q.; Ocone, R.

    2018-04-01

    Gas-solid fluidised beds are commonly used in particle-related processes, e.g. for coal combustion and gasification in the power industry, and the coating and granulation process in the pharmaceutical industry. Because the operation efficiency depends on the gas-solid flow characteristics, it is necessary to investigate the flow behaviour. This paper is about the application of process tomography, including electrical capacitance tomography (ECT) and microwave tomography (MWT), in multi-scale gas-solid fluidisation processes in the pharmaceutical and power industries. This is the first time that both ECT and MWT have been applied for this purpose in multi-scale and complex structure. To evaluate the sensor design and image reconstruction and to investigate the effects of sensor structure and dimension on the image quality, a normalised sensitivity coefficient is introduced. In the meantime, computational fluid dynamic (CFD) analysis based on a computational particle fluid dynamic (CPFD) model and a two-phase fluid model (TFM) is used. Part of the CPFD-TFM simulation results are compared and validated by experimental results from ECT and/or MWT. By both simulation and experiment, the complex flow hydrodynamic behaviour in different scales is analysed. Time-series capacitance data are analysed both in time and frequency domains to reveal the flow characteristics.

  10. Time Dependent Tomography of the Solar Corona in Three Spatial Dimensions

    NASA Astrophysics Data System (ADS)

    Butala, M. D.; Frazin, R. A.; Kamalabadi, F.

    2006-12-01

    The combination of the soon to be launched STEREO mission with SOHO will provide scientists with three simultaneous space-borne views of the Sun. The increase in available measurements will reduce the data acquisition time necessary to obtain 3D coronal electron density (N_e) estimates from coronagraph images using a technique called solar rotational tomography (SRT). However, the data acquisition period will still be long enough for the corona to dynamically evolve, requiring time dependent solar tomography. The Kalman filter (KF) would seem to be an ideal computational method for time dependent SRT. Unfortunately, the KF scales poorly with problem size and is, as a result, inapplicable. A Monte Carlo approximation to the KF called the localized ensemble Kalman filter was developed for massive applications and has the promise of making the time dependent estimation of the 3D coronal N_e possible. We present simulations showing that this method will make time dependent tomography in three spatial dimensions computationally feasible.

  11. Toward real-time diffuse optical tomography: accelerating light propagation modeling employing parallel computing on GPU and CPU

    NASA Astrophysics Data System (ADS)

    Doulgerakis, Matthaios; Eggebrecht, Adam; Wojtkiewicz, Stanislaw; Culver, Joseph; Dehghani, Hamid

    2017-12-01

    Parameter recovery in diffuse optical tomography is a computationally expensive algorithm, especially when used for large and complex volumes, as in the case of human brain functional imaging. The modeling of light propagation, also known as the forward problem, is the computational bottleneck of the recovery algorithm, whereby the lack of a real-time solution is impeding practical and clinical applications. The objective of this work is the acceleration of the forward model, within a diffusion approximation-based finite-element modeling framework, employing parallelization to expedite the calculation of light propagation in realistic adult head models. The proposed methodology is applicable for modeling both continuous wave and frequency-domain systems with the results demonstrating a 10-fold speed increase when GPU architectures are available, while maintaining high accuracy. It is shown that, for a very high-resolution finite-element model of the adult human head with ˜600,000 nodes, consisting of heterogeneous layers, light propagation can be calculated at ˜0.25 s/excitation source.

  12. Computed tomography of a medium size Roman bronze statue of Cupid

    NASA Astrophysics Data System (ADS)

    Bettuzzi, M.; Casali, F.; Morigi, M. P.; Brancaccio, R.; Carson, D.; Chiari, G.; Maish, J.

    2015-03-01

    Diagnostics based on X-ray computed tomography (CT) are becoming increasingly important, not only in the medical field but in industry and cultural heritage. CT devices typical for medical applications, however, can seldom be used on art objects because both they are not easily transportable and they often present high X-ray absorption. It is therefore necessary to make use of portable instrumentation and/or to develop tomographic systems optimized to the characteristics of the objects under examination. This work describes the computed tomography of a first century A.D. Roman bronze statue of Cupid (96.AB.53) in the collection of the J. Paul Getty Museum, within the collaborative framework between the Getty Conservation Institute and the Department of Physics and Astronomy (DIFA) of the University of Bologna (Italy). The tomography performed at the Getty facilities employed a 450 kV X-ray tube and a detection system developed at DIFA. The study highlighted the casting and construction techniques used by Roman foundry workers and provided information on the status of conservation of the statue. A 3D virtual reconstruction allowed the user to define different cross-sections enabling the study of the internal features.

  13. Clinical Utility and Future Applications of PET/CT and PET/CMR in Cardiology

    PubMed Central

    Pan, Jonathan A.; Salerno, Michael

    2016-01-01

    Over the past several years, there have been major advances in cardiovascular positron emission tomography (PET) in combination with either computed tomography (CT) or, more recently, cardiovascular magnetic resonance (CMR). These multi-modality approaches have significant potential to leverage the strengths of each modality to improve the characterization of a variety of cardiovascular diseases and to predict clinical outcomes. This review will discuss current developments and potential future uses of PET/CT and PET/CMR for cardiovascular applications, which promise to add significant incremental benefits to the data provided by each modality alone. PMID:27598207

  14. Use of PET/CT scanning in cancer patients: technical and practical considerations

    PubMed Central

    2005-01-01

    This overview of the oncologic applications of positron emission tomography (PET) focuses on the technical aspects and clinical applications of a newer technique: the combination of a PET scanner and a computed tomography (CT) scanner in a single (PET/CT) device. Examples illustrate how PET/CT contributes to patient care and improves upon the previous state-of-the-art method of comparing a PET scan with a separate CT scan. Finally, the author presents some of the results from studies of PET/CT imaging that are beginning to appear in the literature. PMID:16252023

  15. PRaVDA: High Energy Physics towards proton Computed Tomography

    NASA Astrophysics Data System (ADS)

    Price, T.; PRaVDA Consortium

    2016-07-01

    Proton radiotherapy is an increasingly popular modality for treating cancers of the head and neck, and in paediatrics. To maximise the potential of proton radiotherapy it is essential to know the distribution, and more importantly the proton stopping powers, of the body tissues between the proton beam and the tumour. A stopping power map could be measured directly, and uncertainties in the treatment vastly reduce, if the patient was imaged with protons instead of conventional x-rays. Here we outline the application of technologies developed for High Energy Physics to provide clinical-quality proton Computed Tomography, in so reducing range uncertainties and enhancing the treatment of cancer.

  16. Computed tomography image using sub-terahertz waves generated from a high-T{sub c} superconducting intrinsic Josephson junction oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashiwagi, T., E-mail: kashiwagi@ims.tsukuba.ac.jp; Minami, H.; Kadowaki, K.

    2014-02-24

    A computed tomography (CT) imaging system using monochromatic sub-terahertz coherent electromagnetic waves generated from a device constructed from the intrinsic Josephson junctions in a single crystalline mesa structure of the high-T{sub c} superconductor Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ} was developed and tested on three samples: Standing metallic rods supported by styrofoam, a dried plant (heart pea) containing seeds, and a plastic doll inside an egg shell. The images obtained strongly suggest that this CT imaging system may be useful for a variety of practical applications.

  17. CT myocardial perfusion imaging: current status and future perspectives.

    PubMed

    Yang, Dong Hyun; Kim, Young-Hak

    2017-07-01

    Computed tomography myocardial perfusion (CTP) combined with coronary computed tomography angiography (CCTA) may constitute a "1-stop shop" for the noninvasive diagnosis of hemodynamically significant coronary stenosis during a single CT examination. CTP shows high diagnostic performance and provides incremental value over CCTA for the detection of hemodynamically significant coronary stenosis in patients with a high Agatston calcium score or coronary artery stents. Future studies should determine the optimal protocol and clinical value of CTP for guiding revascularization strategy and prognostication. In this article, we review the current status and future perspectives of CTP, focusing on technical considerations, clinical applications, and future research topics.

  18. Development of seismic tomography software for hybrid supercomputers

    NASA Astrophysics Data System (ADS)

    Nikitin, Alexandr; Serdyukov, Alexandr; Duchkov, Anton

    2015-04-01

    Seismic tomography is a technique used for computing velocity model of geologic structure from first arrival travel times of seismic waves. The technique is used in processing of regional and global seismic data, in seismic exploration for prospecting and exploration of mineral and hydrocarbon deposits, and in seismic engineering for monitoring the condition of engineering structures and the surrounding host medium. As a consequence of development of seismic monitoring systems and increasing volume of seismic data, there is a growing need for new, more effective computational algorithms for use in seismic tomography applications with improved performance, accuracy and resolution. To achieve this goal, it is necessary to use modern high performance computing systems, such as supercomputers with hybrid architecture that use not only CPUs, but also accelerators and co-processors for computation. The goal of this research is the development of parallel seismic tomography algorithms and software package for such systems, to be used in processing of large volumes of seismic data (hundreds of gigabytes and more). These algorithms and software package will be optimized for the most common computing devices used in modern hybrid supercomputers, such as Intel Xeon CPUs, NVIDIA Tesla accelerators and Intel Xeon Phi co-processors. In this work, the following general scheme of seismic tomography is utilized. Using the eikonal equation solver, arrival times of seismic waves are computed based on assumed velocity model of geologic structure being analyzed. In order to solve the linearized inverse problem, tomographic matrix is computed that connects model adjustments with travel time residuals, and the resulting system of linear equations is regularized and solved to adjust the model. The effectiveness of parallel implementations of existing algorithms on target architectures is considered. During the first stage of this work, algorithms were developed for execution on supercomputers using multicore CPUs only, with preliminary performance tests showing good parallel efficiency on large numerical grids. Porting of the algorithms to hybrid supercomputers is currently ongoing.

  19. NiftyNet: a deep-learning platform for medical imaging.

    PubMed

    Gibson, Eli; Li, Wenqi; Sudre, Carole; Fidon, Lucas; Shakir, Dzhoshkun I; Wang, Guotai; Eaton-Rosen, Zach; Gray, Robert; Doel, Tom; Hu, Yipeng; Whyntie, Tom; Nachev, Parashkev; Modat, Marc; Barratt, Dean C; Ourselin, Sébastien; Cardoso, M Jorge; Vercauteren, Tom

    2018-05-01

    Medical image analysis and computer-assisted intervention problems are increasingly being addressed with deep-learning-based solutions. Established deep-learning platforms are flexible but do not provide specific functionality for medical image analysis and adapting them for this domain of application requires substantial implementation effort. Consequently, there has been substantial duplication of effort and incompatible infrastructure developed across many research groups. This work presents the open-source NiftyNet platform for deep learning in medical imaging. The ambition of NiftyNet is to accelerate and simplify the development of these solutions, and to provide a common mechanism for disseminating research outputs for the community to use, adapt and build upon. The NiftyNet infrastructure provides a modular deep-learning pipeline for a range of medical imaging applications including segmentation, regression, image generation and representation learning applications. Components of the NiftyNet pipeline including data loading, data augmentation, network architectures, loss functions and evaluation metrics are tailored to, and take advantage of, the idiosyncracies of medical image analysis and computer-assisted intervention. NiftyNet is built on the TensorFlow framework and supports features such as TensorBoard visualization of 2D and 3D images and computational graphs by default. We present three illustrative medical image analysis applications built using NiftyNet infrastructure: (1) segmentation of multiple abdominal organs from computed tomography; (2) image regression to predict computed tomography attenuation maps from brain magnetic resonance images; and (3) generation of simulated ultrasound images for specified anatomical poses. The NiftyNet infrastructure enables researchers to rapidly develop and distribute deep learning solutions for segmentation, regression, image generation and representation learning applications, or extend the platform to new applications. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  20. X-ray coherent scattering tomography of textured material (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhu, Zheyuan; Pang, Shuo

    2017-05-01

    Small-angle X-ray scattering (SAXS) measures the signature of angular-dependent coherently scattered X-rays, which contains richer information in material composition and structure compared to conventional absorption-based computed tomography. SAXS image reconstruction method of a 2 or 3 dimensional object based on computed tomography, termed as coherent scattering computed tomography (CSCT), enables the detection of spatially-resolved, material-specific isotropic scattering signature inside an extended object, and provides improved contrast for medical diagnosis, security screening, and material characterization applications. However, traditional CSCT methods assumes materials are fine powders or amorphous, and possess isotropic scattering profiles, which is not generally true for all materials. Anisotropic scatters cannot be captured using conventional CSCT method and result in reconstruction errors. To obtain correct information from the sample, we designed new imaging strategy which incorporates extra degree of detector motion into X-ray scattering tomography for the detection of anisotropic scattered photons from a series of two-dimensional intensity measurements. Using a table-top, narrow-band X-ray source and a panel detector, we demonstrate the anisotropic scattering profile captured from an extended object and the reconstruction of a three-dimensional object. For materials possessing a well-organized crystalline structure with certain symmetry, the scatter texture is more predictable. We will also discuss the compressive schemes and implementation of data acquisition to improve the collection efficiency and accelerate the imaging process.

  1. Do C-reactive protein level, white blood cell count, and pain location guide the selection of patients for computed tomography imaging in non-traumatic acute abdomen?

    PubMed

    Ozan, E; Atac, G K; Evrin, T; Alisar, K; Sonmez, L O; Alhan, A

    2017-02-01

    The value of abdominal computed tomography in non-traumatic abdominal pain has been well established. On the other hand, to manage computed tomography, appropriateness has become more of an issue as a result of the concomitant increase in patient radiation exposure with increased computed tomography use. The purpose of this study was to investigate whether C-reactive protein, white blood cell count, and pain location may guide the selection of patients for computed tomography in non-traumatic acute abdomen. Patients presenting with acute abdomen to the emergency department over a 12-month period and who subsequently underwent computed tomography were retrospectively reviewed. Those with serum C-reactive protein and white blood cell count measured on admission or within 24 h of the computed tomography were selected. Computed tomography examinations were retrospectively reviewed, and final diagnoses were designated either positive or negative for pathology relating to presentation with acute abdomen. White blood cell counts, C-reactive protein levels, and pain locations were analyzed to determine whether they increased or decreased the likelihood of producing a diagnostic computed tomography. The likelihood ratio for computed tomography positivity with a C-reactive protein level above 5 mg/L was 1.71, while this increased to 7.71 in patients with combined elevated C-reactive protein level and white blood cell count and right lower quadrant pain. Combined elevated C-reactive protein level and white blood cell count in patients with right lower quadrant pain may represent a potential factor that could guide the decision to perform computed tomography in non-traumatic acute abdomen.

  2. Preoperative N Staging of Gastric Cancer by Stomach Protocol Computed Tomography

    PubMed Central

    Kim, Se Hoon; Kim, Jeong Jae; Lee, Jeong Sub; Kim, Seung Hyoung; Kim, Bong Soo; Maeng, Young Hee; Hyun, Chang Lim; Kim, Min Jeong

    2013-01-01

    Purpose Clinical stage of gastric cancer is currently assessed by computed tomography. Accurate clinical staging is important for the tailoring of therapy. This study evaluated the accuracy of clinical N staging using stomach protocol computed tomography. Materials and Methods Between March 2004 and November 2012, 171 patients with gastric cancer underwent preoperative stomach protocol computed tomography (Jeju National University Hospital; Jeju, Korea). Their demographic and clinical characteristics were reviewed retrospectively. Two radiologists evaluated cN staging using axial and coronal computed tomography images, and cN stage was matched with pathologic results. The diagnostic accuracy of stomach protocol computed tomography for clinical N staging and clinical characteristics associated with diagnostic accuracy were evaluated. Results The overall accuracy of stomach protocol computed tomography for cN staging was 63.2%. Computed tomography images of slice thickness 3.0 mm had a sensitivity of 60.0%; a specificity of 89.6%; an accuracy of 78.4%; and a positive predictive value of 78.0% in detecting lymph node metastases. Underestimation of cN stage was associated with larger tumor size (P<0.001), undifferentiated type (P=0.003), diffuse type (P=0.020), more advanced pathologic stage (P<0.001), and larger numbers of harvested and metastatic lymph nodes (P<0.001 each). Tumor differentiation was an independent factor affecting underestimation by computed tomography (P=0.045). Conclusions Computed tomography with a size criterion of 8 mm is highly specific but relatively insensitive in detecting nodal metastases. Physicians should keep in mind that computed tomography may not be an appropriate tool to detect nodal metastases for choosing appropriate treatment. PMID:24156034

  3. APPLICATION OF COMPUTER-AIDED TOMOGRAPHY (CAT) AS A POTENTIAL INDICATOR OF MARINE MARCO BENTHIC ACTIVITY ALONG POLLUTION GRADIENTS

    EPA Science Inventory

    Sediment cores were imaged using a local hospital CAT scanner. These image data were transferred to a personal computer at our laboratory using specially developed software. Previously, we reported an inverse correlation (r2 = 0.98, P<0.01) between the average sediment x-ray atte...

  4. Latent Semantic Analysis as a Method of Content-Based Image Retrieval in Medical Applications

    ERIC Educational Resources Information Center

    Makovoz, Gennadiy

    2010-01-01

    The research investigated whether a Latent Semantic Analysis (LSA)-based approach to image retrieval can map pixel intensity into a smaller concept space with good accuracy and reasonable computational cost. From a large set of M computed tomography (CT) images, a retrieval query found all images for a particular patient based on semantic…

  5. Rapid data processing for ultrafast X-ray computed tomography using scalable and modular CUDA based pipelines

    NASA Astrophysics Data System (ADS)

    Frust, Tobias; Wagner, Michael; Stephan, Jan; Juckeland, Guido; Bieberle, André

    2017-10-01

    Ultrafast X-ray tomography is an advanced imaging technique for the study of dynamic processes basing on the principles of electron beam scanning. A typical application case for this technique is e.g. the study of multiphase flows, that is, flows of mixtures of substances such as gas-liquidflows in pipelines or chemical reactors. At Helmholtz-Zentrum Dresden-Rossendorf (HZDR) a number of such tomography scanners are operated. Currently, there are two main points limiting their application in some fields. First, after each CT scan sequence the data of the radiation detector must be downloaded from the scanner to a data processing machine. Second, the current data processing is comparably time-consuming compared to the CT scan sequence interval. To enable online observations or use this technique to control actuators in real-time, a modular and scalable data processing tool has been developed, consisting of user-definable stages working independently together in a so called data processing pipeline, that keeps up with the CT scanner's maximal frame rate of up to 8 kHz. The newly developed data processing stages are freely programmable and combinable. In order to achieve the highest processing performance all relevant data processing steps, which are required for a standard slice image reconstruction, were individually implemented in separate stages using Graphics Processing Units (GPUs) and NVIDIA's CUDA programming language. Data processing performance tests on different high-end GPUs (Tesla K20c, GeForce GTX 1080, Tesla P100) showed excellent performance. Program Files doi:http://dx.doi.org/10.17632/65sx747rvm.1 Licensing provisions: LGPLv3 Programming language: C++/CUDA Supplementary material: Test data set, used for the performance analysis. Nature of problem: Ultrafast computed tomography is performed with a scan rate of up to 8 kHz. To obtain cross-sectional images from projection data computer-based image reconstruction algorithms must be applied. The objective of the presented program is to reconstruct a data stream of around 1.3 GB s-1 in a minimum time period. Thus, the program allows to go into new fields of application and to use in the future even more compute-intensive algorithms, especially for data post-processing, to improve the quality of data analysis. Solution method: The program solves the given problem using a two-step process: first, by a generic, expandable and widely applicable template library implementing the streaming paradigm (GLADOS); second, by optimized processing stages for ultrafast computed tomography implementing the required algorithms in a performance-oriented way using CUDA (RISA). Thereby, task-parallelism between the processing stages as well as data parallelism within one processing stage is realized.

  6. Rationale and Application of Tangential Scanning to Industrial Inspection of Hardwood Logs

    Treesearch

    Nand K. Gupta; Daniel L. Schmoldt; Bruce Isaacson

    1998-01-01

    Industrial computed tomography (CT) inspection of hardwood logs has some unique requirements not found in other CT applications. Sawmill operations demand that large volumes of wood be scanned quickly at high spatial resolution for extended duty cycles. Current CT scanning geometries and commercial systems have both technical and economic [imitations. Tangential...

  7. Dual-Energy CT: Basic Principles, Technical Approaches, and Applications in Musculoskeletal Imaging (Part 1).

    PubMed

    Omoumi, Patrick; Becce, Fabio; Racine, Damien; Ott, Julien G; Andreisek, Gustav; Verdun, Francis R

    2015-12-01

    In recent years, technological advances have allowed manufacturers to implement dual-energy computed tomography (DECT) on clinical scanners. With its unique ability to differentiate basis materials by their atomic number, DECT has opened new perspectives in imaging. DECT has been used successfully in musculoskeletal imaging with applications ranging from detection, characterization, and quantification of crystal and iron deposits; to simulation of noncalcium (improving the visualization of bone marrow lesions) or noniodine images. Furthermore, the data acquired with DECT can be postprocessed to generate monoenergetic images of varying kiloelectron volts, providing new methods for image contrast optimization as well as metal artifact reduction. The first part of this article reviews the basic principles and technical aspects of DECT including radiation dose considerations. The second part focuses on applications of DECT to musculoskeletal imaging including gout and other crystal-induced arthropathies, virtual noncalcium images for the study of bone marrow lesions, the study of collagenous structures, applications in computed tomography arthrography, as well as the detection of hemosiderin and metal particles. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  8. Dual-Energy CT: Basic Principles, Technical Approaches, and Applications in Musculoskeletal Imaging (Part 2).

    PubMed

    Omoumi, Patrick; Verdun, Francis R; Guggenberger, Roman; Andreisek, Gustav; Becce, Fabio

    2015-12-01

    In recent years, technological advances have allowed manufacturers to implement dual-energy computed tomography (DECT) on clinical scanners. With its unique ability to differentiate basis materials by their atomic number, DECT has opened new perspectives in imaging. DECT has been successfully used in musculoskeletal imaging with applications ranging from detection, characterization, and quantification of crystal and iron deposits, to simulation of noncalcium (improving the visualization of bone marrow lesions) or noniodine images. Furthermore, the data acquired with DECT can be postprocessed to generate monoenergetic images of varying kiloelectron volts, providing new methods for image contrast optimization as well as metal artifact reduction. The first part of this article reviews the basic principles and technical aspects of DECT including radiation dose considerations. The second part focuses on applications of DECT to musculoskeletal imaging including gout and other crystal-induced arthropathies, virtual noncalcium images for the study of bone marrow lesions, the study of collagenous structures, applications in computed tomography arthrography, as well as the detection of hemosiderin and metal particles. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  9. Correction of Motion Artifacts From Shuttle Mode Computed Tomography Acquisitions for Body Perfusion Imaging Applications.

    PubMed

    Ghosh, Payel; Chandler, Adam G; Altinmakas, Emre; Rong, John; Ng, Chaan S

    2016-01-01

    The aim of this study was to investigate the feasibility of shuttle-mode computed tomography (CT) technology for body perfusion applications by quantitatively assessing and correcting motion artifacts. Noncontrast shuttle-mode CT scans (10 phases, 2 nonoverlapping bed locations) were acquired from 4 patients on a GE 750HD CT scanner. Shuttling effects were quantified using Euclidean distances (between-phase and between-bed locations) of corresponding fiducial points on the shuttle and reference phase scans (prior to shuttle mode). Motion correction with nonrigid registration was evaluated using sum-of-squares differences and distances between centers of segmented volumes of interest on shuttle and references images. Fiducial point analysis showed an average shuttling motion of 0.85 ± 1.05 mm (between-bed) and 1.18 ± 1.46 mm (between-phase), respectively. The volume-of-interest analysis of the nonrigid registration results showed improved sum-of-squares differences from 2950 to 597, between-bed distance from 1.64 to 1.20 mm, and between-phase distance from 2.64 to 1.33 mm, respectively, averaged over all cases. Shuttling effects introduced during shuttle-mode CT acquisitions can be computationally corrected for body perfusion applications.

  10. Concealed nuclear material identification via combined fast-neutron/γ-ray computed tomography (FNGCT): a Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Licata, M.; Joyce, M. J.

    2018-02-01

    The potential of a combined and simultaneous fast-neutron/γ-ray computed tomography technique using Monte Carlo simulations is described. This technique is applied on the basis of a hypothetical tomography system comprising an isotopic radiation source (americium-beryllium) and a number (13) of organic scintillation detectors for the production and detection of both fast neutrons and γ rays, respectively. Via a combination of γ-ray and fast neutron tomography the potential is demonstrated to discern nuclear materials, such as compounds comprising plutonium and uranium, from substances that are used widely for neutron moderation and shielding. This discrimination is achieved on the basis of the difference in the attenuation characteristics of these substances. Discrimination of a variety of nuclear material compounds from shielding/moderating substances (the latter comprising lead or polyethylene for example) is shown to be challenging when using either γ-ray or neutron tomography in isolation of one another. Much-improved contrast is obtained for a combination of these tomographic modalities. This method has potential applications for in-situ, non-destructive assessments in nuclear security, safeguards, waste management and related requirements in the nuclear industry.

  11. Computed tomography vs. digital radiography assessment for detection of osteolysis in asymptomatic patients with uncemented cups: a proposal for a new classification system based on computer tomography.

    PubMed

    Sandgren, Buster; Crafoord, Joakim; Garellick, Göran; Carlsson, Lars; Weidenhielm, Lars; Olivecrona, Henrik

    2013-10-01

    Digital radiographic images in the anterior-posterior and lateral view have been gold standard for evaluation of peri-acetabular osteolysis for patients with an uncemented hip replacement. We compared digital radiographic images and computer tomography in detection of peri-acetabular osteolysis and devised a classification system based on computer tomography. Digital radiographs were compared with computer tomography on 206 hips, with a mean follow up 10 years after surgery. The patients had no clinical signs of osteolysis and none were planned for revision surgery. On digital radiographs, 192 cases had no osteolysis and only 14 cases had osteolysis. When using computer tomography there were 184 cases showing small or large osteolysis and only 22 patients had no osteolysis. A classification system for peri-acetabular osteolysis is proposed based on computer tomography that is easy to use on standard follow up evaluation. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. In-vitro tomography and non-destructive imaging at depth of pharmaceutical solid dosage forms.

    PubMed

    Zeitler, J Axel; Gladden, Lynn F

    2009-01-01

    Tomographic imaging techniques offer new prospects for a better understanding of the quality, performance and release mechanisms of pharmaceutical solid dosage forms. It is only over the last fifteen years that tomography has been applied for the in-vitro characterisation of dosage forms. This review aims to introduce the concept of tomography in a pharmaceutical context, and describes the current state-of-the-art of the four most promising techniques: X-ray computed microtomography, magnetic resonance imaging, terahertz imaging and optical coherence tomography. The basic working principles of the techniques are introduced and the current pharmaceutical applications of the technologies are discussed, together with a comparison of their specific strengths and weaknesses. Possible future developments in these fields are also discussed.

  13. Simultaneous K-edge subtraction tomography for tracing strontium using parametric X-ray radiation

    NASA Astrophysics Data System (ADS)

    Hayakawa, Y.; Hayakawa, K.; Kaneda, T.; Nogami, K.; Sakae, T.; Sakai, T.; Sato, I.; Takahashi, Y.; Tanaka, T.

    2017-07-01

    The X-ray source based on parametric X-ray radiation (PXR) has been regularly providing a coherent X-ray beam for application studies at Nihon University. Recently, three dimensional (3D) computed tomography (CT) has become one of the most important applications of the PXR source. The methodology referred to as K-edge subtraction (KES) imaging is a particularly successful application utilizing the energy selectivity of PXR. In order to demonstrate the applicability of PXR-KES, a simultaneous KES experiment for a specimen containing strontium was performed using a PXR beam having an energy near the Sr K-edge of 16.1 keV. As a result, the 3D distribution of Sr was obtained by subtraction between the two simultaneously acquired tomographic images.

  14. Linear Array Ambient Noise Adjoint Tomography Reveals Intense Crust-Mantle Interactions in North China Craton

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Yao, Huajian; Liu, Qinya; Zhang, Ping; Yuan, Yanhua O.; Feng, Jikun; Fang, Lihua

    2018-01-01

    We present a 2-D ambient noise adjoint tomography technique for a linear array with a significant reduction in computational cost and show its application to an array in North China. We first convert the observed data for 3-D media, i.e., surface-wave empirical Green's functions (EGFs) to the reconstructed EGFs (REGFs) for 2-D media using a 3-D/2-D transformation scheme. Different from the conventional steps of measuring phase dispersion, this technology refines 2-D shear wave speeds along the profile directly from REGFs. With an initial model based on traditional ambient noise tomography, adjoint tomography updates the model by minimizing the frequency-dependent Rayleigh wave traveltime delays between the REGFs and synthetic Green functions calculated by the spectral-element method. The multitaper traveltime difference measurement is applied in four-period bands: 20-35 s, 15-30 s, 10-20 s, and 6-15 s. The recovered model shows detailed crustal structures including pronounced low-velocity anomalies in the lower crust and a gradual crust-mantle transition zone beneath the northern Trans-North China Orogen, which suggest the possible intense thermo-chemical interactions between mantle-derived upwelling melts and the lower crust, probably associated with the magmatic underplating during the Mesozoic to Cenozoic evolution of this region. To our knowledge, it is the first time that ambient noise adjoint tomography is implemented for a 2-D medium. Compared with the intensive computational cost and storage requirement of 3-D adjoint tomography, this method offers a computationally efficient and inexpensive alternative to imaging fine-scale crustal structures beneath linear arrays.

  15. Radiological protection in computed tomography and cone beam computed tomography.

    PubMed

    Rehani, M M

    2015-06-01

    The International Commission on Radiological Protection (ICRP) has sustained interest in radiological protection in computed tomography (CT), and ICRP Publications 87 and 102 focused on the management of patient doses in CT and multi-detector CT (MDCT) respectively. ICRP forecasted and 'sounded the alarm' on increasing patient doses in CT, and recommended actions for manufacturers and users. One of the approaches was that safety is best achieved when it is built into the machine, rather than left as a matter of choice for users. In view of upcoming challenges posed by newer systems that use cone beam geometry for CT (CBCT), and their widened usage, often by untrained users, a new ICRP task group has been working on radiological protection issues in CBCT. Some of the issues identified by the task group are: lack of standardisation of dosimetry in CBCT; the false belief within the medical and dental community that CBCT is a 'light', low-dose CT whereas mobile CBCT units and newer applications, particularly C-arm CT in interventional procedures, involve higher doses; lack of training in radiological protection among clinical users; and lack of dose information and tracking in many applications. This paper provides a summary of approaches used in CT and MDCT, and preliminary information regarding work just published for radiological protection in CBCT. © The International Society for Prosthetics and Orthotics Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  16. A multistage selective weighting method for improved microwave breast tomography.

    PubMed

    Shahzad, Atif; O'Halloran, Martin; Jones, Edward; Glavin, Martin

    2016-12-01

    Microwave tomography has shown potential to successfully reconstruct the dielectric properties of the human breast, thereby providing an alternative to other imaging modalities used in breast imaging applications. Considering the costly forward solution and complex iterative algorithms, computational complexity becomes a major bottleneck in practical applications of microwave tomography. In addition, the natural tendency of microwave inversion algorithms to reward high contrast breast tissue boundaries, such as the skin-adipose interface, usually leads to a very slow reconstruction of the internal tissue structure of human breast. This paper presents a multistage selective weighting method to improve the reconstruction quality of breast dielectric properties and minimize the computational cost of microwave breast tomography. In the proposed two stage approach, the skin layer is approximated using scaled microwave measurements in the first pass of the inversion algorithm; a numerical skin model is then constructed based on the estimated skin layer and the assumed dielectric properties of the skin tissue. In the second stage of the algorithm, the skin model is used as a priori information to reconstruct the internal tissue structure of the breast using a set of temporal scaling functions. The proposed method is evaluated on anatomically accurate MRI-derived breast phantoms and a comparison with the standard single-stage technique is presented. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  17. Assessment of the Role of Different Imaging Modalities with Emphasis on Fdg Pet/Ct in the Management of Well Differentiated Thyroid Cancer (WDTC).

    PubMed

    Kendi A, Tuba Karagulle; Mudalegundi, Shwetha; Switchenko, Jeffrey; Lee, Daniel; Halkar, Raghuveer; Chen, Amy Y

    2016-01-01

    Positron emission tomography/computed tomography is suggested to have a role in detection of iodine negative recurrence in well differentiated thyroid cancer. The aim of this study is to identify role of different imaging modalities in the management of well differentiated thyroid cancer. We reviewed 900 well differentiated thyroid cancer patients after post-thyroidectomy who underwent recombinant human thyroid stimulating hormone stimulated Sodium Iodide I 131 imaging. Out of 900 patients, 74 had positron emission tomography/computed tomography. Multivariate analysis was performed by controlling positron emission tomography/computed tomography, Sodium Iodide I 131 scan, neck ultrasonography, age, sex, primary tumor size, stage, histology, thyroglobulin. Patients were grouped according to results of Sodium Iodide I 131 scan and positron emission tomography/computed tomography. Positron emission tomography/computed tomography was positive in 23 of 74 patients. The sensitivity for positron emission tomography was 11/11(100%), the specificity was 51/63 (81.0%), the positive predictive value was 11/23 (47.8%), and the negative predictive value was 51/51 (100%). The sensitivity for the neck ultrasonography was 4/8 (50%), the specificity was 53/60 (88.3%), positive predictive value was 4/11 (36.4%), and negative predictive value was 53/57 (93.0%). 50% of patients who had Sodium Iodide I 131 negative scan and positive positron emission tomography/computed tomography had a change in management. Thirty-six percent with positive neck ultrasonography had a change in management. Out of 11 recurrences, 6 had distant metastatic disease, and 5/11 had regional nodal disease. Neck ultrasonography showed nodal metastasis in 4/5 (80%). Positron emission tomography/computed tomography altered management in the presence of a high thyroglobulin level and a negative Sodium Iodide I 131 scan. Neck ultrasonography should be the first line of imaging with rising thyroglobulin levels. Positron emission tomography/computed tomography should be considered for cases with high thyroglobulin levels and normal neck ultrasonography to look for distant metastatic disease.

  18. Body CT (CAT Scan)

    MedlinePlus

    ... Resources Professions Site Index A-Z Computed Tomography (CT) - Body Computed tomography (CT) of the body uses ... of CT Scanning of the Body? What is CT Scanning of the Body? Computed tomography, more commonly ...

  19. Microwave-induced thermoacoustic computed tomography with a clinical contrast agent of NMG2[Gd(DTPA)

    NASA Astrophysics Data System (ADS)

    Qin, Huan; Yang, Sihua; Xing, Da

    2012-01-01

    NMG2[Gd(DTPA)], a clinical contrast agent, was investigated for microwave-induced thermoacoustic computed tomography (CT). Due to ionic conduction and magnetic dipole rotation in the presence of microwave field, microwave energy absorbed by NMG2[Gd(DTPA)] would be transformed to thermoacoustic signals based on the thermoelastic effect. The experimental results demonstrated that NMG2[Gd(DTPA)] at a concentration of 10 mM provided effective enhancement compared with water. The enhancement of NMG2[Gd(DTPA)] for thermoacoustic CT was further demonstrated in invivo tumor-bearing mouse. The theory and experimental results indicate that the clinically available NMG2[Gd(DTPA)] will promote the medical applications of thermoacoustic CT.

  20. Role of Cone Beam Computed Tomography in Diagnosis and Treatment Planning in Dentistry: An Update.

    PubMed

    Shukla, Sagrika; Chug, Ashi; Afrashtehfar, Kelvin I

    2017-11-01

    Accurate diagnosis and treatment planning are the backbone of any medical therapy; for this reason, cone beam computed tomography (CBCT) was introduced and has been widely used. CBCT technology provides a three-dimensional image viewing, enabling exact location and extent of lesions or any anatomical region. For the very same reason, CBCT can not only be used for surgical fields but also for fields such as endodontics, prosthodontics, and orthodontics for appropriate treatment planning and effective dental care. The aim and clinical significance of this review are to update dental clinicians on the CBCT applications in each dental specialty for an appropriate diagnosis and more predictable treatment.

  1. Dual-energy computed tomography for detection of coronary artery disease

    PubMed Central

    Danad, Ibrahim; Ó Hartaigh, Bríain; Min, James K.

    2016-01-01

    Recent technological advances in computed tomography (CT) technology have fulfilled the prerequisites for the cardiac application of dual-energy CT (DECT) imaging. By exploiting the unique characteristics of materials when exposed to two different x-ray energies, DECT holds great promise for the diagnosis and management of coronary artery disease. It allows for the assessment of myocardial perfusion to discern the hemodynamic significance of coronary disease and possesses high accuracy for the detection and characterization of coronary plaques, while facilitating reductions in radiation dose. As such, DECT enabled cardiac CT to advance beyond the mere detection of coronary stenosis expanding its role in the evaluation and management of coronary atherosclerosis. PMID:26549789

  2. Clinical application of quantitative computed tomography in osteogenesis imperfecta-suspected cat.

    PubMed

    Won, Sungjun; Chung, Woo-Jo; Yoon, Junghee

    2017-09-30

    One-year-old male Persian cat presented with multiple fractures and no known traumatic history. Marked decrease of bone radiopacity and thin cortices of all long bones were identified on radiography. Tentative diagnosis was osteogenesis imperfecta, a congenital disorder characterized by fragile bone. To determine bone mineral density (BMD), quantitative computed tomography (QCT) was performed. The QCT results revealed a mean trabecular BMD of vertebral bodies of 149.9 ± 86.5 mg/cm 3 . After bisphosphonate therapy, BMD of the same site increased significantly (218.5 ± 117.1 mg/cm 3 , p < 0.05). QCT was a useful diagnostic tool to diagnose osteopenia and quantify response to medical treatment.

  3. Fundamentals of cone beam computed tomography for a prosthodontist

    PubMed Central

    John, George Puthenpurayil; Joy, Tatu Elenjickal; Mathew, Justin; Kumar, Vinod R. B.

    2015-01-01

    Cone beam computed tomography (CBCT, also referred to as C-arm computed tomography [CT], cone beam volume CT, or flat panel CT) is a medical imaging technique of X-ray CT where the X-rays are divergent, forming a cone.[1] CBCT systems have been designed for imaging hard tissues of the maxillofacial region. CBCT is capable of providing sub-millimeter resolution in images of high diagnostic quality, with short scanning times (10–70 s) and radiation dosages reportedly up to 15–100 times lower than those of conventional CT scans. Increasing availability of this technology provides the dental clinician with an imaging modality capable of providing a three-dimensional representation of the maxillofacial skeleton with minimal distortion. The aim of this article is to sensitize the Prosthodontist to CBCT technology, provide an overview of currently available maxillofacial CBCT systems and review the specific application of various CBCT display modes to clinical Prosthodontic practice. A MEDLINE search for relevant articles in this specific area of interest was conducted. The selected articles were critically reviewed and the data acquired were systematically compiled. PMID:26929479

  4. A New Method for Computed Tomography Angiography (CTA) Imaging via Wavelet Decomposition-Dependented Edge Matching Interpolation.

    PubMed

    Li, Zeyu; Chen, Yimin; Zhao, Yan; Zhu, Lifeng; Lv, Shengqing; Lu, Jiahui

    2016-08-01

    The interpolation technique of computed tomography angiography (CTA) image provides the ability for 3D reconstruction, as well as reduces the detect cost and the amount of radiation. However, most of the image interpolation algorithms cannot take the automation and accuracy into account. This study provides a new edge matching interpolation algorithm based on wavelet decomposition of CTA. It includes mark, scale and calculation (MSC). Combining the real clinical image data, this study mainly introduces how to search for proportional factor and use the root mean square operator to find a mean value. Furthermore, we re- synthesize the high frequency and low frequency parts of the processed image by wavelet inverse operation, and get the final interpolation image. MSC can make up for the shortage of the conventional Computed Tomography (CT) and Magnetic Resonance Imaging(MRI) examination. The radiation absorption and the time to check through the proposed synthesized image were significantly reduced. In clinical application, it can help doctor to find hidden lesions in time. Simultaneously, the patients get less economic burden as well as less radiation exposure absorbed.

  5. Use of cone beam computed tomography in periodontology

    PubMed Central

    Acar, Buket; Kamburoğlu, Kıvanç

    2014-01-01

    Diagnosis of periodontal disease mainly depends on clinical signs and symptoms. However, in the case of bone destruction, radiographs are valuable diagnostic tools as an adjunct to the clinical examination. Two dimensional periapical and panoramic radiographs are routinely used for diagnosing periodontal bone levels. In two dimensional imaging, evaluation of bone craters, lamina dura and periodontal bone level is limited by projection geometry and superpositions of adjacent anatomical structures. Those limitations of 2D radiographs can be eliminated by three-dimensional imaging techniques such as computed tomography. Cone beam computed tomography (CBCT) generates 3D volumetric images and is also commonly used in dentistry. All CBCT units provide axial, coronal and sagittal multi-planar reconstructed images without magnification. Also, panoramic images without distortion and magnification can be generated with curved planar reformation. CBCT displays 3D images that are necessary for the diagnosis of intra bony defects, furcation involvements and buccal/lingual bone destructions. CBCT applications provide obvious benefits in periodontics, however; it should be used only in correct indications considering the necessity and the potential hazards of the examination. PMID:24876918

  6. 15Mcps photon-counting X-ray computed tomography system using a ZnO-MPPC detector and its application to gadolinium imaging.

    PubMed

    Sato, Eiichi; Sugimura, Shigeaki; Endo, Haruyuki; Oda, Yasuyuki; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Osawa, Akihiro; Matsukiyo, Hiroshi; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2012-01-01

    15Mcps photon-counting X-ray computed tomography (CT) system is a first-generation type and consists of an X-ray generator, a turntable, a translation stage, a two-stage controller, a detector consisting of a 2mm-thick zinc-oxide (ZnO) single-crystal scintillator and an MPPC (multipixel photon counter) module, a counter card (CC), and a personal computer (PC). High-speed photon counting was carried out using the detector in the X-ray CT system. The maximum count rate was 15Mcps (mega counts per second) at a tube voltage of 100kV and a tube current of 1.95mA. Tomography is accomplished by repeated translations and rotations of an object, and projection curves of the object are obtained by the translation. The pulses of the event signal from the module are counted by the CC in conjunction with the PC. The minimum exposure time for obtaining a tomogram was 15min, and photon-counting CT was accomplished using gadolinium-based contrast media. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Steady shape analysis of tomographic pumping tests for characterization of aquifer heterogeneities

    USGS Publications Warehouse

    Bohling, Geoffrey C.; Zhan, Xiaoyong; Butler, James J.; Zheng, Li

    2002-01-01

    Hydraulic tomography, a procedure involving the performance of a suite of pumping tests in a tomographic format, provides information about variations in hydraulic conductivity at a level of detail not obtainable with traditional well tests. However, analysis of transient data from such a suite of pumping tests represents a substantial computational burden. Although steady state responses can be analyzed to reduce this computational burden significantly, the time required to reach steady state will often be too long for practical applications of the tomography concept. In addition, uncertainty regarding the mechanisms driving the system to steady state can propagate to adversely impact the resulting hydraulic conductivity estimates. These disadvantages of a steady state analysis can be overcome by exploiting the simplifications possible under the steady shape flow regime. At steady shape conditions, drawdown varies with time but the hydraulic gradient does not. Thus transient data can be analyzed with the computational efficiency of a steady state model. In this study, we demonstrate the value of the steady shape concept for inversion of hydraulic tomography data and investigate its robustness with respect to improperly specified boundary conditions.

  8. 68Ga/177Lu-labeled DOTA-TATE shows similar imaging and biodistribution in neuroendocrine tumor model.

    PubMed

    Liu, Fei; Zhu, Hua; Yu, Jiangyuan; Han, Xuedi; Xie, Qinghua; Liu, Teli; Xia, Chuanqin; Li, Nan; Yang, Zhi

    2017-06-01

    Somatostatin receptors are overexpressed in neuroendocrine tumors, whose endogenous ligands are somatostatin. DOTA-TATE is an analogue of somatostatin, which shows high binding affinity to somatostatin receptors. We aim to evaluate the 68 Ga/ 177 Lu-labeling DOTA-TATE kit in neuroendocrine tumor model for molecular imaging and to try human-positron emission tomography/computed tomography imaging of 68 Ga-DOTA-TATE in neuroendocrine tumor patients. DOTA-TATE kits were formulated and radiolabeled with 68 Ga/ 177 Lu for 68 Ga/ 177 Lu-DOTA-TATE (M-DOTA-TATE). In vitro and in vivo stability of 177 Lu-DOTA-TATE were performed. Nude mice bearing human tumors were injected with 68 Ga-DOTA-TATE or 177 Lu-DOTA-TATE for micro-positron emission tomography and micro-single-photon emission computed tomography/computed tomography imaging separately, and clinical positron emission tomography/computed tomography images of 68 Ga-DOTA-TATE were obtained at 1 h post-intravenous injection from patients with neuroendocrine tumors. Micro-positron emission tomography and micro-single-photon emission computed tomography/computed tomography imaging of 68 Ga-DOTA-TATE and 177 Lu-DOTA-TATE both showed clear tumor uptake which could be blocked by excess DOTA-TATE. In addition, 68 Ga-DOTA-TATE-positron emission tomography/computed tomography imaging in neuroendocrine tumor patients could show primary and metastatic lesions. 68 Ga-DOTA-TATE and 177 Lu-DOTA-TATE could accumulate in tumors in animal models, paving the way for better clinical peptide receptor radionuclide therapy for neuroendocrine tumor patients in Asian population.

  9. [Application possibilities and initial experience with digital volume tomography in hand and wrist imaging].

    PubMed

    Goerke, Sebastian M; Neubauer, J; Zajonc, H; Thiele, J R; Kotter, E; Langer, M; Stark, G B; Lampert, F M

    2015-02-01

    During the last decade, DVT (digital volume tomography) imaging has become a widely used standard technique in head and neck imaging. Lower radiation exposure compared to conventional computed tomography (MDCT) has been described. Recently, DVT has been developed as an extremity scanner and as such represents a new imaging technique for hand surgery. We here describe the first 24 months experience with this new imaging modality in hand and wrist imaging by presenting representative cases and by describing the technical background. Furthermore, the method's advantages and disadvantages are discussed with reference to the given literature. © Georg Thieme Verlag KG Stuttgart · New York.

  10. An Efficient Image Recovery Algorithm for Diffraction Tomography Systems

    NASA Technical Reports Server (NTRS)

    Jin, Michael Y.

    1993-01-01

    A diffraction tomography system has potential application in ultrasonic medical imaging area. It is capable of achieving imagery with the ultimate resolution of one quarter the wavelength by collecting ultrasonic backscattering data from a circular array of sensors and reconstructing the object reflectivity using a digital image recovery algorithm performed by a computer. One advantage of such a system is that is allows a relatively lower frequency wave to penetrate more deeply into the object and still achieve imagery with a reasonable resolution. An efficient image recovery algorithm for the diffraction tomography system was originally developed for processing a wide beam spaceborne SAR data...

  11. Toward real-time diffuse optical tomography: accelerating light propagation modeling employing parallel computing on GPU and CPU.

    PubMed

    Doulgerakis, Matthaios; Eggebrecht, Adam; Wojtkiewicz, Stanislaw; Culver, Joseph; Dehghani, Hamid

    2017-12-01

    Parameter recovery in diffuse optical tomography is a computationally expensive algorithm, especially when used for large and complex volumes, as in the case of human brain functional imaging. The modeling of light propagation, also known as the forward problem, is the computational bottleneck of the recovery algorithm, whereby the lack of a real-time solution is impeding practical and clinical applications. The objective of this work is the acceleration of the forward model, within a diffusion approximation-based finite-element modeling framework, employing parallelization to expedite the calculation of light propagation in realistic adult head models. The proposed methodology is applicable for modeling both continuous wave and frequency-domain systems with the results demonstrating a 10-fold speed increase when GPU architectures are available, while maintaining high accuracy. It is shown that, for a very high-resolution finite-element model of the adult human head with ∼600,000 nodes, consisting of heterogeneous layers, light propagation can be calculated at ∼0.25  s/excitation source. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  12. Irregular large-scale computed tomography on multiple graphics processors improves energy-efficiency metrics for industrial applications

    NASA Astrophysics Data System (ADS)

    Jimenez, Edward S.; Goodman, Eric L.; Park, Ryeojin; Orr, Laurel J.; Thompson, Kyle R.

    2014-09-01

    This paper will investigate energy-efficiency for various real-world industrial computed-tomography reconstruction algorithms, both CPU- and GPU-based implementations. This work shows that the energy required for a given reconstruction is based on performance and problem size. There are many ways to describe performance and energy efficiency, thus this work will investigate multiple metrics including performance-per-watt, energy-delay product, and energy consumption. This work found that irregular GPU-based approaches1 realized tremendous savings in energy consumption when compared to CPU implementations while also significantly improving the performance-per- watt and energy-delay product metrics. Additional energy savings and other metric improvement was realized on the GPU-based reconstructions by improving storage I/O by implementing a parallel MIMD-like modularization of the compute and I/O tasks.

  13. ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography. A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance.

    PubMed

    Taylor, Allen J; Cerqueira, Manuel; Hodgson, John McB; Mark, Daniel; Min, James; O'Gara, Patrick; Rubin, Geoffrey D; Kramer, Christopher M; Berman, Daniel; Brown, Alan; Chaudhry, Farooq A; Cury, Ricardo C; Desai, Milind Y; Einstein, Andrew J; Gomes, Antoinette S; Harrington, Robert; Hoffmann, Udo; Khare, Rahul; Lesser, John; McGann, Christopher; Rosenberg, Alan; Schwartz, Robert; Shelton, Marc; Smetana, Gerald W; Smith, Sidney C

    2010-11-23

    The American College of Cardiology Foundation (ACCF), along with key specialty and subspecialty societies, conducted an appropriate use review of common clinical scenarios where cardiac computed tomography (CCT) is frequently considered. The present document is an update to the original CCT/cardiac magnetic resonance (CMR) appropriateness criteria published in 2006, written to reflect changes in test utilization, to incorporate new clinical data, and to clarify CCT use where omissions or lack of clarity existed in the original criteria (1). The indications for this review were drawn from common applications or anticipated uses, as well as from current clinical practice guidelines. Ninety-three clinical scenarios were developed by a writing group and scored by a separate technical panel on a scale of 1 to 9 to designate appropriate use, inappropriate use, or uncertain use. In general, use of CCT angiography for diagnosis and risk assessment in patients with low or intermediate risk or pretest probability for coronary artery disease (CAD) was viewed favorably, whereas testing in high-risk patients, routine repeat testing, and general screening in certain clinical scenarios were viewed less favorably. Use of noncontrast computed tomography (CT) for calcium scoring was rated as appropriate within intermediate- and selected low-risk patients. Appropriate applications of CCT are also within the category of cardiac structural and functional evaluation. It is anticipated that these results will have an impact on physician decision making, performance, and reimbursement policy, and that they will help guide future research.

  14. Accurate traveltime computation in complex anisotropic media with discontinuous Galerkin method

    NASA Astrophysics Data System (ADS)

    Le Bouteiller, P.; Benjemaa, M.; Métivier, L.; Virieux, J.

    2017-12-01

    Travel time computation is of major interest for a large range of geophysical applications, among which source localization and characterization, phase identification, data windowing and tomography, from decametric scale up to global Earth scale.Ray-tracing tools, being essentially 1D Lagrangian integration along a path, have been used for their efficiency but present some drawbacks, such as a rather difficult control of the medium sampling. Moreover, they do not provide answers in shadow zones. Eikonal solvers, based on an Eulerian approach, have attracted attention in seismology with the pioneering work of Vidale (1988), while such approach has been proposed earlier by Riznichenko (1946). They have been used now for first-arrival travel-time tomography at various scales (Podvin & Lecomte (1991). The framework for solving this non-linear partial differential equation is now well understood and various finite-difference approaches have been proposed, essentially for smooth media. We propose a novel finite element approach which builds a precise solution for strongly heterogeneous anisotropic medium (still in the limit of Eikonal validity). The discontinuous Galerkin method we have developed allows local refinement of the mesh and local high orders of interpolation inside elements. High precision of the travel times and its spatial derivatives is obtained through this formulation. This finite element method also honors boundary conditions, such as complex topographies and absorbing boundaries for mimicking an infinite medium. Applications from travel-time tomography, slope tomography are expected, but also for migration and take-off angles estimation, thanks to the accuracy obtained when computing first-arrival times.References:Podvin, P. and Lecomte, I., 1991. Finite difference computation of traveltimes in very contrasted velocity model: a massively parallel approach and its associated tools, Geophys. J. Int., 105, 271-284.Riznichenko, Y., 1946. Geometrical seismics of layered media, Trudy Inst. Theor. Geophysics, Vol II, Moscow (in Russian).Vidale, J., 1988. Finite-difference calculation of travel times, Bull. seism. Soc. Am., 78, 2062-2076.

  15. ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 Appropriate Use Criteria for Cardiac Computed Tomography. A Report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance.

    PubMed

    Taylor, Allen J; Cerqueira, Manuel; Hodgson, John McB; Mark, Daniel; Min, James; O'Gara, Patrick; Rubin, Geoffrey D

    2010-01-01

    The American College of Cardiology Foundation (ACCF), along with key specialty and subspecialty societies, conducted an appropriate use review of common clinical scenarios where cardiac computed tomography (CCT) is frequently considered. The present document is an update to the original CCT/cardiac magnetic resonance (CMR) appropriateness criteria published in 2006, written to reflect changes in test utilization, to incorporate new clinical data, and to clarify CCT use where omissions or lack of clarity existed in the original criteria (1). The indications for this review were drawn from common applications or anticipated uses, as well as from current clinical practice guidelines. Ninety-three clinical scenarios were developed by a writing group and scored by a separate technical panel on a scale of 1 to 9 to designate appropriate use, inappropriate use, or uncertain use. In general, use of CCT angiography for diagnosis and risk assessment in patients with low or intermediate risk or pretest probability for coronary artery disease (CAD) was viewed favorably, whereas testing in high-risk patients, routine repeat testing, and general screening in certain clinical scenarios were viewed less favorably. Use of noncontrast computed tomography (CT) for calcium scoring was rated as appropriate within intermediate- and selected low-risk patients. Appropriate applications of CCT are also within the category of cardiac structural and functional evaluation. It is anticipated that these results will have an impact on physician decision making, performance, and reimbursement policy, and that they will help guide future research. © 2010 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  16. ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 Appropriate Use Criteria for Cardiac Computed Tomography. A Report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance.

    PubMed

    Taylor, Allen J; Cerqueira, Manuel; Hodgson, John McB; Mark, Daniel; Min, James; O'Gara, Patrick; Rubin, Geoffrey D

    2010-11-23

    The American College of Cardiology Foundation, along with key specialty and subspecialty societies, conducted an appropriate use review of common clinical scenarios where cardiac computed tomography (CCT) is frequently considered. The present document is an update to the original CCT/cardiac magnetic resonance appropriateness criteria published in 2006, written to reflect changes in test utilization, to incorporate new clinical data, and to clarify CCT use where omissions or lack of clarity existed in the original criteria. The indications for this review were drawn from common applications or anticipated uses, as well as from current clinical practice guidelines. Ninety-three clinical scenarios were developed by a writing group and scored by a separate technical panel on a scale of 1 to 9 to designate appropriate use, inappropriate use, or uncertain use. In general, use of CCT angiography for diagnosis and risk assessment in patients with low or intermediate risk or pretest probability for coronary artery disease was viewed favorably, whereas testing in high-risk patients, routine repeat testing, and general screening in certain clinical scenarios were viewed less favorably. Use of noncontrast computed tomography for calcium scoring was rated as appropriate within intermediate- and selected low-risk patients. Appropriate applications of CCT are also within the category of cardiac structural and functional evaluation. It is anticipated that these results will have an impact on physician decision making, performance, and reimbursement policy, and that they will help guide future research.

  17. Clinical application of calculated split renal volume using computed tomography-based renal volumetry after partial nephrectomy: Correlation with technetium-99m dimercaptosuccinic acid renal scan data.

    PubMed

    Lee, Chan Ho; Park, Young Joo; Ku, Ja Yoon; Ha, Hong Koo

    2017-06-01

    To evaluate the clinical application of computed tomography-based measurement of renal cortical volume and split renal volume as a single tool to assess the anatomy and renal function in patients with renal tumors before and after partial nephrectomy, and to compare the findings with technetium-99m dimercaptosuccinic acid renal scan. The data of 51 patients with a unilateral renal tumor managed by partial nephrectomy were retrospectively analyzed. The renal cortical volume of tumor-bearing and contralateral kidneys was measured using ImageJ software. Split estimated glomerular filtration rate and split renal volume calculated using this renal cortical volume were compared with the split renal function measured with technetium-99m dimercaptosuccinic acid renal scan. A strong correlation between split renal function and split renal volume of the tumor-bearing kidney was observed before and after surgery (r = 0.89, P < 0.001 and r = 0.94, P < 0.001). The preoperative and postoperative split estimated glomerular filtration rate of the operated kidney showed a moderate correlation with split renal function (r = 0.39, P = 0.004 and r = 0.49, P < 0.001). The correlation between reductions in split renal function and split renal volume of the operated kidney (r = 0.87, P < 0.001) was stronger than that between split renal function and percent reduction in split estimated glomerular filtration rate (r = 0.64, P < 0.001). The split renal volume calculated using computed tomography-based renal volumetry had a strong correlation with the split renal function measured using technetium-99m dimercaptosuccinic acid renal scan. Computed tomography-based split renal volume measurement before and after partial nephrectomy can be used as a single modality for anatomical and functional assessment of the tumor-bearing kidney. © 2017 The Japanese Urological Association.

  18. The utility of postmortem computed tomography selective coronary angiography in parallel with autopsy.

    PubMed

    Inokuchi, Go; Yajima, Daisuke; Hayakawa, Mutsumi; Motomura, Ayumi; Chiba, Fumiko; Torimitsu, Suguru; Makino, Yohsuke; Iwase, Hirotaro

    2013-12-01

    Historically, coronary angiography of the isolated heart has played an important role in the detection of stenotic or occlusive lesions that are difficult to identify by autopsy alone. Meanwhile, although the application of multidetector computed tomography (MDCT) to forensic fields has accelerated recently, isolated single organ angiography with MDCT is rarely performed. In this article, we present an evaluation of postmortem selective coronary CT angiography of the isolated heart with MDCT and discuss its utility for autopsy. First, in a preliminary experiment using pig coronary artery, we examined the behavior of water soluble contrast material on postmortem computed tomography angiography (PMCTA) and found that better angiographic images were acquired when the viscosity of the contrast material was increased and CT was performed under conditions of sustained perfusion. Based on these results, we devised a selective coronary angiography procedure using a pressurized bag for drip infusion that can be performed easily, quickly, and at low cost. The angiographic images obtained provided useful supportive evidence of autopsy findings suggestive of ischemic heart disease. With active discussions underway in forensic fields on the proper use of postmortem computed tomography, PMCTA has also naturally attracted attention as it compensates for some of the shortcomings of CT alone. Although PMCTA typically involves whole-body angiography, if we view PMCTA as one of the many useful and supplementary tools available for autopsy, then isolated heart angiography continues to have utility in autopsy today.

  19. Imaging of the hip joint. Computed tomography versus magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Lang, P.; Genant, H. K.; Jergesen, H. E.; Murray, W. R.

    1992-01-01

    The authors reviewed the applications and limitations of computed tomography (CT) and magnetic resonance (MR) imaging in the assessment of the most common hip disorders. Magnetic resonance imaging is the most sensitive technique in detecting osteonecrosis of the femoral head. Magnetic resonance reflects the histologic changes associated with osteonecrosis very well, which may ultimately help to improve staging. Computed tomography can more accurately identify subchondral fractures than MR imaging and thus remains important for staging. In congenital dysplasia of the hip, the position of the nonossified femoral head in children less than six months of age can only be inferred by indirect signs on CT. Magnetic resonance imaging demonstrates the cartilaginous femoral head directly without ionizing radiation. Computed tomography remains the imaging modality of choice for evaluating fractures of the hip joint. In some patients, MR imaging demonstrates the fracture even when it is not apparent on radiography. In neoplasm, CT provides better assessment of calcification, ossification, and periosteal reaction than MR imaging. Magnetic resonance imaging, however, represents the most accurate imaging modality for evaluating intramedullary and soft-tissue extent of the tumor and identifying involvement of neurovascular bundles. Magnetic resonance imaging can also be used to monitor response to chemotherapy. In osteoarthrosis and rheumatoid arthritis of the hip, both CT and MR provide more detailed assessment of the severity of disease than conventional radiography because of their tomographic nature. Magnetic resonance imaging is unique in evaluating cartilage degeneration and loss, and in demonstrating soft-tissue alterations such as inflammatory synovial proliferation.

  20. Mathematics of Computed Tomography

    NASA Astrophysics Data System (ADS)

    Hawkins, William Grant

    A review of the applications of the Radon transform is presented, with emphasis on emission computed tomography and transmission computed tomography. The theory of the 2D and 3D Radon transforms, and the effects of attenuation for emission computed tomography are presented. The algebraic iterative methods, their importance and limitations are reviewed. Analytic solutions of the 2D problem the convolution and frequency filtering methods based on linear shift invariant theory, and the solution of the circular harmonic decomposition by integral transform theory--are reviewed. The relation between the invisible kernels, the inverse circular harmonic transform, and the consistency conditions are demonstrated. The discussion and review are extended to the 3D problem-convolution, frequency filtering, spherical harmonic transform solutions, and consistency conditions. The Cormack algorithm based on reconstruction with Zernike polynomials is reviewed. An analogous algorithm and set of reconstruction polynomials is developed for the spherical harmonic transform. The relations between the consistency conditions, boundary conditions and orthogonal basis functions for the 2D projection harmonics are delineated and extended to the 3D case. The equivalence of the inverse circular harmonic transform, the inverse Radon transform, and the inverse Cormack transform is presented. The use of the number of nodes of a projection harmonic as a filter is discussed. Numerical methods for the efficient implementation of angular harmonic algorithms based on orthogonal functions and stable recursion are presented. The derivation of a lower bound for the signal-to-noise ratio of the Cormack algorithm is derived.

  1. A Freeware Path to Neutron Computed Tomography

    NASA Astrophysics Data System (ADS)

    Schillinger, Burkhard; Craft, Aaron E.

    Neutron computed tomography has become a routine method at many neutron sources due to the availability of digital detection systems, powerful computers and advanced software. The commercial packages Octopus by Inside Matters and VGStudio by Volume Graphics have been established as a quasi-standard for high-end computed tomography. However, these packages require a stiff investment and are available to the users only on-site at the imaging facility to do their data processing. There is a demand from users to have image processing software at home to do further data processing; in addition, neutron computed tomography is now being introduced even at smaller and older reactors. Operators need to show a first working tomography setup before they can obtain a budget to build an advanced tomography system. Several packages are available on the web for free; however, these have been developed for X-rays or synchrotron radiation and are not immediately useable for neutron computed tomography. Three reconstruction packages and three 3D-viewers have been identified and used even for Gigabyte datasets. This paper is not a scientific publication in the classic sense, but is intended as a review to provide searchable help to make the described packages usable for the tomography community. It presents the necessary additional preprocessing in ImageJ, some workarounds for bugs in the software, and undocumented or badly documented parameters that need to be adapted for neutron computed tomography. The result is a slightly complicated, but surprisingly high-quality path to neutron computed tomography images in 3D, but not a replacement for the even more powerful commercial software mentioned above.

  2. Trace: a high-throughput tomographic reconstruction engine for large-scale datasets.

    PubMed

    Bicer, Tekin; Gürsoy, Doğa; Andrade, Vincent De; Kettimuthu, Rajkumar; Scullin, William; Carlo, Francesco De; Foster, Ian T

    2017-01-01

    Modern synchrotron light sources and detectors produce data at such scale and complexity that large-scale computation is required to unleash their full power. One of the widely used imaging techniques that generates data at tens of gigabytes per second is computed tomography (CT). Although CT experiments result in rapid data generation, the analysis and reconstruction of the collected data may require hours or even days of computation time with a medium-sized workstation, which hinders the scientific progress that relies on the results of analysis. We present Trace, a data-intensive computing engine that we have developed to enable high-performance implementation of iterative tomographic reconstruction algorithms for parallel computers. Trace provides fine-grained reconstruction of tomography datasets using both (thread-level) shared memory and (process-level) distributed memory parallelization. Trace utilizes a special data structure called replicated reconstruction object to maximize application performance. We also present the optimizations that we apply to the replicated reconstruction objects and evaluate them using tomography datasets collected at the Advanced Photon Source. Our experimental evaluations show that our optimizations and parallelization techniques can provide 158× speedup using 32 compute nodes (384 cores) over a single-core configuration and decrease the end-to-end processing time of a large sinogram (with 4501 × 1 × 22,400 dimensions) from 12.5 h to <5 min per iteration. The proposed tomographic reconstruction engine can efficiently process large-scale tomographic data using many compute nodes and minimize reconstruction times.

  3. Terahertz Computed Tomography of NASA Thermal Protection System Materials

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Reyes-Rodriguez, S.; Zimdars, D. A.; Rauser, R. W.; Ussery, W. W.

    2011-01-01

    A terahertz axial computed tomography system has been developed that uses time domain measurements in order to form cross-sectional image slices and three-dimensional volume renderings of terahertz-transparent materials. The system can inspect samples as large as 0.0283 cubic meters (1 cubic foot) with no safety concerns as for x-ray computed tomography. In this study, the system is evaluated for its ability to detect and characterize flat bottom holes, drilled holes, and embedded voids in foam materials utilized as thermal protection on the external fuel tanks for the Space Shuttle. X-ray micro-computed tomography was also performed on the samples to compare against the terahertz computed tomography results and better define embedded voids. Limits of detectability based on depth and size for the samples used in this study are loosely defined. Image sharpness and morphology characterization ability for terahertz computed tomography are qualitatively described.

  4. Improving the quantitative accuracy of optical-emission computed tomography by incorporating an attenuation correction: application to HIF1 imaging

    NASA Astrophysics Data System (ADS)

    Kim, E.; Bowsher, J.; Thomas, A. S.; Sakhalkar, H.; Dewhirst, M.; Oldham, M.

    2008-10-01

    Optical computed tomography (optical-CT) and optical-emission computed tomography (optical-ECT) are new techniques for imaging the 3D structure and function (including gene expression) of whole unsectioned tissue samples. This work presents a method of improving the quantitative accuracy of optical-ECT by correcting for the 'self'-attenuation of photons emitted within the sample. The correction is analogous to a method commonly applied in single-photon-emission computed tomography reconstruction. The performance of the correction method was investigated by application to a transparent cylindrical gelatin phantom, containing a known distribution of attenuation (a central ink-doped gelatine core) and a known distribution of fluorescing fibres. Attenuation corrected and uncorrected optical-ECT images were reconstructed on the phantom to enable an evaluation of the effectiveness of the correction. Significant attenuation artefacts were observed in the uncorrected images where the central fibre appeared ~24% less intense due to greater attenuation from the surrounding ink-doped gelatin. This artefact was almost completely removed in the attenuation-corrected image, where the central fibre was within ~4% of the others. The successful phantom test enabled application of attenuation correction to optical-ECT images of an unsectioned human breast xenograft tumour grown subcutaneously on the hind leg of a nude mouse. This tumour cell line had been genetically labelled (pre-implantation) with fluorescent reporter genes such that all viable tumour cells expressed constitutive red fluorescent protein and hypoxia-inducible factor 1 transcription-produced green fluorescent protein. In addition to the fluorescent reporter labelling of gene expression, the tumour microvasculature was labelled by a light-absorbing vasculature contrast agent delivered in vivo by tail-vein injection. Optical-CT transmission images yielded high-resolution 3D images of the absorbing contrast agent, and revealed highly inhomogeneous vasculature perfusion within the tumour. Optical-ECT emission images yielded high-resolution 3D images of the fluorescent protein distribution in the tumour. Attenuation-uncorrected optical-ECT images showed clear loss of signal in regions of high attenuation, including regions of high perfusion, where attenuation is increased by increased vascular ink stain. Application of attenuation correction showed significant changes in an apparent expression of fluorescent proteins, confirming the importance of the attenuation correction. In conclusion, this work presents the first development and application of an attenuation correction for optical-ECT imaging. The results suggest that successful attenuation correction for optical-ECT is feasible and is essential for quantitatively accurate optical-ECT imaging.

  5. Comparison of magnetic resonance imaging and computed tomography in suspected lesions in the posterior cranial fossa.

    PubMed Central

    Teasdale, G. M.; Hadley, D. M.; Lawrence, A.; Bone, I.; Burton, H.; Grant, R.; Condon, B.; Macpherson, P.; Rowan, J.

    1989-01-01

    OBJECTIVE--To compare computed tomography and magnetic resonance imaging in investigating patients suspected of having a lesion in the posterior cranial fossa. DESIGN--Randomised allocation of newly referred patients to undergo either computed tomography or magnetic resonance imaging; the alternative investigation was performed subsequently only in response to a request from the referring doctor. SETTING--A regional neuroscience centre serving 2.7 million. PATIENTS--1020 Patients recruited between April 1986 and December 1987, all suspected by neurologists, neurosurgeons, or other specialists of having a lesion in the posterior fossa and referred for neuroradiology. The groups allocated to undergo computed tomography or magnetic resonance imaging were well matched in distributions of age, sex, specialty of referring doctor, investigation as an inpatient or an outpatient, suspected site of lesion, and presumed disease process; the referring doctor's confidence in the initial clinical diagnosis was also similar. INTERVENTIONS--After the patients had been imaged by either computed tomography or magnetic resonance (using a resistive magnet of 0.15 T) doctors were given the radiologist's report and a form asking if they considered that imaging with the alternative technique was necessary and, if so, why; it also asked for their current diagnoses and their confidence in them. MAIN OUTCOME MEASURES--Number of requests for the alternative method of investigation. Assessment of characteristics of patients for whom further imaging was requested and lesions that were suspected initially and how the results of the second imaging affected clinicians' and radiologists' opinions. RESULTS--Ninety three of the 501 patients who initially underwent computed tomography were referred subsequently for magnetic resonance imaging whereas only 28 of the 493 patients who initially underwent magnetic resonance imaging were referred subsequently for computed tomography. Over the study the number of patients referred for magnetic resonance imaging after computed tomography increased but requests for computed tomography after magnetic resonance imaging decreased. The reason that clinicians gave most commonly for requesting further imaging by magnetic resonance was that the results of the initial computed tomography failed to exclude their suspected diagnosis (64 patients). This was less common in patients investigated initially by magnetic resonance imaging (eight patients). Management of 28 patients (6%) imaged initially with computed tomography and 12 patients (2%) imaged initially with magnetic resonance was changed on the basis of the results of the alternative imaging. CONCLUSIONS--Magnetic resonance imaging provided doctors with the information required to manage patients suspected of having a lesion in the posterior fossa more commonly than computed tomography, but computed tomography alone was satisfactory in 80% of cases... PMID:2506965

  6. Congruence Between Pulmonary Function and Computed Tomography Imaging Assessment of Cystic Fibrosis Severity.

    PubMed

    Rybacka, Anna; Goździk-Spychalska, Joanna; Rybacki, Adam; Piorunek, Tomasz; Batura-Gabryel, Halina; Karmelita-Katulska, Katarzyna

    2018-05-04

    In cystic fibrosis, pulmonary function tests (PFTs) and computed tomography are used to assess lung function and structure, respectively. Although both techniques of assessment are congruent there are lingering doubts about which PFTs variables show the best congruence with computed tomography scoring. In this study we addressed the issue by reinvestigating the association between PFTs variables and the score of changes seen in computed tomography scans in patients with cystic fibrosis with and without pulmonary exacerbation. This retrospective study comprised 40 patients in whom PFTs and computed tomography were performed no longer than 3 weeks apart. Images (inspiratory: 0.625 mm slice thickness, 0.625 mm interval; expiratory: 1.250 mm slice thickness, 10 mm interval) were evaluated with the Bhalla scoring system. The most frequent structural abnormality found in scans were bronchiectases and peribronchial thickening. The strongest relationship was found between the Bhalla sore and forced expiratory volume in 1 s (FEV1). The Bhalla sore also was related to forced vital capacity (FVC), FEV1/FVC ratio, residual volume (RV), and RV/total lung capacity (TLC) ratio. We conclude that lung structural data obtained from the computed tomography examination are highly congruent to lung function data. Thus, computed tomography imaging may supersede functional assessment in cases of poor compliance with spirometry procedures in the lederly or children. Computed tomography also seems more sensitive than PFTs in the assessment of cystic fibrosis progression. Moreover, in early phases of cystic fibrosis, computed tomography, due to its excellent resolution, may be irreplaceable in monitoring pulmonary damage.

  7. Development and applications of nondestructive evaluation at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Whitaker, Ann F.

    1990-01-01

    A brief description of facility design and equipment, facility usage, and typical investigations are presented for the following: Surface Inspection Facility; Advanced Computer Tomography Inspection Station (ACTIS); NDE Data Evaluation Facility; Thermographic Test Development Facility; Radiographic Test Facility; Realtime Radiographic Test Facility; Eddy Current Research Facility; Acoustic Emission Monitoring System; Advanced Ultrasonic Test Station (AUTS); Ultrasonic Test Facility; and Computer Controlled Scanning (CONSCAN) System.

  8. SCCT guidelines for the performance and acquisition of coronary computed tomographic angiography: A report of the society of Cardiovascular Computed Tomography Guidelines Committee: Endorsed by the North American Society for Cardiovascular Imaging (NASCI).

    PubMed

    Abbara, Suhny; Blanke, Philipp; Maroules, Christopher D; Cheezum, Michael; Choi, Andrew D; Han, B Kelly; Marwan, Mohamed; Naoum, Chris; Norgaard, Bjarne L; Rubinshtein, Ronen; Schoenhagen, Paul; Villines, Todd; Leipsic, Jonathon

    In response to recent technological advancements in acquisition techniques as well as a growing body of evidence regarding the optimal performance of coronary computed tomography angiography (coronary CTA), the Society of Cardiovascular Computed Tomography Guidelines Committee has produced this update to its previously established 2009 "Guidelines for the Performance of Coronary CTA" (1). The purpose of this document is to provide standards meant to ensure reliable practice methods and quality outcomes based on the best available data in order to improve the diagnostic care of patients. Society of Cardiovascular Computed Tomography Guidelines for the Interpretation is published separately (2). The Society of Cardiovascular Computed Tomography Guidelines Committee ensures compliance with all existing standards for the declaration of conflict of interest by all authors and reviewers for the purpose ofclarity and transparency. Copyright © 2016 Society of Cardiovascular Computed Tomography. All rights reserved.

  9. A micro-CL system and its applications

    NASA Astrophysics Data System (ADS)

    Wei, Zenghui; Yuan, Lulu; Liu, Baodong; Wei, Cunfeng; Sun, Cuili; Yin, Pengfei; Wei, Long

    2017-11-01

    The computed laminography (CL) method is preferable to computed tomography for the non-destructive testing of plate-like objects. A micro-CL system is developed for three-dimensional imaging of plate-like objects. The details of the micro-CL system are described, including the system architecture, scanning modes, and reconstruction algorithm. The experiment results of plate-like fossils, insulated gate bipolar translator module, ball grid array packaging, and printed circuit board are also presented to demonstrate micro-CL's ability for 3D imaging of flat specimens and universal applicability in various fields.

  10. A micro-CL system and its applications.

    PubMed

    Wei, Zenghui; Yuan, Lulu; Liu, Baodong; Wei, Cunfeng; Sun, Cuili; Yin, Pengfei; Wei, Long

    2017-11-01

    The computed laminography (CL) method is preferable to computed tomography for the non-destructive testing of plate-like objects. A micro-CL system is developed for three-dimensional imaging of plate-like objects. The details of the micro-CL system are described, including the system architecture, scanning modes, and reconstruction algorithm. The experiment results of plate-like fossils, insulated gate bipolar translator module, ball grid array packaging, and printed circuit board are also presented to demonstrate micro-CL's ability for 3D imaging of flat specimens and universal applicability in various fields.

  11. The application of rapid prototyping technique in chin augmentation.

    PubMed

    Li, Min; Lin, Xin; Xu, Yongchen

    2010-04-01

    This article discusses the application of computer-aided design and rapid prototyping techniques in prosthetic chin augmentation for mild microgenia. Nine cases of mild microgenia underwent an electrobeam computer tomography scan. Then we performed three-dimensional reconstruction and operative design using computer software. According to the design, we determined the shape and size of the prostheses and made an individualized prosthesis for each chin augmentation with the rapid prototyping technique. With the application of computer-aided design and a rapid prototyping technique, we could determine the shape, size, and embedding location accurately. Prefabricating the individual prosthesis model is useful in improving the accuracy of treatment. In the nine cases of mild microgenia, three received a silicone implant, four received an ePTFE implant, and two received a Medpor implant. All patients were satisfied with the results. During follow-up at 6-12 months, all patients remained satisfied. The application of computer-aided design and rapid prototyping techniques can offer surgeons the ability to design an individualized ideal prosthesis for each patient.

  12. Radiomics in Oncological PET/CT: Clinical Applications.

    PubMed

    Lee, Jeong Won; Lee, Sang Mi

    2018-06-01

    18 F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) is widely used for staging, evaluating treatment response, and predicting prognosis in malignant diseases. FDG uptake and volumetric PET parameters such as metabolic tumor volume have been used and are still used as conventional PET parameters to assess biological characteristics of tumors. However, in recent years, additional features derived from PET images by computational processing have been found to reflect intratumoral heterogeneity, which is related to biological tumor features, and to provide additional predictive and prognostic information, which leads to the concept of radiomics. In this review, we focus on recent clinical studies of malignant diseases that investigated intratumoral heterogeneity on PET/CT, and we discuss its clinical role in various cancers.

  13. Comparison of computed tomography and magnetic resonance imaging for the evaluation of canine intranasal neoplasia.

    PubMed

    Drees, R; Forrest, L J; Chappell, R

    2009-07-01

    Canine intranasal neoplasia is commonly evaluated using computed tomography to indicate the diagnosis, to determine disease extent, to guide histological sampling location and to plan treatment. With the expanding use of magnetic resonance imaging in veterinary medicine, this modality has been recently applied for the same purpose. The aim of this study was to compare the features of canine intranasal neoplasia using computed tomography and magnetic resonance imaging. Twenty-one dogs with confirmed intranasal neoplasia underwent both computed tomography and magnetic resonance imaging. The images were reviewed retrospectively for the bony and soft tissue features of intranasal neoplasia. Overall computed tomography and magnetic resonance imaging performed very similarly. However, lysis of bones bordering the nasal cavity and mucosal thickening was found on computed tomography images more often than on magnetic resonance images. Small amounts of fluid in the nasal cavity were more often seen on magnetic resonance images. However, fluid in the frontal sinuses was seen equally well with both modalities. We conclude that computed tomography is satisfactory for evaluation of canine intranasal neoplasia, and no clinically relevant benefit is gained using magnetic resonance imaging for intranasal neoplasia without extent into the cranial cavity.

  14. [Diprosopus triophthalmus. From ancient terracotta sculptures to spiral computer tomographic reconstruction].

    PubMed

    Sokiranski, R; Pirsig, W; Nerlich, A

    2005-03-01

    A still-born male fetus from the 19th century, fixed in formalin and presenting as diprosopia triophthalmica, was analysed by helical computer tomography and virtually reconstructed without damage. This rare, incomplete, symmetrical duplication of the face on a single head with three eyes, two noses and two mouths develops in the first 3 weeks of gestation and is a subset of the category of conjoined twins with unknown underlying etiology. Spiral computer tomography of fixed tissue demonstrated in the more than 100 year old specimen that virtual reconstruction can be performed in nearly the same way as in patients (contrast medium application not possible). The radiological reconstruction of the Munich fetus, here confined to head and neck data, is the basis for comparison with a number of imaging procedures of the last 3000 years. Starting with some Neolithic Mesoamerican ceramics, the "Pretty Ladies of Tlatilco", diprosopia triophthalmica was also depicted on engravings of the 16th and 17th century A.D. by artists as well as by the anatomist Soemmering and his engraver Berndt in the 18th century. Our modern spiral computer tomography confirms the ability of our ancestors to depict diprosopia triophthalmica in paintings and sculptures with a high level of natural precision.

  15. Recent advances in 3D computed tomography techniques for simulation and navigation in hepatobiliary pancreatic surgery.

    PubMed

    Uchida, Masafumi

    2014-04-01

    A few years ago it could take several hours to complete a 3D image using a 3D workstation. Thanks to advances in computer science, obtaining results of interest now requires only a few minutes. Many recent 3D workstations or multimedia computers are equipped with onboard 3D virtual patient modeling software, which enables patient-specific preoperative assessment and virtual planning, navigation, and tool positioning. Although medical 3D imaging can now be conducted using various modalities, including computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasonography (US) among others, the highest quality images are obtained using CT data, and CT images are now the most commonly used source of data for 3D simulation and navigation image. If the 2D source image is bad, no amount of 3D image manipulation in software will provide a quality 3D image. In this exhibition, the recent advances in CT imaging technique and 3D visualization of the hepatobiliary and pancreatic abnormalities are featured, including scan and image reconstruction technique, contrast-enhanced techniques, new application of advanced CT scan techniques, and new virtual reality simulation and navigation imaging. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  16. Applications of PET CT in clinical practice: Present and future

    NASA Astrophysics Data System (ADS)

    Costa, Durval Campos

    2007-02-01

    Radionuclide imaging and specially positron emission tomography (PET) has already demonstrated its benefits in three major medical subjects, i.e. neurology, cardiology and particularly clinical oncology. More recently the combination of PET and X-ray computed tomography (CT) as PET-CT led to a significant increment of the already large number of clinical applications of this imaging modality. This "anatomy-metabolic fusion" also known as Metabolic Imaging has its future assured if we can: (1) improve resolution reducing partial volume effect, (2) achieve very fast whole body imaging, (3) obtain accurate quantification of specific functions with higher contrast resolution and, if possible, (4) reduce exposure rates due to the unavoidable use of ionizing radiation.

  17. F-18-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Appearance of Extramedullary Hematopoesis in a Case of Primary Myelofibrosis

    PubMed Central

    Mukherjee, Anirban; Bal, Chandrasekhar; Tripathi, Madhavi; Das, Chandan Jyoti; Shamim, Shamim Ahmed

    2017-01-01

    A 44-year-old female with known primary myelofibrosis presented with shortness of breath. High Resolution Computed Tomography thorax revealed large heterogeneously enhancing extraparenchymal soft tissue density mass involving bilateral lung fields. F-18-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography revealed mildly FDG avid soft tissue density mass with specks of calcification involving bilateral lung fields, liver, and spleen. Subsequent histopathologic evaluation from the right lung mass was suggestive of extramedullary hematopoesis. PMID:28533647

  18. Multi-material decomposition of spectral CT images

    NASA Astrophysics Data System (ADS)

    Mendonça, Paulo R. S.; Bhotika, Rahul; Maddah, Mahnaz; Thomsen, Brian; Dutta, Sandeep; Licato, Paul E.; Joshi, Mukta C.

    2010-04-01

    Spectral Computed Tomography (Spectral CT), and in particular fast kVp switching dual-energy computed tomography, is an imaging modality that extends the capabilities of conventional computed tomography (CT). Spectral CT enables the estimation of the full linear attenuation curve of the imaged subject at each voxel in the CT volume, instead of a scalar image in Hounsfield units. Because the space of linear attenuation curves in the energy ranges of medical applications can be accurately described through a two-dimensional manifold, this decomposition procedure would be, in principle, limited to two materials. This paper describes an algorithm that overcomes this limitation, allowing for the estimation of N-tuples of material-decomposed images. The algorithm works by assuming that the mixing of substances and tissue types in the human body has the physicochemical properties of an ideal solution, which yields a model for the density of the imaged material mix. Under this model the mass attenuation curve of each voxel in the image can be estimated, immediately resulting in a material-decomposed image triplet. Decomposition into an arbitrary number of pre-selected materials can be achieved by automatically selecting adequate triplets from an application-specific material library. The decomposition is expressed in terms of the volume fractions of each constituent material in the mix; this provides for a straightforward, physically meaningful interpretation of the data. One important application of this technique is in the digital removal of contrast agent from a dual-energy exam, producing a virtual nonenhanced image, as well as in the quantification of the concentration of contrast observed in a targeted region, thus providing an accurate measure of tissue perfusion.

  19. Esthetic considerations for the treatment of the edentulous maxilla based on current informatic alternatives: a case report.

    PubMed

    Rodríguez-Tizcareño, Mario H; Barajas, Lizbeth; Pérez-Gásque, Marisol; Gómez, Salvador

    2012-06-01

    This report presents a protocol used to transfer the virtual treatment plan data to the surgical and prosthetic reality and its clinical application, bone site augmentation with computer-custom milled bovine bone graft blocks to their ideal architecture form, implant insertion based on image-guided stent fabrication, and the restorative manufacturing process through computed tomography-based software programs and navigation systems and the computer-aided design and manufacturing techniques for the treatment of the edentulous maxilla.

  20. Computed tomography image-guided surgery in complex acetabular fractures.

    PubMed

    Brown, G A; Willis, M C; Firoozbakhsh, K; Barmada, A; Tessman, C L; Montgomery, A

    2000-01-01

    Eleven complex acetabular fractures in 10 patients were treated by open reduction with internal fixation incorporating computed tomography image guided software intraoperatively. Each of the implants placed under image guidance was found to be accurate and without penetration of the pelvis or joint space. The setup time for the system was minimal. Accuracy in the range of 1 mm was found when registration was precise (eight cases) and was in the range of 3.5 mm when registration was only approximate (three cases). Added benefits included reduced intraoperative fluoroscopic time, less need for more extensive dissection, and obviation of additional surgical approaches in some cases. Compared with a series of similar fractures treated before this image guided series, the reduction in operative time was significant. For patients with complex anterior and posterior combined fractures, the average operation times with and without application of three-dimensional imaging technique were, respectively, 5 hours 15 minutes and 6 hours 14 minutes, revealing 16% less operative time for those who had surgery using image guidance. In the single column fracture group, the operation time for those with three-dimensional imaging application, was 2 hours 58 minutes and for those with traditional surgery, 3 hours 42 minutes, indicating 20% less operative time for those with imaging modality. Intraoperative computed tomography guided imagery was found to be an accurate and suitable method for use in the operative treatment of complex acetabular fractures with substantial displacement.

  1. Multiscale tomographic analysis of heterogeneous cast Al-Si-X alloys.

    PubMed

    Asghar, Z; Requena, G; Sket, F

    2015-07-01

    The three-dimensional microstructure of cast AlSi12Ni and AlSi10Cu5Ni2 alloys is investigated by laboratory X-ray computed tomography, synchrotron X-ray computed microtomography, light optical tomography and synchrotron X-ray computed microtomography with submicrometre resolution. The results obtained with each technique are correlated with the size of the scanned volumes and resolved microstructural features. Laboratory X-ray computed tomography is sufficient to resolve highly absorbing aluminides but eutectic and primary Si remain unrevealed. Synchrotron X-ray computed microtomography at ID15/ESRF gives better spatial resolution and reveals primary Si in addition to aluminides. Synchrotron X-ray computed microtomography at ID19/ESRF reveals all the phases ≥ ∼1 μm in volumes about 80 times smaller than laboratory X-ray computed tomography. The volumes investigated by light optical tomography and submicrometre synchrotron X-ray computed microtomography are much smaller than laboratory X-ray computed tomography but both techniques provide local chemical information on the types of aluminides. The complementary techniques applied enable a full three-dimensional characterization of the microstructure of the alloys at length scales ranging over six orders of magnitude. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  2. Electromagnetic Navigational Bronchoscopy Reduces the Time Required for Localization and Resection of Lung Nodules.

    PubMed

    Bolton, William David; Cochran, Thomas; Ben-Or, Sharon; Stephenson, James E; Ellis, William; Hale, Allyson L; Binks, Andrew P

    The aims of the study were to evaluate electromagnetic navigational bronchoscopy (ENB) and computed tomography-guided placement as localization techniques for minimally invasive resection of small pulmonary nodules and determine whether electromagnetic navigational bronchoscopy is a safer and more effective method than computed tomography-guided localization. We performed a retrospective review of our thoracic surgery database to identify patients who underwent minimally invasive resection for a pulmonary mass and used either electromagnetic navigational bronchoscopy or computed tomography-guided localization techniques between July 2011 and May 2015. Three hundred eighty-three patients had a minimally invasive resection during our study period, 117 of whom underwent electromagnetic navigational bronchoscopy or computed tomography localization (electromagnetic navigational bronchoscopy = 81; computed tomography = 36). There was no significant difference between computed tomography and electromagnetic navigational bronchoscopy patient groups with regard to age, sex, race, pathology, nodule size, or location. Both computed tomography and electromagnetic navigational bronchoscopy were 100% successful at localizing the mass, and there was no difference in the type of definitive surgical resection (wedge, segmentectomy, or lobectomy) (P = 0.320). Postoperative complications occurred in 36% of all patients, but there were no complications related to the localization procedures. In terms of localization time and surgical time, there was no difference between groups. However, the down/wait time between localization and resection was significant (computed tomography = 189 minutes; electromagnetic navigational bronchoscopy = 27 minutes); this explains why the difference in total time (sum of localization, down, and surgery) was significant (P < 0.001). We found electromagnetic navigational bronchoscopy to be as safe and effective as computed tomography-guided wire placement and to provide a significantly decreased down time between localization and surgical resection.

  3. Correlative multiple porosimetries for reservoir sandstones with adoption of a new reference-sample-guided computed-tomographic method.

    PubMed

    Jin, Jae Hwa; Kim, Junho; Lee, Jeong-Yil; Oh, Young Min

    2016-07-22

    One of the main interests in petroleum geology and reservoir engineering is to quantify the porosity of reservoir beds as accurately as possible. A variety of direct measurements, including methods of mercury intrusion, helium injection and petrographic image analysis, have been developed; however, their application frequently yields equivocal results because these methods are different in theoretical bases, means of measurement, and causes of measurement errors. Here, we present a set of porosities measured in Berea Sandstone samples by the multiple methods, in particular with adoption of a new method using computed tomography and reference samples. The multiple porosimetric data show a marked correlativeness among different methods, suggesting that these methods are compatible with each other. The new method of reference-sample-guided computed tomography is more effective than the previous methods when the accompanied merits such as experimental conveniences are taken into account.

  4. Correlative multiple porosimetries for reservoir sandstones with adoption of a new reference-sample-guided computed-tomographic method

    PubMed Central

    Jin, Jae Hwa; Kim, Junho; Lee, Jeong-Yil; Oh, Young Min

    2016-01-01

    One of the main interests in petroleum geology and reservoir engineering is to quantify the porosity of reservoir beds as accurately as possible. A variety of direct measurements, including methods of mercury intrusion, helium injection and petrographic image analysis, have been developed; however, their application frequently yields equivocal results because these methods are different in theoretical bases, means of measurement, and causes of measurement errors. Here, we present a set of porosities measured in Berea Sandstone samples by the multiple methods, in particular with adoption of a new method using computed tomography and reference samples. The multiple porosimetric data show a marked correlativeness among different methods, suggesting that these methods are compatible with each other. The new method of reference-sample-guided computed tomography is more effective than the previous methods when the accompanied merits such as experimental conveniences are taken into account. PMID:27445105

  5. A new graphical user interface for fast construction of computation phantoms and MCNP calculations: application to calibration of in vivo measurement systems.

    PubMed

    Borisov, N; Franck, D; de Carlan, L; Laval, L

    2002-08-01

    The paper reports on a new utility for development of computational phantoms for Monte Carlo calculations and data analysis for in vivo measurements of radionuclides deposited in tissues. The individual properties of each worker can be acquired for a rather precise geometric representation of his (her) anatomy, which is particularly important for low energy gamma ray emitting sources such as thorium, uranium, plutonium and other actinides. The software discussed here enables automatic creation of an MCNP input data file based on scanning data. The utility includes segmentation of images obtained with either computed tomography or magnetic resonance imaging by distinguishing tissues according to their signal (brightness) and specification of the source and detector. In addition, a coupling of individual voxels within the tissue is used to reduce the memory demand and to increase the calculational speed. The utility was tested for low energy emitters in plastic and biological tissues as well as for computed tomography and magnetic resonance imaging scanning information.

  6. Application of Computer Axial Tomography (CAT) to measuring crop canopy geometry. [corn and soybeans

    NASA Technical Reports Server (NTRS)

    Bauer, M. E.; Vanderbilt, V. C. (Principal Investigator); Kilgore, R. W.

    1981-01-01

    The feasibility of using the principles of computer axial topography (CAT) to quantify the structure of crop canopies was investigated because six variables are needed to describe the position-orientation with time of a small piece of canopy foliage. Several cross sections were cut through the foliage of healthy, green corn and soybean canopies in the dent and full pod development stages, respectively. A photograph of each cross section representing the intersection of a plane with the foliage was enlarged and the air-foliage boundaries delineated by the plane were digitized. A computer program was written and used to reconstruct the cross section of the canopy. The approach used in applying optical computer axial tomography to measuring crop canopy geometry shows promise of being able to provide needed geometric information for input data to canopy reflectance models. The difficulty of using the CAT scanner to measure large canopies of crops like corn is discussed and a solution is proposed involving the measurement of plants one at a time.

  7. Molecular imaging of inflammation and intraplaque vasa vasorum: A step forward to identification of vulnerable plaques?

    PubMed Central

    ten Kate, Gerrit L.; Sijbrands, Eric J. G.; Valkema, Roelf; ten Cate, Folkert J.; Feinstein, Steven B.; van der Steen, Antonius F. W.; Daemen, Mat J. A. P.

    2010-01-01

    Current developments in cardiovascular biology and imaging enable the noninvasive molecular evaluation of atherosclerotic vascular disease. Intraplaque neovascularization sprouting from the adventitial vasa vasorum has been identified as an independent predictor of intraplaque hemorrhage and plaque rupture. These intraplaque vasa vasorum result from angiogenesis, most likely under influence of hypoxic and inflammatory stimuli. Several molecular imaging techniques are currently available. Most experience has been obtained with molecular imaging using positron emission tomography and single photon emission computed tomography. Recently, the development of targeted contrast agents has allowed molecular imaging with magnetic resonance imaging, ultrasound and computed tomography. The present review discusses the use of these molecular imaging techniques to identify inflammation and intraplaque vasa vasorum to identify vulnerable atherosclerotic plaques at risk of rupture and thrombosis. The available literature on molecular imaging techniques and molecular targets associated with inflammation and angiogenesis is discussed, and the clinical applications of molecular cardiovascular imaging and the use of molecular techniques for local drug delivery are addressed. PMID:20552308

  8. Sinonasal papilloma: what influences the decision to request a magnetic resonance imaging scan?

    PubMed

    Kasbekar, A V; Swords, C; Attlmayr, B; Kulkarni, T; Swift, A C

    2018-06-18

    Computed tomography is the standard pre-operative imaging modality for sinonasal papilloma. The complementary use of magnetic resonance imaging as an additional investigation is debated. This study aimed to establish whether magnetic resonance imaging can accurately detect tumour extent and is a useful adjunct to computed tomography. A retrospective review was conducted on 19 patients with sinonasal papilloma. The interpretation of computed tomography and magnetic resonance imaging scans, by three clinicians, was conducted by comparing prediction of tumour extent. The perceived necessity of magnetic resonance imaging was compared between clinicians. The addition of magnetic resonance imaging improved accuracy of pre-operative interpretation; specifically, this finding was significant in cases with frontal sinus involvement. Surgeons were more likely than a radiologist to request magnetic resonance imaging, particularly when computed tomography indicated frontal sinus disease. Pre-operative combined magnetic resonance imaging and computed tomography helped predict disease in the frontal sinus better than computed tomography alone. A close working relationship between the ENT and radiology departments is important for accurate tumour localisation.

  9. The use of combined single photon emission computed tomography and X-ray computed tomography to assess the fate of inhaled aerosol.

    PubMed

    Fleming, John; Conway, Joy; Majoral, Caroline; Tossici-Bolt, Livia; Katz, Ira; Caillibotte, Georges; Perchet, Diane; Pichelin, Marine; Muellinger, Bernhard; Martonen, Ted; Kroneberg, Philipp; Apiou-Sbirlea, Gabriela

    2011-02-01

    Gamma camera imaging is widely used to assess pulmonary aerosol deposition. Conventional planar imaging provides limited information on its regional distribution. In this study, single photon emission computed tomography (SPECT) was used to describe deposition in three dimensions (3D) and combined with X-ray computed tomography (CT) to relate this to lung anatomy. Its performance was compared to planar imaging. Ten SPECT/CT studies were performed on five healthy subjects following carefully controlled inhalation of radioaerosol from a nebulizer, using a variety of inhalation regimes. The 3D spatial distribution was assessed using a central-to-peripheral ratio (C/P) normalized to lung volume and for the right lung was compared to planar C/P analysis. The deposition by airway generation was calculated for each lung and the conducting airways deposition fraction compared to 24-h clearance. The 3D normalized C/P ratio correlated more closely with 24-h clearance than the 2D ratio for the right lung [coefficient of variation (COV), 9% compared to 15% p < 0.05]. Analysis of regional distribution was possible for both lungs in 3D but not in 2D due to overlap of the stomach on the left lung. The mean conducting airways deposition fraction from SPECT for both lungs was not significantly different from 24-h clearance (COV 18%). Both spatial and generational measures of central deposition were significantly higher for the left than for the right lung. Combined SPECT/CT enabled improved analysis of aerosol deposition from gamma camera imaging compared to planar imaging. 3D radionuclide imaging combined with anatomical information from CT and computer analysis is a useful approach for applications requiring regional information on deposition.

  10. Evaluation of Orthopedic Metal Artifact Reduction Application in Three-Dimensional Computed Tomography Reconstruction of Spinal Instrumentation: A Single Saudi Center Experience.

    PubMed

    Ali, Amir Monir

    2018-01-01

    The aim of the study was to evaluate the commercially available orthopedic metal artifact reduction (OMAR) technique in postoperative three-dimensional computed tomography (3DCT) reconstruction studies after spinal instrumentation and to investigate its clinical application. One hundred and twenty (120) patients with spinal metallic implants were included in the study. All had 3DCT reconstruction examinations using the OMAR software after obtaining the informed consents and approval of the Institution Ethical Committee. The degree of the artifacts, the related muscular density, the clearness of intermuscular fat planes, and definition of the adjacent vertebrae were qualitatively evaluated. The diagnostic satisfaction and quality of the 3D reconstruction images were thoroughly assessed. The majority (96.7%) of 3DCT reconstruction images performed were considered satisfactory to excellent for diagnosis. Only 3.3% of the reconstructed images had rendered unacceptable diagnostic quality. OMAR can effectively reduce metallic artifacts in patients with spinal instrumentation with highly diagnostic 3DCT reconstruction images.

  11. Intraoperative computed tomography.

    PubMed

    Tonn, J C; Schichor, C; Schnell, O; Zausinger, S; Uhl, E; Morhard, D; Reiser, M

    2011-01-01

    Intraoperative computed tomography (iCT) has gained increasing impact among modern neurosurgical techniques. Multislice CT with a sliding gantry in the OR provides excellent diagnostic image quality in the visualization of vascular lesions as well as bony structures including skull base and spine. Due to short acquisition times and a high spatial and temporal resolution, various modalities such as iCT-angiography, iCT-cerebral perfusion and the integration of intraoperative navigation with automatic re-registration after scanning can be performed. This allows a variety of applications, e.g. intraoperative angiography, intraoperative cerebral perfusion studies, update of cerebral and spinal navigation, stereotactic procedures as well as resection control in tumour surgery. Its versatility promotes its use in a multidisciplinary setting. Radiation exposure is comparable to standard CT systems outside the OR. For neurosurgical purposes, however, new hardware components (e.g. a radiolucent headholder system) had to be developed. Having a different range of applications compared to intraoperative MRI, it is an attractive modality for intraoperative imaging being comparatively easy to install and cost efficient.

  12. Ultrasonic image analysis and image-guided interventions.

    PubMed

    Noble, J Alison; Navab, Nassir; Becher, H

    2011-08-06

    The fields of medical image analysis and computer-aided interventions deal with reducing the large volume of digital images (X-ray, computed tomography, magnetic resonance imaging (MRI), positron emission tomography and ultrasound (US)) to more meaningful clinical information using software algorithms. US is a core imaging modality employed in these areas, both in its own right and used in conjunction with the other imaging modalities. It is receiving increased interest owing to the recent introduction of three-dimensional US, significant improvements in US image quality, and better understanding of how to design algorithms which exploit the unique strengths and properties of this real-time imaging modality. This article reviews the current state of art in US image analysis and its application in image-guided interventions. The article concludes by giving a perspective from clinical cardiology which is one of the most advanced areas of clinical application of US image analysis and describing some probable future trends in this important area of ultrasonic imaging research.

  13. Metal artifact removal (MAR) analysis for the security inspections using the X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Cho, Hyo Sung; Woo, Tae Ho; Park, Chul Kyu

    2016-10-01

    Using the metal artifact property, it is analyzed for the X-ray computed tomography (CT) in the aspect of the security on the examined places like airport and surveillance areas. Since the importance of terror prevention strategy has been increased, the security application of X-ray CT has the significant remark. One shot X-ray image has the limitation to find out the exact shape to property in the closed box, which could be solved by the CT scanning without the tearing off the box in this work. Cleaner images can be obtained by the advanced technology if the CT scanning is utilized in the security purposes on the secured areas. A metal sample is treated by the metal artifact removal (MAR) method for the enhanced image. The mimicked explosive is experimented for the imaging processing application where the cleaner one is obtained. The procedure is explained and the further study is discussed.

  14. How to Study Thermal Applications of Open-Cell Metal Foam: Experiments and Computational Fluid Dynamics

    PubMed Central

    De Schampheleire, Sven; De Jaeger, Peter; De Kerpel, Kathleen; Ameel, Bernd; Huisseune, Henk; De Paepe, Michel

    2016-01-01

    This paper reviews the available methods to study thermal applications with open-cell metal foam. Both experimental and numerical work are discussed. For experimental research, the focus of this review is on the repeatability of the results. This is a major concern, as most studies only report the dependence of thermal properties on porosity and a number of pores per linear inch (PPI-value). A different approach, which is studied in this paper, is to characterize the foam using micro tomography scans with small voxel sizes. The results of these scans are compared to correlations from the open literature. Large differences are observed. For the numerical work, the focus is on studies using computational fluid dynamics. A novel way of determining the closure terms is proposed in this work. This is done through a numerical foam model based on micro tomography scan data. With this foam model, the closure terms are determined numerically. PMID:28787894

  15. Computer tomography of the neurocranium.

    PubMed

    Liliequist, B; Forssell, A

    1976-07-01

    The experience with computer tomography of the neurocranium in 300 patients submitted for computer tomography of the brain is reported. The more appropriate projections which may be obtained with the second generation of scanners in combination with an elaborated reconstruction technique seem to constitute a replacement of conventional skull films.

  16. [Dosimetric evaluation of eye lense shieldings in computed tomography examination--measurements and Monte Carlo simulations].

    PubMed

    Wulff, Jorg; Keil, Boris; Auvanis, Diyala; Heverhagen, Johannes T; Klose, Klaus Jochen; Zink, Klemens

    2008-01-01

    The present study aims at the investigation of eye lens shielding of different composition for the use in computed tomography examinations. Measurements with thermo-luminescent dosimeters and a simple cylindrical waterfilled phantom were performed as well as Monte Carlo simulations with an equivalent geometry. Besides conventional shielding made of Bismuth coated latex, a new shielding with a mixture of metallic components was analyzed. This new material leads to an increased dose reduction compared to the Bismuth shielding. Measured and Monte Carlo simulated dose reductions are in good agreement and amount to 34% for the Bismuth shielding and 46% for the new material. For simulations the EGSnrc code system was used and a new application CTDOSPP was developed for the simulation of the computed tomography examination. The investigations show that a satisfying agreement between simulation and measurement with the chosen geometries of this study could only be achieved, when transport of secondary electrons was accounted for in the simulation. The amount of scattered radiation due to the protector by fluorescent photons was analyzed and is larger for the new material due to the smaller atomic number of the metallic components.

  17. X-ray computed tomography using curvelet sparse regularization.

    PubMed

    Wieczorek, Matthias; Frikel, Jürgen; Vogel, Jakob; Eggl, Elena; Kopp, Felix; Noël, Peter B; Pfeiffer, Franz; Demaret, Laurent; Lasser, Tobias

    2015-04-01

    Reconstruction of x-ray computed tomography (CT) data remains a mathematically challenging problem in medical imaging. Complementing the standard analytical reconstruction methods, sparse regularization is growing in importance, as it allows inclusion of prior knowledge. The paper presents a method for sparse regularization based on the curvelet frame for the application to iterative reconstruction in x-ray computed tomography. In this work, the authors present an iterative reconstruction approach based on the alternating direction method of multipliers using curvelet sparse regularization. Evaluation of the method is performed on a specifically crafted numerical phantom dataset to highlight the method's strengths. Additional evaluation is performed on two real datasets from commercial scanners with different noise characteristics, a clinical bone sample acquired in a micro-CT and a human abdomen scanned in a diagnostic CT. The results clearly illustrate that curvelet sparse regularization has characteristic strengths. In particular, it improves the restoration and resolution of highly directional, high contrast features with smooth contrast variations. The authors also compare this approach to the popular technique of total variation and to traditional filtered backprojection. The authors conclude that curvelet sparse regularization is able to improve reconstruction quality by reducing noise while preserving highly directional features.

  18. Therapeutic and scintigraphic applications of polymeric micelles: combination of chemotherapy and radiotherapy in hepatocellular carcinoma

    PubMed Central

    Shih, Ying-Hsia; Peng, Cheng-Liang; Chiang, Ping-Fang; Lin, Wuu-Jyh; Luo, Tsai-Yueh; Shieh, Ming-Jium

    2015-01-01

    This study evaluated a multifunctional micelle simultaneously loaded with doxorubicin (Dox) and labeled with radionuclide rhenium-188 (188Re) as a combined radiotherapy and chemotherapy treatment for hepatocellular carcinoma. We investigated the single photon emission computed tomography, biodistribution, antitumor efficacy, and pathology of 188Re-Dox micelles in a murine orthotopic luciferase-transfected BNL tumor cells hepatocellular carcinoma model. The single photon emission computed tomography and computed tomography images showed high radioactivity in the liver and tumor, which was in agreement with the biodistribution measured by γ-counting. In vivo bioluminescence images showed the smallest size tumor (P<0.05) in mice treated with the combined micelles throughout the experimental period. In addition, the combined 188Re-Dox micelles group had significantly longer survival compared with the control, 188ReO4 alone (P<0.005), and Dox micelles alone (P<0.01) groups. Pathohistological analysis revealed that tumors treated with 188Re-Dox micelles had more necrotic features and decreased cell proliferation. Therefore, 188Re-Dox micelles may enable combined radiotherapy and chemotherapy to maximize the effectiveness of treatment for hepatocellular carcinoma. PMID:26719687

  19. Neurobiology of Chronic Stress-Related Psychiatric Disorders: Evidence from Molecular Imaging Studies

    PubMed Central

    Davis, Margaret T.; Holmes, Sophie E.; Pietrzak, Robert H.; Esterlis, Irina

    2018-01-01

    Chronic stress accounts for billions of dollars of economic loss annually in the United States alone, and is recognized as a major source of disability and mortality worldwide. Robust evidence suggests that chronic stress plays a significant role in the onset of severe and impairing psychiatric conditions, including major depressive disorder, bipolar disorder, and posttraumatic stress disorder. Application of molecular imaging techniques such as positron emission tomography and single photon emission computed tomography in recent years has begun to provide insight into the molecular mechanisms by which chronic stress confers risk for these disorders. The present paper provides a comprehensive review and synthesis of all positron emission tomography and single photon emission computed tomography imaging publications focused on the examination of molecular targets in individuals with major depressive disorder, posttraumatic stress disorder, or bipolar disorder to date. Critical discussion of discrepant findings and broad strengths and weaknesses of the current body of literature is provided. Recommended future directions for the field of molecular imaging to further elucidate the neurobiological substrates of chronic stress-related disorders are also discussed. This article is part of the inaugural issue for the journal focused on various aspects of chronic stress. PMID:29862379

  20. Visualization of x-ray computer tomography using computer-generated holography

    NASA Astrophysics Data System (ADS)

    Daibo, Masahiro; Tayama, Norio

    1998-09-01

    The theory converted from x-ray projection data to the hologram directly by combining the computer tomography (CT) with the computer generated hologram (CGH), is proposed. The purpose of this study is to offer the theory for realizing the all- electronic and high-speed seeing through 3D visualization system, which is for the application to medical diagnosis and non- destructive testing. First, the CT is expressed using the pseudo- inverse matrix which is obtained by the singular value decomposition. CGH is expressed in the matrix style. Next, `projection to hologram conversion' (PTHC) matrix is calculated by the multiplication of phase matrix of CGH with pseudo-inverse matrix of the CT. Finally, the projection vector is converted to the hologram vector directly, by multiplication of the PTHC matrix with the projection vector. Incorporating holographic analog computation into CT reconstruction, it becomes possible that the calculation amount is drastically reduced. We demonstrate the CT cross section which is reconstituted by He-Ne laser in the 3D space from the real x-ray projection data acquired by x-ray television equipment, using our direct conversion technique.

  1. Study of Image Qualities From 6D Robot-Based CBCT Imaging System of Small Animal Irradiator.

    PubMed

    Sharma, Sunil; Narayanasamy, Ganesh; Clarkson, Richard; Chao, Ming; Moros, Eduardo G; Zhang, Xin; Yan, Yulong; Boerma, Marjan; Paudel, Nava; Morrill, Steven; Corry, Peter; Griffin, Robert J

    2017-01-01

    To assess the quality of cone beam computed tomography images obtained by a robotic arm-based and image-guided small animal conformal radiation therapy device. The small animal conformal radiation therapy device is equipped with a 40 to 225 kV X-ray tube mounted on a custom made gantry, a 1024 × 1024 pixels flat panel detector (200 μm resolution), a programmable 6 degrees of freedom robot for cone beam computed tomography imaging and conformal delivery of radiation doses. A series of 2-dimensional radiographic projection images were recorded in cone beam mode by placing and rotating microcomputed tomography phantoms on the "palm' of the robotic arm. Reconstructed images were studied for image quality (spatial resolution, image uniformity, computed tomography number linearity, voxel noise, and artifacts). Geometric accuracy was measured to be 2% corresponding to 0.7 mm accuracy on a Shelley microcomputed tomography QA phantom. Qualitative resolution of reconstructed axial computed tomography slices using the resolution coils was within 200 μm. Quantitative spatial resolution was found to be 3.16 lp/mm. Uniformity of the system was measured within 34 Hounsfield unit on a QRM microcomputed tomography water phantom. Computed tomography numbers measured using the linearity plate were linear with material density ( R 2 > 0.995). Cone beam computed tomography images of the QRM multidisk phantom had minimal artifacts. Results showed that the small animal conformal radiation therapy device is capable of producing high-quality cone beam computed tomography images for precise and conformal small animal dose delivery. With its high-caliber imaging capabilities, the small animal conformal radiation therapy device is a powerful tool for small animal research.

  2. Surface radiation dose comparison of a dedicated extremity cone beam computed tomography (CBCT) device and a multidetector computed tomography (MDCT) machine in pediatric ankle and wrist phantoms

    PubMed Central

    Nagy, Eszter; Apfaltrer, Georg; Riccabona, Michael; Singer, Georg; Stücklschweiger, Georg; Guss, Helmuth; Sorantin, Erich

    2017-01-01

    Objectives To evaluate and compare surface doses of a cone beam computed tomography (CBCT) and a multidetector computed tomography (MDCT) device in pediatric ankle and wrist phantoms. Methods Thermoluminescent dosimeters (TLD) were used to measure and compare surface doses between CBCT and MDCT in a left ankle and a right wrist pediatric phantom. In both modalities adapted pediatric dose protocols were utilized to achieve realistic imaging conditions. All measurements were repeated three times to prove test-retest reliability. Additionally, objective and subjective image quality parameters were assessed. Results Average surface doses were 3.8 ±2.1 mGy for the ankle, and 2.2 ±1.3 mGy for the wrist in CBCT. The corresponding surface doses in optimized MDCT were 4.5 ±1.3 mGy for the ankle, and 3.4 ±0.7 mGy for the wrist. Overall, mean surface dose was significantly lower in CBCT (3.0 ±1.9 mGy vs. 3.9 ±1.2 mGy, p<0.001). Subjectively rated general image quality was not significantly different between the study protocols (p = 0.421), whereas objectively measured image quality parameters were in favor of CBCT (p<0.001). Conclusions Adapted extremity CBCT imaging protocols have the potential to fall below optimized pediatric ankle and wrist MDCT doses at comparable image qualities. These possible dose savings warrant further development and research in pediatric extremity CBCT applications. PMID:28570626

  3. Morphometric analysis - Cone beam computed tomography to predict bone quality and quantity.

    PubMed

    Hohlweg-Majert, B; Metzger, M C; Kummer, T; Schulze, D

    2011-07-01

    Modified quantitative computed tomography is a method used to predict bone quality and quantify the bone mass of the jaw. The aim of this study was to determine whether bone quantity or quality was detected by cone beam computed tomography (CBCT) combined with image analysis. MATERIALS AND PROCEDURES: Different measurements recorded on two phantoms (Siemens phantom, Comac phantom) were evaluated on images taken with the Somatom VolumeZoom (Siemens Medical Solutions, Erlangen, Germany) and the NewTom 9000 (NIM s.r.l., Verona, Italy) in order to calculate a calibration curve. The spatial relationships of six sample cylinders and the repositioning from four pig skull halves relative to adjacent defined anatomical structures were assessed by means of three-dimensional visualization software. The calibration curves for computer tomography (CT) and cone beam computer tomography (CBCT) using the Siemens phantom showed linear correlation in both modalities between the Hounsfield Units (HU) and bone morphology. A correction factor for CBCT was calculated. Exact information about the micromorphology of the bone cylinders was only available using of micro computer tomography. Cone-beam computer tomography is a suitable choice for analysing bone mass, but, it does not give any information about bone quality. 2010 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  4. Comparison of computed tomography and magnetic resonance imaging for the evaluation of canine intranasal neoplasia

    PubMed Central

    Drees, R.; Forrest, L. J.; Chappell, R.

    2009-01-01

    Objectives Canine intranasal neoplasia is commonly evaluated using computed tomography to indicate the diagnosis, to determine disease extent, to guide histological sampling location and to plan treatment. With the expanding use of magnetic resonance imaging in veterinary medicine, this modality has been recently applied for the same purpose. The aim of this study was to compare the features of canine intranasal neoplasia using computed tomography and magnetic resonance imaging. Methods Twenty-one dogs with confirmed intranasal neoplasia underwent both computed tomography and magnetic resonance imaging. The images were reviewed retrospectively for the bony and soft tissue features of intranasal neoplasia. Results Overall computed tomography and magnetic resonance imaging performed very similarly. However, lysis of bones bordering the nasal cavity and mucosal thickening was found on computed tomography images more often than on magnetic resonance images. Small amounts of fluid in the nasal cavity were more often seen on magnetic resonance images. However, fluid in the frontal sinuses was seen equally well with both modalities. Clinical Significance We conclude that computed tomography is satisfactory for evaluation of canine intranasal neoplasia, and no clinically relevant benefit is gained using magnetic resonance imaging for intranasal neoplasia without extent into the cranial cavity. PMID:19508490

  5. Magnetoacoustic Tomography with Magnetic Induction: A Rigorous Theory

    PubMed Central

    Ma, Qingyu; He, Bin

    2013-01-01

    We have proposed a new theory on mechanism of the magnetoacoustic signal generation with magnetic induction for an object with an arbitrary shape. An object under a static magnetic field emits acoustic signals when excited by a time-varying magnetic field, and that the acoustic waveform is mainly generated at the conductivity boundaries within the object. The proposed theory on the magnetoacoustic tomography with magnetic induction produced highly consistent results among computational and experimental paradigms in a two-layer sample phantom and suggests the potential applications for bioimpedance imaging. PMID:18270025

  6. Measurement of Three-dimensional Density Distributions by Holographic Interferometry and Computer Tomography

    NASA Technical Reports Server (NTRS)

    Vest, C. M.

    1982-01-01

    The use of holographic interferometry to measure two and threedimensional flows and the interpretation of multiple-view interferograms with computer tomography are discussed. Computational techniques developed for tomography are reviewed. Current research topics are outlined including the development of an automated fringe readout system, optimum reconstruction procedures for when an opaque test model is present in the field, and interferometry and tomography with strongly refracting fields and shocks.

  7. Computer Tomography and Hybrid Optical/Digital Methods for Aerodynamic Measurements.

    DTIC Science & Technology

    1987-12-28

    Industrial Applications of Corn- on Axisymnnietric Flame ’Iempnlw res Measured by Holo- puted Tornographv arid NMI? Imiaging (Optical Society of graphic...Pontificia Universidad Catolica de Chile. Escuela de Ingenieria . Santiago, equal. The optical path length difference (OPD) be- Chile. tween the two rays

  8. A Semi-Discrete Landweber-Kaczmarz Method for Cone Beam Tomography and Laminography Exploiting Geometric Prior Information

    NASA Astrophysics Data System (ADS)

    Vogelgesang, Jonas; Schorr, Christian

    2016-12-01

    We present a semi-discrete Landweber-Kaczmarz method for solving linear ill-posed problems and its application to Cone Beam tomography and laminography. Using a basis function-type discretization in the image domain, we derive a semi-discrete model of the underlying scanning system. Based on this model, the proposed method provides an approximate solution of the reconstruction problem, i.e. reconstructing the density function of a given object from its projections, in suitable subspaces equipped with basis function-dependent weights. This approach intuitively allows the incorporation of additional information about the inspected object leading to a more accurate model of the X-rays through the object. Also, physical conditions of the scanning geometry, like flat detectors in computerized tomography as used in non-destructive testing applications as well as non-regular scanning curves e.g. appearing in computed laminography (CL) applications, are directly taken into account during the modeling process. Finally, numerical experiments of a typical CL application in three dimensions are provided to verify the proposed method. The introduction of geometric prior information leads to a significantly increased image quality and superior reconstructions compared to standard iterative methods.

  9. Improving early diagnosis of pulmonary infections in patients with febrile neutropenia using low-dose chest computed tomography.

    PubMed

    Gerritsen, M G; Willemink, M J; Pompe, E; van der Bruggen, T; van Rhenen, A; Lammers, J W J; Wessels, F; Sprengers, R W; de Jong, P A; Minnema, M C

    2017-01-01

    We performed a prospective study in patients with chemotherapy induced febrile neutropenia to investigate the diagnostic value of low-dose computed tomography compared to standard chest radiography. The aim was to compare both modalities for detection of pulmonary infections and to explore performance of low-dose computed tomography for early detection of invasive fungal disease. The low-dose computed tomography remained blinded during the study. A consensus diagnosis of the fever episode made by an expert panel was used as reference standard. We included 67 consecutive patients on the first day of febrile neutropenia. According to the consensus diagnosis 11 patients (16.4%) had pulmonary infections. Sensitivity, specificity, positive predictive value and negative predictive value were 36%, 93%, 50% and 88% for radiography, and 73%, 91%, 62% and 94% for low-dose computed tomography, respectively. An uncorrected McNemar showed no statistical difference (p = 0.197). Mean radiation dose for low-dose computed tomography was 0.24 mSv. Four out of 5 included patients diagnosed with invasive fungal disease had radiographic abnormalities suspect for invasive fungal disease on the low-dose computed tomography scan made on day 1 of fever, compared to none of the chest radiographs. We conclude that chest radiography has little value in the initial assessment of febrile neutropenia on day 1 for detection of pulmonary abnormalities. Low-dose computed tomography improves detection of pulmonary infiltrates and seems capable of detecting invasive fungal disease at a very early stage with a low radiation dose.

  10. Improving early diagnosis of pulmonary infections in patients with febrile neutropenia using low-dose chest computed tomography

    PubMed Central

    Pompe, E.; van der Bruggen, T.; van Rhenen, A.; Lammers, J. W. J.; Wessels, F.; Sprengers, R. W.; de Jong, P. A.; Minnema, M. C.

    2017-01-01

    We performed a prospective study in patients with chemotherapy induced febrile neutropenia to investigate the diagnostic value of low-dose computed tomography compared to standard chest radiography. The aim was to compare both modalities for detection of pulmonary infections and to explore performance of low-dose computed tomography for early detection of invasive fungal disease. The low-dose computed tomography remained blinded during the study. A consensus diagnosis of the fever episode made by an expert panel was used as reference standard. We included 67 consecutive patients on the first day of febrile neutropenia. According to the consensus diagnosis 11 patients (16.4%) had pulmonary infections. Sensitivity, specificity, positive predictive value and negative predictive value were 36%, 93%, 50% and 88% for radiography, and 73%, 91%, 62% and 94% for low-dose computed tomography, respectively. An uncorrected McNemar showed no statistical difference (p = 0.197). Mean radiation dose for low-dose computed tomography was 0.24 mSv. Four out of 5 included patients diagnosed with invasive fungal disease had radiographic abnormalities suspect for invasive fungal disease on the low-dose computed tomography scan made on day 1 of fever, compared to none of the chest radiographs. We conclude that chest radiography has little value in the initial assessment of febrile neutropenia on day 1 for detection of pulmonary abnormalities. Low-dose computed tomography improves detection of pulmonary infiltrates and seems capable of detecting invasive fungal disease at a very early stage with a low radiation dose. PMID:28235014

  11. Multi-GPU Jacobian accelerated computing for soft-field tomography.

    PubMed

    Borsic, A; Attardo, E A; Halter, R J

    2012-10-01

    Image reconstruction in soft-field tomography is based on an inverse problem formulation, where a forward model is fitted to the data. In medical applications, where the anatomy presents complex shapes, it is common to use finite element models (FEMs) to represent the volume of interest and solve a partial differential equation that models the physics of the system. Over the last decade, there has been a shifting interest from 2D modeling to 3D modeling, as the underlying physics of most problems are 3D. Although the increased computational power of modern computers allows working with much larger FEM models, the computational time required to reconstruct 3D images on a fine 3D FEM model can be significant, on the order of hours. For example, in electrical impedance tomography (EIT) applications using a dense 3D FEM mesh with half a million elements, a single reconstruction iteration takes approximately 15-20 min with optimized routines running on a modern multi-core PC. It is desirable to accelerate image reconstruction to enable researchers to more easily and rapidly explore data and reconstruction parameters. Furthermore, providing high-speed reconstructions is essential for some promising clinical application of EIT. For 3D problems, 70% of the computing time is spent building the Jacobian matrix, and 25% of the time in forward solving. In this work, we focus on accelerating the Jacobian computation by using single and multiple GPUs. First, we discuss an optimized implementation on a modern multi-core PC architecture and show how computing time is bounded by the CPU-to-memory bandwidth; this factor limits the rate at which data can be fetched by the CPU. Gains associated with the use of multiple CPU cores are minimal, since data operands cannot be fetched fast enough to saturate the processing power of even a single CPU core. GPUs have much faster memory bandwidths compared to CPUs and better parallelism. We are able to obtain acceleration factors of 20 times on a single NVIDIA S1070 GPU, and of 50 times on four GPUs, bringing the Jacobian computing time for a fine 3D mesh from 12 min to 14 s. We regard this as an important step toward gaining interactive reconstruction times in 3D imaging, particularly when coupled in the future with acceleration of the forward problem. While we demonstrate results for EIT, these results apply to any soft-field imaging modality where the Jacobian matrix is computed with the adjoint method.

  12. 3D analysis of macrosegregation in twin-roll cast AA3003 alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Šlapáková, Michaela, E-mail: slapakova@karlov.mff.

    Twin-roll cast aluminium alloys have a high potential for industrial applications. However, one of the drawbacks of such materials is an inhomogeneous structure generated by macrosegregation, which appears under certain conditions in the center of sheets during solidification. Segregations in AA3003 alloy form as manganese, iron and silicon rich channels spread in the rolling direction. Their spatial distribution was successfully detected by X-ray computed tomography. Scanning electron microscopy was used for a detailed observation of microstructure, morphology and chemical analysis of the segregation. - Highlights: •Macrosegregations in twin-roll cast sheets stretch along the rolling direction. •X-ray computed tomography is anmore » effective tool for visualization of the segregation. •The segregations copy the shape of grain boundaries.« less

  13. Clinical application of computed tomography for the diagnosis of feline hepatic lipidosis.

    PubMed

    Nakamura, Momoko; Chen, Hui-Min; Momoi, Yasuyuki; Iwasaki, Toshiroh

    2005-11-01

    The usefulness of computed tomography (CT) for the diagnosis of feline hepatic lipidosis (FHL) was evaluated. Liver CT number was 54.7+/-5.6 HU (mean+/-SD) in 26 healthy cats. We fast 6 healthy cats for 72 hr to induced FHL experimentally and the cats were assessed by CT and serum biochemical analysis. Liver CT number of the six cats was 53.8+/-3.0 HU before fasting, 46.8+/-2.4 HU after fasting, and 50.2+/-3.6 HU two weeks after restarted feeding. The decreased CT number was associated with the elevation of serum non-esterified fatty acid (NEFA) and beta-hydroxybutyrate levels. These results indicate that measurement of CT number of the liver is an effective procedure for the diagnosis of FHL.

  14. Design of free-space optical transmission system in computer tomography equipment

    NASA Astrophysics Data System (ADS)

    Liu, Min; Fu, Weiwei; Zhang, Tao

    2018-04-01

    Traditional computer tomography (CT) based on capacitive coupling cannot satisfy the high data rate transmission requirement. We design and experimentally demonstrate a free-space optical transmission system for CT equipment at a data rate of 10 Gb / s. Two interchangeable sections of 12 pieces of fiber with equal length is fabricated and tested by our designed laser phase distance measurement system. By locating the 12 collimators in the edge of the circle wheel evenly, the optical propagation characteristics for the 12 wired and wireless paths are similar, which can satisfy the requirement of high-speed CT transmission system. After bit error rate (BER) measurement in several conditions, the BER performances are below the value of 10 - 11, which has the potential in the future application scenario of CT equipment.

  15. Nasal computed tomography.

    PubMed

    Kuehn, Ned F

    2006-05-01

    Chronic nasal disease is often a challenge to diagnose. Computed tomography greatly enhances the ability to diagnose chronic nasal disease in dogs and cats. Nasal computed tomography provides detailed information regarding the extent of disease, accurate discrimination of neoplastic versus nonneoplastic diseases, and identification of areas of the nose to examine rhinoscopically and suspicious regions to target for biopsy.

  16. Multislice Computed Tomography Accurately Detects Stenosis in Coronary Artery Bypass Conduits

    PubMed Central

    Duran, Cihan; Sagbas, Ertan; Caynak, Baris; Sanisoglu, Ilhan; Akpinar, Belhhan; Gulbaran, Murat

    2007-01-01

    The aim of this study was to evaluate the accuracy of multislice computed tomography in detecting graft stenosis or occlusion after coronary artery bypass grafting, using coronary angiography as the standard. From January 2005 through May 2006, 25 patients (19 men and 6 women; mean age, 54 ± 11.3 years) underwent diagnostic investigation of their bypass grafts by multislice computed tomography within 1 month of coronary angiography. The mean time elapsed after coronary artery bypass grafting was 6.2 years. In these 25 patients, we examined 65 bypass conduits (24 arterial and 41 venous) and 171 graft segments (the shaft, proximal anastomosis, and distal anastomosis). Compared with coronary angiography, the segment-based sensitivity, specificity, and positive and negative predictive values of multislice computed tomography in the evaluation of stenosis were 89%, 100%, 100%, and 99%, respectively. The patency rate for multislice compu-ted tomography was 85% (55/65: 3 arterial and 7 venous grafts were occluded), with 100% sensitivity and specificity. From these data, we conclude that multislice computed tomography can accurately evaluate the patency and stenosis of bypass grafts during outpatient follow-up. PMID:17948078

  17. Time-resolved transillumination and optical tomography

    NASA Astrophysics Data System (ADS)

    de Haller, Emmanuel B.

    1996-01-01

    In response to an invitation by the editor-in-chief, I would like to present the current status of time-domain imaging. With exciting new photon diffusion techniques being developed in the frequency domain and promising optical coherence tomography, time-resolved transillumination is in constant evolution and the subject of passionate discussions during the numerous conferences dedicated to this subject. The purpose of time-resolved optical tomography is to provide noninvasive, high-resolution imaging of the interior of living bodies by the use of nonionizing radiation. Moreover, the use of visible to near-infrared wavelength yields metabolic information. Breast cancer screening is the primary potential application for time-resolved imaging. Neurology and tissue characterization are also possible fields of applications. Time- resolved transillumination and optical tomography should not only improve diagnoses, but the welfare of the patient. As no overview of this technique has yet been presented to my knowledge, this paper briefly describes the various methods enabling time-resolved transillumination and optical tomography. The advantages and disadvantages of these methods, as well as the clinical challenges they face are discussed. Although an analytic and computable model of light transport through tissues is essential for a meaningful interpretation of the transillumination process, this paper will not dwell on the mathematics of photon propagation.

  18. Fundamental Concepts of Digital Image Processing

    DOE R&D Accomplishments Database

    Twogood, R. E.

    1983-03-01

    The field of a digital-image processing has experienced dramatic growth and increasingly widespread applicability in recent years. Fortunately, advances in computer technology have kept pace with the rapid growth in volume of image data in these and other applications. Digital image processing has become economical in many fields of research and in industrial and military applications. While each application has requirements unique from the others, all are concerned with faster, cheaper, more accurate, and more extensive computation. The trend is toward real-time and interactive operations, where the user of the system obtains preliminary results within a short enough time that the next decision can be made by the human processor without loss of concentration on the task at hand. An example of this is the obtaining of two-dimensional (2-D) computer-aided tomography (CAT) images. A medical decision might be made while the patient is still under observation rather than days later.

  19. BEST medical radioisotope production cyclotrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabaiduc, Vasile; Milton, Bruce; Suthanthiran, Krishnan

    2013-04-19

    Best Cyclotron Systems Inc (BCSI) is currently developing 14 MeV, 25 MeV, 35MeV and 70MeV cyclotrons for radioisotope production and research applications as well as the entire spectrum of targets and nuclear synthesis modules for the production of Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT) and radiation therapy isotopes. The company is a subsidiary of Best Medical International, renowned in the field of medical instrumentation and radiation therapy. All cyclotrons have external negative hydrogen ion sources, four radial sectors with two dees in opposite valleys, cryogenic vacuum system and simultaneous beam extraction on opposite lines. The beammore » intensity ranges from 400 {mu}A to 1000 {mu}A, depending on the cyclotron energy and application.« less

  20. BEST medical radioisotope production cyclotrons

    NASA Astrophysics Data System (ADS)

    Sabaiduc, Vasile; Milton, Bruce; Suthanthiran, Krishnan; Gelbart, W. Z.; Johnson, Richard R.

    2013-04-01

    Best Cyclotron Systems Inc (BCSI) is currently developing 14 MeV, 25 MeV, 35MeV and 70MeV cyclotrons for radioisotope production and research applications as well as the entire spectrum of targets and nuclear synthesis modules for the production of Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT) and radiation therapy isotopes. The company is a subsidiary of Best Medical International, renowned in the field of medical instrumentation and radiation therapy. All cyclotrons have external negative hydrogen ion sources, four radial sectors with two dees in opposite valleys, cryogenic vacuum system and simultaneous beam extraction on opposite lines. The beam intensity ranges from 400 μA to 1000 μA, depending on the cyclotron energy and application [1].

  1. Differences between postmortem computed tomography and conventional autopsy in a stabbing murder case

    PubMed Central

    Zerbini, Talita; da Silva, Luiz Fernando Ferraz; Ferro, Antonio Carlos Gonçalves; Kay, Fernando Uliana; Junior, Edson Amaro; Pasqualucci, Carlos Augusto Gonçalves; do Nascimento Saldiva, Paulo Hilario

    2014-01-01

    OBJECTIVE: The aim of the present work is to analyze the differences and similarities between the elements of a conventional autopsy and images obtained from postmortem computed tomography in a case of a homicide stab wound. METHOD: Comparison between the findings of different methods: autopsy and postmortem computed tomography. RESULTS: In some aspects, autopsy is still superior to imaging, especially in relation to external examination and the description of lesion vitality. However, the findings of gas embolism, pneumothorax and pulmonary emphysema and the relationship between the internal path of the instrument of aggression and the entry wound are better demonstrated by postmortem computed tomography. CONCLUSIONS: Although multislice computed tomography has greater accuracy than autopsy, we believe that the conventional autopsy method is fundamental for providing evidence in criminal investigations. PMID:25518020

  2. Colovesical fistula causing an uncommon reason for failure of computed tomography colonography: a case report.

    PubMed

    Neroladaki, Angeliki; Breguet, Romain; Botsikas, Diomidis; Terraz, Sylvain; Becker, Christoph D; Montet, Xavier

    2012-07-23

    Computed tomography colonography, or virtual colonoscopy, is a good alternative to optical colonoscopy. However, suboptimal patient preparation or colon distension may reduce the diagnostic accuracy of this imaging technique. We report the case of an 83-year-old Caucasian woman who presented with a five-month history of pneumaturia and fecaluria and an acute episode of macrohematuria, leading to a high clinical suspicion of a colovesical fistula. The fistula was confirmed by standard contrast-enhanced computed tomography. Optical colonoscopy was performed to exclude the presence of an underlying colonic neoplasm. Since optical colonoscopy was incomplete, computed tomography colonography was performed, but also failed due to inadequate colon distension. The insufflated air directly accumulated within the bladder via the large fistula. Clinicians should consider colovesical fistula as a potential reason for computed tomography colonography failure.

  3. Computed tomography and (18)F-fluorodeoxyglucose positron emission tomography/computed tomography findings in adrenal candidiasis and histoplasmosis: two cases.

    PubMed

    Altinmakas, Emre; Guo, Ming; Kundu, Uma R; Habra, Mouhammed Amir; Ng, Chaan

    2015-01-01

    We report the contrast-enhanced computed tomography (CT) and (18)F-fluorodeoxyglucose positron emission tomography findings in adrenal histoplasmosis and candidiasis. Both demonstrated bilateral hypermetabolic heterogeneous adrenal masses with limited wash-out on delayed CT. Adrenal candidiasis has not been previously reported, nor have the CT wash-out findings in either infection. The adrenal imaging findings are indistinguishable from malignancy, which is more common; but in this setting, physicians should be alert to the differential diagnosis of fungal infections, since it can be equally deadly. Published by Elsevier Inc.

  4. Incidental renal tumours on low-dose CT lung cancer screening exams.

    PubMed

    Pinsky, Paul F; Dunn, Barbara; Gierada, David; Nath, P Hrudaya; Munden, Reginald; Berland, Lincoln; Kramer, Barnett S

    2017-06-01

    Introduction Renal cancer incidence has increased markedly in the United States in recent decades, largely due to incidentally detected tumours from computed tomography imaging. Here, we analyze the potential for low-dose computed tomography lung cancer screening to detect renal cancer. Methods The National Lung Screening Trial randomized subjects to three annual screens with either low-dose computed tomography or chest X-ray. Eligibility criteria included 30 + pack-years, current smoking or quit within 15 years, and age 55-74. Subjects were followed for seven years. Low-dose computed tomography screening forms collected information on lung cancer and non-lung cancer abnormalities, including abnormalities below the diaphragm. A reader study was performed on a sample of National Lung Screening Trial low-dose computed tomography images assessing presence of abnormalities below the diaphragms and abnormalities suspicious for renal cancer. Results There were 26,722 and 26,732 subjects enrolled in the low-dose computed tomography and chest X-ray arms, respectively, and there were 104 and 85 renal cancer cases diagnosed, respectively (relative risk = 1.22, 95% CI: 0.9-1.5). From 75,126 low-dose computed tomography screens, there were 46 renal cancer diagnoses within one year. Abnormalities below the diaphragm rates were 39.1% in screens with renal cancer versus 4.1% in screens without (P < 0.001). Cases with abnormalities below the diaphragms had shorter median time to diagnosis than those without (71 vs. 160 days, P = 0.004). In the reader study, 64% of renal cancer cases versus 13% of non-cases had abnormalities below the diaphragms; 55% of cases and 0.8% of non-cases had a finding suspicious for renal cancer (P < 0.001). Conclusion Low-dose computed tomography screens can potentially detect renal cancers. The benefits to harms tradeoff of incidental detection of renal tumours on low-dose computed tomography is unknown.

  5. Meta-Analysis of Stress Myocardial Perfusion Imaging

    ClinicalTrials.gov

    2017-06-06

    Coronary Disease; Echocardiography; Fractional Flow Reserve, Myocardial; Hemodynamics; Humans; Magnetic Resonance Imaging; Myocardial Perfusion Imaging; Perfusion; Predictive Value of Tests; Single Photon Emission Computed Tomography; Positron Emission Tomography; Multidetector Computed Tomography; Echocardiography, Stress; Coronary Angiography

  6. Positron Computed Tomography: Current State, Clinical Results and Future Trends

    DOE R&D Accomplishments Database

    Schelbert, H. R.; Phelps, M. E.; Kuhl, D. E.

    1980-09-01

    An overview is presented of positron computed tomography: its advantages over single photon emission tomography, its use in metabolic studies of the heart and chemical investigation of the brain, and future trends. (ACR)

  7. Positron emission tomography

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y. Lucas; Thompson, Christopher J.; Diksic, Mirko; Meyer, Ernest; Feindel, William H.

    One of the most exciting new technologies introduced in the last 10 yr is positron emission tomography (PET). PET provides quantitative, three-dimensional images for the study of specific biochemical and physiological processes in the human body. This approach is analogous to quantitative in-vivo autoradiography but has the added advantage of permitting non-invasive in vivo studies. PET scanning requires a small cyclotron to produce short-lived positron emitting isotopes such as oxygen-15, carbon-11, nitrogen-13 and fluorine-18. Proper radiochemical facilities and advanced computer equipment are also needed. Most important, PET requires a multidisciplinary scientific team of physicists, radiochemists, mathematicians, biochemists and physicians. This review analyzes the most recent trends in the imaging technology, radiochemistry, methodology and clinical applications of positron emission tomography.

  8. Multifunctional Gold Nanostars for Molecular Imaging and Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Yuan, Hsiangkuo; Fales, Andrew; Register, Janna; Vo-Dinh, Tuan

    2015-08-01

    Plasmonics-active gold nanoparticles offer excellent potential in molecular imaging and cancer therapy. Among them, gold nanostars (AuNS) exhibit cross-platform flexibility as multimodal contrast agents for macroscopic X-ray computer tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), as well as nanoprobes for photoacoustic tomography (PAT), two-photon photoluminescence (TPL) and surface-enhanced Raman spectroscopy (SERS). Their surfactant-free surface enables versatile functionalization to enhance cancer targeting, and allow triggered drug release. AuNS can also be used as an efficient platform for drug carrying, photothermal therapy, and photodynamic therapy. This review paper presents the latest progress regarding AuNS as a promising nanoplatform for cancer nanotheranostics. Future research directions with AuNS for biomedical applications will also be discussed.

  9. Diagnostic dilemma of degenerative joint disease, chronic avascular necrosis or metastasis in planar Tc-99m-methylene diphosphonate planar skeletal scintigraphy excluded by single positron emission computed tomography/computed tomography.

    PubMed

    Jain, Tarun Kumar; Phulsunga, Rohit Kumar; Basher, Rajender Kumar; Kumar, Narendra; Bhattacharya, Anish; Mittal, Bhagwant Rai

    2015-01-01

    We present a 71-year-old male patient subjected to skeletal scintigraphy for metastasis work up of prostate cancer. Whole body planar images revealed a solitary focal tracer uptake in left femoral head mimicking as solitary metastatic focus. Single positron emission computed tomography/computed tomography images localized this increased tracer uptake to the subchondral cysts with minimal sclerosis in left femur head with no decrease in size of femur head and was reported as (degenerative joint disease).

  10. Diagnostic dilemma of degenerative joint disease, chronic avascular necrosis or metastasis in planar Tc-99m-methylene diphosphonate planar skeletal scintigraphy excluded by single positron emission computed tomography/computed tomography

    PubMed Central

    Jain, Tarun Kumar; Phulsunga, Rohit Kumar; Basher, Rajender Kumar; Kumar, Narendra; Bhattacharya, Anish; Mittal, Bhagwant Rai

    2015-01-01

    We present a 71-year-old male patient subjected to skeletal scintigraphy for metastasis work up of prostate cancer. Whole body planar images revealed a solitary focal tracer uptake in left femoral head mimicking as solitary metastatic focus. Single positron emission computed tomography/computed tomography images localized this increased tracer uptake to the subchondral cysts with minimal sclerosis in left femur head with no decrease in size of femur head and was reported as (degenerative joint disease). PMID:26170582

  11. The early development of medial coronoid disease in growing Labrador retrievers: radiographic, computed tomographic, necropsy and micro-computed tomographic findings.

    PubMed

    Lau, S F; Wolschrijn, C F; Hazewinkel, H A W; Siebelt, M; Voorhout, G

    2013-09-01

    Medial coronoid disease (MCD) encompasses lesions of the entire medial coronoid process (MCP), both of the articular cartilage and the subchondral bone. To detect the earliest signs of MCD, radiography and computed tomography were used to monitor the development of MCD in 14 Labrador retrievers, from 6 to 7 weeks of age until euthanasia. The definitive diagnosis of MCD was based on necropsy and micro-computed tomography findings. The frequency of MCD in the dogs studied was 50%. Radiographic findings did not provide evidence of MCD, ulnar subtrochlear sclerosis or blunting of the cranial edge of the MCP. Computed tomography was more sensitive (30.8%) than radiography (0%) in detecting early MCD, with the earliest signs detectable at 14 weeks of age. A combination of the necropsy and micro-computed tomography findings of the MCP showed that MCD was manifested as a lesion of only the subchondral bone in dogs <18 weeks of age. In all dogs (affected and unaffected), there was close contact between the base of the MCP and the proximal radial head in the congruent joints. Computed tomography and micro-computed tomography findings indicated that the lesions of MCD probably originated at the base of the MCP. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. New applications of x-ray tomography in pyrolysis of biomass: biochar imaging

    USDA-ARS?s Scientific Manuscript database

    We report on the first ever use of non-destructive micrometer-scale synchrotron computed microtomography for characterization of biochar materials as a function of pyrolysis temperature. Using this innovative approach we have observed an increase in marcropore fraction of the sample, resulting in 29...

  13. Efficient tomography of a quantum many-body system

    NASA Astrophysics Data System (ADS)

    Lanyon, B. P.; Maier, C.; Holzäpfel, M.; Baumgratz, T.; Hempel, C.; Jurcevic, P.; Dhand, I.; Buyskikh, A. S.; Daley, A. J.; Cramer, M.; Plenio, M. B.; Blatt, R.; Roos, C. F.

    2017-12-01

    Quantum state tomography is the standard technique for estimating the quantum state of small systems. But its application to larger systems soon becomes impractical as the required resources scale exponentially with the size. Therefore, considerable effort is dedicated to the development of new characterization tools for quantum many-body states. Here we demonstrate matrix product state tomography, which is theoretically proven to allow for the efficient and accurate estimation of a broad class of quantum states. We use this technique to reconstruct the dynamical state of a trapped-ion quantum simulator comprising up to 14 entangled and individually controlled spins: a size far beyond the practical limits of quantum state tomography. Our results reveal the dynamical growth of entanglement and describe its complexity as correlations spread out during a quench: a necessary condition for future demonstrations of better-than-classical performance. Matrix product state tomography should therefore find widespread use in the study of large quantum many-body systems and the benchmarking and verification of quantum simulators and computers.

  14. Assessment methodologies and statistical issues for computer-aided diagnosis of lung nodules in computed tomography: contemporary research topics relevant to the lung image database consortium.

    PubMed

    Dodd, Lori E; Wagner, Robert F; Armato, Samuel G; McNitt-Gray, Michael F; Beiden, Sergey; Chan, Heang-Ping; Gur, David; McLennan, Geoffrey; Metz, Charles E; Petrick, Nicholas; Sahiner, Berkman; Sayre, Jim

    2004-04-01

    Cancer of the lung and bronchus is the leading fatal malignancy in the United States. Five-year survival is low, but treatment of early stage disease considerably improves chances of survival. Advances in multidetector-row computed tomography technology provide detection of smaller lung nodules and offer a potentially effective screening tool. The large number of images per exam, however, requires considerable radiologist time for interpretation and is an impediment to clinical throughput. Thus, computer-aided diagnosis (CAD) methods are needed to assist radiologists with their decision making. To promote the development of CAD methods, the National Cancer Institute formed the Lung Image Database Consortium (LIDC). The LIDC is charged with developing the consensus and standards necessary to create an image database of multidetector-row computed tomography lung images as a resource for CAD researchers. To develop such a prospective database, its potential uses must be anticipated. The ultimate applications will influence the information that must be included along with the images, the relevant measures of algorithm performance, and the number of required images. In this article we outline assessment methodologies and statistical issues as they relate to several potential uses of the LIDC database. We review methods for performance assessment and discuss issues of defining "truth" as well as the complications that arise when truth information is not available. We also discuss issues about sizing and populating a database.

  15. Aerosolized intranasal midazolam for safe and effective sedation for quality computed tomography imaging in infants and children.

    PubMed

    Mekitarian Filho, Eduardo; de Carvalho, Werther Brunow; Gilio, Alfredo Elias; Robinson, Fay; Mason, Keira P

    2013-10-01

    This pilot study introduces the aerosolized route for midazolam as an option for infant and pediatric sedation for computed tomography imaging. This technique produced predictable and effective sedation for quality computed tomography imaging studies with minimal artifact and no significant adverse events. Copyright © 2013 Mosby, Inc. All rights reserved.

  16. A Heat Pipe Coupled Planar Thermionic Converter: Performance Characterization, Nondestructive Testing, and Evaluation.

    DTIC Science & Technology

    1992-03-15

    Pipes, Computer Modelling, Nondestructive Testing. Tomography , Planar Converter, Cesium Reservoir 19. ABSTRACT (Continue on reverse if necessary and...Investigation ........................ 32 4.3 Computed Tomography ................................ 33 4.4 X-Ray Radiography...25 3.4 LEOS generated output data for Mo-Re converter ................ 26 4.1 Distance along converter imaged by the computed tomography

  17. Tomographic techniques for the study of exceptionally preserved fossils

    PubMed Central

    Sutton, Mark D

    2008-01-01

    Three-dimensional fossils, especially those preserving soft-part anatomy, are a rich source of palaeontological information; they can, however, be difficult to work with. Imaging of serial planes through an object (tomography) allows study of both the inside and outside of three-dimensional fossils. Tomography may be performed using physical grinding or sawing coupled with photography, through optical techniques of serial focusing, or using a variety of scanning technologies such as neutron tomography, magnetic resonance imaging and most usefully X-ray computed tomography. This latter technique is applicable at a variety of scales, and when combined with a synchrotron X-ray source can produce very high-quality data that may be augmented by phase-contrast information to enhance contrast. Tomographic data can be visualized in several ways, the most effective of which is the production of isosurface-based ‘virtual fossils’ that can be manipulated and dissected interactively. PMID:18426749

  18. History and future technical innovation in positron emission tomography

    PubMed Central

    Jones, Terry; Townsend, David

    2017-01-01

    Abstract. Instrumentation for positron emission tomography (PET) imaging has experienced tremendous improvements in performance over the past 60 years since it was first conceived as a medical imaging modality. Spatial resolution has improved by a factor of 10 and sensitivity by a factor of 40 from the early designs in the 1970s to the high-performance scanners of today. Multimodality configurations have emerged that combine PET with computed tomography (CT) and, more recently, with MR. Whole-body scans for clinical purposes can now be acquired in under 10 min on a state-of-the-art PET/CT. This paper will review the history of these technical developments over 40 years and summarize the important clinical research and healthcare applications that have been made possible by these technical advances. Some perspectives for the future of this technology will also be presented that promise to bring about new applications of this imaging modality in clinical research and healthcare. PMID:28401173

  19. Geoscience Applications of Synchrotron X-ray Computed Microtomography

    NASA Astrophysics Data System (ADS)

    Rivers, M. L.

    2009-05-01

    Computed microtomography is the extension to micron spatial resolution of the CAT scanning technique developed for medical imaging. Synchrotron sources are ideal for the method, since they provide a monochromatic, parallel beam with high intensity. High energy storage rings such as the Advanced Photon Source at Argonne National Laboratory produce x-rays with high energy, high brilliance, and high coherence. All of these factors combine to produce an extremely powerful imaging tool for earth science research. Techniques that have been developed include: - Absorption and phase contrast computed tomography with spatial resolution approaching one micron - Differential contrast computed tomography, imaging above and below the absorption edge of a particular element - High-pressure tomography, imaging inside a pressure cell at pressures above 10GPa - High speed radiography, with 100 microsecond temporal resolution - Fluorescence tomography, imaging the 3-D distribution of elements present at ppm concentrations. - Radiographic strain measurements during deformation at high confining pressure, combined with precise x- ray diffraction measurements to determine stress. These techniques have been applied to important problems in earth and environmental sciences, including: - The 3-D distribution of aqueous and organic liquids in porous media, with applications in contaminated groundwater and petroleum recovery. - The kinetics of bubble formation in magma chambers, which control explosive volcanism. - Accurate crystal size distributions in volcanic systems, important for understanding the evolution of magma chambers. - The equation-of-state of amorphous materials at high pressure using both direct measurements of volume as a function of pressure and also by measuring the change x-ray absorption coefficient as a function of pressure. - The formation of frost flowers on Arctic sea-ice, which is important in controlling the atmospheric chemistry of mercury. - The distribution of cracks in rocks at potential nuclear waste repositories. - The location and chemical speciation of toxic elements such as arsenic and nickel in soils and in plant tissues in contaminated Superfund sites. - The strength of earth materials under the pressure and temperature conditions of the Earth's mantle, providing insights into plate tectonics and the generation of earthquakes.

  20. Nondestructive microimaging during preclinical pin-on-plate testing of novel materials for arthroplasty.

    PubMed

    Teeter, Matthew G; Langohr, G Daniel G; Medley, John B; Holdsworth, David W

    2014-02-01

    The purpose of this study was to determine the ability of micro-computed tomography to quantify wear in preclinical pin-on-plate testing of materials for use in joint arthroplasty. Wear testing of CoCr pins articulating against six polyetheretherketone plates was performed using a pin-on-plate apparatus over 2 million cycles. Change in volume due to wear was quantified with gravimetric analysis and with micro-computed tomography, and the volumes were compared. Separately, the volume of polyetheretherketone pin-on-plate specimens that had been soaking in fluid for 52 weeks was quantified with both gravimetric analysis and micro-computed tomography, and repeated after drying. The volume change with micro-computed tomography was compared to the mass change with gravimetric analysis. The mean wear volume measured was 8.02 ± 6.38 mm(3) with gravimetric analysis and 6.76 ± 5.38 mm(3) with micro-computed tomography (p = 0.06). Micro-computed tomography volume measurements did not show a statistically significant change with drying for either the plates (p = 0.60) or the pins (p = 0.09), yet drying had a significant effect on the gravimetric mass measurements for both the plates (p = 0.03) and the pins (p = 0.04). Micro-computed tomography provided accurate measurements of wear in polyetheretherketone pin-on-plate test specimens, and no statistically significant change was caused by fluid uptake. Micro-computed tomography quantifies wear depth and wear volume, mapped to the specific location of damage on the specimen, and is also capable of examining subsurface density as well as cracking. Its noncontact, nondestructive nature makes it ideal for preclinical testing of materials, in which further additional analysis techniques may be utilized.

  1. Preoperative (3-dimensional) computed tomography lung reconstruction before anatomic segmentectomy or lobectomy for stage I non-small cell lung cancer.

    PubMed

    Chan, Ernest G; Landreneau, James R; Schuchert, Matthew J; Odell, David D; Gu, Suicheng; Pu, Jiantao; Luketich, James D; Landreneau, Rodney J

    2015-09-01

    Accurate cancer localization and negative resection margins are necessary for successful segmentectomy. In this study, we evaluate a newly developed software package that permits automated segmentation of the pulmonary parenchyma, allowing 3-dimensional assessment of tumor size, location, and estimates of surgical margins. A pilot study using a newly developed 3-dimensional computed tomography analytic software package was performed to retrospectively evaluate preoperative computed tomography images of patients who underwent segmentectomy (n = 36) or lobectomy (n = 15) for stage 1 non-small cell lung cancer. The software accomplishes an automated reconstruction of anatomic pulmonary segments of the lung based on bronchial arborization. Estimates of anticipated surgical margins and pulmonary segmental volume were made on the basis of 3-dimensional reconstruction. Autosegmentation was achieved in 72.7% (32/44) of preoperative computed tomography images with slice thicknesses of 3 mm or less. Reasons for segmentation failure included local severe emphysema or pneumonitis, and lower computed tomography resolution. Tumor segmental localization was achieved in all autosegmented studies. The 3-dimensional computed tomography analysis provided a positive predictive value of 87% in predicting a marginal clearance greater than 1 cm and a 75% positive predictive value in predicting a margin to tumor diameter ratio greater than 1 in relation to the surgical pathology assessment. This preoperative 3-dimensional computed tomography analysis of segmental anatomy can confirm the tumor location within an anatomic segment and aid in predicting surgical margins. This 3-dimensional computed tomography information may assist in the preoperative assessment regarding the suitability of segmentectomy for peripheral lung cancers. Published by Elsevier Inc.

  2. Role of post-mapping computed tomography in virtual-assisted lung mapping.

    PubMed

    Sato, Masaaki; Nagayama, Kazuhiro; Kuwano, Hideki; Nitadori, Jun-Ichi; Anraku, Masaki; Nakajima, Jun

    2017-02-01

    Background Virtual-assisted lung mapping is a novel bronchoscopic preoperative lung marking technique in which virtual bronchoscopy is used to predict the locations of multiple dye markings. Post-mapping computed tomography is performed to confirm the locations of the actual markings. This study aimed to examine the accuracy of marking locations predicted by virtual bronchoscopy and elucidate the role of post-mapping computed tomography. Methods Automated and manual virtual bronchoscopy was used to predict marking locations. After bronchoscopic dye marking under local anesthesia, computed tomography was performed to confirm the actual marking locations before surgery. Discrepancies between marking locations predicted by the different methods and the actual markings were examined on computed tomography images. Forty-three markings in 11 patients were analyzed. Results The average difference between the predicted and actual marking locations was 30 mm. There was no significant difference between the latest version of the automated virtual bronchoscopy system (30.7 ± 17.2 mm) and manual virtual bronchoscopy (29.8 ± 19.1 mm). The difference was significantly greater in the upper vs. lower lobes (37.1 ± 20.1 vs. 23.0 ± 6.8 mm, for automated virtual bronchoscopy; p < 0.01). Despite this discrepancy, all targeted lesions were successfully resected using 3-dimensional image guidance based on post-mapping computed tomography reflecting the actual marking locations. Conclusions Markings predicted by virtual bronchoscopy were dislocated from the actual markings by an average of 3 cm. However, surgery was accurately performed using post-mapping computed tomography guidance, demonstrating the indispensable role of post-mapping computed tomography in virtual-assisted lung mapping.

  3. Utility of screening computed tomography of chest, abdomen and pelvis in patients after heart transplantation.

    PubMed

    Dasari, Tarun W; Pavlovic-Surjancev, Biljana; Dusek, Linda; Patel, Nilamkumar; Heroux, Alain L

    2011-12-01

    Malignancy is a late cause of mortality in heart transplant recipients. It is unknown if screening computed tomography scan would lead to early detection of such malignancies or serious vascular anomalies post heart transplantation. This is a single center observational study of patients undergoing surveillance computed tomography of chest, abdomen and pelvis at least 5 years after transplantation. Abnormal findings, included pulmonary nodules, lymphadenopathy and intra-thoracic and intra-abdominal masses and vascular anomalies such as abdominal aortic aneurysm. The clinical follow up of each of these major abnormal findings is summarized. A total of 63 patients underwent computed tomography scan of chest, abdomen and pelvis at least 5 years after transplantation. Of these, 54 (86%) were male and 9 (14%) were female. Mean age was 52±9.2 years. Computed tomography revealed 1 lung cancer (squamous cell) only. Non specific pulmonary nodules were seen in 6 patients (9.5%). The most common incidental finding was abdominal aortic aneurysms (N=6 (9.5%)), which necessitated follow up computed tomography (N=5) or surgery (N=1). Mean time to detection of abdominal aortic aneurysms from transplantation was 14.6±4.2 years. Mean age at the time of detection of abdominal aortic aneurysms was 74.5±3.2 years. Screening computed tomography scan in patients 5 years from transplantation revealed only one malignancy but lead to increased detection of abdominal aortic aneurysms. Thus the utility is low in terms of detection of malignancy. Based on this study we do not recommend routine computed tomography post heart transplantation. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. Petamenophis (Padiamenemipet), an Egyptian Child Mummy Protected for Eternity: Revelation by Multidetector Computed Tomography.

    PubMed

    Martina, Maria Cristina; Cesarani, Federico; Boano, Rosa; Fiore Marochetti, Elisa; Gandini, Giovanni

    The objective of our work was to report the most recent findings obtained with multidetector computed tomography of a child mummy from the Roman period (119-123 CE) housed at the Egyptian Museum in Turin, Italy. Multidetector computed tomography and postprocessing were applied to understand the embalming techniques, the nature of a foreign object, and anthropometrical values. The information was compared with that from other mummies that were buried in the same tomb, but today housed in different museums. New information regarding the embalming technique was revealed. Multidetector computed tomography allowed the identification of a knife-like metallic object, probably an amulet for the child's protection in the afterlife. Multidetector computed tomography and image postprocessing confirm their valuable role in noninvasive studies in ancient mummies and provided evidence of a unique cultural practice in the late history of Ancient Egypt such as placing a knife possibly as an amulet.

  5. Diagnosis of sinusoidal obstruction syndrome by positron emission tomography/computed tomography: report of two cases treated by defibrotide.

    PubMed

    Gauthé, Mathieu; Bozec, Laurence; Bedossa, Pierre

    2014-11-01

    Sinusoidal obstruction syndrome (SOS) is a potentially fatal liver injury that mainly occurs after myeloablative chemotherapy. We report two cases of SOS investigated by 18F-fluorodeoxyglucose positron emission tomography/computed tomography and treated with defibrotide. © 2014 by the American Association for the Study of Liver Diseases.

  6. Measuring Weld Profiles By Computer Tomography

    NASA Technical Reports Server (NTRS)

    Pascua, Antonio G.; Roy, Jagatjit

    1990-01-01

    Noncontacting, nondestructive computer tomography system determines internal and external contours of welded objects. System makes it unnecessary to take metallurgical sections (destructive technique) or to take silicone impressions of hidden surfaces (technique that contaminates) to inspect them. Measurements of contours via tomography performed 10 times as fast as measurements via impression molds, and tomography does not contaminate inspected parts.

  7. Parallel Computing for the Computed-Tomography Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon

    2008-01-01

    This software computes the tomographic reconstruction of spatial-spectral data from raw detector images of the Computed-Tomography Imaging Spectrometer (CTIS), which enables transient-level, multi-spectral imaging by capturing spatial and spectral information in a single snapshot.

  8. The effect of in situ/in vitro three-dimensional quantitative computed tomography image voxel size on the finite element model of human vertebral cancellous bone.

    PubMed

    Lu, Yongtao; Engelke, Klaus; Glueer, Claus-C; Morlock, Michael M; Huber, Gerd

    2014-11-01

    Quantitative computed tomography-based finite element modeling technique is a promising clinical tool for the prediction of bone strength. However, quantitative computed tomography-based finite element models were created from image datasets with different image voxel sizes. The aim of this study was to investigate whether there is an influence of image voxel size on the finite element models. In all 12 thoracolumbar vertebrae were scanned prior to autopsy (in situ) using two different quantitative computed tomography scan protocols, which resulted in image datasets with two different voxel sizes (0.29 × 0.29 × 1.3 mm(3) vs 0.18 × 0.18 × 0.6 mm(3)). Eight of them were scanned after autopsy (in vitro) and the datasets were reconstructed with two voxel sizes (0.32 × 0.32 × 0.6 mm(3) vs. 0.18 × 0.18 × 0.3 mm(3)). Finite element models with cuboid volume of interest extracted from the vertebral cancellous part were created and inhomogeneous bilinear bone properties were defined. Axial compression was simulated. No effect of voxel size was detected on the apparent bone mineral density for both the in situ and in vitro cases. However, the apparent modulus and yield strength showed significant differences in the two voxel size group pairs (in situ and in vitro). In conclusion, the image voxel size may have to be considered when the finite element voxel modeling technique is used in clinical applications. © IMechE 2014.

  9. Endocrine radionuclide scintigraphy with fusion single photon emission computed tomography/computed tomography

    PubMed Central

    Wong, Ka-Kit; Gandhi, Arpit; Viglianti, Benjamin L; Fig, Lorraine M; Rubello, Domenico; Gross, Milton D

    2016-01-01

    AIM: To review the benefits of single photon emission computed tomography (SPECT)/computed tomography (CT) hybrid imaging for diagnosis of various endocrine disorders. METHODS: We performed MEDLINE and PubMed searches using the terms: “SPECT/CT”; “functional anatomic mapping”; “transmission emission tomography”; “parathyroid adenoma”; “thyroid cancer”; “neuroendocrine tumor”; “adrenal”; “pheochromocytoma”; “paraganglioma”; in order to identify relevant articles published in English during the years 2003 to 2015. Reference lists from the articles were reviewed to identify additional pertinent articles. Retrieved manuscripts (case reports, reviews, meta-analyses and abstracts) concerning the application of SPECT/CT to endocrine imaging were analyzed to provide a descriptive synthesis of the utility of this technology. RESULTS: The emergence of hybrid SPECT/CT camera technology now allows simultaneous acquisition of combined multi-modality imaging, with seamless fusion of three-dimensional volume datasets. The usefulness of combining functional information to depict the bio-distribution of radiotracers that map cellular processes of the endocrine system and tumors of endocrine origin, with anatomy derived from CT, has improved the diagnostic capability of scintigraphy for a range of disorders of endocrine gland function. The literature describes benefits of SPECT/CT for 99mTc-sestamibi parathyroid scintigraphy and 99mTc-pertechnetate thyroid scintigraphy, 123I- or 131I-radioiodine for staging of differentiated thyroid carcinoma, 111In- and 99mTc- labeled somatostatin receptor analogues for detection of neuroendocrine tumors, 131I-norcholesterol (NP-59) scans for assessment of adrenal cortical hyperfunction, and 123I- or 131I-metaiodobenzylguanidine imaging for evaluation of pheochromocytoma and paraganglioma. CONCLUSION: SPECT/CT exploits the synergism between the functional information from radiopharmaceutical imaging and anatomy from CT, translating to improved diagnostic accuracy and meaningful impact on patient care. PMID:27358692

  10. Towards Effective Non-Invasive Brain-Computer Interfaces Dedicated to Gait Rehabilitation Systems

    PubMed Central

    Castermans, Thierry; Duvinage, Matthieu; Cheron, Guy; Dutoit, Thierry

    2014-01-01

    In the last few years, significant progress has been made in the field of walk rehabilitation. Motor cortex signals in bipedal monkeys have been interpreted to predict walk kinematics. Epidural electrical stimulation in rats and in one young paraplegic has been realized to partially restore motor control after spinal cord injury. However, these experimental trials are far from being applicable to all patients suffering from motor impairments. Therefore, it is thought that more simple rehabilitation systems are desirable in the meanwhile. The goal of this review is to describe and summarize the progress made in the development of non-invasive brain-computer interfaces dedicated to motor rehabilitation systems. In the first part, the main principles of human locomotion control are presented. The paper then focuses on the mechanisms of supra-spinal centers active during gait, including results from electroencephalography, functional brain imaging technologies [near-infrared spectroscopy (NIRS), functional magnetic resonance imaging (fMRI), positron-emission tomography (PET), single-photon emission-computed tomography (SPECT)] and invasive studies. The first brain-computer interface (BCI) applications to gait rehabilitation are then presented, with a discussion about the different strategies developed in the field. The challenges to raise for future systems are identified and discussed. Finally, we present some proposals to address these challenges, in order to contribute to the improvement of BCI for gait rehabilitation. PMID:24961699

  11. [The comparison of the expansion of polyps according to the Ki-67 and computed tomography scores].

    PubMed

    Aydin, Sedat; Sanli, Arif; Tezer, Ilter; Hardal, Umit; Barişik, Nagehan Ozdemir

    2009-01-01

    The disease extention in nasal polyps was compared by using the mitotic activity rates and the computed tomography scores. This study was conducted on 19 nasal polyposis patients (8 males, 11 females; mean age 40.0+/-13.7 years; range 20 to 63 years). The preoperative computed tomography records of the patients were evaluated according to the Lund-Mackay grading system. The polyp tissues of the same patients were stained with the Ki-67 antigen for immunohistochemical evaluation. The correlation between the radiologic results and the Ki-67 values was compared by means of the Spearman's correlation test. The mean computed tomography score was observed as 14.3+/-4.7 (range 7-24). The mean Ki-67 score resulting from the immunohistochemical staining was calculated as 24.3+/-18.5 (range 3.3-73.5%). A significant correlation was determined between the Ki-67 values and the computed tomography scores. ("Spearman's" correlation factor: 0.677; p<0.001). As the mitotic activity rate of nasal polyps increases, both the volume of the polyps and the computed tomography scores increase as a result of the blockage of the sinus ostiums by the increased polyp volume.

  12. A Projection Quality-Driven Tube Current Modulation Method in Cone-Beam CT for IGRT: Proof of Concept.

    PubMed

    Men, Kuo; Dai, Jianrong

    2017-12-01

    To develop a projection quality-driven tube current modulation method in cone-beam computed tomography for image-guided radiotherapy based on the prior attenuation information obtained by the planning computed tomography and then evaluate its effect on a reduction in the imaging dose. The QCKV-1 phantom with different thicknesses (0-400 mm) of solid water upon it was used to simulate different attenuation (μ). Projections were acquired with a series of tube current-exposure time product (mAs) settings, and a 2-dimensional contrast to noise ratio was analyzed for each projection to create a lookup table of mAs versus 2-dimensional contrast to noise ratio, μ. Before a patient underwent computed tomography, the maximum attenuation [Formula: see text] within the 95% range of each projection angle (θ) was estimated according to the planning computed tomography images. Then, a desired 2-dimensional contrast to noise ratio value was selected, and the mAs setting at θ was calculated with the lookup table of mAs versus 2-dimensional contrast to noise ratio,[Formula: see text]. Three-dimensional cone-beam computed tomography images were reconstructed using the projections acquired with the selected mAs. The imaging dose was evaluated with a polymethyl methacrylate dosimetry phantom in terms of volume computed tomography dose index. Image quality was analyzed using a Catphan 503 phantom with an oval body annulus and a pelvis phantom. For the Catphan 503 phantom, the cone-beam computed tomography image obtained by the projection quality-driven tube current modulation method had a similar quality to that of conventional cone-beam computed tomography . However, the proposed method could reduce the imaging dose by 16% to 33% to achieve an equivalent contrast to noise ratio value. For the pelvis phantom, the structural similarity index was 0.992 with a dose reduction of 39.7% for the projection quality-driven tube current modulation method. The proposed method could reduce the additional dose to the patient while not degrading the image quality for cone-beam computed tomography. The projection quality-driven tube current modulation method could be especially beneficial to patients who undergo cone-beam computed tomography frequently during a treatment course.

  13. Computed tomography-based tissue-engineered scaffolds in craniomaxillofacial surgery.

    PubMed

    Smith, M H; Flanagan, C L; Kemppainen, J M; Sack, J A; Chung, H; Das, S; Hollister, S J; Feinberg, S E

    2007-09-01

    Tissue engineering provides an alternative modality allowing for decreased morbidity of donor site grafting and decreased rejection of less compatible alloplastic tissues. Using image-based design and computer software, a precisely sized and shaped scaffold for osseous tissue regeneration can be created via selective laser sintering. Polycaprolactone has been used to create a condylar ramus unit (CRU) scaffold for application in temporomandibular joint reconstruction in a Yucatan minipig animal model. Following sacrifice, micro-computed tomography and histology was used to demonstrate the efficacy of this particular scaffold design. A proof-of-concept surgery has demonstrated cartilaginous tissue regeneration along the articulating surface with exuberant osseous tissue formation. Bone volumes and tissue mineral density at both the 1 and 3 month time points demonstrated significant new bone growth interior and exterior to the scaffold. Computationally designed scaffolds can support masticatory function in a large animal model as well as both osseous and cartilage regeneration. Our group is continuing to evaluate multiple implant designs in both young and mature Yucatan minipig animals. 2007 John Wiley & Sons, Ltd.

  14. Computer-assisted virtual preoperative planning in orthopedic surgery for acetabular fractures based on actual computed tomography data.

    PubMed

    Wang, Guang-Ye; Huang, Wen-Jun; Song, Qi; Qin, Yun-Tian; Liang, Jin-Feng

    2016-12-01

    Acetabular fractures have always been very challenging for orthopedic surgeons; therefore, appropriate preoperative evaluation and planning are particularly important. This study aimed to explore the application methods and clinical value of preoperative computer simulation (PCS) in treating pelvic and acetabular fractures. Spiral computed tomography (CT) was performed on 13 patients with pelvic and acetabular fractures, and Digital Imaging and Communications in Medicine (DICOM) data were then input into Mimics software to reconstruct three-dimensional (3D) models of actual pelvic and acetabular fractures for preoperative simulative reduction and fixation, and to simulate each surgical procedure. The times needed for virtual surgical modeling and reduction and fixation were also recorded. The average fracture-modeling time was 45 min (30-70 min), and the average time for bone reduction and fixation was 28 min (16-45 min). Among the surgical approaches planned for these 13 patients, 12 were finally adopted; 12 cases used the simulated surgical fixation, and only 1 case used a partial planned fixation method. PCS can provide accurate surgical plans and data support for actual surgeries.

  15. Analysis of iterative region-of-interest image reconstruction for x-ray computed tomography

    PubMed Central

    Sidky, Emil Y.; Kraemer, David N.; Roth, Erin G.; Ullberg, Christer; Reiser, Ingrid S.; Pan, Xiaochuan

    2014-01-01

    Abstract. One of the challenges for iterative image reconstruction (IIR) is that such algorithms solve an imaging model implicitly, requiring a complete representation of the scanned subject within the viewing domain of the scanner. This requirement can place a prohibitively high computational burden for IIR applied to x-ray computed tomography (CT), especially when high-resolution tomographic volumes are required. In this work, we aim to develop an IIR algorithm for direct region-of-interest (ROI) image reconstruction. The proposed class of IIR algorithms is based on an optimization problem that incorporates a data fidelity term, which compares a derivative of the estimated data with the available projection data. In order to characterize this optimization problem, we apply it to computer-simulated two-dimensional fan-beam CT data, using both ideal noiseless data and realistic data containing a level of noise comparable to that of the breast CT application. The proposed method is demonstrated for both complete field-of-view and ROI imaging. To demonstrate the potential utility of the proposed ROI imaging method, it is applied to actual CT scanner data. PMID:25685824

  16. Analysis of iterative region-of-interest image reconstruction for x-ray computed tomography.

    PubMed

    Sidky, Emil Y; Kraemer, David N; Roth, Erin G; Ullberg, Christer; Reiser, Ingrid S; Pan, Xiaochuan

    2014-10-03

    One of the challenges for iterative image reconstruction (IIR) is that such algorithms solve an imaging model implicitly, requiring a complete representation of the scanned subject within the viewing domain of the scanner. This requirement can place a prohibitively high computational burden for IIR applied to x-ray computed tomography (CT), especially when high-resolution tomographic volumes are required. In this work, we aim to develop an IIR algorithm for direct region-of-interest (ROI) image reconstruction. The proposed class of IIR algorithms is based on an optimization problem that incorporates a data fidelity term, which compares a derivative of the estimated data with the available projection data. In order to characterize this optimization problem, we apply it to computer-simulated two-dimensional fan-beam CT data, using both ideal noiseless data and realistic data containing a level of noise comparable to that of the breast CT application. The proposed method is demonstrated for both complete field-of-view and ROI imaging. To demonstrate the potential utility of the proposed ROI imaging method, it is applied to actual CT scanner data.

  17. Grating-based X-ray Dark-field Computed Tomography of Living Mice.

    PubMed

    Velroyen, A; Yaroshenko, A; Hahn, D; Fehringer, A; Tapfer, A; Müller, M; Noël, P B; Pauwels, B; Sasov, A; Yildirim, A Ö; Eickelberg, O; Hellbach, K; Auweter, S D; Meinel, F G; Reiser, M F; Bech, M; Pfeiffer, F

    2015-10-01

    Changes in x-ray attenuating tissue caused by lung disorders like emphysema or fibrosis are subtle and thus only resolved by high-resolution computed tomography (CT). The structural reorganization, however, is of strong influence for lung function. Dark-field CT (DFCT), based on small-angle scattering of x-rays, reveals such structural changes even at resolutions coarser than the pulmonary network and thus provides access to their anatomical distribution. In this proof-of-concept study we present x-ray in vivo DFCTs of lungs of a healthy, an emphysematous and a fibrotic mouse. The tomographies show excellent depiction of the distribution of structural - and thus indirectly functional - changes in lung parenchyma, on single-modality slices in dark field as well as on multimodal fusion images. Therefore, we anticipate numerous applications of DFCT in diagnostic lung imaging. We introduce a scatter-based Hounsfield Unit (sHU) scale to facilitate comparability of scans. In this newly defined sHU scale, the pathophysiological changes by emphysema and fibrosis cause a shift towards lower numbers, compared to healthy lung tissue.

  18. Grating-based X-ray Dark-field Computed Tomography of Living Mice

    PubMed Central

    Velroyen, A.; Yaroshenko, A.; Hahn, D.; Fehringer, A.; Tapfer, A.; Müller, M.; Noël, P.B.; Pauwels, B.; Sasov, A.; Yildirim, A.Ö.; Eickelberg, O.; Hellbach, K.; Auweter, S.D.; Meinel, F.G.; Reiser, M.F.; Bech, M.; Pfeiffer, F.

    2015-01-01

    Changes in x-ray attenuating tissue caused by lung disorders like emphysema or fibrosis are subtle and thus only resolved by high-resolution computed tomography (CT). The structural reorganization, however, is of strong influence for lung function. Dark-field CT (DFCT), based on small-angle scattering of x-rays, reveals such structural changes even at resolutions coarser than the pulmonary network and thus provides access to their anatomical distribution. In this proof-of-concept study we present x-ray in vivo DFCTs of lungs of a healthy, an emphysematous and a fibrotic mouse. The tomographies show excellent depiction of the distribution of structural – and thus indirectly functional – changes in lung parenchyma, on single-modality slices in dark field as well as on multimodal fusion images. Therefore, we anticipate numerous applications of DFCT in diagnostic lung imaging. We introduce a scatter-based Hounsfield Unit (sHU) scale to facilitate comparability of scans. In this newly defined sHU scale, the pathophysiological changes by emphysema and fibrosis cause a shift towards lower numbers, compared to healthy lung tissue. PMID:26629545

  19. Growing applications of FDG PET-CT imaging in non-oncologic conditions

    PubMed Central

    Zhuang, Hongming; Codreanu, Ion

    2015-01-01

    Abstract As the number of clinical applications of 2-[fluorine 18]fluoro-2-deoxy-D-glucose (FDG) positron emission tomography/computed tomography (PET-CT) grows, familiarity with the conditions that can be diagnosed by this modality and when relevant pieces of additional information can be obtained becomes increasingly important for both requesting physicians and nuclear medicine physicians or radiologists who interpret the findings. Apart from its heavy use in clinical oncology, FDG PET-CT is widely used in a variety of non-oncologic conditions interconnecting to such disciplines as general internal medicine, infectious diseases, cardiology, neurology, surgery, traumatology, orthopedics, pediatrics, endocrinology, rheumatology, psychiatry, neuropsychology, and cognitive neuroscience. The aim of this review was to summarize the current evidence of FDG PET-CT applications in evaluating non-oncologic pathologies and the relevant information it can add to achieve a final diagnosis. PMID:26060443

  20. PSMA Ligands for Radionuclide Imaging and Therapy of Prostate Cancer: Clinical Status

    PubMed Central

    Lütje, Susanne; Heskamp, Sandra; Cornelissen, Alexander S.; Poeppel, Thorsten D.; van den Broek, Sebastiaan A. M. W.; Rosenbaum-Krumme, Sandra; Bockisch, Andreas; Gotthardt, Martin; Rijpkema, Mark; Boerman, Otto C.

    2015-01-01

    Prostate cancer (PCa) is the most common malignancy in men worldwide, leading to substantial morbidity and mortality. At present, imaging of PCa has become increasingly important for staging, restaging, and treatment selection. Until recently, choline-based positron emission tomography/computed tomography (PET/CT) represented the state-of-the-art radionuclide imaging technique for these purposes. However, its application is limited to patients with high PSA levels and Gleason scores. Prostate-specific membrane antigen (PSMA) is a promising new target for specific imaging of PCa, because it is upregulated in the majority of PCa. Moreover, PSMA can serve as a target for therapeutic applications. Currently, several small-molecule PSMA ligands with excellent in vivo tumor targeting characteristics are being investigated for their potential in theranostic applications in PCa. Here, a review of the recent developments in PSMA-based diagnostic imaging and therapy in patients with PCa with radiolabeled PSMA ligands is provided. PMID:26681984

  1. Radiation dose evaluation of dental cone beam computed tomography using an anthropomorphic adult head phantom

    NASA Astrophysics Data System (ADS)

    Wu, Jay; Shih, Cheng-Ting; Ho, Chang-hung; Liu, Yan-Lin; Chang, Yuan-Jen; Min Chao, Max; Hsu, Jui-Ting

    2014-11-01

    Dental cone beam computed tomography (CBCT) provides high-resolution tomographic images and has been gradually used in clinical practice. Thus, it is important to examine the amount of radiation dose resulting from dental CBCT examinations. In this study, we developed an in-house anthropomorphic adult head phantom to evaluate the level of effective dose. The anthropomorphic phantom was made of acrylic and filled with plaster to replace the bony tissue. The contour of the head was extracted from a set of adult computed tomography (CT) images. Different combinations of the scanning parameters of CBCT were applied. Thermoluminescent dosimeters (TLDs) were used to measure the absorbed doses at 19 locations in the head and neck regions. The effective doses measured using the proposed phantom at 65, 75, and 85 kVp in the D-mode were 72.23, 100.31, and 134.29 μSv, respectively. In the I-mode, the effective doses were 108.24, 190.99, and 246.48 μSv, respectively. The maximum percent error between the doses measured by the proposed phantom and the Rando phantom was l4.90%. Therefore, the proposed anthropomorphic adult head phantom is applicable for assessing the radiation dose resulting from clinical dental CBCT.

  2. 6 Mcps photon-counting X-ray computed tomography system using a 25 mm/s-scan linear LSO-MPPC detector and its application to gadolinium imaging

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Oda, Yasuyuki; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sugimura, Shigeaki; Endo, Haruyuki; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2011-12-01

    6 Mcps photon counting was carried out using a detector consisting of a 1.0 mm-thick LSO [Lu 2(SiO 4)O] single-crystal scintillator and an MPPC (multipixel photon counter) module in an X-ray computed tomography (CT) system. The maximum count rate was 6 Mcps (mega counts per second) at a tube voltage of 100 kV and a tube current of 0.91 mA. Next, a photon-counting X-ray CT system consists of an X-ray generator, a turntable, a scan stage, a two-stage controller, the LSO-MPPC detector, a counter card (CC), and a personal computer (PC). Tomography is accomplished by repeated linear scans and rotations of an object, and projection curves of the object are obtained by the linear scan with a scan velocity of 25 mm/s. The pulses of the event signal from the module are counted by the CC in conjunction with the PC. The exposure time for obtaining a tomogram was 600 s at a scan step of 0.5 mm and a rotation step of 1.0°, and photon-counting CT was accomplished using gadolinium-based contrast media.

  3. X-ray phase-contrast computed tomography visualizes the microstructure and degradation profile of implanted biodegradable scaffolds after spinal cord injury

    PubMed Central

    Takashima, Kenta; Hoshino, Masato; Uesugi, Kentaro; Yagi, Naoto; Matsuda, Shojiro; Nakahira, Atsushi; Osumi, Noriko; Kohzuki, Masahiro; Onodera, Hiroshi

    2015-01-01

    Tissue engineering strategies for spinal cord repair are a primary focus of translational medicine after spinal cord injury (SCI). Many tissue engineering strategies employ three-dimensional scaffolds, which are made of biodegradable materials and have microstructure incorporated with viable cells and bioactive molecules to promote new tissue generation and functional recovery after SCI. It is therefore important to develop an imaging system that visualizes both the microstructure of three-dimensional scaffolds and their degradation process after SCI. Here, X-ray phase-contrast computed tomography imaging based on the Talbot grating interferometer is described and it is shown how it can visualize the polyglycolic acid scaffold, including its microfibres, after implantation into the injured spinal cord. Furthermore, X-ray phase-contrast computed tomography images revealed that degradation occurred from the end to the centre of the braided scaffold in the 28 days after implantation into the injured spinal cord. The present report provides the first demonstration of an imaging technique that visualizes both the microstructure and degradation of biodegradable scaffolds in SCI research. X-ray phase-contrast imaging based on the Talbot grating interferometer is a versatile technique that can be used for a broad range of preclinical applications in tissue engineering strategies. PMID:25537600

  4. 3D noninvasive ultrasound Joule heat tomography based on acousto-electric effect using unipolar pulses: a simulation study

    PubMed Central

    Yang, Renhuan; Li, Xu; Song, Aiguo; He, Bin; Yan, Ruqiang

    2012-01-01

    Electrical properties of biological tissues are highly sensitive to their physiological and pathological status. Thus it is of importance to image electrical properties of biological tissues. However, spatial resolution of conventional electrical impedance tomography (EIT) is generally poor. Recently, hybrid imaging modalities combining electric conductivity contrast and ultrasonic resolution based on acouto-electric effect has attracted considerable attention. In this study, we propose a novel three-dimensional (3D) noninvasive ultrasound Joule heat tomography (UJHT) approach based on acouto-electric effect using unipolar ultrasound pulses. As the Joule heat density distribution is highly dependent on the conductivity distribution, an accurate and high resolution mapping of the Joule heat density distribution is expected to give important information that is closely related to the conductivity contrast. The advantages of the proposed ultrasound Joule heat tomography using unipolar pulses include its simple inverse solution, better performance than UJHT using common bipolar pulses and its independence of any priori knowledge of the conductivity distribution of the imaging object. Computer simulation results show that using the proposed method, it is feasible to perform a high spatial resolution Joule heat imaging in an inhomogeneous conductive media. Application of this technique on tumor scanning is also investigated by a series of computer simulations. PMID:23123757

  5. Hybrid imaging worldwide-challenges and opportunities for the developing world: a report of a Technical Meeting organized by IAEA.

    PubMed

    Kashyap, Ravi; Dondi, Maurizio; Paez, Diana; Mariani, Guliano

    2013-05-01

    The growth in nuclear medicine, in the past decade, is largely due to hybrid imaging, specifically single-photon emission tomography-computed tomography (SPECT-CT) and positron emission tomography-computed tomography (PET-CT). Introduction and use of hybrid imaging has been growing at a fast pace. This has led to many challenges and opportunities to the personnel dealing with it. The International Atomic Energy Agency (IAEA) keeps a close watch on the trends in applications of nuclear techniques in health by many ways, including obtaining inputs from member states and professional societies. In 2012, a Technical Meeting on trends in hybrid imaging was organized by IAEA to understand the current status and trends of hybrid imaging using nuclear techniques, its role in clinical practice, and associated educational needs and challenges. Perspective of scientific societies and professionals from all the regions of the world was obtained. Heterogeneity in value, educational needs, and access was noted and the drivers of this heterogeneity were discussed. This article presents the key points shared during the technical meeting, focusing primarily on SPECT-CT and PET-CT, and shares the action plan for IAEA to deal with heterogeneity as suggested by the participants. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Neutron Radiography and Computed Tomography at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raine, Dudley A. III; Hubbard, Camden R.; Whaley, Paul M.

    1997-12-31

    The capability to perform neutron radiography and computed tomography is being developed at Oak Ridge National Laboratory. The facility will be located at the High Flux Isotope Reactor (HFIR), which has the highest steady state neutron flux of any reactor in the world. The Monte Carlo N-Particle transport code (MCNP), versions 4A and 4B, has been used extensively in the design phase of the facility to predict and optimize the operating characteristics, and to ensure the safety of personnel working in and around the blockhouse. Neutrons are quite penetrating in most engineering materials and can be useful to detect internalmore » flaws and features. Hydrogen atoms, such as in a hydrocarbon fuel, lubricant or a metal hydride, are relatively opaque to neutron transmission. Thus, neutron based tomography or radiography is ideal to image their presence. The source flux also provides unparalleled flexibility for future upgrades, including real time radiography where dynamic processes can be observed. A novel tomography detector has been designed using optical fibers and digital technology to provide a large dynamic range for reconstructions. Film radiography is also available for high resolution imaging applications. This paper summarizes the results of the design phase of this facility and the potential benefits to science and industry.« less

  7. Practical adaptive quantum tomography

    NASA Astrophysics Data System (ADS)

    Granade, Christopher; Ferrie, Christopher; Flammia, Steven T.

    2017-11-01

    We introduce a fast and accurate heuristic for adaptive tomography that addresses many of the limitations of prior methods. Previous approaches were either too computationally intensive or tailored to handle special cases such as single qubits or pure states. By contrast, our approach combines the efficiency of online optimization with generally applicable and well-motivated data-processing techniques. We numerically demonstrate these advantages in several scenarios including mixed states, higher-dimensional systems, and restricted measurements. http://cgranade.com complete data and source code for this work are available online [1], and can be previewed at https://goo.gl/koiWxR.

  8. A Novel Automated Method for Analyzing Cylindrical Computed Tomography Data

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Burke, E. R.; Rauser, R. W.; Martin, R. E.

    2011-01-01

    A novel software method is presented that is applicable for analyzing cylindrical and partially cylindrical objects inspected using computed tomography. This method involves unwrapping and re-slicing data so that the CT data from the cylindrical object can be viewed as a series of 2-D sheets in the vertical direction in addition to volume rendering and normal plane views provided by traditional CT software. The method is based on interior and exterior surface edge detection and under proper conditions, is FULLY AUTOMATED and requires no input from the user except the correct voxel dimension from the CT scan. The software is available from NASA in 32- and 64-bit versions that can be applied to gigabyte-sized data sets, processing data either in random access memory or primarily on the computer hard drive. Please inquire with the presenting author if further interested. This software differentiates itself in total from other possible re-slicing software solutions due to complete automation and advanced processing and analysis capabilities.

  9. Computed Tomography Studies of Lung Mechanics

    PubMed Central

    Simon, Brett A.; Christensen, Gary E.; Low, Daniel A.; Reinhardt, Joseph M.

    2005-01-01

    The study of lung mechanics has progressed from global descriptions of lung pressure and volume relationships to the high-resolution, three-dimensional, quantitative measurement of dynamic regional mechanical properties and displacements. X-ray computed tomography (CT) imaging is ideally suited to the study of regional lung mechanics in intact subjects because of its high spatial and temporal resolution, correlation of functional data with anatomic detail, increasing volumetric data acquisition, and the unique relationship between CT density and lung air content. This review presents an overview of CT measurement principles and limitations for the study of regional mechanics, reviews some of the early work that set the stage for modern imaging approaches and impacted the understanding and management of patients with acute lung injury, and presents evolving novel approaches for the analysis and application of dynamic volumetric lung image data. PMID:16352757

  10. Inspection of a Medieval Wood Sculpture Using Computer Tomography

    NASA Astrophysics Data System (ADS)

    Kapitany, K.; Somogyi, A.; Barsi, A.

    2016-06-01

    Computer tomography (CT) is an excellent technique for obtaining accurate 3D information about the human body. It allows to visualize the organs, bones and blood vessels, furthermore it enables to diagnose anomalies and diseases. Its spatial reconstruction capability supports other interesting applications, such as inspecting different, even valuable objects like ancient sculptures. Current paper presents a methodology of evaluating CT and video imagery through the example of investigating a wood Madonna with infant Jesus sculpture from the 14th century. The developed techniques extract the outer boundary of the statue, which has been triangulated to derive the surface model. The interior of the sculpture has also been revealed: the iron bolts and rivets as well as the woodworm holes can be mapped. By merging the interior and outer data (geometry and texture) interesting visualizations (perspective views, sections etc.) have been created.

  11. Accelerating electron tomography reconstruction algorithm ICON with GPU.

    PubMed

    Chen, Yu; Wang, Zihao; Zhang, Jingrong; Li, Lun; Wan, Xiaohua; Sun, Fei; Zhang, Fa

    2017-01-01

    Electron tomography (ET) plays an important role in studying in situ cell ultrastructure in three-dimensional space. Due to limited tilt angles, ET reconstruction always suffers from the "missing wedge" problem. With a validation procedure, iterative compressed-sensing optimized NUFFT reconstruction (ICON) demonstrates its power in the restoration of validated missing information for low SNR biological ET dataset. However, the huge computational demand has become a major problem for the application of ICON. In this work, we analyzed the framework of ICON and classified the operations of major steps of ICON reconstruction into three types. Accordingly, we designed parallel strategies and implemented them on graphics processing units (GPU) to generate a parallel program ICON-GPU. With high accuracy, ICON-GPU has a great acceleration compared to its CPU version, up to 83.7×, greatly relieving ICON's dependence on computing resource.

  12. Micro-computed tomography imaging and analysis in developmental biology and toxicology.

    PubMed

    Wise, L David; Winkelmann, Christopher T; Dogdas, Belma; Bagchi, Ansuman

    2013-06-01

    Micro-computed tomography (micro-CT) is a high resolution imaging technique that has expanded and strengthened in use since it was last reviewed in this journal in 2004. The technology has expanded to include more detailed analysis of bone, as well as soft tissues, by use of various contrast agents. It is increasingly applied to questions in developmental biology and developmental toxicology. Relatively high-throughput protocols now provide a powerful and efficient means to evaluate embryos and fetuses subjected to genetic manipulations or chemical exposures. This review provides an overview of the technology, including scanning, reconstruction, visualization, segmentation, and analysis of micro-CT generated images. This is followed by a review of more recent applications of the technology in some common laboratory species that highlight the diverse issues that can be addressed. Copyright © 2013 Wiley Periodicals, Inc.

  13. An algebraic iterative reconstruction technique for differential X-ray phase-contrast computed tomography.

    PubMed

    Fu, Jian; Schleede, Simone; Tan, Renbo; Chen, Liyuan; Bech, Martin; Achterhold, Klaus; Gifford, Martin; Loewen, Rod; Ruth, Ronald; Pfeiffer, Franz

    2013-09-01

    Iterative reconstruction has a wide spectrum of proven advantages in the field of conventional X-ray absorption-based computed tomography (CT). In this paper, we report on an algebraic iterative reconstruction technique for grating-based differential phase-contrast CT (DPC-CT). Due to the differential nature of DPC-CT projections, a differential operator and a smoothing operator are added to the iterative reconstruction, compared to the one commonly used for absorption-based CT data. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured at a two-grating interferometer setup. Since the algorithm is easy to implement and allows for the extension to various regularization possibilities, we expect a significant impact of the method for improving future medical and industrial DPC-CT applications. Copyright © 2012. Published by Elsevier GmbH.

  14. Use Your Head: Neuroscience Research and Teaching

    ERIC Educational Resources Information Center

    Hunter, William J.

    2011-01-01

    Brain science is a new and complex field. It has emerged with the application of new technologies for brain imaging like Magnetic Resonance Images (MRIs) and Computer Axial Tomography (CAT) scans. Since the brain is the site for learning, educators stand to benefit from this knowledge when it is applied to improving methods of teaching or…

  15. [Applicability of non-invasive imaging methods in forensic medicine and forensic anthropology in particular].

    PubMed

    Marcinková, Mária; Straka, Ľubomír; Novomeský, František; Janík, Martin; Štuller, František; Krajčovič, Jozef

    2018-01-01

    Massive progress in developing even more precise imaging modalities influenced all medical branches including the forensic medicine. In forensic anthropology, an inevitable part of forensic medicine itself, the use of all imaging modalities becomes even more important. Despite of acquiring more accurate informations about the deceased, all of them can be used in the process of identification and/or age estimation. X - ray imaging is most commonly used in detecting foreign bodies or various pathological changes of the deceased. Computed tomography, on the other hand, can be very helpful in the process of identification, whereas outcomes of this examination can be used for virtual reconstruction of living objects. Magnetic resonance imaging offers new opportunities in detecting cardiovascular pathological processes or develompental anomalies. Ultrasonography provides promising results in age estimation of living subjects without excessive doses of radiation. Processing the latest information sources available, authors introduce the application examples of X - ray imaging, computed tomography, magnetic resonance imaging and ultrasonography in everyday forensic medicine routine, with particular focusing on forensic anthropology.

  16. Evaluative studies in nuclear medicine research: emission computed tomography assessment. Final report, January 1-December 31, 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potchen, E.J.; Harris, G.I.; Gift, D.A.

    The report provides information on an assessment of the potential short and long term benefits of emission computed tomography (ECT) in biomedical research and patient care. Work during the past year has been augmented by the development and use of an opinion survey instrument to reach a wider representation of knowledgeable investigators and users of this technology. This survey instrument is reproduced in an appendix. Information derived from analysis of the opinion survey, and used in conjunction with results of independent staff studies of available sources, provides the basis for the discussions given in following sections of PET applications inmore » the brain, of technical factors, and of economic implications. Projections of capital and operating costs on a per study basis were obtained from a computerized, pro forma accounting model and are compared with the survey cost estimates for both research and clinical modes of application. The results of a cash-flow model analysis of the relationship between projected economic benefit of PET research to disease management and the costs associated with such research are presented and discussed.« less

  17. Application of X-Ray Computer Tomography for Observing the Central Void Formations and the Fuel Pin Deformations of Irradiated FBR Fuel Assemblies

    NASA Astrophysics Data System (ADS)

    Katsuyama, Kozo; Nagamine, Tsuyoshi; Furuya, Hirotaka

    2010-10-01

    In order to observe the structural change in the interior of irradiated fuel assemblies, a non-destructive post-irradiation examination (PIE) technique using X-ray computer tomography (X-ray CT) was developed. This X-ray CT technique was applied to observe the central void formations and fuel pin deformations of fuel assemblies which had been irradiated at high linear heat rating. The central void sizes in all fuel pins were measured on five cross sections of the core fuel column as a parameter for evaluating fuel thermal performance. In addition, the fuel pin deformations were analyzed from X-ray CT images obtained along the axial direction of a fuel assembly at the same separation interval. A dependence of void size on the linear heat rating was seen in the fuel assembly irradiated at high linear heat rating. In addition, significant undulations of the fuel pin were observed along the axial direction, coinciding with the wrapping wire pitch in the core fuel column. Application of the developed technique should provide enhanced resolution of measurements and simplify fuel PIEs.

  18. Multi-slice computed tomography 5-minute delayed scan is superior to immediate scan after contrast media application in characterization of intracranial tuberculosis.

    PubMed

    Hou, Dailun; Qu, Huifang; Zhang, Xu; Li, Ning; Liu, Cheng; Ma, Xiangxing

    2014-09-02

    The aim of this study was to determine whether the diagnosis of intracranial tuberculosis (TB) can be improved when multi-slice computed tomography (MSCT) scans are taken with a 5-min delay after contrast media application. Pre- and post-contrast CT scans of the head were obtained from 30 patients using a 16-slice spiral CT. Dual-phase acquisition was performed immediately and 5 min after contrast agent injection. Diagnostic values of different images were compared using a scoring system applied by 2 experienced radiologists. We found 526 lesions in 30 patients, including 22 meningeal thickenings, 235 meningeal tuberculomas/tubercles, and 269 parenchymal tuberculomas/tubercles. Images obtained with 5-min delayed scan time were superior in terms of lesion size and meningeal thickening outlining in all disease types (P<0.01). The ability to distinguish between vascular sections from the cerebral sulcus and tubercle was also improved (P<0.01). Image acquisition with 5-min delay after contrast agent injection should be performed as a standard scanning protocol to diagnose intracranial TB.

  19. Quintuple-modality (SERS-MRI-CT-TPL-PTT) plasmonic nanoprobe for theranostics

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Chang, Zheng; Yuan, Hsiangkuo; Fales, Andrew M.; Vo-Dinh, Tuan

    2013-11-01

    A unique quintuple-modality theranostic nanoprobe (QMT) is developed with gold nanostars for surface-enhanced Raman scattering (SERS), magnetic resonance imaging (MRI), computed tomography (CT), two-photon luminescence (TPL) imaging and photothermal therapy (PTT). The synthesized gold nanostars were tagged with a SERS reporter and linked with an MRI contrast agent Gd3+. In vitro experiments demonstrated the developed QMT nanoprobe to be a potential theranostic agent for future biomedical applications.A unique quintuple-modality theranostic nanoprobe (QMT) is developed with gold nanostars for surface-enhanced Raman scattering (SERS), magnetic resonance imaging (MRI), computed tomography (CT), two-photon luminescence (TPL) imaging and photothermal therapy (PTT). The synthesized gold nanostars were tagged with a SERS reporter and linked with an MRI contrast agent Gd3+. In vitro experiments demonstrated the developed QMT nanoprobe to be a potential theranostic agent for future biomedical applications. Electronic supplementary information (ESI) available: Details of experimental section, characterization details and relaxivity curve of developed QMT nanoprobe in water at 1.5 T magnetic filed strength. See DOI: 10.1039/c3nr03762b

  20. Cone beam computed tomography in veterinary dentistry.

    PubMed

    Van Thielen, Bert; Siguenza, Francis; Hassan, Bassam

    2012-01-01

    The purpose of this study was to assess the feasibility of cone beam computed tomography (CBCT) in imaging dogs and cats for diagnostic dental veterinary applications. CBCT scans of heads of six dogs and two cats were made. Dental panoramic and multi-planar reformatted (MPR) para-sagittal reconstructions were created using specialized software. Image quality and visibility of anatomical landmarks were subjectively assessed by two observers. Good image quality was obtained for the MPR para-sagittal reconstructions through multiple teeth. The image quality of the panoramic reconstructions of dogs was moderate while the panoramic reconstructions of cats were poor since the images were associated with an increased noise level. Segmental panoramic reconstructions of the mouth seem to be useful for studying the dental anatomy especially in dogs. The results of this study using human dental CBCT technology demonstrate the potential of this scanning technology in veterinary medicine. Unfortunately, the moderate image quality obtained with the CBCT technique reported here seems to be inferior to the diagnostic image quality obtained from 2-dimensional dental radiographs. Further research is required to optimize scanning and reconstruction protocols for veterinary applications.

  1. Impedance computed tomography using an adaptive smoothing coefficient algorithm.

    PubMed

    Suzuki, A; Uchiyama, A

    2001-01-01

    In impedance computed tomography, a fixed coefficient regularization algorithm has been frequently used to improve the ill-conditioning problem of the Newton-Raphson algorithm. However, a lot of experimental data and a long period of computation time are needed to determine a good smoothing coefficient because a good smoothing coefficient has to be manually chosen from a number of coefficients and is a constant for each iteration calculation. Thus, sometimes the fixed coefficient regularization algorithm distorts the information or fails to obtain any effect. In this paper, a new adaptive smoothing coefficient algorithm is proposed. This algorithm automatically calculates the smoothing coefficient from the eigenvalue of the ill-conditioned matrix. Therefore, the effective images can be obtained within a short computation time. Also the smoothing coefficient is automatically adjusted by the information related to the real resistivity distribution and the data collection method. In our impedance system, we have reconstructed the resistivity distributions of two phantoms using this algorithm. As a result, this algorithm only needs one-fifth the computation time compared to the fixed coefficient regularization algorithm. When compared to the fixed coefficient regularization algorithm, it shows that the image is obtained more rapidly and applicable in real-time monitoring of the blood vessel.

  2. Just Scan It!-Weapon Reconstruction in Computed Tomography on Historical and Current Swiss Military Guns.

    PubMed

    Franckenberg, Sabine; Binder, Thomas; Bolliger, Stephan; Thali, Michael J; Ross, Steffen G

    2016-09-01

    Cross-sectional imaging, such as computed tomography, has been increasingly implemented in both historic and recent postmortem forensic investigations. It aids in determining cause and manner of death as well as in correlating injuries to possible weapons. This study illuminates the feasibility of reconstructing guns in computed tomography and gives a distinct overview of historic and recent Swiss Army guns.

  3. The use of computed tomography to diagnose chronic shoulder arthritis in an American white pelican (Pelecanus erythrorhynchos).

    PubMed

    Whitehead, Michelle C; Parker, Dennilyn L

    2015-03-01

    An American white pelican was presented with a complete left wing droop and no abnormal findings on conventional radiography. Computed tomography was used to diagnose chronic shoulder arthritis as a sequela to a suspected traumatic compressive fracture. This is the first case report to describe use of computed tomography to evaluate the avian shoulder joint.

  4. Embracing Statistical Challenges in the Information Technology Age

    DTIC Science & Technology

    2006-01-01

    computation and feature selection. Moreover, two research projects on network tomography and arctic cloud detection are used throughout the paper to bring...prominent Network Tomography problem, origin- destination (OD) traffic estimation. It demonstrates well how the two modes of data collection interact...software debugging (Biblit et al, 2005 [2]), and network tomography for computer network management. Computer sys- tem problems exist long before the IT

  5. Computed Tomography For Internal Inspection Of Castings

    NASA Technical Reports Server (NTRS)

    Hanna, Timothy L.

    1995-01-01

    Computed tomography used to detect internal flaws in metal castings before machining and otherwise processing them into finished parts. Saves time and money otherwise wasted on machining and other processing of castings eventually rejected because of internal defects. Knowledge of internal defects gained by use of computed tomography also provides guidance for changes in foundry techniques, procedures, and equipment to minimize defects and reduce costs.

  6. The Impact of Computed Tomography on Decision Making in Tibial Plateau Fractures.

    PubMed

    Castiglia, Marcello Teixeira; Nogueira-Barbosa, Marcello Henrique; Messias, Andre Marcio Vieira; Salim, Rodrigo; Fogagnolo, Fabricio; Schatzker, Joseph; Kfuri, Mauricio

    2018-02-14

    Schatzker introduced one of the most used classification systems for tibial plateau fractures, based on plain radiographs. Computed tomography brought to attention the importance of coronal plane-oriented fractures. The goal of our study was to determine if the addition of computed tomography would affect the decision making of surgeons who usually use the Schatzker classification to assess tibial plateau fractures. Image studies of 70 patients who sustained tibial plateau fractures were uploaded to a dedicated homepage. Every patient was linked to a folder which contained two radiographic projections (anteroposterior and lateral), three interactive videos of computed tomography (axial, sagittal, and coronal), and eight pictures depicting tridimensional reconstructions of the tibial plateau. Ten attending orthopaedic surgeons, who were blinded to the cases, were granted access to the homepage and assessed each set of images in two different rounds, separated to each other by an interval of 2 weeks. Each case was evaluated in three steps, where surgeons had access, respectively to radiographs, two-dimensional videos of computed tomography, and three-dimensional reconstruction images. After every step, surgeons were asked to present how would they classify the case using the Schatzker system and which surgical approaches would be appropriate. We evaluated the inter- and intraobserver reliability of the Schatzker classification using the Kappa concordance coefficient, as well as the impact of computed tomography in the decision making regarding the surgical approach for each case, by using the chi-square test and likelihood ratio. The interobserver concordance kappa coefficients after each assessment step were, respectively, 0.58, 0.62, and 0.64. For the intraobserver analysis, the coefficients were, respectively, 0.76, 0.75, and 0.78. Computed tomography changed the surgical approach selection for the types II, V, and VI of Schatzker ( p  < 0.01). The addition of computed tomography scans to plain radiographs improved the interobserver reliability of Schatzker classification. Computed tomography had a statistically significant impact in the selection of surgical approaches for the lateral tibial plateau. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  7. Compton imaging tomography for nondestructive evaluation of spacecraft thermal protection systems

    NASA Astrophysics Data System (ADS)

    Romanov, Volodymyr; Burke, Eric; Grubsky, Victor

    2017-02-01

    Here we present new results of in situ nondestructive evaluation (NDE) of spacecraft thermal protection system materials obtained with POC-developed NDE tool based on a novel Compton Imaging Tomography (CIT) technique recently pioneered and patented by Physical Optics Corporation (POC). In general, CIT provides high-resolution three-dimensional Compton scattered X-ray imaging of the internal structure of evaluated objects, using a set of acquired two-dimensional Compton scattered X-ray images of consecutive cross sections of these objects. Unlike conventional computed tomography, CIT requires only one-sided access to objects, has no limitation on the dimensions and geometry of the objects, and can be applied to large multilayer non-uniform objects with complicated geometries. Also, CIT does not require any contact with the objects being imaged during its application.

  8. Characteristic of x-ray tomography performance using CdTe timepix detector

    NASA Astrophysics Data System (ADS)

    Zain, R. M.; O'Shea, V.; Maneuski, D.

    2017-01-01

    X-ray Computed Tomography (CT) is a non-destructive technique for visualizing interior features within solid objects, and for obtaining digital information on their 3-D geometries and properties. The selection of CdTe Timepix detector has a sufficient performance of imaging detector is based on quality of detector performance and energy resolution. The study of Modulation Transfer Function (MTF) shows a 70% contrast at 4 lp/mm was achieved for the 55 µm pixel pitch detector with the 60 kVp X-ray tube and 5 keV noise level. No significant degradation in performance was observed for X-ray tube energies of 20 - 60 keV. The paper discusses the application of the CdTe Timepix detector to produce a good quality image of X-ray tomography imaging.

  9. Distributed nuclear medicine applications using World Wide Web and Java technology.

    PubMed

    Knoll, P; Höll, K; Mirzaei, S; Koriska, K; Köhn, H

    2000-01-01

    At present, medical applications applying World Wide Web (WWW) technology are mainly used to view static images and to retrieve some information. The Java platform is a relative new way of computing, especially designed for network computing and distributed applications which enables interactive connection between user and information via the WWW. The Java 2 Software Development Kit (SDK) including Java2D API, Java Remote Method Invocation (RMI) technology, Object Serialization and the Java Advanced Imaging (JAI) extension was used to achieve a robust, platform independent and network centric solution. Medical image processing software based on this technology is presented and adequate performance capability of Java is demonstrated by an iterative reconstruction algorithm for single photon emission computerized tomography (SPECT).

  10. Pilot Study of Bovine Interdigital Cassetteless Computed Radiography

    PubMed Central

    EL-SHAFAEY, El-Sayed Ahmed Awad; AOKI, Takahiro; ISHII, Mitsuo; YAMADA, Kazutaka

    2013-01-01

    ABSTRACT Twenty-one limbs of bovine cadavers (42 digits) were exposed to interdigital cassetteless imaging plate using computed radiography. The radiographic findings included exostosis, a rough planta surface, osteolysis of the apex of the distal phalanx and widening of the laminar zone between the distal phalanx and the hoof wall. All these findings were confirmed by computed tomography. The hindlimbs (19 digits) showed more changes than the forelimbs (10 digits), particularly in the lateral distal phalanx. The cassetteless computed radiography technique is expected to be an easily applicable method for the distal phalanx rather than a conventional cassette-plate and/or the film-screen cassetteless methods. PMID:23782542

  11. Results of application of automatic computation of static corrections on data from the South Banat Terrain

    NASA Astrophysics Data System (ADS)

    Milojević, Slavka; Stojanovic, Vojislav

    2017-04-01

    Due to the continuous development of the seismic acquisition and processing method, the increase of the signal/fault ratio always represents a current target. The correct application of the latest software solutions improves the processing results and justifies their development. A correct computation and application of static corrections represents one of the most important tasks in pre-processing. This phase is of great importance for further processing steps. Static corrections are applied to seismic data in order to compensate the effects of irregular topography, the difference between the levels of source points and receipt in relation to the level of reduction, of close to the low-velocity surface layer (weathering correction), or any reasons that influence the spatial and temporal position of seismic routes. The refraction statics method is the most common method for computation of static corrections. It is successful in resolving of both the long-period statics problems and determining of the difference in the statics caused by abrupt lateral changes in velocity in close to the surface layer. XtremeGeo FlatironsTM is a program whose main purpose is computation of static correction through a refraction statics method and allows the application of the following procedures: picking of first arrivals, checking of geometry, multiple methods for analysis and modelling of statics, analysis of the refractor anisotropy and tomography (Eikonal Tomography). The exploration area is located on the southern edge of the Pannonian Plain, in the plain area with altitudes of 50 to 195 meters. The largest part of the exploration area covers Deliblato Sands, where the geological structure of the terrain and high difference in altitudes significantly affects the calculation of static correction. Software XtremeGeo FlatironsTM has powerful visualization and tools for statistical analysis which contributes to significantly more accurate assessment of geometry close to the surface layers and therefore more accurately computed static corrections.

  12. Limitations of PET/CT in the Detection of Occult N1 Metastasis in Clinical Stage I(T1-2aN0) Non-Small Cell Lung Cancer for Staging Prior to Stereotactic Body Radiotherapy.

    PubMed

    Akthar, Adil S; Ferguson, Mark K; Koshy, Matthew; Vigneswaran, Wickii T; Malik, Renuka

    2017-02-01

    Patients receiving stereotactic body radiotherapy for stage I non-small cell lung cancer are typically staged clinically with positron emission tomography-computed tomography. Currently, limited data exist for the detection of occult hilar/peribronchial (N1) disease. We hypothesize that positron emission tomography-computed tomography underestimates spread of cancer to N1 lymph nodes and that future stereotactic body radiotherapy patients may benefit from increased pathologic evaluation of N1 nodal stations in addition to N2 nodes. A retrospective study was performed of all patients with clinical stage I (T1-2aN0) non-small cell lung cancer (American Joint Committee on Cancer, 7th edition) by positron emission tomography-computed tomography at our institution from 2003 to 2011, with subsequent surgical resection and lymph node staging. Findings on positron emission tomography-computed tomography were compared to pathologic nodal involvement to determine the negative predictive value of positron emission tomography-computed tomography for the detection of N1 nodal disease. An analysis was conducted to identify predictors of occult spread. A total of 105 patients with clinical stage I non-small cell lung cancer were included in this study, of which 8 (7.6%) patients were found to have occult N1 metastasis on pathologic review yielding a negative predictive value for N1 disease of 92.4%. No patients had occult mediastinal nodes. The negative predictive value for positron emission tomography-computed tomography in patients with clinical stage T1 versus T2 tumors was 72 (96%) of 75 versus 25 (83%) of 30, respectively ( P = .03), and for peripheral versus central tumor location was 77 (98%) of 78 versus 20 (74%) of 27, respectively ( P = .0001). The negative predictive values for peripheral T1 and T2 tumors were 98% and 100%, respectively; while for central T1 and T2 tumors, the rates were 85% and 64%, respectively. Occult lymph node involvement was not associated with primary tumor maximum standard uptake value, histology, grade, or interval between positron emission tomography-computed tomography and surgery. Our results support pathologic assessment of N1 lymph nodes in patients with stage Inon-small cell lung cancer considered for stereotactic body radiotherapy, with the greatest benefit in patients with central and T2 tumors. Diagnostic evaluation with endoscopic bronchial ultrasound should be considered in the evaluation of stereotactic body radiotherapy candidates.

  13. Rotational electrical impedance tomography using electrodes with limited surface coverage provides window for multimodal sensing

    NASA Astrophysics Data System (ADS)

    Lehti-Polojärvi, Mari; Koskela, Olli; Seppänen, Aku; Figueiras, Edite; Hyttinen, Jari

    2018-02-01

    Electrical impedance tomography (EIT) is an imaging method that could become a valuable tool in multimodal applications. One challenge in simultaneous multimodal imaging is that typically the EIT electrodes cover a large portion of the object surface. This paper investigates the feasibility of rotational EIT (rEIT) in applications where electrodes cover only a limited angle of the surface of the object. In the studied rEIT, the object is rotated a full 360° during a set of measurements to increase the information content of the data. We call this approach limited angle full revolution rEIT (LAFR-rEIT). We test LAFR-rEIT setups in two-dimensional geometries with computational and experimental data. We use up to 256 rotational measurement positions, which requires a new way to solve the forward and inverse problem of rEIT. For this, we provide a modification, available for EIDORS, in the supplementary material. The computational results demonstrate that LAFR-rEIT with eight electrodes produce the same image quality as conventional 16-electrode rEIT, when data from an adequate number of rotational measurement positions are used. Both computational and experimental results indicate that the novel LAFR-rEIT provides good EIT with setups with limited surface coverage and a small number of electrodes.

  14. Clinical oncologic applications of PET/MRI: a new horizon

    PubMed Central

    Partovi, Sasan; Kohan, Andres; Rubbert, Christian; Vercher-Conejero, Jose Luis; Gaeta, Chiara; Yuh, Roger; Zipp, Lisa; Herrmann, Karin A; Robbin, Mark R; Lee, Zhenghong; Muzic, Raymond F; Faulhaber, Peter; Ros, Pablo R

    2014-01-01

    Positron emission tomography/magnetic resonance imaging (PET/MRI) leverages the high soft-tissue contrast and the functional sequences of MR with the molecular information of PET in one single, hybrid imaging technology. This technology, which was recently introduced into the clinical arena in a few medical centers worldwide, provides information about tumor biology and microenvironment. Studies on indirect PET/MRI (use of positron emission tomography/computed tomography (PET/CT) images software fused with MRI images) have already generated interesting preliminary data to pave the ground for potential applications of PET/MRI. These initial data convey that PET/MRI is promising in neuro-oncology and head & neck cancer applications as well as neoplasms in the abdomen and pelvis. The pediatric and young adult oncology population requiring frequent follow-up studies as well as pregnant woman might benefit from PET/MRI due to its lower ionizing radiation dose. The indication and planning of therapeutic interventions and specifically radiation therapy in individual patients could be and to a certain extent are already facilitated by performing PET/MRI. The objective of this article is to discuss potential clinical oncology indications of PET/MRI. PMID:24753986

  15. Postmortem whole-body computed tomography angiography visualizing vascular rupture in a case of fatal car crash.

    PubMed

    Flach, Patricia M; Ross, Steffen G; Bolliger, Stephan A; Preiss, Ulrich S; Thali, Michael J; Spendlove, Danny

    2010-01-01

    In addition to the increasingly significant role of multislice computed tomography in forensic pathology, the performance of whole-body computed tomography angiography provides outstanding results. In this case, we were able to detect multiple injuries of the parenchymal organs in the upper abdomen as well as lesions of the brain parenchyma and vasculature of the neck. The radiologic findings showed complete concordance with the autopsy and even supplemented the autopsy findings in areas that are difficult to access via a manual dissection (such as the vasculature of the neck). This case shows how minimally invasive computed tomography angiography can serve as an invaluable adjunct to the classic autopsy procedure.

  16. Computed tomography in the evaluation of Crohn disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldberg, H.I.; Gore, R.M.; Margulis, A.R.

    1983-02-01

    The abdominal and pelvic computed tomographic examinations in 28 patients with Crohn disease were analyzed and correlated with conventional barium studies, sinograms, and surgical findings. Mucosal abnormalities such as aphthous lesions, pseudopolyps, and ulcerations were only imaged by conventional techniques. Computed tomography proved superior in demonstrating the mural, serosal, and mesenteric abnormalities such as bowel wall thickening (82%), fibrofatty proliferation of mesenteric fat (39%), mesenteric abscess (25%), inflammatory reaction of the mesentery (14%), and mesenteric lymphadenopathy (18%). Computed tomography was most useful clinically in defining the nature of mass effects, separation, or displacement of small bowel segments seen on smallmore » bowel series. Although conventional barium studies remain the initial diagnostic procedure in evaluating Crohn disease, computed tomography can be a useful adjunct in resolving difficult clinical and radiologic diagnostic problems.« less

  17. The efficacy of preoperative positron emission tomography-computed tomography (PET-CT) for detection of lymph node metastasis in cervical and endometrial cancer: clinical and pathological factors influencing it.

    PubMed

    Nogami, Yuya; Banno, Kouji; Irie, Haruko; Iida, Miho; Kisu, Iori; Masugi, Yohei; Tanaka, Kyoko; Tominaga, Eiichiro; Okuda, Shigeo; Murakami, Koji; Aoki, Daisuke

    2015-01-01

    We studied the diagnostic performance of (18)F-fluoro-2-deoxy-d-glucose-positron emission tomography/computed tomography in cervical and endometrial cancers with particular focus on lymph node metastases. Seventy patients with cervical cancer and 53 with endometrial cancer were imaged with (18)F-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography before lymphadenectomy. We evaluated the diagnostic performance of (18)F-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography using the final pathological diagnoses as the golden standard. We calculated the sensitivity, specificity, positive predictive value and negative predictive value of (18)F-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography. In cervical cancer, the results evaluated by cases were 33.3, 92.7, 55.6 and 83.6%, respectively. When evaluated by the area of lymph nodes, the results were 30.6, 98.9, 55.0 and 97.0%, respectively. As for endometrial cancer, the results evaluated by cases were 50.0, 93.9, 40.0 and 95.8%, and by area of lymph nodes, 45.0, 99.4, 64.3 and 98.5%, respectively. The limitation of the efficacy was found out by analyzing it by the region of the lymph node, the size of metastatic node, the historical type of tumor in cervical cancer and the prevalence of lymph node metastasis. The efficacy of positron emission tomography/computed tomography regarding the detection of lymph node metastasis in cervical and endometrial cancer is not established and has limitations associated with the region of the lymph node, the size of metastasis lesion in lymph node and the pathological type of primary tumor. The indication for the imaging and the interpretation of the results requires consideration for each case by the pretest probability based on the information obtained preoperatively. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Diagnostic ability of computed tomography using DentaScan software in endodontics: case reports.

    PubMed

    Siotia, Jaya; Gupta, Sunil K; Acharya, Shashi R; Saraswathi, Vidya

    2011-01-01

    Radiographic examination is essential in diagnosis and treatment planning in endodontics. Conventional radiographs depict structures in two dimensions only. The ability to assess the area of interest in three dimensions is advantageous. Computed tomography is an imaging technique which produces three-dimensional images of an object by taking a series of two-dimensional sectional X-ray images. DentaScan is a computed tomography software program that allows the mandible and maxilla to be imaged in three planes: axial, panoramic, and cross-sectional. As computed tomography is used in endodontics, DentaScan can play a wider role in endodontic diagnosis. It provides valuable information in the assessment of the morphology of the root canal, diagnosis of root fractures, internal and external resorptions, pre-operative assessment of anatomic structures etc. The aim of this article is to explore the clinical usefulness of computed tomography and DentaScan in endodontic diagnosis, through a series of four cases of different endodontic problems.

  19. Computed 3D visualisation of an extinct cephalopod using computer tomographs.

    PubMed

    Lukeneder, Alexander

    2012-08-01

    The first 3D visualisation of a heteromorph cephalopod species from the Southern Alps (Dolomites, northern Italy) is presented. Computed tomography, palaeontological data and 3D reconstructions were included in the production of a movie, which shows a life reconstruction of the extinct organism. This detailed reconstruction is according to the current knowledge of the shape and mode of life as well as habitat of this animal. The results are based on the most complete shell known thus far of the genus Dissimilites . Object-based combined analyses from computed tomography and various computed 3D facility programmes help to understand morphological details as well as their ontogentical changes in fossil material. In this study, an additional goal was to show changes in locomotion during different ontogenetic phases of such fossil, marine shell-bearing animals (ammonoids). Hence, the presented models and tools can serve as starting points for discussions on morphology and locomotion of extinct cephalopods in general, and of the genus Dissimilites in particular. The heteromorph ammonoid genus Dissimilites is interpreted here as an active swimmer of the Tethyan Ocean. This study portrays non-destructive methods of 3D visualisation applied on palaeontological material, starting with computed tomography resulting in animated, high-quality video clips. The here presented 3D geometrical models and animation, which are based on palaeontological material, demonstrate the wide range of applications, analytical techniques and also outline possible limitations of 3D models in earth sciences and palaeontology. The realistic 3D models and motion pictures can easily be shared amongst palaeontologists. Data, images and short clips can be discussed online and, if necessary, adapted in morphological details and motion-style to better represent the cephalopod animal.

  20. Computed 3D visualisation of an extinct cephalopod using computer tomographs

    NASA Astrophysics Data System (ADS)

    Lukeneder, Alexander

    2012-08-01

    The first 3D visualisation of a heteromorph cephalopod species from the Southern Alps (Dolomites, northern Italy) is presented. Computed tomography, palaeontological data and 3D reconstructions were included in the production of a movie, which shows a life reconstruction of the extinct organism. This detailed reconstruction is according to the current knowledge of the shape and mode of life as well as habitat of this animal. The results are based on the most complete shell known thus far of the genus Dissimilites. Object-based combined analyses from computed tomography and various computed 3D facility programmes help to understand morphological details as well as their ontogentical changes in fossil material. In this study, an additional goal was to show changes in locomotion during different ontogenetic phases of such fossil, marine shell-bearing animals (ammonoids). Hence, the presented models and tools can serve as starting points for discussions on morphology and locomotion of extinct cephalopods in general, and of the genus Dissimilites in particular. The heteromorph ammonoid genus Dissimilites is interpreted here as an active swimmer of the Tethyan Ocean. This study portrays non-destructive methods of 3D visualisation applied on palaeontological material, starting with computed tomography resulting in animated, high-quality video clips. The here presented 3D geometrical models and animation, which are based on palaeontological material, demonstrate the wide range of applications, analytical techniques and also outline possible limitations of 3D models in earth sciences and palaeontology. The realistic 3D models and motion pictures can easily be shared amongst palaeontologists. Data, images and short clips can be discussed online and, if necessary, adapted in morphological details and motion-style to better represent the cephalopod animal.

  1. Computed 3D visualisation of an extinct cephalopod using computer tomographs

    PubMed Central

    Lukeneder, Alexander

    2012-01-01

    The first 3D visualisation of a heteromorph cephalopod species from the Southern Alps (Dolomites, northern Italy) is presented. Computed tomography, palaeontological data and 3D reconstructions were included in the production of a movie, which shows a life reconstruction of the extinct organism. This detailed reconstruction is according to the current knowledge of the shape and mode of life as well as habitat of this animal. The results are based on the most complete shell known thus far of the genus Dissimilites. Object-based combined analyses from computed tomography and various computed 3D facility programmes help to understand morphological details as well as their ontogentical changes in fossil material. In this study, an additional goal was to show changes in locomotion during different ontogenetic phases of such fossil, marine shell-bearing animals (ammonoids). Hence, the presented models and tools can serve as starting points for discussions on morphology and locomotion of extinct cephalopods in general, and of the genus Dissimilites in particular. The heteromorph ammonoid genus Dissimilites is interpreted here as an active swimmer of the Tethyan Ocean. This study portrays non-destructive methods of 3D visualisation applied on palaeontological material, starting with computed tomography resulting in animated, high-quality video clips. The here presented 3D geometrical models and animation, which are based on palaeontological material, demonstrate the wide range of applications, analytical techniques and also outline possible limitations of 3D models in earth sciences and palaeontology. The realistic 3D models and motion pictures can easily be shared amongst palaeontologists. Data, images and short clips can be discussed online and, if necessary, adapted in morphological details and motion-style to better represent the cephalopod animal. PMID:24850976

  2. Bilateral filtering using the full noise covariance matrix applied to x-ray phase-contrast computed tomography.

    PubMed

    Allner, S; Koehler, T; Fehringer, A; Birnbacher, L; Willner, M; Pfeiffer, F; Noël, P B

    2016-05-21

    The purpose of this work is to develop an image-based de-noising algorithm that exploits complementary information and noise statistics from multi-modal images, as they emerge in x-ray tomography techniques, for instance grating-based phase-contrast CT and spectral CT. Among the noise reduction methods, image-based de-noising is one popular approach and the so-called bilateral filter is a well known algorithm for edge-preserving filtering. We developed a generalization of the bilateral filter for the case where the imaging system provides two or more perfectly aligned images. The proposed generalization is statistically motivated and takes the full second order noise statistics of these images into account. In particular, it includes a noise correlation between the images and spatial noise correlation within the same image. The novel generalized three-dimensional bilateral filter is applied to the attenuation and phase images created with filtered backprojection reconstructions from grating-based phase-contrast tomography. In comparison to established bilateral filters, we obtain improved noise reduction and at the same time a better preservation of edges in the images on the examples of a simulated soft-tissue phantom, a human cerebellum and a human artery sample. The applied full noise covariance is determined via cross-correlation of the image noise. The filter results yield an improved feature recovery based on enhanced noise suppression and edge preservation as shown here on the example of attenuation and phase images captured with grating-based phase-contrast computed tomography. This is supported by quantitative image analysis. Without being bound to phase-contrast imaging, this generalized filter is applicable to any kind of noise-afflicted image data with or without noise correlation. Therefore, it can be utilized in various imaging applications and fields.

  3. Effects of individualized electrical impedance tomography and image reconstruction settings upon the assessment of regional ventilation distribution: Comparison to 4-dimensional computed tomography in a porcine model

    PubMed Central

    Mudrak, Daniel; Kampusch, Stefan; Wielandner, Alice; Prosch, Helmut; Braun, Christina; Toemboel, Frédéric P. R.; Hofmanninger, Johannes; Kaniusas, Eugenijus

    2017-01-01

    Electrical impedance tomography (EIT) is a promising imaging technique for bedside monitoring of lung function. It is easily applicable, cheap and requires no ionizing radiation, but clinical interpretation of EIT-images is still not standardized. One of the reasons for this is the ill-posed nature of EIT, allowing a range of possible images to be produced–rather than a single explicit solution. Thus, to further advance the EIT technology for clinical application, thorough examinations of EIT-image reconstruction settings–i.e., mathematical parameters and addition of a priori (e.g., anatomical) information–is essential. In the present work, regional ventilation distribution profiles derived from different EIT finite-element reconstruction models and settings (for GREIT and Gauss Newton) were compared to regional aeration profiles assessed by the gold-standard of 4-dimensional computed tomography (4DCT) by calculating the root mean squared error (RMSE). Specifically, non-individualized reconstruction models (based on circular and averaged thoracic contours) and individualized reconstruction models (based on true thoracic contours) were compared. Our results suggest that GREIT with noise figure of 0.15 and non-uniform background works best for the assessment of regional ventilation distribution by EIT, as verified versus 4DCT. Furthermore, the RMSE of anteroposterior ventilation profiles decreased from 2.53±0.62% to 1.67±0.49% while correlation increased from 0.77 to 0.89 after embedding anatomical information into the reconstruction models. In conclusion, the present work reveals that anatomically enhanced EIT-image reconstruction is superior to non-individualized reconstruction models, but further investigations in humans, so as to standardize reconstruction settings, is warranted. PMID:28763474

  4. Rib Radiography versus Chest Computed Tomography in the Diagnosis of Rib Fractures.

    PubMed

    Sano, Atsushi

    2018-05-01

     The accurate diagnosis of rib fractures is important in chest trauma. Diagnostic images following chest trauma are usually obtained via chest X-ray, chest computed tomography, or rib radiography. This study evaluated the diagnostic characteristics of rib radiography and chest computed tomography.  Seventy-five rib fracture patients who underwent both chest computed tomography and rib radiography between April 2008 and December 2013 were included. Rib radiographs, centered on the site of pain, were taken from two directions. Chest computed tomography was performed using a 16-row multidetector scanner with 5-mm slice-pitch without overlap, and axial images were visualized in a bone window.  In total, 217 rib fractures were diagnosed in 75 patients. Rib radiography missed 43 rib fractures in 24 patients. The causes were overlap with organs in 15 cases, trivial fractures in 21 cases, and injury outside the imaging range in 7 cases. Left lower rib fractures were often missed due to overlap with the heart, while middle and lower rib fractures were frequently not diagnosed due to overlap with abdominal organs. Computed tomography missed 21 rib fractures in 17 patients. The causes were horizontal fractures in 10 cases, trivial fractures in 9 cases, and insufficient breath holding in 1 case.  In rib radiography, overlap with organs and fractures outside the imaging range were characteristic reasons for missed diagnoses. In chest computed tomography, horizontal rib fractures and insufficient breath holding were often responsible. We should take these challenges into account when diagnosing rib fractures. Georg Thieme Verlag KG Stuttgart · New York.

  5. 64 slice-coronary computed tomography sensitivity and specificity in the evaluation of coronary artery bypass graft stenosis: A meta-analysis.

    PubMed

    Barbero, Umberto; Iannaccone, Mario; d'Ascenzo, Fabrizio; Barbero, Cristina; Mohamed, Abdirashid; Annone, Umberto; Benedetto, Sara; Celentani, Dario; Gagliardi, Marco; Moretti, Claudio; Gaita, Fiorenzo

    2016-08-01

    A non-invasive approach to define grafts patency and stenosis in the follow-up of coronary artery bypass graft (CABG) patients may be an interesting alternative to coronary angiography. 64-slice-coronary computed tomography is nowadays a diffused non-invasive method that permits an accurate evaluation of coronary stenosis, due to a high temporal and spatial resolution. However, its sensitivity and specificity in CABG evaluation has to be clearly defined, since published studies used different protocols and scanners. We collected all studies investigating patients with stable symptoms and previous CABG and reporting the comparison between diagnostic performances of invasive coronary angiography and 64-slice-coronary computed tomography. As a result, sensitivity and specificity of 64-slice-coronary computed tomography for CABG occlusion were 0.99 (95% CI 0.97-1.00) and 0.99 (95% CI: 0.99-1.00) with an area under the curve (AUC) of 0.99. 64-slice-coronary computed tomography sensitivity and specificity for the presence of any CABG stenosis >50% were 0.98 (95% CI: 0.97-0.99) and 0.98 (95% CI: 0.96-0.98), while AUC was 0.99. At meta-regression, neither the age nor the time from graft implantation had effect on sensitivity and specificity of 64-slice-coronary computed tomography detection of significant CABG stenosis or occlusion. In conclusion 64-slice-coronary computed tomography confirmed its high sensitivity and specificity in CABG stenosis or occlusion evaluation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Quadruple Axis Neutron Computed Tomography

    NASA Astrophysics Data System (ADS)

    Schillinger, Burkhard; Bausenwein, Dominik

    Neutron computed tomography takes more time for a full tomography than X-rays or Synchrotron radiation, because the source intensity is limited. Most neutron imaging detectors have a square field of view, so if tomography of elongated, narrow samples, e.g. fuel rods, sword blades is recorded, much of the detector area is wasted. Using multiple rotation axes, several samples can be placed inside the field of view, and multiple tomographies can be recorded at the same time by later splitting the recorded images into separate tomography data sets. We describe a new multiple-axis setup using four independent miniaturized rotation tables.

  7. Source Stacking for Numerical Wavefield Computations - Application to Global Scale Seismic Mantle Tomography

    NASA Astrophysics Data System (ADS)

    MacLean, L. S.; Romanowicz, B. A.; French, S.

    2015-12-01

    Seismic wavefield computations using the Spectral Element Method are now regularly used to recover tomographic images of the upper mantle and crust at the local, regional, and global scales (e.g. Fichtner et al., GJI, 2009; Tape et al., Science 2010; Lekic and Romanowicz, GJI, 2011; French and Romanowicz, GJI, 2014). However, the heaviness of the computations remains a challenge, and contributes to limiting the resolution of the produced images. Using source stacking, as suggested by Capdeville et al. (GJI,2005), can considerably speed up the process by reducing the wavefield computations to only one per each set of N sources. This method was demonstrated through synthetic tests on low frequency datasets, and therefore should work for global mantle tomography. However, the large amplitudes of surface waves dominates the stacked seismograms and these cases can no longer be separated by windowing in the time domain. We have developed a processing approach that helps address this issue and demonstrate its usefulness through a series of synthetic tests performed at long periods (T >60 s) on toy upper mantle models. The summed synthetics are computed using the CSEM code (Capdeville et al., 2002). As for the inverse part of the procedure, we use a quasi-Newton method, computing Frechet derivatives and Hessian using normal mode perturbation theory.

  8. Intelligent earthquake data processing for global adjoint tomography

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Hill, J.; Li, T.; Lei, W.; Ruan, Y.; Lefebvre, M. P.; Tromp, J.

    2016-12-01

    Due to the increased computational capability afforded by modern and future computing architectures, the seismology community is demanding a more comprehensive understanding of the full waveform information from the recorded earthquake seismograms. Global waveform tomography is a complex workflow that matches observed seismic data with synthesized seismograms by iteratively updating the earth model parameters based on the adjoint state method. This methodology allows us to compute a very accurate model of the earth's interior. The synthetic data is simulated by solving the wave equation in the entire globe using a spectral-element method. In order to ensure the inversion accuracy and stability, both the synthesized and observed seismograms must be carefully pre-processed. Because the scale of the inversion problem is extremely large and there is a very large volume of data to both be read and written, an efficient and reliable pre-processing workflow must be developed. We are investigating intelligent algorithms based on a machine-learning (ML) framework that will automatically tune parameters for the data processing chain. One straightforward application of ML in data processing is to classify all possible misfit calculation windows into usable and unusable ones, based on some intelligent ML models such as neural network, support vector machine or principle component analysis. The intelligent earthquake data processing framework will enable the seismology community to compute the global waveform tomography using seismic data from an arbitrarily large number of earthquake events in the fastest, most efficient way.

  9. A fast marching algorithm for the factored eikonal equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Treister, Eran, E-mail: erantreister@gmail.com; Haber, Eldad, E-mail: haber@math.ubc.ca; Department of Mathematics, The University of British Columbia, Vancouver, BC

    The eikonal equation is instrumental in many applications in several fields ranging from computer vision to geoscience. This equation can be efficiently solved using the iterative Fast Sweeping (FS) methods and the direct Fast Marching (FM) methods. However, when used for a point source, the original eikonal equation is known to yield inaccurate numerical solutions, because of a singularity at the source. In this case, the factored eikonal equation is often preferred, and is known to yield a more accurate numerical solution. One application that requires the solution of the eikonal equation for point sources is travel time tomography. Thismore » inverse problem may be formulated using the eikonal equation as a forward problem. While this problem has been solved using FS in the past, the more recent choice for applying it involves FM methods because of the efficiency in which sensitivities can be obtained using them. However, while several FS methods are available for solving the factored equation, the FM method is available only for the original eikonal equation. In this paper we develop a Fast Marching algorithm for the factored eikonal equation, using both first and second order finite-difference schemes. Our algorithm follows the same lines as the original FM algorithm and requires the same computational effort. In addition, we show how to obtain sensitivities using this FM method and apply travel time tomography, formulated as an inverse factored eikonal equation. Numerical results in two and three dimensions show that our algorithm solves the factored eikonal equation efficiently, and demonstrate the achieved accuracy for computing the travel time. We also demonstrate a recovery of a 2D and 3D heterogeneous medium by travel time tomography using the eikonal equation for forward modeling and inversion by Gauss–Newton.« less

  10. Impact of Single-Photon Emission Computed Tomography/Computed Tomography (SPECT/CT) and Positron Emission Tomography/Computed Tomography (PET/CT) in the Diagnosis of Traumatic Brain Injury (TBI): Case Report.

    PubMed

    Molina-Vicenty, Irma L; Santiago-Sánchez, Michelaldemar; Vélez-Miró, Iván; Motta-Valencia, Keryl

    2016-09-01

    Traumatic brain injury (TBI) is defined as damage to the brain resulting from an external force. TBI, a global leading cause of death and disability, is associated with serious social, economic, and health problems. In cases of mild-to-moderate brain damage, conventional anatomical imaging modalities may or may not detect the cascade of metabolic changes that have occurred or are occurring at the intracellular level. Functional nuclear medicine imaging and neurophysiological parameters can be used to characterize brain damage, as the former provides direct visualization of brain function, even in the absence of overt behavioral manifestations or anatomical findings. We report the case of a 30-year-old Hispanic male veteran who, after 2 traumatic brain injury events, developed cognitive and neuropsychological problems with no clear etiology in the presence of negative computed tomography (CT) findings.

  11. A beam optics study of a modular multi-source X-ray tube for novel computed tomography applications

    NASA Astrophysics Data System (ADS)

    Walker, Brandon J.; Radtke, Jeff; Chen, Guang-Hong; Eliceiri, Kevin W.; Mackie, Thomas R.

    2017-10-01

    A modular implementation of a scanning multi-source X-ray tube is designed for the increasing number of multi-source imaging applications in computed tomography (CT). An electron beam array coupled with an oscillating magnetic deflector is proposed as a means for producing an X-ray focal spot at any position along a line. The preliminary multi-source model includes three thermionic electron guns that are deflected in tandem by a slowly varying magnetic field and pulsed according to a scanning sequence that is dependent on the intended imaging application. Particle tracking simulations with particle dynamics analysis software demonstrate that three 100 keV electron beams are laterally swept a combined distance of 15 cm over a stationary target with an oscillating magnetic field of 102 G perpendicular to the beam axis. Beam modulation is accomplished using 25 μs pulse widths to a grid electrode with a reverse gate bias of -500 V and an extraction voltage of +1000 V. Projected focal spot diameters are approximately 1 mm for 138 mA electron beams and the stationary target stays within thermal limits for the 14 kW module. This concept could be used as a research platform for investigating high-speed stationary CT scanners, for lowering dose with virtual fan beam formation, for reducing scatter radiation in cone-beam CT, or for other industrial applications.

  12. Usefulness of Tc99m-mebrofenin Hepatobiliary Scintigraphy and Single Photon Emission Computed Tomography/Computed Tomography in the Diagnosis of Bronchobiliary Fistula.

    PubMed

    Parghane, Rahul Vithalrao; Phulsunga, Rohit Kumar; Gupta, Rajesh; Basher, Rajender Kumar; Bhattacharya, Anish; Mittal, Bhagwant Rai

    2017-01-01

    Bronchobiliary fistula (BBF), a rare complication of liver disease, is an abnormal communication between the biliary tract and bronchial tree. BBF may occur as a consequence of local liver infections such as hydatid or amebic disease, pyogenic liver abscess or trauma to the liver, obstruction of biliary tract, and tumor. As such management of liver disease with BBF is very difficult and often associated with a high rate of morbidity and mortality. Therefore, timely diagnosis of BBF is imperative. Hepatobiliary scintigraphy along with hybrid single photon emission computed tomography/computed tomography using Tc99m-mebrofenin is a very useful noninvasive imaging modality, in the diagnosis of BBF.

  13. Usefulness of Tc99m-mebrofenin Hepatobiliary Scintigraphy and Single Photon Emission Computed Tomography/Computed Tomography in the Diagnosis of Bronchobiliary Fistula

    PubMed Central

    Parghane, Rahul Vithalrao; Phulsunga, Rohit Kumar; Gupta, Rajesh; Basher, Rajender Kumar; Bhattacharya, Anish; Mittal, Bhagwant Rai

    2017-01-01

    Bronchobiliary fistula (BBF), a rare complication of liver disease, is an abnormal communication between the biliary tract and bronchial tree. BBF may occur as a consequence of local liver infections such as hydatid or amebic disease, pyogenic liver abscess or trauma to the liver, obstruction of biliary tract, and tumor. As such management of liver disease with BBF is very difficult and often associated with a high rate of morbidity and mortality. Therefore, timely diagnosis of BBF is imperative. Hepatobiliary scintigraphy along with hybrid single photon emission computed tomography/computed tomography using Tc99m-mebrofenin is a very useful noninvasive imaging modality, in the diagnosis of BBF. PMID:29033682

  14. Weightbearing Computed Tomography of the Foot and Ankle: Emerging Technology Topical Review.

    PubMed

    Barg, Alexej; Bailey, Travis; Richter, Martinus; de Cesar Netto, Cesar; Lintz, François; Burssens, Arne; Phisitkul, Phinit; Hanrahan, Christopher J; Saltzman, Charles L

    2018-03-01

    In the last decade, cone-beam computed tomography technology with improved designs allowing flexible gantry movements has allowed both supine and standing weight-bearing imaging of the lower extremity. There is an increasing amount of literature describing the use of weightbearing computed tomography in patients with foot and ankle disorders. To date, there is no review article summarizing this imaging modality in the foot and ankle. Therefore, we performed a systematic literature review of relevant clinical studies targeting the use of weightbearing computed tomography in diagnosis of patients with foot and ankle disorders. Furthermore, this review aims to offer insight to those with interest in considering possible future research opportunities with use of this technology. Level V, expert opinion.

  15. Brilliant gamma beams for industrial applications: new opportunities, new challenges

    NASA Astrophysics Data System (ADS)

    Iancu, V.; Suliman, G.; Turturica, G. V.; Iovea, M.; Daito, I.; Ohgaki, H.; Matei, C.; Ur, C. A.; Balabanski, D. L.

    2016-10-01

    The Nuclear Physics oriented pillar of the pan-European Extreme Light Infrastructure (ELI-NP) will host an ultra-bright, energy tunable, and quasi-monochromatic gamma-ray beam system in the range of 0.2-19.5 MeV produced by laser-Compton backscattering technique. The applied research program envisioned at ELI-NP targets to use nuclear resonance fluorescence (NRF) and computed tomography to provide new opportunities for industry and society. High sensitivity NRF-based investigations can be successfully applied to safeguard applications and management of radioactive wastes as well as to uncharted fields like cultural heritage and medical imaging. Gamma-ray radioscopy and computed tomography performed at ELI-NP has the potential to achieve high resolution in industrial-sized objects provided the detection challenges introduced by the unique characteristics of the gamma beam are overcome. Here we discuss the foreseen industrial applications that will benefit from the high quality and unique characteristics of ELI-NP gamma beam and the challenges they present. We present the experimental setups proposed to be implemented for this goal, discuss their performance based on analytical calculations and numerical Monte-Carlo simulations, and comment about constrains imposed by the limitation of current scintillator detectors. Several gamma-beam monitoring devices based on scintillator detectors will also be discussed.

  16. Improvement of portable computed tomography system for on-field applications

    NASA Astrophysics Data System (ADS)

    Sukrod, K.; Khoonkamjorn, P.; Tippayakul, C.

    2015-05-01

    In 2010, Thailand Institute of Nuclear Technology (TINT) received a portable Computed Tomography (CT) system from the IAEA as part of the Regional Cooperative Agreement (RCA) program. This portable CT system has been used as the prototype for development of portable CT system intended for industrial applications since then. This paper discusses the improvements in the attempt to utilize the CT system for on-field applications. The system is foreseen to visualize the amount of agarwood in the live tree trunk. The experiments adopting Am-241 as the radiation source were conducted. The Am-241 source was selected since it emits low energy gamma which should better distinguish small density differences of wood types. Test specimens made of timbers with different densities were prepared and used in the experiments. The cross sectional views of the test specimens were obtained from the CT system using different scanning parameters. It is found from the experiments that the results are promising as the picture can clearly differentiate wood types according to their densities. Also, the optimum scanning parameters were determined from the experiments. The results from this work encourage the research team to advance into the next phase which is to experiment with the real tree on the field.

  17. TU-AB-207-03: Tomosynthesis: Clinical Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maidment, A.

    2015-06-15

    Digital Tomosynthesis (DT) is becoming increasingly common in breast imaging and many other applications. DT is a form of computed tomography in which a limited set of projection images are acquired over a small angular range and reconstructed into a tomographic data set. The angular range and number of projections is determined both by the imaging task and equipment manufacturer. For example, in breast imaging between 9 and 25 projections are acquired over a range of 15° to 60°. It is equally valid to treat DT as the digital analog of classical tomography - for example, linear tomography. In fact,more » the name “tomosynthesis” is an acronym for “synthetic tomography”. DT shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DT systems is a hybrid between CT and classical tomographic methods. This lecture will consist of three presentations that will provide a complete overview of DT, including a review of the fundamentals of DT, a discussion of testing methods for DT systems, and a description of the clinical applications of DT. While digital breast tomosynthesis will be emphasized, analogies will be drawn to body imaging to illustrate and compare tomosynthesis methods. Learning Objectives: To understand the fundamental principles behind tomosynthesis, including the determinants of image quality and dose. To learn how to test the performance of tomosynthesis imaging systems. To appreciate the uses of tomosynthesis in the clinic and the future applications of tomosynthesis.« less

  18. Directional view interpolation for compensation of sparse angular sampling in cone-beam CT.

    PubMed

    Bertram, Matthias; Wiegert, Jens; Schafer, Dirk; Aach, Til; Rose, Georg

    2009-07-01

    In flat detector cone-beam computed tomography and related applications, sparse angular sampling frequently leads to characteristic streak artifacts. To overcome this problem, it has been suggested to generate additional views by means of interpolation. The practicality of this approach is investigated in combination with a dedicated method for angular interpolation of 3-D sinogram data. For this purpose, a novel dedicated shape-driven directional interpolation algorithm based on a structure tensor approach is developed. Quantitative evaluation shows that this method clearly outperforms conventional scene-based interpolation schemes. Furthermore, the image quality trade-offs associated with the use of interpolated intermediate views are systematically evaluated for simulated and clinical cone-beam computed tomography data sets of the human head. It is found that utilization of directionally interpolated views significantly reduces streak artifacts and noise, at the expense of small introduced image blur.

  19. Structural neuroimaging in neuropsychology: History and contemporary applications.

    PubMed

    Bigler, Erin D

    2017-11-01

    Neuropsychology's origins began long before there were any in vivo methods to image the brain. That changed with the advent of computed tomography in the 1970s and magnetic resonance imaging in the early 1980s. Now computed tomography and magnetic resonance imaging are routinely a part of neuropsychological investigations with an increasing number of sophisticated methods for image analysis. This review examines the history of neuroimaging utilization in neuropsychological investigations, highlighting the basic methods that go into image quantification and the various metrics that can be derived. Neuroimaging methods and limitations for identify what constitutes a lesion are discussed. Likewise, the influence of various demographic and developmental factors that influence quantification of brain structure are reviewed. Neuroimaging is an integral part of 21st Century neuropsychology. The importance of neuroimaging to advancing neuropsychology is emphasized. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  20. Recent Advances in Cardiac Computed Tomography: Dual Energy, Spectral and Molecular CT Imaging

    PubMed Central

    Danad, Ibrahim; Fayad, Zahi A.; Willemink, Martin J.; Min, James K.

    2015-01-01

    Computed tomography (CT) evolved into a powerful diagnostic tool and it is impossible to imagine current clinical practice without CT imaging. Due to its widespread availability, ease of clinical application, superb sensitivity for detection of CAD, and non-invasive nature, CT has become a valuable tool within the armamentarium of the cardiologist. In the last few years, numerous technological advances in CT have occurred—including dual energy CT (DECT), spectral CT and CT-based molecular imaging. By harnessing the advances in technology, cardiac CT has advanced beyond the mere evaluation of coronary stenosis to an imaging modality tool that permits accurate plaque characterization, assessment of myocardial perfusion and even probing of molecular processes that are involved in coronary atherosclerosis. Novel innovations in CT contrast agents and pre-clinical spectral CT devices have paved the way for CT-based molecular imaging. PMID:26068288

  1. Quantitative Pulmonary Imaging Using Computed Tomography and Magnetic Resonance Imaging

    PubMed Central

    Washko, George R.; Parraga, Grace; Coxson, Harvey O.

    2011-01-01

    Measurements of lung function, including spirometry and body plethesmography, are easy to perform and are the current clinical standard for assessing disease severity. However, these lung functional techniques do not adequately explain the observed variability in clinical manifestations of disease and offer little insight into the relationship of lung structure and function. Lung imaging and the image based assessment of lung disease has matured to the extent that it is common for clinical, epidemiologic, and genetic investigation to have a component dedicated to image analysis. There are several exciting imaging modalities currently being used for the non-invasive study of lung anatomy and function. In this review we will focus on two of them, x-ray computed tomography and magnetic resonance imaging. Following a brief introduction of each method we detail some of the most recent work being done to characterize smoking-related lung disease and the clinical applications of such knowledge. PMID:22142490

  2. Framework for 2D-3D image fusion of infrared thermography with preoperative MRI.

    PubMed

    Hoffmann, Nico; Weidner, Florian; Urban, Peter; Meyer, Tobias; Schnabel, Christian; Radev, Yordan; Schackert, Gabriele; Petersohn, Uwe; Koch, Edmund; Gumhold, Stefan; Steiner, Gerald; Kirsch, Matthias

    2017-11-27

    Multimodal medical image fusion combines information of one or more images in order to improve the diagnostic value. While previous applications mainly focus on merging images from computed tomography, magnetic resonance imaging (MRI), ultrasonic and single-photon emission computed tomography, we propose a novel approach for the registration and fusion of preoperative 3D MRI with intraoperative 2D infrared thermography. Image-guided neurosurgeries are based on neuronavigation systems, which further allow us track the position and orientation of arbitrary cameras. Hereby, we are able to relate the 2D coordinate system of the infrared camera with the 3D MRI coordinate system. The registered image data are now combined by calibration-based image fusion in order to map our intraoperative 2D thermographic images onto the respective brain surface recovered from preoperative MRI. In extensive accuracy measurements, we found that the proposed framework achieves a mean accuracy of 2.46 mm.

  3. The dynamic micro computed tomography at SSRF

    NASA Astrophysics Data System (ADS)

    Chen, R.; Xu, L.; Du, G.; Deng, B.; Xie, H.; Xiao, T.

    2018-05-01

    Synchrotron radiation micro-computed tomography (SR-μCT) is a critical technique for quantitative characterizing the 3D internal structure of samples, recently the dynamic SR-μCT has been attracting vast attention since it can evaluate the three-dimensional structure evolution of a sample. A dynamic μCT method, which is based on monochromatic beam, was developed at the X-ray Imaging and Biomedical Application Beamline at Shanghai Synchrotron Radiation Facility, by combining the compressed sensing based CT reconstruction algorithm and hardware upgrade. The monochromatic beam based method can achieve quantitative information, and lower dose than the white beam base method in which the lower energy beam is absorbed by the sample rather than contribute to the final imaging signal. The developed method is successfully used to investigate the compression of the air sac during respiration in a bell cricket, providing new knowledge for further research on the insect respiratory system.

  4. Multi-Mounted X-Ray Computed Tomography.

    PubMed

    Fu, Jian; Liu, Zhenzhong; Wang, Jingzheng

    2016-01-01

    Most existing X-ray computed tomography (CT) techniques work in single-mounted mode and need to scan the inspected objects one by one. It is time-consuming and not acceptable for the inspection in a large scale. In this paper, we report a multi-mounted CT method and its first engineering implementation. It consists of a multi-mounted scanning geometry and the corresponding algebraic iterative reconstruction algorithm. This approach permits the CT rotation scanning of multiple objects simultaneously without the increase of penetration thickness and the signal crosstalk. Compared with the conventional single-mounted methods, it has the potential to improve the imaging efficiency and suppress the artifacts from the beam hardening and the scatter. This work comprises a numerical study of the method and its experimental verification using a dataset measured with a developed multi-mounted X-ray CT prototype system. We believe that this technique is of particular interest for pushing the engineering applications of X-ray CT.

  5. Use of contrast media in computed tomography and magnetic resonance imaging in horses: Techniques, adverse events and opportunities.

    PubMed

    Nelson, B B; Goodrich, L R; Barrett, M F; Grinstaff, M W; Kawcak, C E

    2017-07-01

    The use of contrast media in computed tomography (CT) and magnetic resonance imaging (MRI) is increasing in horses. These contrast-enhanced imaging techniques provide improved tissue delineation and evaluation, thereby expanding diagnostic capabilities. While generally considered safe, not all contrast media exhibit the same safety profiles. The safety of contrast media use and descriptions of adverse events occurring in horses are sparsely reported. This review summarises the reported evidence of contrast media use and adverse events that occur in horses, with added contribution from other veterinary species and studies in man for comparison. This comprehensive data set empowers equine clinicians to develop use and monitoring strategies when working with contrast media. Finally, it summarises the current state-of-the-art and highlights the potential applications of contrast-enhanced CT and MRI for assessment of diseased or injured equine tissues, as well as (patho)physiological processes. © 2017 EVJ Ltd.

  6. New transurethral system for interstitial radiation of prostate cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumgartner, G.; Callahan, D.; McKiel, C.F. Jr.

    Direct endoscopic implantation of radioactive materials for carcinoma of the prostate without an open operation was accomplished by the use of modified existing transurethral instrumentation and techniques. The closed approach seems applicable particularly to the geriatric population, which is afflicted more commonly but is frequently not treated because of concurrent diseases or because the patient had transurethral resection of the prostate as a diagnostic procedure. Eleven patients were implanted using the transurethral route. Implantations were accomplished successfully with extremely low morbidity. Along with more conventional dosimetry studies, computer tomography was used to assess the placement of seeds. The direct visualizationmore » of the method suggests a potential for greater precision of seed placement as illustrated by computer tomography. In addition, this new instrumentation and method offers a low-risk procedure for carcinoma of the prostate that can be performed on an outpatient basis for selected patients.« less

  7. Application of micro-computed tomography to microstructure studies of the medicinal fungus Hericium coralloides.

    PubMed

    Pallua, Johannes D; Kuhn, Volker; Pallua, Anton F; Pfaller, Kristian; Pallua, Anton K; Recheis, Wolfgang; Pöder, Reinhold

    2015-01-01

    The potential of 3-D nondestructive imaging techniques such as micro-computed tomography (micro-CT) was evaluated to study morphological patterns of the potential medicinal fungus Hericium coralloides (Basidiomycota). Micro-CT results were correlated with histological information gained from scanning electron microscopy (SEM) and light microscopy (LM). It is demonstrated that the combination of these imaging methods results in a more distinct picture of the morphology of the edible and potentially medicinal Hericium coralloides basidiomata. In addition we have created 3-D reconstructions and visualizations based on micro-CT imagery from a randomly selected part of the upper region of a fresh H. coralloides basidioma: Analyses for the first time allowed an approximation of the evolutionary effectiveness of this bizarrely formed basidioma type in terms of the investment of tissue biomass and its reproductive output (production of basidiospores). © 2015 by The Mycological Society of America.

  8. Beam hardening correction for interior tomography based on exponential formed model and radon inversion transform

    NASA Astrophysics Data System (ADS)

    Chen, Siyu; Zhang, Hanming; Li, Lei; Xi, Xiaoqi; Han, Yu; Yan, Bin

    2016-10-01

    X-ray computed tomography (CT) has been extensively applied in industrial non-destructive testing (NDT). However, in practical applications, the X-ray beam polychromaticity often results in beam hardening problems for image reconstruction. The beam hardening artifacts, which manifested as cupping, streaks and flares, not only debase the image quality, but also disturb the subsequent analyses. Unfortunately, conventional CT scanning requires that the scanned object is completely covered by the field of view (FOV), the state-of-art beam hardening correction methods only consider the ideal scanning configuration, and often suffer problems for interior tomography due to the projection truncation. Aiming at this problem, this paper proposed a beam hardening correction method based on radon inversion transform for interior tomography. Experimental results show that, compared to the conventional correction algorithms, the proposed approach has achieved excellent performance in both beam hardening artifacts reduction and truncation artifacts suppression. Therefore, the presented method has vitally theoretic and practicable meaning in artifacts correction of industrial CT.

  9. Advantages and Disadvantages in Image Processing with Free Software in Radiology.

    PubMed

    Mujika, Katrin Muradas; Méndez, Juan Antonio Juanes; de Miguel, Andrés Framiñan

    2018-01-15

    Currently, there are sophisticated applications that make it possible to visualize medical images and even to manipulate them. These software applications are of great interest, both from a teaching and a radiological perspective. In addition, some of these applications are known as Free Open Source Software because they are free and the source code is freely available, and therefore it can be easily obtained even on personal computers. Two examples of free open source software are Osirix Lite® and 3D Slicer®. However, this last group of free applications have limitations in its use. For the radiological field, manipulating and post-processing images is increasingly important. Consequently, sophisticated computing tools that combine software and hardware to process medical images are needed. In radiology, graphic workstations allow their users to process, review, analyse, communicate and exchange multidimensional digital images acquired with different image-capturing radiological devices. These radiological devices are basically CT (Computerised Tomography), MRI (Magnetic Resonance Imaging), PET (Positron Emission Tomography), etc. Nevertheless, the programs included in these workstations have a high cost which always depends on the software provider and is always subject to its norms and requirements. With this study, we aim to present the advantages and disadvantages of these radiological image visualization systems in the advanced management of radiological studies. We will compare the features of the VITREA2® and AW VolumeShare 5® radiology workstation with free open source software applications like OsiriX® and 3D Slicer®, with examples from specific studies.

  10. Evaluating the risk of appendiceal perforation when using ultrasound as the initial diagnostic imaging modality in children with suspected appendicitis.

    PubMed

    Alerhand, Stephen; Meltzer, James; Tay, Ee Tein

    2017-08-01

    Ultrasound scan has gained attention for diagnosing appendicitis due to its avoidance of ionizing radiation. However, studies show that ultrasound scan carries inferior sensitivity to computed tomography scan. A non-diagnostic ultrasound scan could increase the time to diagnosis and appendicectomy, particularly if follow-up computed tomography scan is needed. Some studies suggest that delaying appendicectomy increases the risk of perforation. To investigate the risk of appendiceal perforation when using ultrasound scan as the initial diagnostic imaging modality in children with suspected appendicitis. We retrospectively reviewed 1411 charts of children ≤17 years old diagnosed with appendicitis at two urban academic medical centers. Patients who underwent ultrasound scan first were compared to those who underwent computed tomography scan first. In the sub-group analysis, patients who only received ultrasound scan were compared to those who received initial ultrasound scan followed by computed tomography scan. Main outcome measures were appendiceal perforation rate and time from triage to appendicectomy. In 720 children eligible for analysis, there was no significant difference in perforation rate between those who had initial ultrasound scan and those who had initial computed tomography scan (7.3% vs. 8.9%, p = 0.44), nor in those who had ultrasound scan only and those who had initial ultrasound scan followed by computed tomography scan (8.0% vs. 5.6%, p = 0.42). Those patients who had ultrasound scan first had a shorter triage-to-incision time than those who had computed tomography scan first (9.2 (IQR: 5.9, 14.0) vs. 10.2 (IQR: 7.3, 14.3) hours, p = 0.03), whereas those who had ultrasound scan followed by computed tomography scan took longer than those who had ultrasound scan only (7.8 (IQR: 5.3, 11.6) vs. 15.1 (IQR: 10.6, 20.6), p < 0.001). Children < 12 years old receiving ultrasound scan first had lower perforation rate (p = 0.01) and shorter triage-to-incision time (p = 0.003). Children with suspected appendicitis receiving ultrasound scan as the initial diagnostic imaging modality do not have increased risk of perforation compared to those receiving computed tomography scan first. We recommend that children <12 years of age receive ultrasound scan first.

  11. Magnetic resonance electrical impedance tomography (MREIT): simulation study of J-substitution algorithm.

    PubMed

    Kwon, Ohin; Woo, Eung Je; Yoon, Jeong-Rock; Seo, Jin Keun

    2002-02-01

    We developed a new image reconstruction algorithm for magnetic resonance electrical impedance tomography (MREIT). MREIT is a new EIT imaging technique integrated into magnetic resonance imaging (MRI) system. Based on the assumption that internal current density distribution is obtained using magnetic resonance imaging (MRI) technique, the new image reconstruction algorithm called J-substitution algorithm produces cross-sectional static images of resistivity (or conductivity) distributions. Computer simulations show that the spatial resolution of resistivity image is comparable to that of MRI. MREIT provides accurate high-resolution cross-sectional resistivity images making resistivity values of various human tissues available for many biomedical applications.

  12. Dynamic discrete tomography

    NASA Astrophysics Data System (ADS)

    Alpers, Andreas; Gritzmann, Peter

    2018-03-01

    We consider the problem of reconstructing the paths of a set of points over time, where, at each of a finite set of moments in time the current positions of points in space are only accessible through some small number of their x-rays. This particular particle tracking problem, with applications, e.g. in plasma physics, is the basic problem in dynamic discrete tomography. We introduce and analyze various different algorithmic models. In particular, we determine the computational complexity of the problem (and various of its relatives) and derive algorithms that can be used in practice. As a byproduct we provide new results on constrained variants of min-cost flow and matching problems.

  13. Application of optical coherence tomography attenuation imaging for quantification of optical properties in medulloblastoma

    NASA Astrophysics Data System (ADS)

    Vuong, Barry; Skowron, Patryk; Kiehl, Tim-Rasmus; Kyan, Matthew; Garzia, Livia; Genis, Helen; Sun, Cuiru; Taylor, Michael D.; Yang, Victor X. D.

    2015-03-01

    The hemodynamic environment is known to play a crucial role in the progression, rupture, and treatment of intracranial aneurysms. Currently there is difficulty assessing and measuring blood flow profiles in vivo. An emerging high resolution imaging modality known as split spectrum Doppler optical coherence tomography (ssDOCT) has demonstrated the capability to quantify hemodynamic patterns as well as arterial microstructural changes. In this study, we present a novel in vitro method to acquire precise blood flow patterns within a patient- specific aneurysm silicone flow models using ssDOCT imaging. Computational fluid dynamics (CFD) models were generated to verify ssDOCT results.

  14. Radiologic evaluation of acute chest pain--suspected myocardial ischemia.

    PubMed

    Stanford, William

    2007-08-15

    The American College of Radiology has developed appropriateness criteria for a number of clinical conditions and procedures. Criteria are available on imaging tests used in the evaluation of acute chest pain--suspected myocardial ischemia. Imaging tests for a suspected cardiac etiology include transthoracic echocardiography, transesophageal echocardiography, radionuclide perfusion imaging, radionuclide ventriculography, radionuclide infarct avid imaging, and positron emission tomography. If the cardiac ischemic work-up is negative or indeterminate, applicable tests include chest radiography; conventional, multidetector, and electron beam computed tomography; and magnetic resonance imaging. A summary of the criteria, with the advantages and limitations of each test, is presented in this article.

  15. Multimodality Image Fusion-Guided Procedures: Technique, Accuracy, and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abi-Jaoudeh, Nadine, E-mail: naj@mail.nih.gov; Kruecker, Jochen, E-mail: jochen.kruecker@philips.com; Kadoury, Samuel, E-mail: samuel.kadoury@polymtl.ca

    2012-10-15

    Personalized therapies play an increasingly critical role in cancer care: Image guidance with multimodality image fusion facilitates the targeting of specific tissue for tissue characterization and plays a role in drug discovery and optimization of tailored therapies. Positron-emission tomography (PET), magnetic resonance imaging (MRI), and contrast-enhanced computed tomography (CT) may offer additional information not otherwise available to the operator during minimally invasive image-guided procedures, such as biopsy and ablation. With use of multimodality image fusion for image-guided interventions, navigation with advanced modalities does not require the physical presence of the PET, MRI, or CT imaging system. Several commercially available methodsmore » of image-fusion and device navigation are reviewed along with an explanation of common tracking hardware and software. An overview of current clinical applications for multimodality navigation is provided.« less

  16. Radionuclide Imaging of Neurohormonal System of the Heart

    PubMed Central

    Chen, Xinyu; Werner, Rudolf A.; Javadi, Mehrbod S.; Maya, Yoshifumi; Decker, Michael; Lapa, Constantin; Herrmann, Ken; Higuchi, Takahiro

    2015-01-01

    Heart failure is one of the growing causes of death especially in developed countries due to longer life expectancy. Although many pharmacological and instrumental therapeutic approaches have been introduced for prevention and treatment of heart failure, there are still limitations and challenges. Nuclear cardiology has experienced rapid growth in the last few decades, in particular the application of single photon emission computed tomography (SPECT) and positron emission tomography (PET), which allow non-invasive functional assessment of cardiac condition including neurohormonal systems involved in heart failure; its application has dramatically improved the capacity for fundamental research and clinical diagnosis. In this article, we review the current status of applying radionuclide technology in non-invasive imaging of neurohormonal system in the heart, especially focusing on the tracers that are currently available. A short discussion about disadvantages and perspectives is also included. PMID:25825596

  17. Flow visualization V; Proceedings of the 5th International Symposium, Prague, Czechoslovakia, Aug. 21-25, 1989

    NASA Astrophysics Data System (ADS)

    Reznicek, R.

    The present conference on flow visualization encompasses methods exploiting tracing particles, surface tracing methods, methods exploiting the effects of streaming fluid on passing radiation/field, computer-aided flow visualization, and applications to fluid mechanics, aerodynamics, flow devices, shock tubes, and heat/mass transfer. Specific issues include visualizing velocity distribution by stereo photography, dark-field Fourier quasiinterferometry, speckle tomography of an open flame, a fast eye for real-time image analysis, and velocity-field determination based on flow-image analysis. Also addressed are flows around rectangular prisms with oscillating flaps at the leading edges, the tomography of aerodynamic objects, the vapor-screen technique applied to a delta-wing aircraft, flash-lamp planar imaging, IR-thermography applications in convective heat transfer, and the visualization of marangoni effects in evaporating sessile drops.

  18. Grating-based tomography of human tissues

    NASA Astrophysics Data System (ADS)

    Müller, Bert; Schulz, Georg; Mehlin, Andrea; Herzen, Julia; Lang, Sabrina; Holme, Margaret; Zanette, Irene; Hieber, Simone; Deyhle, Hans; Beckmann, Felix; Pfeiffer, Franz; Weitkamp, Timm

    2012-07-01

    The development of therapies to improve our health requires a detailed knowledge on the anatomy of soft tissues from the human body down to the cellular level. Grating-based phase contrast micro computed tomography using synchrotron radiation provides a sensitivity, which allows visualizing micrometer size anatomical features in soft tissue without applying any contrast agent. We show phase contrast tomography data of human brain, tumor vessels and constricted arteries from the beamline ID 19 (ESRF) and urethral tissue from the beamline W2 (HASYLAB/DESY) with micrometer resolution. Here, we demonstrate that anatomical features can be identified within brain tissue as well known from histology. Using human urethral tissue, the application of two photon energies is compared. Tumor vessels thicker than 20 μm can be perfectly segmented. The morphology of coronary arteries can be better extracted in formalin than after paraffin embedding.

  19. Machine learning for micro-tomography

    NASA Astrophysics Data System (ADS)

    Parkinson, Dilworth Y.; Pelt, Daniël. M.; Perciano, Talita; Ushizima, Daniela; Krishnan, Harinarayan; Barnard, Harold S.; MacDowell, Alastair A.; Sethian, James

    2017-09-01

    Machine learning has revolutionized a number of fields, but many micro-tomography users have never used it for their work. The micro-tomography beamline at the Advanced Light Source (ALS), in collaboration with the Center for Applied Mathematics for Energy Research Applications (CAMERA) at Lawrence Berkeley National Laboratory, has now deployed a series of tools to automate data processing for ALS users using machine learning. This includes new reconstruction algorithms, feature extraction tools, and image classification and recommen- dation systems for scientific image. Some of these tools are either in automated pipelines that operate on data as it is collected or as stand-alone software. Others are deployed on computing resources at Berkeley Lab-from workstations to supercomputers-and made accessible to users through either scripting or easy-to-use graphical interfaces. This paper presents a progress report on this work.

  20. Neural networks for calibration tomography

    NASA Technical Reports Server (NTRS)

    Decker, Arthur

    1993-01-01

    Artificial neural networks are suitable for performing pattern-to-pattern calibrations. These calibrations are potentially useful for facilities operations in aeronautics, the control of optical alignment, and the like. Computed tomography is compared with neural net calibration tomography for estimating density from its x-ray transform. X-ray transforms are measured, for example, in diffuse-illumination, holographic interferometry of fluids. Computed tomography and neural net calibration tomography are shown to have comparable performance for a 10 degree viewing cone and 29 interferograms within that cone. The system of tomography discussed is proposed as a relevant test of neural networks and other parallel processors intended for using flow visualization data.

  1. Use of cone beam computed tomography in implant dentistry: current concepts, indications and limitations for clinical practice and research.

    PubMed

    Bornstein, Michael M; Horner, Keith; Jacobs, Reinhilde

    2017-02-01

    Diagnostic radiology is an essential component of treatment planning in the field of implant dentistry. This narrative review will present current concepts for the use of cone beam computed tomography imaging, before and after implant placement, in daily clinical practice and research. Guidelines for the selection of three-dimensional imaging will be discussed, and limitations will be highlighted. Current concepts of radiation dose optimization, including novel imaging modalities using low-dose protocols, will be presented. For preoperative cross-sectional imaging, data are still not available which demonstrate that cone beam computed tomography results in fewer intraoperative complications such as nerve damage or bleeding incidents, or that implants inserted using preoperative cone beam computed tomography data sets for planning purposes will exhibit higher survival or success rates. The use of cone beam computed tomography following the insertion of dental implants should be restricted to specific postoperative complications, such as damage of neurovascular structures or postoperative infections in relation to the maxillary sinus. Regarding peri-implantitis, the diagnosis and severity of the disease should be evaluated primarily based on clinical parameters and on radiological findings based on periapical radiographs (two dimensional). The use of cone beam computed tomography scans in clinical research might not yield any evident beneficial effect for the patient included. As many of the cone beam computed tomography scans performed for research have no direct therapeutic consequence, dose optimization measures should be implemented by using appropriate exposure parameters and by reducing the field of view to the actual region of interest. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. How reliably can computed tomography predict thyroid invasion prior to laryngectomy?

    PubMed

    Harris, Andrew S; Passant, Carl D; Ingrams, Duncan R

    2018-05-01

    There is little evidence to support the removal of thyroid tissue during total laryngectomy. Although oncological control of the tumor is the priority, thyroidectomy can lead to hypothyroidism and hypoparathyroidism. This study aimed to test the usefulness of preoperative computed tomography in predicting histological invasion of the thyroid. Ambispective cohort study. All patients undergoing total laryngectomy for squamous cell carcinoma at one center from 2006 to 2016 were included. Data were recorded prospectively as part of the patients' standard care, but were collated retrospectively, giving this study an ambispective design. The histology report for thyroid invasion was taken as the gold standard. The computed tomography report was categorized by invasion of tumor into intralaryngeal, laryngeal cartilage involvement, and extralaryngeal tissues. Seventy-nine patients were included. Nine patients had thyroid involvement on histology, translating to an incidence of 11.29% in this population. The positive predictive value for cartilage involvement on computed tomography for thyroid invasion was 52.9% (95% confidence interval [CI]: 28.5%-76.1%) and the negative predictive value was 100% (95% CI: 92.7%-100%).The positive predictive value for extralaryngeal spread on computed tomography for thyroid involvement was 100% (95% CI: 62.9%-100%), and the negative predictive value was also 100% (95% CI: 93.5%-100%). This study has shown that preoperative computed tomography is an effective method of ruling out thyroid gland invasion. The absence of extralaryngeal spread on computed tomography has been shown to be the most useful finding, with a high negative predictive value and a narrow 95% CI. 4. Laryngoscope, 128:1099-1102, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  3. Diverticular Disease of the Colon: News From Imaging.

    PubMed

    Flor, Nicola; Soldi, Simone; Zanchetta, Edoardo; Sbaraini, Sara; Pesapane, Filippo

    2016-10-01

    Different scenarios embrace computed tomography imaging and diverticula, including asymptomatic (diverticulosis) and symptomatic patients (acute diverticulitis, follow-up of acute diverticulitis, chronic diverticulitis). If the role of computed tomography is validated and widely supported by evidence in case of acute diverticulitis, this is not the case of patients in their follow-up for acute diverticulitis or with symptoms related to diverticula, but without acute inflammation. In these settings, computed tomography colonography is gaining consensus as the preferred radiologic test.

  4. Plain X-ray, computed tomography and magnetic resonance imaging findings of telangiectatic osteosarcoma: a case report.

    PubMed

    Skiadas, Vasilios; Koutoulidis, Vasilios; Koureas, Andreas; Moulopoulos, Lia; Gouliamos, Athanasios

    2009-09-16

    An 18-year-old male patient presented with chronic nonspecific pain of three months located at his left proximal tibia. The patient was admitted to our department for plain X-ray, computed tomography and magnetic resonance imaging examination. Plain X-ray and computed tomography revealed a geographic lytic lesion at the medial aspect of the proximal tibia. Biopsy of the lesion showed telangiectatic osteosarcoma. Image findings of all modalities are presented.

  5. Advances in equine computed tomography and use of contrast media.

    PubMed

    Puchalski, Sarah M

    2012-12-01

    Advances in equine computed tomography have been made as a result of improvements in software and hardware and an increasing body of knowledge. Contrast media can be administered intravascularly or intrathecally. Contrast media is useful to differentiate between tissues of similar density. Equine computed tomography can be used for many different clinical conditions, including lameness diagnosis, fracture identification and characterization, preoperative planning, and characterization of skull diseases. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. [The radiologist physician in major trauma evaluation].

    PubMed

    Motta-Ramírez, Gaspar Alberto

    2016-01-01

    Trauma is the most common cause of death in young adults. A multidisciplinary trauma team consists of at least a surgical team, an anesthesiology team, radiologic team, and an emergency department team. Recognize the integration of multidisciplinary medical team in managing the trauma patient and which must include the radiologist physician responsible for the institutional approach to the systematization of the trauma patient regarding any radiological and imaging study with emphasis on the FAST (del inglés, Focused Assessment with Sonography in Trauma)/USTA, Whole body computed tomography. Ultrasound is a cross-sectional method available for use in patients with major trauma. Whole-body multidetector computed tomography became the imaging modality of choice in the late 1990s. In patients with major trauma, examination FAST often is the initial imaging examination, extended to extraabdominal regions. Patients who have multitrauma from blunt mechanisms often require multiple diagnostic examinations, including Computed Tomography imaging of the torso as well as abdominopelvic Computed Tomography angiography. Multiphasic Whole-body trauma imaging is feasible, helps detect clinically relevant vascular injuries, and results in diagnostic image quality in the majority of patients. Computed Tomography has gained importance in the early diagnostic phase of trauma care in the emergency room. With a single continuous acquisition, whole-body computed tomography angiography is able to demonstrate all potentially injured organs, as well as vascular and bone structures, from the circle of Willis to the symphysis pubis.

  7. Interior tomographic imaging for x-ray coherent scattering (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pang, Sean; Zhu, Zheyuan

    2017-05-01

    Conventional computed tomography reconstructs the attenuation only high-dimensional images. Coherent scatter computed tomography, which reconstructs the angular dependent scattering profiles of 3D objects, can provide molecular signatures that improves the accuracy of material identification and classification. Coherent scatter tomography are traditionally acquired by setups similar to x-ray powder diffraction machine; a collimated source in combination with 2D or 1D detector collimation in order to localize the scattering point. In addition, the coherent scatter cross-section is often 3 orders of magnitude lower than that of the absorption cross-section for the same material. Coded aperture and structured illumination approaches has been shown to greatly improve the collection efficiency. In many applications, especially in security imaging and medical diagnosis, fast and accurate identification of the material composition of a small volume within the whole object would lead to an accelerated imaging procedure and reduced radiation dose. Here, we report an imaging method to reconstruct the material coherent scatter profile within a small volume. The reconstruction along one radial direction can reconstruct a scalar coherent scattering tomographic image. Our methods takes advantage of the finite support of the scattering profile in small angle regime. Our system uses a pencil beam setup without using any detector side collimation. Coherent scatter profile of a 10 mm scattering sample embedded in a 30 mm diameter phantom was reconstructed. The setup has small form factor and is suitable for various portable non-destructive detection applications.

  8. High-resolution PET [Positron Emission Tomography] for Medical Science Studies

    DOE R&D Accomplishments Database

    Budinger, T. F.; Derenzo, S. E.; Huesman, R. H.; Jagust, W. J.; Valk, P. E.

    1989-09-01

    One of the unexpected fruits of basic physics research and the computer revolution is the noninvasive imaging power available to today's physician. Technologies that were strictly the province of research scientists only a decade or two ago now serve as the foundations for such standard diagnostic tools as x-ray computer tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), ultrasound, single photon emission computed tomography (SPECT), and positron emission tomography (PET). Furthermore, prompted by the needs of both the practicing physician and the clinical researcher, efforts to improve these technologies continue. This booklet endeavors to describe the advantages of achieving high resolution in PET imaging.

  9. Use of Noncontrast Computed Tomography and Computed Tomographic Perfusion in Predicting Intracerebral Hemorrhage After Intravenous Alteplase Therapy.

    PubMed

    Batchelor, Connor; Pordeli, Pooneh; d'Esterre, Christopher D; Najm, Mohamed; Al-Ajlan, Fahad S; Boesen, Mari E; McDougall, Connor; Hur, Lisa; Fainardi, Enrico; Shankar, Jai Jai Shiva; Rubiera, Marta; Khaw, Alexander V; Hill, Michael D; Demchuk, Andrew M; Sajobi, Tolulope T; Goyal, Mayank; Lee, Ting-Yim; Aviv, Richard I; Menon, Bijoy K

    2017-06-01

    Intracerebral hemorrhage is a feared complication of intravenous alteplase therapy in patients with acute ischemic stroke. We explore the use of multimodal computed tomography in predicting this complication. All patients were administered intravenous alteplase with/without intra-arterial therapy. An age- and sex-matched case-control design with classic and conditional logistic regression techniques was chosen for analyses. Outcome was parenchymal hemorrhage on 24- to 48-hour imaging. Exposure variables were imaging (noncontrast computed tomography hypoattenuation degree, relative volume of very low cerebral blood volume, relative volume of cerebral blood flow ≤7 mL/min·per 100 g, relative volume of T max ≥16 s with all volumes standardized to z axis coverage, mean permeability surface area product values within T max ≥8 s volume, and mean permeability surface area product values within ipsilesional hemisphere) and clinical variables (NIHSS [National Institutes of Health Stroke Scale], onset to imaging time, baseline systolic blood pressure, blood glucose, serum creatinine, treatment type, and reperfusion status). One-hundred eighteen subjects (22 patients with parenchymal hemorrhage versus 96 without, median baseline NIHSS score of 15) were included in the final analysis. In multivariable regression, noncontrast computed tomography hypoattenuation grade ( P <0.006) and computerized tomography perfusion white matter relative volume of very low cerebral blood volume ( P =0.04) were the only significant variables associated with parenchymal hemorrhage on follow-up imaging (area under the curve, 0.73; 95% confidence interval, 0.63-0.83). Interrater reliability for noncontrast computed tomography hypoattenuation grade was moderate (κ=0.6). Baseline hypoattenuation on noncontrast computed tomography and very low cerebral blood volume on computerized tomography perfusion are associated with development of parenchymal hemorrhage in patients with acute ischemic stroke receiving intravenous alteplase. © 2017 American Heart Association, Inc.

  10. Errors due to measuring voltage on current-carrying electrodes in electric current computed tomography.

    PubMed

    Cheng, K S; Simske, S J; Isaacson, D; Newell, J C; Gisser, D G

    1990-01-01

    Electric current computed tomography is a process for determining the distribution of electrical conductivity inside a body based upon measurements of voltage or current made at the body's surface. Most such systems use different electrodes for the application of current and the measurement of voltage. This paper shows that when a multiplicity of electrodes are attached to a body's surface, the voltage data are most sensitive to changes in resistivity in the body's interior when voltages are measured from all electrodes, including those carrying current. This assertion is true despite the presence of significant levels of skin impedance at the electrodes. This conclusion is supported both theoretically and by experiment. Data were first taken using all electrodes for current and voltage. Then current was applied only at a pair of electrodes, with voltages measured on all other electrodes. We then constructed the second data set by calculation from the first. Targets could be detected with better signal-to-noise ratio by using the reconstructed data than by using the directly measured voltages on noncurrent-carrying electrodes. Images made from voltage data using only noncurrent-carrying electrodes had higher noise levels and were less able to accurately locate targets. We conclude that in multiple electrode systems for electric current computed tomography, current should be applied and voltage should be measured from all available electrodes.

  11. Use of radiography, computed tomography and magnetic resonance imaging for evaluation of navicular syndrome in the horse.

    PubMed

    Widmer, W R; Buckwalter, K A; Fessler, J F; Hill, M A; VanSickle, D C; Ivancevich, S

    2000-01-01

    Radiographic evaluation of navicular syndrome is problematic because of its inconsistent correlation with clinical signs. Scintigraphy often yields false positive and false negative results and diagnostic ultrasound is of limited value. Therefore, we assessed the use of computed tomography and magnetic resonance imaging in a horse with clinical and radiographic signs of navicular syndrome. Cadaver specimens were examined with spiral computed tomographic and high-field magnetic resonance scanners and images were correlated with pathologic findings. Radiographic changes consisted of bony remodeling, which included altered synovial fossae, increased medullary opacity, cyst formation and shape change. These osseous changes were more striking and more numerous on computed tomographic and magnetic resonance images. They were most clearly defined with computed tomography. Many osseous changes seen with computed tomography and magnetic resonance imaging were not radiographically evident. Histologically confirmed soft tissue alterations of the deep digital flexor tendon, impar ligament and marrow were identified with magnetic resonance imaging, but not with conventional radiography. Because of their multiplanar capability and tomographic nature, computed tomography and magnetic resonance imaging surpass conventional radiography for navicular imaging, facilitating earlier, more accurate diagnosis. Current advances in imaging technology should make these imaging modalities available to equine practitioners in the future.

  12. Quantitative Comparison of Virtual Monochromatic Images of Dual Energy Computed Tomography Systems: Beam Hardening Artifact Correction and Variance in Computed Tomography Numbers: A Phantom Study.

    PubMed

    Wu, Rongli; Watanabe, Yoshiyuki; Satoh, Kazuhiko; Liao, Yen-Peng; Takahashi, Hiroto; Tanaka, Hisashi; Tomiyama, Noriyuki

    2018-05-21

    The aim of this study was to quantitatively compare the reduction in beam hardening artifact (BHA) and variance in computed tomography (CT) numbers of virtual monochromatic energy (VME) images obtained with 3 dual-energy computed tomography (DECT) systems at a given radiation dose. Five different iodine concentrations were scanned using dual-energy and single-energy (120 kVp) modes. The BHA and CT number variance were evaluated. For higher iodine concentrations, 40 and 80 mgI/mL, BHA on VME imaging was significantly decreased when the energy was higher than 50 keV (P = 0.003) and 60 keV (P < 0.001) for GE, higher than 80 keV (P < 0.001) and 70 keV (P = 0.002) for Siemens, and higher than 40 keV (P < 0.001) and 60 keV (P < 0.001) for Toshiba, compared with single-energy CT imaging. Virtual monochromatic energy imaging can decrease BHA and improve CT number accuracy in different dual-energy computed tomography systems, depending on energy levels and iodine concentrations.

  13. Virtopsy: postmortem imaging of laryngeal foreign bodies.

    PubMed

    Oesterhelweg, Lars; Bolliger, Stephan A; Thali, Michael J; Ross, Steffen

    2009-05-01

    Death from corpora aliena in the larynx is a well-known entity in forensic pathology. The correct diagnosis of this cause of death is difficult without an autopsy, and misdiagnoses by external examination alone are common. To determine the postmortem usefulness of modern imaging techniques in the diagnosis of foreign bodies in the larynx, multislice computed tomography, magnetic resonance imaging, and postmortem full-body computed tomography-angiography were performed. Three decedents with a suspected foreign body in the larynx underwent the 3 different imaging techniques before medicolegal autopsy. Multislice computed tomography has a high diagnostic value in the noninvasive localization of a foreign body and abnormalities in the larynx. The differentiation between neoplasm or soft foreign bodies (eg, food) is possible, but difficult, by unenhanced multislice computed tomography. By magnetic resonance imaging, the discrimination of the soft tissue structures and soft foreign bodies is much easier. In addition to the postmortem multislice computed tomography, the combination with postmortem angiography will increase the diagnostic value. Postmortem, cross-sectional imaging methods are highly valuable procedures for the noninvasive detection of corpora aliena in the larynx.

  14. Bayesian seismic tomography by parallel interacting Markov chains

    NASA Astrophysics Data System (ADS)

    Gesret, Alexandrine; Bottero, Alexis; Romary, Thomas; Noble, Mark; Desassis, Nicolas

    2014-05-01

    The velocity field estimated by first arrival traveltime tomography is commonly used as a starting point for further seismological, mineralogical, tectonic or similar analysis. In order to interpret quantitatively the results, the tomography uncertainty values as well as their spatial distribution are required. The estimated velocity model is obtained through inverse modeling by minimizing an objective function that compares observed and computed traveltimes. This step is often performed by gradient-based optimization algorithms. The major drawback of such local optimization schemes, beyond the possibility of being trapped in a local minimum, is that they do not account for the multiple possible solutions of the inverse problem. They are therefore unable to assess the uncertainties linked to the solution. Within a Bayesian (probabilistic) framework, solving the tomography inverse problem aims at estimating the posterior probability density function of velocity model using a global sampling algorithm. Markov chains Monte-Carlo (MCMC) methods are known to produce samples of virtually any distribution. In such a Bayesian inversion, the total number of simulations we can afford is highly related to the computational cost of the forward model. Although fast algorithms have been recently developed for computing first arrival traveltimes of seismic waves, the complete browsing of the posterior distribution of velocity model is hardly performed, especially when it is high dimensional and/or multimodal. In the latter case, the chain may even stay stuck in one of the modes. In order to improve the mixing properties of classical single MCMC, we propose to make interact several Markov chains at different temperatures. This method can make efficient use of large CPU clusters, without increasing the global computational cost with respect to classical MCMC and is therefore particularly suited for Bayesian inversion. The exchanges between the chains allow a precise sampling of the high probability zones of the model space while avoiding the chains to end stuck in a probability maximum. This approach supplies thus a robust way to analyze the tomography imaging uncertainties. The interacting MCMC approach is illustrated on two synthetic examples of tomography of calibration shots such as encountered in induced microseismic studies. On the second application, a wavelet based model parameterization is presented that allows to significantly reduce the dimension of the problem, making thus the algorithm efficient even for a complex velocity model.

  15. A forward-adjoint operator pair based on the elastic wave equation for use in transcranial photoacoustic computed tomography

    PubMed Central

    Mitsuhashi, Kenji; Poudel, Joemini; Matthews, Thomas P.; Garcia-Uribe, Alejandro; Wang, Lihong V.; Anastasio, Mark A.

    2017-01-01

    Photoacoustic computed tomography (PACT) is an emerging imaging modality that exploits optical contrast and ultrasonic detection principles to form images of the photoacoustically induced initial pressure distribution within tissue. The PACT reconstruction problem corresponds to an inverse source problem in which the initial pressure distribution is recovered from measurements of the radiated wavefield. A major challenge in transcranial PACT brain imaging is compensation for aberrations in the measured data due to the presence of the skull. Ultrasonic waves undergo absorption, scattering and longitudinal-to-shear wave mode conversion as they propagate through the skull. To properly account for these effects, a wave-equation-based inversion method should be employed that can model the heterogeneous elastic properties of the skull. In this work, a forward model based on a finite-difference time-domain discretization of the three-dimensional elastic wave equation is established and a procedure for computing the corresponding adjoint of the forward operator is presented. Massively parallel implementations of these operators employing multiple graphics processing units (GPUs) are also developed. The developed numerical framework is validated and investigated in computer19 simulation and experimental phantom studies whose designs are motivated by transcranial PACT applications. PMID:29387291

  16. Mapping Bone Mineral Density Obtained by Quantitative Computed Tomography to Bone Volume Fraction

    NASA Technical Reports Server (NTRS)

    Pennline, James A.; Mulugeta, Lealem

    2017-01-01

    Methods for relating or mapping estimates of volumetric Bone Mineral Density (vBMD) obtained by Quantitative Computed Tomography to Bone Volume Fraction (BVF) are outlined mathematically. The methods are based on definitions of bone properties, cited experimental studies and regression relations derived from them for trabecular bone in the proximal femur. Using an experimental range of values in the intertrochanteric region obtained from male and female human subjects, age 18 to 49, the BVF values calculated from four different methods were compared to the experimental average and numerical range. The BVF values computed from the conversion method used data from two sources. One source provided pre bed rest vBMD values in the intertrochanteric region from 24 bed rest subject who participated in a 70 day study. Another source contained preflight vBMD values from 18 astronauts who spent 4 to 6 months on the ISS. To aid the use of a mapping from BMD to BVF, the discussion includes how to formulate them for purpose of computational modeling. An application of the conversions would be used to aid in modeling of time varying changes in vBMD as it relates to changes in BVF via bone remodeling and/or modeling.

  17. Iterative image reconstruction in elastic inhomogenous media with application to transcranial photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Poudel, Joemini; Matthews, Thomas P.; Mitsuhashi, Kenji; Garcia-Uribe, Alejandro; Wang, Lihong V.; Anastasio, Mark A.

    2017-03-01

    Photoacoustic computed tomography (PACT) is an emerging computed imaging modality that exploits optical contrast and ultrasonic detection principles to form images of the photoacoustically induced initial pressure distribution within tissue. The PACT reconstruction problem corresponds to a time-domain inverse source problem, where the initial pressure distribution is recovered from the measurements recorded on an aperture outside the support of the source. A major challenge in transcranial PACT brain imaging is to compensate for aberrations in the measured data due to the propagation of the photoacoustic wavefields through the skull. To properly account for these effects, a wave equation-based inversion method should be employed that can model the heterogeneous elastic properties of the medium. In this study, an iterative image reconstruction method for 3D transcranial PACT is developed based on the elastic wave equation. To accomplish this, a forward model based on a finite-difference time-domain discretization of the elastic wave equation is established. Subsequently, gradient-based methods are employed for computing penalized least squares estimates of the initial source distribution that produced the measured photoacoustic data. The developed reconstruction algorithm is validated and investigated through computer-simulation studies.

  18. Simulation tools for two-dimensional experiments in x-ray computed tomography using the FORBILD head phantom

    PubMed Central

    Yu, Zhicong; Noo, Frédéric; Dennerlein, Frank; Wunderlich, Adam; Lauritsch, Günter; Hornegger, Joachim

    2012-01-01

    Mathematical phantoms are essential for the development and early-stage evaluation of image reconstruction algorithms in x-ray computed tomography (CT). This note offers tools for computer simulations using a two-dimensional (2D) phantom that models the central axial slice through the FORBILD head phantom. Introduced in 1999, in response to a need for a more robust test, the FORBILD head phantom is now seen by many as the gold standard. However, the simple Shepp-Logan phantom is still heavily used by researchers working on 2D image reconstruction. Universal acceptance of the FORBILD head phantom may have been prevented by its significantly-higher complexity: software that allows computer simulations with the Shepp-Logan phantom is not readily applicable to the FORBILD head phantom. The tools offered here address this problem. They are designed for use with Matlab®, as well as open-source variants, such as FreeMat and Octave, which are all widely used in both academia and industry. To get started, the interested user can simply copy and paste the codes from this PDF document into Matlab® M-files. PMID:22713335

  19. Simulation tools for two-dimensional experiments in x-ray computed tomography using the FORBILD head phantom.

    PubMed

    Yu, Zhicong; Noo, Frédéric; Dennerlein, Frank; Wunderlich, Adam; Lauritsch, Günter; Hornegger, Joachim

    2012-07-07

    Mathematical phantoms are essential for the development and early stage evaluation of image reconstruction algorithms in x-ray computed tomography (CT). This note offers tools for computer simulations using a two-dimensional (2D) phantom that models the central axial slice through the FORBILD head phantom. Introduced in 1999, in response to a need for a more robust test, the FORBILD head phantom is now seen by many as the gold standard. However, the simple Shepp-Logan phantom is still heavily used by researchers working on 2D image reconstruction. Universal acceptance of the FORBILD head phantom may have been prevented by its significantly higher complexity: software that allows computer simulations with the Shepp-Logan phantom is not readily applicable to the FORBILD head phantom. The tools offered here address this problem. They are designed for use with Matlab®, as well as open-source variants, such as FreeMat and Octave, which are all widely used in both academia and industry. To get started, the interested user can simply copy and paste the codes from this PDF document into Matlab® M-files.

  20. Leg CT scan

    MedlinePlus

    CAT scan - leg; Computed axial tomography scan - leg; Computed tomography scan - leg; CT scan - leg ... CT scan makes detailed pictures of the body very quickly. The test may help look for: An abscess ...

  1. Arm CT scan

    MedlinePlus

    CAT scan - arm; Computed axial tomography scan - arm; Computed tomography scan - arm; CT scan - arm ... Healing problems or scar tissue following surgery A CT scan may also be used to guide a surgeon ...

  2. Multidetector Computed Tomography for Congenital Anomalies of the Aortic Arch: Vascular Rings.

    PubMed

    García-Guereta, Luis; García-Cerro, Estefanía; Bret-Zurita, Montserrat

    2016-07-01

    The development of multidetector computed tomography has triggered a revolution in the study of the aorta and other large vessels and has replaced angiography in the diagnosis of congenital anomalies of the aortic arch, particularly vascular rings. The major advantage of multidetector computed tomography is that it permits clear 3-dimensional assessment of not only vascular structures, but also airway and esophageal compression. The current update aims to summarize the embryonic development of the aortic arch and the developmental anomalies leading to vascular ring formation and to discuss the current diagnostic and therapeutic role of multidetector computed tomography in this field. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  3. Poster — Thur Eve — 09: Evaluation of electrical impedance and computed tomography fusion algorithms using an anthropomorphic phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chugh, Brige Paul; Krishnan, Kalpagam; Liu, Jeff

    2014-08-15

    Integration of biological conductivity information provided by Electrical Impedance Tomography (EIT) with anatomical information provided by Computed Tomography (CT) imaging could improve the ability to characterize tissues in clinical applications. In this paper, we report results of our study which compared the fusion of EIT with CT using three different image fusion algorithms, namely: weighted averaging, wavelet fusion, and ROI indexing. The ROI indexing method of fusion involves segmenting the regions of interest from the CT image and replacing the pixels with the pixels of the EIT image. The three algorithms were applied to a CT and EIT image ofmore » an anthropomorphic phantom, constructed out of five acrylic contrast targets with varying diameter embedded in a base of gelatin bolus. The imaging performance was assessed using Detectability and Structural Similarity Index Measure (SSIM). Wavelet fusion and ROI-indexing resulted in lower Detectability (by 35% and 47%, respectively) yet higher SSIM (by 66% and 73%, respectively) than weighted averaging. Our results suggest that wavelet fusion and ROI-indexing yielded more consistent and optimal fusion performance than weighted averaging.« less

  4. Quantifying the debonding of inclusions through tomography and computational homology.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Wei-Yang; Johnson, George C.; Mota, Alejandro

    2010-09-01

    This report describes a Laboratory Directed Research and Development (LDRD) project to use of synchrotron-radiation computed tomography (SRCT) data to determine the conditions and mechanisms that lead to void nucleation in rolled alloys. The Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory (LBNL) has provided SRCT data of a few specimens of 7075-T7351 aluminum plate (widely used for aerospace applications) stretched to failure, loaded in directions perpendicular and parallel to the rolling direction. The resolution of SRCT data is 900nm, which allows elucidation of the mechanisms governing void growth and coalescence. This resolution is not fine enough, however, formore » nucleation. We propose the use statistics and image processing techniques to obtain sub-resolution scale information from these data, and thus determine where in the specimen and when during the loading program nucleation occurs and the mechanisms that lead to it. Quantitative analysis of the tomography data, however, leads to the conclusion that the reconstruction process compromises the information obtained from the scans. Alternate, more powerful reconstruction algorithms are needed to address this problem, but those fall beyond the scope of this project.« less

  5. Molecular Imaging of Experimental Abdominal Aortic Aneurysms

    PubMed Central

    Ramaswamy, Aneesh K.; Hamilton, Mark; Joshi, Rucha V.; Kline, Benjamin P.; Li, Rui; Wang, Pu; Goergen, Craig J.

    2013-01-01

    Current laboratory research in the field of abdominal aortic aneurysm (AAA) disease often utilizes small animal experimental models induced by genetic manipulation or chemical application. This has led to the use and development of multiple high-resolution molecular imaging modalities capable of tracking disease progression, quantifying the role of inflammation, and evaluating the effects of potential therapeutics. In vivo imaging reduces the number of research animals used, provides molecular and cellular information, and allows for longitudinal studies, a necessity when tracking vessel expansion in a single animal. This review outlines developments of both established and emerging molecular imaging techniques used to study AAA disease. Beyond the typical modalities used for anatomical imaging, which include ultrasound (US) and computed tomography (CT), previous molecular imaging efforts have used magnetic resonance (MR), near-infrared fluorescence (NIRF), bioluminescence, single-photon emission computed tomography (SPECT), and positron emission tomography (PET). Mouse and rat AAA models will hopefully provide insight into potential disease mechanisms, and the development of advanced molecular imaging techniques, if clinically useful, may have translational potential. These efforts could help improve the management of aneurysms and better evaluate the therapeutic potential of new treatments for human AAA disease. PMID:23737735

  6. An X-Ray computed tomography/positron emission tomography system designed specifically for breast imaging.

    PubMed

    Boone, John M; Yang, Kai; Burkett, George W; Packard, Nathan J; Huang, Shih-ying; Bowen, Spencer; Badawi, Ramsey D; Lindfors, Karen K

    2010-02-01

    Mammography has served the population of women who are at-risk for breast cancer well over the past 30 years. While mammography has undergone a number of changes as digital detector technology has advanced, other modalities such as computed tomography have experienced technological sophistication over this same time frame as well. The advent of large field of view flat panel detector systems enable the development of breast CT and several other niche CT applications, which rely on cone beam geometry. The breast, it turns out, is well suited to cone beam CT imaging because the lack of bones reduces artifacts, and the natural tapering of the breast anteriorly reduces the x-ray path lengths through the breast at large cone angle, reducing cone beam artifacts as well. We are in the process of designing a third prototype system which will enable the use of breast CT for image guided interventional procedures. This system will have several copies fabricated so that several breast CT scanners can be used in a multi-institutional clinical trial to better understand the role that this technology can bring to breast imaging.

  7. To image analysis in computed tomography

    NASA Astrophysics Data System (ADS)

    Chukalina, Marina; Nikolaev, Dmitry; Ingacheva, Anastasia; Buzmakov, Alexey; Yakimchuk, Ivan; Asadchikov, Victor

    2017-03-01

    The presence of errors in tomographic image may lead to misdiagnosis when computed tomography (CT) is used in medicine, or the wrong decision about parameters of technological processes when CT is used in the industrial applications. Two main reasons produce these errors. First, the errors occur on the step corresponding to the measurement, e.g. incorrect calibration and estimation of geometric parameters of the set-up. The second reason is the nature of the tomography reconstruction step. At the stage a mathematical model to calculate the projection data is created. Applied optimization and regularization methods along with their numerical implementations of the method chosen have their own specific errors. Nowadays, a lot of research teams try to analyze these errors and construct the relations between error sources. In this paper, we do not analyze the nature of the final error, but present a new approach for the calculation of its distribution in the reconstructed volume. We hope that the visualization of the error distribution will allow experts to clarify the medical report impression or expert summary given by them after analyzing of CT results. To illustrate the efficiency of the proposed approach we present both the simulation and real data processing results.

  8. X-ray computed tomography applied to investigate ancient manuscripts

    NASA Astrophysics Data System (ADS)

    Bettuzzi, Matteo; Albertin, Fauzia; Brancaccio, Rosa; Casali, Franco; Pia Morigi, Maria; Peccenini, Eva

    2017-03-01

    I will describe in this paper the first results of a series of X-ray tomography applications, with different system setups, running on some ancient manuscripts containing iron-gall ink. The purpose is to verify the optimum measurement conditions with a laboratory instrumentation -that is also in fact portable- in order to recognize the text from the inside of the documents, without opening them. This becomes possible by exploiting the X-rays absorption contrast of iron-based ink and the three-dimensional reconstruction potential provided by computed tomography that overcomes problems that appear in simple radiograph practice. This work is part of a larger project of EPFL (Ecole Polytechnique Fédérale de Lausanne, Switzerland), the "Venice Time Machine" project (EPEL, Digital Heritage Venice, http://dhvenice.eu/, 2015) aimed at digitizing, transcribing and sharing in an open database all the information of the State Archives of Venice, exploiting traditional digitization technologies and innovative methods of acquisition. In this first measurement campaign I investigated a manuscript of the seventeenth century made of a folded sheet; a couple of unopened ancient wills kept in the State Archives in Venice and a handwritten book of several hundred pages of notes of Physics of the nineteenth century.

  9. Comparison of diffraction-enhanced computed tomography and monochromatic synchrotron radiation computed tomography of human trabecular bone.

    PubMed

    Connor, D M; Hallen, H D; Lalush, D S; Sumner, D R; Zhong, Z

    2009-10-21

    Diffraction-enhanced imaging (DEI) is an x-ray-based medical imaging modality that, when used in tomography mode (DECT), can generate a three-dimensional map of both the apparent absorption coefficient and the out-of-plane gradient of the index of refraction of the sample. DECT is known to have contrast gains over monochromatic synchrotron radiation CT (SRCT) for soft tissue structures. The goal of this experiment was to compare contrast-to-noise ratio (CNR) and resolution in images of human trabecular bone acquired using SRCT with images acquired using DECT. All images were acquired at the National Synchrotron Light Source (Upton, NY, USA) at beamline X15 A at an x-ray energy of 40 keV and the silicon [3 3 3] reflection. SRCT, apparent absorption DECT and refraction DECT slice images of the trabecular bone were created. The apparent absorption DECT images have significantly higher spatial resolution and CNR than the corresponding SRCT images. Thus, DECT will prove to be a useful tool for imaging applications in which high contrast and high spatial resolution are required for both soft tissue features and bone.

  10. Practical applications of digital tomosynthesis of the chest.

    PubMed

    Galea, A; Durran, A; Adlan, T; Gay, D; Riordan, R; Dubbins, P; Williams, M P

    2014-04-01

    Digital tomosynthesis is a radiographic technique that generates a number of coronal raw images of a patient from a single pass of the x-ray tube. Tomosynthesis provides some of the tomographic benefits of computed tomography (CT), but at a much lower dose of radiation and cost when compared to CT. This review illustrates the range of practical applications of digital tomosynthesis of the chest. Copyright © 2013 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  11. Comprehensive Digital Imaging Network Project At Georgetown University Hospital

    NASA Astrophysics Data System (ADS)

    Mun, Seong K.; Stauffer, Douglas; Zeman, Robert; Benson, Harold; Wang, Paul; Allman, Robert

    1987-10-01

    The radiology practice is going through rapid changes due to the introduction of state-of-the-art computed based technologies. For the last twenty years we have witnessed the introduction of many new medical diagnostic imaging systems such as x-ray computed tomo-graphy, digital subtraction angiography (DSA), computerized nuclear medicine, single pho-ton emission computed tomography (SPECT), positron emission tomography (PET) and more re-cently, computerized digital radiography and nuclear magnetic resonance imaging (MRI). Other than the imaging systems, there has been a steady introduction of computed based information systems for radiology departments and hospitals.

  12. Utility of three-dimensional and multiplanar reformatted computed tomography for evaluation of pediatric congenital spine abnormalities.

    PubMed

    Newton, Peter O; Hahn, Gregory W; Fricka, Kevin B; Wenger, Dennis R

    2002-04-15

    A retrospective radiographic review of 31 patients with congenital spine abnormalities who underwent conventional radiography and advanced imaging studies was conducted. To analyze the utility of three-dimensional computed tomography with multiplanar reformatted images for congenital spine anomalies, as compared with plain radiographs and axial two-dimensional computed tomography imaging. Conventional radiographic imaging for congenital spine disorders often are difficult to interpret because of the patient's small size, the complexity of the disorder, a deformity not in the plane of the radiographs, superimposed structures, and difficulty in forming a mental three-dimensional image. Multiplanar reformatted and three-dimensional computed tomographic imaging offers many potential advantages for defining congenital spine anomalies including visualization of the deformity in any plane, from any angle, with the overlying structures subtracted. The imaging studies of patients who had undergone a three-dimensional computed tomography for congenital deformities of the spine between 1992 and 1998 were reviewed (31 cases). All plain radiographs and axial two-dimensional computed tomography images performed before the three-dimensional computed tomography were reviewed and the findings documented. This was repeated for the three-dimensional reconstructions and, when available, the multiplanar reformatted images (15 cases). In each case, the utility of the advanced imaging was graded as one of the following: Grade A (substantial new information obtained), Grade B (confirmatory with improved visualization and understanding of the deformity), and Grade C (no added useful information obtained). In 17 of 31 cases, the multiplanar reformatted and three-dimensional images allowed identification of unrecognized malformations. In nine additional cases, the advanced imaging was helpful in better visualizing and understanding previously identified deformities. In five cases, no new information was gained. The standard and curved multiplanar reformatted images were best for defining the occiput-C1-C2 anatomy and the extent of segmentation defects. The curved multiplanar reformatted images were especially helpful in keeping the spine from "coming in" and "going out" of the plane of the image when there was significant spine deformity in the sagittal or coronal plane. The three-dimensional reconstructions proved valuable in defining failures of formation. Advanced computed tomography imaging (three-dimensional computed tomography and curved/standard multiplanar reformatted images) allows better definition of congenital spine anomalies. More than 50% of the cases showed additional abnormalities not appreciated on plain radiographs or axial two-dimensional computed tomography images. Curved multiplanar reformatted images allowed imaging in the coronal and sagittal planes of the entire deformity.

  13. Parallel computing in experimental mechanics and optical measurement: A review (II)

    NASA Astrophysics Data System (ADS)

    Wang, Tianyi; Kemao, Qian

    2018-05-01

    With advantages such as non-destructiveness, high sensitivity and high accuracy, optical techniques have successfully integrated into various important physical quantities in experimental mechanics (EM) and optical measurement (OM). However, in pursuit of higher image resolutions for higher accuracy, the computation burden of optical techniques has become much heavier. Therefore, in recent years, heterogeneous platforms composing of hardware such as CPUs and GPUs, have been widely employed to accelerate these techniques due to their cost-effectiveness, short development cycle, easy portability, and high scalability. In this paper, we analyze various works by first illustrating their different architectures, followed by introducing their various parallel patterns for high speed computation. Next, we review the effects of CPU and GPU parallel computing specifically in EM & OM applications in a broad scope, which include digital image/volume correlation, fringe pattern analysis, tomography, hyperspectral imaging, computer-generated holograms, and integral imaging. In our survey, we have found that high parallelism can always be exploited in such applications for the development of high-performance systems.

  14. Heart CT scan

    MedlinePlus

    ... Computed tomography scan - heart; Calcium scoring; Multi-detector CT scan - heart; Electron beam computed tomography - heart; Agatston ... table that slides into the center of the CT scanner. You will lie on your back with ...

  15. Patch-based models and algorithms for image processing: a review of the basic principles and methods, and their application in computed tomography.

    PubMed

    Karimi, Davood; Ward, Rabab K

    2016-10-01

    Image models are central to all image processing tasks. The great advancements in digital image processing would not have been made possible without powerful models which, themselves, have evolved over time. In the past decade, "patch-based" models have emerged as one of the most effective models for natural images. Patch-based methods have outperformed other competing methods in many image processing tasks. These developments have come at a time when greater availability of powerful computational resources and growing concerns over the health risks of the ionizing radiation encourage research on image processing algorithms for computed tomography (CT). The goal of this paper is to explain the principles of patch-based methods and to review some of their recent applications in CT. We first review the central concepts in patch-based image processing and explain some of the state-of-the-art algorithms, with a focus on aspects that are more relevant to CT. Then, we review some of the recent application of patch-based methods in CT. Patch-based methods have already transformed the field of image processing, leading to state-of-the-art results in many applications. More recently, several studies have proposed patch-based algorithms for various image processing tasks in CT, from denoising and restoration to iterative reconstruction. Although these studies have reported good results, the true potential of patch-based methods for CT has not been yet appreciated. Patch-based methods can play a central role in image reconstruction and processing for CT. They have the potential to lead to substantial improvements in the current state of the art.

  16. Trace: a high-throughput tomographic reconstruction engine for large-scale datasets

    DOE PAGES

    Bicer, Tekin; Gursoy, Doga; Andrade, Vincent De; ...

    2017-01-28

    Here, synchrotron light source and detector technologies enable scientists to perform advanced experiments. These scientific instruments and experiments produce data at such scale and complexity that large-scale computation is required to unleash their full power. One of the widely used data acquisition technique at light sources is Computed Tomography, which can generate tens of GB/s depending on x-ray range. A large-scale tomographic dataset, such as mouse brain, may require hours of computation time with a medium size workstation. In this paper, we present Trace, a data-intensive computing middleware we developed for implementation and parallelization of iterative tomographic reconstruction algorithms. Tracemore » provides fine-grained reconstruction of tomography datasets using both (thread level) shared memory and (process level) distributed memory parallelization. Trace utilizes a special data structure called replicated reconstruction object to maximize application performance. We also present the optimizations we have done on the replicated reconstruction objects and evaluate them using a shale and a mouse brain sinogram. Our experimental evaluations show that the applied optimizations and parallelization techniques can provide 158x speedup (using 32 compute nodes) over single core configuration, which decreases the reconstruction time of a sinogram (with 4501 projections and 22400 detector resolution) from 12.5 hours to less than 5 minutes per iteration.« less

  17. Trace: a high-throughput tomographic reconstruction engine for large-scale datasets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bicer, Tekin; Gursoy, Doga; Andrade, Vincent De

    Here, synchrotron light source and detector technologies enable scientists to perform advanced experiments. These scientific instruments and experiments produce data at such scale and complexity that large-scale computation is required to unleash their full power. One of the widely used data acquisition technique at light sources is Computed Tomography, which can generate tens of GB/s depending on x-ray range. A large-scale tomographic dataset, such as mouse brain, may require hours of computation time with a medium size workstation. In this paper, we present Trace, a data-intensive computing middleware we developed for implementation and parallelization of iterative tomographic reconstruction algorithms. Tracemore » provides fine-grained reconstruction of tomography datasets using both (thread level) shared memory and (process level) distributed memory parallelization. Trace utilizes a special data structure called replicated reconstruction object to maximize application performance. We also present the optimizations we have done on the replicated reconstruction objects and evaluate them using a shale and a mouse brain sinogram. Our experimental evaluations show that the applied optimizations and parallelization techniques can provide 158x speedup (using 32 compute nodes) over single core configuration, which decreases the reconstruction time of a sinogram (with 4501 projections and 22400 detector resolution) from 12.5 hours to less than 5 minutes per iteration.« less

  18. Evaluation of 3D airway imaging of obstructive sleep apnea with cone-beam computed tomography.

    PubMed

    Ogawa, Takumi; Enciso, Reyes; Memon, Ahmed; Mah, James K; Clark, Glenn T

    2005-01-01

    This study evaluates the use of cone-beam Computer Tomography (CT) for imaging the upper airway structure of Obstructive Sleep Apnea (OSA) patients. The total airway volume and the anteroposterior dimension of oropharyngeal airway showed significant group differences between OSA and gender-matched controls, so if we increase sample size these measurements may distinguish the two groups. We demonstrate the utility of diagnosis of anatomy with the 3D airway imaging with cone-beam Computed Tomography.

  19. White Paper of the Society of Computed Body Tomography and Magnetic Resonance on Dual-Energy CT, Part 1: Technology and Terminology.

    PubMed

    Siegel, Marilyn J; Kaza, Ravi K; Bolus, David N; Boll, Daniel T; Rofsky, Neil M; De Cecco, Carlo N; Foley, W Dennis; Morgan, Desiree E; Schoepf, U Joseph; Sahani, Dushyant V; Shuman, William P; Vrtiska, Terri J; Yeh, Benjamin M; Berland, Lincoln L

    This is the first of a series of 4 white papers that represent Expert Consensus Documents developed by the Society of Computed Body Tomography and Magnetic Resonance through its task force on dual-energy computed tomography (DECT). This article, part 1, describes the fundamentals of the physical basis for DECT and the technology of DECT and proposes uniform nomenclature to account for differences in proprietary terms among manufacturers.

  20. Plain X-ray, computed tomography and magnetic resonance imaging findings of telangiectatic osteosarcoma: a case report

    PubMed Central

    Koutoulidis, Vasilios; Koureas, Andreas; Moulopoulos, Lia; Gouliamos, Athanasios

    2009-01-01

    An 18-year-old male patient presented with chronic nonspecific pain of three months located at his left proximal tibia. The patient was admitted to our department for plain X-ray, computed tomography and magnetic resonance imaging examination. Plain X-ray and computed tomography revealed a geographic lytic lesion at the medial aspect of the proximal tibia. Biopsy of the lesion showed telangiectatic osteosarcoma. Image findings of all modalities are presented. PMID:19918488

  1. Digital retrospective motion-mode display and processing of electron beam cine-computed tomography and other cross-sectional cardiac imaging techniques

    NASA Astrophysics Data System (ADS)

    Reed, Judd E.; Rumberger, John A.; Buithieu, Jean; Behrenbeck, Thomas; Breen, Jerome F.; Sheedy, Patrick F., II

    1995-05-01

    Electron beam computed tomography is unparalleled in its ability to consistently produce high quality dynamic images of the human heart. Its use in quantification of left ventricular dynamics is well established in both clinical and research applications. However, the image analysis tools supplied with the scanners offer a limited number of analysis options. They are based on embedded computer systems which have not been significantly upgraded since the scanner was introduced over a decade ago in spite of the explosive improvements in available computer power which have occured during this period. To address these shortcomings, a workstation-based ventricular analysis system has been developed at our institution. This system, which has been in use for over five years, is based on current workstation technology and therefore has benefited from the periodic upgrades in processor performance available to these systems. The dynamic image segmentation component of this system is an interactively supervised, semi-automatic surface identification and tracking system. It characterizes the endocardial and epicardial surfaces of the left ventricle as two concentric 4D hyper-space polyhedrons. Each of these polyhedrons have nearly ten thousand vertices which are deposited into a relational database. The right ventricle is also processed in a similar manner. This database is queried by other custom components which extract ventricular function parameters such as regional ejection fraction and wall stress. The interactive tool which supervises dynamic image segmentation has been enhanced with a temporal domain display. The operator interactively chooses the spatial location of the endpoints of a line segment while the corresponding space/time image is displayed. These images, with content resembling M-Mode echocardiography, benefit form electron beam computed tomography's high spatial and contrast resolution. The segmented surfaces are displayed along with the imagery. These displays give the operator valuable feedback pertaining to the contiguity of the extracted surfaces. As with M-Mode echocardiography, the velocity of moving structures can be easily visualized and measured. However, many views inaccessible to standard transthoracic echocardiography are easily generated. These features have augmented the interpretability of cine electron beam computed tomography and have prompted the recent cloning of this system into an 'omni-directional M-Mode display' system for use in digital post-processing of echocardiographic parasternal short axis tomograms. This enhances the functional assessment in orthogonal views of the left ventricle, accounting for shape changes particularly in the asymmetric post-infarction ventricle. Conclusions: A new tool has been developed for analysis and visualization of cine electron beam computed tomography. It has been found to be very useful in verifying the consistency of myocardial surface definition with a semi-automated segmentation tool. By drawing on M-Mode echocardiography experience, electron beam tomography's interpretability has been enhanced. Use of this feature, in conjunction with the existing image processing tools, will enhance the presentations of data on regional systolic and diastolic functions to clinicians in a format that is familiar to most cardiologists. Additionally, this tool reinforces the advantages of electron beam tomography as a single imaging modality for the assessment of left and right ventricular size, shape, and regional functions.

  2. Using synchrotron-based X-ray micro-computed tomography and high-performance pore-scale simulation to evaluate hydraulic properties in biochar-amended soils

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Yu, X.; Chen, C.; Zeng, L.; Lu, S.; Wu, L.

    2016-12-01

    In this research, we combined synchrotron-based X-ray micro-computed tomography (SR-mCT), with three-dimensional lattice Bolzmann (LB) method, to quantify how the change in pore space architecture affected macroscopic hydraulic of two clayey soils amended with biochar. SR-mCT was used to characterize pore structures of the soils before and after biochar addition. The high-resolution soil pore structures were then directly used as internal boundary conditions for three-dimensional water flow simulations with the LB method, which was accelerated by graphics processing unit (GPU) parallel computing. It was shown that, due to the changes in soil pore geometry, the application of biochar increased the soil permeability by at least 1 order of magnitude, and decreased the tortuosity by 20-30%. This work was the first physics based modeling study on the effect of biochar amendment on soil hydraulic properties. The developed theories and techniques have promising potential in understanding the mechanisms of water and nutrient transport in soil at the pore scale.

  3. Role of multidetector computed tomography in the diagnosis and management of patients attending the rapid access chest pain clinic, The Scottish computed tomography of the heart (SCOT-HEART) trial: study protocol for randomized controlled trial

    PubMed Central

    2012-01-01

    Background Rapid access chest pain clinics have facilitated the early diagnosis and treatment of patients with coronary heart disease and angina. Despite this important service provision, coronary heart disease continues to be under-diagnosed and many patients are left untreated and at risk. Recent advances in imaging technology have now led to the widespread use of noninvasive computed tomography, which can be used to measure coronary artery calcium scores and perform coronary angiography in one examination. However, this technology has not been robustly evaluated in its application to the clinic. Methods/design The SCOT-HEART study is an open parallel group prospective multicentre randomized controlled trial of 4,138 patients attending the rapid access chest pain clinic for evaluation of suspected cardiac chest pain. Following clinical consultation, participants will be approached and randomized 1:1 to receive standard care or standard care plus ≥64-multidetector computed tomography coronary angiography and coronary calcium score. Randomization will be conducted using a web-based system to ensure allocation concealment and will incorporate minimization. The primary endpoint of the study will be the proportion of patients diagnosed with angina pectoris secondary to coronary heart disease at 6 weeks. Secondary endpoints will include the assessment of subsequent symptoms, diagnosis, investigation and treatment. In addition, long-term health outcomes, safety endpoints, such as radiation dose, and health economic endpoints will be assessed. Assuming a clinic rate of 27.0% for the diagnosis of angina pectoris due to coronary heart disease, we will need to recruit 2,069 patients per group to detect an absolute increase of 4.0% in the rate of diagnosis at 80% power and a two-sided P value of 0.05. The SCOT-HEART study is currently recruiting participants and expects to report in 2014. Discussion This is the first study to look at the implementation of computed tomography in the patient care pathway that is outcome focused. This study will have major implications for the management of patients with cardiovascular disease. Trial registration ClinicalTrials.gov Identifier: NCT01149590 PMID:23036114

  4. Meaning of Interior Tomography

    PubMed Central

    Wang, Ge; Yu, Hengyong

    2013-01-01

    The classic imaging geometry for computed tomography is for collection of un-truncated projections and reconstruction of a global image, with the Fourier transform as the theoretical foundation that is intrinsically non-local. Recently, interior tomography research has led to theoretically exact relationships between localities in the projection and image spaces and practically promising reconstruction algorithms. Initially, interior tomography was developed for x-ray computed tomography. Then, it has been elevated as a general imaging principle. Finally, a novel framework known as “omni-tomography” is being developed for grand fusion of multiple imaging modalities, allowing tomographic synchrony of diversified features. PMID:23912256

  5. Correlation between Preoperative High Resolution Computed Tomography (CT) Findings with Surgical Findings in Chronic Otitis Media (COM) Squamosal Type.

    PubMed

    Karki, S; Pokharel, M; Suwal, S; Poudel, R

    Background The exact role of High resolution computed tomography (HRCT) temporal bone in preoperative assessment of Chronic suppurative otitis media atticoantral disease still remains controversial. Objective To evaluate the role of high resolution computed tomography temporal bone in Chronic suppurative otitis media atticoantral disease and to compare preoperative computed tomographic findings with intra-operative findings. Method Prospective, analytical study conducted among 65 patients with chronic suppurative otitis media atticoantral disease in Department of Radiodiagnosis, Kathmandu University Dhulikhel Hospital between January 2015 to July 2016. The operative findings were compared with results of imaging. The parameters of comparison were erosion of ossicles, scutum, facial canal, lateral semicircular canal, sigmoid and tegmen plate along with extension of disease to sinus tympani and facial recess. Sensitivity, specificity, negative predictive value, positive predictive values were calculated. Result High resolution computed tomography temporal bone offered sensitivity (Se) and specificity (Sp) of 100% for visualization of sigmoid and tegmen plate erosion. The performance of HRCT in detecting malleus (Se=100%, Sp=95.23%), incus (Se=100%,Sp=80.48%) and stapes (Se=96.55%, Sp=71.42%) erosion was excellent. It offered precise information about facial canal erosion (Se=100%, Sp=75%), scutum erosion (Se=100%, Sp=96.87%) and extension of disease to facial recess and sinus tympani (Se=83.33%,Sp=100%). high resolution computed tomography showed specificity of 100% for lateral semicircular canal erosion (Sp=100%) but with low sensitivity (Se=53.84%). Conclusion The findings of high resolution computed tomography and intra-operative findings were well comparable except for lateral semicircular canal erosion. high resolution computed tomography temporal bone acts as a road map for surgeon to identify the extent of disease, plan for appropriate procedure that is required and prepare for potential complications that can be encountered during surgery.

  6. Emerging diagnostic and therapeutic molecular imaging applications in vascular disease

    PubMed Central

    Eraso, Luis H; Reilly, Muredach P; Sehgal, Chandra; Mohler, Emile R

    2013-01-01

    Assessment of vascular disease has evolved from mere indirect and direct measurements of luminal stenosis to sophisticated imaging methods to depict millimeter structural changes of the vasculature. In the near future, the emergence of multimodal molecular imaging strategies may enable robust therapeutic and diagnostic (‘theragnostic’) approaches to vascular diseases that comprehensively consider structural, functional, biological and genomic characteristics of the disease in individualized risk assessment, early diagnosis and delivery of targeted interventions. This review presents a summary of recent preclinical and clinical developments in molecular imaging and theragnostic applications covering diverse atherosclerosis events such as endothelial activation, macrophage infammatory activity, plaque neovascularization and arterial thrombosis. The main focus is on molecular targets designed for imaging platforms commonly used in clinical medicine including magnetic resonance, computed tomography and positron emission tomography. A special emphasis is given to vascular ultrasound applications, considering the important role this imaging platform plays in the clinical and research practice of the vascular medicine specialty. PMID:21310769

  7. Mapping brain function in freely moving subjects

    PubMed Central

    Holschneider, Daniel P.; Maarek, Jean-Michel I.

    2014-01-01

    Expression of many fundamental mammalian behaviors such as, for example, aggression, mating, foraging or social behaviors, depend on locomotor activity. A central dilemma in the functional neuroimaging of these behaviors has been the fact that conventional neuroimaging techniques generally rely on immobilization of the subject, which extinguishes all but the simplest activity. Ideally, imaging could occur in freely moving subjects, while presenting minimal interference with the subject’s natural behavior. Here we provide an overview of several approaches that have been undertaken in the past to achieve this aim in both tethered and freely moving animals, as well as in nonrestrained human subjects. Applications of specific radiotracers to single photon emission computed tomography and positron emission tomography are discussed in which brain activation is imaged after completion of the behavioral task and capture of the tracer. Potential applications to clinical neuropsychiatry are discussed, as well as challenges inherent to constraint-free functional neuroimaging. Future applications of these methods promise to increase our understanding of the neural circuits underlying mammalian behavior in health and disease. PMID:15465134

  8. Theranostic applications of carbon nanomaterials in cancer: Focus on imaging and cargo delivery.

    PubMed

    Chen, Daiqin; Dougherty, Casey A; Zhu, Kaicheng; Hong, Hao

    2015-07-28

    Carbon based nanomaterials have attracted significant attention over the past decades due to their unique physical properties, versatile functionalization chemistry, and biological compatibility. In this review, we will summarize the current state-of-the-art applications of carbon nanomaterials in cancer imaging and drug delivery/therapy. The carbon nanomaterials will be categorized into fullerenes, nanotubes, nanohorns, nanodiamonds, nanodots and graphene derivatives based on their morphologies. The chemical conjugation/functionalization strategies of each category will be introduced before focusing on their applications in cancer imaging (fluorescence/bioluminescence, magnetic resonance (MR), positron emission tomography (PET), single-photon emission computed tomography (SPECT), photoacoustic, Raman imaging, etc.) and cargo (chemo/gene/therapy) delivery. The advantages and limitations of each category and the potential clinical utilization of these carbon nanomaterials will be discussed. Multifunctional carbon nanoplatforms have the potential to serve as optimal candidates for image-guided delivery vectors for cancer. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Construction of three-dimensional tooth model by micro-computed tomography and application for data sharing.

    PubMed

    Kato, A; Ohno, N

    2009-03-01

    The study of dental morphology is essential in terms of phylogeny. Advances in three-dimensional (3D) measurement devices have enabled us to make 3D images of teeth without destruction of samples. However, raw fundamental data on tooth shape requires complex equipment and techniques. An online database of 3D teeth models is therefore indispensable. We aimed to explore the basic methodology for constructing 3D teeth models, with application for data sharing. Geometric information on the human permanent upper left incisor was obtained using micro-computed tomography (micro-CT). Enamel, dentine, and pulp were segmented by thresholding of different gray-scale intensities. Segmented data were separately exported in STereo-Lithography Interface Format (STL). STL data were converted to Wavefront OBJ (OBJect), as many 3D computer graphics programs support the Wavefront OBJ format. Data were also applied to Quick Time Virtual Reality (QTVR) format, which allows the image to be viewed from any direction. In addition to Wavefront OBJ and QTVR data, the original CT series were provided as 16-bit Tag Image File Format (TIFF) images on the website. In conclusion, 3D teeth models were constructed in general-purpose data formats, using micro-CT and commercially available programs. Teeth models that can be used widely would benefit all those who study dental morphology.

  10. Application of Computer-Aided Tomography (CT) Technology to Visually Compare Belowground Components of Salt Marshes in Jamaica Bay and Long Island, New York

    EPA Science Inventory

    Using CT imaging, we found that rapidly deteriorating marshes in Jamaica Bay had significantly less belowground mass and abundance of coarse roots and rhizomes at depth (< 10 cm) compared to more stable areas in the Jamaica Bay Estuary. In addition, the rhizome diameters and pea...

  11. Clinical application of three-dimensional reconstruction and rapid prototyping technology of multislice spiral computed tomography angiography for the repair of ventricular septal defect of tetralogy of Fallot.

    PubMed

    Ma, X J; Tao, L; Chen, X; Li, W; Peng, Z Y; Chen, Y; Jin, J; Zhang, X L; Xiong, Q F; Zhong, Z L; Chen, X F

    2015-02-13

    Three-dimensional (3D) reconstruction and rapid prototyping technology (RPT) of multislice spiral computed tomography angiography (CTA) was applied to prepare physical models of the heart and ventricular septal defects of tetralogy of Fallot (ToF) patients in order to explore their applications in the diagnosis and treatment of this complex heart disease. CTA data of 35 ToF patients were collected to prepare l:l 3D solid models using digital 3D reconstruction and RPT, and the resultant models were used intraoperatively as reference. The operations of all 35 patients were completed under the guidance of the 3D solid model, without difficulty. Intraoperative findings of the patients were consistent with the morphological and size changes of the 3D solid model, and no significant differences were found between the patches obtained from the 3D solid model and the actual intraoperative measurements (t = 0.83, P = 0.412). 3D reconstruction and RPT of multislice spiral CTA can accurately and intuitively reflect the anatomy of ventricular septal defects in ToF patients, providing the foundation for a solid model of the complex congenital heart.

  12. Creating vascular models by postprocessing computed tomography angiography images: a guide for anatomical education.

    PubMed

    Govsa, Figen; Ozer, Mehmet Asim; Sirinturk, Suzan; Eraslan, Cenk; Alagoz, Ahmet Kemal

    2017-08-01

    A new application of teaching anatomy includes the use of computed tomography angiography (CTA) images to create clinically relevant three-dimensional (3D) printed models. The purpose of this article is to review recent innovations on the process and the application of 3D printed models as a tool for using under and post-graduate medical education. Images of aortic arch pattern received by CTA were converted into 3D images using the Google SketchUp free software and were saved in stereolithography format. Using a 3D printer (Makerbot), a model mode polylactic acid material was printed. A two-vessel left aortic arch was identified consisting of the brachiocephalic trunk and left subclavian artery. The life-like 3D models were rotated 360° in all axes in hand. The early adopters in education and clinical practices have embraced the medical imaging-guided 3D printed anatomical models for their ability to provide tactile feedback and a superior appreciation of visuospatial relationship between the anatomical structures. Printed vascular models are used to assist in preoperative planning, develop intraoperative guidance tools, and to teach patients surgical trainees in surgical practice.

  13. The application of computed tomography in wound ballistics research

    NASA Astrophysics Data System (ADS)

    Tsiatis, Nick; Moraitis, Konstantinos; Papadodima, Stavroula; Spiliopoulou, Chara; Kelekis, Alexis; Kelesis, Christos; Efstathopoulos, Efstathios; Kordolaimi, Sofia; Ploussi, Agapi

    2015-09-01

    In wound ballistics research there is a relationship between the data that characterize a bullet and the injury resulted after shooting when it perforates the human body. The bullet path in the human body following skin perforation as well as the damaging effect cannot always be predictable as they depend on various factors such as the bullet's characteristics (velocity, distance, type of firearm and so on) and the tissue types that the bullet passes through. The purpose of this presentation is to highlight the contribution of Computed Tomography (CT) in wound ballistics research. Using CT technology and studying virtual “slices” of specific areas on scanned human bodies, allows the evaluation of density and thickness of the skin, the subcutaneous tissue, the muscles, the vital organs and the bones. Density data taken from Hounsfield units can be converted in g/ml by using the appropriate software. By evaluating the results of this study, the anatomy of the human body utilizing ballistic gel will be reproduced in order to simulate the path that a bullet follows. The biophysical analysis in wound ballistics provides another application of CT technology, which is commonly used for diagnostic and therapeutic purposes in various medical disciplines.

  14. Analysis of computer images in the presence of metals

    NASA Astrophysics Data System (ADS)

    Buzmakov, Alexey; Ingacheva, Anastasia; Prun, Victor; Nikolaev, Dmitry; Chukalina, Marina; Ferrero, Claudio; Asadchikov, Victor

    2018-04-01

    Artifacts caused by intensely absorbing inclusions are encountered in computed tomography via polychromatic scanning and may obscure or simulate pathologies in medical applications. To improve the quality of reconstruction if high-Z inclusions in presence, previously we proposed and tested with synthetic data an iterative technique with soft penalty mimicking linear inequalities on the photon-starved rays. This note reports a test at the tomographic laboratory set-up at the Institute of Crystallography FSRC "Crystallography and Photonics" RAS in which tomographic scans were successfully made of temporary tooth without inclusion and with Pb inclusion.

  15. Trails on 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Leading to Diagnosis of Testicular Adrenal Rest Tumor.

    PubMed

    Kashyap, Raghava

    2018-01-01

    Testicular adrenal rest tumors (TARTs) are secondary to hypertrophy of adrenal rest cells in the rete testis in settings of hypersecretion of androgens. We present a case of congenital adrenal hyperplasia with TART with clues to the diagnosis on 18 F-fluorodeoxyglucose positron emission tomography/computed tomography ( 18 F-FDG PET/CT). To the best of our knowledge, this is the first reported case on the role of 18 F-FDG PET/CT in TART.

  16. Pleuroperitoneal Mesothelioma: A Rare Entity on 18F-FDG PET/CT

    PubMed Central

    Sahoo, Manas Kumar; Mukherjee, Anirban; Girish; Parida, Kumar; Agarwal, Krishan Kant; Bal, Chandrasekhar; Tripathi, Madhavi; Das, Chandan Jyoti; Shamim, Shamim Ahmed

    2017-01-01

    Pleuroperitoneal mesothelioma is an extremely rare entity. Only few cases are reported worldwide. We hereby represent a case of pleural mesothelioma referred for F-18-Fluorodeoxyglucose positron emission tomography/computed tomography for response evaluation. Diffuse F-18-Fluorodeoxyglucose avid peritoneal and omental thickening noted which subsequently turned out to be mesothelial involvement on peritoneal biopsy. This case demonstrates the role of F-18-Fluorodeoxyglucose positron emission tomography/computed tomography in detecting other sites of involvement in case of malignant mesothelioma. PMID:28242997

  17. Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography in Disseminated Cryptococcosis.

    PubMed

    Tripathy, Sarthak; Parida, Girish Kumar; Roy, Shambo Guha; Singhal, Abhinav; Mallick, Saumya Ranjan; Tripathi, Madhavi; Shamim, Shamim Ahmed

    2017-01-01

    Disseminated cryptococcosis without pulmonary involvement is a very rare phenomenon. Patterns of organ involvement in cryptococcosis resemble various other infective conditions as well as malignant conditions on fluorodeoxyglucose positron emission tomography-computed tomography. We present a case of a 43-year-old male patient who had disseminated cryptococcosis. The rarity of the case being noninvolvement of lungs and meninges and resembling more like lymphoma due to the diffuse involvement of the lymph nodes on both sides of the diaphragm.

  18. CT Perfusion of the Head

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z CT Perfusion of the Head Computed tomography (CT) perfusion ... of CT Perfusion of the Head? What is CT Perfusion of the Head? Computed tomography (CT) perfusion ...

  19. Imaging and modeling of flow in porous media using clinical nuclear emission tomography systems and computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Boutchko, Rostyslav; Rayz, Vitaliy L.; Vandehey, Nicholas T.; O'Neil, James P.; Budinger, Thomas F.; Nico, Peter S.; Druhan, Jennifer L.; Saloner, David A.; Gullberg, Grant T.; Moses, William W.

    2012-01-01

    This paper presents experimental and modeling aspects of applying nuclear emission tomography to study fluid flow in laboratory packed porous media columns of the type frequently used in geophysics, geochemistry and hydrology research. Positron emission tomography (PET) and single photon emission computed tomography (SPECT) are used as non-invasive tools to obtain dynamic 3D images of radioactive tracer concentrations. Dynamic sequences obtained using 18F-FDG PET are used to trace flow through a 5 cm diameter × 20 cm tall sand packed column with and without an impermeable obstacle. In addition, a custom-made rotating column setup placed in a clinical two-headed SPECT camera is used to image 99mTc-DTPA tracer propagation in a through-flowing column (10 cm diameter × 30 cm tall) packed with recovered aquifer sediments. A computational fluid dynamics software package FLUENT is used to model the observed flow dynamics. Tracer distributions obtained in the simulations in the smaller column uniformly packed with sand and in the column with an obstacle are remarkably similar to the reconstructed images in the PET experiments. SPECT results demonstrate strongly non-uniform flow patterns for the larger column slurry-packed with sub-surface sediment and slow upward flow. In the numerical simulation of the SPECT study, two symmetric channels with increased permeability are prescribed along the column walls, which result in the emergence of two well-defined preferential flow paths. Methods and results of this work provide new opportunities in hydrologic and biogeochemical research. The primary target application for developed technologies is non-destructive, non-perturbing, quantitative imaging of flow dynamics within laboratory scale porous media systems.

  20. Imaging and modeling of flow in porous media using clinical nuclear emission tomography systems and computational fluid dynamics.

    PubMed

    Boutchko, Rostyslav; Rayz, Vitaliy L; Vandehey, Nicholas T; O'Neil, James P; Budinger, Thomas F; Nico, Peter S; Druhan, Jennifer L; Saloner, David A; Gullberg, Grant T; Moses, William W

    2012-01-01

    This paper presents experimental and modeling aspects of applying nuclear emission tomography to study fluid flow in laboratory packed porous media columns of the type frequently used in geophysics, geochemistry and hydrology research. Positron emission tomography (PET) and single photon emission computed tomography (SPECT) are used as non-invasive tools to obtain dynamic 3D images of radioactive tracer concentrations. Dynamic sequences obtained using 18 F-FDG PET are used to trace flow through a 5 cm diameter × 20 cm tall sand packed column with and without an impermeable obstacle. In addition, a custom-made rotating column setup placed in a clinical two-headed SPECT camera is used to image 99m Tc-DTPA tracer propagation in a through-flowing column (10 cm diameter × 30 cm tall) packed with recovered aquifer sediments. A computational fluid dynamics software package FLUENT is used to model the observed flow dynamics. Tracer distributions obtained in the simulations in the smaller column uniformly packed with sand and in the column with an obstacle are remarkably similar to the reconstructed images in the PET experiments. SPECT results demonstrate strongly non-uniform flow patterns for the larger column slurry-packed with sub-surface sediment and slow upward flow. In the numerical simulation of the SPECT study, two symmetric channels with increased permeability are prescribed along the column walls, which result in the emergence of two well-defined preferential flow paths. Methods and results of this work provide new opportunities in hydrologic and biogeochemical research. The primary target application for developed technologies is non-destructive, non-perturbing, quantitative imaging of flow dynamics within laboratory scale porous media systems.

  1. Quantification of pericardial effusions by echocardiography and computed tomography.

    PubMed

    Leibowitz, David; Perlman, Gidon; Planer, David; Gilon, Dan; Berman, Philip; Bogot, Naama

    2011-01-15

    Echocardiography is a well-accepted tool for the diagnosis and quantification of pericardial effusion (PEff). Given the increasing use of computed tomographic (CT) scanning, more PEffs are being initially diagnosed by computed tomography. No study has compared quantification of PEff by computed tomography and echocardiography. The objective of this study was to assess the accuracy of quantification of PEff by 2-dimensional echocardiography and computed tomography compared to the amount of pericardial fluid drained at pericardiocentesis. We retrospectively reviewed an institutional database to identify patients who underwent chest computed tomography and echocardiography before percutaneous pericardiocentesis with documentation of the amount of fluid withdrawn. Digital 2-dimensional echocardiographic and CT images were retrieved and quantification of PEff volume was performed by applying the formula for the volume of a prolate ellipse, π × 4/3 × maximal long-axis dimension/2 × maximal transverse dimension/2 × maximal anteroposterior dimension/2, to the pericardial sac and to the heart. Nineteen patients meeting study qualifications were entered into the study. The amount of PEff drained was 200 to 1,700 ml (mean 674 ± 340). Echocardiographically calculated pericardial effusion volume correlated relatively well with PEff volume (r = 0.73, p <0.001, mean difference -41 ± 225 ml). There was only moderate correlation between CT volume quantification and actual volume drained (r = 0.4, p = 0.004, mean difference 158 ± 379 ml). In conclusion, echocardiography appears a more accurate imaging technique than computed tomography in quantitative assessment of nonloculated PEffs and should continue to be the primary imaging in these patients. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Novel Application of Quantitative Single-Photon Emission Computed Tomography/Computed Tomography to Predict Early Response to Methimazole in Graves' Disease

    PubMed Central

    Kim, Hyun Joo; Bang, Ji-In; Kim, Ji-Young; Moon, Jae Hoon; So, Young

    2017-01-01

    Objective Since Graves' disease (GD) is resistant to antithyroid drugs (ATDs), an accurate quantitative thyroid function measurement is required for the prediction of early responses to ATD. Quantitative parameters derived from the novel technology, single-photon emission computed tomography/computed tomography (SPECT/CT), were investigated for the prediction of achievement of euthyroidism after methimazole (MMI) treatment in GD. Materials and Methods A total of 36 GD patients (10 males, 26 females; mean age, 45.3 ± 13.8 years) were enrolled for this study, from April 2015 to January 2016. They underwent quantitative thyroid SPECT/CT 20 minutes post-injection of 99mTc-pertechnetate (5 mCi). Association between the time to biochemical euthyroidism after MMI treatment and %uptake, standardized uptake value (SUV), functional thyroid mass (SUVmean × thyroid volume) from the SPECT/CT, and clinical/biochemical variables, were investigated. Results GD patients had a significantly greater %uptake (6.9 ± 6.4%) than historical control euthyroid patients (n = 20, 0.8 ± 0.5%, p < 0.001) from the same quantitative SPECT/CT protocol. Euthyroidism was achieved in 14 patients at 156 ± 62 days post-MMI treatment, but 22 patients had still not achieved euthyroidism by the last follow-up time-point (208 ± 80 days). In the univariate Cox regression analysis, the initial MMI dose (p = 0.014), %uptake (p = 0.015), and functional thyroid mass (p = 0.016) were significant predictors of euthyroidism in response to MMI treatment. However, only %uptake remained significant in a multivariate Cox regression analysis (p = 0.034). A %uptake cutoff of 5.0% dichotomized the faster responding versus the slower responding GD patients (p = 0.006). Conclusion A novel parameter of thyroid %uptake from quantitative SPECT/CT is a predictive indicator of an early response to MMI in GD patients. PMID:28458607

  3. [Computed tomography semiotics of osteonecrosis and sequestration in chronic hematogenic osteomyelitis].

    PubMed

    D'iachkova, G V; Mitina, Iu L

    2007-01-01

    Based on the data of computed tomography, radiography and densitometry in 39 patients the authors describe in detail the signs of osteonecrosis and sequestration of different localization and extension.

  4. Pelvic CT scan

    MedlinePlus

    CAT scan - pelvis; Computed axial tomography scan - pelvis; Computed tomography scan - pelvis; CT scan - pelvis ... Risks of CT scans include: Being exposed to radiation Allergic reaction to contrast dye CT scans do expose you to more radiation ...

  5. Lumbar spine CT scan

    MedlinePlus

    CAT scan - lumbar spine; Computed axial tomography scan - lumbar spine; Computed tomography scan - lumbar spine; CT - lower back ... CT scans rapidly makes detailed pictures of the lower back. The test may be used to look for: ...

  6. Shoulder CT scan

    MedlinePlus

    CAT scan - shoulder; Computed axial tomography scan - shoulder; Computed tomography scan - shoulder; CT scan - shoulder ... Risks of CT scans include: Being exposed to radiation Allergic reaction to contrast dye Birth defect if done during pregnancy CT scans ...

  7. Comparison of radiological and morphologic assessments of myocardial bridges.

    PubMed

    Ercakmak, Burcu; Bulut, Elif; Hayran, Mutlu; Kaymaz, Figen; Bilgin, Selma; Hazirolan, Tuncay; Bayramoglu, Alp; Erbil, Mine

    2015-09-01

    In this study we aimed to compare the findings of coronary dual-source computed tomography angiography of myocardial bridges with cadaveric dissections. Forty-one isolated, non-damaged fresh sheep hearts were used in this study. Myocardial bridges of the anterior interventricular branch of the left coronary artery were demonstrated and analyzed by a coronary dual-source computed tomography angiography. Dissections along the left anterior interventricular branch of the left coronary artery were performed by using Zeiss OPMI pico microscope and the length of the bridges were measured. The depths of the myocardial bridges were measured from the stained sections by using the light microscope (Leica DM 6000B). MBs were found in all 41 hearts (100%) during dissections. Dual-source computed tomography angiography successfully detected 87.8% (36 of the 41 hearts) of the myocardial bridges measured on left anterior interventricular branch of left coronary artery. The lengths of the myocardial bridges were found 5-40 and 8-50 mm with dissection and dual-source computed tomography angiography, respectively. And the depths were found 0.7-4.5 mm by dual-source computed tomography angiography and 0.745-4.632 mm morphologically. Comparison of the mean values of the lengths showed statistically significantly higher values (22.0 ± 8.5, 17.7 ± 7.7 mm, p = 0.003) for the dissections. Radiological assessment also effectively discriminated complete bridges from incomplete ones. Our study showed that coronary computed tomography angiography is reliable in evaluating the presence and depth of myocardial bridges.

  8. Computer-aided endovascular aortic repair using fully automated two- and three-dimensional fusion imaging.

    PubMed

    Panuccio, Giuseppe; Torsello, Giovanni Federico; Pfister, Markus; Bisdas, Theodosios; Bosiers, Michel J; Torsello, Giovanni; Austermann, Martin

    2016-12-01

    To assess the usability of a fully automated fusion imaging engine prototype, matching preinterventional computed tomography with intraoperative fluoroscopic angiography during endovascular aortic repair. From June 2014 to February 2015, all patients treated electively for abdominal and thoracoabdominal aneurysms were enrolled prospectively. Before each procedure, preoperative planning was performed with a fully automated fusion engine prototype based on computed tomography angiography, creating a mesh model of the aorta. In a second step, this three-dimensional dataset was registered with the two-dimensional intraoperative fluoroscopy. The main outcome measure was the applicability of the fully automated fusion engine. Secondary outcomes were freedom from failure of automatic segmentation or of the automatic registration as well as accuracy of the mesh model, measuring deviations from intraoperative angiography in millimeters, if applicable. Twenty-five patients were enrolled in this study. The fusion imaging engine could be used in successfully 92% of the cases (n = 23). Freedom from failure of automatic segmentation was 44% (n = 11). The freedom from failure of the automatic registration was 76% (n = 19), the median error of the automatic registration process was 0 mm (interquartile range, 0-5 mm). The fully automated fusion imaging engine was found to be applicable in most cases, albeit in several cases a fully automated data processing was not possible, requiring manual intervention. The accuracy of the automatic registration yielded excellent results and promises a useful and simple to use technology. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  9. A general method for motion compensation in x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Biguri, Ander; Dosanjh, Manjit; Hancock, Steven; Soleimani, Manuchehr

    2017-08-01

    Motion during data acquisition is a known source of error in medical tomography, resulting in blur artefacts in the regions that move. It is critical to reduce these artefacts in applications such as image-guided radiation therapy as a clearer image translates into a more accurate treatment and the sparing of healthy tissue close to a tumour site. Most research in 4D x-ray tomography involving the thorax relies on respiratory phase binning of the acquired data and reconstructing each of a set of images using the limited subset of data per phase. In this work, we demonstrate a motion-compensation method to reconstruct images from the complete dataset taken during breathing without recourse to phase-binning or breath-hold techniques. As long as the motion is sufficiently well known, the new method can accurately reconstruct an image at any time during the acquisition time span. It can be applied to any iterative reconstruction algorithm.

  10. Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems.

    PubMed

    Vaquero, Juan José; Kinahan, Paul

    2015-01-01

    Positron emission tomography (PET) imaging is based on detecting two time-coincident high-energy photons from the emission of a positron-emitting radioisotope. The physics of the emission, and the detection of the coincident photons, give PET imaging unique capabilities for both very high sensitivity and accurate estimation of the in vivo concentration of the radiotracer. PET imaging has been widely adopted as an important clinical modality for oncological, cardiovascular, and neurological applications. PET imaging has also become an important tool in preclinical studies, particularly for investigating murine models of disease and other small-animal models. However, there are several challenges to using PET imaging systems. These include the fundamental trade-offs between resolution and noise, the quantitative accuracy of the measurements, and integration with X-ray computed tomography and magnetic resonance imaging. In this article, we review how researchers and industry are addressing these challenges.

  11. Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems

    PubMed Central

    Vaquero, Juan José; Kinahan, Paul

    2017-01-01

    Positron emission tomography (PET) imaging is based on detecting two time-coincident high-energy photons from the emission of a positron-emitting radioisotope. The physics of the emission, and the detection of the coincident photons, give PET imaging unique capabilities for both very high sensitivity and accurate estimation of the in vivo concentration of the radiotracer. PET imaging has been widely adopted as an important clinical modality for oncological, cardiovascular, and neurological applications. PET imaging has also become an important tool in preclinical studies, particularly for investigating murine models of disease and other small-animal models. However, there are several challenges to using PET imaging systems. These include the fundamental trade-offs between resolution and noise, the quantitative accuracy of the measurements, and integration with X-ray computed tomography and magnetic resonance imaging. In this article, we review how researchers and industry are addressing these challenges. PMID:26643024

  12. A general method for motion compensation in x-ray computed tomography.

    PubMed

    Biguri, Ander; Dosanjh, Manjit; Hancock, Steven; Soleimani, Manuchehr

    2017-07-24

    Motion during data acquisition is a known source of error in medical tomography, resulting in blur artefacts in the regions that move. It is critical to reduce these artefacts in applications such as image-guided radiation therapy as a clearer image translates into a more accurate treatment and the sparing of healthy tissue close to a tumour site. Most research in 4D x-ray tomography involving the thorax relies on respiratory phase binning of the acquired data and reconstructing each of a set of images using the limited subset of data per phase. In this work, we demonstrate a motion-compensation method to reconstruct images from the complete dataset taken during breathing without recourse to phase-binning or breath-hold techniques. As long as the motion is sufficiently well known, the new method can accurately reconstruct an image at any time during the acquisition time span. It can be applied to any iterative reconstruction algorithm.

  13. How to design PET experiments to study neurochemistry: application to alcoholism.

    PubMed

    Morris, Evan D; Lucas, Molly V; Petrulli, J Ryan; Cosgrove, Kelly P

    2014-03-01

    Positron Emission Tomography (PET) (and the related Single Photon Emission Computed Tomography) is a powerful imaging tool with a molecular specificity and sensitivity that are unique among imaging modalities. PET excels in the study of neurochemistry in three ways: 1) It can detect and quantify neuroreceptor molecules; 2) it can detect and quantify changes in neurotransmitters; and 3) it can detect and quantify exogenous drugs delivered to the brain. To carry out any of these applications, the user must harness the power of kinetic modeling. Further, the quality of the information gained is only as good as the soundness of the experimental design. This article reviews the concepts behind the three main uses of PET, the rationale behind kinetic modeling of PET data, and some of the key considerations when planning a PET experiment. Finally, some examples of PET imaging related to the study of alcoholism are discussed and critiqued.

  14. Segmenting Images for a Better Diagnosis

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA's Hierarchical Segmentation (HSEG) software has been adapted by Bartron Medical Imaging, LLC, for use in segmentation feature extraction, pattern recognition, and classification of medical images. Bartron acquired licenses from NASA Goddard Space Flight Center for application of the HSEG concept to medical imaging, from the California Institute of Technology/Jet Propulsion Laboratory to incorporate pattern-matching software, and from Kennedy Space Center for data-mining and edge-detection programs. The Med-Seg[TM] united developed by Bartron provides improved diagnoses for a wide range of medical images, including computed tomography scans, positron emission tomography scans, magnetic resonance imaging, ultrasound, digitized Z-ray, digitized mammography, dental X-ray, soft tissue analysis, and moving object analysis. It also can be used in analysis of soft-tissue slides. Bartron's future plans include the application of HSEG technology to drug development. NASA is advancing it's HSEG software to learn more about the Earth's magnetosphere.

  15. Shape-based ultrasound tomography using a Born model with application to high intensity focused ultrasound therapy.

    PubMed

    Ulker Karbeyaz, Başak; Miller, Eric L; Cleveland, Robin O

    2008-05-01

    A shaped-based ultrasound tomography method is proposed to reconstruct ellipsoidal objects using a linearized scattering model. The method is motivated by the desire to detect the presence of lesions created by high intensity focused ultrasound (HIFU) in applications of cancer therapy. The computational size and limited view nature of the relevant three-dimensional inverse problem renders impractical the use of traditional pixel-based reconstruction methods. However, by employing a shape-based parametrization it is only necessary to estimate a small number of unknowns describing the geometry of the lesion, in this paper assumed to be ellipsoidal. The details of the shape-based nonlinear inversion method are provided. Results obtained from a commercial ultrasound scanner and a tissue phantom containing a HIFU-like lesion demonstrate the feasibility of the approach where a 20 mm x 5 mm x 6 mm ellipsoidal inclusion was detected with an accuracy of around 5%.

  16. How to Design PET Experiments to Study Neurochemistry: Application to Alcoholism

    PubMed Central

    Morris, Evan D.; Lucas, Molly V.; Petrulli, J. Ryan; Cosgrove, Kelly P.

    2014-01-01

    Positron Emission Tomography (PET) (and the related Single Photon Emission Computed Tomography) is a powerful imaging tool with a molecular specificity and sensitivity that are unique among imaging modalities. PET excels in the study of neurochemistry in three ways: 1) It can detect and quantify neuroreceptor molecules; 2) it can detect and quantify changes in neurotransmitters; and 3) it can detect and quantify exogenous drugs delivered to the brain. To carry out any of these applications, the user must harness the power of kinetic modeling. Further, the quality of the information gained is only as good as the soundness of the experimental design. This article reviews the concepts behind the three main uses of PET, the rationale behind kinetic modeling of PET data, and some of the key considerations when planning a PET experiment. Finally, some examples of PET imaging related to the study of alcoholism are discussed and critiqued. PMID:24600335

  17. Soft Tissue Structure Modelling for Use in Orthopaedic Applications and Musculoskeletal Biomechanics

    NASA Astrophysics Data System (ADS)

    Audenaert, E. A.; Mahieu, P.; van Hoof, T.; Pattyn, C.

    2009-12-01

    We present our methodology for the three-dimensional anatomical and geometrical description of soft tissues, relevant for orthopaedic surgical applications and musculoskeletal biomechanics. The technique involves the segmentation and geometrical description of muscles and neurovascular structures from high-resolution computer tomography scanning for the reconstruction of generic anatomical models. These models can be used for quantitative interpretation of anatomical and biomechanical aspects of different soft tissue structures. This approach should allow the use of these data in other application fields, such as musculoskeletal modelling, simulations for radiation therapy, and databases for use in minimally invasive, navigated and robotic surgery.

  18. Sinus CT scan

    MedlinePlus

    CAT scan - sinus; Computed axial tomography scan - sinus; Computed tomography scan - sinus; CT scan - sinus ... Risks for a CT scan includes: Being exposed to radiation Allergic reaction to contrast dye CT scans expose you to more radiation than regular ...

  19. Brain PET scan

    MedlinePlus

    ... tissues are working. Other imaging tests, such as magnetic resonance imaging ( MRI ) and computed tomography ( CT ) scans only reveal ... M, Hellwig S, Kloppel S, Weiller C. Functional neuroimaging: functional magnetic resonance imaging, positron emission tomography, and single-photon emission computed ...

  20. Cyst-Like Osteolytic Formations in Recombinant Human Bone Morphogenetic Protein-2 (rhBMP-2) Augmented Sheep Spinal Fusion.

    PubMed

    Pan, Hsin Chuan; Lee, Soonchul; Ting, Kang; Shen, Jia; Wang, Chenchao; Nguyen, Alan; Berthiaume, Emily A; Zara, Janette N; Turner, A Simon; Seim, Howard B; Kwak, Jin Hee; Zhang, Xinli; Soo, Chia

    2017-07-01

    Multiple case reports using recombinant human bone morphogenetic protein-2 (rhBMP-2) have reported complications. However, the local adverse effects of rhBMP-2 application are not well documented. In this report we show that, in addition to promoting lumbar spinal fusion through potent osteogenic effects, rhBMP-2 augmentation promotes local cyst-like osteolytic formations in sheep trabecular bones that have undergone anterior lumbar interbody fusion. Three months after operation, conventional computed tomography showed that the trabecular bones of the rhBMP-2 application groups could fuse, whereas no fusion was observed in the control group. Micro-computed tomography analysis revealed that the core implant area's bone volume fraction and bone mineral density increased proportionately with rhBMP-2 dose. Multiple cyst-like bone voids were observed in peri-implant areas when using rhBMP-2 applications, and these sites showed significant bone mineral density decreases in relation to the unaffected regions. Biomechanically, these areas decreased in strength by 32% in comparison with noncystic areas. Histologically, rhBMP-2-affected void sites had an increased amount of fatty marrow, thinner trabecular bones, and significantly more adiponectin- and cathepsin K-positive cells. Despite promoting successful fusion, rhBMP-2 use in clinical applications may result in local adverse structural alterations and compromised biomechanical changes to the bone. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  1. Use of Computed Tomography for Characterizing Materials Grown Terrestrially and in Microgravity

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Engel, H. Peter

    2003-01-01

    Computed Tomography (CT) has advanced considerably since being responsible for such dramatic advances in diagnostics within the medical field. It has become a major tool in non destructive evaluation (NDE), and is used in many fields as diverse as coal-mining to metal solidification to examination of rock cores. A review of industrial applications has been written by Dennis. It is only recently that the technique has been seriously used to determine composition through precise measurement of density. While such applications are restricted to cases when there is no ambiguity in the relationship of composition to density. Thus alloy solid solutions lend themselves to compositional analysis provided there is a large change in density with composition. The technique is most useful when rapid non-destructive evaluation is needed. Such cases will occur with samples returning from the International Space Station (ISS) when knowledge of the results could affect future strategies for processing of on-board samples. Experiments from those Principal Investigators (PI) that are most likely to benefit from early CT scanning are discussed. With a dearth of samples, the major emphasis in the first part of this project has been on preparing suitable standards, optimizing the CT technique for these applications, and using the CT system to determine density variations with temperature. An interesting application of CT has been in the examination of meteorites, which can be classified as space-grown materials and will certainly have solidified in a low gravity environment.

  2. Data analysis in emission tomography using emission-count posteriors

    NASA Astrophysics Data System (ADS)

    Sitek, Arkadiusz

    2012-11-01

    A novel approach to the analysis of emission tomography data using the posterior probability of the number of emissions per voxel (emission count) conditioned on acquired tomographic data is explored. The posterior is derived from the prior and the Poisson likelihood of the emission-count data by marginalizing voxel activities. Based on emission-count posteriors, examples of Bayesian analysis including estimation and classification tasks in emission tomography are provided. The application of the method to computer simulations of 2D tomography is demonstrated. In particular, the minimum-mean-square-error point estimator of the emission count is demonstrated. The process of finding this estimator can be considered as a tomographic image reconstruction technique since the estimates of the number of emissions per voxel divided by voxel sensitivities and acquisition time are the estimates of the voxel activities. As an example of a classification task, a hypothesis stating that some region of interest (ROI) emitted at least or at most r-times the number of events in some other ROI is tested. The ROIs are specified by the user. The analysis described in this work provides new quantitative statistical measures that can be used in decision making in diagnostic imaging using emission tomography.

  3. Microstructure of cotton fibrous assemblies based on computed tomography

    NASA Astrophysics Data System (ADS)

    Jing, Hui; Yu, Weidong

    2017-12-01

    This paper describes for the first time the analysis of inner microstructure of cotton fibrous assemblies using computed tomography. Microstructure parameters such as packing density, fractal dimension as well as porosity including open porosity, closed porosity and total porosity are calculated based on 2D data from computed tomography. Values of packing density and fractal dimension are stable in random oriented fibrous assemblies, and there exists a satisfactory approximate linear relationship between them. Moreover, poles analysis indicates that porosity represents the tightness of fibrous assemblies and open poles are main existence.

  4. The use of iohexol as oral contrast for computed tomography of the abdomen and pelvis.

    PubMed

    Horton, Karen M; Fishman, Elliot K; Gayler, Bob

    2008-01-01

    Positive oral contrast agents (high-osmolar iodinated solutions [high-osmolar contrast medium] or barium sulfate suspensions) are used routinely for abdominal computed tomography. However, these agents are not ideal. Patients complain about the taste and, sometimes, refuse to drink the required quantity. Nausea, vomiting, and diarrhea are frequent. In certain clinical indications, either barium suspensions or high-osmolar contrast mediums may be contraindicated. This technical note describes the potential advantages of using low-osmolar iodinated solutions as an oral contrast agent for computed tomography.

  5. Phase-contrast x-ray computed tomography for observing biological specimens and organic materials

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji

    1995-02-01

    A novel three-dimensional x-ray imaging method has been developed by combining a phase-contrast x-ray imaging technique with x-ray computed tomography. This phase-contrast x-ray computed tomography (PCX-CT) provides sectional images of organic specimens that would produce absorption-contrast x-ray CT images with little contrast. Comparing PCX-CT images of rat cerebellum and cancerous rabbit liver specimens with corresponding absorption-contrast CT images shows that PCX-CT is much more sensitive to the internal structure of organic specimens.

  6. Application of digital diagnostic impression, virtual planning, and computer-guided implant surgery for a CAD/CAM-fabricated, implant-supported fixed dental prosthesis: a clinical report.

    PubMed

    Stapleton, Brandon M; Lin, Wei-Shao; Ntounis, Athanasios; Harris, Bryan T; Morton, Dean

    2014-09-01

    This clinical report demonstrated the use of an implant-supported fixed dental prosthesis fabricated with a contemporary digital approach. The digital diagnostic data acquisition was completed with a digital diagnostic impression with an intraoral scanner and cone-beam computed tomography with a prefabricated universal radiographic template to design a virtual prosthetically driven implant surgical plan. A surgical template fabricated with computer-aided design and computer-aided manufacturing (CAD/CAM) was used to perform computer-guided implant surgery. The definitive digital data were then used to design the definitive CAD/CAM-fabricated fixed dental prosthesis. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  7. Contours identification of elements in a cone beam computed tomography for investigating maxillary cysts

    NASA Astrophysics Data System (ADS)

    Chioran, Doina; Nicoarǎ, Adrian; Roşu, Şerban; Cǎrligeriu, Virgil; Ianeş, Emilia

    2013-10-01

    Digital processing of two-dimensional cone beam computer tomography slicesstarts by identification of the contour of elements within. This paper deals with the collective work of specialists in medicine and applied mathematics in computer science on elaborating and implementation of algorithms in dental 2D imagery.

  8. Neuroanatomy of cranial computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kretschmann, H.J.; Weinrich, W.

    1985-01-01

    Based on the fundamental structures visualized by means of computed tomography, the authors present the functional systems which are relevant in neurology by means of axial cross-sections. All drawings were prepared from original preparations by means of a new technique which is similar to the grey values of X-ray CT and nuclear magnetic resonance tomography. A detailed description is given of the topics of neurofunctional lesions.

  9. Frozen Gaussian approximation for 3D seismic tomography

    NASA Astrophysics Data System (ADS)

    Chai, Lihui; Tong, Ping; Yang, Xu

    2018-05-01

    Three-dimensional (3D) wave-equation-based seismic tomography is computationally challenging in large scales and high-frequency regime. In this paper, we apply the frozen Gaussian approximation (FGA) method to compute 3D sensitivity kernels and seismic tomography of high-frequency. Rather than standard ray theory used in seismic inversion (e.g. Kirchhoff migration and Gaussian beam migration), FGA is used to compute the 3D high-frequency sensitivity kernels for travel-time or full waveform inversions. Specifically, we reformulate the equations of the forward and adjoint wavefields for the purpose of convenience to apply FGA, and with this reformulation, one can efficiently compute the Green’s functions whose convolutions with source time function produce wavefields needed for the construction of 3D kernels. Moreover, a fast summation method is proposed based on local fast Fourier transform which greatly improves the speed of reconstruction as the last step of FGA algorithm. We apply FGA to both the travel-time adjoint tomography and full waveform inversion (FWI) on synthetic crosswell seismic data with dominant frequencies as high as those of real crosswell data, and confirm again that FWI requires a more sophisticated initial velocity model for the convergence than travel-time adjoint tomography. We also numerically test the accuracy of applying FGA to local earthquake tomography. This study paves the way to directly apply wave-equation-based seismic tomography methods into real data around their dominant frequencies.

  10. Discovering Hominins - Application of Medical Computed Tomography (CT) to Fossil-Bearing Rocks from the Site of Malapa, South Africa.

    PubMed

    Smilg, Jacqueline S; Berger, Lee R

    2015-01-01

    In the South African context, computed tomography (CT) has been used applied to individually prepared fossils and small rocks containing fossils, but has not been utilized on large breccia blocks as a means of discovering fossils, and particularly fossil hominins. Previous attempts at CT imaging of rocks from other South African sites for this purpose yielded disappointing results. For this study, 109 fossil- bearing rocks from the site of Malapa, South Africa were scanned with medical CT prior to manual preparation. The resultant images were assessed for accuracy of fossil identification and characterization against the standard of manual preparation. The accurate identification of fossils, including those of early hominins, that were not visible on the surface of individual blocks, is shown to be possible. The discovery of unexpected fossils is reduced, thus lowering the potential that fossils could be damaged through accidental encounter during routine preparation, or even entirely missed. This study should significantly change the way fossil discovery, recovery and preparation is done in the South African context and has potential for application in other palaeontological situations. Medical CT imaging is shown to be reliable, readily available, cost effective and accurate in finding fossils within matrix conglomerates. Improvements in CT equipment and in CT image quality are such that medical CT is now a viable imaging modality for this palaeontological application.

  11. The application of x-ray, computed tomography, and magnetic resonance imaging on 22 pediatric Langerhans cell histiocytosis patients with long bone involvement: A retrospective analysis.

    PubMed

    Zhang, Xiaojun; Zhou, Jing; Chai, Xuee; Chen, Guiling; Guo, Bin; Ni, Lei; Wu, Peng

    2018-04-01

    The studies focusing on x-ray, computed tomography (CT), and magnetic resonance imaging (MRI) in pediatric Langerhans cell histiocytosis (LCH) patients were still rare. Therefore, we aimed to evaluate the application of x-ray, CT, and MRI in pediatric LCH patients with long bone involvement.Total 22 pediatric LCH patients were included in this study. The diagnosis of LCH was confirmed by pathological examination. All patients were followed up for 3 years. X-ray, CT, or MRI was performed and the results were recorded for further analyses.Among 22 pediatric patients, x-ray (n = 20), CT (n = 18), or MRI (n = 12) were used to scan the lesion on long bones affected by LCH. Femurs (n = 13, 38.24%), tibia (n = 11, 32.35%), humerus (n = 5, 14.71%), and radius (n = 4, 11.76%) were the most frequently affected anatomic sites. Ovoid or round radiolucent lesions, aggressive periosteal reaction, and swelling of surrounding soft tissues were characteristic image of long bones on x-ray, CT, and MRI in pediatric LCH.Femurs, tibia, humerus, and radius were the most commonly affected long bones of pediatric LCH. The application of x-ray, CT, and MRI on long bones could help with the diagnosis of pediatric LCH.

  12. [MRI methods for pulmonary ventilation and perfusion imaging].

    PubMed

    Sommer, G; Bauman, G

    2016-02-01

    Separate assessment of respiratory mechanics, gas exchange and pulmonary circulation is essential for the diagnosis and therapy of pulmonary diseases. Due to the global character of the information obtained clinical lung function tests are often not sufficiently specific in the differential diagnosis or have a limited sensitivity in the detection of early pathological changes. The standard procedures of pulmonary imaging are computed tomography (CT) for depiction of the morphology as well as perfusion/ventilation scintigraphy and single photon emission computed tomography (SPECT) for functional assessment. Magnetic resonance imaging (MRI) with hyperpolarized gases, O2-enhanced MRI, MRI with fluorinated gases and Fourier decomposition MRI (FD-MRI) are available for assessment of pulmonary ventilation. For assessment of pulmonary perfusion dynamic contrast-enhanced MRI (DCE-MRI), arterial spin labeling (ASL) and FD-MRI can be used. Imaging provides a more precise insight into the pathophysiology of pulmonary function on a regional level. The advantages of MRI are a lack of ionizing radiation, which allows a protective acquisition of dynamic data as well as the high number of available contrasts and therefore accessible lung function parameters. Sufficient clinical data exist only for certain applications of DCE-MRI. For the other techniques, only feasibility studies and case series of different sizes are available. The clinical applicability of hyperpolarized gases is limited for technical reasons. The clinical application of the techniques described, except for DCE-MRI, should be restricted to scientific studies.

  13. Discovering Hominins - Application of Medical Computed Tomography (CT) to Fossil-Bearing Rocks from the Site of Malapa, South Africa

    PubMed Central

    Smilg, Jacqueline S.; Berger, Lee R.

    2015-01-01

    In the South African context, computed tomography (CT) has been used applied to individually prepared fossils and small rocks containing fossils, but has not been utilized on large breccia blocks as a means of discovering fossils, and particularly fossil hominins. Previous attempts at CT imaging of rocks from other South African sites for this purpose yielded disappointing results. For this study, 109 fossil- bearing rocks from the site of Malapa, South Africa were scanned with medical CT prior to manual preparation. The resultant images were assessed for accuracy of fossil identification and characterization against the standard of manual preparation. The accurate identification of fossils, including those of early hominins, that were not visible on the surface of individual blocks, is shown to be possible. The discovery of unexpected fossils is reduced, thus lowering the potential that fossils could be damaged through accidental encounter during routine preparation, or even entirely missed. This study should significantly change the way fossil discovery, recovery and preparation is done in the South African context and has potential for application in other palaeontological situations. Medical CT imaging is shown to be reliable, readily available, cost effective and accurate in finding fossils within matrix conglomerates. Improvements in CT equipment and in CT image quality are such that medical CT is now a viable imaging modality for this palaeontological application. PMID:26684299

  14. Pediatric minor head trauma: do cranial CT scans change the therapeutic approach?

    PubMed

    Andrade, Felipe P; Montoro, Roberto; Oliveira, Renan; Loures, Gabriela; Flessak, Luana; Gross, Roberta; Donnabella, Camille; Puchnick, Andrea; Suzuki, Lisa; Regacini, Rodrigo

    2016-10-01

    1) To verify clinical signs correlated with appropriate cranial computed tomography scan indications and changes in the therapeutic approach in pediatric minor head trauma scenarios. 2) To estimate the radiation exposure of computed tomography scans with low dose protocols in the context of trauma and the additional associated risk. Investigators reviewed the medical records of all children with minor head trauma, which was defined as a Glasgow coma scale ≥13 at the time of admission to the emergency room, who underwent computed tomography scans during the years of 2013 and 2014. A change in the therapeutic approach was defined as a neurosurgical intervention performed within 30 days, hospitalization, >12 hours of observation, or neuro-specialist evaluation. Of the 1006 children evaluated, 101 showed some abnormality on head computed tomography scans, including 49 who were hospitalized, 16 who remained under observation and 36 who were dismissed. No patient underwent neurosurgery. No statistically significant relationship was observed between patient age, time between trauma and admission, or signs/symptoms related to trauma and abnormal imaging results. A statistically significant relationship between abnormal image results and a fall higher than 1.0 meter was observed (p=0.044). The mean effective dose was 2.0 mSv (0.1 to 6.8 mSv), corresponding to an estimated additional cancer risk of 0.05%. A computed tomography scan after minor head injury in pediatric patients did not show clinically relevant abnormalities that could lead to neurosurgical indications. Patients who fell more than 1.0 m were more likely to have changes in imaging tests, although these changes did not require neurosurgical intervention; therefore, the use of computed tomography scans may be questioned in this group. The results support the trend of more careful indications for cranial computed tomography scans for children with minor head trauma.

  15. Computed Tomography Perfusion, Magnetic Resonance Imaging, and Histopathological Findings After Laparoscopic Renal Cryoablation: An In Vivo Pig Model.

    PubMed

    Nielsen, Tommy Kjærgaard; Østraat, Øyvind; Graumann, Ole; Pedersen, Bodil Ginnerup; Andersen, Gratien; Høyer, Søren; Borre, Michael

    2017-08-01

    The present study investigates how computed tomography perfusion scans and magnetic resonance imaging correlates with the histopathological alterations in renal tissue after cryoablation. A total of 15 pigs were subjected to laparoscopic-assisted cryoablation on both kidneys. After intervention, each animal was randomized to a postoperative follow-up period of 1, 2, or 4 weeks, after which computed tomography perfusion and magnetic resonance imaging scans were performed. Immediately after imaging, open bilateral nephrectomy was performed allowing for histopathological examination of the cryolesions. On computed tomography perfusion and magnetic resonance imaging examinations, rim enhancement was observed in the transition zone of the cryolesion 1week after laparoscopic-assisted cryoablation. This rim enhancement was found to subside after 2 and 4 weeks of follow-up, which was consistent with the microscopic examinations revealing of fibrotic scar tissue formation in the peripheral zone of the cryolesion. On T2 magnetic resonance imaging sequences, a thin hypointense rim surrounded the cryolesion, separating it from the adjacent renal parenchyma. Microscopic examinations revealed hemorrhage and later hemosiderin located in the peripheral zone. No nodular or diffuse contrast enhancement was found in the central zone of the cryolesions at any follow-up stage on neither computed tomography perfusion nor magnetic resonance imaging. On microscopic examinations, the central zone was found to consist of coagulative necrosis 1 week after laparoscopic-assisted cryoablation, which was partially replaced by fibrotic scar tissue 4 weeks following laparoscopic-assisted cryoablation. Both computed tomography perfusion and magnetic resonance imaging found the renal collecting system to be involved at all 3 stages of follow-up, but on microscopic examination, the urothelium was found to be intact in all cases. In conclusion, cryoablation effectively destroyed renal parenchyma, leaving the urothelium intact. Both computed tomography perfusion and magnetic resonance imaging reflect the microscopic findings but with some differences, especially regarding the peripheral zone. Magnetic resonance imaging seems an attractive modality for early postoperative follow-up.

  16. Blockwise conjugate gradient methods for image reconstruction in volumetric CT.

    PubMed

    Qiu, W; Titley-Peloquin, D; Soleimani, M

    2012-11-01

    Cone beam computed tomography (CBCT) enables volumetric image reconstruction from 2D projection data and plays an important role in image guided radiation therapy (IGRT). Filtered back projection is still the most frequently used algorithm in applications. The algorithm discretizes the scanning process (forward projection) into a system of linear equations, which must then be solved to recover images from measured projection data. The conjugate gradients (CG) algorithm and its variants can be used to solve (possibly regularized) linear systems of equations Ax=b and linear least squares problems minx∥b-Ax∥2, especially when the matrix A is very large and sparse. Their applications can be found in a general CT context, but in tomography problems (e.g. CBCT reconstruction) they have not widely been used. Hence, CBCT reconstruction using the CG-type algorithm LSQR was implemented and studied in this paper. In CBCT reconstruction, the main computational challenge is that the matrix A usually is very large, and storing it in full requires an amount of memory well beyond the reach of commodity computers. Because of these memory capacity constraints, only a small fraction of the weighting matrix A is typically used, leading to a poor reconstruction. In this paper, to overcome this difficulty, the matrix A is partitioned and stored blockwise, and blockwise matrix-vector multiplications are implemented within LSQR. This implementation allows us to use the full weighting matrix A for CBCT reconstruction without further enhancing computer standards. Tikhonov regularization can also be implemented in this fashion, and can produce significant improvement in the reconstructed images. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. Computed tomography or rhinoscopy as the first-line procedure for suspected nasal tumor: a pilot study.

    PubMed

    Finck, Marlène; Ponce, Frédérique; Guilbaud, Laurent; Chervier, Cindy; Floch, Franck; Cadoré, Jean-Luc; Chuzel, Thomas; Hugonnard, Marine

    2015-02-01

    There are no evidence-based guidelines as to whether computed tomography (CT) or endoscopy should be selected as the first-line procedure when a nasal tumor is suspected in a dog or a cat and only one examination can be performed. Computed tomography and rhinoscopic features of 17 dogs and 5 cats with a histopathologically or cytologically confirmed nasal tumor were retrospectively reviewed. The level of suspicion for nasal neoplasia after CT and/or rhinoscopy was compared to the definitive diagnosis. Twelve animals underwent CT, 14 underwent rhinoscopy, and 4 both examinations. Of the 12 CT examinations performed, 11 (92%) resulted in the conclusion that a nasal tumor was the most likely diagnosis compared with 9/14 (64%) for rhinoscopies. Computed tomography appeared to be more reliable than rhinoscopy for detecting nasal tumors and should therefore be considered as the first-line procedure.

  18. Computed tomography or rhinoscopy as the first-line procedure for suspected nasal tumor: A pilot study

    PubMed Central

    Finck, Marlène; Ponce, Frédérique; Guilbaud, Laurent; Chervier, Cindy; Floch, Franck; Cadoré, Jean-Luc; Chuzel, Thomas; Hugonnard, Marine

    2015-01-01

    There are no evidence-based guidelines as to whether computed tomography (CT) or endoscopy should be selected as the first-line procedure when a nasal tumor is suspected in a dog or a cat and only one examination can be performed. Computed tomography and rhinoscopic features of 17 dogs and 5 cats with a histopathologically or cytologically confirmed nasal tumor were retrospectively reviewed. The level of suspicion for nasal neoplasia after CT and/or rhinoscopy was compared to the definitive diagnosis. Twelve animals underwent CT, 14 underwent rhinoscopy, and 4 both examinations. Of the 12 CT examinations performed, 11 (92%) resulted in the conclusion that a nasal tumor was the most likely diagnosis compared with 9/14 (64%) for rhinoscopies. Computed tomography appeared to be more reliable than rhinoscopy for detecting nasal tumors and should therefore be considered as the first-line procedure. PMID:25694669

  19. Review of cardiovascular imaging in The Journal of Nuclear Cardiology in 2014: Part 1 of 2: Positron emission tomography, computed tomography, and neuronal imaging.

    PubMed

    AlJaroudi, Wael A; Hage, Fadi G

    2015-06-01

    The year 2014 has been an exciting year for the cardiovascular imaging community with significant advances in the realm of nuclear and multimodality cardiac imaging. In this new feature of the Journal of Nuclear Cardiology, we will summarize some of the breakthroughs that were published in the Journal in 2014 in 2 sister articles. This first article will concentrate on publications dealing with cardiac positron emission tomography (PET), computed tomography (CT), and neuronal imaging.

  20. Trends in micro- and nanoComputed Tomography 2008-2010

    NASA Astrophysics Data System (ADS)

    Stock, S. R.

    2010-09-01

    Trends in micro- and nanoComputed Tomography (CT) from January 2008 through July 2010 are the subject of this brief report which takes up where a previous report in Developments in X-ray Tomography VI (2008) concluded. First, the number of systems operating world-wide is estimated. The main focus is on what searches of three citation indices (Web of Science, Compendex and PubMed) reveal about the field of micro- and nanoCT. Given research-fielddependent and disparate terminology used by investigators, searches were on "microtomography", "microCT" and "synchrotron tomography".

  1. TU-AB-207-01: Introduction to Tomosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sechopoulos, I.

    2015-06-15

    Digital Tomosynthesis (DT) is becoming increasingly common in breast imaging and many other applications. DT is a form of computed tomography in which a limited set of projection images are acquired over a small angular range and reconstructed into a tomographic data set. The angular range and number of projections is determined both by the imaging task and equipment manufacturer. For example, in breast imaging between 9 and 25 projections are acquired over a range of 15° to 60°. It is equally valid to treat DT as the digital analog of classical tomography - for example, linear tomography. In fact,more » the name “tomosynthesis” is an acronym for “synthetic tomography”. DT shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DT systems is a hybrid between CT and classical tomographic methods. This lecture will consist of three presentations that will provide a complete overview of DT, including a review of the fundamentals of DT, a discussion of testing methods for DT systems, and a description of the clinical applications of DT. While digital breast tomosynthesis will be emphasized, analogies will be drawn to body imaging to illustrate and compare tomosynthesis methods. Learning Objectives: To understand the fundamental principles behind tomosynthesis, including the determinants of image quality and dose. To learn how to test the performance of tomosynthesis imaging systems. To appreciate the uses of tomosynthesis in the clinic and the future applications of tomosynthesis.« less

  2. TU-AB-207-00: Digital Tomosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2015-06-15

    Digital Tomosynthesis (DT) is becoming increasingly common in breast imaging and many other applications. DT is a form of computed tomography in which a limited set of projection images are acquired over a small angular range and reconstructed into a tomographic data set. The angular range and number of projections is determined both by the imaging task and equipment manufacturer. For example, in breast imaging between 9 and 25 projections are acquired over a range of 15° to 60°. It is equally valid to treat DT as the digital analog of classical tomography - for example, linear tomography. In fact,more » the name “tomosynthesis” is an acronym for “synthetic tomography”. DT shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DT systems is a hybrid between CT and classical tomographic methods. This lecture will consist of three presentations that will provide a complete overview of DT, including a review of the fundamentals of DT, a discussion of testing methods for DT systems, and a description of the clinical applications of DT. While digital breast tomosynthesis will be emphasized, analogies will be drawn to body imaging to illustrate and compare tomosynthesis methods. Learning Objectives: To understand the fundamental principles behind tomosynthesis, including the determinants of image quality and dose. To learn how to test the performance of tomosynthesis imaging systems. To appreciate the uses of tomosynthesis in the clinic and the future applications of tomosynthesis.« less

  3. TU-AB-207-02: Testing of Body and Breast Tomosynthesis Sytems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, A.

    2015-06-15

    Digital Tomosynthesis (DT) is becoming increasingly common in breast imaging and many other applications. DT is a form of computed tomography in which a limited set of projection images are acquired over a small angular range and reconstructed into a tomographic data set. The angular range and number of projections is determined both by the imaging task and equipment manufacturer. For example, in breast imaging between 9 and 25 projections are acquired over a range of 15° to 60°. It is equally valid to treat DT as the digital analog of classical tomography - for example, linear tomography. In fact,more » the name “tomosynthesis” is an acronym for “synthetic tomography”. DT shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DT systems is a hybrid between CT and classical tomographic methods. This lecture will consist of three presentations that will provide a complete overview of DT, including a review of the fundamentals of DT, a discussion of testing methods for DT systems, and a description of the clinical applications of DT. While digital breast tomosynthesis will be emphasized, analogies will be drawn to body imaging to illustrate and compare tomosynthesis methods. Learning Objectives: To understand the fundamental principles behind tomosynthesis, including the determinants of image quality and dose. To learn how to test the performance of tomosynthesis imaging systems. To appreciate the uses of tomosynthesis in the clinic and the future applications of tomosynthesis.« less

  4. 77 FR 71802 - Guidance on Investigational New Drug Applications for Positron Emission Tomography Drugs...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-04

    ...] Guidance on Investigational New Drug Applications for Positron Emission Tomography Drugs; Availability... Positron Emission Tomography (PET) Drugs.'' The guidance is intended to assist manufacturers of PET drugs... ``Investigational New Drug Applications for Positron Emission Tomography (PET) Drugs.'' The guidance summarizes the...

  5. Applications of Computed Tomography to Evaluate Cellular Solid Interfaces

    NASA Technical Reports Server (NTRS)

    Maisano, Josephine; Marse, Daryl J.; Schilling, Paul J.

    2008-01-01

    The major morphological features - foam cells, voids, knit lines, and the bondline interface were evaluated. The features identified by micro-CT correlate well to those observed by SEM. 3D reconstructions yielded volumetric dimensions for large voids (max 30 mm). Internal voids and groupings of smaller cells at the bondline are concluded to be the cause of the indications noted during the NDE prescreening process.

  6. Body-wide anatomy recognition in PET/CT images

    NASA Astrophysics Data System (ADS)

    Wang, Huiqian; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Zhao, Liming; Torigian, Drew A.

    2015-03-01

    With the rapid growth of positron emission tomography/computed tomography (PET/CT)-based medical applications, body-wide anatomy recognition on whole-body PET/CT images becomes crucial for quantifying body-wide disease burden. This, however, is a challenging problem and seldom studied due to unclear anatomy reference frame and low spatial resolution of PET images as well as low contrast and spatial resolution of the associated low-dose CT images. We previously developed an automatic anatomy recognition (AAR) system [15] whose applicability was demonstrated on diagnostic computed tomography (CT) and magnetic resonance (MR) images in different body regions on 35 objects. The aim of the present work is to investigate strategies for adapting the previous AAR system to low-dose CT and PET images toward automated body-wide disease quantification. Our adaptation of the previous AAR methodology to PET/CT images in this paper focuses on 16 objects in three body regions - thorax, abdomen, and pelvis - and consists of the following steps: collecting whole-body PET/CT images from existing patient image databases, delineating all objects in these images, modifying the previous hierarchical models built from diagnostic CT images to account for differences in appearance in low-dose CT and PET images, automatically locating objects in these images following object hierarchy, and evaluating performance. Our preliminary evaluations indicate that the performance of the AAR approach on low-dose CT images achieves object localization accuracy within about 2 voxels, which is comparable to the accuracies achieved on diagnostic contrast-enhanced CT images. Object recognition on low-dose CT images from PET/CT examinations without requiring diagnostic contrast-enhanced CT seems feasible.

  7. Pertuzumab and Erlotinib in Patients With Relapsed Non-Small Cell Lung Cancer: A Phase II Study Using 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Imaging

    PubMed Central

    Mileshkin, Linda; Townley, Peter; Gitlitz, Barbara; Eaton, Keith; Mitchell, Paul; Hicks, Rodney; Wood, Katie; Amler, Lucas; Fine, Bernard M.; Loecke, David; Pirzkall, Andrea

    2014-01-01

    Background. Combination blockade of human epidermal growth factor receptor (HER) family signaling may confer enhanced antitumor activity than single-agent blockade. We performed a single-arm study of pertuzumab, a monoclonal antibody that inhibits HER2 dimerization, and erlotinib in relapsed non-small cell lung cancer (NSCLC). Methods. Patients received pertuzumab (840-mg loading dose and 420-mg maintenance intravenously every 3 weeks) and erlotinib (150-mg or 100-mg dose orally, daily). The primary endpoint was response rate (RR) by 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) at day 56 in all patients and those with EGFR wild-type tumors. Results. Of 41 patients, 28 (68.3%) experienced treatment-related grade ≥3 adverse events, including pneumatosis intestinalis (3 patients), resulting in early cessation of enrollment. Tissue samples from 32 patients showed mutated EGFR status in 9 of 41 (22%) and wild-type EGFR in 23 of 41 (56%). The FDG-PET RR for patients with assessments at day 56 was 19.5% in all patients (n = 41) and 8.7% in patients with wild-type EGFR NSCLC (n = 23). Investigator-assessed computed tomography RR at day 56 was 12.2%. Conclusion. FDG-PET suggests that pertuzumab plus erlotinib is an active combination, but combination therapy was poorly tolerated, which limits its clinical applicability. More research is warranted to identify drug combinations that disrupt HER receptor signaling but that exhibit improved tolerability profiles. PMID:24457379

  8. Comparisons of the diagnostic accuracies of optical coherence tomography, micro-computed tomography, and histology in periodontal disease: an ex vivo study

    PubMed Central

    2017-01-01

    Purpose Optical coherence tomography (OCT) is a noninvasive diagnostic technique that may be useful for both qualitative and quantitative analyses of the periodontium. Micro-computed tomography (micro-CT) is another noninvasive imaging technique capable of providing submicron spatial resolution. The purpose of this study was to present periodontal images obtained using ex vivo dental OCT and to compare OCT images with micro-CT images and histologic sections. Methods Images of ex vivo canine periodontal structures were obtained using OCT. Biologic depth measurements made using OCT were compared to measurements made on histologic sections prepared from the same sites. Visual comparisons were made among OCT, micro-CT, and histologic sections to evaluate whether anatomical details were accurately revealed by OCT. Results The periodontal tissue contour, gingival sulcus, and the presence of supragingival and subgingival calculus could be visualized using OCT. OCT was able to depict the surface topography of the dentogingival complex with higher resolution than micro-CT, but the imaging depth was typically limited to 1.2–1.5 mm. Biologic depth measurements made using OCT were a mean of 0.51 mm shallower than the histologic measurements. Conclusions Dental OCT as used in this study was able to generate high-resolution, cross-sectional images of the superficial portions of periodontal structures. Improvements in imaging depth and the development of an intraoral sensor are likely to make OCT a useful technique for periodontal applications. PMID:28261522

  9. Three-dimensional analysis of third molar development to estimate age of majority.

    PubMed

    Márquez-Ruiz, Ana Belén; Treviño-Tijerina, María Concepción; González-Herrera, Lucas; Sánchez, Belén; González-Ramírez, Amanda Rocío; Valenzuela, Aurora

    2017-09-01

    Third molars are one of the few biological markers available for age estimation in undocumented juveniles close the legal age of majority, assuming an age of 18years as the most frequent legal demarcation between child and adult status. To obtain more accurate visualization and evaluation of third molar mineralization patterns from computed tomography images, a new software application, DentaVol©, was developed. Third molar mineralization according to qualitative (Demirjian's maturational stage) and quantitative parameters (third molar volume) of dental development was assessed in multi-slice helical computed tomography images of both maxillary arches displayed by DentaVol© from 135 individuals (62 females and 73 males) aged between 14 and 23years. Intra- and inter-observer agreement values were remarkably high for both evaluation procedures and for all third molars. A linear correlation between third molar mineralization and chronological age was found, with third molar maturity occurring earlier in males than in females. Assessment of dental development with both procedures, by using DentaVol© software, can be considered a good indicator of age of majority (18years or older) in all third molars. Our results indicated that virtual computed tomography imaging can be considered a valid alternative to orthopantomography for evaluations of third molar mineralization, and therefore a complementary tool for determining the age of majority. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.

  10. [Imaging of diabetic osteopathy].

    PubMed

    Patsch, J; Pietschmann, P; Schueller-Weidekamm, C

    2015-04-01

    Diabetic bone diseases are more than just osteoporosis in patients with diabetes mellitus (DM): a relatively high bone mineral density is paired with a paradoxically high risk of fragility fractures. Diabetics exhibit low bone turnover, osteocyte dysfunction, relative hypoparathyroidism and an accumulation of advanced glycation end products in the bone matrix. Besides typical insufficiency fractures, diabetics show a high risk for peripheral fractures of the lower extremities (e.g. metatarsal fractures). The correct interdisciplinary assessment of fracture risks in patients with DM is therefore a clinical challenge. There are two state of the art imaging methods for the quantification of fracture risks: dual energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT). Radiography, multidetector computed tomography (MDCT) and magnetic resonance imaging (MRI) are suitable for the detection of insufficiency fractures. Novel research imaging techniques, such as high-resolution peripheral quantitative computed tomography (HR-pQCT) provide non-invasive insights into bone microarchitecture of the peripheral skeleton. Using MR spectroscopy, bone marrow composition can be studied. Both methods have been shown to be capable of discriminating between type 2 diabetic patients with and without prevalent fragility fractures and thus bear the potential of improving the current standard of care. Currently both methods remain limited to clinical research applications. DXA and HR-pQCT are valid tools for the quantification of bone mineral density and assessment of fracture risk in patients with DM, especially if interpreted in the context of clinical risk factors. Radiography, CT and MRI are suitable for the detection of insufficiency fractures.

  11. Estimation of feline renal volume using computed tomography and ultrasound.

    PubMed

    Tyson, Reid; Logsdon, Stacy A; Werre, Stephen R; Daniel, Gregory B

    2013-01-01

    Renal volume estimation is an important parameter for clinical evaluation of kidneys and research applications. A time efficient, repeatable, and accurate method for volume estimation is required. The purpose of this study was to describe the accuracy of ultrasound and computed tomography (CT) for estimating feline renal volume. Standardized ultrasound and CT scans were acquired for kidneys of 12 cadaver cats, in situ. Ultrasound and CT multiplanar reconstructions were used to record renal length measurements that were then used to calculate volume using the prolate ellipsoid formula for volume estimation. In addition, CT studies were reconstructed at 1 mm, 5 mm, and 1 cm, and transferred to a workstation where the renal volume was calculated using the voxel count method (hand drawn regions of interest). The reference standard kidney volume was then determined ex vivo using water displacement with the Archimedes' principle. Ultrasound measurement of renal length accounted for approximately 87% of the variability in renal volume for the study population. The prolate ellipsoid formula exhibited proportional bias and underestimated renal volume by a median of 18.9%. Computed tomography volume estimates using the voxel count method with hand-traced regions of interest provided the most accurate results, with increasing accuracy for smaller voxel sizes in grossly normal kidneys (-10.1 to 0.6%). Findings from this study supported the use of CT and the voxel count method for estimating feline renal volume in future clinical and research studies. © 2012 Veterinary Radiology & Ultrasound.

  12. Physics and Computational Methods for X-ray Scatter Estimation and Correction in Cone-Beam Computed Tomography

    NASA Astrophysics Data System (ADS)

    Bootsma, Gregory J.

    X-ray scatter in cone-beam computed tomography (CBCT) is known to reduce image quality by introducing image artifacts, reducing contrast, and limiting computed tomography (CT) number accuracy. The extent of the effect of x-ray scatter on CBCT image quality is determined by the shape and magnitude of the scatter distribution in the projections. A method to allay the effects of scatter is imperative to enable application of CBCT to solve a wider domain of clinical problems. The work contained herein proposes such a method. A characterization of the scatter distribution through the use of a validated Monte Carlo (MC) model is carried out. The effects of imaging parameters and compensators on the scatter distribution are investigated. The spectral frequency components of the scatter distribution in CBCT projection sets are analyzed using Fourier analysis and found to reside predominately in the low frequency domain. The exact frequency extents of the scatter distribution are explored for different imaging configurations and patient geometries. Based on the Fourier analysis it is hypothesized the scatter distribution can be represented by a finite sum of sine and cosine functions. The fitting of MC scatter distribution estimates enables the reduction of the MC computation time by diminishing the number of photon tracks required by over three orders of magnitude. The fitting method is incorporated into a novel scatter correction method using an algorithm that simultaneously combines multiple MC scatter simulations. Running concurrent MC simulations while simultaneously fitting the results allows for the physical accuracy and flexibility of MC methods to be maintained while enhancing the overall efficiency. CBCT projection set scatter estimates, using the algorithm, are computed on the order of 1--2 minutes instead of hours or days. Resulting scatter corrected reconstructions show a reduction in artifacts and improvement in tissue contrast and voxel value accuracy.

  13. Computer-Aided Nodule Assessment and Risk Yield Risk Management of Adenocarcinoma: The Future of Imaging?

    PubMed

    Foley, Finbar; Rajagopalan, Srinivasan; Raghunath, Sushravya M; Boland, Jennifer M; Karwoski, Ronald A; Maldonado, Fabien; Bartholmai, Brian J; Peikert, Tobias

    2016-01-01

    Increased clinical use of chest high-resolution computed tomography results in increased identification of lung adenocarcinomas and persistent subsolid opacities. However, these lesions range from very indolent to extremely aggressive tumors. Clinically relevant diagnostic tools to noninvasively risk stratify and guide individualized management of these lesions are lacking. Research efforts investigating semiquantitative measures to decrease interrater and intrarater variability are emerging, and in some cases steps have been taken to automate this process. However, many such methods currently are still suboptimal, require validation and are not yet clinically applicable. The computer-aided nodule assessment and risk yield software application represents a validated tool for the automated, quantitative, and noninvasive tool for risk stratification of adenocarcinoma lung nodules. Computer-aided nodule assessment and risk yield correlates well with consensus histology and postsurgical patient outcomes, and therefore may help to guide individualized patient management, for example, in identification of nodules amenable to radiological surveillance, or in need of adjunctive therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. [Measurement of intracranial hematoma volume by personal computer].

    PubMed

    DU, Wanping; Tan, Lihua; Zhai, Ning; Zhou, Shunke; Wang, Rui; Xue, Gongshi; Xiao, An

    2011-01-01

    To explore the method for intracranial hematoma volume measurement by the personal computer. Forty cases of various intracranial hematomas were measured by the computer tomography with quantitative software and personal computer with Photoshop CS3 software, respectively. the data from the 2 methods were analyzed and compared. There was no difference between the data from the computer tomography and the personal computer (P>0.05). The personal computer with Photoshop CS3 software can measure the volume of various intracranial hematomas precisely, rapidly and simply. It should be recommended in the clinical medicolegal identification.

  15. Computed Tomography of the Musculoskeletal System.

    PubMed

    Ballegeer, Elizabeth A

    2016-05-01

    Computed tomography (CT) has specific uses in veterinary species' appendicular musculoskeletal system. Parameters for acquisition of images, interpretation limitations, as well as published information regarding its use in small animals is reviewed. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Cholangiocarcinoma associated with limbic encephalitis and early cerebral abnormalities detected by 2-deoxy-2-[fluorine-18]fluoro-D-glucose integrated with computed tomography-positron emission tomography: a case report.

    PubMed

    Schmidt, Sergio L; Schmidt, Juliana J; Tolentino, Julio C; Ferreira, Carlos G; de Almeida, Sergio A; Alvarenga, Regina P; Simoes, Eunice N; Schmidt, Guilherme J; Canedo, Nathalie H S; Chimelli, Leila

    2016-07-20

    Limbic encephalitis was originally described as a rare clinical neuropathological entity involving seizures and neuropsychological disturbances. In this report, we describe cerebral patterns visualized by positron emission tomography in a patient with limbic encephalitis and cholangiocarcinoma. To our knowledge, there is no other description in the literature of cerebral positron emission tomography findings in the setting of limbic encephalitis and subsequent diagnosis of cholangiocarcinoma. We describe a case of a 77-year-old Caucasian man who exhibited persistent cognitive changes 2 years before his death. A cerebral scan obtained at that time by 2-deoxy-2-[fluorine-18]fluoro- D -glucose integrated with computed tomography-positron emission tomography showed low radiotracer uptake in the frontal and temporal lobes. Cerebrospinal fluid analysis indicated the presence of voltage-gated potassium channel antibodies. Three months before the patient's death, a lymph node biopsy indicated a cholangiocarcinoma, and a new cerebral scan obtained by 2-deoxy-2-[fluorine-18]fluoro-D-glucose integrated with computed tomography-positron emission tomography showed an increment in the severity of metabolic deficit in the frontal and parietal lobes, as well as hypometabolism involving the temporal lobes. Two months before the patient's death, cerebral metastases were detected on a contrast-enhanced computed tomographic scan. Postmortem examination revealed a cholangiocarcinoma with multiple metastases including the lungs and lymph nodes. The patient's brain weighed 1300 g, and mild cortical atrophy, ex vacuo dilation of the ventricles, and mild focal thickening of the cerebellar leptomeninges, which were infiltrated by neoplastic epithelial cells, were observed. These findings support the need for continued vigilance in malignancy surveillance in patients with limbic encephalitis and early cerebral positron emission tomographic scan abnormalities. The difficulty in early diagnosis of small tumors, such as a cholangiocarcinoma, is discussed in the context of the clinical utility of early cerebral hypometabolism detected by 2-deoxy-2-[fluorine-18]fluoro-D-glucose integrated with computed tomography-positron emission tomography in patients with rapidly progressive dementia.

  17. Intraoperative 3-Dimensional Computed Tomography and Navigation in Foot and Ankle Surgery.

    PubMed

    Chowdhary, Ashwin; Drittenbass, Lisca; Dubois-Ferrière, Victor; Stern, Richard; Assal, Mathieu

    2016-09-01

    Computer-assisted orthopedic surgery has developed dramatically during the past 2 decades. This article describes the use of intraoperative 3-dimensional computed tomography and navigation in foot and ankle surgery. Traditional imaging based on serial radiography or C-arm-based fluoroscopy does not provide simultaneous real-time 3-dimensional imaging, and thus leads to suboptimal visualization and guidance. Three-dimensional computed tomography allows for accurate intraoperative visualization of the position of bones and/or navigation implants. Such imaging and navigation helps to further reduce intraoperative complications, leads to improved surgical outcomes, and may become the gold standard in foot and ankle surgery. [Orthopedics.2016; 39(5):e1005-e1010.]. Copyright 2016, SLACK Incorporated.

  18. Domain identification in impedance computed tomography by spline collocation method

    NASA Technical Reports Server (NTRS)

    Kojima, Fumio

    1990-01-01

    A method for estimating an unknown domain in elliptic boundary value problems is considered. The problem is formulated as an inverse problem of integral equations of the second kind. A computational method is developed using a splice collocation scheme. The results can be applied to the inverse problem of impedance computed tomography (ICT) for image reconstruction.

  19. Single-Shot X-Ray Phase-Contrast Computed Tomography with Nonmicrofocal Laboratory Sources

    NASA Astrophysics Data System (ADS)

    Diemoz, P. C.; Hagen, C. K.; Endrizzi, M.; Minuti, M.; Bellazzini, R.; Urbani, L.; De Coppi, P.; Olivo, A.

    2017-04-01

    We present a method that enables performing x-ray phase-contrast imaging (XPCI) computed tomography with a laboratory setup using a single image per projection angle, eliminating the need to move optical elements during acquisition. Theoretical derivation of the method is presented, and its validity conditions are provided. The object is assumed to be quasihomogeneous, i.e., to feature a ratio between the refractive index and the linear attenuation coefficient that is approximately constant across the field of view. The method is experimentally demonstrated on a plastics phantom and on biological samples using a continuous rotation acquisition scheme achieving scan times of a few minutes. Moreover, we show that such acquisition times can be further reduced with the use of a high-efficiency photon-counting detector. Thanks to its ability to substantially simplify the image-acquisition procedure and greatly reduce collection times, we believe this method represents a very important step towards the application of XPCI to real-world problems.

  20. Analysis of sintered polymer scaffolds using concomitant synchrotron computed tomography and in situ mechanical testing.

    PubMed

    Dhillon, A; Schneider, P; Kuhn, G; Reinwald, Y; White, L J; Levchuk, A; Rose, F R A J; Müller, R; Shakesheff, K M; Rahman, C V

    2011-12-01

    The mechanical behaviour of polymer scaffolds plays a vital role in their successful use in bone tissue engineering. The present study utilised novel sintered polymer scaffolds prepared using temperature-sensitive poly(DL-lactic acid-co-glycolic acid)/poly(ethylene glycol) particles. The microstructure of these scaffolds was monitored under compressive strain by image-guided failure assessment (IGFA), which combined synchrotron radiation computed tomography (SR CT) and in situ micro-compression. Three-dimensional CT data sets of scaffolds subjected to a strain rate of 0.01%/s illustrated particle movement within the scaffolds with no deformation or cracking. When compressed using a higher strain rate of 0.02%/s particle movement was more pronounced and cracks between sintered particles were observed. The results from this study demonstrate that IGFA based on simultaneous SR CT imaging and micro-compression testing is a useful tool for assessing structural and mechanical scaffold properties, leading to further insight into structure-function relationships in scaffolds for bone tissue engineering applications.

  1. Detection of smoothly distributed spatial outliers, with applications to identifying the distribution of parenchymal hyperinflation following an airway challenge in asthmatics.

    PubMed

    Thurman, Andrew L; Choi, Jiwoong; Choi, Sanghun; Lin, Ching-Long; Hoffman, Eric A; Lee, Chang Hyun; Chan, Kung-Sik

    2017-05-10

    Methacholine challenge tests are used to measure changes in pulmonary function that indicate symptoms of asthma. In addition to pulmonary function tests, which measure global changes in pulmonary function, computed tomography images taken at full inspiration before and after administration of methacholine provide local air volume changes (hyper-inflation post methacholine) at individual acinar units, indicating local airway hyperresponsiveness. Some of the acini may have extreme air volume changes relative to the global average, indicating hyperresponsiveness, and those extreme values may occur in clusters. We propose a Gaussian mixture model with a spatial smoothness penalty to improve prediction of hyperresponsive locations that occur in spatial clusters. A simulation study provides evidence that the spatial smoothness penalty improves prediction under different data-generating mechanisms. We apply this method to computed tomography data from Seoul National University Hospital on five healthy and ten asthmatic subjects. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Updating a preoperative surface model with information from real-time tracked 2D ultrasound using a Poisson surface reconstruction algorithm

    NASA Astrophysics Data System (ADS)

    Sun, Deyu; Rettmann, Maryam E.; Holmes, David R.; Linte, Cristian A.; Packer, Douglas; Robb, Richard A.

    2014-03-01

    In this work, we propose a method for intraoperative reconstruction of a left atrial surface model for the application of cardiac ablation therapy. In this approach, the intraoperative point cloud is acquired by a tracked, 2D freehand intra-cardiac echocardiography device, which is registered and merged with a preoperative, high resolution left atrial surface model built from computed tomography data. For the surface reconstruction, we introduce a novel method to estimate the normal vector of the point cloud from the preoperative left atrial model, which is required for the Poisson Equation Reconstruction algorithm. In the current work, the algorithm is evaluated using a preoperative surface model from patient computed tomography data and simulated intraoperative ultrasound data. Factors such as intraoperative deformation of the left atrium, proportion of the left atrial surface sampled by the ultrasound, sampling resolution, sampling noise, and registration error were considered through a series of simulation experiments.

  3. Fluorescence-Guided Probes of Aptamer-Targeted Gold Nanoparticles with Computed Tomography Imaging Accesses for in Vivo Tumor Resection.

    PubMed

    Li, Cheng-Hung; Kuo, Tsung-Rong; Su, Hsin-Jan; Lai, Wei-Yun; Yang, Pan-Chyr; Chen, Jinn-Shiun; Wang, Di-Yan; Wu, Yi-Chun; Chen, Chia-Chun

    2015-10-28

    Recent development of molecular imaging probes for fluorescence-guided surgery has shown great progresses for determining tumor margin to execute the tissue resection. Here we synthesize the fluorescent gold nanoparticles conjugated with diatrizoic acid and nucleolin-targeted AS1411 aptamer. The nanoparticle conjugates exhibit high water-solubility, good biocompatibility, visible fluorescence and strong X-ray attenuation for computed tomography (CT) contrast enhancement. The fluorescent nanoparticle conjugates are applied as a molecular contrast agent to reveal the tumor location in CL1-5 tumor-bearing mice by CT imaging. Furthermore, the orange-red fluorescence emitting from the conjugates in the CL1-5 tumor can be easily visualized by the naked eyes. After the resection, the IVIS measurements show that the fluorescence signal of the nanoparticle conjugates in the tumor is greatly enhanced in comparison to that in the controlled experiment. Our work has shown potential application of functionalized nanoparticles as a dual-function imaging agent in clinical fluorescence-guided surgery.

  4. Case Report: SPECT/CT as the New Diagnostic Tool for Specific Wrist Pathology.

    PubMed

    Linde, Musters; Ten Broek, M; Kraan, G A

    2017-01-01

    Single photon emission computed tomography has been introduced as a promising new diagnostic tool in orthopaedic pathology since the early 90'. Computed tomography, the combined with SPECT, gives insight in the specific sight of wrist pathology. Literature already supports introduction of SPECT/CT in wrist pathology, but clinical application is lagging. A 40yr old patient reported first in 2004 with persisting pain after a right distal radius fracture. Several diagnostics and operative interventions were performed, all unsuccessful. Because of the persisting pain a SPECT-CT was performed which showed a cyst in the hamate bone, which was successfully enucleated. The patient was finally pain free at recent follow-up. With a QDash-score of 43 and a PRW (H) E-DLV-score of 58/150. In this case report, SPECT/CT proved a very sensitive diagnostic tool for specific pathology of the wrist. It offered precise localisation and thereby the clinically suspected diagnosis was confirmed and the patient successfully treated.

  5. Application of conformal transformation to elliptic geometry for electric impedance tomography.

    PubMed

    Yilmaz, Atila; Akdoğan, Kurtuluş E; Saka, Birsen

    2008-03-01

    Electrical impedance tomography (EIT) is a medical imaging modality that is used to compute the conductivity distribution through measurements on the cross-section of a body part. An elliptic geometry model, which defines a more general frame, ensures more accurate results in reconstruction and assessment of inhomogeneities inside. This study provides a link between the analytical solutions defined in circular and elliptical geometries on the basis of the computation of conformal mapping. The results defined as voltage distributions for the homogeneous case in elliptic and circular geometries have been compared with those obtained by the use of conformal transformation between elliptical and well-known circular geometry. The study also includes the results of the finite element method (FEM) as another approach for more complex geometries for the comparison of performance in other complex scenarios for eccentric inhomogeneities. The study emphasizes that for the elliptic case the analytical solution with conformal transformation is a reliable and useful tool for developing insight into more complex forms including eccentric inhomogeneities.

  6. Image analysis of pubic bone for age estimation in a computed tomography sample.

    PubMed

    López-Alcaraz, Manuel; González, Pedro Manuel Garamendi; Aguilera, Inmaculada Alemán; López, Miguel Botella

    2015-03-01

    Radiology has demonstrated great utility for age estimation, but most of the studies are based on metrical and morphological methods in order to perform an identification profile. A simple image analysis-based method is presented, aimed to correlate the bony tissue ultrastructure with several variables obtained from the grey-level histogram (GLH) of computed tomography (CT) sagittal sections of the pubic symphysis surface and the pubic body, and relating them with age. The CT sample consisted of 169 hospital Digital Imaging and Communications in Medicine (DICOM) archives of known sex and age. The calculated multiple regression models showed a maximum R (2) of 0.533 for females and 0.726 for males, with a high intra- and inter-observer agreement. The method suggested is considered not only useful for performing an identification profile during virtopsy, but also for application in further studies in order to attach a quantitative correlation for tissue ultrastructure characteristics, without complex and expensive methods beyond image analysis.

  7. [Detection of cerebral hypoperfusion using single photon emission computed tomography image analysis and statistical parametric mapping in patients with Parkinson's disease or progressive supranuclear palsy].

    PubMed

    Harada, Kengo; Saeki, Hiroshi; Matsuya, Eiji; Okita, Izumi

    2013-11-01

    We carried out differential diagnosis of brain blood flow images using single-photon emission computed tomography (SPECT) for patients with Parkinson's disease (PD) or progressive supranuclear paralysis (PSP) using statistical parametric mapping (SPM) and to whom we had applied anatomical standardization. We studied two groups and compared brain blood flow images using SPECT (N-isopropyl-4-iodoamphetamine [(123)I] hydrochloride injection, 222 MGq dosage i.v.). A total of 27 patients were studied using SPM: 18 with PD and 9 with PSP; humming bird sign on MRI was from moderate to medium. The decline of brain bloodstream in the PSP group was more notable in the midbrain, near the domain where the humming bird sign was observable, than in the PD group. The observable differences in brain bloodstream decline in the midbrain of PSP and PD patients suggest the potential usefulness of this technique's clinical application to distinction diagnosis.

  8. Multi-Mounted X-Ray Computed Tomography

    PubMed Central

    Fu, Jian; Liu, Zhenzhong; Wang, Jingzheng

    2016-01-01

    Most existing X-ray computed tomography (CT) techniques work in single-mounted mode and need to scan the inspected objects one by one. It is time-consuming and not acceptable for the inspection in a large scale. In this paper, we report a multi-mounted CT method and its first engineering implementation. It consists of a multi-mounted scanning geometry and the corresponding algebraic iterative reconstruction algorithm. This approach permits the CT rotation scanning of multiple objects simultaneously without the increase of penetration thickness and the signal crosstalk. Compared with the conventional single-mounted methods, it has the potential to improve the imaging efficiency and suppress the artifacts from the beam hardening and the scatter. This work comprises a numerical study of the method and its experimental verification using a dataset measured with a developed multi-mounted X-ray CT prototype system. We believe that this technique is of particular interest for pushing the engineering applications of X-ray CT. PMID:27073911

  9. A comparative analysis of longitudinal computed tomography and histopathology for evaluating the potential of mesenchymal stem cells in mitigating radiation-induced pulmonary fibrosis.

    PubMed

    Perez, Jessica R; Lee, Sangkyu; Ybarra, Norma; Maria, Ola; Serban, Monica; Jeyaseelan, Krishinima; Wang, Li Ming; Seuntjens, Jan; Naqa, Issam El

    2017-08-22

    Radiation-induced pulmonary fibrosis (RIPF) is a debilitating side effect that occurs in up to 30% of thoracic irradiations in breast and lung cancer patients. RIPF remains a major limiting factor to dose escalation and an obstacle to applying more promising new treatments for cancer cure. Limited treatment options are available to mitigate RIPF once it occurs, but recently, mesenchymal stem cells (MSCs) and a drug treatment stimulating endogenous stem cells (GM-CSF) have been investigated for their potential in preventing this disease onset. In a pre-clinical rat model, we contrasted the application of longitudinal computed tomography (CT) imaging and classical histopathology to quantify RIPF and to evaluate the potential of MSCs in mitigating RIPF. Our results on histology demonstrate promises when MSCs are injected endotracheally (but not intravenously). While our CT analysis highlights the potential of GM-CSF treatment. Advantages and limitations of both analytical methods are contrasted in the context of RIPF.

  10. Fluorescence-Guided Probes of Aptamer-Targeted Gold Nanoparticles with Computed Tomography Imaging Accesses for in Vivo Tumor Resection

    PubMed Central

    Li, Cheng-Hung; Kuo, Tsung-Rong; Su, Hsin-Jan; Lai, Wei-Yun; Yang, Pan-Chyr; Chen, Jinn-Shiun; Wang, Di-Yan; Wu, Yi-Chun; Chen, Chia-Chun

    2015-01-01

    Recent development of molecular imaging probes for fluorescence-guided surgery has shown great progresses for determining tumor margin to execute the tissue resection. Here we synthesize the fluorescent gold nanoparticles conjugated with diatrizoic acid and nucleolin-targeted AS1411 aptamer. The nanoparticle conjugates exhibit high water-solubility, good biocompatibility, visible fluorescence and strong X-ray attenuation for computed tomography (CT) contrast enhancement. The fluorescent nanoparticle conjugates are applied as a molecular contrast agent to reveal the tumor location in CL1-5 tumor-bearing mice by CT imaging. Furthermore, the orange-red fluorescence emitting from the conjugates in the CL1-5 tumor can be easily visualized by the naked eyes. After the resection, the IVIS measurements show that the fluorescence signal of the nanoparticle conjugates in the tumor is greatly enhanced in comparison to that in the controlled experiment. Our work has shown potential application of functionalized nanoparticles as a dual-function imaging agent in clinical fluorescence-guided surgery. PMID:26507179

  11. Comparison of ultrasonography, radiography and a single computed tomography slice for the identification of fluid within the tympanic bulla of rabbit cadavers.

    PubMed

    King, A M; Posthumus, J; Hammond, G; Sullivan, M

    2012-08-01

    Evaluation of the tympanic bulla (TB) in cases of otitis media in the rabbit can be a diagnostic challenge, although a feature often associated with the condition is the accumulation of fluid or material within the TB. Randomly selected TB from 40 rabbit cadavers were filled with a water-based, water-soluble jelly lubricant. A dorsoventral radiograph and single computed tomography (CT) slice were taken followed by an ultrasound (US) examination. Image interpretation was performed by blinded operators. The content of each TB was determined (fluid or gas) using each technique and the cadavers were frozen and sectioned for confirmation. CT was the most accurate diagnostic method, but US produced better results than radiography. Given the advantages of US over the other imaging techniques, the results suggest that further work is warranted to determine US applications in the evaluation of the rabbit TB and clinical cases of otitis media in this species. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Fast automatic segmentation of anatomical structures in x-ray computed tomography images to improve fluorescence molecular tomography reconstruction.

    PubMed

    Freyer, Marcus; Ale, Angelique; Schulz, Ralf B; Zientkowska, Marta; Ntziachristos, Vasilis; Englmeier, Karl-Hans

    2010-01-01

    The recent development of hybrid imaging scanners that integrate fluorescence molecular tomography (FMT) and x-ray computed tomography (XCT) allows the utilization of x-ray information as image priors for improving optical tomography reconstruction. To fully capitalize on this capacity, we consider a framework for the automatic and fast detection of different anatomic structures in murine XCT images. To accurately differentiate between different structures such as bone, lung, and heart, a combination of image processing steps including thresholding, seed growing, and signal detection are found to offer optimal segmentation performance. The algorithm and its utilization in an inverse FMT scheme that uses priors is demonstrated on mouse images.

  13. Fifty years of computer analysis in chest imaging: rule-based, machine learning, deep learning.

    PubMed

    van Ginneken, Bram

    2017-03-01

    Half a century ago, the term "computer-aided diagnosis" (CAD) was introduced in the scientific literature. Pulmonary imaging, with chest radiography and computed tomography, has always been one of the focus areas in this field. In this study, I describe how machine learning became the dominant technology for tackling CAD in the lungs, generally producing better results than do classical rule-based approaches, and how the field is now rapidly changing: in the last few years, we have seen how even better results can be obtained with deep learning. The key differences among rule-based processing, machine learning, and deep learning are summarized and illustrated for various applications of CAD in the chest.

  14. Fractional flow reserve based on computed tomography: an overview.

    PubMed

    Secchi, Francesco; Alì, Marco; Faggiano, Elena; Cannaò, Paola Maria; Fedele, Marco; Tresoldi, Silvia; Di Leo, Giovanni; Auricchio, Ferdinando; Sardanelli, Francesco

    2016-04-28

    Computed tomography coronary angiography (CTCA) is a technique proved to provide high sensitivity and negative predictive value for the identification of anatomically significant coronary artery disease (CAD) when compared with invasive X-ray coronary angiography. While the CTCA limitation of a ionizing radiation dose delivered to patients is substantially overcome by recent technical innovations, a relevant limitation remains the only anatomical assessment of coronary stenoses in the absence of evaluation of their functional haemodynamic significance. This limitation is highly important for those stenosis graded as intermediate at the anatomical assessment. Recently, non-invasive methods based on computational fluid dynamics were developed to calculate vessel-specific fractional flow reserve (FFR) using data routinely acquired by CTCA [computed tomographic fractional flow reserve (CT-FFR)]. Here we summarize methods for CT-FFR and review the evidence available in the literature up to June 26, 2016, including 16 original articles and one meta-analysis. The perspective of CT-FFR may greatly impact on CAD diagnosis, prognostic evaluation, and treatment decision-making. The aim of this review is to describe technical characteristics and clinical applications of CT-FFR, also in comparison with catheter-based invasive FFR, in order to make a cost-benefit balance in terms of clinical management and patient's health.

  15. A computationally inexpensive model for estimating dimensional measurement uncertainty due to x-ray computed tomography instrument misalignments

    NASA Astrophysics Data System (ADS)

    Ametova, Evelina; Ferrucci, Massimiliano; Chilingaryan, Suren; Dewulf, Wim

    2018-06-01

    The recent emergence of advanced manufacturing techniques such as additive manufacturing and an increased demand on the integrity of components have motivated research on the application of x-ray computed tomography (CT) for dimensional quality control. While CT has shown significant empirical potential for this purpose, there is a need for metrological research to accelerate the acceptance of CT as a measuring instrument. The accuracy in CT-based measurements is vulnerable to the instrument geometrical configuration during data acquisition, namely the relative position and orientation of x-ray source, rotation stage, and detector. Consistency between the actual instrument geometry and the corresponding parameters used in the reconstruction algorithm is critical. Currently available procedures provide users with only estimates of geometrical parameters. Quantification and propagation of uncertainty in the measured geometrical parameters must be considered to provide a complete uncertainty analysis and to establish confidence intervals for CT dimensional measurements. In this paper, we propose a computationally inexpensive model to approximate the influence of errors in CT geometrical parameters on dimensional measurement results. We use surface points extracted from a computer-aided design (CAD) model to model discrepancies in the radiographic image coordinates assigned to the projected edges between an aligned system and a system with misalignments. The efficacy of the proposed method was confirmed on simulated and experimental data in the presence of various geometrical uncertainty contributors.

  16. Exploitation of realistic computational anthropomorphic phantoms for the optimization of nuclear imaging acquisition and processing protocols.

    PubMed

    Loudos, George K; Papadimitroulas, Panagiotis G; Kagadis, George C

    2014-01-01

    Monte Carlo (MC) simulations play a crucial role in nuclear medical imaging since they can provide the ground truth for clinical acquisitions, by integrating and quantifing all physical parameters that affect image quality. The last decade a number of realistic computational anthropomorphic models have been developed to serve imaging, as well as other biomedical engineering applications. The combination of MC techniques with realistic computational phantoms can provide a powerful tool for pre and post processing in imaging, data analysis and dosimetry. This work aims to create a global database for simulated Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) exams and the methodology, as well as the first elements are presented. Simulations are performed using the well validated GATE opensource toolkit, standard anthropomorphic phantoms and activity distribution of various radiopharmaceuticals, derived from literature. The resulting images, projections and sinograms of each study are provided in the database and can be further exploited to evaluate processing and reconstruction algorithms. Patient studies using different characteristics are included in the database and different computational phantoms were tested for the same acquisitions. These include the XCAT, Zubal and the Virtual Family, which some of which are used for the first time in nuclear imaging. The created database will be freely available and our current work is towards its extension by simulating additional clinical pathologies.

  17. Dry coupling for whole-body small-animal photoacoustic computed tomography

    NASA Astrophysics Data System (ADS)

    Yeh, Chenghung; Li, Lei; Zhu, Liren; Xia, Jun; Li, Chiye; Chen, Wanyi; Garcia-Uribe, Alejandro; Maslov, Konstantin I.; Wang, Lihong V.

    2017-04-01

    We have enhanced photoacoustic computed tomography with dry acoustic coupling that eliminates water immersion anxiety and wrinkling of the animal and facilitates incorporating complementary modalities and procedures. The dry acoustic coupler is made of a tubular elastic membrane enclosed by a closed transparent water tank. The tubular membrane ensures water-free contact with the animal, and the closed water tank allows pressurization for animal stabilization. The dry coupler was tested using a whole-body small-animal ring-shaped photoacoustic computed tomography system. Dry coupling was found to provide image quality comparable to that of conventional water coupling.

  18. Linear-array based full-view high-resolution photoacoustic computed tomography of whole mouse brain functions in vivo

    NASA Astrophysics Data System (ADS)

    Li, Lei; Zhang, Pengfei; Wang, Lihong V.

    2018-02-01

    Photoacoustic computed tomography (PACT) is a non-invasive imaging technique offering high contrast, high resolution, and deep penetration in biological tissues. We report a photoacoustic computed tomography (PACT) system equipped with a high frequency linear array for anatomical and functional imaging of the mouse whole brain. The linear array was rotationally scanned in the coronal plane to achieve the full-view coverage. We investigated spontaneous neural activities in the deep brain by monitoring the hemodynamics and observed strong interhemispherical correlations between contralateral regions, both in the cortical layer and in the deep regions.

  19. [Contribution of X-ray computed tomography in the evaluation of kidney performance].

    PubMed

    Lemoine, Sandrine; Rognant, Nicolas; Collet-Benzaquen, Diane; Juillard, Laurent

    2012-07-01

    X-ray computer assisted tomography scanner is an imaging method based on the use of X-ray attenuation in tissue. This attenuation is proportional to the density of the tissue (without or after contrast media injection) in each pixel image of the image. Spiral scanner, the electron beam computed tomography (EBCT) scanner and multidetector computed tomography scanner allow renal anatomical measurements, such as cortical and medullary volume, but also the measurement of renal functional parameters, such as regional renal perfusion, renal blood flow and glomerular filtration rate. These functional parameters are extracted from the modeling of the kinetics of the contrast media concentration in the vascular space and the renal tissue, using two main mathematical models (the gamma variate model and the Patlak model). Renal functional imaging allows measuring quantitative parameters on each kidney separately, in a non-invasive manner, providing significant opportunities in nephrology, both for experimental and clinical studies. However, this method uses contrast media that may alter renal function, thus limiting its use in patients with chronic renal failure. Moreover, the increase irradiation delivered to the patient with multi detector computed tomography (MDCT) should be considered. Copyright © 2011 Association Société de néphrologie. Published by Elsevier SAS. All rights reserved.

  20. Genomics, proteomics, MEMS and SAIF: which role for diagnostic imaging?

    PubMed

    Grassi, R; Lagalla, R; Rotondo, A

    2008-09-01

    In these three words--genomics, proteomics and nanotechnologies--is the future of medicine of the third millennium, which will be characterised by more careful attention to disease prevention, diagnosis and treatment. Molecular imaging appears to satisfy this requirement. It is emerging as a new science that brings together molecular biology and in vivo imaging and represents the key for the application of personalized medicine. Micro-PET (positron emission tomography), micro-SPECT (single photon emission computed tomography), micro-CT (computed tomography), micro-MR (magnetic resonance), micro-US (ultrasound) and optical imaging are all molecular imaging techniques, several of which are applied only in preclinical settings on animal models. Others, however, are applied routinely in both clinical and preclinical setting. Research on small animals allows investigation of the genesis and development of diseases, as well as drug efficacy and the development of personalized therapies, through the study of biological processes that precede the expression of common symptoms of a pathology. Advances in molecular imaging were made possible only by collaboration among scientists in the fields of radiology, chemistry, molecular and cell biology, physics, mathematics, pharmacology, gene therapy and oncology. Although until now researchers have traditionally limited their interactions, it is only by increasing these connections that the current gaps in terminology, methods and approaches that inhibit scientific progress can be eliminated.

  1. Technological advances in hybrid imaging and impact on dose.

    PubMed

    Mattsson, Sören; Andersson, Martin; Söderberg, Marcus

    2015-07-01

    New imaging technologies utilising X-rays and radiopharmaceuticals have developed rapidly. Clinical application of computed tomography (CT) has revolutionised medical imaging and plays an enormous role in medical care. Due to technical improvements, spatial, contrast and temporal resolutions have continuously improved. In spite of significant reduction of CT doses during recent years, CT is still a dominating source of radiation exposure to the population. Combinations with single photon emission computed tomography (SPECT) and positron emission tomography (PET) and especially the use of SPECT/CT and PET/CT, provide important additional information about physiology as well as cellular and molecular events. However, significant dose contributions from SPECT and PET occur, making PET/CT and SPECT/CT truly high dose procedures. More research should be done to find optimal activities of radiopharmaceuticals for various patient groups and investigations. The implementation of simple protocol adjustments, including individually based administration, encouraged hydration, forced diuresis and use of optimised voiding intervals, laxatives, etc., can reduce the radiation exposure to the patients. New data about staff doses to fingers, hands and eye lenses indicate that finger doses could be a problem, but not doses to the eye lenses and to the whole body. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Mapping chemicals in air using an environmental CAT scanning system: evaluation of algorithms

    NASA Astrophysics Data System (ADS)

    Samanta, A.; Todd, L. A.

    A new technique is being developed which creates near real-time maps of chemical concentrations in air for environmental and occupational environmental applications. This technique, we call Environmental CAT Scanning, combines the real-time measuring technique of open-path Fourier transform infrared spectroscopy with the mapping capabilitites of computed tomography to produce two-dimensional concentration maps. With this system, a network of open-path measurements is obtained over an area; measurements are then processed using a tomographic algorithm to reconstruct the concentrations. This research focussed on the process of evaluating and selecting appropriate reconstruction algorithms, for use in the field, by using test concentration data from both computer simultation and laboratory chamber studies. Four algorithms were tested using three types of data: (1) experimental open-path data from studies that used a prototype opne-path Fourier transform/computed tomography system in an exposure chamber; (2) synthetic open-path data generated from maps created by kriging point samples taken in the chamber studies (in 1), and; (3) synthetic open-path data generated using a chemical dispersion model to create time seires maps. The iterative algorithms used to reconstruct the concentration data were: Algebraic Reconstruction Technique without Weights (ART1), Algebraic Reconstruction Technique with Weights (ARTW), Maximum Likelihood with Expectation Maximization (MLEM) and Multiplicative Algebraic Reconstruction Technique (MART). Maps were evaluated quantitatively and qualitatively. In general, MART and MLEM performed best, followed by ARTW and ART1. However, algorithm performance varied under different contaminant scenarios. This study showed the importance of using a variety of maps, particulary those generated using dispersion models. The time series maps provided a more rigorous test of the algorithms and allowed distinctions to be made among the algorithms. A comprehensive evaluation of algorithms, for the environmental application of tomography, requires the use of a battery of test concentration data before field implementation, which models reality and tests the limits of the algorithms.

  3. Inter- and intraobserver reliability of the vertebral, local and segmental kyphosis in 120 traumatic lumbar and thoracic burst fractures: evaluation in lateral X-rays and sagittal computed tomographies

    PubMed Central

    Brunner, Alexander; Gühring, Markus; Schmälzle, Traude; Weise, Kuno; Badke, Andreas

    2009-01-01

    Evaluation of the kyphosis angle in thoracic and lumbar burst fractures is often used to indicate surgical procedures. The kyphosis angle could be measured as vertebral, segmental and local kyphosis according to the method of Cobb. The vertebral, segmental and local kyphosis according to the method of Cobb were measured at 120 lateral X-rays and sagittal computed tomographies of 60 thoracic and 60 lumbar burst fractures by 3 independent observers on 2 separate occasions. Osteoporotic fractures were excluded. The intra- and interobserver reliability of these angles in X-ray and computed tomogram, using the intra class correlation coefficient (ICC) were evaluated. Highest reproducibility showed the segmental kyphosis followed by the vertebral kyphosis. For thoracic fractures segmental kyphosis shows in X-ray “excellent” inter- and intraobserver reliabilities (ICC 0.826, 0.802) and for lumbar fractures “good” to “excellent” inter- and intraobserver reliabilities (ICC = 0.790, 0.803). In computed tomography, the segmental kyphosis showed “excellent” inter- and intraobserver reliabilities (ICC = 0.824, 0.801) for thoracic and “excellent” inter- and intraobserver reliabilities (ICC = 0.874, 0.835) for the lumbar fractures. Regarding both diagnostic work ups (X-ray and computed tomography), significant differences were evaluated in interobserver reliabilities for vertebral kyphosis measured in lumbar fracture X-rays (p = 0.035) and interobserver reliabilities for local kyphosis, measured in thoracic fracture X-rays (p = 0.010). Regarding both fracture localizations (thoracic and lumbar fractures), significant differences could only be evaluated in interobserver reliabilities for the local kyphosis measured in computed tomographies (p = 0.045) and in intraobserver reliabilities for the vertebral kyphosis measured in X-rays (p = 0.024). “Good” to “excellent” inter- and intraobserver reliabilities for vertebral, segmental and local kyphosis in X-ray make these angles to a helpful tool, indicating surgical procedures. For the practical use in lateral X-ray, we emphasize the determination of the segmental kyphosis, because of the highest reproducibility of this angle. “Good” to “excellent” inter- and intraobserver reliabilities for these three angles could also be evaluated in computed tomographies. Therefore, also in computed tomography, the use of these three angles seems to be generally possible. For a direct correlation of the results in lateral X-ray and in computed tomography, further studies should be needed. PMID:19953277

  4. Dipyridamole stress myocardial perfusion by computed tomography in patients with left bundle branch block.

    PubMed

    Cabeda, Estêvan Vieira; Falcão, Andréa Maria Gomes; Soares, José; Rochitte, Carlos Eduardo; Nomura, César Higa; Ávila, Luiz Francisco Rodrigues; Parga, José Rodrigues

    2015-12-01

    Functional tests have limited accuracy for identifying myocardial ischemia in patients with left bundle branch block (LBBB). To assess the diagnostic accuracy of dipyridamole-stress myocardial computed tomography perfusion (CTP) by 320-detector CT in patients with LBBB using invasive quantitative coronary angiography (QCA) (stenosis ≥ 70%) as reference; to investigate the advantage of adding CTP to coronary computed tomography angiography (CTA) and compare the results with those of single photon emission computed tomography (SPECT) myocardial perfusion scintigraphy. Thirty patients with LBBB who had undergone SPECT for the investigation of coronary artery disease were referred for stress tomography. Independent examiners performed per-patient and per-coronary territory assessments. All patients gave written informed consent to participate in the study that was approved by the institution's ethics committee. The patients' mean age was 62 ± 10 years. The mean dose of radiation for the tomography protocol was 9.3 ± 4.6 mSv. With regard to CTP, the per-patient values for sensitivity, specificity, positive and negative predictive values, and accuracy were 86%, 81%, 80%, 87%, and 83%, respectively (p = 0.001). The per-territory values were 63%, 86%, 65%, 84%, and 79%, respectively (p < 0.001). In both analyses, the addition of CTP to CTA achieved higher diagnostic accuracy for detecting myocardial ischemia than SPECT (p < 0.001). The use of the stress tomography protocol is feasible and has good diagnostic accuracy for assessing myocardial ischemia in patients with LBBB.

  5. Role of positron emission tomography/computed tomography in breast cancer.

    PubMed

    Bourgeois, Austin C; Warren, Lance A; Chang, Ted T; Embry, Scott; Hudson, Kathleen; Bradley, Yong C

    2013-09-01

    Although positron emission tomography (PET) imaging may not be used in the diagnosis of breast cancer, the use of PET/computed tomography is imperative in all aspects of breast cancer staging, treatment, and follow-up. PET will continue to be relevant in personalized medicine because accurate tumor status will be even more critical during and after the transition from a generic metabolic agent to receptor imaging. Positron emission mammography is an imaging proposition that may have benefits in lower doses, but its use is limited without new radiopharmaceuticals. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Transurethral Ultrasound Diffraction Tomography

    DTIC Science & Technology

    2007-03-01

    the covariance matrix was derived. The covariance reduced to that of the X- ray CT under the assumptions of linear operator and real data.[5] The...the covariance matrix in the linear x- ray computed tomography is a special case of the inverse scattering matrix derived in this paper. The matrix was...is derived in Sec. IV, and its relation to that of the linear x- ray computed tomography appears in Sec. V. In Sec. VI, the inverse scattering

  7. How to interpret computed tomography of the lumbar spine

    PubMed Central

    Mobasheri, R; Das, T; Vaidya, S; Mallik, S; El-Hussainy, M; Casey, A

    2014-01-01

    Computed tomography (CT) of the spine has remained an important tool in the investigation of spinal pathology. This article helps to explain the basics of CT of the lumbar spine to allow the clinician better use of this diagnostic tool. PMID:25245727

  8. Clinical and computed tomography features of secondary renal hyperparathyroidism

    PubMed Central

    Vanbrugghe, Benoît; Blond, Laurent; Carioto, Lisa; Carmel, Eric Norman; Nadeau, Marie-Eve

    2011-01-01

    An atypical case of secondary renal hyperparathyroidism was diagnosed in a 9-year-old miniature schnauzer after a skull computed tomography (CT) showed the presence of 2 bilateral and symmetrical soft tissue maxillary masses, and osteopenia of the skull. PMID:21532826

  9. Temporal sparsity exploiting nonlocal regularization for 4D computed tomography reconstruction

    PubMed Central

    Kazantsev, Daniil; Guo, Enyu; Kaestner, Anders; Lionheart, William R. B.; Bent, Julian; Withers, Philip J.; Lee, Peter D.

    2016-01-01

    X-ray imaging applications in medical and material sciences are frequently limited by the number of tomographic projections collected. The inversion of the limited projection data is an ill-posed problem and needs regularization. Traditional spatial regularization is not well adapted to the dynamic nature of time-lapse tomography since it discards the redundancy of the temporal information. In this paper, we propose a novel iterative reconstruction algorithm with a nonlocal regularization term to account for time-evolving datasets. The aim of the proposed nonlocal penalty is to collect the maximum relevant information in the spatial and temporal domains. With the proposed sparsity seeking approach in the temporal space, the computational complexity of the classical nonlocal regularizer is substantially reduced (at least by one order of magnitude). The presented reconstruction method can be directly applied to various big data 4D (x, y, z+time) tomographic experiments in many fields. We apply the proposed technique to modelled data and to real dynamic X-ray microtomography (XMT) data of high resolution. Compared to the classical spatio-temporal nonlocal regularization approach, the proposed method delivers reconstructed images of improved resolution and higher contrast while remaining significantly less computationally demanding. PMID:27002902

  10. Computer-aided diagnosis in phase contrast imaging X-ray computed tomography for quantitative characterization of ex vivo human patellar cartilage.

    PubMed

    Nagarajan, Mahesh B; Coan, Paola; Huber, Markus B; Diemoz, Paul C; Glaser, Christian; Wismuller, Axel

    2013-10-01

    Visualization of ex vivo human patellar cartilage matrix through the phase contrast imaging X-ray computed tomography (PCI-CT) has been previously demonstrated. Such studies revealed osteoarthritis-induced changes to chondrocyte organization in the radial zone. This study investigates the application of texture analysis to characterizing such chondrocyte patterns in the presence and absence of osteoarthritic damage. Texture features derived from Minkowski functionals (MF) and gray-level co-occurrence matrices (GLCM) were extracted from 842 regions of interest (ROI) annotated on PCI-CT images of ex vivo human patellar cartilage specimens. These texture features were subsequently used in a machine learning task with support vector regression to classify ROIs as healthy or osteoarthritic; classification performance was evaluated using the area under the receiver operating characteristic curve (AUC). The best classification performance was observed with the MF features perimeter (AUC: 0.94 ±0.08 ) and "Euler characteristic" (AUC: 0.94 ±0.07 ), and GLCM-derived feature "Correlation" (AUC: 0.93 ±0.07). These results suggest that such texture features can provide a detailed characterization of the chondrocyte organization in the cartilage matrix, enabling classification of cartilage as healthy or osteoarthritic with high accuracy.

  11. First-arrival traveltime computation for quasi-P waves in 2D transversely isotropic media using Fermat’s principle-based fast marching

    NASA Astrophysics Data System (ADS)

    Hu, Jiangtao; Cao, Junxing; Wang, Huazhong; Wang, Xingjian; Jiang, Xudong

    2017-12-01

    First-arrival traveltime computation for quasi-P waves in transversely isotropic (TI) media is the key component of tomography and depth migration. It is appealing to use the fast marching method in isotropic media as it efficiently computes traveltime along an expanding wavefront. It uses the finite difference method to solve the eikonal equation. However, applying the fast marching method in anisotropic media faces challenges because the anisotropy introduces additional nonlinearity in the eikonal equation and solving this nonlinear eikonal equation with the finite difference method is challenging. To address this problem, we present a Fermat’s principle-based fast marching method to compute traveltime in two-dimensional TI media. This method is applicable in both vertical and tilted TI (VTI and TTI) media. It computes traveltime along an expanding wavefront using Fermat’s principle instead of the eikonal equation. Thus, it does not suffer from the nonlinearity of the eikonal equation in TI media. To compute traveltime using Fermat’s principle, the explicit expression of group velocity in TI media is required to describe the ray propagation. The moveout approximation is adopted to obtain the explicit expression of group velocity. Numerical examples on both VTI and TTI models show that the traveltime contour obtained by the proposed method matches well with the wavefront from the wave equation. This shows that the proposed method could be used in depth migration and tomography.

  12. Peri-implant assessment via cone beam computed tomography and digital periapical radiography: an ex vivo study.

    PubMed

    Silveira-Neto, Nicolau; Flores, Mateus Ericson; De Carli, João Paulo; Costa, Max Dória; Matos, Felipe de Souza; Paranhos, Luiz Renato; Linden, Maria Salete Sandini

    2017-11-01

    This research evaluated detail registration in peri-implant bone using two different cone beam computer tomography systems and a digital periapical radiograph. Three different image acquisition protocols were established for each cone beam computer tomography apparatus, and three clinical situations were simulated in an ex vivo fresh pig mandible: buccal bone defect, peri-implant bone defect, and bone contact. Data were subjected to two analyses: quantitative and qualitative. The quantitative analyses involved a comparison of real specimen measures using a digital caliper in three regions of the preserved buccal bone - A, B and E (control group) - to cone beam computer tomography images obtained with different protocols (kp1, kp2, kp3, ip1, ip2, and ip3). In the qualitative analyses, the ability to register peri-implant details via tomography and digital periapical radiography was verified, as indicated by twelve evaluators. Data were analyzed with ANOVA and Tukey's test (α=0.05). The quantitative assessment showed means statistically equal to those of the control group under the following conditions: buccal bone defect B and E with kp1 and ip1, peri-implant bone defect E with kp2 and kp3, and bone contact A with kp1, kp2, kp3, and ip2. Qualitatively, only bone contacts were significantly different among the assessments, and the p3 results differed from the p1 and p2 results. The other results were statistically equivalent. The registration of peri-implant details was influenced by the image acquisition protocol, although metal artifacts were produced in all situations. The evaluators preferred the Kodak 9000 3D cone beam computer tomography in most cases. The evaluators identified buccal bone defects better with cone beam computer tomography and identified peri-implant bone defects better with digital periapical radiography.

  13. Contrast Agents for Micro-Computed Tomography of Microdamage in Bone

    DTIC Science & Technology

    2011-01-01

    solution from DI water (or PBS). For the second model, a 5 mm cube of cortical bone tissue was embedded in polymethylmethacrylate and sectioned...radiography1 and as a radiopacifer in polymethylmethacrylate bone cement.2 Current commercial products for either application use microscale BaSO4 particles... polymethylmethacrylate bone cement (Lewis, 1997). The objective of this study was to non-destructively and three-dimensionally image microdamage

  14. Noninvasive coronary artery angiography using electron beam computed tomography

    NASA Astrophysics Data System (ADS)

    Rumberger, John A.; Rensing, Benno J.; Reed, Judd E.; Ritman, Erik L.; Sheedy, Patrick F., II

    1996-04-01

    Electron beam computed tomography (EBCT), also known as ultrafast-CT or cine-CT, uses a unique scanning architecture which allows for multiple high spatial resolution electrocardiographic triggered images of the beating heart. A recent study has demonstrated the feasibility of qualitative comparisons between EBCT derived 3D coronary angiograms and invasive angiography. Stenoses of the proximal portions of the left anterior descending and right coronary arteries were readily identified, but description of atherosclerotic narrowing in the left circumflex artery (and distal epicardial disease) was not possible with any degree of confidence. Although these preliminary studies support the notion that this approach has potential, the images overall were suboptimal for clinical application as an adjunct to invasive angiography. Furthermore, these studies did not examine different methods of EBCT scan acquisition, tomographic slice thicknesses, extent of scan overlap, or other segmentation, thresholding, and interpolation algorithms. Our laboratory has initiated investigation of these aspects and limitations of EBCT coronary angiography. Specific areas of research include defining effects of cardiac orientation; defining the effects of tomographic slice thickness and intensity (gradient) versus positional (shaped based) interpolation; and defining applicability of imaging each of the major epicardial coronary arteries for quantitative definition of vessel size, cross-sectional area, taper, and discrete vessel narrowing.

  15. Automatic Solitary Lung Nodule Detection in Computed Tomography Images Slices

    NASA Astrophysics Data System (ADS)

    Sentana, I. W. B.; Jawas, N.; Asri, S. A.

    2018-01-01

    Lung nodule is an early indicator of some lung diseases, including lung cancer. In Computed Tomography (CT) based image, nodule is known as a shape that appears brighter than lung surrounding. This research aim to develop an application that automatically detect lung nodule in CT images. There are some steps in algorithm such as image acquisition and conversion, image binarization, lung segmentation, blob detection, and classification. Data acquisition is a step to taking image slice by slice from the original *.dicom format and then each image slices is converted into *.tif image format. Binarization that tailoring Otsu algorithm, than separated the background and foreground part of each image slices. After removing the background part, the next step is to segment part of the lung only so the nodule can localized easier. Once again Otsu algorithm is use to detect nodule blob in localized lung area. The final step is tailoring Support Vector Machine (SVM) to classify the nodule. The application has succeed detecting near round nodule with a certain threshold of size. Those detecting result shows drawback in part of thresholding size and shape of nodule that need to enhance in the next part of the research. The algorithm also cannot detect nodule that attached to wall and Lung Chanel, since it depend the searching only on colour differences.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brun, E., E-mail: emmanuel.brun@esrf.fr; Grandl, S.; Sztrókay-Gaul, A.

    Purpose: Phase contrast computed tomography has emerged as an imaging method, which is able to outperform present day clinical mammography in breast tumor visualization while maintaining an equivalent average dose. To this day, no segmentation technique takes into account the specificity of the phase contrast signal. In this study, the authors propose a new mathematical framework for human-guided breast tumor segmentation. This method has been applied to high-resolution images of excised human organs, each of several gigabytes. Methods: The authors present a segmentation procedure based on the viscous watershed transform and demonstrate the efficacy of this method on analyzer basedmore » phase contrast images. The segmentation of tumors inside two full human breasts is then shown as an example of this procedure’s possible applications. Results: A correct and precise identification of the tumor boundaries was obtained and confirmed by manual contouring performed independently by four experienced radiologists. Conclusions: The authors demonstrate that applying the watershed viscous transform allows them to perform the segmentation of tumors in high-resolution x-ray analyzer based phase contrast breast computed tomography images. Combining the additional information provided by the segmentation procedure with the already high definition of morphological details and tissue boundaries offered by phase contrast imaging techniques, will represent a valuable multistep procedure to be used in future medical diagnostic applications.« less

  17. X-ray cone-beam computed tomography: principles, applications, challenges and solutions

    NASA Astrophysics Data System (ADS)

    Noo, Frederic

    2010-03-01

    In the nineties, x-ray computed tomography, commonly referred to as CT, seemed to be on the track to become old technology, bound to be replaced by more sophisticated techniques such as magnetic resonance imaging, due in particular to the harmful effects of x-ray radiation exposure. Yet, the new century brought with it new technology that allowed a complete change in trends and re-affirmed CT as an essential tool in radiology. For instance, the popularity of CT in 2007 was such that approximately 68.7 million CT examinations were performed in the United States, which was nearly 2.5 times the number of magnetic resonance (MRI) examinations. More than that, CT has expanded beyond its conventional diagnostic role; CT is now used routinely in interventional radiology and also in radiation therapy treatment. The technology advances that allowed the revival of CT are those that made fast, accurate cone-beam data acquisition possible. Nowadays, cone-beam data acquisition allows scanning large volumes with isotropic sub-millimeter spatial resolution in a very fast time, which can be as short as 500ms for cardiac imaging. The principles of cone-beam imaging will be first reviewed. Then a discussion of its applications will be given. Old and new challenges will be presented along the way with current solutions.

  18. Quantitative X-ray fluorescence computed tomography for low-Z samples using an iterative absorption correction algorithm

    NASA Astrophysics Data System (ADS)

    Huang, Rong; Limburg, Karin; Rohtla, Mehis

    2017-05-01

    X-ray fluorescence computed tomography is often used to measure trace element distributions within low-Z samples, using algorithms capable of X-ray absorption correction when sample self-absorption is not negligible. Its reconstruction is more complicated compared to transmission tomography, and therefore not widely used. We describe in this paper a very practical iterative method that uses widely available transmission tomography reconstruction software for fluorescence tomography. With this method, sample self-absorption can be corrected not only for the absorption within the measured layer but also for the absorption by material beyond that layer. By combining tomography with analysis for scanning X-ray fluorescence microscopy, absolute concentrations of trace elements can be obtained. By using widely shared software, we not only minimized the coding, took advantage of computing efficiency of fast Fourier transform in transmission tomography software, but also thereby accessed well-developed data processing tools coming with well-known and reliable software packages. The convergence of the iterations was also carefully studied for fluorescence of different attenuation lengths. As an example, fish eye lenses could provide valuable information about fish life-history and endured environmental conditions. Given the lens's spherical shape and sometimes the short distance from sample to detector for detecting low concentration trace elements, its tomography data are affected by absorption related to material beyond the measured layer but can be reconstructed well with our method. Fish eye lens tomography results are compared with sliced lens 2D fluorescence mapping with good agreement, and with tomography providing better spatial resolution.

  19. Applications of CBCT in dental practice: a review of the literature.

    PubMed

    Alamri, Hadi Mohammed; Sadrameli, Mitra; Alshalhoob, Mazen Abdullah; Sadrameli, Mahtab; Alshehri, Mohammed Abdullah

    2012-01-01

    This article reviews the various clinical applications of cone-beam computed tomography (CBCT). A literature search was conducted via PubMed for publications related to dental applications of CBCT published between January 1998 and June 15, 2010. The search revealed a total of 540 articles, 129 of which were clinically relevant and analyzed in detail. A literature review demonstrated that CBCT has been utilized for oral and maxillofacial surgery, endodontics, implantology, orthodontics, temporomandibular joint dysfunction, periodontics, and restorative and forensic dentistry. This literature review showed that the different indications for CBCT are governed by the needs of the specific dental discipline and the type of procedure performed.

  20. [Application of SPECT/CT in neurosurgical practice].

    PubMed

    Golanov, A V; Kotel'nikova, T M; Melikian, A G; Dolgushin, M B; Sorokin, V S; Soboleva, O I; Khokhlova, E V; Gorlachev, G E; Krasnianskiĭ, S A

    2012-01-01

    The paper presents the experience of application of single-photon emission computed tomography (SPECT) and CT in neurosurgery. Combination of these two techniques in the single system provides higher precision of both methods. The novel technique allows assessment of tumor spread in the brain, differential diagnosis of tumor regrowth and radiation-induced necrosis, evaluation of cerebral perfusion in epilepsy, traumatic brain injury (TBI), and diagnostics of secondary CNS lesions. Examples of primary diagnosis, dynamic follow-up and differential diagnosis of cerebral neoplasms, localization of epileptogenic foci in planning of surgery, prediction of outcome after TBI and evaluation of spread of metastatic skeletal involvement and further application of acquire data are presented.

Top