Sample records for computed tomography models

  1. 68Ga/177Lu-labeled DOTA-TATE shows similar imaging and biodistribution in neuroendocrine tumor model.

    PubMed

    Liu, Fei; Zhu, Hua; Yu, Jiangyuan; Han, Xuedi; Xie, Qinghua; Liu, Teli; Xia, Chuanqin; Li, Nan; Yang, Zhi

    2017-06-01

    Somatostatin receptors are overexpressed in neuroendocrine tumors, whose endogenous ligands are somatostatin. DOTA-TATE is an analogue of somatostatin, which shows high binding affinity to somatostatin receptors. We aim to evaluate the 68 Ga/ 177 Lu-labeling DOTA-TATE kit in neuroendocrine tumor model for molecular imaging and to try human-positron emission tomography/computed tomography imaging of 68 Ga-DOTA-TATE in neuroendocrine tumor patients. DOTA-TATE kits were formulated and radiolabeled with 68 Ga/ 177 Lu for 68 Ga/ 177 Lu-DOTA-TATE (M-DOTA-TATE). In vitro and in vivo stability of 177 Lu-DOTA-TATE were performed. Nude mice bearing human tumors were injected with 68 Ga-DOTA-TATE or 177 Lu-DOTA-TATE for micro-positron emission tomography and micro-single-photon emission computed tomography/computed tomography imaging separately, and clinical positron emission tomography/computed tomography images of 68 Ga-DOTA-TATE were obtained at 1 h post-intravenous injection from patients with neuroendocrine tumors. Micro-positron emission tomography and micro-single-photon emission computed tomography/computed tomography imaging of 68 Ga-DOTA-TATE and 177 Lu-DOTA-TATE both showed clear tumor uptake which could be blocked by excess DOTA-TATE. In addition, 68 Ga-DOTA-TATE-positron emission tomography/computed tomography imaging in neuroendocrine tumor patients could show primary and metastatic lesions. 68 Ga-DOTA-TATE and 177 Lu-DOTA-TATE could accumulate in tumors in animal models, paving the way for better clinical peptide receptor radionuclide therapy for neuroendocrine tumor patients in Asian population.

  2. Development of computational small animal models and their applications in preclinical imaging and therapy research.

    PubMed

    Xie, Tianwu; Zaidi, Habib

    2016-01-01

    The development of multimodality preclinical imaging techniques and the rapid growth of realistic computer simulation tools have promoted the construction and application of computational laboratory animal models in preclinical research. Since the early 1990s, over 120 realistic computational animal models have been reported in the literature and used as surrogates to characterize the anatomy of actual animals for the simulation of preclinical studies involving the use of bioluminescence tomography, fluorescence molecular tomography, positron emission tomography, single-photon emission computed tomography, microcomputed tomography, magnetic resonance imaging, and optical imaging. Other applications include electromagnetic field simulation, ionizing and nonionizing radiation dosimetry, and the development and evaluation of new methodologies for multimodality image coregistration, segmentation, and reconstruction of small animal images. This paper provides a comprehensive review of the history and fundamental technologies used for the development of computational small animal models with a particular focus on their application in preclinical imaging as well as nonionizing and ionizing radiation dosimetry calculations. An overview of the overall process involved in the design of these models, including the fundamental elements used for the construction of different types of computational models, the identification of original anatomical data, the simulation tools used for solving various computational problems, and the applications of computational animal models in preclinical research. The authors also analyze the characteristics of categories of computational models (stylized, voxel-based, and boundary representation) and discuss the technical challenges faced at the present time as well as research needs in the future.

  3. Dental application of novel finite element analysis software for three-dimensional finite element modeling of a dentulous mandible from its computed tomography images.

    PubMed

    Nakamura, Keiko; Tajima, Kiyoshi; Chen, Ker-Kong; Nagamatsu, Yuki; Kakigawa, Hiroshi; Masumi, Shin-ich

    2013-12-01

    This study focused on the application of novel finite-element analysis software for constructing a finite-element model from the computed tomography data of a human dentulous mandible. The finite-element model is necessary for evaluating the mechanical response of the alveolar part of the mandible, resulting from occlusal force applied to the teeth during biting. Commercially available patient-specific general computed tomography-based finite-element analysis software was solely applied to the finite-element analysis for the extraction of computed tomography data. The mandibular bone with teeth was extracted from the original images. Both the enamel and the dentin were extracted after image processing, and the periodontal ligament was created from the segmented dentin. The constructed finite-element model was reasonably accurate using a total of 234,644 nodes and 1,268,784 tetrahedral and 40,665 shell elements. The elastic moduli of the heterogeneous mandibular bone were determined from the bone density data of the computed tomography images. The results suggested that the software applied in this study is both useful and powerful for creating a more accurate three-dimensional finite-element model of a dentulous mandible from the computed tomography data without the need for any other software.

  4. Development of computational small animal models and their applications in preclinical imaging and therapy research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Tianwu; Zaidi, Habib, E-mail: habib.zaidi@hcuge.ch; Geneva Neuroscience Center, Geneva University, Geneva CH-1205

    The development of multimodality preclinical imaging techniques and the rapid growth of realistic computer simulation tools have promoted the construction and application of computational laboratory animal models in preclinical research. Since the early 1990s, over 120 realistic computational animal models have been reported in the literature and used as surrogates to characterize the anatomy of actual animals for the simulation of preclinical studies involving the use of bioluminescence tomography, fluorescence molecular tomography, positron emission tomography, single-photon emission computed tomography, microcomputed tomography, magnetic resonance imaging, and optical imaging. Other applications include electromagnetic field simulation, ionizing and nonionizing radiation dosimetry, and themore » development and evaluation of new methodologies for multimodality image coregistration, segmentation, and reconstruction of small animal images. This paper provides a comprehensive review of the history and fundamental technologies used for the development of computational small animal models with a particular focus on their application in preclinical imaging as well as nonionizing and ionizing radiation dosimetry calculations. An overview of the overall process involved in the design of these models, including the fundamental elements used for the construction of different types of computational models, the identification of original anatomical data, the simulation tools used for solving various computational problems, and the applications of computational animal models in preclinical research. The authors also analyze the characteristics of categories of computational models (stylized, voxel-based, and boundary representation) and discuss the technical challenges faced at the present time as well as research needs in the future.« less

  5. Validation of a computational knee joint model using an alignment method for the knee laxity test and computed tomography.

    PubMed

    Kang, Kyoung-Tak; Kim, Sung-Hwan; Son, Juhyun; Lee, Young Han; Koh, Yong-Gon

    2017-01-01

    Computational models have been identified as efficient techniques in the clinical decision-making process. However, computational model was validated using published data in most previous studies, and the kinematic validation of such models still remains a challenge. Recently, studies using medical imaging have provided a more accurate visualization of knee joint kinematics. The purpose of the present study was to perform kinematic validation for the subject-specific computational knee joint model by comparison with subject's medical imaging under identical laxity condition. The laxity test was applied to the anterior-posterior drawer under 90° flexion and the varus-valgus under 20° flexion with a series of stress radiographs, a Telos device, and computed tomography. The loading condition in the computational subject-specific knee joint model was identical to the laxity test condition in the medical image. Our computational model showed knee laxity kinematic trends that were consistent with the computed tomography images, except for negligible differences because of the indirect application of the subject's in vivo material properties. Medical imaging based on computed tomography with the laxity test allowed us to measure not only the precise translation but also the rotation of the knee joint. This methodology will be beneficial in the validation of laxity tests for subject- or patient-specific computational models.

  6. Relationship between the Self-Rating Anxiety Scale score and the success rate of 64-slice computed tomography coronary angiography.

    PubMed

    Li, Hui; Jin, Dan; Qiao, Fang; Chen, Jianchang; Gong, Jianping

    Computed tomography coronary angiography, a key method for obtaining coronary artery images, is widely used to screen for coronary artery diseases due to its noninvasive nature. In China, 64-slice computed tomography systems are now the most common models. As factors that directly affect computed tomography performance, heart rate and rhythm control are regulated by the autonomic nervous system and are highly related to the emotional state of the patient. The aim of this prospective study is to use a pre-computed tomography scan Self-Rating Anxiety Scale assessment to analyze the effects of tension and anxiety on computed tomography coronary angiography success. Subjects aged 18-85 years who were planned to undergo computed tomography coronary angiography were enrolled; 1 to 2 h before the computed tomography scan, basic patient data (gender, age, heart rate at rest, and family history) and Self-Rating Anxiety Scale score were obtained. The same group of imaging department doctors, technicians, and nurses performed computed tomography coronary angiography for all the enrolled subjects and observed whether those subjects could finish the computed tomography coronary angiography scan and provide clear, diagnostically valuable images. Participants were divided into successful (obtained diagnostically useful coronary images) and unsuccessful groups. Basic data and Self-Rating Anxiety Scale scores were compared between the groups. The Self-Rating Anxiety Scale standard score of the successful group was lower than that of the unsuccessful group (P = 0.001). As the Self-Rating Anxiety Scale standard score rose, the success rate of computed tomography coronary angiography decreased. The Self-Rating Anxiety Scale score has a negative relationship with computed tomography coronary angiography success. Anxiety can be a disadvantage in computed tomography coronary angiography examination. The pre-computed tomography coronary angiography scan Self-Rating Anxiety Scale score may be a useful tool for assessing whether a computed tomography coronary angiography scan will be successful or not. © The Author(s) 2015.

  7. Measurement of Three-dimensional Density Distributions by Holographic Interferometry and Computer Tomography

    NASA Technical Reports Server (NTRS)

    Vest, C. M.

    1982-01-01

    The use of holographic interferometry to measure two and threedimensional flows and the interpretation of multiple-view interferograms with computer tomography are discussed. Computational techniques developed for tomography are reviewed. Current research topics are outlined including the development of an automated fringe readout system, optimum reconstruction procedures for when an opaque test model is present in the field, and interferometry and tomography with strongly refracting fields and shocks.

  8. Tomography in Geology: 3D Modeling and Analysis of Structural Features of Rocks Using Computed MicroTomography

    NASA Astrophysics Data System (ADS)

    Ponomarev, A. A.; Mamadaliev, R. A.; Semenova, T. V.

    2016-10-01

    The article presents a brief overview of the current state of computed tomography in the sphere of oil and gas production in Russia and in the world. Operation of computed microtomograph Skyscan 1172 is also provided, as well as personal examples of its application in solving geological problems.

  9. A Heat Pipe Coupled Planar Thermionic Converter: Performance Characterization, Nondestructive Testing, and Evaluation.

    DTIC Science & Technology

    1992-03-15

    Pipes, Computer Modelling, Nondestructive Testing. Tomography , Planar Converter, Cesium Reservoir 19. ABSTRACT (Continue on reverse if necessary and...Investigation ........................ 32 4.3 Computed Tomography ................................ 33 4.4 X-Ray Radiography...25 3.4 LEOS generated output data for Mo-Re converter ................ 26 4.1 Distance along converter imaged by the computed tomography

  10. [Contribution of X-ray computed tomography in the evaluation of kidney performance].

    PubMed

    Lemoine, Sandrine; Rognant, Nicolas; Collet-Benzaquen, Diane; Juillard, Laurent

    2012-07-01

    X-ray computer assisted tomography scanner is an imaging method based on the use of X-ray attenuation in tissue. This attenuation is proportional to the density of the tissue (without or after contrast media injection) in each pixel image of the image. Spiral scanner, the electron beam computed tomography (EBCT) scanner and multidetector computed tomography scanner allow renal anatomical measurements, such as cortical and medullary volume, but also the measurement of renal functional parameters, such as regional renal perfusion, renal blood flow and glomerular filtration rate. These functional parameters are extracted from the modeling of the kinetics of the contrast media concentration in the vascular space and the renal tissue, using two main mathematical models (the gamma variate model and the Patlak model). Renal functional imaging allows measuring quantitative parameters on each kidney separately, in a non-invasive manner, providing significant opportunities in nephrology, both for experimental and clinical studies. However, this method uses contrast media that may alter renal function, thus limiting its use in patients with chronic renal failure. Moreover, the increase irradiation delivered to the patient with multi detector computed tomography (MDCT) should be considered. Copyright © 2011 Association Société de néphrologie. Published by Elsevier SAS. All rights reserved.

  11. Ambient noise adjoint tomography for a linear array in North China

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Yao, H.; Liu, Q.; Yuan, Y. O.; Zhang, P.; Feng, J.; Fang, L.

    2017-12-01

    Ambient noise tomography based on dispersion data and ray theory has been widely utilized for imaging crustal structures. In order to improve the inversion accuracy, ambient noise tomography based on the 3D adjoint approach or full waveform inversion has been developed recently, however, the computational cost is tremendous. In this study we present 2D ambient noise adjoint tomography for a linear array in north China with significant computational efficiency compared to 3D ambient noise adjoint tomography. During the preprocessing, we first convert the observed data in 3D media, i.e., surface-wave empirical Green's functions (EGFs) from ambient noise cross-correlation, to the reconstructed EGFs in 2D media using a 3D/2D transformation scheme. Different from the conventional steps of measuring phase dispersion, the 2D adjoint tomography refines 2D shear wave speeds along the profile directly from the reconstructed Rayleigh wave EGFs in the period band 6-35s. With the 2D initial model extracted from the 3D model from traditional ambient noise tomography, adjoint tomography updates the model by minimizing the frequency-dependent Rayleigh wave traveltime misfits between the reconstructed EGFs and synthetic Green function (SGFs) in 2D media generated by the spectral-element method (SEM), with a preconditioned conjugate gradient method. The multitaper traveltime difference measurement is applied in four period bands during the inversion: 20-35s, 15-30s, 10-20s and 6-15s. The recovered model shows more detailed crustal structures with pronounced low velocity anomaly in the mid-lower crust beneath the junction of Taihang Mountains and Yin-Yan Mountains compared with the initial model. This low velocity structure may imply the possible intense crust-mantle interactions, probably associated with the magmatic underplating during the Mesozoic to Cenozoic evolution of the region. To our knowledge, it's first time that ambient noise adjoint tomography is implemented in 2D media. Considering the intensive computational cost and storage of 3D adjoint tomography, this 2D ambient noise adjoint tomography has potential advantages to get high-resolution 2D crustal structures with limited computational resource.

  12. Modeling bioluminescent photon transport in tissue based on Radiosity-diffusion model

    NASA Astrophysics Data System (ADS)

    Sun, Li; Wang, Pu; Tian, Jie; Zhang, Bo; Han, Dong; Yang, Xin

    2010-03-01

    Bioluminescence tomography (BLT) is one of the most important non-invasive optical molecular imaging modalities. The model for the bioluminescent photon propagation plays a significant role in the bioluminescence tomography study. Due to the high computational efficiency, diffusion approximation (DA) is generally applied in the bioluminescence tomography. But the diffusion equation is valid only in highly scattering and weakly absorbing regions and fails in non-scattering or low-scattering tissues, such as a cyst in the breast, the cerebrospinal fluid (CSF) layer of the brain and synovial fluid layer in the joints. A hybrid Radiosity-diffusion model is proposed for dealing with the non-scattering regions within diffusing domains in this paper. This hybrid method incorporates a priori information of the geometry of non-scattering regions, which can be acquired by magnetic resonance imaging (MRI) or x-ray computed tomography (CT). Then the model is implemented using a finite element method (FEM) to ensure the high computational efficiency. Finally, we demonstrate that the method is comparable with Mont Carlo (MC) method which is regarded as a 'gold standard' for photon transportation simulation.

  13. Imaging of the midpalatal suture in a porcine model: flat-panel volume computed tomography compared with multislice computed tomography.

    PubMed

    Hahn, Wolfram; Fricke-Zech, Susanne; Fialka-Fricke, Julia; Dullin, Christian; Zapf, Antonia; Gruber, Rudolf; Sennhenn-kirchner, Sabine; Kubein-Meesenburg, Dietmar; Sadat-Khonsari, Reza

    2009-09-01

    An investigation was conducted to compare the image quality of prototype flat-panel volume computed tomography (fpVCT) and multislice computed tomography (MSCT) of suture structures. Bone samples were taken from the midpalatal suture of 5 young (16 weeks) and 5 old (200 weeks) Sus scrofa domestica and fixed in formalin solution. An fpVCT prototype and an MSCT were used to obtain images of the specimens. The facial reformations were assessed by 4 observers using a 1 (excellent) to 5 (poor) rating scale for the weighted criteria visualization of the suture structure. A linear mixed model was used for statistical analysis. Results with P < .05 were considered to be statistically significant. The visualization of the suture of young specimens was significantly better than that of older animals (P < .001). The visualization of the suture with fpVCT was significantly better than that with MSCT (P < .001). Compared with MSCT, fpVCT produces superior results in the visualization of the midpalatal suture in a Sus scrofa domestica model.

  14. Single-Photon Emission Computed Tomography/Computed Tomography Imaging in a Rabbit Model of Emphysema Reveals Ongoing Apoptosis In Vivo

    PubMed Central

    Goldklang, Monica P.; Tekabe, Yared; Zelonina, Tina; Trischler, Jordis; Xiao, Rui; Stearns, Kyle; Romanov, Alexander; Muzio, Valeria; Shiomi, Takayuki; Johnson, Lynne L.

    2016-01-01

    Evaluation of lung disease is limited by the inability to visualize ongoing pathological processes. Molecular imaging that targets cellular processes related to disease pathogenesis has the potential to assess disease activity over time to allow intervention before lung destruction. Because apoptosis is a critical component of lung damage in emphysema, a functional imaging approach was taken to determine if targeting apoptosis in a smoke exposure model would allow the quantification of early lung damage in vivo. Rabbits were exposed to cigarette smoke for 4 or 16 weeks and underwent single-photon emission computed tomography/computed tomography scanning using technetium-99m–rhAnnexin V-128. Imaging results were correlated with ex vivo tissue analysis to validate the presence of lung destruction and apoptosis. Lung computed tomography scans of long-term smoke–exposed rabbits exhibit anatomical similarities to human emphysema, with increased lung volumes compared with controls. Morphometry on lung tissue confirmed increased mean linear intercept and destructive index at 16 weeks of smoke exposure and compliance measurements documented physiological changes of emphysema. Tissue and lavage analysis displayed the hallmarks of smoke exposure, including increased tissue cellularity and protease activity. Technetium-99m–rhAnnexin V-128 single-photon emission computed tomography signal was increased after smoke exposure at 4 and 16 weeks, with confirmation of increased apoptosis through terminal deoxynucleotidyl transferase dUTP nick end labeling staining and increased tissue neutral sphingomyelinase activity in the tissue. These studies not only describe a novel emphysema model for use with future therapeutic applications, but, most importantly, also characterize a promising imaging modality that identifies ongoing destructive cellular processes within the lung. PMID:27483341

  15. Introducing Seismic Tomography with Computational Modeling

    NASA Astrophysics Data System (ADS)

    Neves, R.; Neves, M. L.; Teodoro, V.

    2011-12-01

    Learning seismic tomography principles and techniques involves advanced physical and computational knowledge. In depth learning of such computational skills is a difficult cognitive process that requires a strong background in physics, mathematics and computer programming. The corresponding learning environments and pedagogic methodologies should then involve sets of computational modelling activities with computer software systems which allow students the possibility to improve their mathematical or programming knowledge and simultaneously focus on the learning of seismic wave propagation and inverse theory. To reduce the level of cognitive opacity associated with mathematical or programming knowledge, several computer modelling systems have already been developed (Neves & Teodoro, 2010). Among such systems, Modellus is particularly well suited to achieve this goal because it is a domain general environment for explorative and expressive modelling with the following main advantages: 1) an easy and intuitive creation of mathematical models using just standard mathematical notation; 2) the simultaneous exploration of images, tables, graphs and object animations; 3) the attribution of mathematical properties expressed in the models to animated objects; and finally 4) the computation and display of mathematical quantities obtained from the analysis of images and graphs. Here we describe virtual simulations and educational exercises which enable students an easy grasp of the fundamental of seismic tomography. The simulations make the lecture more interactive and allow students the possibility to overcome their lack of advanced mathematical or programming knowledge and focus on the learning of seismological concepts and processes taking advantage of basic scientific computation methods and tools.

  16. Electron tomography and computer visualisation of a three-dimensional 'photonic' crystal in a butterfly wing-scale.

    PubMed

    Argyros, A; Manos, S; Large, M C J; McKenzie, D R; Cox, G C; Dwarte, D M

    2002-01-01

    A combination of transmission electron tomography and computer modelling has been used to determine the three-dimensional structure of the photonic crystals found in the wing-scales of the Kaiser-I-Hind butterfly (Teinopalpus imperialis). These scales presented challenges for electron microscopy because the periodicity of the structure was comparable to the thickness of a section and because of the complex connectivity of the object. The structure obtained has been confirmed by taking slices of the three-dimensional computer model constructed from the tomography and comparing these with transmission electron microscope (TEM) images of microtomed sections of the actual scale. The crystal was found to have chiral tetrahedral repeating units packed in a triclinic lattice.

  17. Computed tomography as a diagnostic aid for extracanal invasive resorption.

    PubMed

    Kim, Euiseong; Kim, Kee-Deog; Roh, Byoung-Duck; Cho, Yong-Sik; Lee, Seung-Jong

    2003-07-01

    A case of multiple extracanal invasive resorption is reported. The patient had a history of hypothyroidism for approximately 1 yr before the dental visit. Utilization of computed tomography and a rapid prototyping tooth model in diagnosing the exact location and the size of the resorption area are discussed.

  18. Performance dependence of hybrid x-ray computed tomography/fluorescence molecular tomography on the optical forward problem.

    PubMed

    Hyde, Damon; Schulz, Ralf; Brooks, Dana; Miller, Eric; Ntziachristos, Vasilis

    2009-04-01

    Hybrid imaging systems combining x-ray computed tomography (CT) and fluorescence tomography can improve fluorescence imaging performance by incorporating anatomical x-ray CT information into the optical inversion problem. While the use of image priors has been investigated in the past, little is known about the optimal use of forward photon propagation models in hybrid optical systems. In this paper, we explore the impact on reconstruction accuracy of the use of propagation models of varying complexity, specifically in the context of these hybrid imaging systems where significant structural information is known a priori. Our results demonstrate that the use of generically known parameters provides near optimal performance, even when parameter mismatch remains.

  19. FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography.

    PubMed

    Ale, Angelique; Ermolayev, Vladimir; Herzog, Eva; Cohrs, Christian; de Angelis, Martin Hrabé; Ntziachristos, Vasilis

    2012-06-01

    The development of hybrid optical tomography methods to improve imaging performance has been suggested over a decade ago and has been experimentally demonstrated in animals and humans. Here we examined in vivo performance of a camera-based hybrid fluorescence molecular tomography (FMT) system for 360° imaging combined with X-ray computed tomography (XCT). Offering an accurately co-registered, information-rich hybrid data set, FMT-XCT has new imaging possibilities compared to stand-alone FMT and XCT. We applied FMT-XCT to a subcutaneous 4T1 tumor mouse model, an Aga2 osteogenesis imperfecta model and a Kras lung cancer mouse model, using XCT information during FMT inversion. We validated in vivo imaging results against post-mortem planar fluorescence images of cryoslices and histology data. Besides offering concurrent anatomical and functional information, FMT-XCT resulted in the most accurate FMT performance to date. These findings indicate that addition of FMT optics into the XCT gantry may be a potent upgrade for small-animal XCT systems.

  20. Development of seismic tomography software for hybrid supercomputers

    NASA Astrophysics Data System (ADS)

    Nikitin, Alexandr; Serdyukov, Alexandr; Duchkov, Anton

    2015-04-01

    Seismic tomography is a technique used for computing velocity model of geologic structure from first arrival travel times of seismic waves. The technique is used in processing of regional and global seismic data, in seismic exploration for prospecting and exploration of mineral and hydrocarbon deposits, and in seismic engineering for monitoring the condition of engineering structures and the surrounding host medium. As a consequence of development of seismic monitoring systems and increasing volume of seismic data, there is a growing need for new, more effective computational algorithms for use in seismic tomography applications with improved performance, accuracy and resolution. To achieve this goal, it is necessary to use modern high performance computing systems, such as supercomputers with hybrid architecture that use not only CPUs, but also accelerators and co-processors for computation. The goal of this research is the development of parallel seismic tomography algorithms and software package for such systems, to be used in processing of large volumes of seismic data (hundreds of gigabytes and more). These algorithms and software package will be optimized for the most common computing devices used in modern hybrid supercomputers, such as Intel Xeon CPUs, NVIDIA Tesla accelerators and Intel Xeon Phi co-processors. In this work, the following general scheme of seismic tomography is utilized. Using the eikonal equation solver, arrival times of seismic waves are computed based on assumed velocity model of geologic structure being analyzed. In order to solve the linearized inverse problem, tomographic matrix is computed that connects model adjustments with travel time residuals, and the resulting system of linear equations is regularized and solved to adjust the model. The effectiveness of parallel implementations of existing algorithms on target architectures is considered. During the first stage of this work, algorithms were developed for execution on supercomputers using multicore CPUs only, with preliminary performance tests showing good parallel efficiency on large numerical grids. Porting of the algorithms to hybrid supercomputers is currently ongoing.

  1. Seismic imaging: From classical to adjoint tomography

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Gu, Y. J.

    2012-09-01

    Seismic tomography has been a vital tool in probing the Earth's internal structure and enhancing our knowledge of dynamical processes in the Earth's crust and mantle. While various tomographic techniques differ in data types utilized (e.g., body vs. surface waves), data sensitivity (ray vs. finite-frequency approximations), and choices of model parameterization and regularization, most global mantle tomographic models agree well at long wavelengths, owing to the presence and typical dimensions of cold subducted oceanic lithospheres and hot, ascending mantle plumes (e.g., in central Pacific and Africa). Structures at relatively small length scales remain controversial, though, as will be discussed in this paper, they are becoming increasingly resolvable with the fast expanding global and regional seismic networks and improved forward modeling and inversion techniques. This review paper aims to provide an overview of classical tomography methods, key debates pertaining to the resolution of mantle tomographic models, as well as to highlight recent theoretical and computational advances in forward-modeling methods that spearheaded the developments in accurate computation of sensitivity kernels and adjoint tomography. The first part of the paper is devoted to traditional traveltime and waveform tomography. While these approaches established a firm foundation for global and regional seismic tomography, data coverage and the use of approximate sensitivity kernels remained as key limiting factors in the resolution of the targeted structures. In comparison to classical tomography, adjoint tomography takes advantage of full 3D numerical simulations in forward modeling and, in many ways, revolutionizes the seismic imaging of heterogeneous structures with strong velocity contrasts. For this reason, this review provides details of the implementation, resolution and potential challenges of adjoint tomography. Further discussions of techniques that are presently popular in seismic array analysis, such as noise correlation functions, receiver functions, inverse scattering imaging, and the adaptation of adjoint tomography to these different datasets highlight the promising future of seismic tomography.

  2. Coupling of EIT with computational lung modeling for predicting patient-specific ventilatory responses.

    PubMed

    Roth, Christian J; Becher, Tobias; Frerichs, Inéz; Weiler, Norbert; Wall, Wolfgang A

    2017-04-01

    Providing optimal personalized mechanical ventilation for patients with acute or chronic respiratory failure is still a challenge within a clinical setting for each case anew. In this article, we integrate electrical impedance tomography (EIT) monitoring into a powerful patient-specific computational lung model to create an approach for personalizing protective ventilatory treatment. The underlying computational lung model is based on a single computed tomography scan and able to predict global airflow quantities, as well as local tissue aeration and strains for any ventilation maneuver. For validation, a novel "virtual EIT" module is added to our computational lung model, allowing to simulate EIT images based on the patient's thorax geometry and the results of our numerically predicted tissue aeration. Clinically measured EIT images are not used to calibrate the computational model. Thus they provide an independent method to validate the computational predictions at high temporal resolution. The performance of this coupling approach has been tested in an example patient with acute respiratory distress syndrome. The method shows good agreement between computationally predicted and clinically measured airflow data and EIT images. These results imply that the proposed framework can be used for numerical prediction of patient-specific responses to certain therapeutic measures before applying them to an actual patient. In the long run, definition of patient-specific optimal ventilation protocols might be assisted by computational modeling. NEW & NOTEWORTHY In this work, we present a patient-specific computational lung model that is able to predict global and local ventilatory quantities for a given patient and any selected ventilation protocol. For the first time, such a predictive lung model is equipped with a virtual electrical impedance tomography module allowing real-time validation of the computed results with the patient measurements. First promising results obtained in an acute respiratory distress syndrome patient show the potential of this approach for personalized computationally guided optimization of mechanical ventilation in future. Copyright © 2017 the American Physiological Society.

  3. Optimization in modeling the ribs-bounded contour from computer tomography scan

    NASA Astrophysics Data System (ADS)

    Bilinskas, M. J.; Dzemyda, G.

    2016-10-01

    In this paper a method for analyzing transversal plane images from computer tomography scans is presented. A mathematical model that describes the ribs-bounded contour was created and the problem of approximation is solved by finding out the optimal parameters of the model in the least-squares sense. Such model would be useful in registration of images independently on the patient position on the bed and on the radio-contrast agent injection. We consider the slices, where ribs are visible, because many important internal organs are located here: liver, heart, stomach, pancreas, lung, etc.

  4. Positron Emission Tomography - Computed Tomography (PET/CT)

    MedlinePlus

    ... A-Z Positron Emission Tomography - Computed Tomography (PET/CT) Positron emission tomography (PET) uses small amounts of ... What is Positron Emission Tomography – Computed Tomography (PET/CT) Scanning? Positron emission tomography, also called PET imaging ...

  5. Emission Computed Tomography: A New Technique for the Quantitative Physiologic Study of Brain and Heart in Vivo

    DOE R&D Accomplishments Database

    Phelps, M. E.; Hoffman, E. J.; Huang, S. C.; Schelbert, H. R.; Kuhl, D. E.

    1978-01-01

    Emission computed tomography can provide a quantitative in vivo measurement of regional tissue radionuclide tracer concentrations. This facility when combined with physiologic models and radioactively labeled physiologic tracers that behave in a predictable manner allow measurement of a wide variety of physiologic variables. This integrated technique has been referred to as Physiologic Tomography (PT). PT requires labeled compounds which trace physiologic processes in a known and predictable manner, and physiologic models which are appropriately formulated and validated to derive physiologic variables from ECT data. In order to effectively achieve this goal, PT requires an ECT system that is capable of performing truly quantitative or analytical measurements of tissue tracer concentrations and which has been well characterized in terms of spatial resolution, sensitivity and signal to noise ratios in the tomographic image. This paper illustrates the capabilities of emission computed tomography and provides examples of physiologic tomography for the regional measurement of cerebral and myocardial metabolic rate for glucose, regional measurement of cerebral blood volume, gated cardiac blood pools and capillary perfusion in brain and heart. Studies on patients with stroke and myocardial ischemia are also presented.

  6. Model studies of laser absorption computed tomography for remote air pollution measurement

    NASA Technical Reports Server (NTRS)

    Wolfe, D. C., Jr.; Byer, R. L.

    1982-01-01

    Model studies of the potential of laser absorption-computed tomography are presented which demonstrate the possibility of sensitive remote atmospheric pollutant measurements, over kilometer-sized areas, with two-dimensional resolution, at modest laser source powers. An analysis of this tomographic reconstruction process as a function of measurement SNR, laser power, range, and system geometry, shows that the system is able to yield two-dimensional maps of pollutant concentrations at ranges and resolutions superior to those attainable with existing, direct-detection laser radars.

  7. Rapid prototyping modelling in oral and maxillofacial surgery: A two year retrospective study.

    PubMed

    Suomalainen, Anni; Stoor, Patricia; Mesimäki, Karri; Kontio, Risto K

    2015-12-01

    The use of rapid prototyping (RP) models in medicine to construct bony models is increasing. The aim of the study was to evaluate retrospectively the indication for the use of RP models in oral and maxillofacial surgery at Helsinki University Central Hospital during 2009-2010. Also, the used computed tomography (CT) examination - multislice CT (MSCT) or cone beam CT (CBCT) - method was evaluated. In total 114 RP models were fabricated for 102 patients. The mean age of the patients at the time of the production of the model was 50.4 years. The indications for the modelling included malignant lesions (29%), secondary reconstruction (25%), prosthodontic treatment (22%), orthognathic surgery or asymmetry (13%), benign lesions (8%), and TMJ disorders (4%). MSCT examination was used in 92 and CBCT examination in 22 cases. Most of the models (75%) were conventional hard tissue models. Models with colored tumour or other structure(s) of interest were ordered in 24%. Two out of the 114 models were soft tissue models. The main benefit of the models was in treatment planning and in connection with the production of pre-bent plates or custom made implants. The RP models both facilitate and improve treatment planning and intraoperative efficiency. Rapid prototyping, radiology, computed tomography, cone beam computed tomography.

  8. Three-Dimensional Printing of X-Ray Computed Tomography Datasets with Multiple Materials Using Open-Source Data Processing

    ERIC Educational Resources Information Center

    Sander, Ian M.; McGoldrick, Matthew T.; Helms, My N.; Betts, Aislinn; van Avermaete, Anthony; Owers, Elizabeth; Doney, Evan; Liepert, Taimi; Niebur, Glen; Liepert, Douglas; Leevy, W. Matthew

    2017-01-01

    Advances in three-dimensional (3D) printing allow for digital files to be turned into a "printed" physical product. For example, complex anatomical models derived from clinical or pre-clinical X-ray computed tomography (CT) data of patients or research specimens can be constructed using various printable materials. Although 3D printing…

  9. Design and analysis of a tendon-based computed tomography-compatible robot with remote center of motion for lung biopsy.

    PubMed

    Yang, Yunpeng; Jiang, Shan; Yang, Zhiyong; Yuan, Wei; Dou, Huaisu; Wang, Wei; Zhang, Daguang; Bian, Yuan

    2017-04-01

    Nowadays, biopsy is a decisive method of lung cancer diagnosis, whereas lung biopsy is time-consuming, complex and inaccurate. So a computed tomography-compatible robot for rapid and precise lung biopsy is developed in this article. According to the actual operation process, the robot is divided into two modules: 4-degree-of-freedom position module for location of puncture point is appropriate for patient's almost all positions and 3-degree-of-freedom tendon-based orientation module with remote center of motion is compact and computed tomography-compatible to orientate and insert needle automatically inside computed tomography bore. The workspace of the robot surrounds patient's thorax, and the needle tip forms a cone under patient's skin. A new error model of the robot based on screw theory is proposed in view of structure error and actuation error, which are regarded as screw motions. Simulation is carried out to verify the precision of the error model contrasted with compensation via inverse kinematics. The results of insertion experiment on specific phantom prove the feasibility of the robot with mean error of 1.373 mm in laboratory environment, which is accurate enough to replace manual operation.

  10. Estimation of computed tomography dose index in cone beam computed tomography: MOSFET measurements and Monte Carlo simulations.

    PubMed

    Kim, Sangroh; Yoshizumi, Terry; Toncheva, Greta; Yoo, Sua; Yin, Fang-Fang; Frush, Donald

    2010-05-01

    To address the lack of accurate dose estimation method in cone beam computed tomography (CBCT), we performed point dose metal oxide semiconductor field-effect transistor (MOSFET) measurements and Monte Carlo (MC) simulations. A Varian On-Board Imager (OBI) was employed to measure point doses in the polymethyl methacrylate (PMMA) CT phantoms with MOSFETs for standard and low dose modes. A MC model of the OBI x-ray tube was developed using BEAMnrc/EGSnrc MC system and validated by the half value layer, x-ray spectrum and lateral and depth dose profiles. We compared the weighted computed tomography dose index (CTDIw) between MOSFET measurements and MC simulations. The CTDIw was found to be 8.39 cGy for the head scan and 4.58 cGy for the body scan from the MOSFET measurements in standard dose mode, and 1.89 cGy for the head and 1.11 cGy for the body in low dose mode, respectively. The CTDIw from MC compared well to the MOSFET measurements within 5% differences. In conclusion, a MC model for Varian CBCT has been established and this approach may be easily extended from the CBCT geometry to multi-detector CT geometry.

  11. The impact of different cone beam computed tomography and multi-slice computed tomography scan parameters on virtual three-dimensional model accuracy using a highly precise ex vivo evaluation method.

    PubMed

    Matta, Ragai-Edward; von Wilmowsky, Cornelius; Neuhuber, Winfried; Lell, Michael; Neukam, Friedrich W; Adler, Werner; Wichmann, Manfred; Bergauer, Bastian

    2016-05-01

    Multi-slice computed tomography (MSCT) and cone beam computed tomography (CBCT) are indispensable imaging techniques in advanced medicine. The possibility of creating virtual and corporal three-dimensional (3D) models enables detailed planning in craniofacial and oral surgery. The objective of this study was to evaluate the impact of different scan protocols for CBCT and MSCT on virtual 3D model accuracy using a software-based evaluation method that excludes human measurement errors. MSCT and CBCT scans with different manufacturers' predefined scan protocols were obtained from a human lower jaw and were superimposed with a master model generated by an optical scan of an industrial noncontact scanner. To determine the accuracy, the mean and standard deviations were calculated, and t-tests were used for comparisons between the different settings. Averaged over 10 repeated X-ray scans per method and 19 measurement points per scan (n = 190), it was found that the MSCT scan protocol 140 kV delivered the most accurate virtual 3D model, with a mean deviation of 0.106 mm compared to the master model. Only the CBCT scans with 0.2-voxel resolution delivered a similar accurate 3D model (mean deviation 0.119 mm). Within the limitations of this study, it was demonstrated that the accuracy of a 3D model of the lower jaw depends on the protocol used for MSCT and CBCT scans. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  12. Linear Array Ambient Noise Adjoint Tomography Reveals Intense Crust-Mantle Interactions in North China Craton

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Yao, Huajian; Liu, Qinya; Zhang, Ping; Yuan, Yanhua O.; Feng, Jikun; Fang, Lihua

    2018-01-01

    We present a 2-D ambient noise adjoint tomography technique for a linear array with a significant reduction in computational cost and show its application to an array in North China. We first convert the observed data for 3-D media, i.e., surface-wave empirical Green's functions (EGFs) to the reconstructed EGFs (REGFs) for 2-D media using a 3-D/2-D transformation scheme. Different from the conventional steps of measuring phase dispersion, this technology refines 2-D shear wave speeds along the profile directly from REGFs. With an initial model based on traditional ambient noise tomography, adjoint tomography updates the model by minimizing the frequency-dependent Rayleigh wave traveltime delays between the REGFs and synthetic Green functions calculated by the spectral-element method. The multitaper traveltime difference measurement is applied in four-period bands: 20-35 s, 15-30 s, 10-20 s, and 6-15 s. The recovered model shows detailed crustal structures including pronounced low-velocity anomalies in the lower crust and a gradual crust-mantle transition zone beneath the northern Trans-North China Orogen, which suggest the possible intense thermo-chemical interactions between mantle-derived upwelling melts and the lower crust, probably associated with the magmatic underplating during the Mesozoic to Cenozoic evolution of this region. To our knowledge, it is the first time that ambient noise adjoint tomography is implemented for a 2-D medium. Compared with the intensive computational cost and storage requirement of 3-D adjoint tomography, this method offers a computationally efficient and inexpensive alternative to imaging fine-scale crustal structures beneath linear arrays.

  13. Bayesian X-ray computed tomography using a three-level hierarchical prior model

    NASA Astrophysics Data System (ADS)

    Wang, Li; Mohammad-Djafari, Ali; Gac, Nicolas

    2017-06-01

    In recent decades X-ray Computed Tomography (CT) image reconstruction has been largely developed in both medical and industrial domain. In this paper, we propose using the Bayesian inference approach with a new hierarchical prior model. In the proposed model, a generalised Student-t distribution is used to enforce the Haar transformation of images to be sparse. Comparisons with some state of the art methods are presented. It is shown that by using the proposed model, the sparsity of sparse representation of images is enforced, so that edges of images are preserved. Simulation results are also provided to demonstrate the effectiveness of the new hierarchical model for reconstruction with fewer projections.

  14. Frozen Gaussian approximation for 3D seismic tomography

    NASA Astrophysics Data System (ADS)

    Chai, Lihui; Tong, Ping; Yang, Xu

    2018-05-01

    Three-dimensional (3D) wave-equation-based seismic tomography is computationally challenging in large scales and high-frequency regime. In this paper, we apply the frozen Gaussian approximation (FGA) method to compute 3D sensitivity kernels and seismic tomography of high-frequency. Rather than standard ray theory used in seismic inversion (e.g. Kirchhoff migration and Gaussian beam migration), FGA is used to compute the 3D high-frequency sensitivity kernels for travel-time or full waveform inversions. Specifically, we reformulate the equations of the forward and adjoint wavefields for the purpose of convenience to apply FGA, and with this reformulation, one can efficiently compute the Green’s functions whose convolutions with source time function produce wavefields needed for the construction of 3D kernels. Moreover, a fast summation method is proposed based on local fast Fourier transform which greatly improves the speed of reconstruction as the last step of FGA algorithm. We apply FGA to both the travel-time adjoint tomography and full waveform inversion (FWI) on synthetic crosswell seismic data with dominant frequencies as high as those of real crosswell data, and confirm again that FWI requires a more sophisticated initial velocity model for the convergence than travel-time adjoint tomography. We also numerically test the accuracy of applying FGA to local earthquake tomography. This study paves the way to directly apply wave-equation-based seismic tomography methods into real data around their dominant frequencies.

  15. Automated method for structural segmentation of nasal airways based on cone beam computed tomography

    NASA Astrophysics Data System (ADS)

    Tymkovych, Maksym Yu.; Avrunin, Oleg G.; Paliy, Victor G.; Filzow, Maksim; Gryshkov, Oleksandr; Glasmacher, Birgit; Omiotek, Zbigniew; DzierŻak, RóŻa; Smailova, Saule; Kozbekova, Ainur

    2017-08-01

    The work is dedicated to the segmentation problem of human nasal airways using Cone Beam Computed Tomography. During research, we propose a specialized approach of structured segmentation of nasal airways. That approach use spatial information, symmetrisation of the structures. The proposed stages can be used for construction a virtual three dimensional model of nasal airways and for production full-scale personalized atlases. During research we build the virtual model of nasal airways, which can be used for construction specialized medical atlases and aerodynamics researches.

  16. Bayesian seismic tomography by parallel interacting Markov chains

    NASA Astrophysics Data System (ADS)

    Gesret, Alexandrine; Bottero, Alexis; Romary, Thomas; Noble, Mark; Desassis, Nicolas

    2014-05-01

    The velocity field estimated by first arrival traveltime tomography is commonly used as a starting point for further seismological, mineralogical, tectonic or similar analysis. In order to interpret quantitatively the results, the tomography uncertainty values as well as their spatial distribution are required. The estimated velocity model is obtained through inverse modeling by minimizing an objective function that compares observed and computed traveltimes. This step is often performed by gradient-based optimization algorithms. The major drawback of such local optimization schemes, beyond the possibility of being trapped in a local minimum, is that they do not account for the multiple possible solutions of the inverse problem. They are therefore unable to assess the uncertainties linked to the solution. Within a Bayesian (probabilistic) framework, solving the tomography inverse problem aims at estimating the posterior probability density function of velocity model using a global sampling algorithm. Markov chains Monte-Carlo (MCMC) methods are known to produce samples of virtually any distribution. In such a Bayesian inversion, the total number of simulations we can afford is highly related to the computational cost of the forward model. Although fast algorithms have been recently developed for computing first arrival traveltimes of seismic waves, the complete browsing of the posterior distribution of velocity model is hardly performed, especially when it is high dimensional and/or multimodal. In the latter case, the chain may even stay stuck in one of the modes. In order to improve the mixing properties of classical single MCMC, we propose to make interact several Markov chains at different temperatures. This method can make efficient use of large CPU clusters, without increasing the global computational cost with respect to classical MCMC and is therefore particularly suited for Bayesian inversion. The exchanges between the chains allow a precise sampling of the high probability zones of the model space while avoiding the chains to end stuck in a probability maximum. This approach supplies thus a robust way to analyze the tomography imaging uncertainties. The interacting MCMC approach is illustrated on two synthetic examples of tomography of calibration shots such as encountered in induced microseismic studies. On the second application, a wavelet based model parameterization is presented that allows to significantly reduce the dimension of the problem, making thus the algorithm efficient even for a complex velocity model.

  17. The effect of in situ/in vitro three-dimensional quantitative computed tomography image voxel size on the finite element model of human vertebral cancellous bone.

    PubMed

    Lu, Yongtao; Engelke, Klaus; Glueer, Claus-C; Morlock, Michael M; Huber, Gerd

    2014-11-01

    Quantitative computed tomography-based finite element modeling technique is a promising clinical tool for the prediction of bone strength. However, quantitative computed tomography-based finite element models were created from image datasets with different image voxel sizes. The aim of this study was to investigate whether there is an influence of image voxel size on the finite element models. In all 12 thoracolumbar vertebrae were scanned prior to autopsy (in situ) using two different quantitative computed tomography scan protocols, which resulted in image datasets with two different voxel sizes (0.29 × 0.29 × 1.3 mm(3) vs 0.18 × 0.18 × 0.6 mm(3)). Eight of them were scanned after autopsy (in vitro) and the datasets were reconstructed with two voxel sizes (0.32 × 0.32 × 0.6 mm(3) vs. 0.18 × 0.18 × 0.3 mm(3)). Finite element models with cuboid volume of interest extracted from the vertebral cancellous part were created and inhomogeneous bilinear bone properties were defined. Axial compression was simulated. No effect of voxel size was detected on the apparent bone mineral density for both the in situ and in vitro cases. However, the apparent modulus and yield strength showed significant differences in the two voxel size group pairs (in situ and in vitro). In conclusion, the image voxel size may have to be considered when the finite element voxel modeling technique is used in clinical applications. © IMechE 2014.

  18. Toward regional-scale adjoint tomography in the deep earth

    NASA Astrophysics Data System (ADS)

    Masson, Y.; Romanowicz, B. A.

    2013-12-01

    Thanks to the development of efficient numerical computation methods, such as the Spectral Element Method (SEM) and to the increasing power of computer clusters, it is now possible to obtain regional-scale images of the Earth's interior using adjoint-tomography (e.g. Tape, C., et al., 2009). As for now, these tomographic models are limited to the upper layers of the earth, i.e., they provide us with high-resolution images of the crust and the upper part of the mantle. Given the gigantic amount of calculation it represents, obtaing similar models at the global scale (i.e. images of the entire Earth) seems out of reach at the moment. Furthermore, it's likely that the first generation of such global adjoint tomographic models will have a resolution significantly smaller than the current regional models. In order to image regions of interests in the deep Earth, such as plumes, slabs or large low shear velocity provinces (LLSVPs), while keeping the computation tractable, we are developing new tools that will allow us to perform regional-scale adjoint-tomography at arbitrary depths. In a recent study (Masson et al., 2013), we showed that a numerical equivalent of the time reversal mirrors used in experimental acoustics permits to confine the wave propagation computations (i.e. using SEM simulations) inside the region to be imaged. With this ability to limit wave propagation modeling inside a region of interest, obtaining the adjoint sensitivity kernels needed for tomographic imaging is only two steps further. First, the local wavefield modeling needs to be coupled with field extrapolation techniques in order to obtain synthetic seismograms at the surface of the earth. These seismograms will account for the 3D structure inside the region of interest in a quasi-exact manner. We will present preliminary results where the field-extrapolation is performed using Green's function computed in a 1D Earth model thanks to the Direct Solution Method (DSM). Once synthetic seismograms can be obtained, it is possible to evaluate the misfit between observed and computed seismograms. The second step will then be to extrapolate the misfit function back into the SEM region in order to compute local adjoint sensitivity kernels. When available, these kernels will allow us to perform regional-scale adjoint tomography at arbitrary locations inside the earth. Masson Y., Cupillard P., Capdeville Y., & Romanowicz B., 2013. On the numerical implementation of time-reversal mirrors for tomographic imaging, Journal of Geophysical Research (under review). Tape, C., et al. (2009). "Adjoint tomography of the southern California crust." Science 325(5943): 988-992.

  19. Rapid prototyping modelling in oral and maxillofacial surgery: A two year retrospective study

    PubMed Central

    Stoor, Patricia; Mesimäki, Karri; Kontio, Risto K.

    2015-01-01

    Background The use of rapid prototyping (RP) models in medicine to construct bony models is increasing. Material and Methods The aim of the study was to evaluate retrospectively the indication for the use of RP models in oral and maxillofacial surgery at Helsinki University Central Hospital during 2009-2010. Also, the used computed tomography (CT) examination – multislice CT (MSCT) or cone beam CT (CBCT) - method was evaluated. Results In total 114 RP models were fabricated for 102 patients. The mean age of the patients at the time of the production of the model was 50.4 years. The indications for the modelling included malignant lesions (29%), secondary reconstruction (25%), prosthodontic treatment (22%), orthognathic surgery or asymmetry (13%), benign lesions (8%), and TMJ disorders (4%). MSCT examination was used in 92 and CBCT examination in 22 cases. Most of the models (75%) were conventional hard tissue models. Models with colored tumour or other structure(s) of interest were ordered in 24%. Two out of the 114 models were soft tissue models. Conclusions The main benefit of the models was in treatment planning and in connection with the production of pre-bent plates or custom made implants. The RP models both facilitate and improve treatment planning and intraoperative efficiency. Key words:Rapid prototyping, radiology, computed tomography, cone beam computed tomography. PMID:26644837

  20. Computed Tomography (CT) - Spine

    MedlinePlus

    ... Resources Professions Site Index A-Z Computed Tomography (CT) - Spine Computed tomography (CT) of the spine is ... of CT Scanning of the Spine? What is CT Scanning of the Spine? Computed tomography, more commonly ...

  1. Broadband Terahertz Computed Tomography Using a 5k-pixel Real-time THz Camera

    NASA Astrophysics Data System (ADS)

    Trichopoulos, Georgios C.; Sertel, Kubilay

    2015-07-01

    We present a novel THz computed tomography system that enables fast 3-dimensional imaging and spectroscopy in the 0.6-1.2 THz band. The system is based on a new real-time broadband THz camera that enables rapid acquisition of multiple cross-sectional images required in computed tomography. Tomographic reconstruction is achieved using digital images from the densely-packed large-format (80×64) focal plane array sensor located behind a hyper-hemispherical silicon lens. Each pixel of the sensor array consists of an 85 μm × 92 μm lithographically fabricated wideband dual-slot antenna, monolithically integrated with an ultra-fast diode tuned to operate in the 0.6-1.2 THz regime. Concurrently, optimum impedance matching was implemented for maximum pixel sensitivity, enabling 5 frames-per-second image acquisition speed. As such, the THz computed tomography system generates diffraction-limited resolution cross-section images as well as the three-dimensional models of various opaque and partially transparent objects. As an example, an over-the-counter vitamin supplement pill is imaged and its material composition is reconstructed. The new THz camera enables, for the first time, a practical application of THz computed tomography for non-destructive evaluation and biomedical imaging.

  2. Real-time in situ three-dimensional integral videography and surgical navigation using augmented reality: a pilot study

    PubMed Central

    Suenaga, Hideyuki; Hoang Tran, Huy; Liao, Hongen; Masamune, Ken; Dohi, Takeyoshi; Hoshi, Kazuto; Mori, Yoshiyuki; Takato, Tsuyoshi

    2013-01-01

    To evaluate the feasibility and accuracy of a three-dimensional augmented reality system incorporating integral videography for imaging oral and maxillofacial regions, based on preoperative computed tomography data. Three-dimensional surface models of the jawbones, based on the computed tomography data, were used to create the integral videography images of a subject's maxillofacial area. The three-dimensional augmented reality system (integral videography display, computed tomography, a position tracker and a computer) was used to generate a three-dimensional overlay that was projected on the surgical site via a half-silvered mirror. Thereafter, a feasibility study was performed on a volunteer. The accuracy of this system was verified on a solid model while simulating bone resection. Positional registration was attained by identifying and tracking the patient/surgical instrument's position. Thus, integral videography images of jawbones, teeth and the surgical tool were superimposed in the correct position. Stereoscopic images viewed from various angles were accurately displayed. Change in the viewing angle did not negatively affect the surgeon's ability to simultaneously observe the three-dimensional images and the patient, without special glasses. The difference in three-dimensional position of each measuring point on the solid model and augmented reality navigation was almost negligible (<1 mm); this indicates that the system was highly accurate. This augmented reality system was highly accurate and effective for surgical navigation and for overlaying a three-dimensional computed tomography image on a patient's surgical area, enabling the surgeon to understand the positional relationship between the preoperative image and the actual surgical site, with the naked eye. PMID:23703710

  3. Contrast‐enhanced computed tomography with myocardial three‐dimensional printing can guide treatment in symptomatic hypertrophic obstructive cardiomyopathy

    PubMed Central

    Hamatani, Yasuhiro; Amaki, Makoto; Kanzaki, Hideaki; Yamashita, Kizuku; Nakashima, Yasuteru; Shibata, Atsushi; Okada, Atsushi; Takahama, Hiroyuki; Hasegawa, Takuya; Shimahara, Yusuke; Sugano, Yasuo; Fujita, Tomoyuki; Shiraishi, Isao; Yasuda, Satoshi; Kobayashi, Junjiro

    2017-01-01

    Abstract Both surgical myectomy and percutaneous transluminal septal myocardial ablation are effective treatments for drug‐refractory symptomatic hypertrophic obstructive cardiomyopathy (HOCM). However, in some cases, it is not easy to elucidate the abnormal structure of left ventricular outflow obstruction to adopt these treatments. Here, we presented a young female patient with drug‐refractory symptomatic HOCM. In this case, contrast‐enhanced computed tomography enabled us to assess the suitability of percutaneous transluminal septal myocardial ablation. By creating three‐dimensional printed models using computed tomography data, we could also visualize intracardiac structure and simulate the surgical procedure. A multimodality assessment strategy is useful for evaluating patients complicated with drug‐refractory symptomatic HOCM. PMID:29154429

  4. Clinical value of whole body fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography in the detection of metastatic bladder cancer.

    PubMed

    Yang, Zhongyi; Pan, Lingling; Cheng, Jingyi; Hu, Silong; Xu, Junyan; Ye, Dingwei; Zhang, Yingjian

    2012-07-01

    To investigate the value of whole-body fluorine-18 2-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography for the detection of metastatic bladder cancer. From December 2006 to August 2010, 60 bladder cancer patients (median age 60.5 years old, range 32-96) underwent whole body positron emission tomography/computed tomography positron emission tomography/computed tomography. The diagnostic accuracy was assessed by performing both organ-based and patient-based analyses. Identified lesions were further studied by biopsy or clinically followed for at least 6 months. One hundred and thirty-four suspicious lesions were identified. Among them, 4 primary cancers (2 pancreatic cancers, 1 colonic and 1 nasopharyngeal cancer) were incidentally detected, and the patients could be treated on time. For the remaining 130 lesions, positron emission tomography/computed tomography detected 118 true positive lesions (sensitivity = 95.9%). On the patient-based analysis, the overall sensitivity and specificity resulted to be 87.1% and 89.7%, respectively. There was no difference of sensitivity and specificity in patients with or without adjuvant treatment in terms of detection of metastatic sites by positron emission tomography/computed tomography. Compared with conventional imaging modality, positron emission tomography/computed tomography correctly changed the management in 15 patients (25.0%). Positron emission tomography/computed tomography has excellent sensitivity and specificity in the detection of metastatic bladder cancer and it provides additional diagnostic information compared to standard imaging techniques. © 2012 The Japanese Urological Association.

  5. Superimposition of 3-dimensional cone-beam computed tomography models of growing patients

    PubMed Central

    Cevidanes, Lucia H. C.; Heymann, Gavin; Cornelis, Marie A.; DeClerck, Hugo J.; Tulloch, J. F. Camilla

    2009-01-01

    Introduction The objective of this study was to evaluate a new method for superimposition of 3-dimensional (3D) models of growing subjects. Methods Cone-beam computed tomography scans were taken before and after Class III malocclusion orthopedic treatment with miniplates. Three observers independently constructed 18 3D virtual surface models from cone-beam computed tomography scans of 3 patients. Separate 3D models were constructed for soft-tissue, cranial base, maxillary, and mandibular surfaces. The anterior cranial fossa was used to register the 3D models of before and after treatment (about 1 year of follow-up). Results Three-dimensional overlays of superimposed models and 3D color-coded displacement maps allowed visual and quantitative assessment of growth and treatment changes. The range of interobserver errors for each anatomic region was 0.4 mm for the zygomatic process of maxilla, chin, condyles, posterior border of the rami, and lower border of the mandible, and 0.5 mm for the anterior maxilla soft-tissue upper lip. Conclusions Our results suggest that this method is a valid and reproducible assessment of treatment outcomes for growing subjects. This technique can be used to identify maxillary and mandibular positional changes and bone remodeling relative to the anterior cranial fossa. PMID:19577154

  6. Surgical positioning of orthodontic mini-implants with guides fabricated on models replicated with cone-beam computed tomography.

    PubMed

    Kim, Seong-Hun; Choi, Yong-Suk; Hwang, Eui-Hwan; Chung, Kyu-Rhim; Kook, Yoon-Ah; Nelson, Gerald

    2007-04-01

    This article illustrates a new surgical guide system that uses cone-beam computed tomography (CBCT) images to replicate dental models; surgical guides for the proper positioning of orthodontic mini-implants were fabricated on the replicas, and the guides were used for precise placement. The indications, efficacy, and possible complications of this method are discussed. Patients who were planning to have orthodontic mini-implant treatment were recruited for this study. A CBCT system (PSR 9000N, Asahi Roentgen, Kyoto, Japan) was used to acquire virtual slices of the posterior maxilla that were 0.1 to 0.15 mm thick. Color 3-dimensional rapid prototyping was used to differentiate teeth, alveolus, and maxillary sinus wall. A surgical guide for the mini-implant was fabricated on the replica model. Proper positioning for mini-implants on the posterior maxilla was determined by viewing the CBCT images. The surgical guide was placed on the clinical site, and it allowed precise pilot drilling and accurate placement of the mini-implant. CBCT imaging allows remarkably lower radiation doses and thinner acquisition slices compared with medical computed tomography. Virtually reproduced replica models enable precise planning for mini-implant positions in anatomically complex sites.

  7. Computed Tomography Perfusion, Magnetic Resonance Imaging, and Histopathological Findings After Laparoscopic Renal Cryoablation: An In Vivo Pig Model.

    PubMed

    Nielsen, Tommy Kjærgaard; Østraat, Øyvind; Graumann, Ole; Pedersen, Bodil Ginnerup; Andersen, Gratien; Høyer, Søren; Borre, Michael

    2017-08-01

    The present study investigates how computed tomography perfusion scans and magnetic resonance imaging correlates with the histopathological alterations in renal tissue after cryoablation. A total of 15 pigs were subjected to laparoscopic-assisted cryoablation on both kidneys. After intervention, each animal was randomized to a postoperative follow-up period of 1, 2, or 4 weeks, after which computed tomography perfusion and magnetic resonance imaging scans were performed. Immediately after imaging, open bilateral nephrectomy was performed allowing for histopathological examination of the cryolesions. On computed tomography perfusion and magnetic resonance imaging examinations, rim enhancement was observed in the transition zone of the cryolesion 1week after laparoscopic-assisted cryoablation. This rim enhancement was found to subside after 2 and 4 weeks of follow-up, which was consistent with the microscopic examinations revealing of fibrotic scar tissue formation in the peripheral zone of the cryolesion. On T2 magnetic resonance imaging sequences, a thin hypointense rim surrounded the cryolesion, separating it from the adjacent renal parenchyma. Microscopic examinations revealed hemorrhage and later hemosiderin located in the peripheral zone. No nodular or diffuse contrast enhancement was found in the central zone of the cryolesions at any follow-up stage on neither computed tomography perfusion nor magnetic resonance imaging. On microscopic examinations, the central zone was found to consist of coagulative necrosis 1 week after laparoscopic-assisted cryoablation, which was partially replaced by fibrotic scar tissue 4 weeks following laparoscopic-assisted cryoablation. Both computed tomography perfusion and magnetic resonance imaging found the renal collecting system to be involved at all 3 stages of follow-up, but on microscopic examination, the urothelium was found to be intact in all cases. In conclusion, cryoablation effectively destroyed renal parenchyma, leaving the urothelium intact. Both computed tomography perfusion and magnetic resonance imaging reflect the microscopic findings but with some differences, especially regarding the peripheral zone. Magnetic resonance imaging seems an attractive modality for early postoperative follow-up.

  8. Reliability of voxel gray values in cone beam computed tomography for preoperative implant planning assessment.

    PubMed

    Parsa, Azin; Ibrahim, Norliza; Hassan, Bassam; Motroni, Alessandro; van der Stelt, Paul; Wismeijer, Daniel

    2012-01-01

    To assess the reliability of cone beam computed tomography (CBCT) voxel gray value measurements using Hounsfield units (HU) derived from multislice computed tomography (MSCT) as a clinical reference (gold standard). Ten partially edentulous human mandibular cadavers were scanned by two types of computed tomography (CT) modalities: multislice CT and cone beam CT. On MSCT scans, eight regions of interest (ROI) designating the site for preoperative implant placement were selected in each mandible. The datasets from both CT systems were matched using a three-dimensional (3D) registration algorithm. The mean voxel gray values of the region around the implant sites were compared between MSCT and CBCT. Significant differences between the mean gray values obtained by CBCT and HU by MSCT were found. In all the selected ROIs, CBCT showed higher mean values than MSCT. A strong correlation (R=0.968) between mean voxel gray values of CBCT and mean HU of MSCT was determined. Voxel gray values from CBCT deviate from actual HU units. However, a strong linear correlation exists, which may permit deriving actual HU units from CBCT using linear regression models.

  9. Spectrally resolving and scattering-compensated x-ray luminescence/fluorescence computed tomography

    PubMed Central

    Cong, Wenxiang; Shen, Haiou; Wang, Ge

    2011-01-01

    The nanophosphors, or other similar materials, emit near-infrared (NIR) light upon x-ray excitation. They were designed as optical probes for in vivo visualization and analysis of molecular and cellular targets, pathways, and responses. Based on the previous work on x-ray fluorescence computed tomography (XFCT) and x-ray luminescence computed tomography (XLCT), here we propose a spectrally-resolving and scattering-compensated x-ray luminescence/fluorescence computed tomography (SXLCT or SXFCT) approach to quantify a spatial distribution of nanophosphors (other similar materials or chemical elements) within a biological object. In this paper, the x-ray scattering is taken into account in the reconstruction algorithm. The NIR scattering is described in the diffusion approximation model. Then, x-ray excitations are applied with different spectra, and NIR signals are measured in a spectrally resolving fashion. Finally, a linear relationship is established between the nanophosphor distribution and measured NIR data using the finite element method and inverted using the compressive sensing technique. The numerical simulation results demonstrate the feasibility and merits of the proposed approach. PMID:21721815

  10. A geometricla error in some Computer Programs based on the Aki-Christofferson-Husebye (ACH) Method of Teleseismic Tomography

    USGS Publications Warehouse

    Julian, B.R.; Evans, J.R.; Pritchard, M.J.; Foulger, G.R.

    2000-01-01

    Some computer programs based on the Aki-Christofferson-Husebye (ACH) method of teleseismic tomography contain an error caused by identifying local grid directions with azimuths on the spherical Earth. This error, which is most severe in high latitudes, introduces systematic errors into computed ray paths and distorts inferred Earth models. It is best dealt with by explicity correcting for the difference between true and grid directions. Methods for computing these directions are presented in this article and are likely to be useful in many other kinds of regional geophysical studies that use Cartesian coordinates and flat-earth approximations.

  11. Toward real-time diffuse optical tomography: accelerating light propagation modeling employing parallel computing on GPU and CPU

    NASA Astrophysics Data System (ADS)

    Doulgerakis, Matthaios; Eggebrecht, Adam; Wojtkiewicz, Stanislaw; Culver, Joseph; Dehghani, Hamid

    2017-12-01

    Parameter recovery in diffuse optical tomography is a computationally expensive algorithm, especially when used for large and complex volumes, as in the case of human brain functional imaging. The modeling of light propagation, also known as the forward problem, is the computational bottleneck of the recovery algorithm, whereby the lack of a real-time solution is impeding practical and clinical applications. The objective of this work is the acceleration of the forward model, within a diffusion approximation-based finite-element modeling framework, employing parallelization to expedite the calculation of light propagation in realistic adult head models. The proposed methodology is applicable for modeling both continuous wave and frequency-domain systems with the results demonstrating a 10-fold speed increase when GPU architectures are available, while maintaining high accuracy. It is shown that, for a very high-resolution finite-element model of the adult human head with ˜600,000 nodes, consisting of heterogeneous layers, light propagation can be calculated at ˜0.25 s/excitation source.

  12. Spent nuclear fuel assembly inspection using neutron computed tomography

    NASA Astrophysics Data System (ADS)

    Pope, Chad Lee

    The research presented here focuses on spent nuclear fuel assembly inspection using neutron computed tomography. Experimental measurements involving neutron beam transmission through a spent nuclear fuel assembly serve as benchmark measurements for an MCNP simulation model. Comparison of measured results to simulation results shows good agreement. Generation of tomography images from MCNP tally results was accomplished using adapted versions of built in MATLAB algorithms. Multiple fuel assembly models were examined to provide a broad set of conclusions. Tomography images revealing assembly geometric information including the fuel element lattice structure and missing elements can be obtained using high energy neutrons. A projection difference technique was developed which reveals the substitution of unirradiated fuel elements for irradiated fuel elements, using high energy neutrons. More subtle material differences such as altering the burnup of individual elements can be identified with lower energy neutrons provided the scattered neutron contribution to the image is limited. The research results show that neutron computed tomography can be used to inspect spent nuclear fuel assemblies for the purpose of identifying anomalies such as missing elements or substituted elements. The ability to identify anomalies in spent fuel assemblies can be used to deter diversion of material by increasing the risk of early detection as well as improve reprocessing facility operations by confirming the spent fuel configuration is as expected or allowing segregation if anomalies are detected.

  13. Multi-GPU Jacobian Accelerated Computing for Soft Field Tomography

    PubMed Central

    Borsic, A.; Attardo, E. A.; Halter, R. J.

    2012-01-01

    Image reconstruction in soft-field tomography is based on an inverse problem formulation, where a forward model is fitted to the data. In medical applications, where the anatomy presents complex shapes, it is common to use Finite Element Models to represent the volume of interest and to solve a partial differential equation that models the physics of the system. Over the last decade, there has been a shifting interest from 2D modeling to 3D modeling, as the underlying physics of most problems are three-dimensional. Though the increased computational power of modern computers allows working with much larger FEM models, the computational time required to reconstruct 3D images on a fine 3D FEM model can be significant, on the order of hours. For example, in Electrical Impedance Tomography applications using a dense 3D FEM mesh with half a million elements, a single reconstruction iteration takes approximately 15 to 20 minutes with optimized routines running on a modern multi-core PC. It is desirable to accelerate image reconstruction to enable researchers to more easily and rapidly explore data and reconstruction parameters. Further, providing high-speed reconstructions are essential for some promising clinical application of EIT. For 3D problems 70% of the computing time is spent building the Jacobian matrix, and 25% of the time in forward solving. In the present work, we focus on accelerating the Jacobian computation by using single and multiple GPUs. First, we discuss an optimized implementation on a modern multi-core PC architecture and show how computing time is bounded by the CPU-to-memory bandwidth; this factor limits the rate at which data can be fetched by the CPU. Gains associated with use of multiple CPU cores are minimal, since data operands cannot be fetched fast enough to saturate the processing power of even a single CPU core. GPUs have a much faster memory bandwidths compared to CPUs and better parallelism. We are able to obtain acceleration factors of 20 times on a single NVIDIA S1070 GPU, and of 50 times on 4 GPUs, bringing the Jacobian computing time for a fine 3D mesh from 12 minutes to 14 seconds. We regard this as an important step towards gaining interactive reconstruction times in 3D imaging, particularly when coupled in the future with acceleration of the forward problem. While we demonstrate results for Electrical Impedance Tomography, these results apply to any soft-field imaging modality where the Jacobian matrix is computed with the Adjoint Method. PMID:23010857

  14. [Diagnostic possibilities of digital volume tomography].

    PubMed

    Lemkamp, Michael; Filippi, Andreas; Berndt, Dorothea; Lambrecht, J Thomas

    2006-01-01

    Cone beam computed tomography allows high quality 3D images of cranio-facial structures. Although detail resolution is increased, x-ray exposition is reduced compared to classic computer tomography. The volume is analysed in three orthogonal plains, which can be rotated independently without quality loss. Cone beam computed tomography seems to be a less expensive and less x-ray exposing alternative to classic computer tomography.

  15. Compression of Born ratio for fluorescence molecular tomography/x-ray computed tomography hybrid imaging: methodology and in vivo validation.

    PubMed

    Mohajerani, Pouyan; Ntziachristos, Vasilis

    2013-07-01

    The 360° rotation geometry of the hybrid fluorescence molecular tomography/x-ray computed tomography modality allows for acquisition of very large datasets, which pose numerical limitations on the reconstruction. We propose a compression method that takes advantage of the correlation of the Born-normalized signal among sources in spatially formed clusters to reduce the size of system model. The proposed method has been validated using an ex vivo study and an in vivo study of a nude mouse with a subcutaneous 4T1 tumor, with and without inclusion of a priori anatomical information. Compression rates of up to two orders of magnitude with minimum distortion of reconstruction have been demonstrated, resulting in large reduction in weight matrix size and reconstruction time.

  16. A hybrid method for the computation of quasi-3D seismograms.

    NASA Astrophysics Data System (ADS)

    Masson, Yder; Romanowicz, Barbara

    2013-04-01

    The development of powerful computer clusters and efficient numerical computation methods, such as the Spectral Element Method (SEM) made possible the computation of seismic wave propagation in a heterogeneous 3D earth. However, the cost of theses computations is still problematic for global scale tomography that requires hundreds of such simulations. Part of the ongoing research effort is dedicated to the development of faster modeling methods based on the spectral element method. Capdeville et al. (2002) proposed to couple SEM simulations with normal modes calculation (C-SEM). Nissen-Meyer et al. (2007) used 2D SEM simulations to compute 3D seismograms in a 1D earth model. Thanks to these developments, and for the first time, Lekic et al. (2011) developed a 3D global model of the upper mantle using SEM simulations. At the local and continental scale, adjoint tomography that is using a lot of SEM simulation can be implemented on current computers (Tape, Liu et al. 2009). Due to their smaller size, these models offer higher resolution. They provide us with images of the crust and the upper part of the mantle. In an attempt to teleport such local adjoint tomographic inversions into the deep earth, we are developing a hybrid method where SEM computation are limited to a region of interest within the earth. That region can have an arbitrary shape and size. Outside this region, the seismic wavefield is extrapolated to obtain synthetic data at the Earth's surface. A key feature of the method is the use of a time reversal mirror to inject the wavefield induced by distant seismic source into the region of interest (Robertsson and Chapman 2000). We compute synthetic seismograms as follow: Inside the region of interest, we are using regional spectral element software RegSEM to compute wave propagation in 3D. Outside this region, the wavefield is extrapolated to the surface by convolution with the Green's functions from the mirror to the seismic stations. For now, these Green's functions are computed using 2D SEM simulation in a 1D Earth model. Such seismograms account for the 3D structure inside the region of interest in a quasi-exact manner. Later we plan to extrapolate the misfit function computed from such seismograms at the stations back into the SEM region in order to compute local adjoint kernels. This opens a new path toward regional adjoint tomography into the deep Earth. Capdeville, Y., et al. (2002). "Coupling the spectral element method with a modal solution for elastic wave propagation in global Earth models." Geophysical Journal International 152(1): 34-67. Lekic, V. and B. Romanowicz (2011). "Inferring upper-mantle structure by full waveform tomography with the spectral element method." Geophysical Journal International 185(2): 799-831. Nissen-Meyer, T., et al. (2007). "A two-dimensional spectral-element method for computing spherical-earth seismograms-I. Moment-tensor source." Geophysical Journal International 168(3): 1067-1092. Robertsson, J. O. A. and C. H. Chapman (2000). "An efficient method for calculating finite-difference seismograms after model alterations." Geophysics 65(3): 907-918. Tape, C., et al. (2009). "Adjoint tomography of the southern California crust." Science 325(5943): 988-992.

  17. Paradigm of pretest risk stratification before coronary computed tomography.

    PubMed

    Jensen, Jesper Møller; Ovrehus, Kristian A; Nielsen, Lene H; Jensen, Jesper K; Larsen, Henrik M; Nørgaard, Bjarne L

    2009-01-01

    The optimal method of determining the pretest risk of coronary artery disease as a patient selection tool before coronary multidetector computed tomography (MDCT) is unknown. We investigated the ability of 3 different clinical risk scores to predict the outcome of coronary MDCT. This was a retrospective study of 551 patients consecutively referred for coronary MDCT on a suspicion of coronary artery disease. Diamond-Forrester, Duke, and Morise risk models were used to predict coronary artery stenosis (>50%) as assessed by coronary MDCT. The models were compared by receiver operating characteristic analysis. The distribution of low-, intermediate-, and high-risk persons, respectively, was established and compared for each of the 3 risk models. Overall, all risk prediction models performed equally well. However, the Duke risk model classified the low-risk patients more correctly than did the other models (P < 0.01). In patients without coronary artery calcification (CAC), the predictive value of the Duke risk model was superior to the other risk models (P < 0.05). Currently available risk prediction models seem to perform better in patients without CAC. Between the risk prediction models, there was a significant discrepancy in the distribution of patients at low, intermediate, or high risk (P < 0.01). The 3 risk prediction models perform equally well, although the Duke risk score may have advantages in subsets of patients. The choice of risk prediction model affects the referral pattern to MDCT. Copyright (c) 2009 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.

  18. Tomography and generative training with quantum Boltzmann machines

    NASA Astrophysics Data System (ADS)

    Kieferová, Mária; Wiebe, Nathan

    2017-12-01

    The promise of quantum neural nets, which utilize quantum effects to model complex data sets, has made their development an aspirational goal for quantum machine learning and quantum computing in general. Here we provide methods of training quantum Boltzmann machines. Our work generalizes existing methods and provides additional approaches for training quantum neural networks that compare favorably to existing methods. We further demonstrate that quantum Boltzmann machines enable a form of partial quantum state tomography that further provides a generative model for the input quantum state. Classical Boltzmann machines are incapable of this. This verifies the long-conjectured connection between tomography and quantum machine learning. Finally, we prove that classical computers cannot simulate our training process in general unless BQP=BPP , provide lower bounds on the complexity of the training procedures and numerically investigate training for small nonstoquastic Hamiltonians.

  19. Computed Tomography

    NASA Astrophysics Data System (ADS)

    Castellano, Isabel; Geleijns, Jacob

    After its clinical introduction in 1973, computed tomography developed from an x-ray modality for axial imaging in neuroradiology into a versatile three dimensional imaging modality for a wide range of applications in for example oncology, vascular radiology, cardiology, traumatology and even in interventional radiology. Computed tomography is applied for diagnosis, follow-up studies and screening of healthy subpopulations with specific risk factors. This chapter provides a general introduction in computed tomography, covering a short history of computed tomography, technology, image quality, dosimetry, room shielding, quality control and quality criteria.

  20. X-ray Micro-Tomography of Ablative Heat Shield Materials

    NASA Technical Reports Server (NTRS)

    Panerai, Francesco; Ferguson, Joseph; Borner, Arnaud; Mansour, Nagi N.; Barnard, Harold S.; MacDowell, Alastair A.; Parkinson, Dilworth Y.

    2016-01-01

    X-ray micro-tomography is a non-destructive characterization technique that allows imaging of materials structures with voxel sizes in the micrometer range. This level of resolution makes the technique very attractive for imaging porous ablators used in hypersonic entry systems. Besides providing a high fidelity description of the material architecture, micro-tomography enables computations of bulk material properties and simulations of micro-scale phenomena. This presentation provides an overview of a collaborative effort between NASA Ames Research Center and Lawrence Berkeley National Laboratory, aimed at developing micro-tomography experiments and simulations for porous ablative materials. Measurements are carried using x-rays from the Advanced Light Source at Berkeley Lab on different classes of ablative materials used in NASA entry systems. Challenges, strengths and limitations of the technique for imaging materials such as lightweight carbon-phenolic systems and woven textiles are discussed. Computational tools developed to perform numerical simulations based on micro-tomography are described. These enable computations of material properties such as permeability, thermal and radiative conductivity, tortuosity and other parameters that are used in ablator response models. Finally, we present the design of environmental cells that enable imaging materials under simulated operational conditions, such as high temperature, mechanical loads and oxidizing atmospheres.Keywords: Micro-tomography, Porous media, Ablation

  1. Do C-reactive protein level, white blood cell count, and pain location guide the selection of patients for computed tomography imaging in non-traumatic acute abdomen?

    PubMed

    Ozan, E; Atac, G K; Evrin, T; Alisar, K; Sonmez, L O; Alhan, A

    2017-02-01

    The value of abdominal computed tomography in non-traumatic abdominal pain has been well established. On the other hand, to manage computed tomography, appropriateness has become more of an issue as a result of the concomitant increase in patient radiation exposure with increased computed tomography use. The purpose of this study was to investigate whether C-reactive protein, white blood cell count, and pain location may guide the selection of patients for computed tomography in non-traumatic acute abdomen. Patients presenting with acute abdomen to the emergency department over a 12-month period and who subsequently underwent computed tomography were retrospectively reviewed. Those with serum C-reactive protein and white blood cell count measured on admission or within 24 h of the computed tomography were selected. Computed tomography examinations were retrospectively reviewed, and final diagnoses were designated either positive or negative for pathology relating to presentation with acute abdomen. White blood cell counts, C-reactive protein levels, and pain locations were analyzed to determine whether they increased or decreased the likelihood of producing a diagnostic computed tomography. The likelihood ratio for computed tomography positivity with a C-reactive protein level above 5 mg/L was 1.71, while this increased to 7.71 in patients with combined elevated C-reactive protein level and white blood cell count and right lower quadrant pain. Combined elevated C-reactive protein level and white blood cell count in patients with right lower quadrant pain may represent a potential factor that could guide the decision to perform computed tomography in non-traumatic acute abdomen.

  2. Preoperative N Staging of Gastric Cancer by Stomach Protocol Computed Tomography

    PubMed Central

    Kim, Se Hoon; Kim, Jeong Jae; Lee, Jeong Sub; Kim, Seung Hyoung; Kim, Bong Soo; Maeng, Young Hee; Hyun, Chang Lim; Kim, Min Jeong

    2013-01-01

    Purpose Clinical stage of gastric cancer is currently assessed by computed tomography. Accurate clinical staging is important for the tailoring of therapy. This study evaluated the accuracy of clinical N staging using stomach protocol computed tomography. Materials and Methods Between March 2004 and November 2012, 171 patients with gastric cancer underwent preoperative stomach protocol computed tomography (Jeju National University Hospital; Jeju, Korea). Their demographic and clinical characteristics were reviewed retrospectively. Two radiologists evaluated cN staging using axial and coronal computed tomography images, and cN stage was matched with pathologic results. The diagnostic accuracy of stomach protocol computed tomography for clinical N staging and clinical characteristics associated with diagnostic accuracy were evaluated. Results The overall accuracy of stomach protocol computed tomography for cN staging was 63.2%. Computed tomography images of slice thickness 3.0 mm had a sensitivity of 60.0%; a specificity of 89.6%; an accuracy of 78.4%; and a positive predictive value of 78.0% in detecting lymph node metastases. Underestimation of cN stage was associated with larger tumor size (P<0.001), undifferentiated type (P=0.003), diffuse type (P=0.020), more advanced pathologic stage (P<0.001), and larger numbers of harvested and metastatic lymph nodes (P<0.001 each). Tumor differentiation was an independent factor affecting underestimation by computed tomography (P=0.045). Conclusions Computed tomography with a size criterion of 8 mm is highly specific but relatively insensitive in detecting nodal metastases. Physicians should keep in mind that computed tomography may not be an appropriate tool to detect nodal metastases for choosing appropriate treatment. PMID:24156034

  3. Degradation of metallic materials studied by correlative tomography

    NASA Astrophysics Data System (ADS)

    Burnett, T. L.; Holroyd, N. J. H.; Lewandowski, J. J.; Ogurreck, M.; Rau, C.; Kelley, R.; Pickering, E. J.; Daly, M.; Sherry, A. H.; Pawar, S.; Slater, T. J. A.; Withers, P. J.

    2017-07-01

    There are a huge array of characterization techniques available today and increasingly powerful computing resources allowing for the effective analysis and modelling of large datasets. However, each experimental and modelling tool only spans limited time and length scales. Correlative tomography can be thought of as the extension of correlative microscopy into three dimensions connecting different techniques, each providing different types of information, or covering different time or length scales. Here the focus is on the linking of time lapse X-ray computed tomography (CT) and serial section electron tomography using the focussed ion beam (FIB)-scanning electron microscope to study the degradation of metals. Correlative tomography can provide new levels of detail by delivering a multiscale 3D picture of key regions of interest. Specifically, the Xe+ Plasma FIB is used as an enabling tool for large-volume high-resolution serial sectioning of materials, and also as a tool for preparation of microscale test samples and samples for nanoscale X-ray CT imaging. The exemplars presented illustrate general aspects relating to correlative workflows, as well as to the time-lapse characterisation of metal microstructures during various failure mechanisms, including ductile fracture of steel and the corrosion of aluminium and magnesium alloys. Correlative tomography is already providing significant insights into materials behaviour, linking together information from different instruments across different scales. Multiscale and multifaceted work flows will become increasingly routine, providing a feed into multiscale materials models as well as illuminating other areas, particularly where hierarchical structures are of interest.

  4. [Computer aided diagnosis model for lung tumor based on ensemble convolutional neural network].

    PubMed

    Wang, Yuanyuan; Zhou, Tao; Lu, Huiling; Wu, Cuiying; Yang, Pengfei

    2017-08-01

    The convolutional neural network (CNN) could be used on computer-aided diagnosis of lung tumor with positron emission tomography (PET)/computed tomography (CT), which can provide accurate quantitative analysis to compensate for visual inertia and defects in gray-scale sensitivity, and help doctors diagnose accurately. Firstly, parameter migration method is used to build three CNNs (CT-CNN, PET-CNN, and PET/CT-CNN) for lung tumor recognition in CT, PET, and PET/CT image, respectively. Then, we aimed at CT-CNN to obtain the appropriate model parameters for CNN training through analysis the influence of model parameters such as epochs, batchsize and image scale on recognition rate and training time. Finally, three single CNNs are used to construct ensemble CNN, and then lung tumor PET/CT recognition was completed through relative majority vote method and the performance between ensemble CNN and single CNN was compared. The experiment results show that the ensemble CNN is better than single CNN on computer-aided diagnosis of lung tumor.

  5. Investigation of a pre-clinical mandibular bone notch defect model in miniature pigs: clinical computed tomography, micro-computed tomography, and histological evaluation.

    PubMed

    Carlisle, Patricia L; Guda, Teja; Silliman, David T; Lien, Wen; Hale, Robert G; Brown Baer, Pamela R

    2016-02-01

    To validate a critical-size mandibular bone defect model in miniature pigs. Bilateral notch defects were produced in the mandible of dentally mature miniature pigs. The right mandibular defect remained untreated while the left defect received an autograft. Bone healing was evaluated by computed tomography (CT) at 4 and 16 weeks, and by micro-CT and non-decalcified histology at 16 weeks. In both the untreated and autograft treated groups, mineralized tissue volume was reduced significantly at 4 weeks post-surgery, but was comparable to the pre-surgery levels after 16 weeks. After 16 weeks, CT analysis indicated that significantly greater bone was regenerated in the autograft treated defect than in the untreated defect (P=0.013). Regardless of the treatment, the cortical bone was superior to the defect remodeled over 16 weeks to compensate for the notch defect. The presence of considerable bone healing in both treated and untreated groups suggests that this model is inadequate as a critical-size defect. Despite healing and adaptation, the original bone geometry and quality of the pre-injured mandible was not obtained. On the other hand, this model is justified for evaluating accelerated healing and mitigating the bone remodeling response, which are both important considerations for dental implant restorations.

  6. A parallel competitive Particle Swarm Optimization for non-linear first arrival traveltime tomography and uncertainty quantification

    NASA Astrophysics Data System (ADS)

    Luu, Keurfon; Noble, Mark; Gesret, Alexandrine; Belayouni, Nidhal; Roux, Pierre-François

    2018-04-01

    Seismic traveltime tomography is an optimization problem that requires large computational efforts. Therefore, linearized techniques are commonly used for their low computational cost. These local optimization methods are likely to get trapped in a local minimum as they critically depend on the initial model. On the other hand, global optimization methods based on MCMC are insensitive to the initial model but turn out to be computationally expensive. Particle Swarm Optimization (PSO) is a rather new global optimization approach with few tuning parameters that has shown excellent convergence rates and is straightforwardly parallelizable, allowing a good distribution of the workload. However, while it can traverse several local minima of the evaluated misfit function, classical implementation of PSO can get trapped in local minima at later iterations as particles inertia dim. We propose a Competitive PSO (CPSO) to help particles to escape from local minima with a simple implementation that improves swarm's diversity. The model space can be sampled by running the optimizer multiple times and by keeping all the models explored by the swarms in the different runs. A traveltime tomography algorithm based on CPSO is successfully applied on a real 3D data set in the context of induced seismicity.

  7. CatSim: a new computer assisted tomography simulation environment

    NASA Astrophysics Data System (ADS)

    De Man, Bruno; Basu, Samit; Chandra, Naveen; Dunham, Bruce; Edic, Peter; Iatrou, Maria; McOlash, Scott; Sainath, Paavana; Shaughnessy, Charlie; Tower, Brendon; Williams, Eugene

    2007-03-01

    We present a new simulation environment for X-ray computed tomography, called CatSim. CatSim provides a research platform for GE researchers and collaborators to explore new reconstruction algorithms, CT architectures, and X-ray source or detector technologies. The main requirements for this simulator are accurate physics modeling, low computation times, and geometrical flexibility. CatSim allows simulating complex analytic phantoms, such as the FORBILD phantoms, including boxes, ellipsoids, elliptical cylinders, cones, and cut planes. CatSim incorporates polychromaticity, realistic quantum and electronic noise models, finite focal spot size and shape, finite detector cell size, detector cross-talk, detector lag or afterglow, bowtie filtration, finite detector efficiency, non-linear partial volume, scatter (variance-reduced Monte Carlo), and absorbed dose. We present an overview of CatSim along with a number of validation experiments.

  8. Computer-aided detection and quantification of endolymphatic hydrops within the mouse cochlea in vivo using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Liu, George S.; Kim, Jinkyung; Applegate, Brian E.; Oghalai, John S.

    2017-07-01

    Diseases that cause hearing loss and/or vertigo in humans such as Meniere's disease are often studied using animal models. The volume of endolymph within the inner ear varies with these diseases. Here, we used a mouse model of increased endolymph volume, endolymphatic hydrops, to develop a computer-aided objective approach to measure endolymph volume from images collected in vivo using optical coherence tomography. The displacement of Reissner's membrane from its normal position was measured in cochlear cross sections. We validated our computer-aided measurements with manual measurements and with trained observer labels. This approach allows for computer-aided detection of endolymphatic hydrops in mice, with test performance showing sensitivity of 91% and specificity of 87% using a running average of five measurements. These findings indicate that this approach is accurate and reliable for classifying endolymphatic hydrops and quantifying endolymph volume.

  9. Computed 3D visualisation of an extinct cephalopod using computer tomographs.

    PubMed

    Lukeneder, Alexander

    2012-08-01

    The first 3D visualisation of a heteromorph cephalopod species from the Southern Alps (Dolomites, northern Italy) is presented. Computed tomography, palaeontological data and 3D reconstructions were included in the production of a movie, which shows a life reconstruction of the extinct organism. This detailed reconstruction is according to the current knowledge of the shape and mode of life as well as habitat of this animal. The results are based on the most complete shell known thus far of the genus Dissimilites . Object-based combined analyses from computed tomography and various computed 3D facility programmes help to understand morphological details as well as their ontogentical changes in fossil material. In this study, an additional goal was to show changes in locomotion during different ontogenetic phases of such fossil, marine shell-bearing animals (ammonoids). Hence, the presented models and tools can serve as starting points for discussions on morphology and locomotion of extinct cephalopods in general, and of the genus Dissimilites in particular. The heteromorph ammonoid genus Dissimilites is interpreted here as an active swimmer of the Tethyan Ocean. This study portrays non-destructive methods of 3D visualisation applied on palaeontological material, starting with computed tomography resulting in animated, high-quality video clips. The here presented 3D geometrical models and animation, which are based on palaeontological material, demonstrate the wide range of applications, analytical techniques and also outline possible limitations of 3D models in earth sciences and palaeontology. The realistic 3D models and motion pictures can easily be shared amongst palaeontologists. Data, images and short clips can be discussed online and, if necessary, adapted in morphological details and motion-style to better represent the cephalopod animal.

  10. Computed 3D visualisation of an extinct cephalopod using computer tomographs

    NASA Astrophysics Data System (ADS)

    Lukeneder, Alexander

    2012-08-01

    The first 3D visualisation of a heteromorph cephalopod species from the Southern Alps (Dolomites, northern Italy) is presented. Computed tomography, palaeontological data and 3D reconstructions were included in the production of a movie, which shows a life reconstruction of the extinct organism. This detailed reconstruction is according to the current knowledge of the shape and mode of life as well as habitat of this animal. The results are based on the most complete shell known thus far of the genus Dissimilites. Object-based combined analyses from computed tomography and various computed 3D facility programmes help to understand morphological details as well as their ontogentical changes in fossil material. In this study, an additional goal was to show changes in locomotion during different ontogenetic phases of such fossil, marine shell-bearing animals (ammonoids). Hence, the presented models and tools can serve as starting points for discussions on morphology and locomotion of extinct cephalopods in general, and of the genus Dissimilites in particular. The heteromorph ammonoid genus Dissimilites is interpreted here as an active swimmer of the Tethyan Ocean. This study portrays non-destructive methods of 3D visualisation applied on palaeontological material, starting with computed tomography resulting in animated, high-quality video clips. The here presented 3D geometrical models and animation, which are based on palaeontological material, demonstrate the wide range of applications, analytical techniques and also outline possible limitations of 3D models in earth sciences and palaeontology. The realistic 3D models and motion pictures can easily be shared amongst palaeontologists. Data, images and short clips can be discussed online and, if necessary, adapted in morphological details and motion-style to better represent the cephalopod animal.

  11. Computed 3D visualisation of an extinct cephalopod using computer tomographs

    PubMed Central

    Lukeneder, Alexander

    2012-01-01

    The first 3D visualisation of a heteromorph cephalopod species from the Southern Alps (Dolomites, northern Italy) is presented. Computed tomography, palaeontological data and 3D reconstructions were included in the production of a movie, which shows a life reconstruction of the extinct organism. This detailed reconstruction is according to the current knowledge of the shape and mode of life as well as habitat of this animal. The results are based on the most complete shell known thus far of the genus Dissimilites. Object-based combined analyses from computed tomography and various computed 3D facility programmes help to understand morphological details as well as their ontogentical changes in fossil material. In this study, an additional goal was to show changes in locomotion during different ontogenetic phases of such fossil, marine shell-bearing animals (ammonoids). Hence, the presented models and tools can serve as starting points for discussions on morphology and locomotion of extinct cephalopods in general, and of the genus Dissimilites in particular. The heteromorph ammonoid genus Dissimilites is interpreted here as an active swimmer of the Tethyan Ocean. This study portrays non-destructive methods of 3D visualisation applied on palaeontological material, starting with computed tomography resulting in animated, high-quality video clips. The here presented 3D geometrical models and animation, which are based on palaeontological material, demonstrate the wide range of applications, analytical techniques and also outline possible limitations of 3D models in earth sciences and palaeontology. The realistic 3D models and motion pictures can easily be shared amongst palaeontologists. Data, images and short clips can be discussed online and, if necessary, adapted in morphological details and motion-style to better represent the cephalopod animal. PMID:24850976

  12. Combination of radiological and gray level co-occurrence matrix textural features used to distinguish solitary pulmonary nodules by computed tomography.

    PubMed

    Wu, Haifeng; Sun, Tao; Wang, Jingjing; Li, Xia; Wang, Wei; Huo, Da; Lv, Pingxin; He, Wen; Wang, Keyang; Guo, Xiuhua

    2013-08-01

    The objective of this study was to investigate the method of the combination of radiological and textural features for the differentiation of malignant from benign solitary pulmonary nodules by computed tomography. Features including 13 gray level co-occurrence matrix textural features and 12 radiological features were extracted from 2,117 CT slices, which came from 202 (116 malignant and 86 benign) patients. Lasso-type regularization to a nonlinear regression model was applied to select predictive features and a BP artificial neural network was used to build the diagnostic model. Eight radiological and two textural features were obtained after the Lasso-type regularization procedure. Twelve radiological features alone could reach an area under the ROC curve (AUC) of 0.84 in differentiating between malignant and benign lesions. The 10 selected characters improved the AUC to 0.91. The evaluation results showed that the method of selecting radiological and textural features appears to yield more effective in the distinction of malignant from benign solitary pulmonary nodules by computed tomography.

  13. A computer-aided system for automatic extraction of femur neck trabecular bone architecture using isotropic volume construction from clinical hip computed tomography images.

    PubMed

    Vivekanandhan, Sapthagirivasan; Subramaniam, Janarthanam; Mariamichael, Anburajan

    2016-10-01

    Hip fractures due to osteoporosis are increasing progressively across the globe. It is also difficult for those fractured patients to undergo dual-energy X-ray absorptiometry scans due to its complicated protocol and its associated cost. The utilisation of computed tomography for the fracture treatment has become common in the clinical practice. It would be helpful for orthopaedic clinicians, if they could get some additional information related to bone strength for better treatment planning. The aim of our study was to develop an automated system to segment the femoral neck region, extract the cortical and trabecular bone parameters, and assess the bone strength using an isotropic volume construction from clinical computed tomography images. The right hip computed tomography and right femur dual-energy X-ray absorptiometry measurements were taken from 50 south-Indian females aged 30-80 years. Each computed tomography image volume was re-constructed to form isotropic volumes. An automated system by incorporating active contour models was used to segment the neck region. A minimum distance boundary method was applied to isolate the cortical and trabecular bone components. The trabecular bone was enhanced and segmented using trabecular enrichment approach. The cortical and trabecular bone features were extracted and statistically compared with dual-energy X-ray absorptiometry measured femur neck bone mineral density. The extracted bone measures demonstrated a significant correlation with neck bone mineral density (r > 0.7, p < 0.001). The inclusion of cortical measures, along with the trabecular measures extracted after isotropic volume construction and trabecular enrichment approach procedures, resulted in better estimation of bone strength. The findings suggest that the proposed system using the clinical computed tomography images scanned with low dose could eventually be helpful in osteoporosis diagnosis and its treatment planning. © IMechE 2016.

  14. Rapid prototyping raw models on the basis of high resolution computed tomography lung data for respiratory flow dynamics.

    PubMed

    Giesel, Frederik L; Mehndiratta, Amit; von Tengg-Kobligk, Hendrik; Schaeffer, A; Teh, Kevin; Hoffman, E A; Kauczor, Hans-Ulrich; van Beek, E J R; Wild, Jim M

    2009-04-01

    Three-dimensional image reconstruction by volume rendering and rapid prototyping has made it possible to visualize anatomic structures in three dimensions for interventional planning and academic research. Volumetric chest computed tomography was performed on a healthy volunteer. Computed tomographic images of the larger bronchial branches were segmented by an extended three-dimensional region-growing algorithm, converted into a stereolithography file, and used for computer-aided design on a laser sintering machine. The injection of gases for respiratory flow modeling and measurements using magnetic resonance imaging were done on a hollow cast. Manufacturing the rapid prototype took about 40 minutes and included the airway tree from trackea to segmental bronchi (fifth generation). The branching of the airways are clearly visible in the (3)He images, and the radial imaging has the potential to elucidate the airway dimensions. The results for flow patterns in the human bronchial tree using the rapid-prototype model with hyperpolarized helium-3 magnetic resonance imaging show the value of this model for flow phantom studies.

  15. Computer system for definition of the quantitative geometry of musculature from CT images.

    PubMed

    Daniel, Matej; Iglic, Ales; Kralj-Iglic, Veronika; Konvicková, Svatava

    2005-02-01

    The computer system for quantitative determination of musculoskeletal geometry from computer tomography (CT) images has been developed. The computer system processes series of CT images to obtain three-dimensional (3D) model of bony structures where the effective muscle fibres can be interactively defined. Presented computer system has flexible modular structure and is suitable also for educational purposes.

  16. Computed tomography vs. digital radiography assessment for detection of osteolysis in asymptomatic patients with uncemented cups: a proposal for a new classification system based on computer tomography.

    PubMed

    Sandgren, Buster; Crafoord, Joakim; Garellick, Göran; Carlsson, Lars; Weidenhielm, Lars; Olivecrona, Henrik

    2013-10-01

    Digital radiographic images in the anterior-posterior and lateral view have been gold standard for evaluation of peri-acetabular osteolysis for patients with an uncemented hip replacement. We compared digital radiographic images and computer tomography in detection of peri-acetabular osteolysis and devised a classification system based on computer tomography. Digital radiographs were compared with computer tomography on 206 hips, with a mean follow up 10 years after surgery. The patients had no clinical signs of osteolysis and none were planned for revision surgery. On digital radiographs, 192 cases had no osteolysis and only 14 cases had osteolysis. When using computer tomography there were 184 cases showing small or large osteolysis and only 22 patients had no osteolysis. A classification system for peri-acetabular osteolysis is proposed based on computer tomography that is easy to use on standard follow up evaluation. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Toward real-time diffuse optical tomography: accelerating light propagation modeling employing parallel computing on GPU and CPU.

    PubMed

    Doulgerakis, Matthaios; Eggebrecht, Adam; Wojtkiewicz, Stanislaw; Culver, Joseph; Dehghani, Hamid

    2017-12-01

    Parameter recovery in diffuse optical tomography is a computationally expensive algorithm, especially when used for large and complex volumes, as in the case of human brain functional imaging. The modeling of light propagation, also known as the forward problem, is the computational bottleneck of the recovery algorithm, whereby the lack of a real-time solution is impeding practical and clinical applications. The objective of this work is the acceleration of the forward model, within a diffusion approximation-based finite-element modeling framework, employing parallelization to expedite the calculation of light propagation in realistic adult head models. The proposed methodology is applicable for modeling both continuous wave and frequency-domain systems with the results demonstrating a 10-fold speed increase when GPU architectures are available, while maintaining high accuracy. It is shown that, for a very high-resolution finite-element model of the adult human head with ∼600,000 nodes, consisting of heterogeneous layers, light propagation can be calculated at ∼0.25  s/excitation source. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  18. Assessment of bronchial wall thickness and lumen diameter in human adults using multi-detector computed tomography: comparison with theoretical models

    PubMed Central

    Montaudon, M; Desbarats, P; Berger, P; de Dietrich, G; Marthan, R; Laurent, F

    2007-01-01

    A thickened bronchial wall is the morphological substratum of most diseases of the airway. Theoretical and clinical models of bronchial morphometry have so far focused on bronchial lumen diameter, and bronchial length and angles, mainly assessed from bronchial casts. However, these models do not provide information on bronchial wall thickness. This paper reports in vivo values of cross-sectional wall area, lumen area, wall thickness and lumen diameter in ten healthy subjects as assessed by multi-detector computed tomography. A validated dedicated software package was used to measure these morphometric parameters up to the 14th bronchial generation, with respect to Weibel's model of bronchial morphometry, and up to the 12th according to Boyden's classification. Measured lumen diameters and homothety ratios were compared with theoretical values obtained from previously published studies, and no difference was found when considering dichotomic division of the bronchial tree. Mean wall area, lumen area, wall thickness and lumen diameter were then provided according to bronchial generation order, and mean homothety ratios were computed for wall area, lumen area and wall thickness as well as equations giving the mean value of each parameter for a given bronchial generation with respect to its value in generation 0 (trachea). Multi-detector computed tomography measurements of bronchial morphometric parameters may help to improve our knowledge of bronchial anatomy in vivo, our understanding of the pathophysiology of bronchial diseases and the evaluation of pharmacological effects on the bronchial wall. PMID:17919291

  19. Assessment of the Role of Different Imaging Modalities with Emphasis on Fdg Pet/Ct in the Management of Well Differentiated Thyroid Cancer (WDTC).

    PubMed

    Kendi A, Tuba Karagulle; Mudalegundi, Shwetha; Switchenko, Jeffrey; Lee, Daniel; Halkar, Raghuveer; Chen, Amy Y

    2016-01-01

    Positron emission tomography/computed tomography is suggested to have a role in detection of iodine negative recurrence in well differentiated thyroid cancer. The aim of this study is to identify role of different imaging modalities in the management of well differentiated thyroid cancer. We reviewed 900 well differentiated thyroid cancer patients after post-thyroidectomy who underwent recombinant human thyroid stimulating hormone stimulated Sodium Iodide I 131 imaging. Out of 900 patients, 74 had positron emission tomography/computed tomography. Multivariate analysis was performed by controlling positron emission tomography/computed tomography, Sodium Iodide I 131 scan, neck ultrasonography, age, sex, primary tumor size, stage, histology, thyroglobulin. Patients were grouped according to results of Sodium Iodide I 131 scan and positron emission tomography/computed tomography. Positron emission tomography/computed tomography was positive in 23 of 74 patients. The sensitivity for positron emission tomography was 11/11(100%), the specificity was 51/63 (81.0%), the positive predictive value was 11/23 (47.8%), and the negative predictive value was 51/51 (100%). The sensitivity for the neck ultrasonography was 4/8 (50%), the specificity was 53/60 (88.3%), positive predictive value was 4/11 (36.4%), and negative predictive value was 53/57 (93.0%). 50% of patients who had Sodium Iodide I 131 negative scan and positive positron emission tomography/computed tomography had a change in management. Thirty-six percent with positive neck ultrasonography had a change in management. Out of 11 recurrences, 6 had distant metastatic disease, and 5/11 had regional nodal disease. Neck ultrasonography showed nodal metastasis in 4/5 (80%). Positron emission tomography/computed tomography altered management in the presence of a high thyroglobulin level and a negative Sodium Iodide I 131 scan. Neck ultrasonography should be the first line of imaging with rising thyroglobulin levels. Positron emission tomography/computed tomography should be considered for cases with high thyroglobulin levels and normal neck ultrasonography to look for distant metastatic disease.

  20. Global Seismic Imaging Based on Adjoint Tomography

    NASA Astrophysics Data System (ADS)

    Bozdag, E.; Lefebvre, M.; Lei, W.; Peter, D. B.; Smith, J. A.; Zhu, H.; Komatitsch, D.; Tromp, J.

    2013-12-01

    Our aim is to perform adjoint tomography at the scale of globe to image the entire planet. We have started elastic inversions with a global data set of 253 CMT earthquakes with moment magnitudes in the range 5.8 ≤ Mw ≤ 7 and used GSN stations as well as some local networks such as USArray, European stations, etc. Using an iterative pre-conditioned conjugate gradient scheme, we initially set the aim to obtain a global crustal and mantle model with confined transverse isotropy in the upper mantle. Global adjoint tomography has so far remained a challenge mainly due to computational limitations. Recent improvements in our 3D solvers (e.g., a GPU version) and access to high-performance computational centers (e.g., ORNL's Cray XK7 "Titan" system) now enable us to perform iterations with higher-resolution (T > 9 s) and longer-duration (200 min) simulations to accommodate high-frequency body waves and major-arc surface waves, respectively, which help improve data coverage. The remaining challenge is the heavy I/O traffic caused by the numerous files generated during the forward/adjoint simulations and the pre- and post-processing stages of our workflow. We improve the global adjoint tomography workflow by adopting the ADIOS file format for our seismic data as well as models, kernels, etc., to improve efficiency on high-performance clusters. Our ultimate aim is to use data from all available networks and earthquakes within the magnitude range of our interest (5.5 ≤ Mw ≤ 7) which requires a solid framework to manage big data in our global adjoint tomography workflow. We discuss the current status and future of global adjoint tomography based on our initial results as well as practical issues such as handling big data in inversions and on high-performance computing systems.

  1. Body CT (CAT Scan)

    MedlinePlus

    ... Resources Professions Site Index A-Z Computed Tomography (CT) - Body Computed tomography (CT) of the body uses ... of CT Scanning of the Body? What is CT Scanning of the Body? Computed tomography, more commonly ...

  2. Analysis of intensity variability in multislice and cone beam computed tomography.

    PubMed

    Nackaerts, Olivia; Maes, Frederik; Yan, Hua; Couto Souza, Paulo; Pauwels, Ruben; Jacobs, Reinhilde

    2011-08-01

    The aim of this study was to evaluate the variability of intensity values in cone beam computed tomography (CBCT) imaging compared with multislice computed tomography Hounsfield units (MSCT HU) in order to assess the reliability of density assessments using CBCT images. A quality control phantom was scanned with an MSCT scanner and five CBCT scanners. In one CBCT scanner, the phantom was scanned repeatedly in the same and in different positions. Images were analyzed using registration to a mathematical model. MSCT images were used as a reference. Density profiles of MSCT showed stable HU values, whereas in CBCT imaging the intensity values were variable over the profile. Repositioning of the phantom resulted in large fluctuations in intensity values. The use of intensity values in CBCT images is not reliable, because the values are influenced by device, imaging parameters and positioning. © 2011 John Wiley & Sons A/S.

  3. Development and Verification of Body Armor Target Geometry Created Using Computed Tomography Scans

    DTIC Science & Technology

    2017-07-13

    designated by other authorized documents. Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of...modeling consisted of manual measurement of armor systems and translating those measurements to computer-aided design geometry, which can be tedious and...computer-aided design (CAD) human geometry model (referred to throughout as ORCA man) that is used in the Operational Requirement-based Casualty Assessment

  4. Feasibility of Clinician-Facilitated Three-Dimensional Printing of Synthetic Cranioplasty Flaps.

    PubMed

    Panesar, Sandip S; Belo, Joao Tiago A; D'Souza, Rhett N

    2018-05-01

    Integration of three-dimensional (3D) printing and stereolithography into clinical practice is in its nascence, and concepts may be esoteric to the practicing neurosurgeon. Currently, creation of 3D printed implants involves recruitment of offsite third parties. We explored a range of 3D scanning and stereolithographic techniques to create patient-specific synthetic implants using an onsite, clinician-facilitated approach. We simulated bilateral craniectomies in a single cadaveric specimen. We devised 3 methods of creating stereolithographically viable virtual models from removed bone. First, we used preoperative and postoperative computed tomography scanner-derived bony window models from which the flap was extracted. Second, we used an entry-level 3D light scanner to scan and render models of the individual bone pieces. Third, we used an arm-mounted, 3D laser scanner to create virtual models using a real-time approach. Flaps were printed from the computed tomography scanner and laser scanner models only in a ultraviolet-cured polymer. The light scanner did not produce suitable virtual models for printing. The computed tomography scanner-derived models required extensive postfabrication modification to fit the existing defects. The laser scanner models assumed good fit within the defects without any modification. The methods presented varying levels of complexity in acquisition and model rendering. Each technique required hardware at varying in price points from $0 to approximately $100,000. The laser scanner models produced the best quality parts, which had near-perfect fit with the original defects. Potential neurosurgical applications of this technology are discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Improving limited-projection-angle fluorescence molecular tomography using a co-registered x-ray computed tomography scan.

    PubMed

    Radrich, Karin; Ale, Angelique; Ermolayev, Vladimir; Ntziachristos, Vasilis

    2012-12-01

    We examine the improvement in imaging performance, such as axial resolution and signal localization, when employing limited-projection-angle fluorescence molecular tomography (FMT) together with x-ray computed tomography (XCT) measurements versus stand-alone FMT. For this purpose, we employed living mice, bearing a spontaneous lung tumor model, and imaged them with FMT and XCT under identical geometrical conditions using fluorescent probes for cancer targeting. The XCT data was employed, herein, as structural prior information to guide the FMT reconstruction. Gold standard images were provided by fluorescence images of mouse cryoslices, providing the ground truth in fluorescence bio-distribution. Upon comparison of FMT images versus images reconstructed using hybrid FMT and XCT data, we demonstrate marked improvements in image accuracy. This work relates to currently disseminated FMT systems, using limited projection scans, and can be employed to enhance their performance.

  6. XDesign: an open-source software package for designing X-ray imaging phantoms and experiments.

    PubMed

    Ching, Daniel J; Gürsoy, Dogˇa

    2017-03-01

    The development of new methods or utilization of current X-ray computed tomography methods is impeded by the substantial amount of expertise required to design an X-ray computed tomography experiment from beginning to end. In an attempt to make material models, data acquisition schemes and reconstruction algorithms more accessible to researchers lacking expertise in some of these areas, a software package is described here which can generate complex simulated phantoms and quantitatively evaluate new or existing data acquisition schemes and image reconstruction algorithms for targeted applications.

  7. XDesign: An open-source software package for designing X-ray imaging phantoms and experiments

    DOE PAGES

    Ching, Daniel J.; Gursoy, Dogˇa

    2017-02-21

    Here, the development of new methods or utilization of current X-ray computed tomography methods is impeded by the substantial amount of expertise required to design an X-ray computed tomography experiment from beginning to end. In an attempt to make material models, data acquisition schemes and reconstruction algorithms more accessible to researchers lacking expertise in some of these areas, a software package is described here which can generate complex simulated phantoms and quantitatively evaluate new or existing data acquisition schemes and image reconstruction algorithms for targeted applications.

  8. Biomechanics of compensatory mechanisms in spinal-pelvic complex

    NASA Astrophysics Data System (ADS)

    Ivanov, D. V.; Hominets, V. V.; Kirillova, I. V.; Kossovich, L. Yu; Kudyashev, A. L.; Teremshonok, A. V.

    2018-04-01

    3D geometric solid computer model of spinal-pelvic complex was constructed on the basis of computed tomography and full body X-ray in standing position data. The constructed model was used for biomechanical analysis of compensatory mechanisms arising in the spine with anteversion and retroversion of the pelvis. The results of numerical biomechanical 3D modeling are in good agreement with the clinical data.

  9. Dual-Energy Computed Tomography in Cardiothoracic Vascular Imaging.

    PubMed

    De Santis, Domenico; Eid, Marwen; De Cecco, Carlo N; Jacobs, Brian E; Albrecht, Moritz H; Varga-Szemes, Akos; Tesche, Christian; Caruso, Damiano; Laghi, Andrea; Schoepf, Uwe Joseph

    2018-07-01

    Dual energy computed tomography is becoming increasingly widespread in clinical practice. It can expand on the traditional density-based data achievable with single energy computed tomography by adding novel applications to help reach a more accurate diagnosis. The implementation of this technology in cardiothoracic vascular imaging allows for improved image contrast, metal artifact reduction, generation of virtual unenhanced images, virtual calcium subtraction techniques, cardiac and pulmonary perfusion evaluation, and plaque characterization. The improved diagnostic performance afforded by dual energy computed tomography is not associated with an increased radiation dose. This review provides an overview of dual energy computed tomography cardiothoracic vascular applications. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Computer-aided classification of lung nodules on computed tomography images via deep learning technique

    PubMed Central

    Hua, Kai-Lung; Hsu, Che-Hao; Hidayati, Shintami Chusnul; Cheng, Wen-Huang; Chen, Yu-Jen

    2015-01-01

    Lung cancer has a poor prognosis when not diagnosed early and unresectable lesions are present. The management of small lung nodules noted on computed tomography scan is controversial due to uncertain tumor characteristics. A conventional computer-aided diagnosis (CAD) scheme requires several image processing and pattern recognition steps to accomplish a quantitative tumor differentiation result. In such an ad hoc image analysis pipeline, every step depends heavily on the performance of the previous step. Accordingly, tuning of classification performance in a conventional CAD scheme is very complicated and arduous. Deep learning techniques, on the other hand, have the intrinsic advantage of an automatic exploitation feature and tuning of performance in a seamless fashion. In this study, we attempted to simplify the image analysis pipeline of conventional CAD with deep learning techniques. Specifically, we introduced models of a deep belief network and a convolutional neural network in the context of nodule classification in computed tomography images. Two baseline methods with feature computing steps were implemented for comparison. The experimental results suggest that deep learning methods could achieve better discriminative results and hold promise in the CAD application domain. PMID:26346558

  11. Computer-aided classification of lung nodules on computed tomography images via deep learning technique.

    PubMed

    Hua, Kai-Lung; Hsu, Che-Hao; Hidayati, Shintami Chusnul; Cheng, Wen-Huang; Chen, Yu-Jen

    2015-01-01

    Lung cancer has a poor prognosis when not diagnosed early and unresectable lesions are present. The management of small lung nodules noted on computed tomography scan is controversial due to uncertain tumor characteristics. A conventional computer-aided diagnosis (CAD) scheme requires several image processing and pattern recognition steps to accomplish a quantitative tumor differentiation result. In such an ad hoc image analysis pipeline, every step depends heavily on the performance of the previous step. Accordingly, tuning of classification performance in a conventional CAD scheme is very complicated and arduous. Deep learning techniques, on the other hand, have the intrinsic advantage of an automatic exploitation feature and tuning of performance in a seamless fashion. In this study, we attempted to simplify the image analysis pipeline of conventional CAD with deep learning techniques. Specifically, we introduced models of a deep belief network and a convolutional neural network in the context of nodule classification in computed tomography images. Two baseline methods with feature computing steps were implemented for comparison. The experimental results suggest that deep learning methods could achieve better discriminative results and hold promise in the CAD application domain.

  12. Aberration correction for transcranial photoacoustic tomography of primates employing adjunct image data

    NASA Astrophysics Data System (ADS)

    Huang, Chao; Nie, Liming; Schoonover, Robert W.; Guo, Zijian; Schirra, Carsten O.; Anastasio, Mark A.; Wang, Lihong V.

    2012-06-01

    A challenge in photoacoustic tomography (PAT) brain imaging is to compensate for aberrations in the measured photoacoustic data due to their propagation through the skull. By use of information regarding the skull morphology and composition obtained from adjunct x-ray computed tomography image data, we developed a subject-specific imaging model that accounts for such aberrations. A time-reversal-based reconstruction algorithm was employed with this model for image reconstruction. The image reconstruction methodology was evaluated in experimental studies involving phantoms and monkey heads. The results establish that our reconstruction methodology can effectively compensate for skull-induced acoustic aberrations and improve image fidelity in transcranial PAT.

  13. Irreversible electroporation of the pancreas is feasible and safe in a porcine survival model.

    PubMed

    Fritz, Stefan; Sommer, Christof M; Vollherbst, Dominik; Wachter, Miguel F; Longerich, Thomas; Sachsenmeier, Milena; Knapp, Jürgen; Radeleff, Boris A; Werner, Jens

    2015-07-01

    Use of thermal tumor ablation in the pancreatic parenchyma is limited because of the risk of pancreatitis, pancreatic fistula, or hemorrhage. This study aimed to evaluate the feasibility and safety of irreversible electroporation (IRE) in a porcine model. Ten pigs were divided into 2 study groups. In the first group, animals received IRE of the pancreatic tail and were killed after 60 minutes. In the second group, animals received IRE at the head of the pancreas and were followed up for 7 days. Clinical parameters, computed tomography imaging, laboratory results, and histology were obtained. All animals survived IRE ablation, and no cardiac adverse effects were noted. Sixty minutes after IRE, a hypodense lesion on computed tomography imaging indicated the ablation zone. None of the animals developed clinical signs of acute pancreatitis. Only small amounts of ascites fluid, with a transient increase in amylase and lipase levels, were observed, indicating that no pancreatic fistula occurred. This porcine model shows that IRE is feasible and safe in the pancreatic parenchyma. Computed tomography imaging reveals significant changes at 60 minutes after IRE and therefore might serve as an early indicator of therapeutic success. Clinical studies are needed to evaluate the efficacy of IRE in pancreatic cancer.

  14. Support Vector Machines Model of Computed Tomography for Assessing Lymph Node Metastasis in Esophageal Cancer with Neoadjuvant Chemotherapy.

    PubMed

    Wang, Zhi-Long; Zhou, Zhi-Guo; Chen, Ying; Li, Xiao-Ting; Sun, Ying-Shi

    The aim of this study was to diagnose lymph node metastasis of esophageal cancer by support vector machines model based on computed tomography. A total of 131 esophageal cancer patients with preoperative chemotherapy and radical surgery were included. Various indicators (tumor thickness, tumor length, tumor CT value, total number of lymph nodes, and long axis and short axis sizes of largest lymph node) on CT images before and after neoadjuvant chemotherapy were recorded. A support vector machines model based on these CT indicators was built to predict lymph node metastasis. Support vector machines model diagnosed lymph node metastasis better than preoperative short axis size of largest lymph node on CT. The area under the receiver operating characteristic curves were 0.887 and 0.705, respectively. The support vector machine model of CT images can help diagnose lymph node metastasis in esophageal cancer with preoperative chemotherapy.

  15. A Freeware Path to Neutron Computed Tomography

    NASA Astrophysics Data System (ADS)

    Schillinger, Burkhard; Craft, Aaron E.

    Neutron computed tomography has become a routine method at many neutron sources due to the availability of digital detection systems, powerful computers and advanced software. The commercial packages Octopus by Inside Matters and VGStudio by Volume Graphics have been established as a quasi-standard for high-end computed tomography. However, these packages require a stiff investment and are available to the users only on-site at the imaging facility to do their data processing. There is a demand from users to have image processing software at home to do further data processing; in addition, neutron computed tomography is now being introduced even at smaller and older reactors. Operators need to show a first working tomography setup before they can obtain a budget to build an advanced tomography system. Several packages are available on the web for free; however, these have been developed for X-rays or synchrotron radiation and are not immediately useable for neutron computed tomography. Three reconstruction packages and three 3D-viewers have been identified and used even for Gigabyte datasets. This paper is not a scientific publication in the classic sense, but is intended as a review to provide searchable help to make the described packages usable for the tomography community. It presents the necessary additional preprocessing in ImageJ, some workarounds for bugs in the software, and undocumented or badly documented parameters that need to be adapted for neutron computed tomography. The result is a slightly complicated, but surprisingly high-quality path to neutron computed tomography images in 3D, but not a replacement for the even more powerful commercial software mentioned above.

  16. Terahertz Computed Tomography of NASA Thermal Protection System Materials

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Reyes-Rodriguez, S.; Zimdars, D. A.; Rauser, R. W.; Ussery, W. W.

    2011-01-01

    A terahertz axial computed tomography system has been developed that uses time domain measurements in order to form cross-sectional image slices and three-dimensional volume renderings of terahertz-transparent materials. The system can inspect samples as large as 0.0283 cubic meters (1 cubic foot) with no safety concerns as for x-ray computed tomography. In this study, the system is evaluated for its ability to detect and characterize flat bottom holes, drilled holes, and embedded voids in foam materials utilized as thermal protection on the external fuel tanks for the Space Shuttle. X-ray micro-computed tomography was also performed on the samples to compare against the terahertz computed tomography results and better define embedded voids. Limits of detectability based on depth and size for the samples used in this study are loosely defined. Image sharpness and morphology characterization ability for terahertz computed tomography are qualitatively described.

  17. Comparison of magnetic resonance imaging and computed tomography in suspected lesions in the posterior cranial fossa.

    PubMed Central

    Teasdale, G. M.; Hadley, D. M.; Lawrence, A.; Bone, I.; Burton, H.; Grant, R.; Condon, B.; Macpherson, P.; Rowan, J.

    1989-01-01

    OBJECTIVE--To compare computed tomography and magnetic resonance imaging in investigating patients suspected of having a lesion in the posterior cranial fossa. DESIGN--Randomised allocation of newly referred patients to undergo either computed tomography or magnetic resonance imaging; the alternative investigation was performed subsequently only in response to a request from the referring doctor. SETTING--A regional neuroscience centre serving 2.7 million. PATIENTS--1020 Patients recruited between April 1986 and December 1987, all suspected by neurologists, neurosurgeons, or other specialists of having a lesion in the posterior fossa and referred for neuroradiology. The groups allocated to undergo computed tomography or magnetic resonance imaging were well matched in distributions of age, sex, specialty of referring doctor, investigation as an inpatient or an outpatient, suspected site of lesion, and presumed disease process; the referring doctor's confidence in the initial clinical diagnosis was also similar. INTERVENTIONS--After the patients had been imaged by either computed tomography or magnetic resonance (using a resistive magnet of 0.15 T) doctors were given the radiologist's report and a form asking if they considered that imaging with the alternative technique was necessary and, if so, why; it also asked for their current diagnoses and their confidence in them. MAIN OUTCOME MEASURES--Number of requests for the alternative method of investigation. Assessment of characteristics of patients for whom further imaging was requested and lesions that were suspected initially and how the results of the second imaging affected clinicians' and radiologists' opinions. RESULTS--Ninety three of the 501 patients who initially underwent computed tomography were referred subsequently for magnetic resonance imaging whereas only 28 of the 493 patients who initially underwent magnetic resonance imaging were referred subsequently for computed tomography. Over the study the number of patients referred for magnetic resonance imaging after computed tomography increased but requests for computed tomography after magnetic resonance imaging decreased. The reason that clinicians gave most commonly for requesting further imaging by magnetic resonance was that the results of the initial computed tomography failed to exclude their suspected diagnosis (64 patients). This was less common in patients investigated initially by magnetic resonance imaging (eight patients). Management of 28 patients (6%) imaged initially with computed tomography and 12 patients (2%) imaged initially with magnetic resonance was changed on the basis of the results of the alternative imaging. CONCLUSIONS--Magnetic resonance imaging provided doctors with the information required to manage patients suspected of having a lesion in the posterior fossa more commonly than computed tomography, but computed tomography alone was satisfactory in 80% of cases... PMID:2506965

  18. Congruence Between Pulmonary Function and Computed Tomography Imaging Assessment of Cystic Fibrosis Severity.

    PubMed

    Rybacka, Anna; Goździk-Spychalska, Joanna; Rybacki, Adam; Piorunek, Tomasz; Batura-Gabryel, Halina; Karmelita-Katulska, Katarzyna

    2018-05-04

    In cystic fibrosis, pulmonary function tests (PFTs) and computed tomography are used to assess lung function and structure, respectively. Although both techniques of assessment are congruent there are lingering doubts about which PFTs variables show the best congruence with computed tomography scoring. In this study we addressed the issue by reinvestigating the association between PFTs variables and the score of changes seen in computed tomography scans in patients with cystic fibrosis with and without pulmonary exacerbation. This retrospective study comprised 40 patients in whom PFTs and computed tomography were performed no longer than 3 weeks apart. Images (inspiratory: 0.625 mm slice thickness, 0.625 mm interval; expiratory: 1.250 mm slice thickness, 10 mm interval) were evaluated with the Bhalla scoring system. The most frequent structural abnormality found in scans were bronchiectases and peribronchial thickening. The strongest relationship was found between the Bhalla sore and forced expiratory volume in 1 s (FEV1). The Bhalla sore also was related to forced vital capacity (FVC), FEV1/FVC ratio, residual volume (RV), and RV/total lung capacity (TLC) ratio. We conclude that lung structural data obtained from the computed tomography examination are highly congruent to lung function data. Thus, computed tomography imaging may supersede functional assessment in cases of poor compliance with spirometry procedures in the lederly or children. Computed tomography also seems more sensitive than PFTs in the assessment of cystic fibrosis progression. Moreover, in early phases of cystic fibrosis, computed tomography, due to its excellent resolution, may be irreplaceable in monitoring pulmonary damage.

  19. Computer-assisted virtual preoperative planning in orthopedic surgery for acetabular fractures based on actual computed tomography data.

    PubMed

    Wang, Guang-Ye; Huang, Wen-Jun; Song, Qi; Qin, Yun-Tian; Liang, Jin-Feng

    2016-12-01

    Acetabular fractures have always been very challenging for orthopedic surgeons; therefore, appropriate preoperative evaluation and planning are particularly important. This study aimed to explore the application methods and clinical value of preoperative computer simulation (PCS) in treating pelvic and acetabular fractures. Spiral computed tomography (CT) was performed on 13 patients with pelvic and acetabular fractures, and Digital Imaging and Communications in Medicine (DICOM) data were then input into Mimics software to reconstruct three-dimensional (3D) models of actual pelvic and acetabular fractures for preoperative simulative reduction and fixation, and to simulate each surgical procedure. The times needed for virtual surgical modeling and reduction and fixation were also recorded. The average fracture-modeling time was 45 min (30-70 min), and the average time for bone reduction and fixation was 28 min (16-45 min). Among the surgical approaches planned for these 13 patients, 12 were finally adopted; 12 cases used the simulated surgical fixation, and only 1 case used a partial planned fixation method. PCS can provide accurate surgical plans and data support for actual surgeries.

  20. SCCT guidelines for the performance and acquisition of coronary computed tomographic angiography: A report of the society of Cardiovascular Computed Tomography Guidelines Committee: Endorsed by the North American Society for Cardiovascular Imaging (NASCI).

    PubMed

    Abbara, Suhny; Blanke, Philipp; Maroules, Christopher D; Cheezum, Michael; Choi, Andrew D; Han, B Kelly; Marwan, Mohamed; Naoum, Chris; Norgaard, Bjarne L; Rubinshtein, Ronen; Schoenhagen, Paul; Villines, Todd; Leipsic, Jonathon

    In response to recent technological advancements in acquisition techniques as well as a growing body of evidence regarding the optimal performance of coronary computed tomography angiography (coronary CTA), the Society of Cardiovascular Computed Tomography Guidelines Committee has produced this update to its previously established 2009 "Guidelines for the Performance of Coronary CTA" (1). The purpose of this document is to provide standards meant to ensure reliable practice methods and quality outcomes based on the best available data in order to improve the diagnostic care of patients. Society of Cardiovascular Computed Tomography Guidelines for the Interpretation is published separately (2). The Society of Cardiovascular Computed Tomography Guidelines Committee ensures compliance with all existing standards for the declaration of conflict of interest by all authors and reviewers for the purpose ofclarity and transparency. Copyright © 2016 Society of Cardiovascular Computed Tomography. All rights reserved.

  1. Which risk models perform best in selecting ever-smokers for lung cancer screening?

    Cancer.gov

    A new analysis by scientists at NCI evaluates nine different individualized lung cancer risk prediction models based on their selections of ever-smokers for computed tomography (CT) lung cancer screening.

  2. Three-dimensional surface reconstruction for industrial computed tomography

    NASA Technical Reports Server (NTRS)

    Vannier, M. W.; Knapp, R. H.; Gayou, D. E.; Sammon, N. P.; Butterfield, R. L.; Larson, J. W.

    1985-01-01

    Modern high resolution medical computed tomography (CT) scanners can produce geometrically accurate sectional images of many types of industrial objects. Computer software has been developed to convert serial CT scans into a three-dimensional surface form, suitable for display on the scanner itself. This software, originally developed for imaging the skull, has been adapted for application to industrial CT scanning, where serial CT scans thrrough an object of interest may be reconstructed to demonstrate spatial relationships in three dimensions that cannot be easily understood using the original slices. The methods of three-dimensional reconstruction and solid modeling are reviewed, and reconstruction in three dimensions from CT scans through familiar objects is demonstrated.

  3. Application of multidetector-row computed tomography in propeller flap planning.

    PubMed

    Ono, Shimpei; Chung, Kevin C; Hayashi, Hiromitsu; Ogawa, Rei; Takami, Yoshihiro; Hyakusoku, Hiko

    2011-02-01

    The propeller flap is defined as (1) being island-shaped, (2) having an axis that includes the perforators, and (3) having the ability to be rotated around an axis. The advantage of the propeller flap is that it is a pedicle flap that can be applied to cover defects located at the distal ends of the extremities. The specific aims of the authors' study were (1) to evaluate the usefulness of multidetector-row computed tomography in the planning of propeller flaps and (2) to present a clinical case series of propeller flap reconstructions that were planned preoperatively using multidetector-row computed tomography. The authors retrospectively analyzed all cases between April of 2007 and April of 2010 at Nippon Medical School Hospital in Tokyo, where multidetector-row computed tomography was used preoperatively to plan surgical reconstructions using propeller flaps. Thirteen patients underwent 16 flaps using the propeller flap technique. The perforators were identified accurately by multidetector-row computed tomography preoperatively in all cases. This is the first report describing the application of multidetector-row computed tomography in the planning of propeller flaps. Multidetector-row computed tomography is superior to other imaging methods because it demonstrates more precisely the perforator's position and subcutaneous course using high-resolution three-dimensional images. By using multidetector-row computed tomography to preoperatively identify a flap's perforators, the surgeon can better plan the flap design to efficiently conduct the flap surgery.

  4. 3D printing of the aortic annulus based on cardiovascular computed tomography: Preliminary experience in pre-procedural planning for aortic valve sizing.

    PubMed

    Faletti, Riccardo; Gatti, Marco; Cosentino, Aurelio; Bergamasco, Laura; Cura Stura, Erik; Garabello, Domenica; Pennisi, Giovanni; Salizzoni, Stefano; Veglia, Simona; Ottavio, Davini; Rinaldi, Mauro; Fonio, Paolo

    2018-05-26

    to determine reliability and reproducibility of measurements of aortic annulus in 3D models printed from cardiovascular computed tomography (CCT) images. Retrospective study on the records of 20 patients who underwent aortic valve replacement (AVR) with pre-surgery annulus assessment by CCT and intra-operative sizing by Hegar dilators (IOS). 3D models were fabricated by fused deposition modelling of thermoplastic polyurethane filaments. For each patient, two 3D models were independently segmented, modelled and printed by two blinded "manufacturers": a radiologist and a radiology technician. Two blinded cardiac surgeons performed the annulus diameter measurements by Hegar dilators on the two sets of models. Matched data from different measurements were analyzed with Wilcoxon test, Bland-Altmann plot and within-subject ANOVA. No significant differences were found among the measurements made by each cardiac surgeon on the same 3D model (p = 0.48) or on the 3D models printed by different manufacturers (p = 0.25); also, no intraobserver variability (p = 0.46). The annulus diameter measured on 3D models showed good agreement with the reference CCT measurement (p = 0.68) and IOH sizing (p = 0.11). Time and cost per model were: model creation ∼10-15 min; printing time ∼60 min; post-processing ∼5min; material cost ∼1€.
 CONCLUSION: 3D printing of aortic annulus can offer reliable, not expensive patient-specific information to be used in the pre-operative planning of AVR or transcatheter aortic valve implantation (TAVI). Copyright © 2018 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.

  5. A COMPUTER MODEL OF LUNG MORPHOLOGY TO ANALYZE SPECT IMAGES

    EPA Science Inventory

    Measurement of the three-dimensional (3-D) spatial distribution of aerosol deposition can be performed using Single Photon Emission Computed Tomography (SPECT). The advantage of using 3-D techniques over planar gamma imaging is that deposition patterns can be related to real lun...

  6. Intelligent earthquake data processing for global adjoint tomography

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Hill, J.; Li, T.; Lei, W.; Ruan, Y.; Lefebvre, M. P.; Tromp, J.

    2016-12-01

    Due to the increased computational capability afforded by modern and future computing architectures, the seismology community is demanding a more comprehensive understanding of the full waveform information from the recorded earthquake seismograms. Global waveform tomography is a complex workflow that matches observed seismic data with synthesized seismograms by iteratively updating the earth model parameters based on the adjoint state method. This methodology allows us to compute a very accurate model of the earth's interior. The synthetic data is simulated by solving the wave equation in the entire globe using a spectral-element method. In order to ensure the inversion accuracy and stability, both the synthesized and observed seismograms must be carefully pre-processed. Because the scale of the inversion problem is extremely large and there is a very large volume of data to both be read and written, an efficient and reliable pre-processing workflow must be developed. We are investigating intelligent algorithms based on a machine-learning (ML) framework that will automatically tune parameters for the data processing chain. One straightforward application of ML in data processing is to classify all possible misfit calculation windows into usable and unusable ones, based on some intelligent ML models such as neural network, support vector machine or principle component analysis. The intelligent earthquake data processing framework will enable the seismology community to compute the global waveform tomography using seismic data from an arbitrarily large number of earthquake events in the fastest, most efficient way.

  7. Stereoscopic Vascular Models of the Head and Neck: A Computed Tomography Angiography Visualization

    ERIC Educational Resources Information Center

    Cui, Dongmei; Lynch, James C.; Smith, Andrew D.; Wilson, Timothy D.; Lehman, Michael N.

    2016-01-01

    Computer-assisted 3D models are used in some medical and allied health science schools; however, they are often limited to online use and 2D flat screen-based imaging. Few schools take advantage of 3D stereoscopic learning tools in anatomy education and clinically relevant anatomical variations when teaching anatomy. A new approach to teaching…

  8. Estimation of regional gas and tissue volumes of the lung in supine man using computed tomography.

    PubMed

    Denison, D M; Morgan, M D; Millar, A B

    1986-08-01

    This study was intended to discover how well computed tomography could recover the volume and weight of lung like foams in a body like shell, and then how well it could recover the volume and weight of the lungs in supine man. Model thoraces were made with various loaves of bread submerged in water. Computed tomography scans recovered the volume of the model lungs (true volume range 250-12,500 ml) within +0.2 (SD 68) ml and their weights (true range 72-3125 g) within +30 (78) g. Scans also recovered successive injections of 50 ml of water, within +/- 5 ml. Scans in 12 healthy supine men recovered their vital capacities, total lung capacities (TLC), and predicted tissue volumes with comparable accuracy. At total lung capacity the mean tissue volume of single lungs was 431 (64) ml and at residual volume (RV) it was 427 (63) ml. Tissue volume was then used to match inspiratory and expiratory slices and calculate regional ventilation. Throughout the mid 90% of lung the RV/TLC ratio was fairly constant--mean 21% (5%). New methods of presenting such regional data graphically and automatically are also described.

  9. [Contrast-enhanced ultrasound in animal models].

    PubMed

    Paprottka, P M; Zengel, P; Ingrisch, M; Cyran, C C; Eichhorn, M; Reiser, M F; Nikolaou, K; Clevert, D-A

    2011-06-01

    In the past the detection of tumor perfusion was achieved solely via invasive procedures, such as intravital microscopy or with the help of costly modalities, such as multidetector computed tomography (MDCT), magnetic resonance tomography (MRT) or the combined use of positron emission tomography and computed tomography (PET/CT). Ultrasound offers the non-invasive display of organs without usage of ionizing radiation and it is widely available. However, colour-coded ultrasound and power Doppler do not allow the detection of tumor microcirculation. The introduction of contrast-enhanced ultrasound (CEUS) as well as new high-frequency ultrasound probes made it possible to detect and quantify tumor microcirculation with high resolution. CEUS has been used clinically on human beings for more than 10 years. During the last years different tumor models in experimental animals were used for the establishment of this new technique, e.g. in rats, hamsters and mice. CEUS allows the detection of functional parameters, such as the angiogenetic metabolic status of tissue pretreatment and posttreatment. Further research is required to solve the problems of absolute quantification of these perfusion parameters to allow the comparison of CEUS with other modalities (e.g. MRT and CT).

  10. Comparison of computed tomography and magnetic resonance imaging for the evaluation of canine intranasal neoplasia.

    PubMed

    Drees, R; Forrest, L J; Chappell, R

    2009-07-01

    Canine intranasal neoplasia is commonly evaluated using computed tomography to indicate the diagnosis, to determine disease extent, to guide histological sampling location and to plan treatment. With the expanding use of magnetic resonance imaging in veterinary medicine, this modality has been recently applied for the same purpose. The aim of this study was to compare the features of canine intranasal neoplasia using computed tomography and magnetic resonance imaging. Twenty-one dogs with confirmed intranasal neoplasia underwent both computed tomography and magnetic resonance imaging. The images were reviewed retrospectively for the bony and soft tissue features of intranasal neoplasia. Overall computed tomography and magnetic resonance imaging performed very similarly. However, lysis of bones bordering the nasal cavity and mucosal thickening was found on computed tomography images more often than on magnetic resonance images. Small amounts of fluid in the nasal cavity were more often seen on magnetic resonance images. However, fluid in the frontal sinuses was seen equally well with both modalities. We conclude that computed tomography is satisfactory for evaluation of canine intranasal neoplasia, and no clinically relevant benefit is gained using magnetic resonance imaging for intranasal neoplasia without extent into the cranial cavity.

  11. F-18-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Appearance of Extramedullary Hematopoesis in a Case of Primary Myelofibrosis

    PubMed Central

    Mukherjee, Anirban; Bal, Chandrasekhar; Tripathi, Madhavi; Das, Chandan Jyoti; Shamim, Shamim Ahmed

    2017-01-01

    A 44-year-old female with known primary myelofibrosis presented with shortness of breath. High Resolution Computed Tomography thorax revealed large heterogeneously enhancing extraparenchymal soft tissue density mass involving bilateral lung fields. F-18-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography revealed mildly FDG avid soft tissue density mass with specks of calcification involving bilateral lung fields, liver, and spleen. Subsequent histopathologic evaluation from the right lung mass was suggestive of extramedullary hematopoesis. PMID:28533647

  12. A tree-parenchyma coupled model for lung ventilation simulation.

    PubMed

    Pozin, Nicolas; Montesantos, Spyridon; Katz, Ira; Pichelin, Marine; Vignon-Clementel, Irene; Grandmont, Céline

    2017-11-01

    In this article, we develop a lung ventilation model. The parenchyma is described as an elastic homogenized media. It is irrigated by a space-filling dyadic resistive pipe network, which represents the tracheobronchial tree. In this model, the tree and the parenchyma are strongly coupled. The tree induces an extra viscous term in the system constitutive relation, which leads, in the finite element framework, to a full matrix. We consider an efficient algorithm that takes advantage of the tree structure to enable a fast matrix-vector product computation. This framework can be used to model both free and mechanically induced respiration, in health and disease. Patient-specific lung geometries acquired from computed tomography scans are considered. Realistic Dirichlet boundary conditions can be deduced from surface registration on computed tomography images. The model is compared to a more classical exit compartment approach. Results illustrate the coupling between the tree and the parenchyma, at global and regional levels, and how conditions for the purely 0D model can be inferred. Different types of boundary conditions are tested, including a nonlinear Robin model of the surrounding lung structures. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Cone beam computed tomography in the diagnosis of dental disease.

    PubMed

    Tetradis, Sotirios; Anstey, Paul; Graff-Radford, Steven

    2011-07-01

    Conventional radiographs provide important information for dental disease diagnosis. However, they represent 2-D images of 3-D objects with significant structure superimposition and unpredictable magnification. Cone beam computed tomography, however, allows true 3-D visualization of the dentoalveolar structures, avoiding major limitations of conventional radiographs. Cone beam computed tomography images offer great advantages in disease detection for selected patients. The authors discuss cone beam computed tomography applications in dental disease diagnosis, reviewing the pertinent literature when available.

  14. Determination of Diffusion Profiles in Altered Wellbore Cement Using X-ray Computed Tomography Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason, Harris E.; Walsh, Stuart D. C.; DuFrane, Wyatt L.

    2014-06-17

    The development of accurate, predictive models for use in determining wellbore integrity requires detailed information about the chemical and mechanical changes occurring in hardened Portland cements. X-ray computed tomography (XRCT) provides a method that can nondestructively probe these changes in three dimensions. Here, we describe a method for extracting subvoxel mineralogical and chemical information from synchrotron XRCT images by combining advanced image segmentation with geochemical models of cement alteration. The method relies on determining “effective linear activity coefficients” (ELAC) for the white light source to generate calibration curves that relate the image grayscales to material composition. The resulting data setmore » supports the modeling of cement alteration by CO 2-rich brine with discrete increases in calcium concentration at reaction boundaries. The results of these XRCT analyses can be used to further improve coupled geochemical and mechanical models of cement alteration in the wellbore environment.« less

  15. Multiscale tomographic analysis of heterogeneous cast Al-Si-X alloys.

    PubMed

    Asghar, Z; Requena, G; Sket, F

    2015-07-01

    The three-dimensional microstructure of cast AlSi12Ni and AlSi10Cu5Ni2 alloys is investigated by laboratory X-ray computed tomography, synchrotron X-ray computed microtomography, light optical tomography and synchrotron X-ray computed microtomography with submicrometre resolution. The results obtained with each technique are correlated with the size of the scanned volumes and resolved microstructural features. Laboratory X-ray computed tomography is sufficient to resolve highly absorbing aluminides but eutectic and primary Si remain unrevealed. Synchrotron X-ray computed microtomography at ID15/ESRF gives better spatial resolution and reveals primary Si in addition to aluminides. Synchrotron X-ray computed microtomography at ID19/ESRF reveals all the phases ≥ ∼1 μm in volumes about 80 times smaller than laboratory X-ray computed tomography. The volumes investigated by light optical tomography and submicrometre synchrotron X-ray computed microtomography are much smaller than laboratory X-ray computed tomography but both techniques provide local chemical information on the types of aluminides. The complementary techniques applied enable a full three-dimensional characterization of the microstructure of the alloys at length scales ranging over six orders of magnitude. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  16. Electromagnetic Navigational Bronchoscopy Reduces the Time Required for Localization and Resection of Lung Nodules.

    PubMed

    Bolton, William David; Cochran, Thomas; Ben-Or, Sharon; Stephenson, James E; Ellis, William; Hale, Allyson L; Binks, Andrew P

    The aims of the study were to evaluate electromagnetic navigational bronchoscopy (ENB) and computed tomography-guided placement as localization techniques for minimally invasive resection of small pulmonary nodules and determine whether electromagnetic navigational bronchoscopy is a safer and more effective method than computed tomography-guided localization. We performed a retrospective review of our thoracic surgery database to identify patients who underwent minimally invasive resection for a pulmonary mass and used either electromagnetic navigational bronchoscopy or computed tomography-guided localization techniques between July 2011 and May 2015. Three hundred eighty-three patients had a minimally invasive resection during our study period, 117 of whom underwent electromagnetic navigational bronchoscopy or computed tomography localization (electromagnetic navigational bronchoscopy = 81; computed tomography = 36). There was no significant difference between computed tomography and electromagnetic navigational bronchoscopy patient groups with regard to age, sex, race, pathology, nodule size, or location. Both computed tomography and electromagnetic navigational bronchoscopy were 100% successful at localizing the mass, and there was no difference in the type of definitive surgical resection (wedge, segmentectomy, or lobectomy) (P = 0.320). Postoperative complications occurred in 36% of all patients, but there were no complications related to the localization procedures. In terms of localization time and surgical time, there was no difference between groups. However, the down/wait time between localization and resection was significant (computed tomography = 189 minutes; electromagnetic navigational bronchoscopy = 27 minutes); this explains why the difference in total time (sum of localization, down, and surgery) was significant (P < 0.001). We found electromagnetic navigational bronchoscopy to be as safe and effective as computed tomography-guided wire placement and to provide a significantly decreased down time between localization and surgical resection.

  17. GEANT4 distributed computing for compact clusters

    NASA Astrophysics Data System (ADS)

    Harrawood, Brian P.; Agasthya, Greeshma A.; Lakshmanan, Manu N.; Raterman, Gretchen; Kapadia, Anuj J.

    2014-11-01

    A new technique for distribution of GEANT4 processes is introduced to simplify running a simulation in a parallel environment such as a tightly coupled computer cluster. Using a new C++ class derived from the GEANT4 toolkit, multiple runs forming a single simulation are managed across a local network of computers with a simple inter-node communication protocol. The class is integrated with the GEANT4 toolkit and is designed to scale from a single symmetric multiprocessing (SMP) machine to compact clusters ranging in size from tens to thousands of nodes. User designed 'work tickets' are distributed to clients using a client-server work flow model to specify the parameters for each individual run of the simulation. The new g4DistributedRunManager class was developed and well tested in the course of our Neutron Stimulated Emission Computed Tomography (NSECT) experiments. It will be useful for anyone running GEANT4 for large discrete data sets such as covering a range of angles in computed tomography, calculating dose delivery with multiple fractions or simply speeding the through-put of a single model.

  18. Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle-Pock algorithm

    PubMed Central

    Sidky, Emil Y.; Jørgensen, Jakob H.; Pan, Xiaochuan

    2012-01-01

    The primal-dual optimization algorithm developed in Chambolle and Pock (CP), 2011 is applied to various convex optimization problems of interest in computed tomography (CT) image reconstruction. This algorithm allows for rapid prototyping of optimization problems for the purpose of designing iterative image reconstruction algorithms for CT. The primal-dual algorithm is briefly summarized in the article, and its potential for prototyping is demonstrated by explicitly deriving CP algorithm instances for many optimization problems relevant to CT. An example application modeling breast CT with low-intensity X-ray illumination is presented. PMID:22538474

  19. Computer Tomography Analysis of Fastrac Composite Thrust Chamber Assemblies

    NASA Technical Reports Server (NTRS)

    Beshears, Ronald D.

    2000-01-01

    Computed tomography (CT) inspection has been integrated into the production process for NASA's Fastrac composite thrust chamber assemblies (TCAs). CT has been proven to be uniquely qualified to detect the known critical flaw for these nozzles, liner cracks that are adjacent to debonds between the liner and overwrap. CT is also being used as a process monitoring tool through analysis of low density indications in the nozzle overwraps. 3d reconstruction of CT images to produce models of flawed areas is being used to give program engineers better insight into the location and nature of nozzle flaws.

  20. Sinonasal papilloma: what influences the decision to request a magnetic resonance imaging scan?

    PubMed

    Kasbekar, A V; Swords, C; Attlmayr, B; Kulkarni, T; Swift, A C

    2018-06-18

    Computed tomography is the standard pre-operative imaging modality for sinonasal papilloma. The complementary use of magnetic resonance imaging as an additional investigation is debated. This study aimed to establish whether magnetic resonance imaging can accurately detect tumour extent and is a useful adjunct to computed tomography. A retrospective review was conducted on 19 patients with sinonasal papilloma. The interpretation of computed tomography and magnetic resonance imaging scans, by three clinicians, was conducted by comparing prediction of tumour extent. The perceived necessity of magnetic resonance imaging was compared between clinicians. The addition of magnetic resonance imaging improved accuracy of pre-operative interpretation; specifically, this finding was significant in cases with frontal sinus involvement. Surgeons were more likely than a radiologist to request magnetic resonance imaging, particularly when computed tomography indicated frontal sinus disease. Pre-operative combined magnetic resonance imaging and computed tomography helped predict disease in the frontal sinus better than computed tomography alone. A close working relationship between the ENT and radiology departments is important for accurate tumour localisation.

  1. Bayesian reconstruction and use of anatomical a priori information for emission tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowsher, J.E.; Johnson, V.E.; Turkington, T.G.

    1996-10-01

    A Bayesian method is presented for simultaneously segmenting and reconstructing emission computed tomography (ECT) images and for incorporating high-resolution, anatomical information into those reconstructions. The anatomical information is often available from other imaging modalities such as computed tomography (CT) or magnetic resonance imaging (MRI). The Bayesian procedure models the ECT radiopharmaceutical distribution as consisting of regions, such that radiopharmaceutical activity is similar throughout each region. It estimates the number of regions, the mean activity of each region, and the region classification and mean activity of each voxel. Anatomical information is incorporated by assigning higher prior probabilities to ECT segmentations inmore » which each ECT region stays within a single anatomical region. This approach is effective because anatomical tissue type often strongly influences radiopharmaceutical uptake. The Bayesian procedure is evaluated using physically acquired single-photon emission computed tomography (SPECT) projection data and MRI for the three-dimensional (3-D) Hoffman brain phantom. A clinically realistic count level is used. A cold lesion within the brain phantom is created during the SPECT scan but not during the MRI to demonstrate that the estimation procedure can detect ECT structure that is not present anatomically.« less

  2. A simple parametric model observer for quality assurance in computer tomography

    NASA Astrophysics Data System (ADS)

    Anton, M.; Khanin, A.; Kretz, T.; Reginatto, M.; Elster, C.

    2018-04-01

    Model observers are mathematical classifiers that are used for the quality assessment of imaging systems such as computer tomography. The quality of the imaging system is quantified by means of the performance of a selected model observer. For binary classification tasks, the performance of the model observer is defined by the area under its ROC curve (AUC). Typically, the AUC is estimated by applying the model observer to a large set of training and test data. However, the recording of these large data sets is not always practical for routine quality assurance. In this paper we propose as an alternative a parametric model observer that is based on a simple phantom, and we provide a Bayesian estimation of its AUC. It is shown that a limited number of repeatedly recorded images (10–15) is already sufficient to obtain results suitable for the quality assessment of an imaging system. A MATLAB® function is provided for the calculation of the results. The performance of the proposed model observer is compared to that of the established channelized Hotelling observer and the nonprewhitening matched filter for simulated images as well as for images obtained from a low-contrast phantom on an x-ray tomography scanner. The results suggest that the proposed parametric model observer, along with its Bayesian treatment, can provide an efficient, practical alternative for the quality assessment of CT imaging systems.

  3. Computer tomography of the neurocranium.

    PubMed

    Liliequist, B; Forssell, A

    1976-07-01

    The experience with computer tomography of the neurocranium in 300 patients submitted for computer tomography of the brain is reported. The more appropriate projections which may be obtained with the second generation of scanners in combination with an elaborated reconstruction technique seem to constitute a replacement of conventional skull films.

  4. Near-Infrared Fluorescence-Enhanced Optical Tomography

    PubMed Central

    2016-01-01

    Fluorescence-enhanced optical imaging using near-infrared (NIR) light developed for in vivo molecular targeting and reporting of cancer provides promising opportunities for diagnostic imaging. The current state of the art of NIR fluorescence-enhanced optical tomography is reviewed in the context of the principle of fluorescence, the different measurement schemes employed, and the mathematical tools established to tomographically reconstruct the fluorescence optical properties in various tissue domains. Finally, we discuss the recent advances in forward modeling and distributed memory parallel computation to provide robust, accurate, and fast fluorescence-enhanced optical tomography. PMID:27803924

  5. Near-Infrared Fluorescence-Enhanced Optical Tomography.

    PubMed

    Zhu, Banghe; Godavarty, Anuradha

    2016-01-01

    Fluorescence-enhanced optical imaging using near-infrared (NIR) light developed for in vivo molecular targeting and reporting of cancer provides promising opportunities for diagnostic imaging. The current state of the art of NIR fluorescence-enhanced optical tomography is reviewed in the context of the principle of fluorescence, the different measurement schemes employed, and the mathematical tools established to tomographically reconstruct the fluorescence optical properties in various tissue domains. Finally, we discuss the recent advances in forward modeling and distributed memory parallel computation to provide robust, accurate, and fast fluorescence-enhanced optical tomography.

  6. A Comparative Evaluation of Mixed Dentition Analysis on Reliability of Cone Beam Computed Tomography Image Compared to Plaster Model.

    PubMed

    Gowd, Snigdha; Shankar, T; Dash, Samarendra; Sahoo, Nivedita; Chatterjee, Suravi; Mohanty, Pritam

    2017-01-01

    The aim of the study was to evaluate the reliability of cone beam computed tomography (CBCT) obtained image over plaster model for the assessment of mixed dentition analysis. Thirty CBCT-derived images and thirty plaster models were derived from the dental archives, and Moyer's and Tanaka-Johnston analyses were performed. The data obtained were interpreted and analyzed statistically using SPSS 10.0/PC (SPSS Inc., Chicago, IL, USA). Descriptive and analytical analysis along with Student's t -test was performed to qualitatively evaluate the data and P < 0.05 was considered statistically significant. Statistically, significant results were obtained on data comparison between CBCT-derived images and plaster model; the mean for Moyer's analysis in the left and right lower arch for CBCT and plaster model was 21.2 mm, 21.1 mm and 22.5 mm, 22.5 mm, respectively. CBCT-derived images were less reliable as compared to data obtained directly from plaster model for mixed dentition analysis.

  7. Study of Image Qualities From 6D Robot-Based CBCT Imaging System of Small Animal Irradiator.

    PubMed

    Sharma, Sunil; Narayanasamy, Ganesh; Clarkson, Richard; Chao, Ming; Moros, Eduardo G; Zhang, Xin; Yan, Yulong; Boerma, Marjan; Paudel, Nava; Morrill, Steven; Corry, Peter; Griffin, Robert J

    2017-01-01

    To assess the quality of cone beam computed tomography images obtained by a robotic arm-based and image-guided small animal conformal radiation therapy device. The small animal conformal radiation therapy device is equipped with a 40 to 225 kV X-ray tube mounted on a custom made gantry, a 1024 × 1024 pixels flat panel detector (200 μm resolution), a programmable 6 degrees of freedom robot for cone beam computed tomography imaging and conformal delivery of radiation doses. A series of 2-dimensional radiographic projection images were recorded in cone beam mode by placing and rotating microcomputed tomography phantoms on the "palm' of the robotic arm. Reconstructed images were studied for image quality (spatial resolution, image uniformity, computed tomography number linearity, voxel noise, and artifacts). Geometric accuracy was measured to be 2% corresponding to 0.7 mm accuracy on a Shelley microcomputed tomography QA phantom. Qualitative resolution of reconstructed axial computed tomography slices using the resolution coils was within 200 μm. Quantitative spatial resolution was found to be 3.16 lp/mm. Uniformity of the system was measured within 34 Hounsfield unit on a QRM microcomputed tomography water phantom. Computed tomography numbers measured using the linearity plate were linear with material density ( R 2 > 0.995). Cone beam computed tomography images of the QRM multidisk phantom had minimal artifacts. Results showed that the small animal conformal radiation therapy device is capable of producing high-quality cone beam computed tomography images for precise and conformal small animal dose delivery. With its high-caliber imaging capabilities, the small animal conformal radiation therapy device is a powerful tool for small animal research.

  8. Morphometric analysis - Cone beam computed tomography to predict bone quality and quantity.

    PubMed

    Hohlweg-Majert, B; Metzger, M C; Kummer, T; Schulze, D

    2011-07-01

    Modified quantitative computed tomography is a method used to predict bone quality and quantify the bone mass of the jaw. The aim of this study was to determine whether bone quantity or quality was detected by cone beam computed tomography (CBCT) combined with image analysis. MATERIALS AND PROCEDURES: Different measurements recorded on two phantoms (Siemens phantom, Comac phantom) were evaluated on images taken with the Somatom VolumeZoom (Siemens Medical Solutions, Erlangen, Germany) and the NewTom 9000 (NIM s.r.l., Verona, Italy) in order to calculate a calibration curve. The spatial relationships of six sample cylinders and the repositioning from four pig skull halves relative to adjacent defined anatomical structures were assessed by means of three-dimensional visualization software. The calibration curves for computer tomography (CT) and cone beam computer tomography (CBCT) using the Siemens phantom showed linear correlation in both modalities between the Hounsfield Units (HU) and bone morphology. A correction factor for CBCT was calculated. Exact information about the micromorphology of the bone cylinders was only available using of micro computer tomography. Cone-beam computer tomography is a suitable choice for analysing bone mass, but, it does not give any information about bone quality. 2010 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  9. Italian Chapter of the International Society of Cardiovascular Ultrasound expert consensus document on coronary computed tomography angiography: overview and new insights.

    PubMed

    Sozzi, Fabiola B; Maiello, Maria; Pelliccia, Francesco; Parato, Vito Maurizio; Canetta, Ciro; Savino, Ketty; Lombardi, Federico; Palmiero, Pasquale

    2016-09-01

    Coronary computed tomography angiography is a noninvasive heart imaging test currently undergoing rapid development and advancement. The high resolution of the three-dimensional pictures of the moving heart and great vessels is performed during a coronary computed tomography to identify coronary artery disease and classify patient risk for atherosclerotic cardiovascular disease. The technique provides useful information about the coronary tree and atherosclerotic plaques beyond simple luminal narrowing and plaque type defined by calcium content. This application will improve image-guided prevention, medical therapy, and coronary interventions. The ability to interpret coronary computed tomography images is of utmost importance as we develop personalized medical care to enable therapeutic interventions stratified on the bases of plaque characteristics. This overview provides available data and expert's recommendations in the utilization of coronary computed tomography findings. We focus on the use of coronary computed tomography to detect coronary artery disease and stratify patients at risk, illustrating the implications of this test on patient management. We describe its diagnostic power in identifying patients at higher risk to develop acute coronary syndrome and its prognostic significance. Finally, we highlight the features of the vulnerable plaques imaged by coronary computed tomography angiography. © 2016, Wiley Periodicals, Inc.

  10. Comparison of computed tomography and magnetic resonance imaging for the evaluation of canine intranasal neoplasia

    PubMed Central

    Drees, R.; Forrest, L. J.; Chappell, R.

    2009-01-01

    Objectives Canine intranasal neoplasia is commonly evaluated using computed tomography to indicate the diagnosis, to determine disease extent, to guide histological sampling location and to plan treatment. With the expanding use of magnetic resonance imaging in veterinary medicine, this modality has been recently applied for the same purpose. The aim of this study was to compare the features of canine intranasal neoplasia using computed tomography and magnetic resonance imaging. Methods Twenty-one dogs with confirmed intranasal neoplasia underwent both computed tomography and magnetic resonance imaging. The images were reviewed retrospectively for the bony and soft tissue features of intranasal neoplasia. Results Overall computed tomography and magnetic resonance imaging performed very similarly. However, lysis of bones bordering the nasal cavity and mucosal thickening was found on computed tomography images more often than on magnetic resonance images. Small amounts of fluid in the nasal cavity were more often seen on magnetic resonance images. However, fluid in the frontal sinuses was seen equally well with both modalities. Clinical Significance We conclude that computed tomography is satisfactory for evaluation of canine intranasal neoplasia, and no clinically relevant benefit is gained using magnetic resonance imaging for intranasal neoplasia without extent into the cranial cavity. PMID:19508490

  11. Prediction of lung density changes after radiotherapy by cone beam computed tomography response markers and pre-treatment factors for non-small cell lung cancer patients.

    PubMed

    Bernchou, Uffe; Hansen, Olfred; Schytte, Tine; Bertelsen, Anders; Hope, Andrew; Moseley, Douglas; Brink, Carsten

    2015-10-01

    This study investigates the ability of pre-treatment factors and response markers extracted from standard cone-beam computed tomography (CBCT) images to predict the lung density changes induced by radiotherapy for non-small cell lung cancer (NSCLC) patients. Density changes in follow-up computed tomography scans were evaluated for 135 NSCLC patients treated with radiotherapy. Early response markers were obtained by analysing changes in lung density in CBCT images acquired during the treatment course. The ability of pre-treatment factors and CBCT markers to predict lung density changes induced by radiotherapy was investigated. Age and CBCT markers extracted at 10th, 20th, and 30th treatment fraction significantly predicted lung density changes in a multivariable analysis, and a set of response models based on these parameters were established. The correlation coefficient for the models was 0.35, 0.35, and 0.39, when based on the markers obtained at the 10th, 20th, and 30th fraction, respectively. The study indicates that younger patients without lung tissue reactions early into their treatment course may have minimal radiation induced lung density increase at follow-up. Further investigations are needed to examine the ability of the models to identify patients with low risk of symptomatic toxicity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Imaging and modeling of flow in porous media using clinical nuclear emission tomography systems and computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Boutchko, Rostyslav; Rayz, Vitaliy L.; Vandehey, Nicholas T.; O'Neil, James P.; Budinger, Thomas F.; Nico, Peter S.; Druhan, Jennifer L.; Saloner, David A.; Gullberg, Grant T.; Moses, William W.

    2012-01-01

    This paper presents experimental and modeling aspects of applying nuclear emission tomography to study fluid flow in laboratory packed porous media columns of the type frequently used in geophysics, geochemistry and hydrology research. Positron emission tomography (PET) and single photon emission computed tomography (SPECT) are used as non-invasive tools to obtain dynamic 3D images of radioactive tracer concentrations. Dynamic sequences obtained using 18F-FDG PET are used to trace flow through a 5 cm diameter × 20 cm tall sand packed column with and without an impermeable obstacle. In addition, a custom-made rotating column setup placed in a clinical two-headed SPECT camera is used to image 99mTc-DTPA tracer propagation in a through-flowing column (10 cm diameter × 30 cm tall) packed with recovered aquifer sediments. A computational fluid dynamics software package FLUENT is used to model the observed flow dynamics. Tracer distributions obtained in the simulations in the smaller column uniformly packed with sand and in the column with an obstacle are remarkably similar to the reconstructed images in the PET experiments. SPECT results demonstrate strongly non-uniform flow patterns for the larger column slurry-packed with sub-surface sediment and slow upward flow. In the numerical simulation of the SPECT study, two symmetric channels with increased permeability are prescribed along the column walls, which result in the emergence of two well-defined preferential flow paths. Methods and results of this work provide new opportunities in hydrologic and biogeochemical research. The primary target application for developed technologies is non-destructive, non-perturbing, quantitative imaging of flow dynamics within laboratory scale porous media systems.

  13. Imaging and modeling of flow in porous media using clinical nuclear emission tomography systems and computational fluid dynamics.

    PubMed

    Boutchko, Rostyslav; Rayz, Vitaliy L; Vandehey, Nicholas T; O'Neil, James P; Budinger, Thomas F; Nico, Peter S; Druhan, Jennifer L; Saloner, David A; Gullberg, Grant T; Moses, William W

    2012-01-01

    This paper presents experimental and modeling aspects of applying nuclear emission tomography to study fluid flow in laboratory packed porous media columns of the type frequently used in geophysics, geochemistry and hydrology research. Positron emission tomography (PET) and single photon emission computed tomography (SPECT) are used as non-invasive tools to obtain dynamic 3D images of radioactive tracer concentrations. Dynamic sequences obtained using 18 F-FDG PET are used to trace flow through a 5 cm diameter × 20 cm tall sand packed column with and without an impermeable obstacle. In addition, a custom-made rotating column setup placed in a clinical two-headed SPECT camera is used to image 99m Tc-DTPA tracer propagation in a through-flowing column (10 cm diameter × 30 cm tall) packed with recovered aquifer sediments. A computational fluid dynamics software package FLUENT is used to model the observed flow dynamics. Tracer distributions obtained in the simulations in the smaller column uniformly packed with sand and in the column with an obstacle are remarkably similar to the reconstructed images in the PET experiments. SPECT results demonstrate strongly non-uniform flow patterns for the larger column slurry-packed with sub-surface sediment and slow upward flow. In the numerical simulation of the SPECT study, two symmetric channels with increased permeability are prescribed along the column walls, which result in the emergence of two well-defined preferential flow paths. Methods and results of this work provide new opportunities in hydrologic and biogeochemical research. The primary target application for developed technologies is non-destructive, non-perturbing, quantitative imaging of flow dynamics within laboratory scale porous media systems.

  14. Multi-GPU Jacobian accelerated computing for soft-field tomography.

    PubMed

    Borsic, A; Attardo, E A; Halter, R J

    2012-10-01

    Image reconstruction in soft-field tomography is based on an inverse problem formulation, where a forward model is fitted to the data. In medical applications, where the anatomy presents complex shapes, it is common to use finite element models (FEMs) to represent the volume of interest and solve a partial differential equation that models the physics of the system. Over the last decade, there has been a shifting interest from 2D modeling to 3D modeling, as the underlying physics of most problems are 3D. Although the increased computational power of modern computers allows working with much larger FEM models, the computational time required to reconstruct 3D images on a fine 3D FEM model can be significant, on the order of hours. For example, in electrical impedance tomography (EIT) applications using a dense 3D FEM mesh with half a million elements, a single reconstruction iteration takes approximately 15-20 min with optimized routines running on a modern multi-core PC. It is desirable to accelerate image reconstruction to enable researchers to more easily and rapidly explore data and reconstruction parameters. Furthermore, providing high-speed reconstructions is essential for some promising clinical application of EIT. For 3D problems, 70% of the computing time is spent building the Jacobian matrix, and 25% of the time in forward solving. In this work, we focus on accelerating the Jacobian computation by using single and multiple GPUs. First, we discuss an optimized implementation on a modern multi-core PC architecture and show how computing time is bounded by the CPU-to-memory bandwidth; this factor limits the rate at which data can be fetched by the CPU. Gains associated with the use of multiple CPU cores are minimal, since data operands cannot be fetched fast enough to saturate the processing power of even a single CPU core. GPUs have much faster memory bandwidths compared to CPUs and better parallelism. We are able to obtain acceleration factors of 20 times on a single NVIDIA S1070 GPU, and of 50 times on four GPUs, bringing the Jacobian computing time for a fine 3D mesh from 12 min to 14 s. We regard this as an important step toward gaining interactive reconstruction times in 3D imaging, particularly when coupled in the future with acceleration of the forward problem. While we demonstrate results for EIT, these results apply to any soft-field imaging modality where the Jacobian matrix is computed with the adjoint method.

  15. Improving early diagnosis of pulmonary infections in patients with febrile neutropenia using low-dose chest computed tomography.

    PubMed

    Gerritsen, M G; Willemink, M J; Pompe, E; van der Bruggen, T; van Rhenen, A; Lammers, J W J; Wessels, F; Sprengers, R W; de Jong, P A; Minnema, M C

    2017-01-01

    We performed a prospective study in patients with chemotherapy induced febrile neutropenia to investigate the diagnostic value of low-dose computed tomography compared to standard chest radiography. The aim was to compare both modalities for detection of pulmonary infections and to explore performance of low-dose computed tomography for early detection of invasive fungal disease. The low-dose computed tomography remained blinded during the study. A consensus diagnosis of the fever episode made by an expert panel was used as reference standard. We included 67 consecutive patients on the first day of febrile neutropenia. According to the consensus diagnosis 11 patients (16.4%) had pulmonary infections. Sensitivity, specificity, positive predictive value and negative predictive value were 36%, 93%, 50% and 88% for radiography, and 73%, 91%, 62% and 94% for low-dose computed tomography, respectively. An uncorrected McNemar showed no statistical difference (p = 0.197). Mean radiation dose for low-dose computed tomography was 0.24 mSv. Four out of 5 included patients diagnosed with invasive fungal disease had radiographic abnormalities suspect for invasive fungal disease on the low-dose computed tomography scan made on day 1 of fever, compared to none of the chest radiographs. We conclude that chest radiography has little value in the initial assessment of febrile neutropenia on day 1 for detection of pulmonary abnormalities. Low-dose computed tomography improves detection of pulmonary infiltrates and seems capable of detecting invasive fungal disease at a very early stage with a low radiation dose.

  16. Improving early diagnosis of pulmonary infections in patients with febrile neutropenia using low-dose chest computed tomography

    PubMed Central

    Pompe, E.; van der Bruggen, T.; van Rhenen, A.; Lammers, J. W. J.; Wessels, F.; Sprengers, R. W.; de Jong, P. A.; Minnema, M. C.

    2017-01-01

    We performed a prospective study in patients with chemotherapy induced febrile neutropenia to investigate the diagnostic value of low-dose computed tomography compared to standard chest radiography. The aim was to compare both modalities for detection of pulmonary infections and to explore performance of low-dose computed tomography for early detection of invasive fungal disease. The low-dose computed tomography remained blinded during the study. A consensus diagnosis of the fever episode made by an expert panel was used as reference standard. We included 67 consecutive patients on the first day of febrile neutropenia. According to the consensus diagnosis 11 patients (16.4%) had pulmonary infections. Sensitivity, specificity, positive predictive value and negative predictive value were 36%, 93%, 50% and 88% for radiography, and 73%, 91%, 62% and 94% for low-dose computed tomography, respectively. An uncorrected McNemar showed no statistical difference (p = 0.197). Mean radiation dose for low-dose computed tomography was 0.24 mSv. Four out of 5 included patients diagnosed with invasive fungal disease had radiographic abnormalities suspect for invasive fungal disease on the low-dose computed tomography scan made on day 1 of fever, compared to none of the chest radiographs. We conclude that chest radiography has little value in the initial assessment of febrile neutropenia on day 1 for detection of pulmonary abnormalities. Low-dose computed tomography improves detection of pulmonary infiltrates and seems capable of detecting invasive fungal disease at a very early stage with a low radiation dose. PMID:28235014

  17. Guided wave radiation from a point source in the proximity of a pipe bend

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brath, A. J.; Nagy, P. B.; Simonetti, F.

    Throughout the oil and gas industry corrosion and erosion damage monitoring play a central role in managing asset integrity. Recently, the use of guided wave technology in conjunction with tomography techniques has provided the possibility of obtaining point-by-point maps of wall thickness loss over the entire volume of a pipeline section between two ring arrays of ultrasonic transducers. However, current research has focused on straight pipes while little work has been done on pipe bends which are also the most susceptible to developing damage. Tomography of the bend is challenging due to the complexity and computational cost of the 3-Dmore » elastic model required to accurately describe guided wave propagation. To overcome this limitation, we introduce a 2-D anisotropic inhomogeneous acoustic model which represents a generalization of the conventional unwrapping used for straight pipes. The shortest-path ray-tracing method is then applied to the 2-D model to compute ray paths and predict the arrival times of the fundamental flexural mode, A0, excited by a point source on the straight section of pipe entering the bend and detected on the opposite side. Good agreement is found between predictions and experiments performed on an 8” diameter (D) pipe with 1.5 D bend radius. The 2-D model also reveals the existence of an acoustic lensing effect which leads to a focusing phenomenon also confirmed by the experiments. The computational efficiency of the 2-D model makes it ideally suited for tomography algorithms.« less

  18. Nasal computed tomography.

    PubMed

    Kuehn, Ned F

    2006-05-01

    Chronic nasal disease is often a challenge to diagnose. Computed tomography greatly enhances the ability to diagnose chronic nasal disease in dogs and cats. Nasal computed tomography provides detailed information regarding the extent of disease, accurate discrimination of neoplastic versus nonneoplastic diseases, and identification of areas of the nose to examine rhinoscopically and suspicious regions to target for biopsy.

  19. Mapping Bone Mineral Density Obtained by Quantitative Computed Tomography to Bone Volume Fraction

    NASA Technical Reports Server (NTRS)

    Pennline, James A.; Mulugeta, Lealem

    2017-01-01

    Methods for relating or mapping estimates of volumetric Bone Mineral Density (vBMD) obtained by Quantitative Computed Tomography to Bone Volume Fraction (BVF) are outlined mathematically. The methods are based on definitions of bone properties, cited experimental studies and regression relations derived from them for trabecular bone in the proximal femur. Using an experimental range of values in the intertrochanteric region obtained from male and female human subjects, age 18 to 49, the BVF values calculated from four different methods were compared to the experimental average and numerical range. The BVF values computed from the conversion method used data from two sources. One source provided pre bed rest vBMD values in the intertrochanteric region from 24 bed rest subject who participated in a 70 day study. Another source contained preflight vBMD values from 18 astronauts who spent 4 to 6 months on the ISS. To aid the use of a mapping from BMD to BVF, the discussion includes how to formulate them for purpose of computational modeling. An application of the conversions would be used to aid in modeling of time varying changes in vBMD as it relates to changes in BVF via bone remodeling and/or modeling.

  20. Multislice Computed Tomography Accurately Detects Stenosis in Coronary Artery Bypass Conduits

    PubMed Central

    Duran, Cihan; Sagbas, Ertan; Caynak, Baris; Sanisoglu, Ilhan; Akpinar, Belhhan; Gulbaran, Murat

    2007-01-01

    The aim of this study was to evaluate the accuracy of multislice computed tomography in detecting graft stenosis or occlusion after coronary artery bypass grafting, using coronary angiography as the standard. From January 2005 through May 2006, 25 patients (19 men and 6 women; mean age, 54 ± 11.3 years) underwent diagnostic investigation of their bypass grafts by multislice computed tomography within 1 month of coronary angiography. The mean time elapsed after coronary artery bypass grafting was 6.2 years. In these 25 patients, we examined 65 bypass conduits (24 arterial and 41 venous) and 171 graft segments (the shaft, proximal anastomosis, and distal anastomosis). Compared with coronary angiography, the segment-based sensitivity, specificity, and positive and negative predictive values of multislice computed tomography in the evaluation of stenosis were 89%, 100%, 100%, and 99%, respectively. The patency rate for multislice compu-ted tomography was 85% (55/65: 3 arterial and 7 venous grafts were occluded), with 100% sensitivity and specificity. From these data, we conclude that multislice computed tomography can accurately evaluate the patency and stenosis of bypass grafts during outpatient follow-up. PMID:17948078

  1. 3D Printing of Plant Golgi Stacks from Their Electron Tomographic Models.

    PubMed

    Mai, Keith Ka Ki; Kang, Madison J; Kang, Byung-Ho

    2017-01-01

    Three-dimensional (3D) printing is an effective tool for preparing tangible 3D models from computer visualizations to assist in scientific research and education. With the recent popularization of 3D printing processes, it is now possible for individual laboratories to convert their scientific data into a physical form suitable for presentation or teaching purposes. Electron tomography is an electron microscopy method by which 3D structures of subcellular organelles or macromolecular complexes are determined at nanometer-level resolutions. Electron tomography analyses have revealed the convoluted membrane architectures of Golgi stacks, chloroplasts, and mitochondria. But the intricacy of their 3D organizations is difficult to grasp from tomographic models illustrated on computer screens. Despite the rapid development of 3D printing technologies, production of organelle models based on experimental data with 3D printing has rarely been documented. In this chapter, we present a simple guide to creating 3D prints of electron tomographic models of plant Golgi stacks using the two most accessible 3D printing technologies.

  2. Updating a preoperative surface model with information from real-time tracked 2D ultrasound using a Poisson surface reconstruction algorithm

    NASA Astrophysics Data System (ADS)

    Sun, Deyu; Rettmann, Maryam E.; Holmes, David R.; Linte, Cristian A.; Packer, Douglas; Robb, Richard A.

    2014-03-01

    In this work, we propose a method for intraoperative reconstruction of a left atrial surface model for the application of cardiac ablation therapy. In this approach, the intraoperative point cloud is acquired by a tracked, 2D freehand intra-cardiac echocardiography device, which is registered and merged with a preoperative, high resolution left atrial surface model built from computed tomography data. For the surface reconstruction, we introduce a novel method to estimate the normal vector of the point cloud from the preoperative left atrial model, which is required for the Poisson Equation Reconstruction algorithm. In the current work, the algorithm is evaluated using a preoperative surface model from patient computed tomography data and simulated intraoperative ultrasound data. Factors such as intraoperative deformation of the left atrium, proportion of the left atrial surface sampled by the ultrasound, sampling resolution, sampling noise, and registration error were considered through a series of simulation experiments.

  3. Using additive manufacturing in accuracy evaluation of reconstructions from computed tomography.

    PubMed

    Smith, Erin J; Anstey, Joseph A; Venne, Gabriel; Ellis, Randy E

    2013-05-01

    Bone models derived from patient imaging and fabricated using additive manufacturing technology have many potential uses including surgical planning, training, and research. This study evaluated the accuracy of bone surface reconstruction of two diarthrodial joints, the hip and shoulder, from computed tomography. Image segmentation of the tomographic series was used to develop a three-dimensional virtual model, which was fabricated using fused deposition modelling. Laser scanning was used to compare cadaver bones, printed models, and intermediate segmentations. The overall bone reconstruction process had a reproducibility of 0.3 ± 0.4 mm. Production of the model had an accuracy of 0.1 ± 0.1 mm, while the segmentation had an accuracy of 0.3 ± 0.4 mm, indicating that segmentation accuracy was the key factor in reconstruction. Generally, the shape of the articular surfaces was reproduced accurately, with poorer accuracy near the periphery of the articular surfaces, particularly in regions with periosteum covering and where osteophytes were apparent.

  4. Computer aided stress analysis of long bones utilizing computer tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marom, S.A.

    1986-01-01

    A computer aided analysis method, utilizing computed tomography (CT) has been developed, which together with a finite element program determines the stress-displacement pattern in a long bone section. The CT data file provides the geometry, the density and the material properties for the generated finite element model. A three-dimensional finite element model of a tibial shaft is automatically generated from the CT file by a pre-processing procedure for a finite element program. The developed pre-processor includes an edge detection algorithm which determines the boundaries of the reconstructed cross-sectional images of the scanned bone. A mesh generation procedure than automatically generatesmore » a three-dimensional mesh of a user-selected refinement. The elastic properties needed for the stress analysis are individually determined for each model element using the radiographic density (CT number) of each pixel with the elemental borders. The elastic modulus is determined from the CT radiographic density by using an empirical relationship from the literature. The generated finite element model, together with applied loads, determined from existing gait analysis and initial displacements, comprise a formatted input for the SAP IV finite element program. The output of this program, stresses and displacements at the model elements and nodes, are sorted and displayed by a developed post-processor to provide maximum and minimum values at selected locations in the model.« less

  5. Differences between postmortem computed tomography and conventional autopsy in a stabbing murder case

    PubMed Central

    Zerbini, Talita; da Silva, Luiz Fernando Ferraz; Ferro, Antonio Carlos Gonçalves; Kay, Fernando Uliana; Junior, Edson Amaro; Pasqualucci, Carlos Augusto Gonçalves; do Nascimento Saldiva, Paulo Hilario

    2014-01-01

    OBJECTIVE: The aim of the present work is to analyze the differences and similarities between the elements of a conventional autopsy and images obtained from postmortem computed tomography in a case of a homicide stab wound. METHOD: Comparison between the findings of different methods: autopsy and postmortem computed tomography. RESULTS: In some aspects, autopsy is still superior to imaging, especially in relation to external examination and the description of lesion vitality. However, the findings of gas embolism, pneumothorax and pulmonary emphysema and the relationship between the internal path of the instrument of aggression and the entry wound are better demonstrated by postmortem computed tomography. CONCLUSIONS: Although multislice computed tomography has greater accuracy than autopsy, we believe that the conventional autopsy method is fundamental for providing evidence in criminal investigations. PMID:25518020

  6. Interlaced X-ray diffraction computed tomography

    PubMed Central

    Vamvakeros, Antonios; Jacques, Simon D. M.; Di Michiel, Marco; Senecal, Pierre; Middelkoop, Vesna; Cernik, Robert J.; Beale, Andrew M.

    2016-01-01

    An X-ray diffraction computed tomography data-collection strategy that allows, post experiment, a choice between temporal and spatial resolution is reported. This strategy enables time-resolved studies on comparatively short timescales, or alternatively allows for improved spatial resolution if the system under study, or components within it, appear to be unchanging. The application of the method for studying an Mn–Na–W/SiO2 fixed-bed reactor in situ is demonstrated. Additionally, the opportunities to improve the data-collection strategy further, enabling post-collection tuning between statistical, temporal and spatial resolutions, are discussed. In principle, the interlaced scanning approach can also be applied to other pencil-beam tomographic techniques, like X-ray fluorescence computed tomography, X-ray absorption fine structure computed tomography, pair distribution function computed tomography and tomographic scanning transmission X-ray microscopy. PMID:27047305

  7. Colovesical fistula causing an uncommon reason for failure of computed tomography colonography: a case report.

    PubMed

    Neroladaki, Angeliki; Breguet, Romain; Botsikas, Diomidis; Terraz, Sylvain; Becker, Christoph D; Montet, Xavier

    2012-07-23

    Computed tomography colonography, or virtual colonoscopy, is a good alternative to optical colonoscopy. However, suboptimal patient preparation or colon distension may reduce the diagnostic accuracy of this imaging technique. We report the case of an 83-year-old Caucasian woman who presented with a five-month history of pneumaturia and fecaluria and an acute episode of macrohematuria, leading to a high clinical suspicion of a colovesical fistula. The fistula was confirmed by standard contrast-enhanced computed tomography. Optical colonoscopy was performed to exclude the presence of an underlying colonic neoplasm. Since optical colonoscopy was incomplete, computed tomography colonography was performed, but also failed due to inadequate colon distension. The insufflated air directly accumulated within the bladder via the large fistula. Clinicians should consider colovesical fistula as a potential reason for computed tomography colonography failure.

  8. A computationally inexpensive model for estimating dimensional measurement uncertainty due to x-ray computed tomography instrument misalignments

    NASA Astrophysics Data System (ADS)

    Ametova, Evelina; Ferrucci, Massimiliano; Chilingaryan, Suren; Dewulf, Wim

    2018-06-01

    The recent emergence of advanced manufacturing techniques such as additive manufacturing and an increased demand on the integrity of components have motivated research on the application of x-ray computed tomography (CT) for dimensional quality control. While CT has shown significant empirical potential for this purpose, there is a need for metrological research to accelerate the acceptance of CT as a measuring instrument. The accuracy in CT-based measurements is vulnerable to the instrument geometrical configuration during data acquisition, namely the relative position and orientation of x-ray source, rotation stage, and detector. Consistency between the actual instrument geometry and the corresponding parameters used in the reconstruction algorithm is critical. Currently available procedures provide users with only estimates of geometrical parameters. Quantification and propagation of uncertainty in the measured geometrical parameters must be considered to provide a complete uncertainty analysis and to establish confidence intervals for CT dimensional measurements. In this paper, we propose a computationally inexpensive model to approximate the influence of errors in CT geometrical parameters on dimensional measurement results. We use surface points extracted from a computer-aided design (CAD) model to model discrepancies in the radiographic image coordinates assigned to the projected edges between an aligned system and a system with misalignments. The efficacy of the proposed method was confirmed on simulated and experimental data in the presence of various geometrical uncertainty contributors.

  9. Computed tomography and (18)F-fluorodeoxyglucose positron emission tomography/computed tomography findings in adrenal candidiasis and histoplasmosis: two cases.

    PubMed

    Altinmakas, Emre; Guo, Ming; Kundu, Uma R; Habra, Mouhammed Amir; Ng, Chaan

    2015-01-01

    We report the contrast-enhanced computed tomography (CT) and (18)F-fluorodeoxyglucose positron emission tomography findings in adrenal histoplasmosis and candidiasis. Both demonstrated bilateral hypermetabolic heterogeneous adrenal masses with limited wash-out on delayed CT. Adrenal candidiasis has not been previously reported, nor have the CT wash-out findings in either infection. The adrenal imaging findings are indistinguishable from malignancy, which is more common; but in this setting, physicians should be alert to the differential diagnosis of fungal infections, since it can be equally deadly. Published by Elsevier Inc.

  10. Incidental renal tumours on low-dose CT lung cancer screening exams.

    PubMed

    Pinsky, Paul F; Dunn, Barbara; Gierada, David; Nath, P Hrudaya; Munden, Reginald; Berland, Lincoln; Kramer, Barnett S

    2017-06-01

    Introduction Renal cancer incidence has increased markedly in the United States in recent decades, largely due to incidentally detected tumours from computed tomography imaging. Here, we analyze the potential for low-dose computed tomography lung cancer screening to detect renal cancer. Methods The National Lung Screening Trial randomized subjects to three annual screens with either low-dose computed tomography or chest X-ray. Eligibility criteria included 30 + pack-years, current smoking or quit within 15 years, and age 55-74. Subjects were followed for seven years. Low-dose computed tomography screening forms collected information on lung cancer and non-lung cancer abnormalities, including abnormalities below the diaphragm. A reader study was performed on a sample of National Lung Screening Trial low-dose computed tomography images assessing presence of abnormalities below the diaphragms and abnormalities suspicious for renal cancer. Results There were 26,722 and 26,732 subjects enrolled in the low-dose computed tomography and chest X-ray arms, respectively, and there were 104 and 85 renal cancer cases diagnosed, respectively (relative risk = 1.22, 95% CI: 0.9-1.5). From 75,126 low-dose computed tomography screens, there were 46 renal cancer diagnoses within one year. Abnormalities below the diaphragm rates were 39.1% in screens with renal cancer versus 4.1% in screens without (P < 0.001). Cases with abnormalities below the diaphragms had shorter median time to diagnosis than those without (71 vs. 160 days, P = 0.004). In the reader study, 64% of renal cancer cases versus 13% of non-cases had abnormalities below the diaphragms; 55% of cases and 0.8% of non-cases had a finding suspicious for renal cancer (P < 0.001). Conclusion Low-dose computed tomography screens can potentially detect renal cancers. The benefits to harms tradeoff of incidental detection of renal tumours on low-dose computed tomography is unknown.

  11. Meta-Analysis of Stress Myocardial Perfusion Imaging

    ClinicalTrials.gov

    2017-06-06

    Coronary Disease; Echocardiography; Fractional Flow Reserve, Myocardial; Hemodynamics; Humans; Magnetic Resonance Imaging; Myocardial Perfusion Imaging; Perfusion; Predictive Value of Tests; Single Photon Emission Computed Tomography; Positron Emission Tomography; Multidetector Computed Tomography; Echocardiography, Stress; Coronary Angiography

  12. Positron Computed Tomography: Current State, Clinical Results and Future Trends

    DOE R&D Accomplishments Database

    Schelbert, H. R.; Phelps, M. E.; Kuhl, D. E.

    1980-09-01

    An overview is presented of positron computed tomography: its advantages over single photon emission tomography, its use in metabolic studies of the heart and chemical investigation of the brain, and future trends. (ACR)

  13. Diagnostic dilemma of degenerative joint disease, chronic avascular necrosis or metastasis in planar Tc-99m-methylene diphosphonate planar skeletal scintigraphy excluded by single positron emission computed tomography/computed tomography.

    PubMed

    Jain, Tarun Kumar; Phulsunga, Rohit Kumar; Basher, Rajender Kumar; Kumar, Narendra; Bhattacharya, Anish; Mittal, Bhagwant Rai

    2015-01-01

    We present a 71-year-old male patient subjected to skeletal scintigraphy for metastasis work up of prostate cancer. Whole body planar images revealed a solitary focal tracer uptake in left femoral head mimicking as solitary metastatic focus. Single positron emission computed tomography/computed tomography images localized this increased tracer uptake to the subchondral cysts with minimal sclerosis in left femur head with no decrease in size of femur head and was reported as (degenerative joint disease).

  14. Diagnostic dilemma of degenerative joint disease, chronic avascular necrosis or metastasis in planar Tc-99m-methylene diphosphonate planar skeletal scintigraphy excluded by single positron emission computed tomography/computed tomography

    PubMed Central

    Jain, Tarun Kumar; Phulsunga, Rohit Kumar; Basher, Rajender Kumar; Kumar, Narendra; Bhattacharya, Anish; Mittal, Bhagwant Rai

    2015-01-01

    We present a 71-year-old male patient subjected to skeletal scintigraphy for metastasis work up of prostate cancer. Whole body planar images revealed a solitary focal tracer uptake in left femoral head mimicking as solitary metastatic focus. Single positron emission computed tomography/computed tomography images localized this increased tracer uptake to the subchondral cysts with minimal sclerosis in left femur head with no decrease in size of femur head and was reported as (degenerative joint disease). PMID:26170582

  15. The early development of medial coronoid disease in growing Labrador retrievers: radiographic, computed tomographic, necropsy and micro-computed tomographic findings.

    PubMed

    Lau, S F; Wolschrijn, C F; Hazewinkel, H A W; Siebelt, M; Voorhout, G

    2013-09-01

    Medial coronoid disease (MCD) encompasses lesions of the entire medial coronoid process (MCP), both of the articular cartilage and the subchondral bone. To detect the earliest signs of MCD, radiography and computed tomography were used to monitor the development of MCD in 14 Labrador retrievers, from 6 to 7 weeks of age until euthanasia. The definitive diagnosis of MCD was based on necropsy and micro-computed tomography findings. The frequency of MCD in the dogs studied was 50%. Radiographic findings did not provide evidence of MCD, ulnar subtrochlear sclerosis or blunting of the cranial edge of the MCP. Computed tomography was more sensitive (30.8%) than radiography (0%) in detecting early MCD, with the earliest signs detectable at 14 weeks of age. A combination of the necropsy and micro-computed tomography findings of the MCP showed that MCD was manifested as a lesion of only the subchondral bone in dogs <18 weeks of age. In all dogs (affected and unaffected), there was close contact between the base of the MCP and the proximal radial head in the congruent joints. Computed tomography and micro-computed tomography findings indicated that the lesions of MCD probably originated at the base of the MCP. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Errors due to the truncation of the computational domain in static three-dimensional electrical impedance tomography.

    PubMed

    Vauhkonen, P J; Vauhkonen, M; Kaipio, J P

    2000-02-01

    In electrical impedance tomography (EIT), an approximation for the internal resistivity distribution is computed based on the knowledge of the injected currents and measured voltages on the surface of the body. The currents spread out in three dimensions and therefore off-plane structures have a significant effect on the reconstructed images. A question arises: how far from the current carrying electrodes should the discretized model of the object be extended? If the model is truncated too near the electrodes, errors are produced in the reconstructed images. On the other hand if the model is extended very far from the electrodes the computational time may become too long in practice. In this paper the model truncation problem is studied with the extended finite element method. Forward solutions obtained using so-called infinite elements, long finite elements and separable long finite elements are compared to the correct solution. The effects of the truncation of the computational domain on the reconstructed images are also discussed and results from the three-dimensional (3D) sensitivity analysis are given. We show that if the finite element method with ordinary elements is used in static 3D EIT, the dimension of the problem can become fairly large if the errors associated with the domain truncation are to be avoided.

  17. Monte Carlo Simulation for Polychromatic X-Ray Fluorescence Computed Tomography with Sheet-Beam Geometry

    PubMed Central

    Jiang, Shanghai

    2017-01-01

    X-ray fluorescence computed tomography (XFCT) based on sheet beam can save a huge amount of time to obtain a whole set of projections using synchrotron. However, it is clearly unpractical for most biomedical research laboratories. In this paper, polychromatic X-ray fluorescence computed tomography with sheet-beam geometry is tested by Monte Carlo simulation. First, two phantoms (A and B) filled with PMMA are used to simulate imaging process through GEANT 4. Phantom A contains several GNP-loaded regions with the same size (10 mm) in height and diameter but different Au weight concentration ranging from 0.3% to 1.8%. Phantom B contains twelve GNP-loaded regions with the same Au weight concentration (1.6%) but different diameter ranging from 1 mm to 9 mm. Second, discretized presentation of imaging model is established to reconstruct more accurate XFCT images. Third, XFCT images of phantoms A and B are reconstructed by filter back-projection (FBP) and maximum likelihood expectation maximization (MLEM) with and without correction, respectively. Contrast-to-noise ratio (CNR) is calculated to evaluate all the reconstructed images. Our results show that it is feasible for sheet-beam XFCT system based on polychromatic X-ray source and the discretized imaging model can be used to reconstruct more accurate images. PMID:28567054

  18. Progress on the diagnosis and evaluation of brain tumors

    PubMed Central

    Gao, Huile

    2013-01-01

    Abstract Brain tumors are one of the most challenging disorders encountered, and early and accurate diagnosis is essential for the management and treatment of these tumors. In this article, diagnostic modalities including single-photon emission computed tomography, positron emission tomography, magnetic resonance imaging, and optical imaging are reviewed. We mainly focus on the newly emerging, specific imaging probes, and their potential use in animal models and clinical settings. PMID:24334439

  19. Application of process tomography in gas-solid fluidised beds in different scales and structures

    NASA Astrophysics Data System (ADS)

    Wang, H. G.; Che, H. Q.; Ye, J. M.; Tu, Q. Y.; Wu, Z. P.; Yang, W. Q.; Ocone, R.

    2018-04-01

    Gas-solid fluidised beds are commonly used in particle-related processes, e.g. for coal combustion and gasification in the power industry, and the coating and granulation process in the pharmaceutical industry. Because the operation efficiency depends on the gas-solid flow characteristics, it is necessary to investigate the flow behaviour. This paper is about the application of process tomography, including electrical capacitance tomography (ECT) and microwave tomography (MWT), in multi-scale gas-solid fluidisation processes in the pharmaceutical and power industries. This is the first time that both ECT and MWT have been applied for this purpose in multi-scale and complex structure. To evaluate the sensor design and image reconstruction and to investigate the effects of sensor structure and dimension on the image quality, a normalised sensitivity coefficient is introduced. In the meantime, computational fluid dynamic (CFD) analysis based on a computational particle fluid dynamic (CPFD) model and a two-phase fluid model (TFM) is used. Part of the CPFD-TFM simulation results are compared and validated by experimental results from ECT and/or MWT. By both simulation and experiment, the complex flow hydrodynamic behaviour in different scales is analysed. Time-series capacitance data are analysed both in time and frequency domains to reveal the flow characteristics.

  20. Association of Computed Tomography Ischemic Lesion Location With Functional Outcome in Acute Large Vessel Occlusion Ischemic Stroke.

    PubMed

    Ernst, Marielle; Boers, Anna M M; Aigner, Annette; Berkhemer, Olvert A; Yoo, Albert J; Roos, Yvo B; Dippel, Diederik W J; van der Lugt, Aad; van Oostenbrugge, Robert J; van Zwam, Wim H; Fiehler, Jens; Marquering, Henk A; Majoie, Charles B L M

    2017-09-01

    Ischemic lesion volume (ILV) assessed by follow-up noncontrast computed tomography correlates only moderately with clinical end points, such as the modified Rankin Scale (mRS). We hypothesized that the association between follow-up noncontrast computed tomography ILV and outcome as assessed with mRS 3 months after stroke is strengthened when taking the mRS relevance of the infarct location into account. An anatomic atlas with 66 areas was registered to the follow-up noncontrast computed tomographic images of 254 patients from the MR CLEAN trial (Multicenter Randomized Clinical Trial of Endovascular Treatment of Acute Ischemic Stroke in the Netherlands). The anatomic brain areas were divided into brain areas of high, moderate, and low mRS relevance as reported in the literature. Based on this distinction, the ILV in brain areas of high, moderate, and low mRS relevance was assessed for each patient. Binary and ordinal logistic regression analyses with and without adjustment for known confounders were performed to assess the association between the ILVs of different mRS relevance and outcome. The odds for a worse outcome (higher mRS) were markedly higher given an increase of ILV in brain areas of high mRS relevance (odds ratio, 1.42; 95% confidence interval, 1.31-1.55 per 10 mL) compared with an increase in total ILV (odds ratios, 1.16; 95% confidence interval, 1.12-1.19 per 10 mL). Regression models using ILV in brain areas of high mRS relevance instead of total ILV showed a higher quality. The association between follow-up noncontrast computed tomography ILV and outcome as assessed with mRS 3 months after stroke is strengthened by accounting for the mRS relevance of the affected brain areas. Future prediction models should account for the ILV in brain areas of high mRS relevance. © 2017 American Heart Association, Inc.

  1. Comparative Evaluation of a Four-Implant-Supported Polyetherketoneketone Framework Prosthesis: A Three-Dimensional Finite Element Analysis Based on Cone Beam Computed Tomography and Computer-Aided Design.

    PubMed

    Lee, Ki-Sun; Shin, Sang-Wan; Lee, Sang-Pyo; Kim, Jong-Eun; Kim, Jee-Hwan; Lee, Jeong-Yol

    The purpose of this pilot study was to evaluate and compare polyetherketoneketone (PEKK) with different framework materials for implant-supported prostheses by means of a three-dimensional finite element analysis (3D-FEA) based on cone beam computed tomography (CBCT) and computer-aided design (CAD) data. A geometric model that consisted of four maxillary implants supporting a prosthesis framework was constructed from CBCT and CAD data of a treated patient. Three different materials (zirconia, titanium, and PEKK) were selected, and their material properties were simulated using FEA software in the generated geometric model. In the PEKK framework (ie, low elastic modulus) group, the stress transferred to the implant and simulated adjacent tissue was reduced when compressive stress was dominant, but increased when tensile stress was dominant. This study suggests that the shock-absorbing effects of a resilient implant-supported framework are limited in some areas and that rigid framework material shows a favorable stress distribution and safety of overall components of the prosthesis.

  2. Computed tomography-based tissue-engineered scaffolds in craniomaxillofacial surgery.

    PubMed

    Smith, M H; Flanagan, C L; Kemppainen, J M; Sack, J A; Chung, H; Das, S; Hollister, S J; Feinberg, S E

    2007-09-01

    Tissue engineering provides an alternative modality allowing for decreased morbidity of donor site grafting and decreased rejection of less compatible alloplastic tissues. Using image-based design and computer software, a precisely sized and shaped scaffold for osseous tissue regeneration can be created via selective laser sintering. Polycaprolactone has been used to create a condylar ramus unit (CRU) scaffold for application in temporomandibular joint reconstruction in a Yucatan minipig animal model. Following sacrifice, micro-computed tomography and histology was used to demonstrate the efficacy of this particular scaffold design. A proof-of-concept surgery has demonstrated cartilaginous tissue regeneration along the articulating surface with exuberant osseous tissue formation. Bone volumes and tissue mineral density at both the 1 and 3 month time points demonstrated significant new bone growth interior and exterior to the scaffold. Computationally designed scaffolds can support masticatory function in a large animal model as well as both osseous and cartilage regeneration. Our group is continuing to evaluate multiple implant designs in both young and mature Yucatan minipig animals. 2007 John Wiley & Sons, Ltd.

  3. Effects of individualized electrical impedance tomography and image reconstruction settings upon the assessment of regional ventilation distribution: Comparison to 4-dimensional computed tomography in a porcine model

    PubMed Central

    Mudrak, Daniel; Kampusch, Stefan; Wielandner, Alice; Prosch, Helmut; Braun, Christina; Toemboel, Frédéric P. R.; Hofmanninger, Johannes; Kaniusas, Eugenijus

    2017-01-01

    Electrical impedance tomography (EIT) is a promising imaging technique for bedside monitoring of lung function. It is easily applicable, cheap and requires no ionizing radiation, but clinical interpretation of EIT-images is still not standardized. One of the reasons for this is the ill-posed nature of EIT, allowing a range of possible images to be produced–rather than a single explicit solution. Thus, to further advance the EIT technology for clinical application, thorough examinations of EIT-image reconstruction settings–i.e., mathematical parameters and addition of a priori (e.g., anatomical) information–is essential. In the present work, regional ventilation distribution profiles derived from different EIT finite-element reconstruction models and settings (for GREIT and Gauss Newton) were compared to regional aeration profiles assessed by the gold-standard of 4-dimensional computed tomography (4DCT) by calculating the root mean squared error (RMSE). Specifically, non-individualized reconstruction models (based on circular and averaged thoracic contours) and individualized reconstruction models (based on true thoracic contours) were compared. Our results suggest that GREIT with noise figure of 0.15 and non-uniform background works best for the assessment of regional ventilation distribution by EIT, as verified versus 4DCT. Furthermore, the RMSE of anteroposterior ventilation profiles decreased from 2.53±0.62% to 1.67±0.49% while correlation increased from 0.77 to 0.89 after embedding anatomical information into the reconstruction models. In conclusion, the present work reveals that anatomically enhanced EIT-image reconstruction is superior to non-individualized reconstruction models, but further investigations in humans, so as to standardize reconstruction settings, is warranted. PMID:28763474

  4. Aerosolized intranasal midazolam for safe and effective sedation for quality computed tomography imaging in infants and children.

    PubMed

    Mekitarian Filho, Eduardo; de Carvalho, Werther Brunow; Gilio, Alfredo Elias; Robinson, Fay; Mason, Keira P

    2013-10-01

    This pilot study introduces the aerosolized route for midazolam as an option for infant and pediatric sedation for computed tomography imaging. This technique produced predictable and effective sedation for quality computed tomography imaging studies with minimal artifact and no significant adverse events. Copyright © 2013 Mosby, Inc. All rights reserved.

  5. Computed Tomography Measuring Inside Machines

    NASA Technical Reports Server (NTRS)

    Wozniak, James F.; Scudder, Henry J.; Anders, Jeffrey E.

    1995-01-01

    Computed tomography applied to obtain approximate measurements of radial distances from centerline of turbopump to leading edges of diffuser vanes in turbopump. Use of computed tomography has significance beyond turbopump application: example of general concept of measuring internal dimensions of assembly of parts without having to perform time-consuming task of taking assembly apart and measuring internal parts on coordinate-measuring machine.

  6. Nondestructive microimaging during preclinical pin-on-plate testing of novel materials for arthroplasty.

    PubMed

    Teeter, Matthew G; Langohr, G Daniel G; Medley, John B; Holdsworth, David W

    2014-02-01

    The purpose of this study was to determine the ability of micro-computed tomography to quantify wear in preclinical pin-on-plate testing of materials for use in joint arthroplasty. Wear testing of CoCr pins articulating against six polyetheretherketone plates was performed using a pin-on-plate apparatus over 2 million cycles. Change in volume due to wear was quantified with gravimetric analysis and with micro-computed tomography, and the volumes were compared. Separately, the volume of polyetheretherketone pin-on-plate specimens that had been soaking in fluid for 52 weeks was quantified with both gravimetric analysis and micro-computed tomography, and repeated after drying. The volume change with micro-computed tomography was compared to the mass change with gravimetric analysis. The mean wear volume measured was 8.02 ± 6.38 mm(3) with gravimetric analysis and 6.76 ± 5.38 mm(3) with micro-computed tomography (p = 0.06). Micro-computed tomography volume measurements did not show a statistically significant change with drying for either the plates (p = 0.60) or the pins (p = 0.09), yet drying had a significant effect on the gravimetric mass measurements for both the plates (p = 0.03) and the pins (p = 0.04). Micro-computed tomography provided accurate measurements of wear in polyetheretherketone pin-on-plate test specimens, and no statistically significant change was caused by fluid uptake. Micro-computed tomography quantifies wear depth and wear volume, mapped to the specific location of damage on the specimen, and is also capable of examining subsurface density as well as cracking. Its noncontact, nondestructive nature makes it ideal for preclinical testing of materials, in which further additional analysis techniques may be utilized.

  7. Preoperative (3-dimensional) computed tomography lung reconstruction before anatomic segmentectomy or lobectomy for stage I non-small cell lung cancer.

    PubMed

    Chan, Ernest G; Landreneau, James R; Schuchert, Matthew J; Odell, David D; Gu, Suicheng; Pu, Jiantao; Luketich, James D; Landreneau, Rodney J

    2015-09-01

    Accurate cancer localization and negative resection margins are necessary for successful segmentectomy. In this study, we evaluate a newly developed software package that permits automated segmentation of the pulmonary parenchyma, allowing 3-dimensional assessment of tumor size, location, and estimates of surgical margins. A pilot study using a newly developed 3-dimensional computed tomography analytic software package was performed to retrospectively evaluate preoperative computed tomography images of patients who underwent segmentectomy (n = 36) or lobectomy (n = 15) for stage 1 non-small cell lung cancer. The software accomplishes an automated reconstruction of anatomic pulmonary segments of the lung based on bronchial arborization. Estimates of anticipated surgical margins and pulmonary segmental volume were made on the basis of 3-dimensional reconstruction. Autosegmentation was achieved in 72.7% (32/44) of preoperative computed tomography images with slice thicknesses of 3 mm or less. Reasons for segmentation failure included local severe emphysema or pneumonitis, and lower computed tomography resolution. Tumor segmental localization was achieved in all autosegmented studies. The 3-dimensional computed tomography analysis provided a positive predictive value of 87% in predicting a marginal clearance greater than 1 cm and a 75% positive predictive value in predicting a margin to tumor diameter ratio greater than 1 in relation to the surgical pathology assessment. This preoperative 3-dimensional computed tomography analysis of segmental anatomy can confirm the tumor location within an anatomic segment and aid in predicting surgical margins. This 3-dimensional computed tomography information may assist in the preoperative assessment regarding the suitability of segmentectomy for peripheral lung cancers. Published by Elsevier Inc.

  8. Role of post-mapping computed tomography in virtual-assisted lung mapping.

    PubMed

    Sato, Masaaki; Nagayama, Kazuhiro; Kuwano, Hideki; Nitadori, Jun-Ichi; Anraku, Masaki; Nakajima, Jun

    2017-02-01

    Background Virtual-assisted lung mapping is a novel bronchoscopic preoperative lung marking technique in which virtual bronchoscopy is used to predict the locations of multiple dye markings. Post-mapping computed tomography is performed to confirm the locations of the actual markings. This study aimed to examine the accuracy of marking locations predicted by virtual bronchoscopy and elucidate the role of post-mapping computed tomography. Methods Automated and manual virtual bronchoscopy was used to predict marking locations. After bronchoscopic dye marking under local anesthesia, computed tomography was performed to confirm the actual marking locations before surgery. Discrepancies between marking locations predicted by the different methods and the actual markings were examined on computed tomography images. Forty-three markings in 11 patients were analyzed. Results The average difference between the predicted and actual marking locations was 30 mm. There was no significant difference between the latest version of the automated virtual bronchoscopy system (30.7 ± 17.2 mm) and manual virtual bronchoscopy (29.8 ± 19.1 mm). The difference was significantly greater in the upper vs. lower lobes (37.1 ± 20.1 vs. 23.0 ± 6.8 mm, for automated virtual bronchoscopy; p < 0.01). Despite this discrepancy, all targeted lesions were successfully resected using 3-dimensional image guidance based on post-mapping computed tomography reflecting the actual marking locations. Conclusions Markings predicted by virtual bronchoscopy were dislocated from the actual markings by an average of 3 cm. However, surgery was accurately performed using post-mapping computed tomography guidance, demonstrating the indispensable role of post-mapping computed tomography in virtual-assisted lung mapping.

  9. Utility of screening computed tomography of chest, abdomen and pelvis in patients after heart transplantation.

    PubMed

    Dasari, Tarun W; Pavlovic-Surjancev, Biljana; Dusek, Linda; Patel, Nilamkumar; Heroux, Alain L

    2011-12-01

    Malignancy is a late cause of mortality in heart transplant recipients. It is unknown if screening computed tomography scan would lead to early detection of such malignancies or serious vascular anomalies post heart transplantation. This is a single center observational study of patients undergoing surveillance computed tomography of chest, abdomen and pelvis at least 5 years after transplantation. Abnormal findings, included pulmonary nodules, lymphadenopathy and intra-thoracic and intra-abdominal masses and vascular anomalies such as abdominal aortic aneurysm. The clinical follow up of each of these major abnormal findings is summarized. A total of 63 patients underwent computed tomography scan of chest, abdomen and pelvis at least 5 years after transplantation. Of these, 54 (86%) were male and 9 (14%) were female. Mean age was 52±9.2 years. Computed tomography revealed 1 lung cancer (squamous cell) only. Non specific pulmonary nodules were seen in 6 patients (9.5%). The most common incidental finding was abdominal aortic aneurysms (N=6 (9.5%)), which necessitated follow up computed tomography (N=5) or surgery (N=1). Mean time to detection of abdominal aortic aneurysms from transplantation was 14.6±4.2 years. Mean age at the time of detection of abdominal aortic aneurysms was 74.5±3.2 years. Screening computed tomography scan in patients 5 years from transplantation revealed only one malignancy but lead to increased detection of abdominal aortic aneurysms. Thus the utility is low in terms of detection of malignancy. Based on this study we do not recommend routine computed tomography post heart transplantation. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. Petamenophis (Padiamenemipet), an Egyptian Child Mummy Protected for Eternity: Revelation by Multidetector Computed Tomography.

    PubMed

    Martina, Maria Cristina; Cesarani, Federico; Boano, Rosa; Fiore Marochetti, Elisa; Gandini, Giovanni

    The objective of our work was to report the most recent findings obtained with multidetector computed tomography of a child mummy from the Roman period (119-123 CE) housed at the Egyptian Museum in Turin, Italy. Multidetector computed tomography and postprocessing were applied to understand the embalming techniques, the nature of a foreign object, and anthropometrical values. The information was compared with that from other mummies that were buried in the same tomb, but today housed in different museums. New information regarding the embalming technique was revealed. Multidetector computed tomography allowed the identification of a knife-like metallic object, probably an amulet for the child's protection in the afterlife. Multidetector computed tomography and image postprocessing confirm their valuable role in noninvasive studies in ancient mummies and provided evidence of a unique cultural practice in the late history of Ancient Egypt such as placing a knife possibly as an amulet.

  11. Multiple imaging mode X-ray computed tomography for distinguishing active and inactive phases in lithium-ion battery cathodes

    NASA Astrophysics Data System (ADS)

    Komini Babu, Siddharth; Mohamed, Alexander I.; Whitacre, Jay F.; Litster, Shawn

    2015-06-01

    This paper presents the use of nanometer scale resolution X-ray computed tomography (nano-CT) in the three-dimensional (3D) imaging of a Li-ion battery cathode, including the separate volumes of active material, binder plus conductive additive, and pore. The different high and low atomic number (Z) materials are distinguished by sequentially imaging the lithium cobalt oxide electrode in absorption and then Zernike phase contrast modes. Morphological parameters of the active material and the additives are extracted from the 3D reconstructions, including the distribution of contact areas between the additives and the active material. This method could provide a better understanding of the electric current distribution and structural integrity of battery electrodes, as well as provide detailed geometries for computational models.

  12. In vivo quantitative bioluminescence tomography using heterogeneous and homogeneous mouse models.

    PubMed

    Liu, Junting; Wang, Yabin; Qu, Xiaochao; Li, Xiangsi; Ma, Xiaopeng; Han, Runqiang; Hu, Zhenhua; Chen, Xueli; Sun, Dongdong; Zhang, Rongqing; Chen, Duofang; Chen, Dan; Chen, Xiaoyuan; Liang, Jimin; Cao, Feng; Tian, Jie

    2010-06-07

    Bioluminescence tomography (BLT) is a new optical molecular imaging modality, which can monitor both physiological and pathological processes by using bioluminescent light-emitting probes in small living animal. Especially, this technology possesses great potential in drug development, early detection, and therapy monitoring in preclinical settings. In the present study, we developed a dual modality BLT prototype system with Micro-computed tomography (MicroCT) registration approach, and improved the quantitative reconstruction algorithm based on adaptive hp finite element method (hp-FEM). Detailed comparisons of source reconstruction between the heterogeneous and homogeneous mouse models were performed. The models include mice with implanted luminescence source and tumor-bearing mice with firefly luciferase report gene. Our data suggest that the reconstruction based on heterogeneous mouse model is more accurate in localization and quantification than the homogeneous mouse model with appropriate optical parameters and that BLT allows super-early tumor detection in vivo based on tomographic reconstruction of heterogeneous mouse model signal.

  13. Diagnosis of sinusoidal obstruction syndrome by positron emission tomography/computed tomography: report of two cases treated by defibrotide.

    PubMed

    Gauthé, Mathieu; Bozec, Laurence; Bedossa, Pierre

    2014-11-01

    Sinusoidal obstruction syndrome (SOS) is a potentially fatal liver injury that mainly occurs after myeloablative chemotherapy. We report two cases of SOS investigated by 18F-fluorodeoxyglucose positron emission tomography/computed tomography and treated with defibrotide. © 2014 by the American Association for the Study of Liver Diseases.

  14. Measuring Weld Profiles By Computer Tomography

    NASA Technical Reports Server (NTRS)

    Pascua, Antonio G.; Roy, Jagatjit

    1990-01-01

    Noncontacting, nondestructive computer tomography system determines internal and external contours of welded objects. System makes it unnecessary to take metallurgical sections (destructive technique) or to take silicone impressions of hidden surfaces (technique that contaminates) to inspect them. Measurements of contours via tomography performed 10 times as fast as measurements via impression molds, and tomography does not contaminate inspected parts.

  15. What can we learn from in-soil imaging of a live plant: X-ray Computed Tomography and 3D numerical simulation of root-soil system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaofan; Varga, Tamas; Liu, Chongxuan

    Plant roots play a critical role in plant-soil-microbe interactions that occur in the rhizosphere. X-ray Computed Tomography (XCT) has been proven to be an effective tool for non-invasive root imaging and analysis. A combination of XCT, open-source software, and in-house developed code was used to non-invasively image a prairie dropseed (Sporobolus heterolepis) specimen, segment the root data to obtain a 3D image of the root structure, and extract quantitative information from the 3D data, respectively. Based on the explicitly-resolved root structure, pore-scale computational fluid dynamics (CFD) simulations were applied to numerically investigate the root-soil-groundwater system. The plant root conductivity, soilmore » hydraulic conductivity and transpiration rate were shown to control the groundwater distribution. Furthermore, the coupled imaging-modeling approach demonstrates a realistic platform to investigate rhizosphere flow processes and would be feasible to provide useful information linked to upscaled models.« less

  16. What can we learn from in-soil imaging of a live plant: X-ray Computed Tomography and 3D numerical simulation of root-soil system

    DOE PAGES

    Yang, Xiaofan; Varga, Tamas; Liu, Chongxuan; ...

    2017-05-04

    Plant roots play a critical role in plant-soil-microbe interactions that occur in the rhizosphere. X-ray Computed Tomography (XCT) has been proven to be an effective tool for non-invasive root imaging and analysis. A combination of XCT, open-source software, and in-house developed code was used to non-invasively image a prairie dropseed (Sporobolus heterolepis) specimen, segment the root data to obtain a 3D image of the root structure, and extract quantitative information from the 3D data, respectively. Based on the explicitly-resolved root structure, pore-scale computational fluid dynamics (CFD) simulations were applied to numerically investigate the root-soil-groundwater system. The plant root conductivity, soilmore » hydraulic conductivity and transpiration rate were shown to control the groundwater distribution. Furthermore, the coupled imaging-modeling approach demonstrates a realistic platform to investigate rhizosphere flow processes and would be feasible to provide useful information linked to upscaled models.« less

  17. Efficient waveform tomography for lithospheric imaging: implications for realistic, two-dimensional acquisition geometries and low-frequency data

    NASA Astrophysics Data System (ADS)

    Brenders, A. J.; Pratt, R. G.

    2007-01-01

    We provide a series of numerical experiments designed to test waveform tomography under (i) a reduction in the number of input data frequency components (`efficient' waveform tomography), (ii) sparse spatial subsampling of the input data and (iii) an increase in the minimum data frequency used. These results extend the waveform tomography results of a companion paper, using the same third-party, 2-D, wide-angle, synthetic viscoelastic seismic data, computed in a crustal geology model 250 km long and 40 km deep, with heterogeneous P-velocity, S-velocity, density and Q-factor structure. Accurate velocity models were obtained using efficient waveform tomography and only four carefully selected frequency components of the input data: 0.8, 1.7, 3.6 and 7.0 Hz. This strategy avoids the spectral redundancy present in `full' waveform tomography, and yields results that are comparable with those in the companion paper for an 88 per cent decrease in total computational cost. Because we use acoustic waveform tomography, the results further justify the use of the acoustic wave equation in calculating P-wave velocity models from viscoelastic data. The effect of using sparse survey geometries with efficient waveform tomography were investigated for both increased receiver spacing, and increased source spacing. Sampling theory formally requires spatial sampling at maximum interval of one half-wavelength (2.5 km at 0.8 Hz): For data with receivers every 0.9 km (conforming to this criterion), artefacts in the tomographic images were still minimal when the source spacing was as large as 7.6 km (three times the theoretical maximum). Larger source spacings led to an unacceptable degradation of the results. When increasing the starting frequency, image quality was progressively degraded. Acceptable image quality within the central portion of the model was nevertheless achieved using starting frequencies up to 3.0 Hz. At 3.0 Hz the maximum theoretical sample interval is reduced to 0.67 km due to the decreased wavelengths; the available sources were spaced every 5.0 km (more than seven times the theoretical maximum), and receivers were spaced every 0.9 km (1.3 times the theoretical maximum). Higher starting frequencies than 3.0 Hz again led to unacceptable degradation of the results.

  18. Parallel Computing for the Computed-Tomography Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon

    2008-01-01

    This software computes the tomographic reconstruction of spatial-spectral data from raw detector images of the Computed-Tomography Imaging Spectrometer (CTIS), which enables transient-level, multi-spectral imaging by capturing spatial and spectral information in a single snapshot.

  19. [The comparison of the expansion of polyps according to the Ki-67 and computed tomography scores].

    PubMed

    Aydin, Sedat; Sanli, Arif; Tezer, Ilter; Hardal, Umit; Barişik, Nagehan Ozdemir

    2009-01-01

    The disease extention in nasal polyps was compared by using the mitotic activity rates and the computed tomography scores. This study was conducted on 19 nasal polyposis patients (8 males, 11 females; mean age 40.0+/-13.7 years; range 20 to 63 years). The preoperative computed tomography records of the patients were evaluated according to the Lund-Mackay grading system. The polyp tissues of the same patients were stained with the Ki-67 antigen for immunohistochemical evaluation. The correlation between the radiologic results and the Ki-67 values was compared by means of the Spearman's correlation test. The mean computed tomography score was observed as 14.3+/-4.7 (range 7-24). The mean Ki-67 score resulting from the immunohistochemical staining was calculated as 24.3+/-18.5 (range 3.3-73.5%). A significant correlation was determined between the Ki-67 values and the computed tomography scores. ("Spearman's" correlation factor: 0.677; p<0.001). As the mitotic activity rate of nasal polyps increases, both the volume of the polyps and the computed tomography scores increase as a result of the blockage of the sinus ostiums by the increased polyp volume.

  20. A Projection Quality-Driven Tube Current Modulation Method in Cone-Beam CT for IGRT: Proof of Concept.

    PubMed

    Men, Kuo; Dai, Jianrong

    2017-12-01

    To develop a projection quality-driven tube current modulation method in cone-beam computed tomography for image-guided radiotherapy based on the prior attenuation information obtained by the planning computed tomography and then evaluate its effect on a reduction in the imaging dose. The QCKV-1 phantom with different thicknesses (0-400 mm) of solid water upon it was used to simulate different attenuation (μ). Projections were acquired with a series of tube current-exposure time product (mAs) settings, and a 2-dimensional contrast to noise ratio was analyzed for each projection to create a lookup table of mAs versus 2-dimensional contrast to noise ratio, μ. Before a patient underwent computed tomography, the maximum attenuation [Formula: see text] within the 95% range of each projection angle (θ) was estimated according to the planning computed tomography images. Then, a desired 2-dimensional contrast to noise ratio value was selected, and the mAs setting at θ was calculated with the lookup table of mAs versus 2-dimensional contrast to noise ratio,[Formula: see text]. Three-dimensional cone-beam computed tomography images were reconstructed using the projections acquired with the selected mAs. The imaging dose was evaluated with a polymethyl methacrylate dosimetry phantom in terms of volume computed tomography dose index. Image quality was analyzed using a Catphan 503 phantom with an oval body annulus and a pelvis phantom. For the Catphan 503 phantom, the cone-beam computed tomography image obtained by the projection quality-driven tube current modulation method had a similar quality to that of conventional cone-beam computed tomography . However, the proposed method could reduce the imaging dose by 16% to 33% to achieve an equivalent contrast to noise ratio value. For the pelvis phantom, the structural similarity index was 0.992 with a dose reduction of 39.7% for the projection quality-driven tube current modulation method. The proposed method could reduce the additional dose to the patient while not degrading the image quality for cone-beam computed tomography. The projection quality-driven tube current modulation method could be especially beneficial to patients who undergo cone-beam computed tomography frequently during a treatment course.

  1. Stereoscopic vascular models of the head and neck: A computed tomography angiography visualization.

    PubMed

    Cui, Dongmei; Lynch, James C; Smith, Andrew D; Wilson, Timothy D; Lehman, Michael N

    2016-01-01

    Computer-assisted 3D models are used in some medical and allied health science schools; however, they are often limited to online use and 2D flat screen-based imaging. Few schools take advantage of 3D stereoscopic learning tools in anatomy education and clinically relevant anatomical variations when teaching anatomy. A new approach to teaching anatomy includes use of computed tomography angiography (CTA) images of the head and neck to create clinically relevant 3D stereoscopic virtual models. These high resolution images of the arteries can be used in unique and innovative ways to create 3D virtual models of the vasculature as a tool for teaching anatomy. Blood vessel 3D models are presented stereoscopically in a virtual reality environment, can be rotated 360° in all axes, and magnified according to need. In addition, flexible views of internal structures are possible. Images are displayed in a stereoscopic mode, and students view images in a small theater-like classroom while wearing polarized 3D glasses. Reconstructed 3D models enable students to visualize vascular structures with clinically relevant anatomical variations in the head and neck and appreciate spatial relationships among the blood vessels, the skull and the skin. © 2015 American Association of Anatomists.

  2. A study of the progression of damage in an axially loaded Branta leucopsis femur using X-ray computed tomography and digital image correlation

    PubMed Central

    Manning, Phillip Lars; Lowe, Tristan; Withers, Philip J.

    2017-01-01

    This paper uses X-ray computed tomography to track the mechanical response of a vertebrate (Barnacle goose) long bone subjected to an axial compressive load, which is increased gradually until failure. A loading rig was mounted in an X-ray computed tomography system so that a time-lapse sequence of three-dimensional (3D) images of the bone’s internal (cancellous or trabecular) structure could be recorded during loading. Five distinct types of deformation mechanism were observed in the cancellous part of the bone. These were (i) cracking, (ii) thinning (iii) tearing of cell walls and struts, (iv) notch formation, (v) necking and (vi) buckling. The results highlight that bone experiences brittle (notch formation and cracking), ductile (thinning, tearing and necking) and elastic (buckling) modes of deformation. Progressive deformation, leading to cracking was studied in detail using digital image correlation. The resulting strain maps were consistent with mechanisms occurring at a finer-length scale. This paper is the first to capture time-lapse 3D images of a whole long bone subject to loading until failure. The results serve as a unique reference for researchers interested in how bone responds to loading. For those using computer modelling, the study not only provides qualitative information for verification and validation of their simulations but also highlights that constitutive models for bone need to take into account a number of different deformation mechanisms. PMID:28652932

  3. A study of the progression of damage in an axially loaded Branta leucopsis femur using X-ray computed tomography and digital image correlation.

    PubMed

    Mustansar, Zartasha; McDonald, Samuel A; Sellers, William Irvin; Manning, Phillip Lars; Lowe, Tristan; Withers, Philip J; Margetts, Lee

    2017-01-01

    This paper uses X-ray computed tomography to track the mechanical response of a vertebrate (Barnacle goose) long bone subjected to an axial compressive load, which is increased gradually until failure. A loading rig was mounted in an X-ray computed tomography system so that a time-lapse sequence of three-dimensional (3D) images of the bone's internal (cancellous or trabecular) structure could be recorded during loading. Five distinct types of deformation mechanism were observed in the cancellous part of the bone. These were (i) cracking, (ii) thinning (iii) tearing of cell walls and struts, (iv) notch formation, (v) necking and (vi) buckling. The results highlight that bone experiences brittle (notch formation and cracking), ductile (thinning, tearing and necking) and elastic (buckling) modes of deformation. Progressive deformation, leading to cracking was studied in detail using digital image correlation. The resulting strain maps were consistent with mechanisms occurring at a finer-length scale. This paper is the first to capture time-lapse 3D images of a whole long bone subject to loading until failure. The results serve as a unique reference for researchers interested in how bone responds to loading. For those using computer modelling, the study not only provides qualitative information for verification and validation of their simulations but also highlights that constitutive models for bone need to take into account a number of different deformation mechanisms.

  4. Comparison of algebraic and analytical approaches to the formulation of the statistical model-based reconstruction problem for X-ray computed tomography.

    PubMed

    Cierniak, Robert; Lorent, Anna

    2016-09-01

    The main aim of this paper is to investigate properties of our originally formulated statistical model-based iterative approach applied to the image reconstruction from projections problem which are related to its conditioning, and, in this manner, to prove a superiority of this approach over ones recently used by other authors. The reconstruction algorithm based on this conception uses a maximum likelihood estimation with an objective adjusted to the probability distribution of measured signals obtained from an X-ray computed tomography system with parallel beam geometry. The analysis and experimental results presented here show that our analytical approach outperforms the referential algebraic methodology which is explored widely in the literature and exploited in various commercial implementations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Radiomics-based differentiation of lung disease models generated by polluted air based on X-ray computed tomography data.

    PubMed

    Szigeti, Krisztián; Szabó, Tibor; Korom, Csaba; Czibak, Ilona; Horváth, Ildikó; Veres, Dániel S; Gyöngyi, Zoltán; Karlinger, Kinga; Bergmann, Ralf; Pócsik, Márta; Budán, Ferenc; Máthé, Domokos

    2016-02-11

    Lung diseases (resulting from air pollution) require a widely accessible method for risk estimation and early diagnosis to ensure proper and responsive treatment. Radiomics-based fractal dimension analysis of X-ray computed tomography attenuation patterns in chest voxels of mice exposed to different air polluting agents was performed to model early stages of disease and establish differential diagnosis. To model different types of air pollution, BALBc/ByJ mouse groups were exposed to cigarette smoke combined with ozone, sulphur dioxide gas and a control group was established. Two weeks after exposure, the frequency distributions of image voxel attenuation data were evaluated. Specific cut-off ranges were defined to group voxels by attenuation. Cut-off ranges were binarized and their spatial pattern was associated with calculated fractal dimension, then abstracted by the fractal dimension -- cut-off range mathematical function. Nonparametric Kruskal-Wallis (KW) and Mann-Whitney post hoc (MWph) tests were used. Each cut-off range versus fractal dimension function plot was found to contain two distinctive Gaussian curves. The ratios of the Gaussian curve parameters are considerably significant and are statistically distinguishable within the three exposure groups. A new radiomics evaluation method was established based on analysis of the fractal dimension of chest X-ray computed tomography data segments. The specific attenuation patterns calculated utilizing our method may diagnose and monitor certain lung diseases, such as chronic obstructive pulmonary disease (COPD), asthma, tuberculosis or lung carcinomas.

  6. Steady shape analysis of tomographic pumping tests for characterization of aquifer heterogeneities

    USGS Publications Warehouse

    Bohling, Geoffrey C.; Zhan, Xiaoyong; Butler, James J.; Zheng, Li

    2002-01-01

    Hydraulic tomography, a procedure involving the performance of a suite of pumping tests in a tomographic format, provides information about variations in hydraulic conductivity at a level of detail not obtainable with traditional well tests. However, analysis of transient data from such a suite of pumping tests represents a substantial computational burden. Although steady state responses can be analyzed to reduce this computational burden significantly, the time required to reach steady state will often be too long for practical applications of the tomography concept. In addition, uncertainty regarding the mechanisms driving the system to steady state can propagate to adversely impact the resulting hydraulic conductivity estimates. These disadvantages of a steady state analysis can be overcome by exploiting the simplifications possible under the steady shape flow regime. At steady shape conditions, drawdown varies with time but the hydraulic gradient does not. Thus transient data can be analyzed with the computational efficiency of a steady state model. In this study, we demonstrate the value of the steady shape concept for inversion of hydraulic tomography data and investigate its robustness with respect to improperly specified boundary conditions.

  7. Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors.

    PubMed

    Ale, Angelique; Schulz, Ralf B; Sarantopoulos, Athanasios; Ntziachristos, Vasilis

    2010-05-01

    The performance is studied of two newly introduced and previously suggested methods that incorporate priors into inversion schemes associated with data from a recently developed hybrid x-ray computed tomography and fluorescence molecular tomography system, the latter based on CCD camera photon detection. The unique data set studied attains accurately registered data of high spatially sampled photon fields propagating through tissue along 360 degrees projections. Approaches that incorporate structural prior information were included in the inverse problem by adding a penalty term to the minimization function utilized for image reconstructions. Results were compared as to their performance with simulated and experimental data from a lung inflammation animal model and against the inversions achieved when not using priors. The importance of using priors over stand-alone inversions is also showcased with high spatial sampling simulated and experimental data. The approach of optimal performance in resolving fluorescent biodistribution in small animals is also discussed. Inclusion of prior information from x-ray CT data in the reconstruction of the fluorescence biodistribution leads to improved agreement between the reconstruction and validation images for both simulated and experimental data.

  8. Electrode Models for Electric Current Computed Tomography

    PubMed Central

    CHENG, KUO-SHENG; ISAACSON, DAVID; NEWELL, J. C.; GISSER, DAVID G.

    2016-01-01

    This paper develops a mathematical model for the physical properties of electrodes suitable for use in electric current computed tomography (ECCT). The model includes the effects of discretization, shunt, and contact impedance. The complete model was validated by experiment. Bath resistivities of 284.0, 139.7, 62.3, 29.5 Ω · cm were studied. Values of “effective” contact impedance z used in the numerical approximations were 58.0, 35.0, 15.0, and 7.5 Ω · cm2, respectively. Agreement between the calculated and experimentally measured values was excellent throughout the range of bath conductivities studied. It is desirable in electrical impedance imaging systems to model the observed voltages to the same precision as they are measured in order to be able to make the highest resolution reconstructions of the internal conductivity that the measurement precision allows. The complete electrode model, which includes the effects of discretization of the current pattern, the shunt effect due to the highly conductive electrode material, and the effect of an “effective” contact impedance, allows calculation of the voltages due to any current pattern applied to a homogeneous resistivity field. PMID:2777280

  9. Electrode models for electric current computed tomography.

    PubMed

    Cheng, K S; Isaacson, D; Newell, J C; Gisser, D G

    1989-09-01

    This paper develops a mathematical model for the physical properties of electrodes suitable for use in electric current computed tomography (ECCT). The model includes the effects of discretization, shunt, and contact impedance. The complete model was validated by experiment. Bath resistivities of 284.0, 139.7, 62.3, 29.5 omega.cm were studied. Values of "effective" contact impedance zeta used in the numerical approximations were 58.0, 35.0, 15.0, and 7.5 omega.cm2, respectively. Agreement between the calculated and experimentally measured values was excellent throughout the range of bath conductivities studied. It is desirable in electrical impedance imaging systems to model the observed voltages to the same precision as they are measured in order to be able to make the highest resolution reconstructions of the internal conductivity that the measurement precision allows. The complete electrode model, which includes the effects of discretization of the current pattern, the shunt effect due to the highly conductive electrode material, and the effect of an "effective" contact impedance, allows calculation of the voltages due to any current pattern applied to a homogeneous resistivity field.

  10. A Comparative Evaluation of Mixed Dentition Analysis on Reliability of Cone Beam Computed Tomography Image Compared to Plaster Model

    PubMed Central

    Gowd, Snigdha; Shankar, T; Dash, Samarendra; Sahoo, Nivedita; Chatterjee, Suravi; Mohanty, Pritam

    2017-01-01

    Aims and Objective: The aim of the study was to evaluate the reliability of cone beam computed tomography (CBCT) obtained image over plaster model for the assessment of mixed dentition analysis. Materials and Methods: Thirty CBCT-derived images and thirty plaster models were derived from the dental archives, and Moyer's and Tanaka-Johnston analyses were performed. The data obtained were interpreted and analyzed statistically using SPSS 10.0/PC (SPSS Inc., Chicago, IL, USA). Descriptive and analytical analysis along with Student's t-test was performed to qualitatively evaluate the data and P < 0.05 was considered statistically significant. Results: Statistically, significant results were obtained on data comparison between CBCT-derived images and plaster model; the mean for Moyer's analysis in the left and right lower arch for CBCT and plaster model was 21.2 mm, 21.1 mm and 22.5 mm, 22.5 mm, respectively. Conclusion: CBCT-derived images were less reliable as compared to data obtained directly from plaster model for mixed dentition analysis. PMID:28852639

  11. Validation of cone-beam computed tomography and magnetic resonance imaging of the porcine spine: a comparative study with multidetector computed tomography and anatomical specimens.

    PubMed

    de Freitas, Ricardo Miguel Costa; Andrade, Celi Santos; Caldas, José Guilherme Mendes Pereira; Kanas, Alexandre Fligelman; Cabral, Richard Halti; Tsunemi, Miriam Harumi; Rodríguez, Hernán Joel Cervantes; Rabbani, Said Rahnamaye

    2015-05-01

    New spinal interventions or implants have been tested on ex vivo or in vivo porcine spines, as they are readily available and have been accepted as a comparable model to human cadaver spines. Imaging-guided interventional procedures of the spine are mostly based on fluoroscopy or, still, on multidetector computed tomography (MDCT). Cone-beam computed tomography (CBCT) and magnetic resonance imaging (MRI) are also available methods to guide interventional procedures. Although some MDCT data from porcine spines are available in the literature, validation of the measurements on CBCT and MRI is lacking. To describe and compare the anatomical measurements accomplished with MDCT, CBCT, and MRI of lumbar porcine spines to determine if CBCT and MRI are also useful methods for experimental studies. An experimental descriptive-comparative study. Sixteen anatomical measurements of an individual vertebra from six lumbar porcine spines (n=36 vertebrae) were compared with their MDCT, CBCT, and MRI equivalents. Comparisons were made for the absolute values of the parameters. Similarities were found in all imaging methods. Significant correlation (p<.05) was observed with all variables except those that included cartilaginous tissue from the end plates when the anatomical study was compared with the imaging methods. The CBCT and MRI provided imaging measurements of the lumbar porcine spines that were similar to the anatomical and MDCT data, and they can be useful for specific experimental research studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Numerical prediction of fiber orientation in injection-molded short-fiber/thermoplastic composite parts with experimental validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thi, Thanh Binh Nguyen; Morioka, Mizuki; Yokoyama, Atsushi

    Numerical prediction of the fiber orientation in the short-glass fiber (GF) reinforced polyamide 6 (PA6) composites with the fiber weight concentration of 30%, 50%, and 70% manufactured by the injection molding process is presented. And the fiber orientation was also directly observed and measured through X-ray computed tomography. During the injection molding process of the short-fiber/thermoplastic composite, the fiber orientation is produced by the flow states and the fiber-fiber interaction. Folgar and Tucker equation is the well known for modeling the fiber orientation in a concentrated suspension. They included into Jeffrey’s equation a diffusive type of term by introducing amore » phenomenological coefficient to account for the fiber-fiber interaction. Our developed model for the fiber-fiber interaction was proposed by modifying the rotary diffusion term of the Folgar-Tucker equation. This model was presented in a conference paper of the 29{sup th} International Conference of the Polymer Processing Society published by AIP conference proceeding. For modeling fiber interaction, the fiber dynamic simulation was introduced in order to obtain a global fiber interaction coefficient, which is sum function of the fiber concentration, aspect ratio, and angular velocity. The fiber orientation is predicted by using the proposed fiber interaction model incorporated into a computer aided engineering simulation package C-Mold. An experimental program has been carried out in which the fiber orientation distribution has been measured in 100 x 100 x 2 mm injection-molded plate and 100 x 80 x 2 mm injection-molded weld by analyzed with a high resolution 3D X-ray computed tomography system XVA-160α, and calculated by X-ray computed tomography imaging. The numerical prediction shows a good agreement with experimental validation. And the complex fiber orientation in the injection-molded weld was investigated.« less

  13. Numerical prediction of fiber orientation in injection-molded short-fiber/thermoplastic composite parts with experimental validation

    NASA Astrophysics Data System (ADS)

    Thi, Thanh Binh Nguyen; Morioka, Mizuki; Yokoyama, Atsushi; Hamanaka, Senji; Yamashita, Katsuhisa; Nonomura, Chisato

    2015-05-01

    Numerical prediction of the fiber orientation in the short-glass fiber (GF) reinforced polyamide 6 (PA6) composites with the fiber weight concentration of 30%, 50%, and 70% manufactured by the injection molding process is presented. And the fiber orientation was also directly observed and measured through X-ray computed tomography. During the injection molding process of the short-fiber/thermoplastic composite, the fiber orientation is produced by the flow states and the fiber-fiber interaction. Folgar and Tucker equation is the well known for modeling the fiber orientation in a concentrated suspension. They included into Jeffrey's equation a diffusive type of term by introducing a phenomenological coefficient to account for the fiber-fiber interaction. Our developed model for the fiber-fiber interaction was proposed by modifying the rotary diffusion term of the Folgar-Tucker equation. This model was presented in a conference paper of the 29th International Conference of the Polymer Processing Society published by AIP conference proceeding. For modeling fiber interaction, the fiber dynamic simulation was introduced in order to obtain a global fiber interaction coefficient, which is sum function of the fiber concentration, aspect ratio, and angular velocity. The fiber orientation is predicted by using the proposed fiber interaction model incorporated into a computer aided engineering simulation package C-Mold. An experimental program has been carried out in which the fiber orientation distribution has been measured in 100 x 100 x 2 mm injection-molded plate and 100 x 80 x 2 mm injection-molded weld by analyzed with a high resolution 3D X-ray computed tomography system XVA-160α, and calculated by X-ray computed tomography imaging. The numerical prediction shows a good agreement with experimental validation. And the complex fiber orientation in the injection-molded weld was investigated.

  14. Just Scan It!-Weapon Reconstruction in Computed Tomography on Historical and Current Swiss Military Guns.

    PubMed

    Franckenberg, Sabine; Binder, Thomas; Bolliger, Stephan; Thali, Michael J; Ross, Steffen G

    2016-09-01

    Cross-sectional imaging, such as computed tomography, has been increasingly implemented in both historic and recent postmortem forensic investigations. It aids in determining cause and manner of death as well as in correlating injuries to possible weapons. This study illuminates the feasibility of reconstructing guns in computed tomography and gives a distinct overview of historic and recent Swiss Army guns.

  15. The use of computed tomography to diagnose chronic shoulder arthritis in an American white pelican (Pelecanus erythrorhynchos).

    PubMed

    Whitehead, Michelle C; Parker, Dennilyn L

    2015-03-01

    An American white pelican was presented with a complete left wing droop and no abnormal findings on conventional radiography. Computed tomography was used to diagnose chronic shoulder arthritis as a sequela to a suspected traumatic compressive fracture. This is the first case report to describe use of computed tomography to evaluate the avian shoulder joint.

  16. Embracing Statistical Challenges in the Information Technology Age

    DTIC Science & Technology

    2006-01-01

    computation and feature selection. Moreover, two research projects on network tomography and arctic cloud detection are used throughout the paper to bring...prominent Network Tomography problem, origin- destination (OD) traffic estimation. It demonstrates well how the two modes of data collection interact...software debugging (Biblit et al, 2005 [2]), and network tomography for computer network management. Computer sys- tem problems exist long before the IT

  17. Computed Tomography For Internal Inspection Of Castings

    NASA Technical Reports Server (NTRS)

    Hanna, Timothy L.

    1995-01-01

    Computed tomography used to detect internal flaws in metal castings before machining and otherwise processing them into finished parts. Saves time and money otherwise wasted on machining and other processing of castings eventually rejected because of internal defects. Knowledge of internal defects gained by use of computed tomography also provides guidance for changes in foundry techniques, procedures, and equipment to minimize defects and reduce costs.

  18. The Impact of Computed Tomography on Decision Making in Tibial Plateau Fractures.

    PubMed

    Castiglia, Marcello Teixeira; Nogueira-Barbosa, Marcello Henrique; Messias, Andre Marcio Vieira; Salim, Rodrigo; Fogagnolo, Fabricio; Schatzker, Joseph; Kfuri, Mauricio

    2018-02-14

    Schatzker introduced one of the most used classification systems for tibial plateau fractures, based on plain radiographs. Computed tomography brought to attention the importance of coronal plane-oriented fractures. The goal of our study was to determine if the addition of computed tomography would affect the decision making of surgeons who usually use the Schatzker classification to assess tibial plateau fractures. Image studies of 70 patients who sustained tibial plateau fractures were uploaded to a dedicated homepage. Every patient was linked to a folder which contained two radiographic projections (anteroposterior and lateral), three interactive videos of computed tomography (axial, sagittal, and coronal), and eight pictures depicting tridimensional reconstructions of the tibial plateau. Ten attending orthopaedic surgeons, who were blinded to the cases, were granted access to the homepage and assessed each set of images in two different rounds, separated to each other by an interval of 2 weeks. Each case was evaluated in three steps, where surgeons had access, respectively to radiographs, two-dimensional videos of computed tomography, and three-dimensional reconstruction images. After every step, surgeons were asked to present how would they classify the case using the Schatzker system and which surgical approaches would be appropriate. We evaluated the inter- and intraobserver reliability of the Schatzker classification using the Kappa concordance coefficient, as well as the impact of computed tomography in the decision making regarding the surgical approach for each case, by using the chi-square test and likelihood ratio. The interobserver concordance kappa coefficients after each assessment step were, respectively, 0.58, 0.62, and 0.64. For the intraobserver analysis, the coefficients were, respectively, 0.76, 0.75, and 0.78. Computed tomography changed the surgical approach selection for the types II, V, and VI of Schatzker ( p  < 0.01). The addition of computed tomography scans to plain radiographs improved the interobserver reliability of Schatzker classification. Computed tomography had a statistically significant impact in the selection of surgical approaches for the lateral tibial plateau. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  19. Box Tomography: An efficient tomographic method for imaging localized structures in the deep Earth

    NASA Astrophysics Data System (ADS)

    Masson, Yder; Romanowicz, Barbara

    2017-04-01

    The accurate imaging of localized geological structures inside the deep Earth is key to understand our planet and its history. Since the introduction of the Preliminary Reference Earth Model, many generations of global tomographic models have been developed and give us access to the 3D structure of the Earth's interior. The latest generation of global tomographic models has emerged with the development of accurate numerical wavefield computations in a 3D earth combined with access to enhanced HPC capabilities. These models have sharpened up mantle images and unveiled relatively small scale structures that were blurred out in previous generation models. Fingerlike structures have been found at the base of the oceanic asthenosphere, and vertically oriented broad low velocity plume conduits [1] extend throughout the lower mantle beneath those major hotspots that are located within the perimeter of the deep mantle large low shear velocity provinces (LLSVPs). While providing new insights into our understanding of mantle dynamics, the detailed morphology of these features requires further efforts to obtain higher resolution images. In recent years, we developed a theoretical framework [2][3] for the tomographic imaging of localised geological structures buried inside the Earth, where no seismic sources nor receivers are necessarily present. We call this "box tomography" [4]. The essential difference between box-tomography and standard tomographic methods is that the numerical modeling (i.e. the raytracing in travel time tomography and the wave propagation in waveform tomography or full waveform inversion) is completely confined within the small box-region imaged. Thus, box tomography is a lot more efficient than global tomography (i.e. where we invert for the velocity in the larger volume that encompasses all the sources and receivers), for imaging localised objects. We present 2D and 3D examples showing that box tomography can be employed for imaging structures present within the D'' region at the base of the mantle. Further, we show that box-tomography performs well even in the difficult situation where the velocity distribution in the mantle above the target structure is not known a-priori. REFERENCES [1] French, S. W. and B. Romanowicz (2015) Broad Plumes at the base of the mantle beneath major hotspots, Nature, 525, 95-99 [2] Masson, Y., Cupillard, P., Capdeville, Y., & Romanowicz, B. (2013). On the numerical implementation of time-reversal mirrors for tomographic imaging. Geophysical Journal International, ggt459. [3] Masson, Y., & Romanowicz, B. (2017). Fast computation of synthetic seismograms within a medium containing remote localized perturbations: a numerical solution to the scattering problem. Geophysical Journal International, 208(2), 674-692. [4] Masson, Y., & Romanowicz, B. (2017). Box Tomography: Localised imaging of remote targets buried in an unknown medium, a step forward for understanding key structures in the deep Earth. Geophysical Journal International, (under review).

  20. A machine-learning approach for computation of fractional flow reserve from coronary computed tomography.

    PubMed

    Itu, Lucian; Rapaka, Saikiran; Passerini, Tiziano; Georgescu, Bogdan; Schwemmer, Chris; Schoebinger, Max; Flohr, Thomas; Sharma, Puneet; Comaniciu, Dorin

    2016-07-01

    Fractional flow reserve (FFR) is a functional index quantifying the severity of coronary artery lesions and is clinically obtained using an invasive, catheter-based measurement. Recently, physics-based models have shown great promise in being able to noninvasively estimate FFR from patient-specific anatomical information, e.g., obtained from computed tomography scans of the heart and the coronary arteries. However, these models have high computational demand, limiting their clinical adoption. In this paper, we present a machine-learning-based model for predicting FFR as an alternative to physics-based approaches. The model is trained on a large database of synthetically generated coronary anatomies, where the target values are computed using the physics-based model. The trained model predicts FFR at each point along the centerline of the coronary tree, and its performance was assessed by comparing the predictions against physics-based computations and against invasively measured FFR for 87 patients and 125 lesions in total. Correlation between machine-learning and physics-based predictions was excellent (0.9994, P < 0.001), and no systematic bias was found in Bland-Altman analysis: mean difference was -0.00081 ± 0.0039. Invasive FFR ≤ 0.80 was found in 38 lesions out of 125 and was predicted by the machine-learning algorithm with a sensitivity of 81.6%, a specificity of 83.9%, and an accuracy of 83.2%. The correlation was 0.729 (P < 0.001). Compared with the physics-based computation, average execution time was reduced by more than 80 times, leading to near real-time assessment of FFR. Average execution time went down from 196.3 ± 78.5 s for the CFD model to ∼2.4 ± 0.44 s for the machine-learning model on a workstation with 3.4-GHz Intel i7 8-core processor. Copyright © 2016 the American Physiological Society.

  1. Limitations of PET/CT in the Detection of Occult N1 Metastasis in Clinical Stage I(T1-2aN0) Non-Small Cell Lung Cancer for Staging Prior to Stereotactic Body Radiotherapy.

    PubMed

    Akthar, Adil S; Ferguson, Mark K; Koshy, Matthew; Vigneswaran, Wickii T; Malik, Renuka

    2017-02-01

    Patients receiving stereotactic body radiotherapy for stage I non-small cell lung cancer are typically staged clinically with positron emission tomography-computed tomography. Currently, limited data exist for the detection of occult hilar/peribronchial (N1) disease. We hypothesize that positron emission tomography-computed tomography underestimates spread of cancer to N1 lymph nodes and that future stereotactic body radiotherapy patients may benefit from increased pathologic evaluation of N1 nodal stations in addition to N2 nodes. A retrospective study was performed of all patients with clinical stage I (T1-2aN0) non-small cell lung cancer (American Joint Committee on Cancer, 7th edition) by positron emission tomography-computed tomography at our institution from 2003 to 2011, with subsequent surgical resection and lymph node staging. Findings on positron emission tomography-computed tomography were compared to pathologic nodal involvement to determine the negative predictive value of positron emission tomography-computed tomography for the detection of N1 nodal disease. An analysis was conducted to identify predictors of occult spread. A total of 105 patients with clinical stage I non-small cell lung cancer were included in this study, of which 8 (7.6%) patients were found to have occult N1 metastasis on pathologic review yielding a negative predictive value for N1 disease of 92.4%. No patients had occult mediastinal nodes. The negative predictive value for positron emission tomography-computed tomography in patients with clinical stage T1 versus T2 tumors was 72 (96%) of 75 versus 25 (83%) of 30, respectively ( P = .03), and for peripheral versus central tumor location was 77 (98%) of 78 versus 20 (74%) of 27, respectively ( P = .0001). The negative predictive values for peripheral T1 and T2 tumors were 98% and 100%, respectively; while for central T1 and T2 tumors, the rates were 85% and 64%, respectively. Occult lymph node involvement was not associated with primary tumor maximum standard uptake value, histology, grade, or interval between positron emission tomography-computed tomography and surgery. Our results support pathologic assessment of N1 lymph nodes in patients with stage Inon-small cell lung cancer considered for stereotactic body radiotherapy, with the greatest benefit in patients with central and T2 tumors. Diagnostic evaluation with endoscopic bronchial ultrasound should be considered in the evaluation of stereotactic body radiotherapy candidates.

  2. Pathomorphism of spiral tibial fractures in computed tomography imaging.

    PubMed

    Guzik, Grzegorz

    2011-01-01

    Spiral fractures of the tibia are virtually homogeneous with regard to their pathomorphism. The differences that are seen concern the level of fracture of the fibula, and, to a lesser extent, the level of fracture of the tibia, the length of fracture cleft, and limb shortening following the trauma. While conventional radiographs provide sufficient information about the pathomorphism of fractures, computed tomography can be useful in demonstrating the spatial arrangement of bone fragments and topography of soft tissues surrounding the fracture site. Multiple cross-sectional computed tomography views of spiral fractures of the tibia show the details of the alignment of bone chips at the fracture site, axis of the tibial fracture cleft, and topography of soft tissues that are not visible on standard radiographs. A model of a spiral tibial fracture reveals periosteal stretching with increasing spiral and longitudinal displacement. The cleft in tibial fractures has a spiral shape and its line is invariable. Every spiral fracture of both crural bones results in extensive damage to the periosteum and may damage bellies of the long flexor muscle of toes, flexor hallucis longus as well as the posterior tibial muscle. Computed tomography images of spiral fractures of the tibia show details of damage that are otherwise invisible on standard radiographs. Moreover, CT images provide useful information about the spatial location of the bone chips as well as possible threats to soft tissues that surround the fracture site. Every spiral fracture of the tibia is associated with disruption of the periosteum. 1. Computed tomography images of spiral fractures of the tibia show details of damage otherwise invisible on standard radiographs, 2. The sharp end of the distal tibial chip can damage the tibialis posterior muscle, long flexor muscles of the toes and the flexor hallucis longus, 3. Every spiral fracture of the tibia is associated with disruption of the periosteum.

  3. Nursing role model for computed tomography contrast injection decreases extravasation rates.

    PubMed

    Kadom, Nadja; Hashim, Hayder D; Olsen, Cara; Cefaratti, Marjean; Bulas, Dorothy; Shalaby-Rana, Eglal

    2012-04-01

    Extravasation of intravenous contrast administered for computed tomography remains of concern in pediatric patients. It is of great interest to any pediatric radiology department to decrease extravasation events in an effort to reduce even small adverse outcomes and improve the overall patient experience in the radiology department. Here, a total of 17 extravasation events, as reported and documented in departmental quality assurance at our institution over 4 years, were retrospectively reviewed for factors contributing to the number of adverse extravasation events. We found that pediatric nursing plays a central role in both achieving and maintaining a low extravasation rate at our institution. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Postmortem whole-body computed tomography angiography visualizing vascular rupture in a case of fatal car crash.

    PubMed

    Flach, Patricia M; Ross, Steffen G; Bolliger, Stephan A; Preiss, Ulrich S; Thali, Michael J; Spendlove, Danny

    2010-01-01

    In addition to the increasingly significant role of multislice computed tomography in forensic pathology, the performance of whole-body computed tomography angiography provides outstanding results. In this case, we were able to detect multiple injuries of the parenchymal organs in the upper abdomen as well as lesions of the brain parenchyma and vasculature of the neck. The radiologic findings showed complete concordance with the autopsy and even supplemented the autopsy findings in areas that are difficult to access via a manual dissection (such as the vasculature of the neck). This case shows how minimally invasive computed tomography angiography can serve as an invaluable adjunct to the classic autopsy procedure.

  5. Computed tomography in the evaluation of Crohn disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldberg, H.I.; Gore, R.M.; Margulis, A.R.

    1983-02-01

    The abdominal and pelvic computed tomographic examinations in 28 patients with Crohn disease were analyzed and correlated with conventional barium studies, sinograms, and surgical findings. Mucosal abnormalities such as aphthous lesions, pseudopolyps, and ulcerations were only imaged by conventional techniques. Computed tomography proved superior in demonstrating the mural, serosal, and mesenteric abnormalities such as bowel wall thickening (82%), fibrofatty proliferation of mesenteric fat (39%), mesenteric abscess (25%), inflammatory reaction of the mesentery (14%), and mesenteric lymphadenopathy (18%). Computed tomography was most useful clinically in defining the nature of mass effects, separation, or displacement of small bowel segments seen on smallmore » bowel series. Although conventional barium studies remain the initial diagnostic procedure in evaluating Crohn disease, computed tomography can be a useful adjunct in resolving difficult clinical and radiologic diagnostic problems.« less

  6. Cone beam computed tomography of plastinated hearts for instruction of radiological anatomy.

    PubMed

    Chang, Chih-Wei; Atkinson, Gregory; Gandhi, Niket; Farrell, Michael L; Labrash, Steven; Smith, Alice B; Norton, Neil S; Matsui, Takashi; Lozanoff, Scott

    2016-09-01

    Radiological anatomy education is an important aspect of the medical curriculum. The purpose of this study was to establish and demonstrate the use of plastinated anatomical specimens, specifically human hearts, for use in radiological anatomy education. Four human hearts were processed with routine plastination procedures at room temperature. Specimens were subjected to cone beam computed tomography and a graphics program (ER3D) was applied to generate 3D cardiac models. A comparison was conducted between plastinated hearts and their corresponding computer models based on a list of morphological cardiac features commonly studied in the gross anatomy laboratory. Results showed significant correspondence between plastinations and CBCT-generated 3D models (98 %; p < .01) for external structures and 100 % for internal cardiac features, while 85 % correspondence was achieved between plastinations and 2D CBCT slices. Complete correspondence (100 %) was achieved between key observations on the plastinations and internal radiological findings typically required of medical student. All pathologic features seen on the plastinated hearts were also visualized internally with the CBCT-generated models and 2D slices. These results suggest that CBCT-derived slices and models can be successfully generated from plastinated material and provide accurate representations for radiological anatomy education.

  7. Accounting for sub-resolution pores in models of water and solute transport in soils based on computed tomography images: Are we there yet?

    NASA Astrophysics Data System (ADS)

    Baveye, Philippe C.; Pot, Valérie; Garnier, Patricia

    2017-12-01

    In the last decade, X-ray computed tomography (CT) has become widely used to characterize the geometry and topology of the pore space of soils and natural porous media. Regardless of the resolution of CT images, a fundamental problem associated with their use, for example as a starting point in simulation efforts, is that sub-resolution pores are not detected. Over the last few years, a particular type of modeling method, known as ;Grey; or ;Partial Bounce Back; Lattice-Boltzmann (LB), has been adopted by increasing numbers of researchers to try to account for sub-resolution pores in the modeling of water and solute transport in natural porous media. In this short paper, we assess the extent to which Grey LB methods indeed offer a workable solution to the problem at hand. We conclude that, in spite of significant computational advances, a major experimental hurdle related to the evaluation of the penetrability of sub-resolution pores, is blocking the way ahead. This hurdle will need to be cleared before Grey LB can become a credible option in the microscale modeling of soils and sediments. A necessarily interdisciplinary effort, involving both modelers and experimentalists, is needed to clear the path forward.

  8. The efficacy of preoperative positron emission tomography-computed tomography (PET-CT) for detection of lymph node metastasis in cervical and endometrial cancer: clinical and pathological factors influencing it.

    PubMed

    Nogami, Yuya; Banno, Kouji; Irie, Haruko; Iida, Miho; Kisu, Iori; Masugi, Yohei; Tanaka, Kyoko; Tominaga, Eiichiro; Okuda, Shigeo; Murakami, Koji; Aoki, Daisuke

    2015-01-01

    We studied the diagnostic performance of (18)F-fluoro-2-deoxy-d-glucose-positron emission tomography/computed tomography in cervical and endometrial cancers with particular focus on lymph node metastases. Seventy patients with cervical cancer and 53 with endometrial cancer were imaged with (18)F-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography before lymphadenectomy. We evaluated the diagnostic performance of (18)F-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography using the final pathological diagnoses as the golden standard. We calculated the sensitivity, specificity, positive predictive value and negative predictive value of (18)F-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography. In cervical cancer, the results evaluated by cases were 33.3, 92.7, 55.6 and 83.6%, respectively. When evaluated by the area of lymph nodes, the results were 30.6, 98.9, 55.0 and 97.0%, respectively. As for endometrial cancer, the results evaluated by cases were 50.0, 93.9, 40.0 and 95.8%, and by area of lymph nodes, 45.0, 99.4, 64.3 and 98.5%, respectively. The limitation of the efficacy was found out by analyzing it by the region of the lymph node, the size of metastatic node, the historical type of tumor in cervical cancer and the prevalence of lymph node metastasis. The efficacy of positron emission tomography/computed tomography regarding the detection of lymph node metastasis in cervical and endometrial cancer is not established and has limitations associated with the region of the lymph node, the size of metastasis lesion in lymph node and the pathological type of primary tumor. The indication for the imaging and the interpretation of the results requires consideration for each case by the pretest probability based on the information obtained preoperatively. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Diagnostic ability of computed tomography using DentaScan software in endodontics: case reports.

    PubMed

    Siotia, Jaya; Gupta, Sunil K; Acharya, Shashi R; Saraswathi, Vidya

    2011-01-01

    Radiographic examination is essential in diagnosis and treatment planning in endodontics. Conventional radiographs depict structures in two dimensions only. The ability to assess the area of interest in three dimensions is advantageous. Computed tomography is an imaging technique which produces three-dimensional images of an object by taking a series of two-dimensional sectional X-ray images. DentaScan is a computed tomography software program that allows the mandible and maxilla to be imaged in three planes: axial, panoramic, and cross-sectional. As computed tomography is used in endodontics, DentaScan can play a wider role in endodontic diagnosis. It provides valuable information in the assessment of the morphology of the root canal, diagnosis of root fractures, internal and external resorptions, pre-operative assessment of anatomic structures etc. The aim of this article is to explore the clinical usefulness of computed tomography and DentaScan in endodontic diagnosis, through a series of four cases of different endodontic problems.

  10. Recent Scientific Evidence and Technical Developments in Cardiovascular Computed Tomography.

    PubMed

    Marcus, Roy; Ruff, Christer; Burgstahler, Christof; Notohamiprodjo, Mike; Nikolaou, Konstantin; Geisler, Tobias; Schroeder, Stephen; Bamberg, Fabian

    2016-05-01

    In recent years, coronary computed tomography angiography has become an increasingly safe and noninvasive modality for the evaluation of the anatomical structure of the coronary artery tree with diagnostic benefits especially in patients with a low-to-intermediate pretest probability of disease. Currently, increasing evidence from large randomized diagnostic trials is accumulating on the diagnostic impact of computed tomography angiography for the management of patients with acute and stable chest pain syndrome. At the same time, technical advances have substantially reduced adverse effects and limiting factors, such as radiation exposure, the amount of iodinated contrast agent, and scanning time, rendering the technique appropriate for broader clinical applications. In this work, we review the latest developments in computed tomography technology and describe the scientific evidence on the use of cardiac computed tomography angiography to evaluate patients with acute and stable chest pain syndrome. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  11. Noninvasive imaging of experimental lung fibrosis.

    PubMed

    Zhou, Yong; Chen, Huaping; Ambalavanan, Namasivayam; Liu, Gang; Antony, Veena B; Ding, Qiang; Nath, Hrudaya; Eary, Janet F; Thannickal, Victor J

    2015-07-01

    Small animal models of lung fibrosis are essential for unraveling the molecular mechanisms underlying human fibrotic lung diseases; additionally, they are useful for preclinical testing of candidate antifibrotic agents. The current end-point measures of experimental lung fibrosis involve labor-intensive histological and biochemical analyses. These measures fail to account for dynamic changes in the disease process in individual animals and are limited by the need for large numbers of animals for longitudinal studies. The emergence of noninvasive imaging technologies provides exciting opportunities to image lung fibrosis in live animals as often as needed and to longitudinally track the efficacy of novel antifibrotic compounds. Data obtained by noninvasive imaging provide complementary information to histological and biochemical measurements. In addition, the use of noninvasive imaging in animal studies reduces animal usage, thus satisfying animal welfare concerns. In this article, we review these new imaging modalities with the potential for evaluation of lung fibrosis in small animal models. Such techniques include micro-computed tomography (micro-CT), magnetic resonance imaging, positron emission tomography (PET), single photon emission computed tomography (SPECT), and multimodal imaging systems including PET/CT and SPECT/CT. It is anticipated that noninvasive imaging will be increasingly used in animal models of fibrosis to gain insights into disease pathogenesis and as preclinical tools to assess drug efficacy.

  12. Full Three-Dimensional Tomography Experiments in the Western Pacific Region

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Chen, L.; Jordan, T. H.

    2001-12-01

    Two decades of seismic tomography studies have yielded earth models with three-dimensional (3-D) velocity heterogeneities in the mantle on both global and regional scales. With the continuing improvements in inversion techniques, station coverage and computational facilities, seismic tomography has reached a stage at which higher resolution to the structure can only be achieved reliably by employing accurate descriptions between observables and structural parameters, especially in the upper mantle. With this in mind, we have conducted a tomography experiment for the mantle structure beneath the Western Pacific with a full 3-D approach: imaging the 3-D structure using true 3-D Fréchet kernels. In our experiment, we use nearly 20,000 delay times measured at eight discrete frequencies between 10mHz and 45mHz from three-component regional {S} waves, including its multiple reflections from the surface and the CMB. The 3-D Fréchet kernels for these delay times are computed by a normal-mode approach (Zhao, Jordan & Chapman 2000) in which coupling between each pair of modes is accounted for with the exception of cross coupling between spheroidal and toroidal modes. The algorithm is implemented with MPI on the 192-node (and expanding) dual-processor Linux-PC cluster at the University of Southern California. The 3-D radially anisotropic shear-speed model is obtained through a Gaussian-Bayesian inversion. A full description of features in our model will be given in a separate presentation (Chen, Zhao & Jordan, this meeting). Here we discuss in detail the issues related to the calculation of a large number of coupled-mode 3-D kernels for the frequency-dependent delay times and their inversion. We also examine the efficacy of this full 3-D approach in regional high-resolution tomography studies by comparing the results with those in our previous work in which the 3-D structure was obtained by inverting the same delay-time measurements but using computationally more efficient 2-D Fréchet kernels approximated from 3-D by an asymptotic stationary-phase integration across the great-circle plane.

  13. Relationships (II) of International Classification of High-resolution Computed Tomography for Occupational and Environmental Respiratory Diseases with ventilatory functions indices for parenchymal abnormalities.

    PubMed

    Tamura, Taro; Suganuma, Narufumi; Hering, Kurt G; Vehmas, Tapio; Itoh, Harumi; Akira, Masanori; Takashima, Yoshihiro; Hirano, Harukazu; Kusaka, Yukinori

    2015-01-01

    The International Classification of High-Resolution Computed Tomography (HRCT) for Occupational and Environmental Respiratory Diseases (ICOERD) is used to screen and diagnose respiratory illnesses. Using univariate and multivariate analysis, we investigated the relationship between subject characteristics and parenchymal abnormalities according to ICOERD, and the results of ventilatory function tests (VFT). Thirty-five patients with and 27 controls without mineral-dust exposure underwent VFT and HRCT. We recorded all subjects' occupational history for mineral dust exposure and smoking history. Experts independently assessed HRCT using the ICOERD parenchymal abnormalities (Items) grades for well-defined rounded opacities (RO), linear and/or irregular opacities (IR), and emphysema (EM). High-resolution computed tomography showed that 11 patients had RO; 15 patients, IR; and 19 patients, EM. According to the multiple regression model, age and height had significant associations with many indices ventilatory functions such as vital capacity, forced vital capacity, and forced expiratory volume in 1 s (FEV1). The EM summed grades on the upper, middle, and lower zones of the right and left lungs also had significant associations with FEV1 and the maximum mid-expiratory flow rate. The results suggest the ICOERD notation is adequate based on the good and significant multiple regression modeling of ventilatory function with the EM summed grades.

  14. A multistage selective weighting method for improved microwave breast tomography.

    PubMed

    Shahzad, Atif; O'Halloran, Martin; Jones, Edward; Glavin, Martin

    2016-12-01

    Microwave tomography has shown potential to successfully reconstruct the dielectric properties of the human breast, thereby providing an alternative to other imaging modalities used in breast imaging applications. Considering the costly forward solution and complex iterative algorithms, computational complexity becomes a major bottleneck in practical applications of microwave tomography. In addition, the natural tendency of microwave inversion algorithms to reward high contrast breast tissue boundaries, such as the skin-adipose interface, usually leads to a very slow reconstruction of the internal tissue structure of human breast. This paper presents a multistage selective weighting method to improve the reconstruction quality of breast dielectric properties and minimize the computational cost of microwave breast tomography. In the proposed two stage approach, the skin layer is approximated using scaled microwave measurements in the first pass of the inversion algorithm; a numerical skin model is then constructed based on the estimated skin layer and the assumed dielectric properties of the skin tissue. In the second stage of the algorithm, the skin model is used as a priori information to reconstruct the internal tissue structure of the breast using a set of temporal scaling functions. The proposed method is evaluated on anatomically accurate MRI-derived breast phantoms and a comparison with the standard single-stage technique is presented. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  15. 3D Segmentation of Maxilla in Cone-beam Computed Tomography Imaging Using Base Invariant Wavelet Active Shape Model on Customized Two-manifold Topology

    PubMed Central

    Chang, Yu-Bing; Xia, James J.; Yuan, Peng; Kuo, Tai-Hong; Xiong, Zixiang; Gateno, Jaime; Zhou, Xiaobo

    2013-01-01

    Recent advances in cone-beam computed tomography (CBCT) have rapidly enabled widepsread applications of dentomaxillofacial imaging and orthodontic practices in the past decades due to its low radiation dose, high spatial resolution, and accessibility. However, low contrast resolution in CBCT image has become its major limitation in building skull models. Intensive hand-segmentation is usually required to reconstruct the skull models. One of the regions affected by this limitation the most is the thin bone images. This paper presents a novel segmentation approach based on wavelet density model (WDM) for a particular interest in the outer surface of anterior wall of maxilla. Nineteen CBCT datasets are used to conduct two experiments. This mode-based segmentation approach is validated and compared with three different segmentation approaches. The results show that the performance of this model-based segmentation approach is better than those of the other approaches. It can achieve 0.25 ± 0.2mm of surface error from ground truth of bone surface. PMID:23694914

  16. Rib Radiography versus Chest Computed Tomography in the Diagnosis of Rib Fractures.

    PubMed

    Sano, Atsushi

    2018-05-01

     The accurate diagnosis of rib fractures is important in chest trauma. Diagnostic images following chest trauma are usually obtained via chest X-ray, chest computed tomography, or rib radiography. This study evaluated the diagnostic characteristics of rib radiography and chest computed tomography.  Seventy-five rib fracture patients who underwent both chest computed tomography and rib radiography between April 2008 and December 2013 were included. Rib radiographs, centered on the site of pain, were taken from two directions. Chest computed tomography was performed using a 16-row multidetector scanner with 5-mm slice-pitch without overlap, and axial images were visualized in a bone window.  In total, 217 rib fractures were diagnosed in 75 patients. Rib radiography missed 43 rib fractures in 24 patients. The causes were overlap with organs in 15 cases, trivial fractures in 21 cases, and injury outside the imaging range in 7 cases. Left lower rib fractures were often missed due to overlap with the heart, while middle and lower rib fractures were frequently not diagnosed due to overlap with abdominal organs. Computed tomography missed 21 rib fractures in 17 patients. The causes were horizontal fractures in 10 cases, trivial fractures in 9 cases, and insufficient breath holding in 1 case.  In rib radiography, overlap with organs and fractures outside the imaging range were characteristic reasons for missed diagnoses. In chest computed tomography, horizontal rib fractures and insufficient breath holding were often responsible. We should take these challenges into account when diagnosing rib fractures. Georg Thieme Verlag KG Stuttgart · New York.

  17. 64 slice-coronary computed tomography sensitivity and specificity in the evaluation of coronary artery bypass graft stenosis: A meta-analysis.

    PubMed

    Barbero, Umberto; Iannaccone, Mario; d'Ascenzo, Fabrizio; Barbero, Cristina; Mohamed, Abdirashid; Annone, Umberto; Benedetto, Sara; Celentani, Dario; Gagliardi, Marco; Moretti, Claudio; Gaita, Fiorenzo

    2016-08-01

    A non-invasive approach to define grafts patency and stenosis in the follow-up of coronary artery bypass graft (CABG) patients may be an interesting alternative to coronary angiography. 64-slice-coronary computed tomography is nowadays a diffused non-invasive method that permits an accurate evaluation of coronary stenosis, due to a high temporal and spatial resolution. However, its sensitivity and specificity in CABG evaluation has to be clearly defined, since published studies used different protocols and scanners. We collected all studies investigating patients with stable symptoms and previous CABG and reporting the comparison between diagnostic performances of invasive coronary angiography and 64-slice-coronary computed tomography. As a result, sensitivity and specificity of 64-slice-coronary computed tomography for CABG occlusion were 0.99 (95% CI 0.97-1.00) and 0.99 (95% CI: 0.99-1.00) with an area under the curve (AUC) of 0.99. 64-slice-coronary computed tomography sensitivity and specificity for the presence of any CABG stenosis >50% were 0.98 (95% CI: 0.97-0.99) and 0.98 (95% CI: 0.96-0.98), while AUC was 0.99. At meta-regression, neither the age nor the time from graft implantation had effect on sensitivity and specificity of 64-slice-coronary computed tomography detection of significant CABG stenosis or occlusion. In conclusion 64-slice-coronary computed tomography confirmed its high sensitivity and specificity in CABG stenosis or occlusion evaluation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. SALSA3D: A Tomographic Model of Compressional Wave Slowness in the Earth’s Mantle for Improved Travel-Time Prediction and Travel-Time Prediction Uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballard, Sanford; Hipp, James R.; Begnaud, Michael L.

    The task of monitoring the Earth for nuclear explosions relies heavily on seismic data to detect, locate, and characterize suspected nuclear tests. In this study, motivated by the need to locate suspected explosions as accurately and precisely as possible, we developed a tomographic model of the compressional wave slowness in the Earth’s mantle with primary focus on the accuracy and precision of travel-time predictions for P and Pn ray paths through the model. Path-dependent travel-time prediction uncertainties are obtained by computing the full 3D model covariance matrix and then integrating slowness variance and covariance along ray paths from source tomore » receiver. Path-dependent travel-time prediction uncertainties reflect the amount of seismic data that was used in tomography with very low values for paths represented by abundant data in the tomographic data set and very high values for paths through portions of the model that were poorly sampled by the tomography data set. The pattern of travel-time prediction uncertainty is a direct result of the off-diagonal terms of the model covariance matrix and underscores the importance of incorporating the full model covariance matrix in the determination of travel-time prediction uncertainty. In addition, the computed pattern of uncertainty differs significantly from that of 1D distance-dependent travel-time uncertainties computed using traditional methods, which are only appropriate for use with travel times computed through 1D velocity models.« less

  19. SALSA3D: A Tomographic Model of Compressional Wave Slowness in the Earth’s Mantle for Improved Travel-Time Prediction and Travel-Time Prediction Uncertainty

    DOE PAGES

    Ballard, Sanford; Hipp, James R.; Begnaud, Michael L.; ...

    2016-10-11

    The task of monitoring the Earth for nuclear explosions relies heavily on seismic data to detect, locate, and characterize suspected nuclear tests. In this study, motivated by the need to locate suspected explosions as accurately and precisely as possible, we developed a tomographic model of the compressional wave slowness in the Earth’s mantle with primary focus on the accuracy and precision of travel-time predictions for P and Pn ray paths through the model. Path-dependent travel-time prediction uncertainties are obtained by computing the full 3D model covariance matrix and then integrating slowness variance and covariance along ray paths from source tomore » receiver. Path-dependent travel-time prediction uncertainties reflect the amount of seismic data that was used in tomography with very low values for paths represented by abundant data in the tomographic data set and very high values for paths through portions of the model that were poorly sampled by the tomography data set. The pattern of travel-time prediction uncertainty is a direct result of the off-diagonal terms of the model covariance matrix and underscores the importance of incorporating the full model covariance matrix in the determination of travel-time prediction uncertainty. In addition, the computed pattern of uncertainty differs significantly from that of 1D distance-dependent travel-time uncertainties computed using traditional methods, which are only appropriate for use with travel times computed through 1D velocity models.« less

  20. Quadruple Axis Neutron Computed Tomography

    NASA Astrophysics Data System (ADS)

    Schillinger, Burkhard; Bausenwein, Dominik

    Neutron computed tomography takes more time for a full tomography than X-rays or Synchrotron radiation, because the source intensity is limited. Most neutron imaging detectors have a square field of view, so if tomography of elongated, narrow samples, e.g. fuel rods, sword blades is recorded, much of the detector area is wasted. Using multiple rotation axes, several samples can be placed inside the field of view, and multiple tomographies can be recorded at the same time by later splitting the recorded images into separate tomography data sets. We describe a new multiple-axis setup using four independent miniaturized rotation tables.

  1. Early Dose Response to Yttrium-90 Microsphere Treatment of Metastatic Liver Cancer by a Patient-Specific Method Using Single Photon Emission Computed Tomography and Positron Emission Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Janice M.; Department of Radiation Oncology, Wayne State University, Detroit, MI; Wong, C. Oliver

    2009-05-01

    Purpose: To evaluate a patient-specific single photon emission computed tomography (SPECT)-based method of dose calculation for treatment planning of yttrium-90 ({sup 90}Y) microsphere selective internal radiotherapy (SIRT). Methods and Materials: Fourteen consecutive {sup 90}Y SIRTs for colorectal liver metastasis were retrospectively analyzed. Absorbed dose to tumor and normal liver tissue was calculated by partition methods with two different tumor/normal liver vascularity ratios: an average 3:1 and a patient-specific ratio derived from pretreatment technetium-99m macroaggregated albumin SPECT. Tumor response was quantitatively evaluated from fluorine-18 fluoro-2-deoxy-D-glucose positron emission tomography scans. Results: Positron emission tomography showed a significant decrease in total tumor standardizedmore » uptake value (average, 52%). There was a significant difference in the tumor absorbed dose between the average and specific methods (p = 0.009). Response vs. dose curves fit by linear and linear-quadratic modeling showed similar results. Linear fit r values increased for all tumor response parameters with the specific method (+0.20 for mean standardized uptake value). Conclusion: Tumor dose calculated with the patient-specific method was more predictive of response in liver-directed {sup 90}Y SIRT.« less

  2. Impact of Single-Photon Emission Computed Tomography/Computed Tomography (SPECT/CT) and Positron Emission Tomography/Computed Tomography (PET/CT) in the Diagnosis of Traumatic Brain Injury (TBI): Case Report.

    PubMed

    Molina-Vicenty, Irma L; Santiago-Sánchez, Michelaldemar; Vélez-Miró, Iván; Motta-Valencia, Keryl

    2016-09-01

    Traumatic brain injury (TBI) is defined as damage to the brain resulting from an external force. TBI, a global leading cause of death and disability, is associated with serious social, economic, and health problems. In cases of mild-to-moderate brain damage, conventional anatomical imaging modalities may or may not detect the cascade of metabolic changes that have occurred or are occurring at the intracellular level. Functional nuclear medicine imaging and neurophysiological parameters can be used to characterize brain damage, as the former provides direct visualization of brain function, even in the absence of overt behavioral manifestations or anatomical findings. We report the case of a 30-year-old Hispanic male veteran who, after 2 traumatic brain injury events, developed cognitive and neuropsychological problems with no clear etiology in the presence of negative computed tomography (CT) findings.

  3. Visualization of Stereoscopic Anatomic Models of the Paranasal Sinuses and Cervical Vertebrae from the Surgical and Procedural Perspective

    ERIC Educational Resources Information Center

    Chen, Jian; Smith, Andrew D.; Khan, Majid A.; Sinning, Allan R.; Conway, Marianne L.; Cui, Dongmei

    2017-01-01

    Recent improvements in three-dimensional (3D) virtual modeling software allows anatomists to generate high-resolution, visually appealing, colored, anatomical 3D models from computed tomography (CT) images. In this study, high-resolution CT images of a cadaver were used to develop clinically relevant anatomic models including facial skull, nasal…

  4. [Three-dimensional tooth model reconstruction based on fusion of dental computed tomography images and laser-scanned images].

    PubMed

    Zhang, Dongxia; Gan, Yangzhou; Xiong, Jing; Xia, Zeyang

    2017-02-01

    Complete three-dimensional(3D) tooth model provides essential information to assist orthodontists for diagnosis and treatment planning. Currently, 3D tooth model is mainly obtained by segmentation and reconstruction from dental computed tomography(CT) images. However, the accuracy of 3D tooth model reconstructed from dental CT images is low and not applicable for invisalign design. And another serious problem also occurs, i.e. frequentative dental CT scan during different intervals of orthodontic treatment often leads to radiation to the patients. Hence, this paper proposed a method to reconstruct tooth model based on fusion of dental CT images and laser-scanned images. A complete3 D tooth model was reconstructed with the registration and fusion between the root reconstructed from dental CT images and the crown reconstructed from laser-scanned images. The crown of the complete 3D tooth model reconstructed with the proposed method has higher accuracy. Moreover, in order to reconstruct complete 3D tooth model of each orthodontic treatment interval, only one pre-treatment CT scan is needed and in the orthodontic treatment process only the laser-scan is required. Therefore, radiation to the patients can be reduced significantly.

  5. Spectral Imaging Technology-Based Evaluation of Radiation Treatment Planning to Remove Contrast Agent Artifacts.

    PubMed

    Yi-Qun, Xu; Wei, Liu; Xin-Ye, Ni

    2016-10-01

    This study employs dual-source computed tomography single-spectrum imaging to evaluate the effects of contrast agent artifact removal and the computational accuracy of radiotherapy treatment planning improvement. The phantom, including the contrast agent, was used in all experiments. The amounts of iodine in the contrast agent were 30, 15, 7.5, and 0.75 g/100 mL. Two images with different energy values were scanned and captured using dual-source computed tomography (80 and 140 kV). To obtain a fused image, 2 groups of images were processed using single-energy spectrum imaging technology. The Pinnacle planning system was used to measure the computed tomography values of the contrast agent and the surrounding phantom tissue. The difference between radiotherapy treatment planning based on 80 kV, 140 kV, and energy spectrum image was analyzed. For the image with high iodine concentration, the quality of the energy spectrum-fused image was the highest, followed by that of the 140-kV image. That of the 80-kV image was the worst. The difference in the radiotherapy treatment results among the 3 models was significant. When the concentration of iodine was 30 g/100 mL and the distance from the contrast agent at the dose measurement point was 1 cm, the deviation values (P) were 5.95% and 2.20% when image treatment planning was based on 80 and 140 kV, respectively. When the concentration of iodine was 15 g/100 mL, deviation values (P) were -2.64% and -1.69%. Dual-source computed tomography single-energy spectral imaging technology can remove contrast agent artifacts to improve the calculated dose accuracy in radiotherapy treatment planning. © The Author(s) 2015.

  6. Recent advances in 3D computed tomography techniques for simulation and navigation in hepatobiliary pancreatic surgery.

    PubMed

    Uchida, Masafumi

    2014-04-01

    A few years ago it could take several hours to complete a 3D image using a 3D workstation. Thanks to advances in computer science, obtaining results of interest now requires only a few minutes. Many recent 3D workstations or multimedia computers are equipped with onboard 3D virtual patient modeling software, which enables patient-specific preoperative assessment and virtual planning, navigation, and tool positioning. Although medical 3D imaging can now be conducted using various modalities, including computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasonography (US) among others, the highest quality images are obtained using CT data, and CT images are now the most commonly used source of data for 3D simulation and navigation image. If the 2D source image is bad, no amount of 3D image manipulation in software will provide a quality 3D image. In this exhibition, the recent advances in CT imaging technique and 3D visualization of the hepatobiliary and pancreatic abnormalities are featured, including scan and image reconstruction technique, contrast-enhanced techniques, new application of advanced CT scan techniques, and new virtual reality simulation and navigation imaging. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  7. 3D artificial bones for bone repair prepared by computed tomography-guided fused deposition modeling for bone repair.

    PubMed

    Xu, Ning; Ye, Xiaojian; Wei, Daixu; Zhong, Jian; Chen, Yuyun; Xu, Guohua; He, Dannong

    2014-09-10

    The medical community has expressed significant interest in the development of new types of artificial bones that mimic natural bones. In this study, computed tomography (CT)-guided fused deposition modeling (FDM) was employed to fabricate polycaprolactone (PCL)/hydroxyapatite (HA) and PCL 3D artificial bones to mimic natural goat femurs. The in vitro mechanical properties, in vitro cell biocompatibility, and in vivo performance of the artificial bones in a long load-bearing goat femur bone segmental defect model were studied. All of the results indicate that CT-guided FDM is a simple, convenient, relatively low-cost method that is suitable for fabricating natural bonelike artificial bones. Moreover, PCL/HA 3D artificial bones prepared by CT-guided FDM have more close mechanics to natural bone, good in vitro cell biocompatibility, biodegradation ability, and appropriate in vivo new bone formation ability. Therefore, PCL/HA 3D artificial bones could be potentially be of use in the treatment of patients with clinical bone defects.

  8. A new Mumford-Shah total variation minimization based model for sparse-view x-ray computed tomography image reconstruction.

    PubMed

    Chen, Bo; Bian, Zhaoying; Zhou, Xiaohui; Chen, Wensheng; Ma, Jianhua; Liang, Zhengrong

    2018-04-12

    Total variation (TV) minimization for the sparse-view x-ray computer tomography (CT) reconstruction has been widely explored to reduce radiation dose. However, due to the piecewise constant assumption for the TV model, the reconstructed images often suffer from over-smoothness on the image edges. To mitigate this drawback of TV minimization, we present a Mumford-Shah total variation (MSTV) minimization algorithm in this paper. The presented MSTV model is derived by integrating TV minimization and Mumford-Shah segmentation. Subsequently, a penalized weighted least-squares (PWLS) scheme with MSTV is developed for the sparse-view CT reconstruction. For simplicity, the proposed algorithm is named as 'PWLS-MSTV.' To evaluate the performance of the present PWLS-MSTV algorithm, both qualitative and quantitative studies were conducted by using a digital XCAT phantom and a physical phantom. Experimental results show that the present PWLS-MSTV algorithm has noticeable gains over the existing algorithms in terms of noise reduction, contrast-to-ratio measure and edge-preservation.

  9. Metal Artifact Suppression in Dental Cone Beam Computed Tomography Images Using Image Processing Techniques.

    PubMed

    Johari, Masoumeh; Abdollahzadeh, Milad; Esmaeili, Farzad; Sakhamanesh, Vahideh

    2018-01-01

    Dental cone beam computed tomography (CBCT) images suffer from severe metal artifacts. These artifacts degrade the quality of acquired image and in some cases make it unsuitable to use. Streaking artifacts and cavities around teeth are the main reason of degradation. In this article, we have proposed a new artifact reduction algorithm which has three parallel components. The first component extracts teeth based on the modeling of image histogram with a Gaussian mixture model. Striking artifact reduction component reduces artifacts using converting image into the polar domain and applying morphological filtering. The third component fills cavities through a simple but effective morphological filtering operation. Finally, results of these three components are combined into a fusion step to create a visually good image which is more compatible to human visual system. Results show that the proposed algorithm reduces artifacts of dental CBCT images and produces clean images.

  10. Meso-scale framework for modeling granular material using computed tomography

    DOE PAGES

    Turner, Anne K.; Kim, Felix H.; Penumadu, Dayakar; ...

    2016-03-17

    Numerical modeling of unconsolidated granular materials is comprised of multiple nonlinear phenomena. Accurately capturing these phenomena, including grain deformation and intergranular forces depends on resolving contact regions several orders of magnitude smaller than the grain size. Here, we investigate a method for capturing the morphology of the individual particles using computed X-ray and neutron tomography, which allows for accurate characterization of the interaction between grains. The ability of these numerical approaches to determine stress concentrations at grain contacts is important in order to capture catastrophic splitting of individual grains, which has been shown to play a key role in themore » plastic behavior of the granular material on the continuum level. Discretization approaches, including mesh refinement and finite element type selection are presented to capture high stress concentrations at contact points between grains. The effect of a grain’s coordination number on the stress concentrations is also investigated.« less

  11. X-ray computed tomography library of shark anatomy and lower jaw surface models.

    PubMed

    Kamminga, Pepijn; De Bruin, Paul W; Geleijns, Jacob; Brazeau, Martin D

    2017-04-11

    The cranial diversity of sharks reflects disparate biomechanical adaptations to feeding. In order to be able to investigate and better understand the ecomorphology of extant shark feeding systems, we created a x-ray computed tomography (CT) library of shark cranial anatomy with three-dimensional (3D) lower jaw reconstructions. This is used to examine and quantify lower jaw disparity in extant shark species in a separate study. The library is divided in a dataset comprised of medical CT scans of 122 sharks (Selachimorpha, Chondrichthyes) representing 73 extant species, including digitized morphology of entire shark specimens. This CT dataset and additional data provided by other researchers was used to reconstruct a second dataset containing 3D models of the left lower jaw for 153 individuals representing 94 extant shark species. These datasets form an extensive anatomical record of shark skeletal anatomy, necessary for comparative morphological, biomechanical, ecological and phylogenetic studies.

  12. Metal Artifact Suppression in Dental Cone Beam Computed Tomography Images Using Image Processing Techniques

    PubMed Central

    Johari, Masoumeh; Abdollahzadeh, Milad; Esmaeili, Farzad; Sakhamanesh, Vahideh

    2018-01-01

    Background: Dental cone beam computed tomography (CBCT) images suffer from severe metal artifacts. These artifacts degrade the quality of acquired image and in some cases make it unsuitable to use. Streaking artifacts and cavities around teeth are the main reason of degradation. Methods: In this article, we have proposed a new artifact reduction algorithm which has three parallel components. The first component extracts teeth based on the modeling of image histogram with a Gaussian mixture model. Striking artifact reduction component reduces artifacts using converting image into the polar domain and applying morphological filtering. The third component fills cavities through a simple but effective morphological filtering operation. Results: Finally, results of these three components are combined into a fusion step to create a visually good image which is more compatible to human visual system. Conclusions: Results show that the proposed algorithm reduces artifacts of dental CBCT images and produces clean images. PMID:29535920

  13. Acute imaging does not improve ASTRAL score's accuracy despite having a prognostic value.

    PubMed

    Ntaios, George; Papavasileiou, Vasileios; Faouzi, Mohamed; Vanacker, Peter; Wintermark, Max; Michel, Patrik

    2014-10-01

    The ASTRAL score was recently shown to reliably predict three-month functional outcome in patients with acute ischemic stroke. The study aims to investigate whether information from multimodal imaging increases ASTRAL score's accuracy. All patients registered in the ASTRAL registry until March 2011 were included. In multivariate logistic-regression analyses, we added covariates derived from parenchymal, vascular, and perfusion imaging to the 6-parameter model of the ASTRAL score. If a specific imaging covariate remained an independent predictor of three-month modified Rankin score>2, the area-under-the-curve (AUC) of this new model was calculated and compared with ASTRAL score's AUC. We also performed similar logistic regression analyses in arbitrarily chosen patient subgroups. When added to the ASTRAL score, the following covariates on admission computed tomography/magnetic resonance imaging-based multimodal imaging were not significant predictors of outcome: any stroke-related acute lesion, any nonstroke-related lesions, chronic/subacute stroke, leukoaraiosis, significant arterial pathology in ischemic territory on computed tomography angiography/magnetic resonance angiography/Doppler, significant intracranial arterial pathology in ischemic territory, and focal hypoperfusion on perfusion-computed tomography. The Alberta Stroke Program Early CT score on plain imaging and any significant extracranial arterial pathology on computed tomography angiography/magnetic resonance angiography/Doppler were independent predictors of outcome (odds ratio: 0·93, 95% CI: 0·87-0·99 and odds ratio: 1·49, 95% CI: 1·08-2·05, respectively) but did not increase ASTRAL score's AUC (0·849 vs. 0·850, and 0·8563 vs. 0·8564, respectively). In exploratory analyses in subgroups of different prognosis, age or stroke severity, no covariate was found to increase ASTRAL score's AUC, either. The addition of information derived from multimodal imaging does not increase ASTRAL score's accuracy to predict functional outcome despite having an independent prognostic value. More selected radiological parameters applied in specific subgroups of stroke patients may add prognostic value of multimodal imaging. © 2014 World Stroke Organization.

  14. A forward-adjoint operator pair based on the elastic wave equation for use in transcranial photoacoustic computed tomography

    PubMed Central

    Mitsuhashi, Kenji; Poudel, Joemini; Matthews, Thomas P.; Garcia-Uribe, Alejandro; Wang, Lihong V.; Anastasio, Mark A.

    2017-01-01

    Photoacoustic computed tomography (PACT) is an emerging imaging modality that exploits optical contrast and ultrasonic detection principles to form images of the photoacoustically induced initial pressure distribution within tissue. The PACT reconstruction problem corresponds to an inverse source problem in which the initial pressure distribution is recovered from measurements of the radiated wavefield. A major challenge in transcranial PACT brain imaging is compensation for aberrations in the measured data due to the presence of the skull. Ultrasonic waves undergo absorption, scattering and longitudinal-to-shear wave mode conversion as they propagate through the skull. To properly account for these effects, a wave-equation-based inversion method should be employed that can model the heterogeneous elastic properties of the skull. In this work, a forward model based on a finite-difference time-domain discretization of the three-dimensional elastic wave equation is established and a procedure for computing the corresponding adjoint of the forward operator is presented. Massively parallel implementations of these operators employing multiple graphics processing units (GPUs) are also developed. The developed numerical framework is validated and investigated in computer19 simulation and experimental phantom studies whose designs are motivated by transcranial PACT applications. PMID:29387291

  15. Iterative image reconstruction in elastic inhomogenous media with application to transcranial photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Poudel, Joemini; Matthews, Thomas P.; Mitsuhashi, Kenji; Garcia-Uribe, Alejandro; Wang, Lihong V.; Anastasio, Mark A.

    2017-03-01

    Photoacoustic computed tomography (PACT) is an emerging computed imaging modality that exploits optical contrast and ultrasonic detection principles to form images of the photoacoustically induced initial pressure distribution within tissue. The PACT reconstruction problem corresponds to a time-domain inverse source problem, where the initial pressure distribution is recovered from the measurements recorded on an aperture outside the support of the source. A major challenge in transcranial PACT brain imaging is to compensate for aberrations in the measured data due to the propagation of the photoacoustic wavefields through the skull. To properly account for these effects, a wave equation-based inversion method should be employed that can model the heterogeneous elastic properties of the medium. In this study, an iterative image reconstruction method for 3D transcranial PACT is developed based on the elastic wave equation. To accomplish this, a forward model based on a finite-difference time-domain discretization of the elastic wave equation is established. Subsequently, gradient-based methods are employed for computing penalized least squares estimates of the initial source distribution that produced the measured photoacoustic data. The developed reconstruction algorithm is validated and investigated through computer-simulation studies.

  16. Advanced Computed-Tomography Inspection System

    NASA Technical Reports Server (NTRS)

    Harris, Lowell D.; Gupta, Nand K.; Smith, Charles R.; Bernardi, Richard T.; Moore, John F.; Hediger, Lisa

    1993-01-01

    Advanced Computed Tomography Inspection System (ACTIS) is computed-tomography x-ray apparatus revealing internal structures of objects in wide range of sizes and materials. Three x-ray sources and adjustable scan geometry gives system unprecedented versatility. Gantry contains translation and rotation mechanisms scanning x-ray beam through object inspected. Distance between source and detector towers varied to suit object. System used in such diverse applications as development of new materials, refinement of manufacturing processes, and inspection of components.

  17. Usefulness of Tc99m-mebrofenin Hepatobiliary Scintigraphy and Single Photon Emission Computed Tomography/Computed Tomography in the Diagnosis of Bronchobiliary Fistula.

    PubMed

    Parghane, Rahul Vithalrao; Phulsunga, Rohit Kumar; Gupta, Rajesh; Basher, Rajender Kumar; Bhattacharya, Anish; Mittal, Bhagwant Rai

    2017-01-01

    Bronchobiliary fistula (BBF), a rare complication of liver disease, is an abnormal communication between the biliary tract and bronchial tree. BBF may occur as a consequence of local liver infections such as hydatid or amebic disease, pyogenic liver abscess or trauma to the liver, obstruction of biliary tract, and tumor. As such management of liver disease with BBF is very difficult and often associated with a high rate of morbidity and mortality. Therefore, timely diagnosis of BBF is imperative. Hepatobiliary scintigraphy along with hybrid single photon emission computed tomography/computed tomography using Tc99m-mebrofenin is a very useful noninvasive imaging modality, in the diagnosis of BBF.

  18. Usefulness of Tc99m-mebrofenin Hepatobiliary Scintigraphy and Single Photon Emission Computed Tomography/Computed Tomography in the Diagnosis of Bronchobiliary Fistula

    PubMed Central

    Parghane, Rahul Vithalrao; Phulsunga, Rohit Kumar; Gupta, Rajesh; Basher, Rajender Kumar; Bhattacharya, Anish; Mittal, Bhagwant Rai

    2017-01-01

    Bronchobiliary fistula (BBF), a rare complication of liver disease, is an abnormal communication between the biliary tract and bronchial tree. BBF may occur as a consequence of local liver infections such as hydatid or amebic disease, pyogenic liver abscess or trauma to the liver, obstruction of biliary tract, and tumor. As such management of liver disease with BBF is very difficult and often associated with a high rate of morbidity and mortality. Therefore, timely diagnosis of BBF is imperative. Hepatobiliary scintigraphy along with hybrid single photon emission computed tomography/computed tomography using Tc99m-mebrofenin is a very useful noninvasive imaging modality, in the diagnosis of BBF. PMID:29033682

  19. Weightbearing Computed Tomography of the Foot and Ankle: Emerging Technology Topical Review.

    PubMed

    Barg, Alexej; Bailey, Travis; Richter, Martinus; de Cesar Netto, Cesar; Lintz, François; Burssens, Arne; Phisitkul, Phinit; Hanrahan, Christopher J; Saltzman, Charles L

    2018-03-01

    In the last decade, cone-beam computed tomography technology with improved designs allowing flexible gantry movements has allowed both supine and standing weight-bearing imaging of the lower extremity. There is an increasing amount of literature describing the use of weightbearing computed tomography in patients with foot and ankle disorders. To date, there is no review article summarizing this imaging modality in the foot and ankle. Therefore, we performed a systematic literature review of relevant clinical studies targeting the use of weightbearing computed tomography in diagnosis of patients with foot and ankle disorders. Furthermore, this review aims to offer insight to those with interest in considering possible future research opportunities with use of this technology. Level V, expert opinion.

  20. Finite-frequency tomography using adjoint methods-Methodology and examples using membrane surface waves

    NASA Astrophysics Data System (ADS)

    Tape, Carl; Liu, Qinya; Tromp, Jeroen

    2007-03-01

    We employ adjoint methods in a series of synthetic seismic tomography experiments to recover surface wave phase-speed models of southern California. Our approach involves computing the Fréchet derivative for tomographic inversions via the interaction between a forward wavefield, propagating from the source to the receivers, and an `adjoint' wavefield, propagating from the receivers back to the source. The forward wavefield is computed using a 2-D spectral-element method (SEM) and a phase-speed model for southern California. A `target' phase-speed model is used to generate the `data' at the receivers. We specify an objective or misfit function that defines a measure of misfit between data and synthetics. For a given receiver, the remaining differences between data and synthetics are time-reversed and used as the source of the adjoint wavefield. For each earthquake, the interaction between the regular and adjoint wavefields is used to construct finite-frequency sensitivity kernels, which we call event kernels. An event kernel may be thought of as a weighted sum of phase-specific (e.g. P) banana-doughnut kernels, with weights determined by the measurements. The overall sensitivity is simply the sum of event kernels, which defines the misfit kernel. The misfit kernel is multiplied by convenient orthonormal basis functions that are embedded in the SEM code, resulting in the gradient of the misfit function, that is, the Fréchet derivative. A non-linear conjugate gradient algorithm is used to iteratively improve the model while reducing the misfit function. We illustrate the construction of the gradient and the minimization algorithm, and consider various tomographic experiments, including source inversions, structural inversions and joint source-structure inversions. Finally, we draw connections between classical Hessian-based tomography and gradient-based adjoint tomography.

  1. Molecular Imaging of Experimental Abdominal Aortic Aneurysms

    PubMed Central

    Ramaswamy, Aneesh K.; Hamilton, Mark; Joshi, Rucha V.; Kline, Benjamin P.; Li, Rui; Wang, Pu; Goergen, Craig J.

    2013-01-01

    Current laboratory research in the field of abdominal aortic aneurysm (AAA) disease often utilizes small animal experimental models induced by genetic manipulation or chemical application. This has led to the use and development of multiple high-resolution molecular imaging modalities capable of tracking disease progression, quantifying the role of inflammation, and evaluating the effects of potential therapeutics. In vivo imaging reduces the number of research animals used, provides molecular and cellular information, and allows for longitudinal studies, a necessity when tracking vessel expansion in a single animal. This review outlines developments of both established and emerging molecular imaging techniques used to study AAA disease. Beyond the typical modalities used for anatomical imaging, which include ultrasound (US) and computed tomography (CT), previous molecular imaging efforts have used magnetic resonance (MR), near-infrared fluorescence (NIRF), bioluminescence, single-photon emission computed tomography (SPECT), and positron emission tomography (PET). Mouse and rat AAA models will hopefully provide insight into potential disease mechanisms, and the development of advanced molecular imaging techniques, if clinically useful, may have translational potential. These efforts could help improve the management of aneurysms and better evaluate the therapeutic potential of new treatments for human AAA disease. PMID:23737735

  2. 2-D Fused Image Reconstruction approach for Microwave Tomography: a theoretical assessment using FDTD Model.

    PubMed

    Bindu, G; Semenov, S

    2013-01-01

    This paper describes an efficient two-dimensional fused image reconstruction approach for Microwave Tomography (MWT). Finite Difference Time Domain (FDTD) models were created for a viable MWT experimental system having the transceivers modelled using thin wire approximation with resistive voltage sources. Born Iterative and Distorted Born Iterative methods have been employed for image reconstruction with the extremity imaging being done using a differential imaging technique. The forward solver in the imaging algorithm employs the FDTD method of solving the time domain Maxwell's equations with the regularisation parameter computed using a stochastic approach. The algorithm is tested with 10% noise inclusion and successful image reconstruction has been shown implying its robustness.

  3. [Individualized fluid-solid coupled model of intracranial aneurysms based on computed tomography angiography data].

    PubMed

    Wang, Fuyu; Xu, Bainan; Sun, Zhenghui; Liu, Lei; Wu, Chen; Zhang, Xiaojun

    2012-10-01

    To establish an individualized fluid-solid coupled model of intracranial aneurysms based on computed tomography angiography (CTA) image data. The original Dicom format image data from a patient with an intracranial aneurysm were imported into Mimics software to construct the 3D model. The fluid-solid coupled model was simulated with ANSYS and CFX software, and the sensitivity of the model was analyzed. The difference between the rigid model and fluid-solid coupled model was also compared. The fluid-solid coupled model of intracranial aneurysm was established successfully, which allowed direct simulation of the blood flow of the intracranial aneurysm and the deformation of the solid wall. The pressure field, stress field, and distribution of Von Mises stress and deformation of the aneurysm could be exported from the model. A small Young's modulus led to an obvious deformation of the vascular wall, and the walls with greater thicknesses had smaller deformations. The rigid model and the fluid-solid coupled model showed more differences in the wall shear stress and blood flow velocity than in pressure. The fluid-solid coupled model more accurately represents the actual condition of the intracranial aneurysm than the rigid model. The results of numerical simulation with the model are reliable to study the origin, growth and rupture of the aneurysms.

  4. Imaging technologies for preclinical models of bone and joint disorders

    PubMed Central

    2011-01-01

    Preclinical models for musculoskeletal disorders are critical for understanding the pathogenesis of bone and joint disorders in humans and the development of effective therapies. The assessment of these models primarily relies on morphological analysis which remains time consuming and costly, requiring large numbers of animals to be tested through different stages of the disease. The implementation of preclinical imaging represents a keystone in the refinement of animal models allowing longitudinal studies and enabling a powerful, non-invasive and clinically translatable way for monitoring disease progression in real time. Our aim is to highlight examples that demonstrate the advantages and limitations of different imaging modalities including magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), single-photon emission computed tomography (SPECT) and optical imaging. All of which are in current use in preclinical skeletal research. MRI can provide high resolution of soft tissue structures, but imaging requires comparatively long acquisition times; hence, animals require long-term anaesthesia. CT is extensively used in bone and joint disorders providing excellent spatial resolution and good contrast for bone imaging. Despite its excellent structural assessment of mineralized structures, CT does not provide in vivo functional information of ongoing biological processes. Nuclear medicine is a very promising tool for investigating functional and molecular processes in vivo with new tracers becoming available as biomarkers. The combined use of imaging modalities also holds significant potential for the assessment of disease pathogenesis in animal models of musculoskeletal disorders, minimising the use of conventional invasive methods and animal redundancy. PMID:22214535

  5. Ionospheric tomography using ADS-B signals

    NASA Astrophysics Data System (ADS)

    Cushley, A. C.; Noël, J.-M.

    2014-07-01

    Numerical modeling has demonstrated that Automatic Dependent Surveillance Broadcast (ADS-B) signals can be used to reconstruct two-dimensional (2-D) electron density maps of the ionosphere using techniques for computerized tomography. Ray tracing techniques were used to determine the characteristics of individual waves, including the wave path and the state of polarization at the satellite receiver. The modeled Faraday rotation was computed and converted to total electron content (TEC) along the raypaths. The resulting TEC was used as input for computerized ionospheric tomography (CIT) using algebraic reconstruction technique. This study concentrated on reconstructing mesoscale structures 25-100 km in horizontal extent. The primary scientific interest of this study was to show that ADS-B signals can be used as a new source of data for CIT to image the ionosphere and to obtain a better understanding of magneto-ionic wave propagation.

  6. Cone-beam x-ray luminescence computed tomography based on x-ray absorption dosage

    NASA Astrophysics Data System (ADS)

    Liu, Tianshuai; Rong, Junyan; Gao, Peng; Zhang, Wenli; Liu, Wenlei; Zhang, Yuanke; Lu, Hongbing

    2018-02-01

    With the advances of x-ray excitable nanophosphors, x-ray luminescence computed tomography (XLCT) has become a promising hybrid imaging modality. In particular, a cone-beam XLCT (CB-XLCT) system has demonstrated its potential in in vivo imaging with the advantage of fast imaging speed over other XLCT systems. Currently, the imaging models of most XLCT systems assume that nanophosphors emit light based on the intensity distribution of x-ray within the object, not completely reflecting the nature of the x-ray excitation process. To improve the imaging quality of CB-XLCT, an imaging model that adopts an excitation model of nanophosphors based on x-ray absorption dosage is proposed in this study. To solve the ill-posed inverse problem, a reconstruction algorithm that combines the adaptive Tikhonov regularization method with the imaging model is implemented for CB-XLCT reconstruction. Numerical simulations and phantom experiments indicate that compared with the traditional forward model based on x-ray intensity, the proposed dose-based model could improve the image quality of CB-XLCT significantly in terms of target shape, localization accuracy, and image contrast. In addition, the proposed model behaves better in distinguishing closer targets, demonstrating its advantage in improving spatial resolution.

  7. Utilisation of three-dimensional printed heart models for operative planning of complex congenital heart defects.

    PubMed

    Olejník, Peter; Nosal, Matej; Havran, Tomas; Furdova, Adriana; Cizmar, Maros; Slabej, Michal; Thurzo, Andrej; Vitovic, Pavol; Klvac, Martin; Acel, Tibor; Masura, Jozef

    2017-01-01

    To evaluate the accuracy of the three-dimensional (3D) printing of cardiovascular structures. To explore whether utilisation of 3D printed heart replicas can improve surgical and catheter interventional planning in patients with complex congenital heart defects. Between December 2014 and November 2015 we fabricated eight cardiovascular models based on computed tomography data in patients with complex spatial anatomical relationships of cardiovascular structures. A Bland-Altman analysis was used to assess the accuracy of 3D printing by comparing dimension measurements at analogous anatomical locations between the printed models and digital imagery data, as well as between printed models and in vivo surgical findings. The contribution of 3D printed heart models for perioperative planning improvement was evaluated in the four most representative patients. Bland-Altman analysis confirmed the high accuracy of 3D cardiovascular printing. Each printed model offered an improved spatial anatomical orientation of cardiovascular structures. Current 3D printers can produce authentic copies of patients` cardiovascular systems from computed tomography data. The use of 3D printed models can facilitate surgical or catheter interventional procedures in patients with complex congenital heart defects due to better preoperative planning and intraoperative orientation.

  8. Clinical application of three-dimensional reconstruction and rapid prototyping technology of multislice spiral computed tomography angiography for the repair of ventricular septal defect of tetralogy of Fallot.

    PubMed

    Ma, X J; Tao, L; Chen, X; Li, W; Peng, Z Y; Chen, Y; Jin, J; Zhang, X L; Xiong, Q F; Zhong, Z L; Chen, X F

    2015-02-13

    Three-dimensional (3D) reconstruction and rapid prototyping technology (RPT) of multislice spiral computed tomography angiography (CTA) was applied to prepare physical models of the heart and ventricular septal defects of tetralogy of Fallot (ToF) patients in order to explore their applications in the diagnosis and treatment of this complex heart disease. CTA data of 35 ToF patients were collected to prepare l:l 3D solid models using digital 3D reconstruction and RPT, and the resultant models were used intraoperatively as reference. The operations of all 35 patients were completed under the guidance of the 3D solid model, without difficulty. Intraoperative findings of the patients were consistent with the morphological and size changes of the 3D solid model, and no significant differences were found between the patches obtained from the 3D solid model and the actual intraoperative measurements (t = 0.83, P = 0.412). 3D reconstruction and RPT of multislice spiral CTA can accurately and intuitively reflect the anatomy of ventricular septal defects in ToF patients, providing the foundation for a solid model of the complex congenital heart.

  9. Creating vascular models by postprocessing computed tomography angiography images: a guide for anatomical education.

    PubMed

    Govsa, Figen; Ozer, Mehmet Asim; Sirinturk, Suzan; Eraslan, Cenk; Alagoz, Ahmet Kemal

    2017-08-01

    A new application of teaching anatomy includes the use of computed tomography angiography (CTA) images to create clinically relevant three-dimensional (3D) printed models. The purpose of this article is to review recent innovations on the process and the application of 3D printed models as a tool for using under and post-graduate medical education. Images of aortic arch pattern received by CTA were converted into 3D images using the Google SketchUp free software and were saved in stereolithography format. Using a 3D printer (Makerbot), a model mode polylactic acid material was printed. A two-vessel left aortic arch was identified consisting of the brachiocephalic trunk and left subclavian artery. The life-like 3D models were rotated 360° in all axes in hand. The early adopters in education and clinical practices have embraced the medical imaging-guided 3D printed anatomical models for their ability to provide tactile feedback and a superior appreciation of visuospatial relationship between the anatomical structures. Printed vascular models are used to assist in preoperative planning, develop intraoperative guidance tools, and to teach patients surgical trainees in surgical practice.

  10. Non-Invasive Investigation of Bone Adaptation in Humans to Mechanical Loading

    NASA Technical Reports Server (NTRS)

    Whalen, R.

    1999-01-01

    Experimental studies have identified peak cyclic forces, number of loading cycles, and loading rate as contributors to the regulation of bone metabolism. We have proposed a theoretical model that relates bone density to a mechanical stimulus derived from average daily cumulative peak cyclic 'effective' tissue stresses. In order to develop a non-invasive experimental model to test the theoretical model we need to: (1) monitor daily cumulative loading on a bone, (2) compute the internal stress state(s) resulting from the imposed loading, and (3) image volumetric bone density accurately, precisely, and reproducibly within small contiguous volumes throughout the bone. We have chosen the calcaneus (heel) as an experimental model bone site because it is loaded by ligament, tendon and joint contact forces in equilibrium with daily ground reaction forces that we can measure; it is a peripheral bone site and therefore more easily and accurately imaged with computed tomography; it is composed primarily of cancellous bone; and it is a relevant site for monitoring bone loss and adaptation in astronauts and the general population. This paper presents an overview of our recent advances in the areas of monitoring daily ground reaction forces, biomechanical modeling of the forces on the calcaneus during gait, mathematical modeling of calcaneal bone adaptation in response to cumulative daily activity, accurate and precise imaging of the calcaneus with quantitative computed tomography (QCT), and application to long duration space flight.

  11. Computer tomography of flows external to test models

    NASA Technical Reports Server (NTRS)

    Prikryl, I.; Vest, C. M.

    1982-01-01

    Computer tomographic techniques for reconstruction of three-dimensional aerodynamic density fields, from interferograms recorded from several different viewing directions were studied. Emphasis is on the case in which an opaque object such as a test model in a wind tunnel obscures significant regions of the interferograms (projection data). A method called the Iterative Convolution Method (ICM), existing methods in which the field is represented by a series expansions, and analysis of real experimental data in the form of aerodynamic interferograms are discussed.

  12. Evaluating the risk of appendiceal perforation when using ultrasound as the initial diagnostic imaging modality in children with suspected appendicitis.

    PubMed

    Alerhand, Stephen; Meltzer, James; Tay, Ee Tein

    2017-08-01

    Ultrasound scan has gained attention for diagnosing appendicitis due to its avoidance of ionizing radiation. However, studies show that ultrasound scan carries inferior sensitivity to computed tomography scan. A non-diagnostic ultrasound scan could increase the time to diagnosis and appendicectomy, particularly if follow-up computed tomography scan is needed. Some studies suggest that delaying appendicectomy increases the risk of perforation. To investigate the risk of appendiceal perforation when using ultrasound scan as the initial diagnostic imaging modality in children with suspected appendicitis. We retrospectively reviewed 1411 charts of children ≤17 years old diagnosed with appendicitis at two urban academic medical centers. Patients who underwent ultrasound scan first were compared to those who underwent computed tomography scan first. In the sub-group analysis, patients who only received ultrasound scan were compared to those who received initial ultrasound scan followed by computed tomography scan. Main outcome measures were appendiceal perforation rate and time from triage to appendicectomy. In 720 children eligible for analysis, there was no significant difference in perforation rate between those who had initial ultrasound scan and those who had initial computed tomography scan (7.3% vs. 8.9%, p = 0.44), nor in those who had ultrasound scan only and those who had initial ultrasound scan followed by computed tomography scan (8.0% vs. 5.6%, p = 0.42). Those patients who had ultrasound scan first had a shorter triage-to-incision time than those who had computed tomography scan first (9.2 (IQR: 5.9, 14.0) vs. 10.2 (IQR: 7.3, 14.3) hours, p = 0.03), whereas those who had ultrasound scan followed by computed tomography scan took longer than those who had ultrasound scan only (7.8 (IQR: 5.3, 11.6) vs. 15.1 (IQR: 10.6, 20.6), p < 0.001). Children < 12 years old receiving ultrasound scan first had lower perforation rate (p = 0.01) and shorter triage-to-incision time (p = 0.003). Children with suspected appendicitis receiving ultrasound scan as the initial diagnostic imaging modality do not have increased risk of perforation compared to those receiving computed tomography scan first. We recommend that children <12 years of age receive ultrasound scan first.

  13. Neural networks for calibration tomography

    NASA Technical Reports Server (NTRS)

    Decker, Arthur

    1993-01-01

    Artificial neural networks are suitable for performing pattern-to-pattern calibrations. These calibrations are potentially useful for facilities operations in aeronautics, the control of optical alignment, and the like. Computed tomography is compared with neural net calibration tomography for estimating density from its x-ray transform. X-ray transforms are measured, for example, in diffuse-illumination, holographic interferometry of fluids. Computed tomography and neural net calibration tomography are shown to have comparable performance for a 10 degree viewing cone and 29 interferograms within that cone. The system of tomography discussed is proposed as a relevant test of neural networks and other parallel processors intended for using flow visualization data.

  14. Use of cone beam computed tomography in implant dentistry: current concepts, indications and limitations for clinical practice and research.

    PubMed

    Bornstein, Michael M; Horner, Keith; Jacobs, Reinhilde

    2017-02-01

    Diagnostic radiology is an essential component of treatment planning in the field of implant dentistry. This narrative review will present current concepts for the use of cone beam computed tomography imaging, before and after implant placement, in daily clinical practice and research. Guidelines for the selection of three-dimensional imaging will be discussed, and limitations will be highlighted. Current concepts of radiation dose optimization, including novel imaging modalities using low-dose protocols, will be presented. For preoperative cross-sectional imaging, data are still not available which demonstrate that cone beam computed tomography results in fewer intraoperative complications such as nerve damage or bleeding incidents, or that implants inserted using preoperative cone beam computed tomography data sets for planning purposes will exhibit higher survival or success rates. The use of cone beam computed tomography following the insertion of dental implants should be restricted to specific postoperative complications, such as damage of neurovascular structures or postoperative infections in relation to the maxillary sinus. Regarding peri-implantitis, the diagnosis and severity of the disease should be evaluated primarily based on clinical parameters and on radiological findings based on periapical radiographs (two dimensional). The use of cone beam computed tomography scans in clinical research might not yield any evident beneficial effect for the patient included. As many of the cone beam computed tomography scans performed for research have no direct therapeutic consequence, dose optimization measures should be implemented by using appropriate exposure parameters and by reducing the field of view to the actual region of interest. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. How reliably can computed tomography predict thyroid invasion prior to laryngectomy?

    PubMed

    Harris, Andrew S; Passant, Carl D; Ingrams, Duncan R

    2018-05-01

    There is little evidence to support the removal of thyroid tissue during total laryngectomy. Although oncological control of the tumor is the priority, thyroidectomy can lead to hypothyroidism and hypoparathyroidism. This study aimed to test the usefulness of preoperative computed tomography in predicting histological invasion of the thyroid. Ambispective cohort study. All patients undergoing total laryngectomy for squamous cell carcinoma at one center from 2006 to 2016 were included. Data were recorded prospectively as part of the patients' standard care, but were collated retrospectively, giving this study an ambispective design. The histology report for thyroid invasion was taken as the gold standard. The computed tomography report was categorized by invasion of tumor into intralaryngeal, laryngeal cartilage involvement, and extralaryngeal tissues. Seventy-nine patients were included. Nine patients had thyroid involvement on histology, translating to an incidence of 11.29% in this population. The positive predictive value for cartilage involvement on computed tomography for thyroid invasion was 52.9% (95% confidence interval [CI]: 28.5%-76.1%) and the negative predictive value was 100% (95% CI: 92.7%-100%).The positive predictive value for extralaryngeal spread on computed tomography for thyroid involvement was 100% (95% CI: 62.9%-100%), and the negative predictive value was also 100% (95% CI: 93.5%-100%). This study has shown that preoperative computed tomography is an effective method of ruling out thyroid gland invasion. The absence of extralaryngeal spread on computed tomography has been shown to be the most useful finding, with a high negative predictive value and a narrow 95% CI. 4. Laryngoscope, 128:1099-1102, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  16. Diverticular Disease of the Colon: News From Imaging.

    PubMed

    Flor, Nicola; Soldi, Simone; Zanchetta, Edoardo; Sbaraini, Sara; Pesapane, Filippo

    2016-10-01

    Different scenarios embrace computed tomography imaging and diverticula, including asymptomatic (diverticulosis) and symptomatic patients (acute diverticulitis, follow-up of acute diverticulitis, chronic diverticulitis). If the role of computed tomography is validated and widely supported by evidence in case of acute diverticulitis, this is not the case of patients in their follow-up for acute diverticulitis or with symptoms related to diverticula, but without acute inflammation. In these settings, computed tomography colonography is gaining consensus as the preferred radiologic test.

  17. Plain X-ray, computed tomography and magnetic resonance imaging findings of telangiectatic osteosarcoma: a case report.

    PubMed

    Skiadas, Vasilios; Koutoulidis, Vasilios; Koureas, Andreas; Moulopoulos, Lia; Gouliamos, Athanasios

    2009-09-16

    An 18-year-old male patient presented with chronic nonspecific pain of three months located at his left proximal tibia. The patient was admitted to our department for plain X-ray, computed tomography and magnetic resonance imaging examination. Plain X-ray and computed tomography revealed a geographic lytic lesion at the medial aspect of the proximal tibia. Biopsy of the lesion showed telangiectatic osteosarcoma. Image findings of all modalities are presented.

  18. Advances in equine computed tomography and use of contrast media.

    PubMed

    Puchalski, Sarah M

    2012-12-01

    Advances in equine computed tomography have been made as a result of improvements in software and hardware and an increasing body of knowledge. Contrast media can be administered intravascularly or intrathecally. Contrast media is useful to differentiate between tissues of similar density. Equine computed tomography can be used for many different clinical conditions, including lameness diagnosis, fracture identification and characterization, preoperative planning, and characterization of skull diseases. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. [The radiologist physician in major trauma evaluation].

    PubMed

    Motta-Ramírez, Gaspar Alberto

    2016-01-01

    Trauma is the most common cause of death in young adults. A multidisciplinary trauma team consists of at least a surgical team, an anesthesiology team, radiologic team, and an emergency department team. Recognize the integration of multidisciplinary medical team in managing the trauma patient and which must include the radiologist physician responsible for the institutional approach to the systematization of the trauma patient regarding any radiological and imaging study with emphasis on the FAST (del inglés, Focused Assessment with Sonography in Trauma)/USTA, Whole body computed tomography. Ultrasound is a cross-sectional method available for use in patients with major trauma. Whole-body multidetector computed tomography became the imaging modality of choice in the late 1990s. In patients with major trauma, examination FAST often is the initial imaging examination, extended to extraabdominal regions. Patients who have multitrauma from blunt mechanisms often require multiple diagnostic examinations, including Computed Tomography imaging of the torso as well as abdominopelvic Computed Tomography angiography. Multiphasic Whole-body trauma imaging is feasible, helps detect clinically relevant vascular injuries, and results in diagnostic image quality in the majority of patients. Computed Tomography has gained importance in the early diagnostic phase of trauma care in the emergency room. With a single continuous acquisition, whole-body computed tomography angiography is able to demonstrate all potentially injured organs, as well as vascular and bone structures, from the circle of Willis to the symphysis pubis.

  20. Ischemic stroke enhancement in computed tomography scans using a computational approach

    NASA Astrophysics Data System (ADS)

    Alves, Allan F. F.; Pavan, Ana L. M.; Jennane, Rachid; Miranda, José R. A.; Freitas, Carlos C. M.; Abdala, Nitamar; Pina, Diana R.

    2018-03-01

    In this work, a novel approach was proposed to enhance the visual perception of ischemic stroke in computed tomography scans. Through different image processing techniques, we enabled less experienced physicians, to reliably detect early signs of stroke. A set of 40 retrospective CT scans of patients were used, divided into two groups: 25 cases of acute ischemic stroke and 15 normal cases used as control group. All cases were obtained within 4 hours of symptoms onset. Our approach was based on the variational decomposition model and three different segmentation methods. A test determined observers' performance to correctly diagnose stroke cases. The Expectation Maximization method provided the best results among all observers. The overall sensitivity of the observer's analysis was 64% and increased to 79%. The overall specificity was 67% and increased to 78%. These results show the importance of a computational tool to assist neuroradiology decisions, especially in critical situations such as the diagnosis of ischemic stroke.

  1. Application of Computer Axial Tomography (CAT) to measuring crop canopy geometry. [corn and soybeans

    NASA Technical Reports Server (NTRS)

    Bauer, M. E.; Vanderbilt, V. C. (Principal Investigator); Kilgore, R. W.

    1981-01-01

    The feasibility of using the principles of computer axial topography (CAT) to quantify the structure of crop canopies was investigated because six variables are needed to describe the position-orientation with time of a small piece of canopy foliage. Several cross sections were cut through the foliage of healthy, green corn and soybean canopies in the dent and full pod development stages, respectively. A photograph of each cross section representing the intersection of a plane with the foliage was enlarged and the air-foliage boundaries delineated by the plane were digitized. A computer program was written and used to reconstruct the cross section of the canopy. The approach used in applying optical computer axial tomography to measuring crop canopy geometry shows promise of being able to provide needed geometric information for input data to canopy reflectance models. The difficulty of using the CAT scanner to measure large canopies of crops like corn is discussed and a solution is proposed involving the measurement of plants one at a time.

  2. High-resolution PET [Positron Emission Tomography] for Medical Science Studies

    DOE R&D Accomplishments Database

    Budinger, T. F.; Derenzo, S. E.; Huesman, R. H.; Jagust, W. J.; Valk, P. E.

    1989-09-01

    One of the unexpected fruits of basic physics research and the computer revolution is the noninvasive imaging power available to today's physician. Technologies that were strictly the province of research scientists only a decade or two ago now serve as the foundations for such standard diagnostic tools as x-ray computer tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), ultrasound, single photon emission computed tomography (SPECT), and positron emission tomography (PET). Furthermore, prompted by the needs of both the practicing physician and the clinical researcher, efforts to improve these technologies continue. This booklet endeavors to describe the advantages of achieving high resolution in PET imaging.

  3. Evaluation of the validity of the Bolton Index using cone-beam computed tomography (CBCT)

    PubMed Central

    Llamas, José M.; Cibrián, Rosa; Gandía, José L.; Paredes, Vanessa

    2012-01-01

    Aims: To evaluate the reliability and reproducibility of calculating the Bolton Index using cone-beam computed tomography (CBCT), and to compare this with measurements obtained using the 2D Digital Method. Material and Methods: Traditional study models were obtained from 50 patients, which were then digitized in order to be able to measure them using the Digital Method. Likewise, CBCTs of those same patients were undertaken using the Dental Picasso Master 3D® and the images obtained were then analysed using the InVivoDental programme. Results: By determining the regression lines for both measurement methods, as well as the difference between both of their values, the two methods are shown to be comparable, despite the fact that the measurements analysed presented statistically significant differences. Conclusions: The three-dimensional models obtained from the CBCT are as accurate and reproducible as the digital models obtained from the plaster study casts for calculating the Bolton Index. The differences existing between both methods were clinically acceptable. Key words:Tooth-size, digital models, bolton index, CBCT. PMID:22549690

  4. Accuracy of templates for navigated implantation made by rapid prototyping with DICOM datasets of cone beam computer tomography (CBCT).

    PubMed

    Weitz, Jochen; Deppe, Herbert; Stopp, Sebastian; Lueth, Tim; Mueller, Steffen; Hohlweg-Majert, Bettina

    2011-12-01

    The aim of this study is to evaluate the accuracy of a surgical template-aided implant placement produced by rapid prototyping using a DICOM dataset from cone beam computer tomography (CBCT). On the basis of CBCT scans (Sirona® Galileos), a total of ten models were produced using a rapid-prototyping three-dimensional printer. On the same patients, impressions were performed to compare fitting accuracy of both methods. From the models made by impression, templates were produced and accuracy was compared and analyzed with the rapid-prototyping model. Whereas templates made by conventional procedure had an excellent accuracy, the fitting accuracy of those produced by DICOM datasets was not sufficient. Deviations ranged between 2.0 and 3.5 mm, after modification of models between 1.4 and 3.1 mm. The findings of this study suggest that the accuracy of the low-dose Sirona Galileos® DICOM dataset seems to show a high deviation, which is not useable for accurate surgical transfer for example in implant surgery.

  5. Use of Noncontrast Computed Tomography and Computed Tomographic Perfusion in Predicting Intracerebral Hemorrhage After Intravenous Alteplase Therapy.

    PubMed

    Batchelor, Connor; Pordeli, Pooneh; d'Esterre, Christopher D; Najm, Mohamed; Al-Ajlan, Fahad S; Boesen, Mari E; McDougall, Connor; Hur, Lisa; Fainardi, Enrico; Shankar, Jai Jai Shiva; Rubiera, Marta; Khaw, Alexander V; Hill, Michael D; Demchuk, Andrew M; Sajobi, Tolulope T; Goyal, Mayank; Lee, Ting-Yim; Aviv, Richard I; Menon, Bijoy K

    2017-06-01

    Intracerebral hemorrhage is a feared complication of intravenous alteplase therapy in patients with acute ischemic stroke. We explore the use of multimodal computed tomography in predicting this complication. All patients were administered intravenous alteplase with/without intra-arterial therapy. An age- and sex-matched case-control design with classic and conditional logistic regression techniques was chosen for analyses. Outcome was parenchymal hemorrhage on 24- to 48-hour imaging. Exposure variables were imaging (noncontrast computed tomography hypoattenuation degree, relative volume of very low cerebral blood volume, relative volume of cerebral blood flow ≤7 mL/min·per 100 g, relative volume of T max ≥16 s with all volumes standardized to z axis coverage, mean permeability surface area product values within T max ≥8 s volume, and mean permeability surface area product values within ipsilesional hemisphere) and clinical variables (NIHSS [National Institutes of Health Stroke Scale], onset to imaging time, baseline systolic blood pressure, blood glucose, serum creatinine, treatment type, and reperfusion status). One-hundred eighteen subjects (22 patients with parenchymal hemorrhage versus 96 without, median baseline NIHSS score of 15) were included in the final analysis. In multivariable regression, noncontrast computed tomography hypoattenuation grade ( P <0.006) and computerized tomography perfusion white matter relative volume of very low cerebral blood volume ( P =0.04) were the only significant variables associated with parenchymal hemorrhage on follow-up imaging (area under the curve, 0.73; 95% confidence interval, 0.63-0.83). Interrater reliability for noncontrast computed tomography hypoattenuation grade was moderate (κ=0.6). Baseline hypoattenuation on noncontrast computed tomography and very low cerebral blood volume on computerized tomography perfusion are associated with development of parenchymal hemorrhage in patients with acute ischemic stroke receiving intravenous alteplase. © 2017 American Heart Association, Inc.

  6. Use of radiography, computed tomography and magnetic resonance imaging for evaluation of navicular syndrome in the horse.

    PubMed

    Widmer, W R; Buckwalter, K A; Fessler, J F; Hill, M A; VanSickle, D C; Ivancevich, S

    2000-01-01

    Radiographic evaluation of navicular syndrome is problematic because of its inconsistent correlation with clinical signs. Scintigraphy often yields false positive and false negative results and diagnostic ultrasound is of limited value. Therefore, we assessed the use of computed tomography and magnetic resonance imaging in a horse with clinical and radiographic signs of navicular syndrome. Cadaver specimens were examined with spiral computed tomographic and high-field magnetic resonance scanners and images were correlated with pathologic findings. Radiographic changes consisted of bony remodeling, which included altered synovial fossae, increased medullary opacity, cyst formation and shape change. These osseous changes were more striking and more numerous on computed tomographic and magnetic resonance images. They were most clearly defined with computed tomography. Many osseous changes seen with computed tomography and magnetic resonance imaging were not radiographically evident. Histologically confirmed soft tissue alterations of the deep digital flexor tendon, impar ligament and marrow were identified with magnetic resonance imaging, but not with conventional radiography. Because of their multiplanar capability and tomographic nature, computed tomography and magnetic resonance imaging surpass conventional radiography for navicular imaging, facilitating earlier, more accurate diagnosis. Current advances in imaging technology should make these imaging modalities available to equine practitioners in the future.

  7. Quantitative Comparison of Virtual Monochromatic Images of Dual Energy Computed Tomography Systems: Beam Hardening Artifact Correction and Variance in Computed Tomography Numbers: A Phantom Study.

    PubMed

    Wu, Rongli; Watanabe, Yoshiyuki; Satoh, Kazuhiko; Liao, Yen-Peng; Takahashi, Hiroto; Tanaka, Hisashi; Tomiyama, Noriyuki

    2018-05-21

    The aim of this study was to quantitatively compare the reduction in beam hardening artifact (BHA) and variance in computed tomography (CT) numbers of virtual monochromatic energy (VME) images obtained with 3 dual-energy computed tomography (DECT) systems at a given radiation dose. Five different iodine concentrations were scanned using dual-energy and single-energy (120 kVp) modes. The BHA and CT number variance were evaluated. For higher iodine concentrations, 40 and 80 mgI/mL, BHA on VME imaging was significantly decreased when the energy was higher than 50 keV (P = 0.003) and 60 keV (P < 0.001) for GE, higher than 80 keV (P < 0.001) and 70 keV (P = 0.002) for Siemens, and higher than 40 keV (P < 0.001) and 60 keV (P < 0.001) for Toshiba, compared with single-energy CT imaging. Virtual monochromatic energy imaging can decrease BHA and improve CT number accuracy in different dual-energy computed tomography systems, depending on energy levels and iodine concentrations.

  8. Virtopsy: postmortem imaging of laryngeal foreign bodies.

    PubMed

    Oesterhelweg, Lars; Bolliger, Stephan A; Thali, Michael J; Ross, Steffen

    2009-05-01

    Death from corpora aliena in the larynx is a well-known entity in forensic pathology. The correct diagnosis of this cause of death is difficult without an autopsy, and misdiagnoses by external examination alone are common. To determine the postmortem usefulness of modern imaging techniques in the diagnosis of foreign bodies in the larynx, multislice computed tomography, magnetic resonance imaging, and postmortem full-body computed tomography-angiography were performed. Three decedents with a suspected foreign body in the larynx underwent the 3 different imaging techniques before medicolegal autopsy. Multislice computed tomography has a high diagnostic value in the noninvasive localization of a foreign body and abnormalities in the larynx. The differentiation between neoplasm or soft foreign bodies (eg, food) is possible, but difficult, by unenhanced multislice computed tomography. By magnetic resonance imaging, the discrimination of the soft tissue structures and soft foreign bodies is much easier. In addition to the postmortem multislice computed tomography, the combination with postmortem angiography will increase the diagnostic value. Postmortem, cross-sectional imaging methods are highly valuable procedures for the noninvasive detection of corpora aliena in the larynx.

  9. Fast estimation of first-order scattering in a medical x-ray computed tomography scanner using a ray-tracing technique.

    PubMed

    Liu, Xin

    2014-01-01

    This study describes a deterministic method for simulating the first-order scattering in a medical computed tomography scanner. The method was developed based on a physics model of x-ray photon interactions with matter and a ray tracing technique. The results from simulated scattering were compared to the ones from an actual scattering measurement. Two phantoms with homogeneous and heterogeneous material distributions were used in the scattering simulation and measurement. It was found that the simulated scatter profile was in agreement with the measurement result, with an average difference of 25% or less. Finally, tomographic images with artifacts caused by scatter were corrected based on the simulated scatter profiles. The image quality improved significantly.

  10. A method for evaluating the murine pulmonary vasculature using micro-computed tomography.

    PubMed

    Phillips, Michael R; Moore, Scott M; Shah, Mansi; Lee, Clara; Lee, Yueh Z; Faber, James E; McLean, Sean E

    2017-01-01

    Significant mortality and morbidity are associated with alterations in the pulmonary vasculature. While techniques have been described for quantitative morphometry of whole-lung arterial trees in larger animals, no methods have been described in mice. We report a method for the quantitative assessment of murine pulmonary arterial vasculature using high-resolution computed tomography scanning. Mice were harvested at 2 weeks, 4 weeks, and 3 months of age. The pulmonary artery vascular tree was pressure perfused to maximal dilation with a radio-opaque casting material with viscosity and pressure set to prevent capillary transit and venous filling. The lungs were fixed and scanned on a specimen computed tomography scanner at 8-μm resolution, and the vessels were segmented. Vessels were grouped into categories based on lumen diameter and branch generation. Robust high-resolution segmentation was achieved, permitting detailed quantitation of pulmonary vascular morphometrics. As expected, postnatal lung development was associated with progressive increase in small-vessel number and arterial branching complexity. These methods for quantitative analysis of the pulmonary vasculature in postnatal and adult mice provide a useful tool for the evaluation of mouse models of disease that affect the pulmonary vasculature. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Analysis of Tumor Vessel Supply in Lewis Lung Carcinoma in Mice by Fluorescent Microsphere Distribution and Imaging with Micro- and Flat-Panel Computed Tomography

    PubMed Central

    Savai, Rajkumar; Wolf, Joachim C.; Greschus, Susanne; Eul, Bastian G.; Schermuly, Ralph T.; Hänze, Jörg; Voswinckel, Robert; Langheinrich, Alexander C.; Grimminger, Friedrich; Traupe, Horst; Seeger, Werner; Rose, Frank

    2005-01-01

    In lung carcinomas the blood supply varies depending on tumor type and stage and can develop from pulmonary or bronchial circulation, or both. To examine this in vivo, primary bronchogenic Lewis lung carcinoma cells were intratracheally instilled in C57BL/6 mice. Within 7 days, histological examinations showed progressive tumor growth at the peripheral parenchymal region. The relative contribution of tumor blood supply via the pulmonary and systemic arteries was studied in detail using fluorescent microspheres (10 μm). When compared to healthy lung parenchyma (13:1), Lewis lung carcinoma tumor tissue (52:1) showed a fourfold increase in pulmonary to systemic microspheres, indicating that the pulmonary arteries are the predominant tumor-feeding vessels. After filling the vessels with a vascular cast, the microanatomy of vessels being derived from the pulmonary artery was visualized with micro computed tomography. Flat-panel volumetric computed tomography provided longitudinal visualization of tissue bridges between the growing tumor and the pulmonary vasculature. In this model of peripheral parenchymal malignancy, new imaging techniques allowed effective visualization of lung tumor growth and vascularization in living mice, demonstrating a pulmonary blood supply for lung tumors. PMID:16192630

  12. Therapeutic and scintigraphic applications of polymeric micelles: combination of chemotherapy and radiotherapy in hepatocellular carcinoma

    PubMed Central

    Shih, Ying-Hsia; Peng, Cheng-Liang; Chiang, Ping-Fang; Lin, Wuu-Jyh; Luo, Tsai-Yueh; Shieh, Ming-Jium

    2015-01-01

    This study evaluated a multifunctional micelle simultaneously loaded with doxorubicin (Dox) and labeled with radionuclide rhenium-188 (188Re) as a combined radiotherapy and chemotherapy treatment for hepatocellular carcinoma. We investigated the single photon emission computed tomography, biodistribution, antitumor efficacy, and pathology of 188Re-Dox micelles in a murine orthotopic luciferase-transfected BNL tumor cells hepatocellular carcinoma model. The single photon emission computed tomography and computed tomography images showed high radioactivity in the liver and tumor, which was in agreement with the biodistribution measured by γ-counting. In vivo bioluminescence images showed the smallest size tumor (P<0.05) in mice treated with the combined micelles throughout the experimental period. In addition, the combined 188Re-Dox micelles group had significantly longer survival compared with the control, 188ReO4 alone (P<0.005), and Dox micelles alone (P<0.01) groups. Pathohistological analysis revealed that tumors treated with 188Re-Dox micelles had more necrotic features and decreased cell proliferation. Therefore, 188Re-Dox micelles may enable combined radiotherapy and chemotherapy to maximize the effectiveness of treatment for hepatocellular carcinoma. PMID:26719687

  13. Selection of stationary phase particle geometry using X-ray computed tomography and computational fluid dynamics simulations.

    PubMed

    Schmidt, Irma; Minceva, Mirjana; Arlt, Wolfgang

    2012-02-17

    The X-ray computed tomography (CT) is used to determine local parameters related to the column packing homogeneity and hydrodynamics in columns packed with spherically and irregularly shaped particles of same size. The results showed that the variation of porosity and axial dispersion coefficient along the column axis is insignificant, compared to their radial distribution. The methodology of using the data attained by CT measurements to perform a CFD simulation of a batch separation of model binary mixtures, with different concentration and separation factors is demonstrated. The results of the CFD simulation study show that columns packed with spherically shaped particles provide higher yield in comparison to columns packed with irregularly shaped particles only below a certain value of the separation factor. The presented methodology can be used for selecting a suited packing material for a particular separation task. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Space shuttle main engine computed tomography applications

    NASA Technical Reports Server (NTRS)

    Sporny, Richard F.

    1990-01-01

    For the past two years the potential applications of computed tomography to the fabrication and overhaul of the Space Shuttle Main Engine were evaluated. Application tests were performed at various government and manufacturer facilities with equipment produced by four different manufacturers. The hardware scanned varied in size and complexity from a small temperature sensor and turbine blades to an assembled heat exchanger and main injector oxidizer inlet manifold. The evaluation of capabilities included the ability to identify and locate internal flaws, measure the depth of surface cracks, measure wall thickness, compare manifold design contours to actual part contours, perform automatic dimensional inspections, generate 3D computer models of actual parts, and image the relationship of the details in a complex assembly. The capabilities evaluated, with the exception of measuring the depth of surface flaws, demonstrated the existing and potential ability to perform many beneficial Space Shuttle Main Engine applications.

  15. Bayesian statistical ionospheric tomography improved by incorporating ionosonde measurements

    NASA Astrophysics Data System (ADS)

    Norberg, Johannes; Virtanen, Ilkka I.; Roininen, Lassi; Vierinen, Juha; Orispää, Mikko; Kauristie, Kirsti; Lehtinen, Markku S.

    2016-04-01

    We validate two-dimensional ionospheric tomography reconstructions against EISCAT incoherent scatter radar measurements. Our tomography method is based on Bayesian statistical inversion with prior distribution given by its mean and covariance. We employ ionosonde measurements for the choice of the prior mean and covariance parameters and use the Gaussian Markov random fields as a sparse matrix approximation for the numerical computations. This results in a computationally efficient tomographic inversion algorithm with clear probabilistic interpretation. We demonstrate how this method works with simultaneous beacon satellite and ionosonde measurements obtained in northern Scandinavia. The performance is compared with results obtained with a zero-mean prior and with the prior mean taken from the International Reference Ionosphere 2007 model. In validating the results, we use EISCAT ultra-high-frequency incoherent scatter radar measurements as the ground truth for the ionization profile shape. We find that in comparison to the alternative prior information sources, ionosonde measurements improve the reconstruction by adding accurate information about the absolute value and the altitude distribution of electron density. With an ionosonde at continuous disposal, the presented method enhances stand-alone near-real-time ionospheric tomography for the given conditions significantly.

  16. Leg CT scan

    MedlinePlus

    CAT scan - leg; Computed axial tomography scan - leg; Computed tomography scan - leg; CT scan - leg ... CT scan makes detailed pictures of the body very quickly. The test may help look for: An abscess ...

  17. Arm CT scan

    MedlinePlus

    CAT scan - arm; Computed axial tomography scan - arm; Computed tomography scan - arm; CT scan - arm ... Healing problems or scar tissue following surgery A CT scan may also be used to guide a surgeon ...

  18. USE OF COMPUTED TOMOGRAPHY FOR INVESTIGATION OF HEPATIC LIPIDOSIS IN CAPTIVE CHELONOIDIS CARBONARIA (SPIX, 1824).

    PubMed

    Marchiori, Adriano; da Silva, Ieverton Cleiton Correia; de Albuquerque Bonelli, Marília; de Albuquerque Zanotti, Luciana Carla Rameh; Siqueira, Daniel B; Zanotti, Alexandre Pinheiro; Costa, Fabiano Séllos

    2015-06-01

    Computed tomography is a sensitive and highly applicable technique for determining the degree of radiographic attenuation of the hepatic parenchyma. Radiodensity measurements of the liver can help in the diagnosis of hepatic lipidosis in humans and animals. The objective was to investigate the presence of hepatic lipidosis in captive red-footed tortoises (Chelonoidis carbonaria) using computed tomography. Computed tomography was performed in 10 male red-footed tortoises. Mean radiographic attenuation values for the hepatic parenchyma were 11.2±3.0 Hounsfield units (HU). Seven red-footed tortoises had values lower than 20 HU, which is compatible with C. carbonaria hepatic lipidosis. These results allowed an early diagnosis of the hepatic changes and suggested corrective measures regarding feeding and management protocols.

  19. Multidetector Computed Tomography for Congenital Anomalies of the Aortic Arch: Vascular Rings.

    PubMed

    García-Guereta, Luis; García-Cerro, Estefanía; Bret-Zurita, Montserrat

    2016-07-01

    The development of multidetector computed tomography has triggered a revolution in the study of the aorta and other large vessels and has replaced angiography in the diagnosis of congenital anomalies of the aortic arch, particularly vascular rings. The major advantage of multidetector computed tomography is that it permits clear 3-dimensional assessment of not only vascular structures, but also airway and esophageal compression. The current update aims to summarize the embryonic development of the aortic arch and the developmental anomalies leading to vascular ring formation and to discuss the current diagnostic and therapeutic role of multidetector computed tomography in this field. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  20. Development of a Preclinical Orthotopic Xenograft Model of Ewing Sarcoma and Other Human Malignant Bone Disease Using Advanced In Vivo Imaging

    PubMed Central

    Batey, Michael A.; Almeida, Gilberto S.; Wilson, Ian; Dildey, Petra; Sharma, Abhishek; Blair, Helen; Hide, I. Geoff; Heidenreich, Olaf; Vormoor, Josef; Maxwell, Ross J.; Bacon, Chris M.

    2014-01-01

    Ewing sarcoma and osteosarcoma represent the two most common primary bone tumours in childhood and adolescence, with bone metastases being the most adverse prognostic factor. In prostate cancer, osseous metastasis poses a major clinical challenge. We developed a preclinical orthotopic model of Ewing sarcoma, reflecting the biology of the tumour-bone interactions in human disease and allowing in vivo monitoring of disease progression, and compared this with models of osteosarcoma and prostate carcinoma. Human tumour cell lines were transplanted into non-obese diabetic/severe combined immunodeficient (NSG) and Rag2−/−/γc−/− mice by intrafemoral injection. For Ewing sarcoma, minimal cell numbers (1000–5000) injected in small volumes were able to induce orthotopic tumour growth. Tumour progression was studied using positron emission tomography, computed tomography, magnetic resonance imaging and bioluminescent imaging. Tumours and their interactions with bones were examined by histology. Each tumour induced bone destruction and outgrowth of extramedullary tumour masses, together with characteristic changes in bone that were well visualised by computed tomography, which correlated with post-mortem histology. Ewing sarcoma and, to a lesser extent, osteosarcoma cells induced prominent reactive new bone formation. Osteosarcoma cells produced osteoid and mineralised “malignant” bone within the tumour mass itself. Injection of prostate carcinoma cells led to osteoclast-driven osteolytic lesions. Bioluminescent imaging of Ewing sarcoma xenografts allowed easy and rapid monitoring of tumour growth and detection of tumour dissemination to lungs, liver and bone. Magnetic resonance imaging proved useful for monitoring soft tissue tumour growth and volume. Positron emission tomography proved to be of limited use in this model. Overall, we have developed an orthotopic in vivo model for Ewing sarcoma and other primary and secondary human bone malignancies, which resemble the human disease. We have shown the utility of small animal bioimaging for tracking disease progression, making this model a useful assay for preclinical drug testing. PMID:24409320

  1. Application of optical coherence tomography attenuation imaging for quantification of optical properties in medulloblastoma

    NASA Astrophysics Data System (ADS)

    Vuong, Barry; Skowron, Patryk; Kiehl, Tim-Rasmus; Kyan, Matthew; Garzia, Livia; Genis, Helen; Sun, Cuiru; Taylor, Michael D.; Yang, Victor X. D.

    2015-03-01

    The hemodynamic environment is known to play a crucial role in the progression, rupture, and treatment of intracranial aneurysms. Currently there is difficulty assessing and measuring blood flow profiles in vivo. An emerging high resolution imaging modality known as split spectrum Doppler optical coherence tomography (ssDOCT) has demonstrated the capability to quantify hemodynamic patterns as well as arterial microstructural changes. In this study, we present a novel in vitro method to acquire precise blood flow patterns within a patient- specific aneurysm silicone flow models using ssDOCT imaging. Computational fluid dynamics (CFD) models were generated to verify ssDOCT results.

  2. Comprehensive Digital Imaging Network Project At Georgetown University Hospital

    NASA Astrophysics Data System (ADS)

    Mun, Seong K.; Stauffer, Douglas; Zeman, Robert; Benson, Harold; Wang, Paul; Allman, Robert

    1987-10-01

    The radiology practice is going through rapid changes due to the introduction of state-of-the-art computed based technologies. For the last twenty years we have witnessed the introduction of many new medical diagnostic imaging systems such as x-ray computed tomo-graphy, digital subtraction angiography (DSA), computerized nuclear medicine, single pho-ton emission computed tomography (SPECT), positron emission tomography (PET) and more re-cently, computerized digital radiography and nuclear magnetic resonance imaging (MRI). Other than the imaging systems, there has been a steady introduction of computed based information systems for radiology departments and hospitals.

  3. Utility of three-dimensional and multiplanar reformatted computed tomography for evaluation of pediatric congenital spine abnormalities.

    PubMed

    Newton, Peter O; Hahn, Gregory W; Fricka, Kevin B; Wenger, Dennis R

    2002-04-15

    A retrospective radiographic review of 31 patients with congenital spine abnormalities who underwent conventional radiography and advanced imaging studies was conducted. To analyze the utility of three-dimensional computed tomography with multiplanar reformatted images for congenital spine anomalies, as compared with plain radiographs and axial two-dimensional computed tomography imaging. Conventional radiographic imaging for congenital spine disorders often are difficult to interpret because of the patient's small size, the complexity of the disorder, a deformity not in the plane of the radiographs, superimposed structures, and difficulty in forming a mental three-dimensional image. Multiplanar reformatted and three-dimensional computed tomographic imaging offers many potential advantages for defining congenital spine anomalies including visualization of the deformity in any plane, from any angle, with the overlying structures subtracted. The imaging studies of patients who had undergone a three-dimensional computed tomography for congenital deformities of the spine between 1992 and 1998 were reviewed (31 cases). All plain radiographs and axial two-dimensional computed tomography images performed before the three-dimensional computed tomography were reviewed and the findings documented. This was repeated for the three-dimensional reconstructions and, when available, the multiplanar reformatted images (15 cases). In each case, the utility of the advanced imaging was graded as one of the following: Grade A (substantial new information obtained), Grade B (confirmatory with improved visualization and understanding of the deformity), and Grade C (no added useful information obtained). In 17 of 31 cases, the multiplanar reformatted and three-dimensional images allowed identification of unrecognized malformations. In nine additional cases, the advanced imaging was helpful in better visualizing and understanding previously identified deformities. In five cases, no new information was gained. The standard and curved multiplanar reformatted images were best for defining the occiput-C1-C2 anatomy and the extent of segmentation defects. The curved multiplanar reformatted images were especially helpful in keeping the spine from "coming in" and "going out" of the plane of the image when there was significant spine deformity in the sagittal or coronal plane. The three-dimensional reconstructions proved valuable in defining failures of formation. Advanced computed tomography imaging (three-dimensional computed tomography and curved/standard multiplanar reformatted images) allows better definition of congenital spine anomalies. More than 50% of the cases showed additional abnormalities not appreciated on plain radiographs or axial two-dimensional computed tomography images. Curved multiplanar reformatted images allowed imaging in the coronal and sagittal planes of the entire deformity.

  4. Heart CT scan

    MedlinePlus

    ... Computed tomography scan - heart; Calcium scoring; Multi-detector CT scan - heart; Electron beam computed tomography - heart; Agatston ... table that slides into the center of the CT scanner. You will lie on your back with ...

  5. Intraprocedural yttrium-90 positron emission tomography/CT for treatment optimization of yttrium-90 radioembolization.

    PubMed

    Bourgeois, Austin C; Chang, Ted T; Bradley, Yong C; Acuff, Shelley N; Pasciak, Alexander S

    2014-02-01

    Radioembolization with yttrium-90 ((90)Y) microspheres relies on delivery of appropriate treatment activity to ensure patient safety and optimize treatment efficacy. We report a case in which (90)Y positron emission tomography (PET)/computed tomography (CT) was performed to optimize treatment planning during a same-day, three-part treatment session. This treatment consisted of (i) an initial (90)Y infusion with a dosage determined using an empiric treatment planning model, (ii) quantitative (90)Y PET/CT imaging, and (iii) a secondary infusion with treatment planning based on quantitative imaging data with the goal of delivering a specific total tumor absorbed dose. © 2014 SIR Published by SIR All rights reserved.

  6. Evaluation of 3D airway imaging of obstructive sleep apnea with cone-beam computed tomography.

    PubMed

    Ogawa, Takumi; Enciso, Reyes; Memon, Ahmed; Mah, James K; Clark, Glenn T

    2005-01-01

    This study evaluates the use of cone-beam Computer Tomography (CT) for imaging the upper airway structure of Obstructive Sleep Apnea (OSA) patients. The total airway volume and the anteroposterior dimension of oropharyngeal airway showed significant group differences between OSA and gender-matched controls, so if we increase sample size these measurements may distinguish the two groups. We demonstrate the utility of diagnosis of anatomy with the 3D airway imaging with cone-beam Computed Tomography.

  7. Cone beam computed tomography in Endodontics - a review.

    PubMed

    Patel, S; Durack, C; Abella, F; Shemesh, H; Roig, M; Lemberg, K

    2015-01-01

    Cone beam computed tomography (CBCT) produces undistorted three-dimensional information of the maxillofacial skeleton, including the teeth and their surrounding tissues with a lower effective radiation dose than computed tomography. The aim of this paper is to: (i) review the current literature on the applications and limitations of CBCT; (ii) make recommendations for the use of CBCT in Endodontics; (iii) highlight areas of further research of CBCT in Endodontics. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  8. White Paper of the Society of Computed Body Tomography and Magnetic Resonance on Dual-Energy CT, Part 1: Technology and Terminology.

    PubMed

    Siegel, Marilyn J; Kaza, Ravi K; Bolus, David N; Boll, Daniel T; Rofsky, Neil M; De Cecco, Carlo N; Foley, W Dennis; Morgan, Desiree E; Schoepf, U Joseph; Sahani, Dushyant V; Shuman, William P; Vrtiska, Terri J; Yeh, Benjamin M; Berland, Lincoln L

    This is the first of a series of 4 white papers that represent Expert Consensus Documents developed by the Society of Computed Body Tomography and Magnetic Resonance through its task force on dual-energy computed tomography (DECT). This article, part 1, describes the fundamentals of the physical basis for DECT and the technology of DECT and proposes uniform nomenclature to account for differences in proprietary terms among manufacturers.

  9. [Cardiac computed tomography: new applications of an evolving technique].

    PubMed

    Martín, María; Corros, Cecilia; Calvo, Juan; Mesa, Alicia; García-Campos, Ana; Rodríguez, María Luisa; Barreiro, Manuel; Rozado, José; Colunga, Santiago; de la Hera, Jesús M; Morís, César; Luyando, Luis H

    2015-01-01

    During the last years we have witnessed an increasing development of imaging techniques applied in Cardiology. Among them, cardiac computed tomography is an emerging and evolving technique. With the current possibility of very low radiation studies, the applications have expanded and go further coronariography In the present article we review the technical developments of cardiac computed tomography and its new applications. Copyright © 2014 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  10. Plain X-ray, computed tomography and magnetic resonance imaging findings of telangiectatic osteosarcoma: a case report

    PubMed Central

    Koutoulidis, Vasilios; Koureas, Andreas; Moulopoulos, Lia; Gouliamos, Athanasios

    2009-01-01

    An 18-year-old male patient presented with chronic nonspecific pain of three months located at his left proximal tibia. The patient was admitted to our department for plain X-ray, computed tomography and magnetic resonance imaging examination. Plain X-ray and computed tomography revealed a geographic lytic lesion at the medial aspect of the proximal tibia. Biopsy of the lesion showed telangiectatic osteosarcoma. Image findings of all modalities are presented. PMID:19918488

  11. Supplemental computational phantoms to estimate out-of-field absorbed dose in photon radiotherapy

    NASA Astrophysics Data System (ADS)

    Gallagher, Kyle J.; Tannous, Jaad; Nabha, Racile; Feghali, Joelle Ann; Ayoub, Zeina; Jalbout, Wassim; Youssef, Bassem; Taddei, Phillip J.

    2018-01-01

    The purpose of this study was to develop a straightforward method of supplementing patient anatomy and estimating out-of-field absorbed dose for a cohort of pediatric radiotherapy patients with limited recorded anatomy. A cohort of nine children, aged 2-14 years, who received 3D conformal radiotherapy for low-grade localized brain tumors (LBTs), were randomly selected for this study. The extent of these patients’ computed tomography simulation image sets were cranial only. To approximate their missing anatomy, we supplemented the LBT patients’ image sets with computed tomography images of patients in a previous study with larger extents of matched sex, height, and mass and for whom contours of organs at risk for radiogenic cancer had already been delineated. Rigid fusion was performed between the LBT patients’ data and that of the supplemental computational phantoms using commercial software and in-house codes. In-field dose was calculated with a clinically commissioned treatment planning system, and out-of-field dose was estimated with a previously developed analytical model that was re-fit with parameters based on new measurements for intracranial radiotherapy. Mean doses greater than 1 Gy were found in the red bone marrow, remainder, thyroid, and skin of the patients in this study. Mean organ doses between 150 mGy and 1 Gy were observed in the breast tissue of the girls and lungs of all patients. Distant organs, i.e. prostate, bladder, uterus, and colon, received mean organ doses less than 150 mGy. The mean organ doses of the younger, smaller LBT patients (0-4 years old) were a factor of 2.4 greater than those of the older, larger patients (8-12 years old). Our findings demonstrated the feasibility of a straightforward method of applying supplemental computational phantoms and dose-calculation models to estimate absorbed dose for a set of children of various ages who received radiotherapy and for whom anatomies were largely missing in their original computed tomography simulations.

  12. Accuracy and Precision of Radioactivity Quantification in Nuclear Medicine Images

    PubMed Central

    Frey, Eric C.; Humm, John L.; Ljungberg, Michael

    2012-01-01

    The ability to reliably quantify activity in nuclear medicine has a number of increasingly important applications. Dosimetry for targeted therapy treatment planning or for approval of new imaging agents requires accurate estimation of the activity in organs, tumors, or voxels at several imaging time points. Another important application is the use of quantitative metrics derived from images, such as the standard uptake value commonly used in positron emission tomography (PET), to diagnose and follow treatment of tumors. These measures require quantification of organ or tumor activities in nuclear medicine images. However, there are a number of physical, patient, and technical factors that limit the quantitative reliability of nuclear medicine images. There have been a large number of improvements in instrumentation, including the development of hybrid single-photon emission computed tomography/computed tomography and PET/computed tomography systems, and reconstruction methods, including the use of statistical iterative reconstruction methods, which have substantially improved the ability to obtain reliable quantitative information from planar, single-photon emission computed tomography, and PET images. PMID:22475429

  13. Meaning of Interior Tomography

    PubMed Central

    Wang, Ge; Yu, Hengyong

    2013-01-01

    The classic imaging geometry for computed tomography is for collection of un-truncated projections and reconstruction of a global image, with the Fourier transform as the theoretical foundation that is intrinsically non-local. Recently, interior tomography research has led to theoretically exact relationships between localities in the projection and image spaces and practically promising reconstruction algorithms. Initially, interior tomography was developed for x-ray computed tomography. Then, it has been elevated as a general imaging principle. Finally, a novel framework known as “omni-tomography” is being developed for grand fusion of multiple imaging modalities, allowing tomographic synchrony of diversified features. PMID:23912256

  14. Poster — Thur Eve — 44: Linearization of Compartmental Models for More Robust Estimates of Regional Hemodynamic, Metabolic and Functional Parameters using DCE-CT/PET Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blais, AR; Dekaban, M; Lee, T-Y

    2014-08-15

    Quantitative analysis of dynamic positron emission tomography (PET) data usually involves minimizing a cost function with nonlinear regression, wherein the choice of starting parameter values and the presence of local minima affect the bias and variability of the estimated kinetic parameters. These nonlinear methods can also require lengthy computation time, making them unsuitable for use in clinical settings. Kinetic modeling of PET aims to estimate the rate parameter k{sub 3}, which is the binding affinity of the tracer to a biological process of interest and is highly susceptible to noise inherent in PET image acquisition. We have developed linearized kineticmore » models for kinetic analysis of dynamic contrast enhanced computed tomography (DCE-CT)/PET imaging, including a 2-compartment model for DCE-CT and a 3-compartment model for PET. Use of kinetic parameters estimated from DCE-CT can stabilize the kinetic analysis of dynamic PET data, allowing for more robust estimation of k{sub 3}. Furthermore, these linearized models are solved with a non-negative least squares algorithm and together they provide other advantages including: 1) only one possible solution and they do not require a choice of starting parameter values, 2) parameter estimates are comparable in accuracy to those from nonlinear models, 3) significantly reduced computational time. Our simulated data show that when blood volume and permeability are estimated with DCE-CT, the bias of k{sub 3} estimation with our linearized model is 1.97 ± 38.5% for 1,000 runs with a signal-to-noise ratio of 10. In summary, we have developed a computationally efficient technique for accurate estimation of k{sub 3} from noisy dynamic PET data.« less

  15. Initial Assessment of β3-Adrenoceptor-Activated Brown Adipose Tissue in Streptozotocin-Induced Type 1 Diabetes Rodent Model Using [18F]Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography.

    PubMed

    Baranwal, Aparna; Mirbolooki, M Reza; Mukherjee, Jogeshwar

    2015-01-01

    Metabolic activity of brown adipose tissue (BAT) is activated by β3-adrenoceptor agonists and norepinephrine transporter (NET) blockers and is measurable using [(18)F]fluorodeoxyglucose ([(18)F]FDG) positron emission tomography/computed tomography (PET/CT) in rats. Using the streptozotocin (STZ)-treated rat model of type 1 diabetes mellitus (T1DM), we investigated BAT activity in this rat model under fasting and nonfasting conditions using [(18)F]FDG PET/CT. Drugs that enhance BAT activity may have a potential for therapeutic development in lowering blood sugar in insulin-resistant diabetes. Rats were rendered diabetic by administration of STZ and confirmed by glucose measures. [(18)F]FDG was injected in the rats (fasted or nonfasted) pretreated with either saline or β3-adrenoceptor agonist CL316,243 or the NET blocker atomoxetine for PET/CT scans. [(18)F]FDG metabolic activity was computed as standard uptake values (SUVs) in interscapular brown adipose tissue (IBAT) and compared across the different drug treatment conditions. Blood glucose levels > 500 mg/dL were established for the STZ-treated diabetic rats. Under fasting conditions, average uptake of [(18)F]FDG in the IBAT of STZ-treated diabetic rats was approximately 70% lower compared to that of normal rats. Both CL316,243 and atomoxetine activated IBAT in normal rats had an SUV > 5, whereas activation in STZ-treated rats was significantly lower. The agonist CL316,243 activated IBAT up to threefold compared to saline in the fasted STZ-treated rat. In the nonfasted rat, the IBAT activation was up by twofold by CL316243. Atomoxetine had a greater effect on lowering blood sugar levels compared to CL316,243 in the nonfasted rats. A significant reduction in metabolic activity was observed in the STZ-treated diabetic rodent model. Increased IBAT activity in the STZ-treated diabetic rat under nonfasted conditions using the β3-adrenoceptor agonist CL316,243 suggests a potential role of BAT in modulating blood sugar levels. Further studies are needed to evaluate the therapeutic role of β3-adrenoceptor agonists in insulin-resistant T1DM.

  16. Construction of three-dimensional tooth model by micro-computed tomography and application for data sharing.

    PubMed

    Kato, A; Ohno, N

    2009-03-01

    The study of dental morphology is essential in terms of phylogeny. Advances in three-dimensional (3D) measurement devices have enabled us to make 3D images of teeth without destruction of samples. However, raw fundamental data on tooth shape requires complex equipment and techniques. An online database of 3D teeth models is therefore indispensable. We aimed to explore the basic methodology for constructing 3D teeth models, with application for data sharing. Geometric information on the human permanent upper left incisor was obtained using micro-computed tomography (micro-CT). Enamel, dentine, and pulp were segmented by thresholding of different gray-scale intensities. Segmented data were separately exported in STereo-Lithography Interface Format (STL). STL data were converted to Wavefront OBJ (OBJect), as many 3D computer graphics programs support the Wavefront OBJ format. Data were also applied to Quick Time Virtual Reality (QTVR) format, which allows the image to be viewed from any direction. In addition to Wavefront OBJ and QTVR data, the original CT series were provided as 16-bit Tag Image File Format (TIFF) images on the website. In conclusion, 3D teeth models were constructed in general-purpose data formats, using micro-CT and commercially available programs. Teeth models that can be used widely would benefit all those who study dental morphology.

  17. Correlation between Preoperative High Resolution Computed Tomography (CT) Findings with Surgical Findings in Chronic Otitis Media (COM) Squamosal Type.

    PubMed

    Karki, S; Pokharel, M; Suwal, S; Poudel, R

    Background The exact role of High resolution computed tomography (HRCT) temporal bone in preoperative assessment of Chronic suppurative otitis media atticoantral disease still remains controversial. Objective To evaluate the role of high resolution computed tomography temporal bone in Chronic suppurative otitis media atticoantral disease and to compare preoperative computed tomographic findings with intra-operative findings. Method Prospective, analytical study conducted among 65 patients with chronic suppurative otitis media atticoantral disease in Department of Radiodiagnosis, Kathmandu University Dhulikhel Hospital between January 2015 to July 2016. The operative findings were compared with results of imaging. The parameters of comparison were erosion of ossicles, scutum, facial canal, lateral semicircular canal, sigmoid and tegmen plate along with extension of disease to sinus tympani and facial recess. Sensitivity, specificity, negative predictive value, positive predictive values were calculated. Result High resolution computed tomography temporal bone offered sensitivity (Se) and specificity (Sp) of 100% for visualization of sigmoid and tegmen plate erosion. The performance of HRCT in detecting malleus (Se=100%, Sp=95.23%), incus (Se=100%,Sp=80.48%) and stapes (Se=96.55%, Sp=71.42%) erosion was excellent. It offered precise information about facial canal erosion (Se=100%, Sp=75%), scutum erosion (Se=100%, Sp=96.87%) and extension of disease to facial recess and sinus tympani (Se=83.33%,Sp=100%). high resolution computed tomography showed specificity of 100% for lateral semicircular canal erosion (Sp=100%) but with low sensitivity (Se=53.84%). Conclusion The findings of high resolution computed tomography and intra-operative findings were well comparable except for lateral semicircular canal erosion. high resolution computed tomography temporal bone acts as a road map for surgeon to identify the extent of disease, plan for appropriate procedure that is required and prepare for potential complications that can be encountered during surgery.

  18. Penalized Weighted Least-Squares Approach to Sinogram Noise Reduction and Image Reconstruction for Low-Dose X-Ray Computed Tomography

    PubMed Central

    Wang, Jing; Li, Tianfang; Lu, Hongbing; Liang, Zhengrong

    2006-01-01

    Reconstructing low-dose X-ray CT (computed tomography) images is a noise problem. This work investigated a penalized weighted least-squares (PWLS) approach to address this problem in two dimensions, where the WLS considers first- and second-order noise moments and the penalty models signal spatial correlations. Three different implementations were studied for the PWLS minimization. One utilizes a MRF (Markov random field) Gibbs functional to consider spatial correlations among nearby detector bins and projection views in sinogram space and minimizes the PWLS cost function by iterative Gauss-Seidel algorithm. Another employs Karhunen-Loève (KL) transform to de-correlate data signals among nearby views and minimizes the PWLS adaptively to each KL component by analytical calculation, where the spatial correlation among nearby bins is modeled by the same Gibbs functional. The third one models the spatial correlations among image pixels in image domain also by a MRF Gibbs functional and minimizes the PWLS by iterative successive over-relaxation algorithm. In these three implementations, a quadratic functional regularization was chosen for the MRF model. Phantom experiments showed a comparable performance of these three PWLS-based methods in terms of suppressing noise-induced streak artifacts and preserving resolution in the reconstructed images. Computer simulations concurred with the phantom experiments in terms of noise-resolution tradeoff and detectability in low contrast environment. The KL-PWLS implementation may have the advantage in terms of computation for high-resolution dynamic low-dose CT imaging. PMID:17024831

  19. An efficient algorithm for double-difference tomography and location in heterogeneous media, with an application to the Kilauea volcano

    USGS Publications Warehouse

    Monteiller, V.; Got, J.-L.; Virieux, J.; Okubo, P.

    2005-01-01

    Improving our understanding of crustal processes requires a better knowledge of the geometry and the position of geological bodies. In this study we have designed a method based upon double-difference relocation and tomography to image, as accurately as possible, a heterogeneous medium containing seismogenic objects. Our approach consisted not only of incorporating double difference in tomography but also partly in revisiting tomographic schemes for choosing accurate and stable numerical strategies, adapted to the use of cross-spectral time delays. We used a finite difference solution to the eikonal equation for travel time computation and a Tarantola-Valette approach for both the classical and double-difference three-dimensional tomographic inversion to find accurate earthquake locations and seismic velocity estimates. We estimated efficiently the square root of the inverse model's covariance matrix in the case of a Gaussian correlation function. It allows the use of correlation length and a priori model variance criteria to determine the optimal solution. Double-difference relocation of similar earthquakes is performed in the optimal velocity model, making absolute and relative locations less biased by the velocity model. Double-difference tomography is achieved by using high-accuracy time delay measurements. These algorithms have been applied to earthquake data recorded in the vicinity of Kilauea and Mauna Loa volcanoes for imaging the volcanic structures. Stable and detailed velocity models are obtained: the regional tomography unambiguously highlights the structure of the island of Hawaii and the double-difference tomography shows a detailed image of the southern Kilauea caldera-upper east rift zone magmatic complex. Copyright 2005 by the American Geophysical Union.

  20. Trails on 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Leading to Diagnosis of Testicular Adrenal Rest Tumor.

    PubMed

    Kashyap, Raghava

    2018-01-01

    Testicular adrenal rest tumors (TARTs) are secondary to hypertrophy of adrenal rest cells in the rete testis in settings of hypersecretion of androgens. We present a case of congenital adrenal hyperplasia with TART with clues to the diagnosis on 18 F-fluorodeoxyglucose positron emission tomography/computed tomography ( 18 F-FDG PET/CT). To the best of our knowledge, this is the first reported case on the role of 18 F-FDG PET/CT in TART.

  1. Pleuroperitoneal Mesothelioma: A Rare Entity on 18F-FDG PET/CT

    PubMed Central

    Sahoo, Manas Kumar; Mukherjee, Anirban; Girish; Parida, Kumar; Agarwal, Krishan Kant; Bal, Chandrasekhar; Tripathi, Madhavi; Das, Chandan Jyoti; Shamim, Shamim Ahmed

    2017-01-01

    Pleuroperitoneal mesothelioma is an extremely rare entity. Only few cases are reported worldwide. We hereby represent a case of pleural mesothelioma referred for F-18-Fluorodeoxyglucose positron emission tomography/computed tomography for response evaluation. Diffuse F-18-Fluorodeoxyglucose avid peritoneal and omental thickening noted which subsequently turned out to be mesothelial involvement on peritoneal biopsy. This case demonstrates the role of F-18-Fluorodeoxyglucose positron emission tomography/computed tomography in detecting other sites of involvement in case of malignant mesothelioma. PMID:28242997

  2. Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography in Disseminated Cryptococcosis.

    PubMed

    Tripathy, Sarthak; Parida, Girish Kumar; Roy, Shambo Guha; Singhal, Abhinav; Mallick, Saumya Ranjan; Tripathi, Madhavi; Shamim, Shamim Ahmed

    2017-01-01

    Disseminated cryptococcosis without pulmonary involvement is a very rare phenomenon. Patterns of organ involvement in cryptococcosis resemble various other infective conditions as well as malignant conditions on fluorodeoxyglucose positron emission tomography-computed tomography. We present a case of a 43-year-old male patient who had disseminated cryptococcosis. The rarity of the case being noninvolvement of lungs and meninges and resembling more like lymphoma due to the diffuse involvement of the lymph nodes on both sides of the diaphragm.

  3. CT Perfusion of the Head

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z CT Perfusion of the Head Computed tomography (CT) perfusion ... of CT Perfusion of the Head? What is CT Perfusion of the Head? Computed tomography (CT) perfusion ...

  4. Quantification of pericardial effusions by echocardiography and computed tomography.

    PubMed

    Leibowitz, David; Perlman, Gidon; Planer, David; Gilon, Dan; Berman, Philip; Bogot, Naama

    2011-01-15

    Echocardiography is a well-accepted tool for the diagnosis and quantification of pericardial effusion (PEff). Given the increasing use of computed tomographic (CT) scanning, more PEffs are being initially diagnosed by computed tomography. No study has compared quantification of PEff by computed tomography and echocardiography. The objective of this study was to assess the accuracy of quantification of PEff by 2-dimensional echocardiography and computed tomography compared to the amount of pericardial fluid drained at pericardiocentesis. We retrospectively reviewed an institutional database to identify patients who underwent chest computed tomography and echocardiography before percutaneous pericardiocentesis with documentation of the amount of fluid withdrawn. Digital 2-dimensional echocardiographic and CT images were retrieved and quantification of PEff volume was performed by applying the formula for the volume of a prolate ellipse, π × 4/3 × maximal long-axis dimension/2 × maximal transverse dimension/2 × maximal anteroposterior dimension/2, to the pericardial sac and to the heart. Nineteen patients meeting study qualifications were entered into the study. The amount of PEff drained was 200 to 1,700 ml (mean 674 ± 340). Echocardiographically calculated pericardial effusion volume correlated relatively well with PEff volume (r = 0.73, p <0.001, mean difference -41 ± 225 ml). There was only moderate correlation between CT volume quantification and actual volume drained (r = 0.4, p = 0.004, mean difference 158 ± 379 ml). In conclusion, echocardiography appears a more accurate imaging technique than computed tomography in quantitative assessment of nonloculated PEffs and should continue to be the primary imaging in these patients. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Digital Rock Physics of hydrate-bearing sediments: Determination of effective elastic properties on the microscale

    NASA Astrophysics Data System (ADS)

    Sell, Kathleen; Saenger, Erik H.; Quintal, Beatriz; Enzmann, Frieder; Kersten, Michael

    2017-04-01

    To date, very little is known about the distribution of natural gas hydrates in sedimentary matrices and its influence on the seismic properties of the host rock, in particular at low hydrate concentration. Digital rock physics offers a unique approach to this issue yet requires good quality, high resolution 3D representations for the accurate modelling of petrophysical and transport properties. Although such models are readily available via in-situ synchrotron radiation X-ray tomography the analysis of such data asks for complex workflows and high computational power to maintain valuable results. More recently digital rock physics took also on data from a fairly new group of techniques focused on in-situ studies recreating complex settings that cannot be easily accessed by conventional means. Here, we present a best-practise procedure complementing high-resolution synchrotron-tomography data of hydrate-bearing sedimentary matrices from Chaouachi et al. (2015) with data post-processing, including image enhancement and segmentation as well as exemplary numerical simulations of acoustic wave propagation in 3D on realistic rock using the derived results. A combination of the tomography and 3D modelling opens a path to a more reliable deduction of properties of gas hydrate bearing sediments without a reliance on idealised and frequently imprecise models (Sell et al. 2016). The advantage of this method over traditional, often oversimplified models lays in a more faithful description of complex pore geometries and microstructures found in natural formations (Andrä et al., 2013b, a). References: Chaouachi, M., Falenty, A., Sell, K., Enzmann, F., Kersten, M., Haberthür, D., and Kuhs, W. F.: Microstructural evolution of gas hydrates in sedimentary matrices observed with synchrotron x-ray computed tomographic microscopy, Geochem. Geophy. Geosy., 16, 1711-1722, 2015. Sell, K., E. H. Saenger, A. Falenty, M. Chaouachi, D. Haberthür, F. Enzmann, W. F. Kuhs, and M. Kersten: On the path to the digital rock physics of gas hydrate-bearing sediments - processing of in situ synchrotron-tomography data, Solid Earth, 7(4), 1243-1258, 2016. Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Saenger, E. H., Sain, R., Saxena, N., Ricker, S., Wiegmann, A., and Zhan, X.: Digital rock physics benchmarks - Part II: Computing effective properties, Comput. Geosci., 50, 33-43, 2013a. Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Saenger, E. H., Sain, R., Saxena, N., Ricker, S., Wiegmann, A., and Zhan, X.: Digital rock physics benchmarks - Part I: Imaging and segmentation, Comput. Geosci., 50, 25-32, 2013b.

  6. 2-D Fused Image Reconstruction approach for Microwave Tomography: a theoretical assessment using FDTD Model

    PubMed Central

    Bindu, G.; Semenov, S.

    2013-01-01

    This paper describes an efficient two-dimensional fused image reconstruction approach for Microwave Tomography (MWT). Finite Difference Time Domain (FDTD) models were created for a viable MWT experimental system having the transceivers modelled using thin wire approximation with resistive voltage sources. Born Iterative and Distorted Born Iterative methods have been employed for image reconstruction with the extremity imaging being done using a differential imaging technique. The forward solver in the imaging algorithm employs the FDTD method of solving the time domain Maxwell’s equations with the regularisation parameter computed using a stochastic approach. The algorithm is tested with 10% noise inclusion and successful image reconstruction has been shown implying its robustness. PMID:24058889

  7. Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems.

    PubMed

    Vaquero, Juan José; Kinahan, Paul

    2015-01-01

    Positron emission tomography (PET) imaging is based on detecting two time-coincident high-energy photons from the emission of a positron-emitting radioisotope. The physics of the emission, and the detection of the coincident photons, give PET imaging unique capabilities for both very high sensitivity and accurate estimation of the in vivo concentration of the radiotracer. PET imaging has been widely adopted as an important clinical modality for oncological, cardiovascular, and neurological applications. PET imaging has also become an important tool in preclinical studies, particularly for investigating murine models of disease and other small-animal models. However, there are several challenges to using PET imaging systems. These include the fundamental trade-offs between resolution and noise, the quantitative accuracy of the measurements, and integration with X-ray computed tomography and magnetic resonance imaging. In this article, we review how researchers and industry are addressing these challenges.

  8. Solving the forward problem of magnetoacoustic tomography with magnetic induction by means of the finite element method

    NASA Astrophysics Data System (ADS)

    Li, Xun; Li, Xu; Zhu, Shanan; He, Bin

    2009-05-01

    Magnetoacoustic tomography with magnetic induction (MAT-MI) is a recently proposed imaging modality to image the electrical impedance of biological tissue. It combines the good contrast of electrical impedance tomography with the high spatial resolution of sonography. In this paper, a three-dimensional MAT-MI forward problem was investigated using the finite element method (FEM). The corresponding FEM formulae describing the forward problem are introduced. In the finite element analysis, magnetic induction in an object with conductivity values close to biological tissues was first carried out. The stimulating magnetic field was simulated as that generated from a three-dimensional coil. The corresponding acoustic source and field were then simulated. Computer simulation studies were conducted using both concentric and eccentric spherical conductivity models with different geometric specifications. In addition, the grid size for finite element analysis was evaluated for the model calibration and evaluation of the corresponding acoustic field.

  9. Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems

    PubMed Central

    Vaquero, Juan José; Kinahan, Paul

    2017-01-01

    Positron emission tomography (PET) imaging is based on detecting two time-coincident high-energy photons from the emission of a positron-emitting radioisotope. The physics of the emission, and the detection of the coincident photons, give PET imaging unique capabilities for both very high sensitivity and accurate estimation of the in vivo concentration of the radiotracer. PET imaging has been widely adopted as an important clinical modality for oncological, cardiovascular, and neurological applications. PET imaging has also become an important tool in preclinical studies, particularly for investigating murine models of disease and other small-animal models. However, there are several challenges to using PET imaging systems. These include the fundamental trade-offs between resolution and noise, the quantitative accuracy of the measurements, and integration with X-ray computed tomography and magnetic resonance imaging. In this article, we review how researchers and industry are addressing these challenges. PMID:26643024

  10. Solving the Forward Problem of Magnetoacoustic Tomography with Magnetic Induction by Means of the Finite Element Method

    PubMed Central

    Li, Xun; Li, Xu; Zhu, Shanan; He, Bin

    2010-01-01

    Magnetoacoustic Tomography with Magnetic Induction (MAT-MI) is a recently proposed imaging modality to image the electrical impedance of biological tissue. It combines the good contrast of electrical impedance tomography with the high spatial resolution of sonography. In this paper, three-dimensional MAT-MI forward problem was investigated using the finite element method (FEM). The corresponding FEM formulas describing the forward problem are introduced. In the finite element analysis, magnetic induction in an object with conductivity values close to biological tissues was first carried out. The stimulating magnetic field was simulated as that generated from a three-dimensional coil. The corresponding acoustic source and field were then simulated. Computer simulation studies were conducted using both concentric and eccentric spherical conductivity models with different geometric specifications. In addition, the grid size for finite element analysis was evaluated for model calibration and evaluation of the corresponding acoustic field. PMID:19351978

  11. [Computed tomography semiotics of osteonecrosis and sequestration in chronic hematogenic osteomyelitis].

    PubMed

    D'iachkova, G V; Mitina, Iu L

    2007-01-01

    Based on the data of computed tomography, radiography and densitometry in 39 patients the authors describe in detail the signs of osteonecrosis and sequestration of different localization and extension.

  12. Pelvic CT scan

    MedlinePlus

    CAT scan - pelvis; Computed axial tomography scan - pelvis; Computed tomography scan - pelvis; CT scan - pelvis ... Risks of CT scans include: Being exposed to radiation Allergic reaction to contrast dye CT scans do expose you to more radiation ...

  13. Lumbar spine CT scan

    MedlinePlus

    CAT scan - lumbar spine; Computed axial tomography scan - lumbar spine; Computed tomography scan - lumbar spine; CT - lower back ... CT scans rapidly makes detailed pictures of the lower back. The test may be used to look for: ...

  14. Shoulder CT scan

    MedlinePlus

    CAT scan - shoulder; Computed axial tomography scan - shoulder; Computed tomography scan - shoulder; CT scan - shoulder ... Risks of CT scans include: Being exposed to radiation Allergic reaction to contrast dye Birth defect if done during pregnancy CT scans ...

  15. SPECT/CT in imaging foot and ankle pathology-the demise of other coregistration techniques.

    PubMed

    Mohan, Hosahalli K; Gnanasegaran, Gopinath; Vijayanathan, Sanjay; Fogelman, Ignac

    2010-01-01

    Disorders of the ankle and foot are common and given the complex anatomy and function of the foot, they present a significant clinical challenge. Imaging plays a crucial role in the management of these patients, with multiple imaging options available to the clinician. The American College of radiology has set the appropriateness criteria for the use of the available investigating modalities in the management of foot and ankle pathologies. These are broadly classified into anatomical and functional imaging modalities. Recently, single-photon emission computed tomography and/or computed tomography scanners, which can elegantly combine functional and anatomical images have been introduced, promising an exciting and important development. This review describes our clinical experience with single-photon emission computed tomography and/or computed tomography and discusses potential applications of these techniques.

  16. Comparison of radiological and morphologic assessments of myocardial bridges.

    PubMed

    Ercakmak, Burcu; Bulut, Elif; Hayran, Mutlu; Kaymaz, Figen; Bilgin, Selma; Hazirolan, Tuncay; Bayramoglu, Alp; Erbil, Mine

    2015-09-01

    In this study we aimed to compare the findings of coronary dual-source computed tomography angiography of myocardial bridges with cadaveric dissections. Forty-one isolated, non-damaged fresh sheep hearts were used in this study. Myocardial bridges of the anterior interventricular branch of the left coronary artery were demonstrated and analyzed by a coronary dual-source computed tomography angiography. Dissections along the left anterior interventricular branch of the left coronary artery were performed by using Zeiss OPMI pico microscope and the length of the bridges were measured. The depths of the myocardial bridges were measured from the stained sections by using the light microscope (Leica DM 6000B). MBs were found in all 41 hearts (100%) during dissections. Dual-source computed tomography angiography successfully detected 87.8% (36 of the 41 hearts) of the myocardial bridges measured on left anterior interventricular branch of left coronary artery. The lengths of the myocardial bridges were found 5-40 and 8-50 mm with dissection and dual-source computed tomography angiography, respectively. And the depths were found 0.7-4.5 mm by dual-source computed tomography angiography and 0.745-4.632 mm morphologically. Comparison of the mean values of the lengths showed statistically significantly higher values (22.0 ± 8.5, 17.7 ± 7.7 mm, p = 0.003) for the dissections. Radiological assessment also effectively discriminated complete bridges from incomplete ones. Our study showed that coronary computed tomography angiography is reliable in evaluating the presence and depth of myocardial bridges.

  17. CoCrMo cellular structures made by Electron Beam Melting studied by local tomography and finite element modelling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petit, Clémence; Maire, Eric, E-mail: eric.maire@insa-lyon.fr; Meille, Sylvain

    The work focuses on the structural and mechanical characterization of Co-Cr-Mo cellular samples with cubic pore structure made by Electron Beam Melting (EBM). X-ray tomography was used to characterize the architecture of the sample. High resolution images were also obtained thanks to local tomography in which the specimen is placed close to the X-ray source. These images enabled to observe some defects due to the fabrication process: small pores in the solid phase, partially melted particles attached to the surface. Then, in situ compression tests were performed in the tomograph. The images of the deformed sample show a progressive bucklingmore » of the vertical struts leading to final fracture. The deformation initiated where the defects were present in the strut i.e. in regions with reduced local thickness. The finite element modelling confirmed the high stress concentrations of these weak points leading to the fracture of the sample. - Highlights: • CoCrMo samples fabricated by Electron Beam Melting (EBM) process are considered. • X-ray Computed Tomography is used to observe the structure of the sample. • The mechanical properties are tested thanks to an in situ test in the tomograph. • A finite element model is developed to model the mechanical behaviour.« less

  18. Digital dissection - using contrast-enhanced computed tomography scanning to elucidate hard- and soft-tissue anatomy in the Common Buzzard Buteo buteo.

    PubMed

    Lautenschlager, Stephan; Bright, Jen A; Rayfield, Emily J

    2014-04-01

    Gross dissection has a long history as a tool for the study of human or animal soft- and hard-tissue anatomy. However, apart from being a time-consuming and invasive method, dissection is often unsuitable for very small specimens and often cannot capture spatial relationships of the individual soft-tissue structures. The handful of comprehensive studies on avian anatomy using traditional dissection techniques focus nearly exclusively on domestic birds, whereas raptorial birds, and in particular their cranial soft tissues, are essentially absent from the literature. Here, we digitally dissect, identify, and document the soft-tissue anatomy of the Common Buzzard (Buteo buteo) in detail, using the new approach of contrast-enhanced computed tomography using Lugol's iodine. The architecture of different muscle systems (adductor, depressor, ocular, hyoid, neck musculature), neurovascular, and other soft-tissue structures is three-dimensionally visualised and described in unprecedented detail. The three-dimensional model is further presented as an interactive PDF to facilitate the dissemination and accessibility of anatomical data. Due to the digital nature of the data derived from the computed tomography scanning and segmentation processes, these methods hold the potential for further computational analyses beyond descriptive and illustrative proposes. © 2013 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.

  19. [Fabrication and accuracy research on 3D printing dental model based on cone beam computed tomography digital modeling].

    PubMed

    Zhang, Hui-Rong; Yin, Le-Feng; Liu, Yan-Li; Yan, Li-Yi; Wang, Ning; Liu, Gang; An, Xiao-Li; Liu, Bin

    2018-04-01

    The aim of this study is to build a digital dental model with cone beam computed tomography (CBCT), to fabricate a virtual model via 3D printing, and to determine the accuracy of 3D printing dental model by comparing the result with a traditional dental cast. CBCT of orthodontic patients was obtained to build a digital dental model by using Mimics 10.01 and Geomagic studio software. The 3D virtual models were fabricated via fused deposition modeling technique (FDM). The 3D virtual models were compared with the traditional cast models by using a Vernier caliper. The measurements used for comparison included the width of each tooth, the length and width of the maxillary and mandibular arches, and the length of the posterior dental crest. 3D printing models had higher accuracy compared with the traditional cast models. The results of the paired t-test of all data showed that no statistically significant difference was observed between the two groups (P>0.05). Dental digital models built with CBCT realize the digital storage of patients' dental condition. The virtual dental model fabricated via 3D printing avoids traditional impression and simplifies the clinical examination process. The 3D printing dental models produced via FDM show a high degree of accuracy. Thus, these models are appropriate for clinical practice.

  20. 3D robust Chan-Vese model for industrial computed tomography volume data segmentation

    NASA Astrophysics Data System (ADS)

    Liu, Linghui; Zeng, Li; Luan, Xiao

    2013-11-01

    Industrial computed tomography (CT) has been widely applied in many areas of non-destructive testing (NDT) and non-destructive evaluation (NDE). In practice, CT volume data to be dealt with may be corrupted by noise. This paper addresses the segmentation of noisy industrial CT volume data. Motivated by the research on the Chan-Vese (CV) model, we present a region-based active contour model that draws upon intensity information in local regions with a controllable scale. In the presence of noise, a local energy is firstly defined according to the intensity difference within a local neighborhood. Then a global energy is defined to integrate local energy with respect to all image points. In a level set formulation, this energy is represented by a variational level set function, where a surface evolution equation is derived for energy minimization. Comparative analysis with the CV model indicates the comparable performance of the 3D robust Chan-Vese (RCV) model. The quantitative evaluation also shows the segmentation accuracy of 3D RCV. In addition, the efficiency of our approach is validated under several types of noise, such as Poisson noise, Gaussian noise, salt-and-pepper noise and speckle noise.

  1. Validation of an internal hardwood log defect prediction model

    Treesearch

    R. Edward Thomas

    2011-01-01

    The type, size, and location of internal defects dictate the grade and value of lumber sawn from hardwood logs. However, acquiring internal defect knowledge with x-ray/computed-tomography or magnetic-resonance imaging technology can be expensive both in time and cost. An alternative approach uses prediction models based on correlations among external defect indicators...

  2. Global and Regional 3D Tomography for Improved Seismic Event Location and Uncertainty in Explosion Monitoring

    NASA Astrophysics Data System (ADS)

    Downey, N.; Begnaud, M. L.; Hipp, J. R.; Ballard, S.; Young, C. S.; Encarnacao, A. V.

    2017-12-01

    The SALSA3D global 3D velocity model of the Earth was developed to improve the accuracy and precision of seismic travel time predictions for a wide suite of regional and teleseismic phases. Recently, the global SALSA3D model was updated to include additional body wave phases including mantle phases, core phases, reflections off the core-mantle boundary and underside reflections off the surface of the Earth. We show that this update improves travel time predictions and leads directly to significant improvements in the accuracy and precision of seismic event locations as compared to locations computed using standard 1D velocity models like ak135, or 2½D models like RSTT. A key feature of our inversions is that path-specific model uncertainty of travel time predictions are calculated using the full 3D model covariance matrix computed during tomography, which results in more realistic uncertainty ellipses that directly reflect tomographic data coverage. Application of this method can also be done at a regional scale: we present a velocity model with uncertainty obtained using data obtained from the University of Utah Seismograph Stations. These results show a reduction in travel-time residuals for re-located events compared with those obtained using previously published models.

  3. Computed Tomography Scanner Productivity and Entry-Level Models in the Global Market

    PubMed Central

    Almeida, R. M. V. R.

    2017-01-01

    Objective This study evaluated the productivity of computed tomography (CT) models and characterized their simplest (entry-level) models' supply in the world market. Methods CT exam times were measured in eight health facilities in the state of Rio de Janeiro, Brazil. Exams were divided into six stages: (1) arrival of patient records to the examination room; (2) patient arrival; (3) patient positioning; (4) data input prior to exam; (5) image acquisition; and (6) patient departure. CT exam productivity was calculated by dividing the total weekly working time by the total exam time for each model. Additionally, an internet search identified full-body CT manufacturers and their offered entry-level models. Results The time durations of 111 CT exams were obtained. Differences among average exam times were not large, and they were mainly due to stages not directly related to data acquisition or image reconstruction. The survey identified that most manufacturers offer 2- to 4-slice models for Asia, South America, and Africa, and one offers single-slice models (Asia). In the USA, two manufacturers offer models below 16-slice. Conclusion Productivity gains are not linearly related to “slice” number. It is suggested that the use of “shareable platforms” could make CTs cheaper, increasing their availability. PMID:29093804

  4. Quantification of root water uptake in soil using X-ray computed tomography and image-based modelling.

    PubMed

    Daly, Keith R; Tracy, Saoirse R; Crout, Neil M J; Mairhofer, Stefan; Pridmore, Tony P; Mooney, Sacha J; Roose, Tiina

    2018-01-01

    Spatially averaged models of root-soil interactions are often used to calculate plant water uptake. Using a combination of X-ray computed tomography (CT) and image-based modelling, we tested the accuracy of this spatial averaging by directly calculating plant water uptake for young wheat plants in two soil types. The root system was imaged using X-ray CT at 2, 4, 6, 8 and 12 d after transplanting. The roots were segmented using semi-automated root tracking for speed and reproducibility. The segmented geometries were converted to a mesh suitable for the numerical solution of Richards' equation. Richards' equation was parameterized using existing pore scale studies of soil hydraulic properties in the rhizosphere of wheat plants. Image-based modelling allows the spatial distribution of water around the root to be visualized and the fluxes into the root to be calculated. By comparing the results obtained through image-based modelling to spatially averaged models, the impact of root architecture and geometry in water uptake was quantified. We observed that the spatially averaged models performed well in comparison to the image-based models with <2% difference in uptake. However, the spatial averaging loses important information regarding the spatial distribution of water near the root system. © 2017 John Wiley & Sons Ltd.

  5. Relation of aortic valve calcium detected by cardiac computed tomography to all-cause mortality.

    PubMed

    Blaha, Michael J; Budoff, Matthew J; Rivera, Juan J; Khan, Atif N; Santos, Raul D; Shaw, Leslee J; Raggi, Paolo; Berman, Daniel; Rumberger, John A; Blumenthal, Roger S; Nasir, Khurram

    2010-12-15

    Aortic valve calcium (AVC) can be quantified on the same computed tomographic scan as coronary artery calcium (CAC). Although CAC is an established predictor of cardiovascular events, limited evidence is available for an independent predictive value for AVC. We studied a cohort of 8,401 asymptomatic subjects (mean age 53 ± 10 years, 69% men), who were free of known coronary heart disease and were undergoing electron beam computed tomography for assessment of subclinical atherosclerosis. The patients were followed for a median of 5 years (range 1 to 7) for the occurrence of mortality from any cause. Multivariate Cox regression models were developed to predict all-cause mortality according to the presence of AVC. A total of 517 patients (6%) had AVC on electron beam computed tomography. During follow-up, 124 patients died (1.5%), for an overall survival rate of 96.1% and 98.7% for those with and without AVC, respectively (hazard ratio 3.39, 95% confidence interval 2.09 to 5.49). After adjustment for age, gender, hypertension, dyslipidemia, diabetes mellitus, smoking, and a family history of premature coronary heart disease, AVC remained a significant predictor of mortality (hazard ratio 1.82, 95% confidence interval 1.11 to 2.98). Likelihood ratio chi-square statistics demonstrated that the addition of AVC contributed significantly to the prediction of mortality in a model adjusted for traditional risk factors (chi-square = 5.03, p = 0.03) as well as traditional risk factors plus the presence of CAC (chi-square = 3.58, p = 0.05). In conclusion, AVC was associated with increased all-cause mortality, independent of the traditional risk factors and the presence of CAC. Copyright © 2010. Published by Elsevier Inc.

  6. Sinus CT scan

    MedlinePlus

    CAT scan - sinus; Computed axial tomography scan - sinus; Computed tomography scan - sinus; CT scan - sinus ... Risks for a CT scan includes: Being exposed to radiation Allergic reaction to contrast dye CT scans expose you to more radiation than regular ...

  7. Brain PET scan

    MedlinePlus

    ... tissues are working. Other imaging tests, such as magnetic resonance imaging ( MRI ) and computed tomography ( CT ) scans only reveal ... M, Hellwig S, Kloppel S, Weiller C. Functional neuroimaging: functional magnetic resonance imaging, positron emission tomography, and single-photon emission computed ...

  8. Combined diagnostic performance of coronary computed tomography angiography and computed tomography derived fractional flow reserve for the evaluation of myocardial ischemia: A meta-analysis.

    PubMed

    Tan, Xiao Wei; Zheng, Qishi; Shi, Luming; Gao, Fei; Allen, John Carson; Coenen, Adriaan; Baumann, Stefan; Schoepf, U Joseph; Kassab, Ghassan S; Lim, Soo Teik; Wong, Aaron Sung Lung; Tan, Jack Wei Chieh; Yeo, Khung Keong; Chin, Chee Tang; Ho, Kay Woon; Tan, Swee Yaw; Chua, Terrance Siang Jin; Chan, Edwin Shih Yen; Tan, Ru San; Zhong, Liang

    2017-06-01

    To evaluate the combined diagnostic accuracy of coronary computed tomography angiography (CCTA) and computed tomography derived fractional flow reserve (FFRct) in patients with suspected or known coronary artery disease (CAD). PubMed, The Cochrane library, Embase and OpenGray were searched to identify studies comparing diagnostic accuracy of CCTA and FFRct. Diagnostic test measurements of FFRct were either extracted directly from the published papers or calculated from provided information. Bivariate models were conducted to synthesize the diagnostic performance of combined CCTA and FFRct at both "per-vessel" and "per-patient" levels. 7 articles were included for analysis. The combined diagnostic outcomes from "both positive" strategy, i.e. a subject was considered as "positive" only when both CCTA and FFRct were "positive", demonstrated relative high specificity (per-vessel: 0.91; per-patient: 0.81), high positive likelihood ratio (LR+, per-vessel: 7.93; per-patient: 4.26), high negative likelihood ratio (LR-, per-vessel: 0.30; per patient: 0.24) and high accuracy (per-vessel: 0.91; per-patient: 0.81) while "either positive" strategy, i.e. a subject was considered as "positive" when either CCTA or FFRct was "positive", demonstrated relative high sensitivity (per-vessel: 0.97; per-patient: 0.98), low LR+ (per-vessel: 1.50; per-patient: 1.17), low LR- (per-vessel: 0.07; per-patient: 0.09) and low accuracy (per-vessel: 0.57; per-patient: 0.54). "Both positive" strategy showed better diagnostic performance to rule in patients with non-significant stenosis compared to "either positive" strategy, as it efficiently reduces the proportion of testing false positive subjects. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A comparative study for image quality and radiation dose of a cone beam computed tomography scanner and a multislice computed tomography scanner for paranasal sinus imaging.

    PubMed

    De Cock, Jens; Zanca, Federica; Canning, John; Pauwels, Ruben; Hermans, Robert

    2015-07-01

    To evaluate image quality and radiation dose of a state of the art cone beam computed tomography (CBCT) system and a multislice computed tomography (MSCT) system in patients with sinonasal poliposis. In this retrospective study two radiologists evaluated 57 patients with sinonasal poliposis who underwent a CBCT or MSCT sinus examination, along with a control group of 90 patients with normal radiological findings. Tissue doses were measured using a phantom model with thermoluminescent dosimeters (TLD). Overall image quality in CBCT was scored significantly higher than in MSCT in patients with normal radiologic findings (p-value: 0.00001). In patients with sinonasal poliposis, MSCT scored significantly higher than CBCT (p-value: 0.00001). The average effective dose for MSCT was 42% higher compared to CBCT (108 μSv vs 63 μSv). CBCT and MSCT are both suited for the evaluation of sinonasal poliposis. In patients with sinonasal poliposis, clinically important structures of the paranasal sinuses can be better delineated with MSCT, whereas in patients without sinonasal poliposis, CBCT turns out to define the important structures of the sinonasal region better. However, given the lower radiation dose, CBCT can be considered for the evaluation of the sinonasal structures in patients with sinonasal poliposis. • CBCT and MSCT are both suited for evaluation of sinonasal poliposis. • Effective dose for MSCT was 42% higher compared to CBCT. • In patients with sinonasal poliposis, clinically important anatomical structures are better delineated with MSCT. • In patients with normal radiological findings, clinically important anatomical structures are better delineated with CBCT.

  10. Comparison of digital intraoral scanners by single-image capture system and full-color movie system.

    PubMed

    Yamamoto, Meguru; Kataoka, Yu; Manabe, Atsufumi

    2017-01-01

    The use of dental computer-aided design/computer-aided manufacturing (CAD/CAM) restoration is rapidly increasing. This study was performed to evaluate the marginal and internal cement thickness and the adhesive gap of internal cavities comprising CAD/CAM materials using two digital impression acquisition methods and micro-computed tomography. Images obtained by a single-image acquisition system (Bluecam Ver. 4.0) and a full-color video acquisition system (Omnicam Ver. 4.2) were divided into the BL and OM groups, respectively. Silicone impressions were prepared from an ISO-standard metal mold, and CEREC Stone BC and New Fuji Rock IMP were used to create working models (n=20) in the BL and OM groups (n=10 per group), respectively. Individual inlays were designed in a conventional manner using designated software, and all restorations were prepared using CEREC inLab MC XL. These were assembled with the corresponding working models used for measurement, and the level of fit was examined by three-dimensional analysis based on micro-computed tomography. Significant differences in the marginal and internal cement thickness and adhesive gap spacing were found between the OM and BL groups. The full-color movie capture system appears to be a more optimal restoration system than the single-image capture system.

  11. Computed Tomography Imaging Features in Acute Uncomplicated Stanford Type-B Aortic Dissection Predict Late Adverse Events.

    PubMed

    Sailer, Anna M; van Kuijk, Sander M J; Nelemans, Patricia J; Chin, Anne S; Kino, Aya; Huininga, Mark; Schmidt, Johanna; Mistelbauer, Gabriel; Bäumler, Kathrin; Chiu, Peter; Fischbein, Michael P; Dake, Michael D; Miller, D Craig; Schurink, Geert Willem H; Fleischmann, Dominik

    2017-04-01

    Medical treatment of initially uncomplicated acute Stanford type-B aortic dissection is associated with a high rate of late adverse events. Identification of individuals who potentially benefit from preventive endografting is highly desirable. The association of computed tomography imaging features with late adverse events was retrospectively assessed in 83 patients with acute uncomplicated Stanford type-B aortic dissection, followed over a median of 850 (interquartile range 247-1824) days. Adverse events were defined as fatal or nonfatal aortic rupture, rapid aortic growth (>10 mm/y), aneurysm formation (≥6 cm), organ or limb ischemia, or new uncontrollable hypertension or pain. Five significant predictors were identified using multivariable Cox regression analysis: connective tissue disease (hazard ratio [HR] 2.94, 95% confidence interval [CI]: 1.29-6.72; P =0.01), circumferential extent of false lumen in angular degrees (HR 1.03 per degree, 95% CI: 1.01-1.04, P =0.003), maximum aortic diameter (HR 1.10 per mm, 95% CI: 1.02-1.18, P =0.015), false lumen outflow (HR 0.999 per mL/min, 95% CI: 0.998-1.000; P =0.055), and number of intercostal arteries (HR 0.89 per n, 95% CI: 0.80-0.98; P =0.024). A prediction model was constructed to calculate patient specific risk at 1, 2, and 5 years and to stratify patients into high-, intermediate-, and low-risk groups. The model was internally validated by bootstrapping and showed good discriminatory ability with an optimism-corrected C statistic of 70.1%. Computed tomography imaging-based morphological features combined into a prediction model may be able to identify patients at high risk for late adverse events after an initially uncomplicated type-B aortic dissection. © 2017 American Heart Association, Inc.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, Casey W.; Green, Garrett; Noticewala, Sonal S.

    Purpose: Validated models are needed to justify strategies to define planning target volumes (PTVs) for intact cervical cancer used in clinical practice. Our objective was to independently validate a previously published shape model, using data collected prospectively from clinical trials. Methods and Materials: We analyzed 42 patients with intact cervical cancer treated with daily fractionated pelvic intensity modulated radiation therapy and concurrent chemotherapy in one of 2 prospective clinical trials. We collected online cone beam computed tomography (CBCT) scans before each fraction. Clinical target volume (CTV) structures from the planning computed tomography scan were cast onto each CBCT scan aftermore » rigid registration and manually redrawn to account for organ motion and deformation. We applied the 95% isodose cloud from the planning computed tomography scan to each CBCT scan and computed any CTV outside the 95% isodose cloud. The primary aim was to determine the proportion of CTVs that were encompassed within the 95% isodose volume. A 1-sample t test was used to test the hypothesis that the probability of complete coverage was different from 95%. We used mixed-effects logistic regression to assess effects of time and patient variability. Results: The 95% isodose line completely encompassed 92.3% of all CTVs (95% confidence interval, 88.3%-96.4%), not significantly different from the 95% probability anticipated a priori (P=.19). The overall proportion of missed CTVs was small: the grand mean of covered CTVs was 99.9%, and 95.2% of misses were located in the anterior body of the uterus. Time did not affect coverage probability (P=.71). Conclusions: With the clinical implementation of a previously proposed PTV definition strategy based on a shape model for intact cervical cancer, the probability of CTV coverage was high and the volume of CTV missed was low. This PTV expansion strategy is acceptable for clinical trials and practice; however, we recommend daily image guidance to avoid systematic large misses in select patients.« less

  13. Bone Health Monitoring in Astronauts: Recommended Use of Quantitative Computed Tomography [QCT] for Clinical and Operational Decisions

    NASA Technical Reports Server (NTRS)

    Sibonga, J. D.; Truskowski, P.

    2010-01-01

    This slide presentation reviews the concerns that astronauts in long duration flights might have a greater risk of bone fracture as they age than the general population. A panel of experts was convened to review the information and recommend mechanisms to monitor the health of bones in astronauts. The use of Quantitative Computed Tomography (QCT) scans for risk surveillance to detect the clinical trigger and to inform countermeasure evaluation is reviewed. An added benefit of QCT is that it facilitates an individualized estimation of bone strength by Finite Element Modeling (FEM), that can inform approaches for bone rehabilitation. The use of FEM is reviewed as a process that arrives at a composite number to estimate bone strength, because it integrates multiple factors.

  14. In vivo automated quantification of quality of apples during storage using optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Srivastava, Vishal; Dalal, Devjyoti; Kumar, Anuj; Prakash, Surya; Dalal, Krishna

    2018-06-01

    Moisture content is an important feature of fruits and vegetables. As 80% of apple content is water, so decreasing the moisture content will degrade the quality of apples (Golden Delicious). The computational and texture features of the apples were extracted from optical coherence tomography (OCT) images. A support vector machine with a Gaussian kernel model was used to perform automated classification. To evaluate the quality of wax coated apples during storage in vivo, our proposed method opens up the possibility of fully automated quantitative analysis based on the morphological features of apples. Our results demonstrate that the analysis of the computational and texture features of OCT images may be a good non-destructive method for the assessment of the quality of apples.

  15. A framework for optimizing micro-CT in dual-modality micro-CT/XFCT small-animal imaging system

    NASA Astrophysics Data System (ADS)

    Vedantham, Srinivasan; Shrestha, Suman; Karellas, Andrew; Cho, Sang Hyun

    2017-09-01

    Dual-modality Computed Tomography (CT)/X-ray Fluorescence Computed Tomography (XFCT) can be a valuable tool for imaging and quantifying the organ and tissue distribution of small concentrations of high atomic number materials in small-animal system. In this work, the framework for optimizing the micro-CT imaging system component of the dual-modality system is described, either when the micro-CT images are concurrently acquired with XFCT and using the x-ray spectral conditions for XFCT, or when the micro-CT images are acquired sequentially and independently of XFCT. This framework utilizes the cascaded systems analysis for task-specific determination of the detectability index using numerical observer models at a given radiation dose, where the radiation dose is determined using Monte Carlo simulations.

  16. Reconstruction algorithms based on l1-norm and l2-norm for two imaging models of fluorescence molecular tomography: a comparative study.

    PubMed

    Yi, Huangjian; Chen, Duofang; Li, Wei; Zhu, Shouping; Wang, Xiaorui; Liang, Jimin; Tian, Jie

    2013-05-01

    Fluorescence molecular tomography (FMT) is an important imaging technique of optical imaging. The major challenge of the reconstruction method for FMT is the ill-posed and underdetermined nature of the inverse problem. In past years, various regularization methods have been employed for fluorescence target reconstruction. A comparative study between the reconstruction algorithms based on l1-norm and l2-norm for two imaging models of FMT is presented. The first imaging model is adopted by most researchers, where the fluorescent target is of small size to mimic small tissue with fluorescent substance, as demonstrated by the early detection of a tumor. The second model is the reconstruction of distribution of the fluorescent substance in organs, which is essential to drug pharmacokinetics. Apart from numerical experiments, in vivo experiments were conducted on a dual-modality FMT/micro-computed tomography imaging system. The experimental results indicated that l1-norm regularization is more suitable for reconstructing the small fluorescent target, while l2-norm regularization performs better for the reconstruction of the distribution of fluorescent substance.

  17. Cone beam computed tomography: basics and applications in dentistry.

    PubMed

    Venkatesh, Elluru; Elluru, Snehal Venkatesh

    2017-01-01

    The introduction of cone beam computed tomography (CBCT) devices, changed the way oral and maxillofacial radiology is practiced. CBCT was embraced into the dental settings very rapidly due to its compact size, low cost, low ionizing radiation exposure when compared to medical computed tomography. Alike medical CT, 3 dimensional evaluation of the maxillofacial region with minimal distortion is offered by the CBCT. This article provides an overview of basics of CBCT technology and reviews the specific application of CBCT technology to oral and maxillofacial region with few illustrations.

  18. Microstructure of cotton fibrous assemblies based on computed tomography

    NASA Astrophysics Data System (ADS)

    Jing, Hui; Yu, Weidong

    2017-12-01

    This paper describes for the first time the analysis of inner microstructure of cotton fibrous assemblies using computed tomography. Microstructure parameters such as packing density, fractal dimension as well as porosity including open porosity, closed porosity and total porosity are calculated based on 2D data from computed tomography. Values of packing density and fractal dimension are stable in random oriented fibrous assemblies, and there exists a satisfactory approximate linear relationship between them. Moreover, poles analysis indicates that porosity represents the tightness of fibrous assemblies and open poles are main existence.

  19. Progress of projection computed tomography by upgrading of the beamline 37XU of SPring-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terada, Yasuko, E-mail: yterada@spring8.or.jp; Suzuki, Yoshio; Uesugi, Kentaro

    2016-01-28

    Beamline 37XU at SPring-8 has been upgraded for nano-focusing applications. The length of the beamline has been extended to 80 m. By utilizing this length, the beamline has advantages for experiments such as X-ray focusing, X-ray microscopic imaging and X-ray computed tomography. Projection computed tomography measurements were carried out at experimental hutch 3 located 80 m from the light source. CT images of a microcapsule have been successfully obtained with a wide X-ray energy range.

  20. The use of iohexol as oral contrast for computed tomography of the abdomen and pelvis.

    PubMed

    Horton, Karen M; Fishman, Elliot K; Gayler, Bob

    2008-01-01

    Positive oral contrast agents (high-osmolar iodinated solutions [high-osmolar contrast medium] or barium sulfate suspensions) are used routinely for abdominal computed tomography. However, these agents are not ideal. Patients complain about the taste and, sometimes, refuse to drink the required quantity. Nausea, vomiting, and diarrhea are frequent. In certain clinical indications, either barium suspensions or high-osmolar contrast mediums may be contraindicated. This technical note describes the potential advantages of using low-osmolar iodinated solutions as an oral contrast agent for computed tomography.

  1. Phase-contrast x-ray computed tomography for observing biological specimens and organic materials

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji

    1995-02-01

    A novel three-dimensional x-ray imaging method has been developed by combining a phase-contrast x-ray imaging technique with x-ray computed tomography. This phase-contrast x-ray computed tomography (PCX-CT) provides sectional images of organic specimens that would produce absorption-contrast x-ray CT images with little contrast. Comparing PCX-CT images of rat cerebellum and cancerous rabbit liver specimens with corresponding absorption-contrast CT images shows that PCX-CT is much more sensitive to the internal structure of organic specimens.

  2. Contours identification of elements in a cone beam computed tomography for investigating maxillary cysts

    NASA Astrophysics Data System (ADS)

    Chioran, Doina; Nicoarǎ, Adrian; Roşu, Şerban; Cǎrligeriu, Virgil; Ianeş, Emilia

    2013-10-01

    Digital processing of two-dimensional cone beam computer tomography slicesstarts by identification of the contour of elements within. This paper deals with the collective work of specialists in medicine and applied mathematics in computer science on elaborating and implementation of algorithms in dental 2D imagery.

  3. Neuroanatomy of cranial computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kretschmann, H.J.; Weinrich, W.

    1985-01-01

    Based on the fundamental structures visualized by means of computed tomography, the authors present the functional systems which are relevant in neurology by means of axial cross-sections. All drawings were prepared from original preparations by means of a new technique which is similar to the grey values of X-ray CT and nuclear magnetic resonance tomography. A detailed description is given of the topics of neurofunctional lesions.

  4. The computation of lipophilicities of ⁶⁴Cu PET systems based on a novel approach for fluctuating charges.

    PubMed

    Comba, Peter; Martin, Bodo; Sanyal, Avik; Stephan, Holger

    2013-08-21

    A QSPR scheme for the computation of lipophilicities of ⁶⁴Cu complexes was developed with a training set of 24 tetraazamacrocylic and bispidine-based Cu(II) compounds and their experimentally available 1-octanol-water distribution coefficients. A minimum number of physically meaningful parameters were used in the scheme, and these are primarily based on data available from molecular mechanics calculations, using an established force field for Cu(II) complexes and a recently developed scheme for the calculation of fluctuating atomic charges. The developed model was also applied to an independent validation set and was found to accurately predict distribution coefficients of potential ⁶⁴Cu PET (positron emission tomography) systems. A possible next step would be the development of a QSAR-based biodistribution model to track the uptake of imaging agents in different organs and tissues of the body. It is expected that such simple, empirical models of lipophilicity and biodistribution will be very useful in the design and virtual screening of positron emission tomography (PET) imaging agents.

  5. Tools for studying dry-cured ham processing by using computed tomography.

    PubMed

    Santos-Garcés, Eva; Muñoz, Israel; Gou, Pere; Sala, Xavier; Fulladosa, Elena

    2012-01-11

    An accurate knowledge and optimization of dry-cured ham elaboration processes could help to reduce operating costs and maximize product quality. The development of nondestructive tools to characterize chemical parameters such as salt and water contents and a(w) during processing is of special interest. In this paper, predictive models for salt content (R(2) = 0.960 and RMSECV = 0.393), water content (R(2) = 0.912 and RMSECV = 1.751), and a(w) (R(2) = 0.906 and RMSECV = 0.008), which comprise the whole elaboration process, were developed. These predictive models were used to develop analytical tools such as distribution diagrams, line profiles, and regions of interest (ROIs) from the acquired computed tomography (CT) scans. These CT analytical tools provided quantitative information on salt, water, and a(w) in terms of content but also distribution throughout the process. The information obtained was applied to two industrial case studies. The main drawback of the predictive models and CT analytical tools is the disturbance that fat produces in water content and a(w) predictions.

  6. Pulmonary Nodule Volumetry at Different Low Computed Tomography Radiation Dose Levels With Hybrid and Model-Based Iterative Reconstruction: A Within Patient Analysis.

    PubMed

    den Harder, Annemarie M; Willemink, Martin J; van Hamersvelt, Robbert W; Vonken, Evertjan P A; Schilham, Arnold M R; Lammers, Jan-Willem J; Luijk, Bart; Budde, Ricardo P J; Leiner, Tim; de Jong, Pim A

    2016-01-01

    The aim of the study was to determine the effects of dose reduction and iterative reconstruction (IR) on pulmonary nodule volumetry. In this prospective study, 25 patients scheduled for follow-up of pulmonary nodules were included. Computed tomography acquisitions were acquired at 4 dose levels with a median of 2.1, 1.2, 0.8, and 0.6 mSv. Data were reconstructed with filtered back projection (FBP), hybrid IR, and model-based IR. Volumetry was performed using semiautomatic software. At the highest dose level, more than 91% (34/37) of the nodules could be segmented, and at the lowest dose level, this was more than 83%. Thirty-three nodules were included for further analysis. Filtered back projection and hybrid IR did not lead to significant differences, whereas model-based IR resulted in lower volume measurements with a maximum difference of -11% compared with FBP at routine dose. Pulmonary nodule volumetry can be accurately performed at a submillisievert dose with both FBP and hybrid IR.

  7. Pediatric minor head trauma: do cranial CT scans change the therapeutic approach?

    PubMed

    Andrade, Felipe P; Montoro, Roberto; Oliveira, Renan; Loures, Gabriela; Flessak, Luana; Gross, Roberta; Donnabella, Camille; Puchnick, Andrea; Suzuki, Lisa; Regacini, Rodrigo

    2016-10-01

    1) To verify clinical signs correlated with appropriate cranial computed tomography scan indications and changes in the therapeutic approach in pediatric minor head trauma scenarios. 2) To estimate the radiation exposure of computed tomography scans with low dose protocols in the context of trauma and the additional associated risk. Investigators reviewed the medical records of all children with minor head trauma, which was defined as a Glasgow coma scale ≥13 at the time of admission to the emergency room, who underwent computed tomography scans during the years of 2013 and 2014. A change in the therapeutic approach was defined as a neurosurgical intervention performed within 30 days, hospitalization, >12 hours of observation, or neuro-specialist evaluation. Of the 1006 children evaluated, 101 showed some abnormality on head computed tomography scans, including 49 who were hospitalized, 16 who remained under observation and 36 who were dismissed. No patient underwent neurosurgery. No statistically significant relationship was observed between patient age, time between trauma and admission, or signs/symptoms related to trauma and abnormal imaging results. A statistically significant relationship between abnormal image results and a fall higher than 1.0 meter was observed (p=0.044). The mean effective dose was 2.0 mSv (0.1 to 6.8 mSv), corresponding to an estimated additional cancer risk of 0.05%. A computed tomography scan after minor head injury in pediatric patients did not show clinically relevant abnormalities that could lead to neurosurgical indications. Patients who fell more than 1.0 m were more likely to have changes in imaging tests, although these changes did not require neurosurgical intervention; therefore, the use of computed tomography scans may be questioned in this group. The results support the trend of more careful indications for cranial computed tomography scans for children with minor head trauma.

  8. Cone-beam x-ray luminescence computed tomography based on x-ray absorption dosage.

    PubMed

    Liu, Tianshuai; Rong, Junyan; Gao, Peng; Zhang, Wenli; Liu, Wenlei; Zhang, Yuanke; Lu, Hongbing

    2018-02-01

    With the advances of x-ray excitable nanophosphors, x-ray luminescence computed tomography (XLCT) has become a promising hybrid imaging modality. In particular, a cone-beam XLCT (CB-XLCT) system has demonstrated its potential in in vivo imaging with the advantage of fast imaging speed over other XLCT systems. Currently, the imaging models of most XLCT systems assume that nanophosphors emit light based on the intensity distribution of x-ray within the object, not completely reflecting the nature of the x-ray excitation process. To improve the imaging quality of CB-XLCT, an imaging model that adopts an excitation model of nanophosphors based on x-ray absorption dosage is proposed in this study. To solve the ill-posed inverse problem, a reconstruction algorithm that combines the adaptive Tikhonov regularization method with the imaging model is implemented for CB-XLCT reconstruction. Numerical simulations and phantom experiments indicate that compared with the traditional forward model based on x-ray intensity, the proposed dose-based model could improve the image quality of CB-XLCT significantly in terms of target shape, localization accuracy, and image contrast. In addition, the proposed model behaves better in distinguishing closer targets, demonstrating its advantage in improving spatial resolution. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  9. Modelling the penumbra in Computed Tomography1

    PubMed Central

    Kueh, Audrey; Warnett, Jason M.; Gibbons, Gregory J.; Brettschneider, Julia; Nichols, Thomas E.; Williams, Mark A.; Kendall, Wilfrid S.

    2016-01-01

    BACKGROUND: In computed tomography (CT), the spot geometry is one of the main sources of error in CT images. Since X-rays do not arise from a point source, artefacts are produced. In particular there is a penumbra effect, leading to poorly defined edges within a reconstructed volume. Penumbra models can be simulated given a fixed spot geometry and the known experimental setup. OBJECTIVE: This paper proposes to use a penumbra model, derived from Beer’s law, both to confirm spot geometry from penumbra data, and to quantify blurring in the image. METHODS: Two models for the spot geometry are considered; one consists of a single Gaussian spot, the other is a mixture model consisting of a Gaussian spot together with a larger uniform spot. RESULTS: The model consisting of a single Gaussian spot has a poor fit at the boundary. The mixture model (which adds a larger uniform spot) exhibits a much improved fit. The parameters corresponding to the uniform spot are similar across all powers, and further experiments suggest that the uniform spot produces only soft X-rays of relatively low-energy. CONCLUSIONS: Thus, the precision of radiographs can be estimated from the penumbra effect in the image. The use of a thin copper filter reduces the size of the effective penumbra. PMID:27232198

  10. Computed tomography or rhinoscopy as the first-line procedure for suspected nasal tumor: a pilot study.

    PubMed

    Finck, Marlène; Ponce, Frédérique; Guilbaud, Laurent; Chervier, Cindy; Floch, Franck; Cadoré, Jean-Luc; Chuzel, Thomas; Hugonnard, Marine

    2015-02-01

    There are no evidence-based guidelines as to whether computed tomography (CT) or endoscopy should be selected as the first-line procedure when a nasal tumor is suspected in a dog or a cat and only one examination can be performed. Computed tomography and rhinoscopic features of 17 dogs and 5 cats with a histopathologically or cytologically confirmed nasal tumor were retrospectively reviewed. The level of suspicion for nasal neoplasia after CT and/or rhinoscopy was compared to the definitive diagnosis. Twelve animals underwent CT, 14 underwent rhinoscopy, and 4 both examinations. Of the 12 CT examinations performed, 11 (92%) resulted in the conclusion that a nasal tumor was the most likely diagnosis compared with 9/14 (64%) for rhinoscopies. Computed tomography appeared to be more reliable than rhinoscopy for detecting nasal tumors and should therefore be considered as the first-line procedure.

  11. Computed tomography or rhinoscopy as the first-line procedure for suspected nasal tumor: A pilot study

    PubMed Central

    Finck, Marlène; Ponce, Frédérique; Guilbaud, Laurent; Chervier, Cindy; Floch, Franck; Cadoré, Jean-Luc; Chuzel, Thomas; Hugonnard, Marine

    2015-01-01

    There are no evidence-based guidelines as to whether computed tomography (CT) or endoscopy should be selected as the first-line procedure when a nasal tumor is suspected in a dog or a cat and only one examination can be performed. Computed tomography and rhinoscopic features of 17 dogs and 5 cats with a histopathologically or cytologically confirmed nasal tumor were retrospectively reviewed. The level of suspicion for nasal neoplasia after CT and/or rhinoscopy was compared to the definitive diagnosis. Twelve animals underwent CT, 14 underwent rhinoscopy, and 4 both examinations. Of the 12 CT examinations performed, 11 (92%) resulted in the conclusion that a nasal tumor was the most likely diagnosis compared with 9/14 (64%) for rhinoscopies. Computed tomography appeared to be more reliable than rhinoscopy for detecting nasal tumors and should therefore be considered as the first-line procedure. PMID:25694669

  12. Review of cardiovascular imaging in The Journal of Nuclear Cardiology in 2014: Part 1 of 2: Positron emission tomography, computed tomography, and neuronal imaging.

    PubMed

    AlJaroudi, Wael A; Hage, Fadi G

    2015-06-01

    The year 2014 has been an exciting year for the cardiovascular imaging community with significant advances in the realm of nuclear and multimodality cardiac imaging. In this new feature of the Journal of Nuclear Cardiology, we will summarize some of the breakthroughs that were published in the Journal in 2014 in 2 sister articles. This first article will concentrate on publications dealing with cardiac positron emission tomography (PET), computed tomography (CT), and neuronal imaging.

  13. Trends in micro- and nanoComputed Tomography 2008-2010

    NASA Astrophysics Data System (ADS)

    Stock, S. R.

    2010-09-01

    Trends in micro- and nanoComputed Tomography (CT) from January 2008 through July 2010 are the subject of this brief report which takes up where a previous report in Developments in X-ray Tomography VI (2008) concluded. First, the number of systems operating world-wide is estimated. The main focus is on what searches of three citation indices (Web of Science, Compendex and PubMed) reveal about the field of micro- and nanoCT. Given research-fielddependent and disparate terminology used by investigators, searches were on "microtomography", "microCT" and "synchrotron tomography".

  14. Conifer ovulate cones accumulate pollen principally by simple impaction.

    PubMed

    Cresswell, James E; Henning, Kevin; Pennel, Christophe; Lahoubi, Mohamed; Patrick, Michael A; Young, Phillipe G; Tabor, Gavin R

    2007-11-13

    In many pine species (Family Pinaceae), ovulate cones structurally resemble a turbine, which has been widely interpreted as an adaptation for improving pollination by producing complex aerodynamic effects. We tested the turbine interpretation by quantifying patterns of pollen accumulation on ovulate cones in a wind tunnel and by using simulation models based on computational fluid dynamics. We used computer-aided design and computed tomography to create computational fluid dynamics model cones. We studied three species: Pinus radiata, Pinus sylvestris, and Cedrus libani. Irrespective of the approach or species studied, we found no evidence that turbine-like aerodynamics made a significant contribution to pollen accumulation, which instead occurred primarily by simple impaction. Consequently, we suggest alternative adaptive interpretations for the structure of ovulate cones.

  15. Conifer ovulate cones accumulate pollen principally by simple impaction

    PubMed Central

    Cresswell, James E.; Henning, Kevin; Pennel, Christophe; Lahoubi, Mohamed; Patrick, Michael A.; Young, Phillipe G.; Tabor, Gavin R.

    2007-01-01

    In many pine species (Family Pinaceae), ovulate cones structurally resemble a turbine, which has been widely interpreted as an adaptation for improving pollination by producing complex aerodynamic effects. We tested the turbine interpretation by quantifying patterns of pollen accumulation on ovulate cones in a wind tunnel and by using simulation models based on computational fluid dynamics. We used computer-aided design and computed tomography to create computational fluid dynamics model cones. We studied three species: Pinus radiata, Pinus sylvestris, and Cedrus libani. Irrespective of the approach or species studied, we found no evidence that turbine-like aerodynamics made a significant contribution to pollen accumulation, which instead occurred primarily by simple impaction. Consequently, we suggest alternative adaptive interpretations for the structure of ovulate cones. PMID:17986613

  16. Seismic modeling of Earth's 3D structure: Recent advancements

    NASA Astrophysics Data System (ADS)

    Ritsema, J.

    2008-12-01

    Global models of Earth's seismic structure continue to improve due to the growth of seismic data sets, implementation of advanced wave propagations theories, and increased computational power. In my presentation, I will summarize seismic tomography results from the past 5-10 years. I will compare the most recent P and S velocity models, discuss model resolution and model interpretation, and present an, admittedly biased, list of research directions required to develop the next generation 3D models.

  17. A parallel computational model for GATE simulations.

    PubMed

    Rannou, F R; Vega-Acevedo, N; El Bitar, Z

    2013-12-01

    GATE/Geant4 Monte Carlo simulations are computationally demanding applications, requiring thousands of processor hours to produce realistic results. The classical strategy of distributing the simulation of individual events does not apply efficiently for Positron Emission Tomography (PET) experiments, because it requires a centralized coincidence processing and large communication overheads. We propose a parallel computational model for GATE that handles event generation and coincidence processing in a simple and efficient way by decentralizing event generation and processing but maintaining a centralized event and time coordinator. The model is implemented with the inclusion of a new set of factory classes that can run the same executable in sequential or parallel mode. A Mann-Whitney test shows that the output produced by this parallel model in terms of number of tallies is equivalent (but not equal) to its sequential counterpart. Computational performance evaluation shows that the software is scalable and well balanced. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Accuracy of Bolton analysis measured in laser scanned digital models compared with plaster models (gold standard) and cone-beam computer tomography images.

    PubMed

    Kim, Jooseong; Lagravére, Manuel O

    2016-01-01

    The aim of this study was to compare the accuracy of Bolton analysis obtained from digital models scanned with the Ortho Insight three-dimensional (3D) laser scanner system to those obtained from cone-beam computed tomography (CBCT) images and traditional plaster models. CBCT scans and plaster models were obtained from 50 patients. Plaster models were scanned using the Ortho Insight 3D laser scanner; Bolton ratios were calculated with its software. CBCT scans were imported and analyzed using AVIZO software. Plaster models were measured with a digital caliper. Data were analyzed with descriptive statistics and the intraclass correlation coefficient (ICC). Anterior and overall Bolton ratios obtained by the three different modalities exhibited excellent agreement (> 0.970). The mean differences between the scanned digital models and physical models and between the CBCT images and scanned digital models for overall Bolton ratios were 0.41 ± 0.305% and 0.45 ± 0.456%, respectively; for anterior Bolton ratios, 0.59 ± 0.520% and 1.01 ± 0.780%, respectively. ICC results showed that intraexaminer error reliability was generally excellent (> 0.858 for all three diagnostic modalities), with < 1.45% discrepancy in the Bolton analysis. Laser scanned digital models are highly accurate compared to physical models and CBCT scans for assessing the spatial relationships of dental arches for orthodontic diagnosis.

  19. Electromagnetic navigated positioning of the maxilla after Le Fort I osteotomy in preclinical orthognathic surgery cases.

    PubMed

    Berger, Moritz; Nova, Igor; Kallus, Sebastian; Ristow, Oliver; Eisenmann, Urs; Freudlsperger, Christian; Seeberger, Robin; Hoffmann, Jürgen; Dickhaus, Hartmut

    2017-03-01

    Inaccuracies in orthognathic surgery can be caused during face-bow registration, model surgery on plaster models, and intermaxillary splint manufacturing. Electromagnetic (EM) navigation is a promising method for splintless digitized maxillary positioning. After performing Le Fort I osteotomy on 10 plastic skulls, the target position of the maxilla was guided by an EM navigation system. Specially implemented software illustrated the target position by real-time multistage colored three-dimensional imaging. Accuracy was determined by using pre- and postoperative cone beam computed tomography. The high accuracy of the EM system was underlined by the fact that it had a navigated maxilla position discrepancy of only 0.4 mm, which was verified by postoperative cone beam computed tomography. This preclinical study demonstrates a precise digitized approach for splintless maxillary repositioning after Le Fort I osteotomy. The accuracy and intuitive illustration of the introduced EM navigation system is promising for potential daily use in orthognathic surgery. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Migration without migraines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lines, L.; Burton, A.; Lu, H.X.

    Accurate velocity models are a necessity for reliable migration results. Velocity analysis generally involves the use of methods such as normal moveout analysis (NMO), seismic traveltime tomography, or iterative prestack migration. These techniques can be effective, and each has its own advantage or disadvantage. Conventional NMO methods are relatively inexpensive but basically require simplifying assumptions about geology. Tomography is a more general method but requires traveltime interpretation of prestack data. Iterative prestack depth migration is very general but is computationally expensive. In some cases, there is the opportunity to estimate vertical velocities by use of well information. The well informationmore » can be used to optimize poststack migrations, thereby eliminating some of the time and expense of iterative prestack migration. The optimized poststack migration procedure defined here computes the velocity model which minimizes the depth differences between seismic images and formation depths at the well by using a least squares inversion method. The optimization methods described in this paper will hopefully produce ``migrations without migraines.``« less

  1. How to Study Thermal Applications of Open-Cell Metal Foam: Experiments and Computational Fluid Dynamics

    PubMed Central

    De Schampheleire, Sven; De Jaeger, Peter; De Kerpel, Kathleen; Ameel, Bernd; Huisseune, Henk; De Paepe, Michel

    2016-01-01

    This paper reviews the available methods to study thermal applications with open-cell metal foam. Both experimental and numerical work are discussed. For experimental research, the focus of this review is on the repeatability of the results. This is a major concern, as most studies only report the dependence of thermal properties on porosity and a number of pores per linear inch (PPI-value). A different approach, which is studied in this paper, is to characterize the foam using micro tomography scans with small voxel sizes. The results of these scans are compared to correlations from the open literature. Large differences are observed. For the numerical work, the focus is on studies using computational fluid dynamics. A novel way of determining the closure terms is proposed in this work. This is done through a numerical foam model based on micro tomography scan data. With this foam model, the closure terms are determined numerically. PMID:28787894

  2. Sustained-release microsphere formulation containing an agrochemical by polyurethane polymerization during an agitation granulation process.

    PubMed

    Terada, Takatoshi; Tagami, Manabu; Ohtsubo, Toshiro; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru

    2016-07-25

    In this report, a new solventless microencapsulation method by synthesizing polyurethane (PU) from polyol and isocyanate during an agglomeration process in a high-speed mixing apparatus was developed. Clothianidin (CTD), which is a neonicotinoid insecticide and highly effective against a wide variety of insect pests, was used as the model compound. The microencapsulated samples covered with PU (CTD microspheres) had a median diameter of <75μm and sustained-release properties. The CTD microspheres were analyzed by synchrotron X-ray computed tomography measurements. Multiple cores of CTD and other solid excipient were dispersed in PU. Although voids appeared in the CTD microspheres after CTD release, the spherical shape of the microspheres remained stable and no change in its framework was observed. The experimental release data were highly consistent with the Baker-Lonsdale model derived from drug release of spherical monolithic dispersions and consistent with the computed tomography measurements. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Quantum State Tomography via Linear Regression Estimation

    PubMed Central

    Qi, Bo; Hou, Zhibo; Li, Li; Dong, Daoyi; Xiang, Guoyong; Guo, Guangcan

    2013-01-01

    A simple yet efficient state reconstruction algorithm of linear regression estimation (LRE) is presented for quantum state tomography. In this method, quantum state reconstruction is converted into a parameter estimation problem of a linear regression model and the least-squares method is employed to estimate the unknown parameters. An asymptotic mean squared error (MSE) upper bound for all possible states to be estimated is given analytically, which depends explicitly upon the involved measurement bases. This analytical MSE upper bound can guide one to choose optimal measurement sets. The computational complexity of LRE is O(d4) where d is the dimension of the quantum state. Numerical examples show that LRE is much faster than maximum-likelihood estimation for quantum state tomography. PMID:24336519

  4. Core Binding Site of a Thioflavin-T-Derived Imaging Probe on Amyloid β Fibrils Predicted by Computational Methods.

    PubMed

    Kawai, Ryoko; Araki, Mitsugu; Yoshimura, Masashi; Kamiya, Narutoshi; Ono, Masahiro; Saji, Hideo; Okuno, Yasushi

    2018-05-16

    Development of new diagnostic imaging probes for Alzheimer's disease, such as positron emission tomography (PET) and single photon emission computed tomography (SPECT) probes, has been strongly desired. In this study, we investigated the most accessible amyloid β (Aβ) binding site of [ 123 I]IMPY, a Thioflavin-T-derived SPECT probe, using experimental and computational methods. First, we performed a competitive inhibition assay with Orange-G, which recognizes the KLVFFA region in Aβ fibrils, suggesting that IMPY and Orange-G bind to different sites in Aβ fibrils. Next, we precisely predicted the IMPY binding site on a multiple-protofilament Aβ fibril model using computational approaches, consisting of molecular dynamics and docking simulations. We generated possible IMPY-binding structures using docking simulations to identify candidates for probe-binding sites. The binding free energy of IMPY with the Aβ fibril was calculated by a free energy simulation method, MP-CAFEE. These computational results suggest that IMPY preferentially binds to an interfacial pocket located between two protofilaments and is stabilized mainly through hydrophobic interactions. Finally, our computational approach was validated by comparing it with the experimental results. The present study demonstrates the possibility of computational approaches to screen new PET/SPECT probes for Aβ imaging.

  5. X-ray micro computed tomography characterization of cellular SiC foams for their applications in chemical engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ou, Xiaoxia

    Open-cell SiC foams clearly are promising materials for continuous-flow chemical applications such as heterogeneous catalysis and distillation. X-ray micro computed tomography characterization of cellular β-SiC foams at a spatial voxel size of 13.6{sup 3} μm{sup 3} and the interpretation of morphological properties of SiC open-cell foams with implications to their transport properties are presented. Static liquid hold-up in SiC foams was investigated through in-situ draining experiments for the first time using the μ-CT technique providing thorough 3D information about the amount and distribution of liquid hold-up inside the foam. This will enable better modeling and design of structured reactors basedmore » on SiC foams in the future. In order to see more practical uses, μ-CT data of cellular foams must be exploited to optimize the design of the morphology of foams for a specific application. - Highlights: •Characterization of SiC foams using novel X-ray micro computed tomography. •Interpretation of structural properties of SiC foams regarding to their transport properties. •Static liquid hold-up analysis of SiC foams through in-situ draining experiments.« less

  6. Multifractal Analysis of Seismically Induced Soft-Sediment Deformation Structures Imaged by X-Ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Nakashima, Yoshito; Komatsubara, Junko

    Unconsolidated soft sediments deform and mix complexly by seismically induced fluidization. Such geological soft-sediment deformation structures (SSDSs) recorded in boring cores were imaged by X-ray computed tomography (CT), which enables visualization of the inhomogeneous spatial distribution of iron-bearing mineral grains as strong X-ray absorbers in the deformed strata. Multifractal analysis was applied to the two-dimensional (2D) CT images with various degrees of deformation and mixing. The results show that the distribution of the iron-bearing mineral grains is multifractal for less deformed/mixed strata and almost monofractal for fully mixed (i.e. almost homogenized) strata. Computer simulations of deformation of real and synthetic digital images were performed using the egg-beater flow model. The simulations successfully reproduced the transformation from the multifractal spectra into almost monofractal spectra (i.e. almost convergence on a single point) with an increase in deformation/mixing intensity. The present study demonstrates that multifractal analysis coupled with X-ray CT and the mixing flow model is useful to quantify the complexity of seismically induced SSDSs, standing as a novel method for the evaluation of cores for seismic risk assessment.

  7. Time of flight imaging through scattering environments (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Le, Toan H.; Breitbach, Eric C.; Jackson, Jonathan A.; Velten, Andreas

    2017-02-01

    Light scattering is a primary obstacle to imaging in many environments. On small scales in biomedical microscopy and diffuse tomography scenarios scattering is caused by tissue. On larger scales scattering from dust and fog provide challenges to vision systems for self driving cars and naval remote imaging systems. We are developing scale models for scattering environments and investigation methods for improved imaging particularly using time of flight transient information. With the emergence of Single Photon Avalanche Diode detectors and fast semiconductor lasers, illumination and capture on picosecond timescales are becoming possible in inexpensive, compact, and robust devices. This opens up opportunities for new computational imaging techniques that make use of photon time of flight. Time of flight or range information is used in remote imaging scenarios in gated viewing and in biomedical imaging in time resolved diffuse tomography. In addition spatial filtering is popular in biomedical scenarios with structured illumination and confocal microscopy. We are presenting a combination analytical, computational, and experimental models that allow us develop and test imaging methods across scattering scenarios and scales. This framework will be used for proof of concept experiments to evaluate new computational imaging methods.

  8. Optical coherence tomography and computer-aided diagnosis of a murine model of chronic kidney disease

    NASA Astrophysics Data System (ADS)

    Wang, Bohan; Wang, Hsing-Wen; Guo, Hengchang; Anderson, Erik; Tang, Qinggong; Wu, Tongtong; Falola, Reuben; Smith, Tikina; Andrews, Peter M.; Chen, Yu

    2017-12-01

    Chronic kidney disease (CKD) is characterized by a progressive loss of renal function over time. Histopathological analysis of the condition of glomeruli and the proximal convolutional tubules over time can provide valuable insights into the progression of CKD. Optical coherence tomography (OCT) is a technology that can analyze the microscopic structures of a kidney in a nondestructive manner. Recently, we have shown that OCT can provide real-time imaging of kidney microstructures in vivo without administering exogenous contrast agents. A murine model of CKD induced by intravenous Adriamycin (ADR) injection is evaluated by OCT. OCT images of the rat kidneys have been captured every week up to eight weeks. Tubular diameter and hypertrophic tubule population of the kidneys at multiple time points after ADR injection have been evaluated through a fully automated computer-vision system. Results revealed that mean tubular diameter and hypertrophic tubule population increase with time in post-ADR injection period. The results suggest that OCT images of the kidney contain abundant information about kidney histopathology. Fully automated computer-aided diagnosis based on OCT has the potential for clinical evaluation of CKD conditions.

  9. [Measurement of intracranial hematoma volume by personal computer].

    PubMed

    DU, Wanping; Tan, Lihua; Zhai, Ning; Zhou, Shunke; Wang, Rui; Xue, Gongshi; Xiao, An

    2011-01-01

    To explore the method for intracranial hematoma volume measurement by the personal computer. Forty cases of various intracranial hematomas were measured by the computer tomography with quantitative software and personal computer with Photoshop CS3 software, respectively. the data from the 2 methods were analyzed and compared. There was no difference between the data from the computer tomography and the personal computer (P>0.05). The personal computer with Photoshop CS3 software can measure the volume of various intracranial hematomas precisely, rapidly and simply. It should be recommended in the clinical medicolegal identification.

  10. Examples of Current and Future Uses of Neural-Net Image Processing for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    2004-01-01

    Feed forward artificial neural networks are very convenient for performing correlated interpolation of pairs of complex noisy data sets as well as detecting small changes in image data. Image-to-image, image-to-variable and image-to-index applications have been tested at Glenn. Early demonstration applications are summarized including image-directed alignment of optics, tomography, flow-visualization control of wind-tunnel operations and structural-model-trained neural networks. A practical application is reviewed that employs neural-net detection of structural damage from interference fringe patterns. Both sensor-based and optics-only calibration procedures are available for this technique. These accomplishments have generated the knowledge necessary to suggest some other applications for NASA and Government programs. A tomography application is discussed to support Glenn's Icing Research tomography effort. The self-regularizing capability of a neural net is shown to predict the expected performance of the tomography geometry and to augment fast data processing. Other potential applications involve the quantum technologies. It may be possible to use a neural net as an image-to-image controller of an optical tweezers being used for diagnostics of isolated nano structures. The image-to-image transformation properties also offer the potential for simulating quantum computing. Computer resources are detailed for implementing the black box calibration features of the neural nets.

  11. Integrin-Targeted Hybrid Fluorescence Molecular Tomography/X-ray Computed Tomography for Imaging Tumor Progression and Early Response in Non-Small Cell Lung Cancer.

    PubMed

    Ma, Xiaopeng; Phi Van, Valerie; Kimm, Melanie A; Prakash, Jaya; Kessler, Horst; Kosanke, Katja; Feuchtinger, Annette; Aichler, Michaela; Gupta, Aayush; Rummeny, Ernst J; Eisenblätter, Michel; Siveke, Jens; Walch, Axel K; Braren, Rickmer; Ntziachristos, Vasilis; Wildgruber, Moritz

    2017-01-01

    Integrins play an important role in tumor progression, invasion and metastasis. Therefore we aimed to evaluate a preclinical imaging approach applying ανβ3 integrin targeted hybrid Fluorescence Molecular Tomography/X-ray Computed Tomography (FMT-XCT) for monitoring tumor progression as well as early therapy response in a syngeneic murine Non-Small Cell Lung Cancer (NSCLC) model. Lewis Lung Carcinomas were grown orthotopically in C57BL/6 J mice and imaged in-vivo using a ανβ3 targeted near-infrared fluorescence (NIRF) probe. ανβ3-targeted FMT-XCT was able to track tumor progression. Cilengitide was able to substantially block the binding of the NIRF probe and suppress the imaging signal. Additionally mice were treated with an established chemotherapy regimen of Cisplatin and Bevacizumab or with a novel MEK inhibitor (Refametinib) for 2 weeks. While μCT revealed only a moderate slowdown of tumor growth, ανβ3 dependent signal decreased significantly compared to non-treated mice already at one week post treatment. ανβ3 targeted imaging might therefore become a promising tool for assessment of early therapy response in the future. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Visualising Earth's Mantle based on Global Adjoint Tomography

    NASA Astrophysics Data System (ADS)

    Bozdag, E.; Pugmire, D.; Lefebvre, M. P.; Hill, J.; Komatitsch, D.; Peter, D. B.; Podhorszki, N.; Tromp, J.

    2017-12-01

    Recent advances in 3D wave propagation solvers and high-performance computing have enabled regional and global full-waveform inversions. Interpretation of tomographic models is often done on visually. Robust and efficient visualization tools are necessary to thoroughly investigate large model files, particularly at the global scale. In collaboration with Oak Ridge National Laboratory (ORNL), we have developed effective visualization tools and used for visualization of our first-generation global model, GLAD-M15 (Bozdag et al. 2016). VisIt (https://wci.llnl.gov/simulation/computer-codes/visit/) is used for initial exploration of the models and for extraction of seismological features. The broad capability of VisIt, and its demonstrated scalability proved valuable for experimenting with different visualization techniques, and in the creation of timely results. Utilizing VisIt's plugin-architecture, a data reader plugin was developed, which reads the ADIOS (https://www.olcf.ornl.gov/center-projects/adios/) format of our model files. Blender (https://www.blender.org) is used for the setup of lighting, materials, camera paths and rendering of geometry. Python scripting was used to control the orchestration of different geometries, as well as camera animation for 3D movies. While we continue producing 3D contour plots and movies for various seismic parameters to better visualize plume- and slab-like features as well as anisotropy throughout the mantle, our aim is to make visualization an integral part of our global adjoint tomography workflow to routinely produce various 2D cross-sections to facilitate examination of our models after each iteration. This will ultimately form the basis for use of pattern recognition techniques in our investigations. Simulations for global adjoint tomography are performed on ORNL's Titan system and visualization is done in parallel on ORNL's post-processing cluster Rhea.

  13. Computed Tomography of the Musculoskeletal System.

    PubMed

    Ballegeer, Elizabeth A

    2016-05-01

    Computed tomography (CT) has specific uses in veterinary species' appendicular musculoskeletal system. Parameters for acquisition of images, interpretation limitations, as well as published information regarding its use in small animals is reviewed. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Novel prediction model of renal function after nephrectomy from automated renal volumetry with preoperative multidetector computed tomography (MDCT).

    PubMed

    Isotani, Shuji; Shimoyama, Hirofumi; Yokota, Isao; Noma, Yasuhiro; Kitamura, Kousuke; China, Toshiyuki; Saito, Keisuke; Hisasue, Shin-ichi; Ide, Hisamitsu; Muto, Satoru; Yamaguchi, Raizo; Ukimura, Osamu; Gill, Inderbir S; Horie, Shigeo

    2015-10-01

    The predictive model of postoperative renal function may impact on planning nephrectomy. To develop the novel predictive model using combination of clinical indices with computer volumetry to measure the preserved renal cortex volume (RCV) using multidetector computed tomography (MDCT), and to prospectively validate performance of the model. Total 60 patients undergoing radical nephrectomy from 2011 to 2013 participated, including a development cohort of 39 patients and an external validation cohort of 21 patients. RCV was calculated by voxel count using software (Vincent, FUJIFILM). Renal function before and after radical nephrectomy was assessed via the estimated glomerular filtration rate (eGFR). Factors affecting postoperative eGFR were examined by regression analysis to develop the novel model for predicting postoperative eGFR with a backward elimination method. The predictive model was externally validated and the performance of the model was compared with that of the previously reported models. The postoperative eGFR value was associated with age, preoperative eGFR, preserved renal parenchymal volume (RPV), preserved RCV, % of RPV alteration, and % of RCV alteration (p < 0.01). The significant correlated variables for %eGFR alteration were %RCV preservation (r = 0.58, p < 0.01) and %RPV preservation (r = 0.54, p < 0.01). We developed our regression model as follows: postoperative eGFR = 57.87 - 0.55(age) - 15.01(body surface area) + 0.30(preoperative eGFR) + 52.92(%RCV preservation). Strong correlation was seen between postoperative eGFR and the calculated estimation model (r = 0.83; p < 0.001). The external validation cohort (n = 21) showed our model outperformed previously reported models. Combining MDCT renal volumetry and clinical indices might yield an important tool for predicting postoperative renal function.

  15. Data and Workflow Management Challenges in Global Adjoint Tomography

    NASA Astrophysics Data System (ADS)

    Lei, W.; Ruan, Y.; Smith, J. A.; Modrak, R. T.; Orsvuran, R.; Krischer, L.; Chen, Y.; Balasubramanian, V.; Hill, J.; Turilli, M.; Bozdag, E.; Lefebvre, M. P.; Jha, S.; Tromp, J.

    2017-12-01

    It is crucial to take the complete physics of wave propagation into account in seismic tomography to further improve the resolution of tomographic images. The adjoint method is an efficient way of incorporating 3D wave simulations in seismic tomography. However, global adjoint tomography is computationally expensive, requiring thousands of wavefield simulations and massive data processing. Through our collaboration with the Oak Ridge National Laboratory (ORNL) computing group and an allocation on Titan, ORNL's GPU-accelerated supercomputer, we are now performing our global inversions by assimilating waveform data from over 1,000 earthquakes. The first challenge we encountered is dealing with the sheer amount of seismic data. Data processing based on conventional data formats and processing tools (such as SAC), which are not designed for parallel systems, becomes our major bottleneck. To facilitate the data processing procedures, we designed the Adaptive Seismic Data Format (ASDF) and developed a set of Python-based processing tools to replace legacy FORTRAN-based software. These tools greatly enhance reproducibility and accountability while taking full advantage of highly parallel system and showing superior scaling on modern computational platforms. The second challenge is that the data processing workflow contains more than 10 sub-procedures, making it delicate to handle and prone to human mistakes. To reduce human intervention as much as possible, we are developing a framework specifically designed for seismic inversion based on the state-of-the art workflow management research, specifically the Ensemble Toolkit (EnTK), in collaboration with the RADICAL team from Rutgers University. Using the initial developments of the EnTK, we are able to utilize the full computing power of the data processing cluster RHEA at ORNL while keeping human interaction to a minimum and greatly reducing the data processing time. Thanks to all the improvements, we are now able to perform iterations fast enough on more than a 1,000 earthquakes dataset. Starting from model GLAD-M15 (Bozdag et al., 2016), an elastic 3D model with a transversely isotropic upper mantle, we have successfully performed 5 iterations. Our goal is to finish 10 iterations, i.e., generating GLAD M25* by the end of this year.

  16. Cholangiocarcinoma associated with limbic encephalitis and early cerebral abnormalities detected by 2-deoxy-2-[fluorine-18]fluoro-D-glucose integrated with computed tomography-positron emission tomography: a case report.

    PubMed

    Schmidt, Sergio L; Schmidt, Juliana J; Tolentino, Julio C; Ferreira, Carlos G; de Almeida, Sergio A; Alvarenga, Regina P; Simoes, Eunice N; Schmidt, Guilherme J; Canedo, Nathalie H S; Chimelli, Leila

    2016-07-20

    Limbic encephalitis was originally described as a rare clinical neuropathological entity involving seizures and neuropsychological disturbances. In this report, we describe cerebral patterns visualized by positron emission tomography in a patient with limbic encephalitis and cholangiocarcinoma. To our knowledge, there is no other description in the literature of cerebral positron emission tomography findings in the setting of limbic encephalitis and subsequent diagnosis of cholangiocarcinoma. We describe a case of a 77-year-old Caucasian man who exhibited persistent cognitive changes 2 years before his death. A cerebral scan obtained at that time by 2-deoxy-2-[fluorine-18]fluoro- D -glucose integrated with computed tomography-positron emission tomography showed low radiotracer uptake in the frontal and temporal lobes. Cerebrospinal fluid analysis indicated the presence of voltage-gated potassium channel antibodies. Three months before the patient's death, a lymph node biopsy indicated a cholangiocarcinoma, and a new cerebral scan obtained by 2-deoxy-2-[fluorine-18]fluoro-D-glucose integrated with computed tomography-positron emission tomography showed an increment in the severity of metabolic deficit in the frontal and parietal lobes, as well as hypometabolism involving the temporal lobes. Two months before the patient's death, cerebral metastases were detected on a contrast-enhanced computed tomographic scan. Postmortem examination revealed a cholangiocarcinoma with multiple metastases including the lungs and lymph nodes. The patient's brain weighed 1300 g, and mild cortical atrophy, ex vacuo dilation of the ventricles, and mild focal thickening of the cerebellar leptomeninges, which were infiltrated by neoplastic epithelial cells, were observed. These findings support the need for continued vigilance in malignancy surveillance in patients with limbic encephalitis and early cerebral positron emission tomographic scan abnormalities. The difficulty in early diagnosis of small tumors, such as a cholangiocarcinoma, is discussed in the context of the clinical utility of early cerebral hypometabolism detected by 2-deoxy-2-[fluorine-18]fluoro-D-glucose integrated with computed tomography-positron emission tomography in patients with rapidly progressive dementia.

  17. Intraoperative 3-Dimensional Computed Tomography and Navigation in Foot and Ankle Surgery.

    PubMed

    Chowdhary, Ashwin; Drittenbass, Lisca; Dubois-Ferrière, Victor; Stern, Richard; Assal, Mathieu

    2016-09-01

    Computer-assisted orthopedic surgery has developed dramatically during the past 2 decades. This article describes the use of intraoperative 3-dimensional computed tomography and navigation in foot and ankle surgery. Traditional imaging based on serial radiography or C-arm-based fluoroscopy does not provide simultaneous real-time 3-dimensional imaging, and thus leads to suboptimal visualization and guidance. Three-dimensional computed tomography allows for accurate intraoperative visualization of the position of bones and/or navigation implants. Such imaging and navigation helps to further reduce intraoperative complications, leads to improved surgical outcomes, and may become the gold standard in foot and ankle surgery. [Orthopedics.2016; 39(5):e1005-e1010.]. Copyright 2016, SLACK Incorporated.

  18. Computer aided detection of ureteral stones in thin slice computed tomography volumes using Convolutional Neural Networks.

    PubMed

    Längkvist, Martin; Jendeberg, Johan; Thunberg, Per; Loutfi, Amy; Lidén, Mats

    2018-06-01

    Computed tomography (CT) is the method of choice for diagnosing ureteral stones - kidney stones that obstruct the ureter. The purpose of this study is to develop a computer aided detection (CAD) algorithm for identifying a ureteral stone in thin slice CT volumes. The challenge in CAD for urinary stones lies in the similarity in shape and intensity of stones with non-stone structures and how to efficiently deal with large high-resolution CT volumes. We address these challenges by using a Convolutional Neural Network (CNN) that works directly on the high resolution CT volumes. The method is evaluated on a large data base of 465 clinically acquired high-resolution CT volumes of the urinary tract with labeling of ureteral stones performed by a radiologist. The best model using 2.5D input data and anatomical information achieved a sensitivity of 100% and an average of 2.68 false-positives per patient on a test set of 88 scans. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Analysis of iterative region-of-interest image reconstruction for x-ray computed tomography

    PubMed Central

    Sidky, Emil Y.; Kraemer, David N.; Roth, Erin G.; Ullberg, Christer; Reiser, Ingrid S.; Pan, Xiaochuan

    2014-01-01

    Abstract. One of the challenges for iterative image reconstruction (IIR) is that such algorithms solve an imaging model implicitly, requiring a complete representation of the scanned subject within the viewing domain of the scanner. This requirement can place a prohibitively high computational burden for IIR applied to x-ray computed tomography (CT), especially when high-resolution tomographic volumes are required. In this work, we aim to develop an IIR algorithm for direct region-of-interest (ROI) image reconstruction. The proposed class of IIR algorithms is based on an optimization problem that incorporates a data fidelity term, which compares a derivative of the estimated data with the available projection data. In order to characterize this optimization problem, we apply it to computer-simulated two-dimensional fan-beam CT data, using both ideal noiseless data and realistic data containing a level of noise comparable to that of the breast CT application. The proposed method is demonstrated for both complete field-of-view and ROI imaging. To demonstrate the potential utility of the proposed ROI imaging method, it is applied to actual CT scanner data. PMID:25685824

  20. Analysis of iterative region-of-interest image reconstruction for x-ray computed tomography.

    PubMed

    Sidky, Emil Y; Kraemer, David N; Roth, Erin G; Ullberg, Christer; Reiser, Ingrid S; Pan, Xiaochuan

    2014-10-03

    One of the challenges for iterative image reconstruction (IIR) is that such algorithms solve an imaging model implicitly, requiring a complete representation of the scanned subject within the viewing domain of the scanner. This requirement can place a prohibitively high computational burden for IIR applied to x-ray computed tomography (CT), especially when high-resolution tomographic volumes are required. In this work, we aim to develop an IIR algorithm for direct region-of-interest (ROI) image reconstruction. The proposed class of IIR algorithms is based on an optimization problem that incorporates a data fidelity term, which compares a derivative of the estimated data with the available projection data. In order to characterize this optimization problem, we apply it to computer-simulated two-dimensional fan-beam CT data, using both ideal noiseless data and realistic data containing a level of noise comparable to that of the breast CT application. The proposed method is demonstrated for both complete field-of-view and ROI imaging. To demonstrate the potential utility of the proposed ROI imaging method, it is applied to actual CT scanner data.

  1. Experimental validation of a linear model for data reduction in chirp-pulse microwave CT.

    PubMed

    Miyakawa, M; Orikasa, K; Bertero, M; Boccacci, P; Conte, F; Piana, M

    2002-04-01

    Chirp-pulse microwave computerized tomography (CP-MCT) is an imaging modality developed at the Department of Biocybernetics, University of Niigata (Niigata, Japan), which intends to reduce the microwave-tomography problem to an X-ray-like situation. We have recently shown that data acquisition in CP-MCT can be described in terms of a linear model derived from scattering theory. In this paper, we validate this model by showing that the theoretically computed response function is in good agreement with the one obtained from a regularized multiple deconvolution of three data sets measured with the prototype of CP-MCT. Furthermore, the reliability of the model as far as image restoration in concerned, is tested in the case of space-invariant conditions by considering the reconstruction of simple on-axis cylindrical phantoms.

  2. Domain identification in impedance computed tomography by spline collocation method

    NASA Technical Reports Server (NTRS)

    Kojima, Fumio

    1990-01-01

    A method for estimating an unknown domain in elliptic boundary value problems is considered. The problem is formulated as an inverse problem of integral equations of the second kind. A computational method is developed using a splice collocation scheme. The results can be applied to the inverse problem of impedance computed tomography (ICT) for image reconstruction.

  3. A minute fossil phoretic mite recovered by phase-contrast X-ray computed tomography.

    PubMed

    Dunlop, Jason A; Wirth, Stefan; Penney, David; McNeil, Andrew; Bradley, Robert S; Withers, Philip J; Preziosi, Richard F

    2012-06-23

    High-resolution phase-contrast X-ray computed tomography (CT) reveals the phoretic deutonymph of a fossil astigmatid mite (Acariformes: Astigmata) attached to a spider's carapace (Araneae: Dysderidae) in Eocene (44-49 Myr ago) Baltic amber. Details of appendages and a sucker plate were resolved, and the resulting three-dimensional model demonstrates the potential of tomography to recover morphological characters of systematic significance from even the tiniest amber inclusions without the need for a synchrotron. Astigmatids have an extremely sparse palaeontological record. We confirm one of the few convincing fossils, potentially the oldest record of Histiostomatidae. At 176 µm long, we believe this to be the smallest arthropod in amber to be CT-scanned as a complete body fossil, extending the boundaries for what can be recovered using this technique. We also demonstrate a minimum age for the evolution of phoretic behaviour among their deutonymphs, an ecological trait used by extant species to disperse into favourable environments. The occurrence of the fossil on a spider is noteworthy, as modern histiostomatids tend to favour other arthropods as carriers.

  4. Safety Precautions and Operating Procedures in an (A)BSL-4 Laboratory: 4. Medical Imaging Procedures.

    PubMed

    Byrum, Russell; Keith, Lauren; Bartos, Christopher; St Claire, Marisa; Lackemeyer, Matthew G; Holbrook, Michael R; Janosko, Krisztina; Barr, Jason; Pusl, Daniela; Bollinger, Laura; Wada, Jiro; Coe, Linda; Hensley, Lisa E; Jahrling, Peter B; Kuhn, Jens H; Lentz, Margaret R

    2016-10-03

    Medical imaging using animal models for human diseases has been utilized for decades; however, until recently, medical imaging of diseases induced by high-consequence pathogens has not been possible. In 2014, the National Institutes of Health, National Institute of Allergy and Infectious Diseases, Integrated Research Facility at Fort Detrick opened an Animal Biosafety Level 4 (ABSL-4) facility to assess the clinical course and pathology of infectious diseases in experimentally infected animals. Multiple imaging modalities including computed tomography (CT), magnetic resonance imaging, positron emission tomography, and single photon emission computed tomography are available to researchers for these evaluations. The focus of this article is to describe the workflow for safely obtaining a CT image of a live guinea pig in an ABSL-4 facility. These procedures include animal handling, anesthesia, and preparing and monitoring the animal until recovery from sedation. We will also discuss preparing the imaging equipment, performing quality checks, communication methods from "hot side" (containing pathogens) to "cold side," and moving the animal from the holding room to the imaging suite.

  5. Fast automatic segmentation of anatomical structures in x-ray computed tomography images to improve fluorescence molecular tomography reconstruction.

    PubMed

    Freyer, Marcus; Ale, Angelique; Schulz, Ralf B; Zientkowska, Marta; Ntziachristos, Vasilis; Englmeier, Karl-Hans

    2010-01-01

    The recent development of hybrid imaging scanners that integrate fluorescence molecular tomography (FMT) and x-ray computed tomography (XCT) allows the utilization of x-ray information as image priors for improving optical tomography reconstruction. To fully capitalize on this capacity, we consider a framework for the automatic and fast detection of different anatomic structures in murine XCT images. To accurately differentiate between different structures such as bone, lung, and heart, a combination of image processing steps including thresholding, seed growing, and signal detection are found to offer optimal segmentation performance. The algorithm and its utilization in an inverse FMT scheme that uses priors is demonstrated on mouse images.

  6. Microfocus computed tomography in medicine

    NASA Astrophysics Data System (ADS)

    Obodovskiy, A. V.

    2018-02-01

    Recent advances in the field of high-frequency power schemes for X-ray devices allow the creation of high-resolution instruments. At the department of electronic devices and Equipment of the St. Petersburg State Electrotechnical University, a model of a microfocus computer tomograph was developed. Used equipment allows to receive projection data with an increase up to 100 times. A distinctive feature of the device is the possibility of implementing various schemes for obtaining projection data.

  7. Including Short Period Constraints In the Construction of Full Waveform Tomographic Models

    NASA Astrophysics Data System (ADS)

    Roy, C.; Calo, M.; Bodin, T.; Romanowicz, B. A.

    2015-12-01

    Thanks to the introduction of the Spectral Element Method (SEM) in seismology, which allows accurate computation of the seismic wavefield in complex media, the resolution of regional and global tomographic models has improved in recent years. However, due to computational costs, only long period waveforms are considered, and only long wavelength structure can be constrained. Thus, the resulting 3D models are smooth, and only represent a small volumetric perturbation around a smooth reference model that does not include upper-mantle discontinuities (e.g. MLD, LAB). Extending the computations to shorter periods, necessary for the resolution of smaller scale features, is computationally challenging. In order to overcome these limitations and to account for layered structure in the upper mantle in our full waveform tomography, we include information provided by short period seismic observables (receiver functions and surface wave dispersion), sensitive to sharp boundaries and anisotropic structure respectively. In a first step, receiver functions and dispersion curves are used to generate a number of 1D radially anisotropic shear velocity profiles using a trans-dimensional Markov-chain Monte Carlo (MCMC) algorithm. These 1D profiles include both isotropic and anisotropic discontinuities in the upper mantle (above 300 km depth) beneath selected stationsand are then used to build a 3D starting model for the full waveform tomographic inversion. This model is built after 1) interpolation between the available 1D profiles, and 2) homogeneization of the layered 1D models to obtain an equivalent smooth 3D starting model in the period range of interest for waveform inversion. The waveforms used in the inversion are collected for paths contained in the region of study and filtered at periods longer than 40s. We use the spectral element code "RegSEM" (Cupillard et al., 2012) for forward computations and a quasi-Newton inversion approach in which kernels are computed using normal mode perturbation theory. We present here the first reults of such an approach after successive iterations of a full waveform tomography of the North American continent.

  8. A multi-scale Lattice Boltzmann model for simulating solute transport in 3D X-ray micro-tomography images of aggregated porous materials

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxian; Crawford, John W.; Flavel, Richard J.; Young, Iain M.

    2016-10-01

    The Lattice Boltzmann (LB) model and X-ray computed tomography (CT) have been increasingly used in combination over the past decade to simulate water flow and chemical transport at pore scale in porous materials. Because of its limitation in resolution and the hierarchical structure of most natural soils, the X-ray CT tomography can only identify pores that are greater than its resolution and treats other pores as solid. As a result, the so-called solid phase in X-ray images may in reality be a grey phase, containing substantial connected pores capable of conducing fluids and solute. Although modified LB models have been developed to simulate fluid flow in such media, models for solute transport are relatively limited. In this paper, we propose a LB model for simulating solute transport in binary soil images containing permeable solid phase. The model is based on the single-relaxation time approach and uses a modified partial bounce-back method to describe the resistance caused by the permeable solid phase to chemical transport. We derive the relationship between the diffusion coefficient and the parameter introduced in the partial bounce-back method, and test the model against analytical solution for movement of a pulse of tracer. We also validate it against classical finite volume method for solute diffusion in a simple 2D image, and then apply the model to a soil image acquired using X-ray tomography at resolution of 30 μm in attempts to analyse how the ability of the solid phase to diffuse solute at micron-scale affects the behaviour of the solute at macro-scale after a volumetric average. Based on the simulated results, we discuss briefly the danger in interpreting experimental results using the continuum model without fully understanding the pore-scale processes, as well as the potential of using pore-scale modelling and tomography to help improve the continuum models.

  9. Bone Mass in Boys with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Calarge, Chadi A.; Schlechte, Janet A.

    2017-01-01

    To examine bone mass in children and adolescents with autism spectrum disorders (ASD). Risperidone-treated 5 to 17 year-old males underwent anthropometric and bone measurements, using dual-energy X-ray absorptiometry and peripheral quantitative computed tomography. Multivariable linear regression analysis models examined whether skeletal outcomes…

  10. Preparation and therapeutic evaluation of (188)Re-thermogelling emulsion in rat model of hepatocellular carcinoma.

    PubMed

    Shih, Ying-Hsia; Lin, Xi-Zhang; Yeh, Chung-Hsin; Peng, Cheng-Liang; Shieh, Ming-Jium; Lin, Wuu-Jyh; Luo, Tsai-Yueh

    2014-01-01

    Radiolabeled Lipiodol(®) (Guerbet, Villepinte, France) is routinely used in hepatoma therapy. The temperature-sensitive hydrogel polyethylene glycol-b-poly-DL-lactic acid-co-glycolic acid-b-polyethylene glycol triblock copolymer is used as an embolic agent and sustained drug release system. This study attempted to combine the polyethylene glycol-b-poly-DL-lactic acid-co-glycolic acid-b-polyethylene glycol hydrogel and radio-labeled Lipiodol to form a new radio-thermogelling emulsion, rhenium-188-N,N'-1,2-ethanediylbis-L-cysteine diethyl-ester dihydrochloride-Lipiodol/hydrogel ((188)Re-ELH). The therapeutic potential of (188)Re-ELH was evaluated in a rodent hepatoma model. Rhenium-188 chelated with N,N'-1,2-ethanediylbis-L-cysteine diethyl-ester dihydrochloride was extracted with Lipiodol to obtain rhenium-188-N,N'-1,2-ethanediylbis-L-cysteine diethyl-ester dihydrochloride-Lipiodol ((188)Re-EL), which was blended with the hydrogel in equal volumes to develop (188)Re-ELH. The (188)Re-ELH phase stability was evaluated at different temperatures. Biodistribution patterns and micro-single-photon emission computed tomography/computed tomography images in Sprague Dawley rats implanted with the rat hepatoma cell line N1-S1 were observed after in situ tumoral injection of ~3.7 MBq (188)Re-ELH. The therapeutic potential of (188)Re-EL (48.58±3.86 MBq/0.1 mL, n=12) was evaluated in a 2-month survival study using the same animal model. The therapeutic effects of (188)Re-ELH (25.52±4.64 MBq/0.1 mL, n=12) were evaluated and compared with those of (188)Re-EL. The responses were assessed by changes in tumor size and survival rates. The (188)Re-ELH emulsion was stable in the gel form at 25°C-35°C for >52 hours. Biodistribution data and micro-single-photon emission computed tomography/computed tomography images of the (188)Re-ELH group indicated that most activity was selectively observed in hepatomas. Long-term (188)Re-ELH studies have demonstrated protracted reductions in tumor volumes and positive effects on the survival rates (75%) of N1-S1 hepatoma-bearing rats. Conversely, the 2-month survival rate was 13% in the control sham group. Therapeutic responses differed significantly between the two groups (P<0.005). Thus, the hydrogel enhanced the injection stability of (188)Re-EL in an animal hepatoma model. Given the synergistic results, direct (188)Re-ELH intratumoral injection is a potential therapeutic alternative for hepatoma treatment.

  11. Preparation and therapeutic evaluation of 188Re-thermogelling emulsion in rat model of hepatocellular carcinoma

    PubMed Central

    Shih, Ying-Hsia; Lin, Xi-Zhang; Yeh, Chung-Hsin; Peng, Cheng-Liang; Shieh, Ming-Jium; Lin, Wuu-Jyh; Luo, Tsai-Yueh

    2014-01-01

    Radiolabeled Lipiodol® (Guerbet, Villepinte, France) is routinely used in hepatoma therapy. The temperature-sensitive hydrogel polyethylene glycol-b-poly-DL-lactic acid-co-glycolic acid-b-polyethylene glycol triblock copolymer is used as an embolic agent and sustained drug release system. This study attempted to combine the polyethylene glycol-b-poly-DL-lactic acid-co-glycolic acid-b-polyethylene glycol hydrogel and radio-labeled Lipiodol to form a new radio-thermogelling emulsion, rhenium-188–N,N’-1,2-ethanediylbis-L-cysteine diethyl-ester dihydrochloride–Lipiodol/hydrogel (188Re-ELH). The therapeutic potential of 188Re-ELH was evaluated in a rodent hepatoma model. Rhenium-188 chelated with N,N’-1,2-ethanediylbis-L-cysteine diethyl-ester dihydrochloride was extracted with Lipiodol to obtain rhenium-188–N,N’-1,2-ethanediylbis-L-cysteine diethyl-ester dihydrochloride–Lipiodol (188Re-EL), which was blended with the hydrogel in equal volumes to develop 188Re-ELH. The 188Re-ELH phase stability was evaluated at different temperatures. Biodistribution patterns and micro-single-photon emission computed tomography/computed tomography images in Sprague Dawley rats implanted with the rat hepatoma cell line N1-S1 were observed after in situ tumoral injection of ~3.7 MBq 188Re-ELH. The therapeutic potential of 188Re-EL (48.58±3.86 MBq/0.1 mL, n=12) was evaluated in a 2-month survival study using the same animal model. The therapeutic effects of 188Re-ELH (25.52±4.64 MBq/0.1 mL, n=12) were evaluated and compared with those of 188Re-EL. The responses were assessed by changes in tumor size and survival rates. The 188Re-ELH emulsion was stable in the gel form at 25°C–35°C for >52 hours. Biodistribution data and micro-single-photon emission computed tomography/computed tomography images of the 188Re-ELH group indicated that most activity was selectively observed in hepatomas. Long-term 188Re-ELH studies have demonstrated protracted reductions in tumor volumes and positive effects on the survival rates (75%) of N1-S1 hepatoma-bearing rats. Conversely, the 2-month survival rate was 13% in the control sham group. Therapeutic responses differed significantly between the two groups (P<0.005). Thus, the hydrogel enhanced the injection stability of 188Re-EL in an animal hepatoma model. Given the synergistic results, direct 188Re-ELH intratumoral injection is a potential therapeutic alternative for hepatoma treatment. PMID:25214783

  12. Entrance surface dose distribution and organ dose assessment for cone-beam computed tomography using measurements and Monte Carlo simulations with voxel phantoms

    NASA Astrophysics Data System (ADS)

    Baptista, M.; Di Maria, S.; Vieira, S.; Vaz, P.

    2017-11-01

    Cone-Beam Computed Tomography (CBCT) enables high-resolution volumetric scanning of the bone and soft tissue anatomy under investigation at the treatment accelerator. This technique is extensively used in Image Guided Radiation Therapy (IGRT) for pre-treatment verification of patient position and target volume localization. When employed daily and several times per patient, CBCT imaging may lead to high cumulative imaging doses to the healthy tissues surrounding the exposed organs. This work aims at (1) evaluating the dose distribution during a CBCT scan and (2) calculating the organ doses involved in this image guiding procedure for clinically available scanning protocols. Both Monte Carlo (MC) simulations and measurements were performed. To model and simulate the kV imaging system mounted on a linear accelerator (Edge™, Varian Medical Systems) the state-of-the-art MC radiation transport program MCNPX 2.7.0 was used. In order to validate the simulation results, measurements of the Computed Tomography Dose Index (CTDI) were performed, using standard PMMA head and body phantoms, with 150 mm length and a standard pencil ionizing chamber (IC) 100 mm long. Measurements for head and pelvis scanning protocols, usually adopted in clinical environment were acquired, using two acquisition modes (full-fan and half fan). To calculate the organ doses, the implemented MC model of the CBCT scanner together with a male voxel phantom ("Golem") was used. The good agreement between the MCNPX simulations and the CTDIw measurements (differences up to 17%) presented in this work reveals that the CBCT MC model was successfully validated, taking into account the several uncertainties. The adequacy of the computational model to map dose distributions during a CBCT scan is discussed in order to identify ways to reduce the total CBCT imaging dose. The organ dose assessment highlights the need to evaluate the therapeutic and the CBCT imaging doses, in a more balanced approach, and the importance of improving awareness regarding the increased risk, arising from repeated exposures.

  13. Clinical applications of cone beam computed tomography in endodontics: A comprehensive review.

    PubMed

    Cohenca, Nestor; Shemesh, Hagay

    2015-09-01

    The use of cone beam computed tomography (CBCT) in endodontics has been extensively reported in the literature. Compared with the traditional spiral computed tomography, limited field of view (FOV) CBCT results in a fraction of the effective absorbed dose of radiation. The purpose of this manuscript is to review the application and advantages associated with advanced endodontic problems and complications, while reducing radiation exposure during complex endodontic procedures. The benefits of the added diagnostic information provided by intraoperative CBCT images in select cases justify the risk associated with the limited level of radiation exposure.

  14. Dry coupling for whole-body small-animal photoacoustic computed tomography

    NASA Astrophysics Data System (ADS)

    Yeh, Chenghung; Li, Lei; Zhu, Liren; Xia, Jun; Li, Chiye; Chen, Wanyi; Garcia-Uribe, Alejandro; Maslov, Konstantin I.; Wang, Lihong V.

    2017-04-01

    We have enhanced photoacoustic computed tomography with dry acoustic coupling that eliminates water immersion anxiety and wrinkling of the animal and facilitates incorporating complementary modalities and procedures. The dry acoustic coupler is made of a tubular elastic membrane enclosed by a closed transparent water tank. The tubular membrane ensures water-free contact with the animal, and the closed water tank allows pressurization for animal stabilization. The dry coupler was tested using a whole-body small-animal ring-shaped photoacoustic computed tomography system. Dry coupling was found to provide image quality comparable to that of conventional water coupling.

  15. Linear-array based full-view high-resolution photoacoustic computed tomography of whole mouse brain functions in vivo

    NASA Astrophysics Data System (ADS)

    Li, Lei; Zhang, Pengfei; Wang, Lihong V.

    2018-02-01

    Photoacoustic computed tomography (PACT) is a non-invasive imaging technique offering high contrast, high resolution, and deep penetration in biological tissues. We report a photoacoustic computed tomography (PACT) system equipped with a high frequency linear array for anatomical and functional imaging of the mouse whole brain. The linear array was rotationally scanned in the coronal plane to achieve the full-view coverage. We investigated spontaneous neural activities in the deep brain by monitoring the hemodynamics and observed strong interhemispherical correlations between contralateral regions, both in the cortical layer and in the deep regions.

  16. Effectiveness of diagnostic strategies in suspected delayed cerebral ischemia: a decision analysis.

    PubMed

    Rawal, Sapna; Barnett, Carolina; John-Baptiste, Ava; Thein, Hla-Hla; Krings, Timo; Rinkel, Gabriel J E

    2015-01-01

    Delayed cerebral ischemia (DCI) is a serious complication after aneurysmal subarachnoid hemorrhage. If DCI is suspected clinically, imaging methods designed to detect angiographic vasospasm or regional hypoperfusion are often used before instituting therapy. Uncertainty in the strength of the relationship between imaged vasospasm or perfusion deficits and DCI-related outcomes raises the question of whether imaging to select patients for therapy improves outcomes in clinical DCI. Decision analysis was performed using Markov models. Strategies were either to treat all patients immediately or to first undergo diagnostic testing by digital subtraction angiography or computed tomography angiography to assess for angiographic vasospasm, or computed tomography perfusion to assess for perfusion deficits. According to current practice guidelines, treatment consisted of induced hypertension. Outcomes were survival in terms of life-years and quality-adjusted life-years. When treatment was assumed to be ineffective in nonvasospasm patients, Treat All and digital subtraction angiography were equivalent strategies; when a moderate treatment effect was assumed in nonvasospasm patients, Treat All became the superior strategy. Treating all patients was also superior to selecting patients for treatment via computed tomography perfusion. One-way sensitivity analyses demonstrated that the models were robust; 2- and 3-way sensitivity analyses with variation of disease and treatment parameters reinforced dominance of the Treat All strategy. Imaging studies to test for the presence of angiographic vasospasm or perfusion deficits in patients with clinical DCI do not seem helpful in selecting which patients should undergo treatment and may not improve outcomes. Future directions include validating these results in prospective cohort studies. © 2014 American Heart Association, Inc.

  17. Scatter correction for cone-beam computed tomography using self-adaptive scatter kernel superposition

    NASA Astrophysics Data System (ADS)

    Xie, Shi-Peng; Luo, Li-Min

    2012-06-01

    The authors propose a combined scatter reduction and correction method to improve image quality in cone beam computed tomography (CBCT). The scatter kernel superposition (SKS) method has been used occasionally in previous studies. However, this method differs in that a scatter detecting blocker (SDB) was used between the X-ray source and the tested object to model the self-adaptive scatter kernel. This study first evaluates the scatter kernel parameters using the SDB, and then isolates the scatter distribution based on the SKS. The quality of image can be improved by removing the scatter distribution. The results show that the method can effectively reduce the scatter artifacts, and increase the image quality. Our approach increases the image contrast and reduces the magnitude of cupping. The accuracy of the SKS technique can be significantly improved in our method by using a self-adaptive scatter kernel. This method is computationally efficient, easy to implement, and provides scatter correction using a single scan acquisition.

  18. Evaluation of a computational model to predict elbow range of motion

    PubMed Central

    Nishiwaki, Masao; Johnson, James A.; King, Graham J. W.; Athwal, George S.

    2014-01-01

    Computer models capable of predicting elbow flexion and extension range of motion (ROM) limits would be useful for assisting surgeons in improving the outcomes of surgical treatment of patients with elbow contractures. A simple and robust computer-based model was developed that predicts elbow joint ROM using bone geometries calculated from computed tomography image data. The model assumes a hinge-like flexion-extension axis, and that elbow passive ROM limits can be based on terminal bony impingement. The model was validated against experimental results with a cadaveric specimen, and was able to predict the flexion and extension limits of the intact joint to 0° and 3°, respectively. The model was also able to predict the flexion and extension limits to 1° and 2°, respectively, when simulated osteophytes were inserted into the joint. Future studies based on this approach will be used for the prediction of elbow flexion-extension ROM in patients with primary osteoarthritis to help identify motion-limiting hypertrophic osteophytes, and will eventually permit real-time computer-assisted navigated excisions. PMID:24841799

  19. Inter- and intraobserver reliability of the vertebral, local and segmental kyphosis in 120 traumatic lumbar and thoracic burst fractures: evaluation in lateral X-rays and sagittal computed tomographies

    PubMed Central

    Brunner, Alexander; Gühring, Markus; Schmälzle, Traude; Weise, Kuno; Badke, Andreas

    2009-01-01

    Evaluation of the kyphosis angle in thoracic and lumbar burst fractures is often used to indicate surgical procedures. The kyphosis angle could be measured as vertebral, segmental and local kyphosis according to the method of Cobb. The vertebral, segmental and local kyphosis according to the method of Cobb were measured at 120 lateral X-rays and sagittal computed tomographies of 60 thoracic and 60 lumbar burst fractures by 3 independent observers on 2 separate occasions. Osteoporotic fractures were excluded. The intra- and interobserver reliability of these angles in X-ray and computed tomogram, using the intra class correlation coefficient (ICC) were evaluated. Highest reproducibility showed the segmental kyphosis followed by the vertebral kyphosis. For thoracic fractures segmental kyphosis shows in X-ray “excellent” inter- and intraobserver reliabilities (ICC 0.826, 0.802) and for lumbar fractures “good” to “excellent” inter- and intraobserver reliabilities (ICC = 0.790, 0.803). In computed tomography, the segmental kyphosis showed “excellent” inter- and intraobserver reliabilities (ICC = 0.824, 0.801) for thoracic and “excellent” inter- and intraobserver reliabilities (ICC = 0.874, 0.835) for the lumbar fractures. Regarding both diagnostic work ups (X-ray and computed tomography), significant differences were evaluated in interobserver reliabilities for vertebral kyphosis measured in lumbar fracture X-rays (p = 0.035) and interobserver reliabilities for local kyphosis, measured in thoracic fracture X-rays (p = 0.010). Regarding both fracture localizations (thoracic and lumbar fractures), significant differences could only be evaluated in interobserver reliabilities for the local kyphosis measured in computed tomographies (p = 0.045) and in intraobserver reliabilities for the vertebral kyphosis measured in X-rays (p = 0.024). “Good” to “excellent” inter- and intraobserver reliabilities for vertebral, segmental and local kyphosis in X-ray make these angles to a helpful tool, indicating surgical procedures. For the practical use in lateral X-ray, we emphasize the determination of the segmental kyphosis, because of the highest reproducibility of this angle. “Good” to “excellent” inter- and intraobserver reliabilities for these three angles could also be evaluated in computed tomographies. Therefore, also in computed tomography, the use of these three angles seems to be generally possible. For a direct correlation of the results in lateral X-ray and in computed tomography, further studies should be needed. PMID:19953277

  20. Dipyridamole stress myocardial perfusion by computed tomography in patients with left bundle branch block.

    PubMed

    Cabeda, Estêvan Vieira; Falcão, Andréa Maria Gomes; Soares, José; Rochitte, Carlos Eduardo; Nomura, César Higa; Ávila, Luiz Francisco Rodrigues; Parga, José Rodrigues

    2015-12-01

    Functional tests have limited accuracy for identifying myocardial ischemia in patients with left bundle branch block (LBBB). To assess the diagnostic accuracy of dipyridamole-stress myocardial computed tomography perfusion (CTP) by 320-detector CT in patients with LBBB using invasive quantitative coronary angiography (QCA) (stenosis ≥ 70%) as reference; to investigate the advantage of adding CTP to coronary computed tomography angiography (CTA) and compare the results with those of single photon emission computed tomography (SPECT) myocardial perfusion scintigraphy. Thirty patients with LBBB who had undergone SPECT for the investigation of coronary artery disease were referred for stress tomography. Independent examiners performed per-patient and per-coronary territory assessments. All patients gave written informed consent to participate in the study that was approved by the institution's ethics committee. The patients' mean age was 62 ± 10 years. The mean dose of radiation for the tomography protocol was 9.3 ± 4.6 mSv. With regard to CTP, the per-patient values for sensitivity, specificity, positive and negative predictive values, and accuracy were 86%, 81%, 80%, 87%, and 83%, respectively (p = 0.001). The per-territory values were 63%, 86%, 65%, 84%, and 79%, respectively (p < 0.001). In both analyses, the addition of CTP to CTA achieved higher diagnostic accuracy for detecting myocardial ischemia than SPECT (p < 0.001). The use of the stress tomography protocol is feasible and has good diagnostic accuracy for assessing myocardial ischemia in patients with LBBB.

  1. Role of positron emission tomography/computed tomography in breast cancer.

    PubMed

    Bourgeois, Austin C; Warren, Lance A; Chang, Ted T; Embry, Scott; Hudson, Kathleen; Bradley, Yong C

    2013-09-01

    Although positron emission tomography (PET) imaging may not be used in the diagnosis of breast cancer, the use of PET/computed tomography is imperative in all aspects of breast cancer staging, treatment, and follow-up. PET will continue to be relevant in personalized medicine because accurate tumor status will be even more critical during and after the transition from a generic metabolic agent to receptor imaging. Positron emission mammography is an imaging proposition that may have benefits in lower doses, but its use is limited without new radiopharmaceuticals. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Transurethral Ultrasound Diffraction Tomography

    DTIC Science & Technology

    2007-03-01

    the covariance matrix was derived. The covariance reduced to that of the X- ray CT under the assumptions of linear operator and real data.[5] The...the covariance matrix in the linear x- ray computed tomography is a special case of the inverse scattering matrix derived in this paper. The matrix was...is derived in Sec. IV, and its relation to that of the linear x- ray computed tomography appears in Sec. V. In Sec. VI, the inverse scattering

  3. A vessel length-based method to compute coronary fractional flow reserve from optical coherence tomography images.

    PubMed

    Lee, Kyung Eun; Lee, Seo Ho; Shin, Eun-Seok; Shim, Eun Bo

    2017-06-26

    Hemodynamic simulation for quantifying fractional flow reserve (FFR) is often performed in a patient-specific geometry of coronary arteries reconstructed from the images from various imaging modalities. Because optical coherence tomography (OCT) images can provide more precise vascular lumen geometry, regardless of stenotic severity, hemodynamic simulation based on OCT images may be effective. The aim of this study is to perform OCT-FFR simulations by coupling a 3D CFD model from geometrically correct OCT images with a LPM based on vessel lengths extracted from CAG data with clinical validations for the present method. To simulate coronary hemodynamics, we developed a fast and accurate method that combined a computational fluid dynamics (CFD) model of an OCT-based region of interest (ROI) with a lumped parameter model (LPM) of the coronary microvasculature and veins. Here, the LPM was based on vessel lengths extracted from coronary X-ray angiography (CAG) images. Based on a vessel length-based approach, we describe a theoretical formulation for the total resistance of the LPM from a three-dimensional (3D) CFD model of the ROI. To show the utility of this method, we present calculated examples of FFR from OCT images. To validate the OCT-based FFR calculation (OCT-FFR) clinically, we compared the computed OCT-FFR values for 17 vessels of 13 patients with clinically measured FFR (M-FFR) values. A novel formulation for the total resistance of LPM is introduced to accurately simulate a 3D CFD model of the ROI. The simulated FFR values compared well with clinically measured ones, showing the accuracy of the method. Moreover, the present method is fast in terms of computational time, enabling clinicians to provide solutions handled within the hospital.

  4. Comparison of Scientific Calipers and Computer-Enabled CT Review for the Measurement of Skull Base and Craniomaxillofacial Dimensions

    PubMed Central

    Citardi, Martin J.; Herrmann, Brian; Hollenbeak, Chris S.; Stack, Brendan C.; Cooper, Margaret; Bucholz, Richard D.

    2001-01-01

    Traditionally, cadaveric studies and plain-film cephalometrics provided information about craniomaxillofacial proportions and measurements; however, advances in computer technology now permit software-based review of computed tomography (CT)-based models. Distances between standardized anatomic points were measured on five dried human skulls with standard scientific calipers (Geneva Gauge, Albany, NY) and through computer workstation (StealthStation 2.6.4, Medtronic Surgical Navigation Technology, Louisville, CO) review of corresponding CT scans. Differences in measurements between the caliper and CT model were not statistically significant for each parameter. Measurements obtained by computer workstation CT review of the cranial skull base are an accurate representation of actual bony anatomy. Such information has important implications for surgical planning and clinical research. ImagesFigure 1Figure 2Figure 3 PMID:17167599

  5. Inspection of a Medieval Wood Sculpture Using Computer Tomography

    NASA Astrophysics Data System (ADS)

    Kapitany, K.; Somogyi, A.; Barsi, A.

    2016-06-01

    Computer tomography (CT) is an excellent technique for obtaining accurate 3D information about the human body. It allows to visualize the organs, bones and blood vessels, furthermore it enables to diagnose anomalies and diseases. Its spatial reconstruction capability supports other interesting applications, such as inspecting different, even valuable objects like ancient sculptures. Current paper presents a methodology of evaluating CT and video imagery through the example of investigating a wood Madonna with infant Jesus sculpture from the 14th century. The developed techniques extract the outer boundary of the statue, which has been triangulated to derive the surface model. The interior of the sculpture has also been revealed: the iron bolts and rivets as well as the woodworm holes can be mapped. By merging the interior and outer data (geometry and texture) interesting visualizations (perspective views, sections etc.) have been created.

  6. Targeted in-vivo computed tomography (CT) imaging of tissue ACE using concentrated lisinopril-capped gold nanoparticle solutions

    NASA Astrophysics Data System (ADS)

    Daniel, Marie-Christine; Aras, Omer; Smith, Mark F.; Nan, Anjan; Fleiter, Thorsten

    2010-04-01

    The development of cardiac and pulmonary fibrosis have been associated with overexpression of angiotensin-converting enzyme (ACE). Moreover, ACE inhibitors, such as lisinopril, have shown a benificial effect for patients diagnosed with heart failure or systemic hypertension. Thus targeted imaging of the ACE is of crucial importance for monitoring of the tissue ACE activity as well as the treatment efficacy in heart failure. In this respect, lisinopril-capped gold nanoparticles were prepared to provide a new type of probe for targeted molecular imaging of ACE by tuned K-edge computed tomography (CT) imaging. Concentrated solutions of these modified gold nanoparticles, with a diameter around 16 nm, showed high contrast in CT imaging. These new targeted imaging agents were thus used for in vivo imaging on rat models.

  7. APPLICATION OF COMPUTER AIDED TOMOGRAPHY (CAT) TO THE STUDY OF MARINE BENTIC COMMUNITIES

    EPA Science Inventory

    Sediment cores were imaged using a Computer-Aided Tomography (CT) scanner at Massachusetts General Hospital, Boston, Massachusetts, United States. Procedures were developed, using the attenuation of X-rays, to differentiate between sediment and the water contained in macrobenthic...

  8. How to interpret computed tomography of the lumbar spine

    PubMed Central

    Mobasheri, R; Das, T; Vaidya, S; Mallik, S; El-Hussainy, M; Casey, A

    2014-01-01

    Computed tomography (CT) of the spine has remained an important tool in the investigation of spinal pathology. This article helps to explain the basics of CT of the lumbar spine to allow the clinician better use of this diagnostic tool. PMID:25245727

  9. Clinical and computed tomography features of secondary renal hyperparathyroidism

    PubMed Central

    Vanbrugghe, Benoît; Blond, Laurent; Carioto, Lisa; Carmel, Eric Norman; Nadeau, Marie-Eve

    2011-01-01

    An atypical case of secondary renal hyperparathyroidism was diagnosed in a 9-year-old miniature schnauzer after a skull computed tomography (CT) showed the presence of 2 bilateral and symmetrical soft tissue maxillary masses, and osteopenia of the skull. PMID:21532826

  10. Visualisation of the temporary cavity by computed tomography using contrast material.

    PubMed

    Schyma, Christian; Hagemeier, Lars; Greschus, Susanne; Schild, Hans; Madea, Burkhard

    2012-01-01

    The temporary cavity of a missile produces radial tears in ordnance gelatine, which correlate to the energy transfer. Computed tomography is a useful and non-destructive method to examine gelatine blocks. However, the tears give only few radiocontrast by air filling, which decreases with the time past shooting. Therefore, systematically, a radiocontrast material was searched to enhance the contrast. Different contrast materials were amalgamated to acryl paint, and about 7 g was sealed in a foil bag, which was integrated in the front of a standard 10% gelatine cylinder. Shots with Action-5 expanding bullets were performed from a 5-m distance. Gelatine was scanned by multi-slice computed tomography. The multiplanar reconstructed images were compared to mechanically cut slices of 1 cm thickness. It was shown experimentally that iodine containing water-soluble contrast material did not give sufficient contrast and caused diffusion artefacts. Best results were obtained by barium sulphate emulsion. The amount of acryl paint was sufficient to colour the tears for optical scanning. The radiocontrast of barium leads to satisfying imaging of tears and allowed the creation of a three-dimensional reconstruction of the temporary cavity. Comparison of optical and radiological results showed an excellent correlation, but absolute measures in computed tomographic (CT) images remained lower compared with optically gathered values in the gelatine slices. Combination of paint and contrast material for CT examination will facilitate the evaluation of complex ballistic models and increase accuracy.

  11. Peri-implant assessment via cone beam computed tomography and digital periapical radiography: an ex vivo study.

    PubMed

    Silveira-Neto, Nicolau; Flores, Mateus Ericson; De Carli, João Paulo; Costa, Max Dória; Matos, Felipe de Souza; Paranhos, Luiz Renato; Linden, Maria Salete Sandini

    2017-11-01

    This research evaluated detail registration in peri-implant bone using two different cone beam computer tomography systems and a digital periapical radiograph. Three different image acquisition protocols were established for each cone beam computer tomography apparatus, and three clinical situations were simulated in an ex vivo fresh pig mandible: buccal bone defect, peri-implant bone defect, and bone contact. Data were subjected to two analyses: quantitative and qualitative. The quantitative analyses involved a comparison of real specimen measures using a digital caliper in three regions of the preserved buccal bone - A, B and E (control group) - to cone beam computer tomography images obtained with different protocols (kp1, kp2, kp3, ip1, ip2, and ip3). In the qualitative analyses, the ability to register peri-implant details via tomography and digital periapical radiography was verified, as indicated by twelve evaluators. Data were analyzed with ANOVA and Tukey's test (α=0.05). The quantitative assessment showed means statistically equal to those of the control group under the following conditions: buccal bone defect B and E with kp1 and ip1, peri-implant bone defect E with kp2 and kp3, and bone contact A with kp1, kp2, kp3, and ip2. Qualitatively, only bone contacts were significantly different among the assessments, and the p3 results differed from the p1 and p2 results. The other results were statistically equivalent. The registration of peri-implant details was influenced by the image acquisition protocol, although metal artifacts were produced in all situations. The evaluators preferred the Kodak 9000 3D cone beam computer tomography in most cases. The evaluators identified buccal bone defects better with cone beam computer tomography and identified peri-implant bone defects better with digital periapical radiography.

  12. The Mundrabilla Meteorite in Three-Dimensions

    NASA Technical Reports Server (NTRS)

    Gillies, D. C.; Carpenter, P. K.; Engel, H. P.

    2003-01-01

    Computed tomography (CT) using gamma radiation has revealed the interior structure of the anomalous iron meteorite, Mundrabilla. This meteorite is composed of 25 volume percent of iron sulfide with the remainder being iron-nickel. Both phases have been shown to be contiguous, and three dimensional models have been constructed using rapid prototyping techniques.

  13. Digital model as an alternative to plaster model in assessment of space analysis

    PubMed Central

    Kumar, A. Anand; Phillip, Abraham; Kumar, Sathesh; Rawat, Anuradha; Priya, Sakthi; Kumaran, V.

    2015-01-01

    Introduction: Digital three-dimensional models are widely used for orthodontic diagnosis. The purpose of this study was to appraise the accuracy of digital models obtained from computer-aided design/computer-aided manufacturing (CAD/CAM) and cone-beam computed tomography (CBCT) for tooth-width measurements and the Bolton analysis. Materials and Methods: Digital models (CAD/CAM, CBCT) and plaster model were made for each of 50 subjects. Tooth-width measurements on the digital models (CAD/CAM, CBCT) were compared with those on the corresponding plaster models. The anterior and overall Bolton ratios were calculated for each participant and for each method. The paired t-test was applied to determine the validity. Results: Tooth-width measurements, anterior, and overall Bolton ratio of digital models of CAD/CAM and CBCT did not differ significantly from those on the plaster models. Conclusion: Hence, both CBCT and CAD/CAM are trustable and promising technique that can replace plaster models due to its overwhelming advantages. PMID:26538899

  14. Finite frequency shear wave splitting tomography: a model space search approach

    NASA Astrophysics Data System (ADS)

    Mondal, P.; Long, M. D.

    2017-12-01

    Observations of seismic anisotropy provide key constraints on past and present mantle deformation. A common method for upper mantle anisotropy is to measure shear wave splitting parameters (delay time and fast direction). However, the interpretation is not straightforward, because splitting measurements represent an integration of structure along the ray path. A tomographic approach that allows for localization of anisotropy is desirable; however, tomographic inversion for anisotropic structure is a daunting task, since 21 parameters are needed to describe general anisotropy. Such a large parameter space does not allow a straightforward application of tomographic inversion. Building on previous work on finite frequency shear wave splitting tomography, this study aims to develop a framework for SKS splitting tomography with a new parameterization of anisotropy and a model space search approach. We reparameterize the full elastic tensor, reducing the number of parameters to three (a measure of strength based on symmetry considerations for olivine, plus the dip and azimuth of the fast symmetry axis). We compute Born-approximation finite frequency sensitivity kernels relating model perturbations to splitting intensity observations. The strong dependence of the sensitivity kernels on the starting anisotropic model, and thus the strong non-linearity of the inverse problem, makes a linearized inversion infeasible. Therefore, we implement a Markov Chain Monte Carlo technique in the inversion procedure. We have performed tests with synthetic data sets to evaluate computational costs and infer the resolving power of our algorithm for synthetic models with multiple anisotropic layers. Our technique can resolve anisotropic parameters on length scales of ˜50 km for realistic station and event configurations for dense broadband experiments. We are proceeding towards applications to real data sets, with an initial focus on the High Lava Plains of Oregon.

  15. A novel patient-specific model to compute coronary fractional flow reserve.

    PubMed

    Kwon, Soon-Sung; Chung, Eui-Chul; Park, Jin-Seo; Kim, Gook-Tae; Kim, Jun-Woo; Kim, Keun-Hong; Shin, Eun-Seok; Shim, Eun Bo

    2014-09-01

    The fractional flow reserve (FFR) is a widely used clinical index to evaluate the functional severity of coronary stenosis. A computer simulation method based on patients' computed tomography (CT) data is a plausible non-invasive approach for computing the FFR. This method can provide a detailed solution for the stenosed coronary hemodynamics by coupling computational fluid dynamics (CFD) with the lumped parameter model (LPM) of the cardiovascular system. In this work, we have implemented a simple computational method to compute the FFR. As this method uses only coronary arteries for the CFD model and includes only the LPM of the coronary vascular system, it provides simpler boundary conditions for the coronary geometry and is computationally more efficient than existing approaches. To test the efficacy of this method, we simulated a three-dimensional straight vessel using CFD coupled with the LPM. The computed results were compared with those of the LPM. To validate this method in terms of clinically realistic geometry, a patient-specific model of stenosed coronary arteries was constructed from CT images, and the computed FFR was compared with clinically measured results. We evaluated the effect of a model aorta on the computed FFR and compared this with a model without the aorta. Computationally, the model without the aorta was more efficient than that with the aorta, reducing the CPU time required for computing a cardiac cycle to 43.4%. Copyright © 2014. Published by Elsevier Ltd.

  16. Source Stacking for Numerical Wavefield Computations - Application to Global Scale Seismic Mantle Tomography

    NASA Astrophysics Data System (ADS)

    MacLean, L. S.; Romanowicz, B. A.; French, S.

    2015-12-01

    Seismic wavefield computations using the Spectral Element Method are now regularly used to recover tomographic images of the upper mantle and crust at the local, regional, and global scales (e.g. Fichtner et al., GJI, 2009; Tape et al., Science 2010; Lekic and Romanowicz, GJI, 2011; French and Romanowicz, GJI, 2014). However, the heaviness of the computations remains a challenge, and contributes to limiting the resolution of the produced images. Using source stacking, as suggested by Capdeville et al. (GJI,2005), can considerably speed up the process by reducing the wavefield computations to only one per each set of N sources. This method was demonstrated through synthetic tests on low frequency datasets, and therefore should work for global mantle tomography. However, the large amplitudes of surface waves dominates the stacked seismograms and these cases can no longer be separated by windowing in the time domain. We have developed a processing approach that helps address this issue and demonstrate its usefulness through a series of synthetic tests performed at long periods (T >60 s) on toy upper mantle models. The summed synthetics are computed using the CSEM code (Capdeville et al., 2002). As for the inverse part of the procedure, we use a quasi-Newton method, computing Frechet derivatives and Hessian using normal mode perturbation theory.

  17. Quantitative X-ray fluorescence computed tomography for low-Z samples using an iterative absorption correction algorithm

    NASA Astrophysics Data System (ADS)

    Huang, Rong; Limburg, Karin; Rohtla, Mehis

    2017-05-01

    X-ray fluorescence computed tomography is often used to measure trace element distributions within low-Z samples, using algorithms capable of X-ray absorption correction when sample self-absorption is not negligible. Its reconstruction is more complicated compared to transmission tomography, and therefore not widely used. We describe in this paper a very practical iterative method that uses widely available transmission tomography reconstruction software for fluorescence tomography. With this method, sample self-absorption can be corrected not only for the absorption within the measured layer but also for the absorption by material beyond that layer. By combining tomography with analysis for scanning X-ray fluorescence microscopy, absolute concentrations of trace elements can be obtained. By using widely shared software, we not only minimized the coding, took advantage of computing efficiency of fast Fourier transform in transmission tomography software, but also thereby accessed well-developed data processing tools coming with well-known and reliable software packages. The convergence of the iterations was also carefully studied for fluorescence of different attenuation lengths. As an example, fish eye lenses could provide valuable information about fish life-history and endured environmental conditions. Given the lens's spherical shape and sometimes the short distance from sample to detector for detecting low concentration trace elements, its tomography data are affected by absorption related to material beyond the measured layer but can be reconstructed well with our method. Fish eye lens tomography results are compared with sliced lens 2D fluorescence mapping with good agreement, and with tomography providing better spatial resolution.

  18. Correlation of computed tomography, magnetic resonance imaging and clinical outcome in acute carbon monoxide poisoning.

    PubMed

    Ozcan, Namik; Ozcam, Giray; Kosar, Pinar; Ozcan, Ayse; Basar, Hulya; Kaymak, Cetin

    2016-01-01

    Carbon monoxide is a toxic gas for humans and is still a silent killer in both developed and developing countries. The aim of this case series was to evaluate early radiological images as a predictor of subsequent neuropsychological sequelae, following carbon monoxide poisoning. After carbon monoxide exposure, early computed tomography scans and magnetic resonance imaging findings of a 52-year-old woman showed bilateral lesions in the globus pallidus. This patient was discharged and followed for 90 days. The patient recovered without any neurological sequela. In a 58-year-old woman exposed to carbon monoxide, computed tomography showed lesions in bilateral globus pallidus and periventricular white matter. Early magnetic resonance imaging revealed changes similar to that like in early tomography images. The patient recovered and was discharged from hospital. On the 27th day of exposure, the patient developed disorientation and memory impairment. Late magnetic resonance imaging showed diffuse hyperintensity in the cerebral white matter. White matter lesions which progress to demyelination and end up in neuropsychological sequelae cannot always be diagnosed by early computed tomography and magnetic resonance imaging in carbon monoxide poisoning. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  19. Radiation-Induced Liver Injury Mimicking Metastatic Disease in a Patient With Esophageal Cancer: Correlation of Positron Emission Tomography/Computed Tomography With Magnetic Resonance Imaging and Literature Review.

    PubMed

    Rabe, Tiffany M; Yokoo, Takeshi; Meyer, Jeffrey; Kernstine, Kemp H; Wang, David; Khatri, Gaurav

    2016-01-01

    Post-radiation therapy evaluation of distal esophageal cancers with positron emission tomography/computed tomography can be problematic. Differentiation of recurrent neoplasm from postradiation changes is difficult in areas of fluorodeoxyglucose avidity in adjacent, incidentally irradiated organs. Few studies have described the magnetic resonance imaging appearance of radiation-induced hepatic injury. We report a case of focal radiation-induced liver injury with a new focus of fluorodeoxyglucose uptake on posttreatment positron emission tomography as well as masslike enhancement and signal abnormality on magnetic resonance imaging, thus mimicking new liver metastasis. Correlation with radiation planning images suggested the correct diagnosis, which was confirmed on follow-up imaging.

  20. A multiresolution approach to iterative reconstruction algorithms in X-ray computed tomography.

    PubMed

    De Witte, Yoni; Vlassenbroeck, Jelle; Van Hoorebeke, Luc

    2010-09-01

    In computed tomography, the application of iterative reconstruction methods in practical situations is impeded by their high computational demands. Especially in high resolution X-ray computed tomography, where reconstruction volumes contain a high number of volume elements (several giga voxels), this computational burden prevents their actual breakthrough. Besides the large amount of calculations, iterative algorithms require the entire volume to be kept in memory during reconstruction, which quickly becomes cumbersome for large data sets. To overcome this obstacle, we present a novel multiresolution reconstruction, which greatly reduces the required amount of memory without significantly affecting the reconstructed image quality. It is shown that, combined with an efficient implementation on a graphical processing unit, the multiresolution approach enables the application of iterative algorithms in the reconstruction of large volumes at an acceptable speed using only limited resources.

  1. X-ray Computed Tomography.

    ERIC Educational Resources Information Center

    Michael, Greg

    2001-01-01

    Describes computed tomography (CT), a medical imaging technique that produces images of transaxial planes through the human body. A CT image is reconstructed mathematically from a large number of one-dimensional projections of a plane. The technique is used in radiological examinations and radiotherapy treatment planning. (Author/MM)

  2. The Power of Computer-aided Tomography to Investigate Marine Benthic Communities

    EPA Science Inventory

    Utilization of Computer-aided-Tomography (CT) technology is a powerful tool to investigate benthic communities in aquatic systems. In this presentation, we will attempt to summarize our 15 years of experience in developing specific CT methods and applications to marine benthic co...

  3. Three-dimensional evaluation of human jaw bone microarchitecture: correlation between the microarchitectural parameters of cone beam computed tomography and micro-computer tomography.

    PubMed

    Kim, Jo-Eun; Yi, Won-Jin; Heo, Min-Suk; Lee, Sam-Sun; Choi, Soon-Chul; Huh, Kyung-Hoe

    2015-12-01

    To evaluate the potential feasibility of cone beam computed tomography (CBCT) in the assessment of trabecular bone microarchitecture. Sixty-eight specimens from four pairs of human jaw were scanned using both micro-computed tomography (micro-CT) of 19.37-μm voxel size and CBCT of 100-μm voxel size. The correlation of 3-dimensional parameters between CBCT and micro-CT was evaluated. All parameters, except bone-specific surface and trabecular thickness, showed linear correlations between the 2 imaging modalities (P < .05). Among the parameters, bone volume, percent bone volume, trabecular separation, and degree of anisotropy (DA) of CBCT images showed strong correlations with those of micro-CT images. DA showed the strongest correlation (r = 0.693). Most microarchitectural parameters from CBCT were correlated with those from micro-CT. Some microarchitectural parameters, especially DA, could be used as strong predictors of bone quality in the human jaw. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Evaluation of a continuous-rotation, high-speed scanning protocol for micro-computed tomography.

    PubMed

    Kerl, Hans Ulrich; Isaza, Cristina T; Boll, Hanne; Schambach, Sebastian J; Nolte, Ingo S; Groden, Christoph; Brockmann, Marc A

    2011-01-01

    Micro-computed tomography is used frequently in preclinical in vivo research. Limiting factors are radiation dose and long scan times. The purpose of the study was to compare a standard step-and-shoot to a continuous-rotation, high-speed scanning protocol. Micro-computed tomography of a lead grid phantom and a rat femur was performed using a step-and-shoot and a continuous-rotation protocol. Detail discriminability and image quality were assessed by 3 radiologists. The signal-to-noise ratio and the modulation transfer function were calculated, and volumetric analyses of the femur were performed. The radiation dose of the scan protocols was measured using thermoluminescence dosimeters. The 40-second continuous-rotation protocol allowed a detail discriminability comparable to the step-and-shoot protocol at significantly lower radiation doses. No marked differences in volumetric or qualitative analyses were observed. Continuous-rotation micro-computed tomography significantly reduces scanning time and radiation dose without relevantly reducing image quality compared with a normal step-and-shoot protocol.

  5. Management of Liver Cancer Argon-helium Knife Therapy with Functional Computer Tomography Perfusion Imaging.

    PubMed

    Wang, Hongbo; Shu, Shengjie; Li, Jinping; Jiang, Huijie

    2016-02-01

    The objective of this study was to observe the change in blood perfusion of liver cancer following argon-helium knife treatment with functional computer tomography perfusion imaging. Twenty-seven patients with primary liver cancer treated with argon-helium knife and were included in this study. Plain computer tomography (CT) and computer tomography perfusion (CTP) imaging were conducted in all patients before and after treatment. Perfusion parameters including blood flows, blood volume, hepatic artery perfusion fraction, hepatic artery perfusion, and hepatic portal venous perfusion were used for evaluating therapeutic effect. All parameters in liver cancer were significantly decreased after argon-helium knife treatment (p < 0.05 to all). Significant decrease in hepatic artery perfusion was also observed in pericancerous liver tissue, but other parameters kept constant. CT perfusion imaging is able to detect decrease in blood perfusion of liver cancer post-argon-helium knife therapy. Therefore, CTP imaging would play an important role for liver cancer management followed argon-helium knife therapy. © The Author(s) 2014.

  6. Characterization of normal feline renal vascular anatomy with dual-phase CT angiography.

    PubMed

    Cáceres, Ana V; Zwingenberger, Allison L; Aronson, Lillian R; Mai, Wilfried

    2008-01-01

    Helical computed tomography angiography was used to evaluate the renal vascular anatomy of potential feline renal donors. One hundred and fourteen computed tomography angiograms were reviewed. The vessels were characterized as single without bifurcation, single with bifurcation, double, or triple. Multiplicity was most commonly seen for the right renal vein (45/114 vs. 3/114 multiple left renal veins, 0/114 multiple right renal arteries, and 8/114 multiple left renal arteries). The right kidney was 13.3 times more likely than the left to have multiple renal veins. Additional vascular variants included double caudal vena cava and an accessory renal artery. For the left kidney, surgery and computed tomography angiography findings were in agreement in 92% of 74 cats. For the right kidney, surgery and computed tomography angiography findings were in agreement in 6/6 cats. Our findings of renal vascular anatomy variations in cats were similar to previous reports in humans. Identifying and recognizing the pattern of distribution of these vessels is important when performing renal transplantation.

  7. Stress Computed Tomography Myocardial Perfusion Imaging: A New Topic in Cardiology.

    PubMed

    Seitun, Sara; Castiglione Morelli, Margherita; Budaj, Irilda; Boccalini, Sara; Galletto Pregliasco, Athena; Valbusa, Alberto; Cademartiri, Filippo; Ferro, Carlo

    2016-02-01

    Since its introduction about 15 years ago, coronary computed tomography angiography has become today the most accurate clinical instrument for noninvasive assessment of coronary atherosclerosis. Important technical developments have led to a continuous stream of new clinical applications together with a significant reduction in radiation dose exposure. Latest generation computed tomography scanners (≥ 64 slices) allow the possibility of performing static or dynamic perfusion imaging during stress by using coronary vasodilator agents (adenosine, dipyridamole, or regadenoson), combining both functional and anatomical information in the same examination. In this article, the emerging role and state-of-the-art of myocardial computed tomography perfusion imaging are reviewed and are illustrated by clinical cases from our experience with a second-generation dual-source 128-slice scanner (Somatom Definition Flash, Siemens; Erlangen, Germany). Technical aspects, data analysis, diagnostic accuracy, radiation dose and future prospects are reviewed. Copyright © 2015 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  8. Machine learning based detection of age-related macular degeneration (AMD) and diabetic macular edema (DME) from optical coherence tomography (OCT) images

    PubMed Central

    Wang, Yu; Zhang, Yaonan; Yao, Zhaomin; Zhao, Ruixue; Zhou, Fengfeng

    2016-01-01

    Non-lethal macular diseases greatly impact patients’ life quality, and will cause vision loss at the late stages. Visual inspection of the optical coherence tomography (OCT) images by the experienced clinicians is the main diagnosis technique. We proposed a computer-aided diagnosis (CAD) model to discriminate age-related macular degeneration (AMD), diabetic macular edema (DME) and healthy macula. The linear configuration pattern (LCP) based features of the OCT images were screened by the Correlation-based Feature Subset (CFS) selection algorithm. And the best model based on the sequential minimal optimization (SMO) algorithm achieved 99.3% in the overall accuracy for the three classes of samples. PMID:28018716

  9. Quantitative Computed Tomography (QCT) derived Bone Mineral Density (BMD) in finite element studies: a review of the literature.

    PubMed

    Knowles, Nikolas K; Reeves, Jacob M; Ferreira, Louis M

    2016-12-01

    Finite element modeling of human bone provides a powerful tool to evaluate a wide variety of outcomes in a highly repeatable and parametric manner. These models are most often derived from computed tomography data, with mechanical properties related to bone mineral density (BMD) from the x-ray energy attenuation provided from this data. To increase accuracy, many researchers report the use of quantitative computed tomography (QCT), in which a calibration phantom is used during image acquisition to improve the estimation of BMD. Since model accuracy is dependent on the methods used in the calculation of BMD and density-mechanical property relationships, it is important to use relationships developed for the same anatomical location and using the same scanner settings, as these may impact model accuracy. The purpose of this literature review is to report the relationships used in the conversion of QCT equivalent density measures to ash, apparent, and/or tissue densities in recent finite element (FE) studies used in common density-modulus relationships. For studies reporting experimental validation, the validation metrics and results are presented. Of the studies reviewed, 29% reported the use of a dipotassium phosphate (K 2 HPO 4 ) phantom, 47% a hydroxyapatite (HA) phantom, 13% did not report phantom type, 7% reported use of both K 2 HPO 4 and HA phantoms, and 4% alternate phantom types. Scanner type and/or settings were omitted or partially reported in 31% of studies. The majority of studies used densitometric and/or density-modulus relationships derived from different anatomical locations scanned in different scanners with different scanner settings. The methods used to derive various densitometric relationships are reported and recommendations are provided toward the standardization of reporting metrics. This review assessed the current state of QCT-based FE modeling with use of clinical scanners. It was found that previously developed densitometric relationships vary by anatomical location, scanner type and settings. Reporting of all parameters used when referring to previously developed relationships, or in the development of new relationships, may increase the accuracy and repeatability of future FE models.

  10. Accuracy of laser-scanned models compared to plaster models and cone-beam computed tomography.

    PubMed

    Kim, Jooseong; Heo, Giseon; Lagravère, Manuel O

    2014-05-01

    To compare the accuracy of measurements obtained from the three-dimensional (3D) laser scans to those taken from the cone-beam computed tomography (CBCT) scans and those obtained from plaster models. Eighteen different measurements, encompassing mesiodistal width of teeth and both maxillary and mandibular arch length and width, were selected using various landmarks. CBCT scans and plaster models were prepared from 60 patients. Plaster models were scanned using the Ortho Insight 3D laser scanner, and the selected landmarks were measured using its software. CBCT scans were imported and analyzed using the Avizo software, and the 26 landmarks corresponding to the selected measurements were located and recorded. The plaster models were also measured using a digital caliper. Descriptive statistics and intraclass correlation coefficient (ICC) were used to analyze the data. The ICC result showed that the values obtained by the three different methods were highly correlated in all measurements, all having correlations>0.808. When checking the differences between values and methods, the largest mean difference found was 0.59 mm±0.38 mm. In conclusion, plaster models, CBCT models, and laser-scanned models are three different diagnostic records, each with its own advantages and disadvantages. The present results showed that the laser-scanned models are highly accurate to plaster models and CBCT scans. This gives general clinicians an alternative to take into consideration the advantages of laser-scanned models over plaster models and CBCT reconstructions.

  11. Fatal Road Traffic Vehicle Collisions With Pedestrian Victims: Forensic Postmortem Computed Tomography and Autopsy Correlation.

    PubMed

    Chatzaraki, Vasiliki; Thali, Michael J; Ampanozi, Garyfalia; Schweitzer, Wolf

    2018-06-01

    Fatal car-to-pedestrian collisions regularly appear in the forensic pathologist's routine, particularly in places of extended urbanization. Postmortem computed tomography has gained an exceptional role to supplement autopsy worldwide, giving information that is supplementary or complimentary to conventional autopsy. In this retrospective study, a total number of 320 findings in a series of 21 pedestrians fatally hit by cars and trucks of both postmortem computed tomography and autopsy were correlated. According to our results, it is best to combine both methods to give well-founded answers to questions pertaining to both collision reconstruction and cause of death.

  12. [Axial computer tomography of the neurocranium (author's transl)].

    PubMed

    Stöppler, L

    1977-05-27

    Computer tomography (CT), a new radiographic examination technique, is very highly efficient, for it has high informative content with little stress for the patient. In contrast to the conventional X-ray technology, CT succeeds, by direct presentation of the structure of the soft parts, in obtaining information which comes close to that of macroscopic neuropathology. The capacity and limitations of the method at the present stage of development are reported. Computer tomography cannot displace conventional neuroradiological methods of investigation, although it is rightly presented as a screening method and helps towards selective use. Indications, technical integration and handling of CT are prerequisites for the exhaustive benefit of the excellent new technique.

  13. X-Ray Radiography of Gas Turbine Ceramics.

    DTIC Science & Technology

    1979-10-20

    Microfocus X-ray equipment. 1a4ihe definition of equipment concepts for a computer assisted tomography ( CAT ) system; and 4ffthe development of a CAT ...were obtained from these test coupons using Microfocus X-ray and image en- hancement techniques. A Computer Assisted Tomography ( CAT ) design concept...monitor. Computer reconstruction algorithms were investigated with respect to CAT and a preferred approach was determined. An appropriate CAT algorithm

  14. A comparative approach to computer aided design model of a dog femur.

    PubMed

    Turamanlar, O; Verim, O; Karabulut, A

    2016-01-01

    Computer assisted technologies offer new opportunities in medical imaging and rapid prototyping in biomechanical engineering. Three dimensional (3D) modelling of soft tissues and bones are becoming more important. The accuracy of the analysis in modelling processes depends on the outline of the tissues derived from medical images. The aim of this study is the evaluation of the accuracy of 3D models of a dog femur derived from computed tomography data by using point cloud method and boundary line method on several modelling software. Solidworks, Rapidform and 3DSMax software were used to create 3D models and outcomes were evaluated statistically. The most accurate 3D prototype of the dog femur was created with stereolithography method using rapid prototype device. Furthermore, the linearity of the volumes of models was investigated between software and the constructed models. The difference between the software and real models manifests the sensitivity of the software and the devices used in this manner.

  15. A Semi-Discrete Landweber-Kaczmarz Method for Cone Beam Tomography and Laminography Exploiting Geometric Prior Information

    NASA Astrophysics Data System (ADS)

    Vogelgesang, Jonas; Schorr, Christian

    2016-12-01

    We present a semi-discrete Landweber-Kaczmarz method for solving linear ill-posed problems and its application to Cone Beam tomography and laminography. Using a basis function-type discretization in the image domain, we derive a semi-discrete model of the underlying scanning system. Based on this model, the proposed method provides an approximate solution of the reconstruction problem, i.e. reconstructing the density function of a given object from its projections, in suitable subspaces equipped with basis function-dependent weights. This approach intuitively allows the incorporation of additional information about the inspected object leading to a more accurate model of the X-rays through the object. Also, physical conditions of the scanning geometry, like flat detectors in computerized tomography as used in non-destructive testing applications as well as non-regular scanning curves e.g. appearing in computed laminography (CL) applications, are directly taken into account during the modeling process. Finally, numerical experiments of a typical CL application in three dimensions are provided to verify the proposed method. The introduction of geometric prior information leads to a significantly increased image quality and superior reconstructions compared to standard iterative methods.

  16. Hybrid model based unified scheme for endoscopic Cerenkov and radio-luminescence tomography: Simulation demonstration

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Cao, Xin; Ren, Qingyun; Chen, Xueli; He, Xiaowei

    2018-05-01

    Cerenkov luminescence imaging (CLI) is an imaging method that uses an optical imaging scheme to probe a radioactive tracer. Application of CLI with clinically approved radioactive tracers has opened an opportunity for translating optical imaging from preclinical to clinical applications. Such translation was further improved by developing an endoscopic CLI system. However, two-dimensional endoscopic imaging cannot identify accurate depth and obtain quantitative information. Here, we present an imaging scheme to retrieve the depth and quantitative information from endoscopic Cerenkov luminescence tomography, which can also be applied for endoscopic radio-luminescence tomography. In the scheme, we first constructed a physical model for image collection, and then a mathematical model for characterizing the luminescent light propagation from tracer to the endoscopic detector. The mathematical model is a hybrid light transport model combined with the 3rd order simplified spherical harmonics approximation, diffusion, and radiosity equations to warrant accuracy and speed. The mathematical model integrates finite element discretization, regularization, and primal-dual interior-point optimization to retrieve the depth and the quantitative information of the tracer. A heterogeneous-geometry-based numerical simulation was used to explore the feasibility of the unified scheme, which demonstrated that it can provide a satisfactory balance between imaging accuracy and computational burden.

  17. Accuracy of Bolton analysis measured in laser scanned digital models compared with plaster models (gold standard) and cone-beam computer tomography images

    PubMed Central

    Kim, Jooseong

    2016-01-01

    Objective The aim of this study was to compare the accuracy of Bolton analysis obtained from digital models scanned with the Ortho Insight three-dimensional (3D) laser scanner system to those obtained from cone-beam computed tomography (CBCT) images and traditional plaster models. Methods CBCT scans and plaster models were obtained from 50 patients. Plaster models were scanned using the Ortho Insight 3D laser scanner; Bolton ratios were calculated with its software. CBCT scans were imported and analyzed using AVIZO software. Plaster models were measured with a digital caliper. Data were analyzed with descriptive statistics and the intraclass correlation coefficient (ICC). Results Anterior and overall Bolton ratios obtained by the three different modalities exhibited excellent agreement (> 0.970). The mean differences between the scanned digital models and physical models and between the CBCT images and scanned digital models for overall Bolton ratios were 0.41 ± 0.305% and 0.45 ± 0.456%, respectively; for anterior Bolton ratios, 0.59 ± 0.520% and 1.01 ± 0.780%, respectively. ICC results showed that intraexaminer error reliability was generally excellent (> 0.858 for all three diagnostic modalities), with < 1.45% discrepancy in the Bolton analysis. Conclusions Laser scanned digital models are highly accurate compared to physical models and CBCT scans for assessing the spatial relationships of dental arches for orthodontic diagnosis. PMID:26877978

  18. RADIAL COMPUTED TOMOGRAPHY OF AIR CONTAMINANTS USING OPTICAL REMOTE SENSING

    EPA Science Inventory

    The paper describes the application of an optical remote-sensing (ORS) system to map air contaminants and locate fugitive emissions. Many ORD systems may utilize radial non-overlapping beam geometry and a computed tomography (CT) algorithm to map the concentrations in a plane. In...

  19. Micro computed tomography (CT) scanned anatomical gateway to insect pest bioinformatics

    USDA-ARS?s Scientific Manuscript database

    An international collaboration to establish an interactive Digital Video Library for a Systems Biology Approach to study the Asian citrus Psyllid and psyllid genomics/proteomics interactions is demonstrated. Advances in micro-CT, digital computed tomography (CT) scan uses X-rays to make detailed pic...

  20. 21 CFR 892.1200 - Emission computed tomography system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... analysis and display equipment, patient and equipment supports, radionuclide anatomical markers, component...

  1. 21 CFR 892.1200 - Emission computed tomography system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... analysis and display equipment, patient and equipment supports, radionuclide anatomical markers, component...

  2. 21 CFR 892.1200 - Emission computed tomography system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... analysis and display equipment, patient and equipment supports, radionuclide anatomical markers, component...

  3. 21 CFR 892.1200 - Emission computed tomography system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... analysis and display equipment, patient and equipment supports, radionuclide anatomical markers, component...

  4. 21 CFR 892.1200 - Emission computed tomography system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... analysis and display equipment, patient and equipment supports, radionuclide anatomical markers, component...

  5. Effects of Scan Resolutions and Element Sizes on Bovine Vertebral Mechanical Parameters from Quantitative Computed Tomography-Based Finite Element Analysis

    PubMed Central

    Zhang, Meng; Gao, Jiazi; Huang, Xu; Zhang, Min; Liu, Bei

    2017-01-01

    Quantitative computed tomography-based finite element analysis (QCT/FEA) has been developed to predict vertebral strength. However, QCT/FEA models may be different with scan resolutions and element sizes. The aim of this study was to explore the effects of scan resolutions and element sizes on QCT/FEA outcomes. Nine bovine vertebral bodies were scanned using the clinical CT scanner and reconstructed from datasets with the two-slice thickness, that is, 0.6 mm (PA resolution) and 1 mm (PB resolution). There were significantly linear correlations between the predicted and measured principal strains (R2 > 0.7, P < 0.0001), and the predicted vertebral strength and stiffness were modestly correlated with the experimental values (R2 > 0.6, P < 0.05). Two different resolutions and six different element sizes were combined in pairs, and finite element (FE) models of bovine vertebral cancellous bones in the 12 cases were obtained. It showed that the mechanical parameters of FE models with the PB resolution were similar to those with the PA resolution. The computational accuracy of FE models with the element sizes of 0.41 × 0.41 × 0.6 mm3 and 0.41 × 0.41 × 1 mm3 was higher by comparing the apparent elastic modulus and yield strength. Therefore, scan resolution and element size should be chosen optimally to improve the accuracy of QCT/FEA. PMID:29065624

  6. Investigating the geometry of pig airways using computed tomography

    NASA Astrophysics Data System (ADS)

    Mansy, Hansen A.; Azad, Md Khurshidul; McMurray, Brandon; Henry, Brian; Royston, Thomas J.; Sandler, Richard H.

    2015-03-01

    Numerical modeling of sound propagation in the airways requires accurate knowledge of the airway geometry. These models are often validated using human and animal experiments. While many studies documented the geometric details of the human airways, information about the geometry of pig airways is scarcer. In addition, the morphology of animal airways can be significantly different from that of humans. The objective of this study is to measure the airway diameter, length and bifurcation angles in domestic pigs using computed tomography. After imaging the lungs of 3 pigs, segmentation software tools were used to extract the geometry of the airway lumen. The airway dimensions were then measured from the resulting 3 D models for the first 10 airway generations. Results showed that the size and morphology of the airways of different animals were similar. The measured airway dimensions were compared with those of the human airways. While the trachea diameter was found to be comparable to the adult human, the diameter, length and branching angles of other airways were noticeably different from that of humans. For example, pigs consistently had an early airway branching from the trachea that feeds the superior (top) right lung lobe proximal to the carina. This branch is absent in the human airways. These results suggested that the human geometry may not be a good approximation of the pig airways and may contribute to increasing the errors when the human airway geometric values are used in computational models of the pig chest.

  7. Direct estimation of human trabecular bone stiffness using cone beam computed tomography.

    PubMed

    Klintström, Eva; Klintström, Benjamin; Pahr, Dieter; Brismar, Torkel B; Smedby, Örjan; Moreno, Rodrigo

    2018-04-10

    The aim of this study was to evaluate the possibility of estimating the biomechanical properties of trabecular bone through finite element simulations by using dental cone beam computed tomography data. Fourteen human radius specimens were scanned in 3 cone beam computed tomography devices: 3-D Accuitomo 80 (J. Morita MFG., Kyoto, Japan), NewTom 5 G (QR Verona, Verona, Italy), and Verity (Planmed, Helsinki, Finland). The imaging data were segmented by using 2 different methods. Stiffness (Young modulus), shear moduli, and the size and shape of the stiffness tensor were studied. Corresponding evaluations by using micro-CT were regarded as the reference standard. The 3-D Accuitomo 80 (J. Morita MFG., Kyoto, Japan) showed good performance in estimating stiffness and shear moduli but was sensitive to the choice of segmentation method. NewTom 5 G (QR Verona, Verona, Italy) and Verity (Planmed, Helsinki, Finland) yielded good correlations, but they were not as strong as Accuitomo 80 (J. Morita MFG., Kyoto, Japan). The cone beam computed tomography devices overestimated both stiffness and shear compared with the micro-CT estimations. Finite element-based calculations of biomechanics from cone beam computed tomography data are feasible, with strong correlations for the Accuitomo 80 scanner (J. Morita MFG., Kyoto, Japan) combined with an appropriate segmentation method. Such measurements might be useful for predicting implant survival by in vivo estimations of bone properties. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. The micro-mechanics of strength, durability and damage tolerance in composites: new insights from high resolution computed tomography

    NASA Astrophysics Data System (ADS)

    Spearing, S. Mark; Sinclair, Ian

    2016-07-01

    Recent work, led by the authors, on impact damage resistance, particle toughening and tensile fibre failure is reviewed in order to illustrate the use of high-resolution X-ray tomography to observe and quantify damage mechanisms in carbon fibre composite laminates. Using synchrotron and micro-focus X-ray sources resolutions of less than 1 μm have been routinely achieved. This enables individual broken fibres and the micromechanisms of particle toughening to be observed and quantified. The data for fibre failure, cluster formation and overall tensile strength are compared with model predictions. This allows strategies for future model development to be identified. The overall implications for using such high-resolution 3-D measurements to inform a “data-rich mechanics” approach to materials evaluation and modeling is discussed.

  9. Positron emission tomography/computed tomography in melanoma.

    PubMed

    Bourgeois, Austin C; Chang, Ted T; Fish, Lindsay M; Bradley, Yong C

    2013-09-01

    Fludeoxyglucose F 18 positron emission tomography/computed tomography (PET/CT) has been invaluable in the assessment of melanoma throughout the course of the disease. As with any modality, the studies are incomplete and more information will be gleaned as our experience progresses. Additionally, it is hoped that a newer PET agent in the pipeline will give us even greater success in the identification and subsequent treatment of melanoma. This article aims to examine the utilization of PET/CT in the staging, prognostication, and follow-up of melanoma while providing the physicians who order and interpret these studies practical guidelines and interpretive pitfalls. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Miscellaneous indications in bone scintigraphy: metabolic bone diseases and malignant bone tumors.

    PubMed

    Cook, Gary J R; Gnanasegaran, Gopinath; Chua, Sue

    2010-01-01

    The diphosphonate bone scan is ideally suited to assess many global, focal or multifocal metabolic bone disorders and there remains a role for conventional bone scintigraphy in metabolic bone disorders at diagnosis, investigation of complications, and treatment response assessment. In contrast, the role of bone scintigraphy in the evaluation of primary malignant bone tumors has reduced with the improvement of morphologic imaging, such as computed tomography and magnetic resonance imaging. However, an increasing role for (18)F-fluorodeoxyglucose positron emission tomography and positron emission tomography/computed tomography is emerging as a functional assessment at diagnosis, staging, and neoadjuvant treatment response assessment.

  11. Usefulness of fluorodeoxyglucose positron emission tomography/computed tomography for detection of a neuroblastic nodule in a ganglioneuroblastoma: a case report.

    PubMed

    Takeda, Yuka; Sano, Hideki; Kawano, Asuka; Mochizuki, Kazuhiro; Takahashi, Nobuhisa; Kobayashi, Shogo; Ohara, Yoshihiro; Tasaki, Kazuhiro; Hosoya, Mitusuaki; Kikuta, Atsushi

    2018-05-03

    Ganglioneuroblastoma, nodular is defined as a composite tumor of biologically distinct clones. The peripheral neuroblastic tumors in this category are characterized by the presence of grossly visible neuroblastoma nodules coexisting with ganglioneuroblastoma, intermixed, or with ganglioneuroma. Making a correct diagnosis of ganglioneuroblastoma, nodular is often difficult by biopsy or partial tumor resection, because the neuroblastic nodule could be hidden and not sampled for pathological examination. We report a case of a Japanese boy aged 3 years, 8 months, with an unresectable abdominal tumor and elevated vanillylmandelic acid and homovanillic acid levels. The initial biopsy was ganglioneuroma. However, after the second biopsy from a hidden neuroblastoma nodule that was clearly highlighted by fluorodeoxyglucose positron emission tomography/computed tomography, we reached the diagnosis of ganglioneuroblastoma, nodular. Because the nodule demonstrated neuroblastoma, differentiating subtype, with a low mitosis-karyorrhexis index (favorable histology) and nonamplified MYCN, the boy was treated according to the intermediate-risk protocol and is now alive and well 4 years after the diagnosis. This case illustrates the critical role of fluorodeoxyglucose positron emission tomography/computed tomography for detecting a neuroblastoma nodule in a ganglioneuroblastoma.

  12. FDG-PET/CT in the evaluation of anal carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cotter, Shane E.; Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO; Grigsby, Perry W.

    2006-07-01

    Purpose: Surgical staging and treatment of anal carcinoma has been replaced by noninvasive staging studies and combined modality therapy. In this study, we compare computed tomography (CT) and physical examination to [{sup 18}F]-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography (FDG-PET/CT) in the staging of carcinoma of the anal canal, with special emphasis on determination of spread to inguinal lymph nodes. Methods and Materials: Between July 2003 and July 2005, 41 consecutive patients with biopsy-proved anal carcinoma underwent a complete staging evaluation including physical examination, CT, and 2-FDG-PET/CT. Patients ranged in age from 30 to 89 years. Nine men were HIV-positive. Treatment was withmore » standard Nigro regimen. Results: [{sup 18}F]-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography (FDG-PET/CT) detected 91% of nonexcised primary tumors, whereas CT visualized 59%. FDG-PET/CT detected abnormal uptake in pelvic nodes of 5 patients with normal pelvic CT scans. FDG-PET/CT detected abnormal nodes in 20% of groins that were normal by CT, and in 23% without abnormality on physical examination. Furthermore, 17% of groins negative by both CT and physical examination showed abnormal uptake on FDG-PET/CT. HIV-positive patients had an increased frequency of PET-positive lymph nodes. Conclusion: [{sup 18}F]-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography detects the primary tumor more often than CT. FDG-PET/CT detects substantially more abnormal inguinal lymph nodes than are identified by standard clinical staging with CT and physical examination.« less

  13. Computed Tomography Imaging of a Hip Prosthesis Using Iterative Model-Based Reconstruction and Orthopaedic Metal Artefact Reduction: A Quantitative Analysis.

    PubMed

    Wellenberg, Ruud H H; Boomsma, Martijn F; van Osch, Jochen A C; Vlassenbroek, Alain; Milles, Julien; Edens, Mireille A; Streekstra, Geert J; Slump, Cornelis H; Maas, Mario

    To quantify the combined use of iterative model-based reconstruction (IMR) and orthopaedic metal artefact reduction (O-MAR) in reducing metal artefacts and improving image quality in a total hip arthroplasty phantom. Scans acquired at several dose levels and kVps were reconstructed with filtered back-projection (FBP), iterative reconstruction (iDose) and IMR, with and without O-MAR. Computed tomography (CT) numbers, noise levels, signal-to-noise-ratios and contrast-to-noise-ratios were analysed. Iterative model-based reconstruction results in overall improved image quality compared to iDose and FBP (P < 0.001). Orthopaedic metal artefact reduction is most effective in reducing severe metal artefacts improving CT number accuracy by 50%, 60%, and 63% (P < 0.05) and reducing noise by 1%, 62%, and 85% (P < 0.001) whereas improving signal-to-noise-ratios by 27%, 47%, and 46% (P < 0.001) and contrast-to-noise-ratios by 16%, 25%, and 19% (P < 0.001) with FBP, iDose, and IMR, respectively. The combined use of IMR and O-MAR strongly improves overall image quality and strongly reduces metal artefacts in the CT imaging of a total hip arthroplasty phantom.

  14. Effect of low-intensity pulsed ultrasound stimulation on gap healing in a rabbit osteotomy model evaluated by quantitative micro-computed tomography-based cross-sectional moment of inertia.

    PubMed

    Tobita, Kenji; Matsumoto, Takuya; Ohashi, Satoru; Bessho, Masahiko; Kaneko, Masako; Ohnishi, Isao

    2012-07-01

    It has been previously demonstrated that low-intensity pulsed ultrasound stimulation (LIPUS) enhances formation of the medullary canal and cortex in a gap-healing model of the tibia in rabbits, shortens the time required for remodeling, and enhances mineralization of the callus. In the current study, the mechanical integrity of these models was confirmed. In order to do this, the cross-sectional moment of inertia (CSMI) obtained from quantitative micro-computed tomography scans was calculated, and a comparison was made with a four-point bending test. This parameter can be analyzed in any direction, and three directions were selected in order to adopt an XYZ coordinate (X and Y for bending; Z for torsion). The present results demonstrated that LIPUS improved earlier restoration of bending stiffness at the healing site. In addition, LIPUS was effective not only in the ultrasound-irradiated plane, but also in the other two planes. CSMI may provide the structural as well as compositional determinants to assess fracture healing and would be very useful to replace the mechanical testing.

  15. Cervical Vertebral Body's Volume as a New Parameter for Predicting the Skeletal Maturation Stages.

    PubMed

    Choi, Youn-Kyung; Kim, Jinmi; Yamaguchi, Tetsutaro; Maki, Koutaro; Ko, Ching-Chang; Kim, Yong-Il

    2016-01-01

    This study aimed to determine the correlation between the volumetric parameters derived from the images of the second, third, and fourth cervical vertebrae by using cone beam computed tomography with skeletal maturation stages and to propose a new formula for predicting skeletal maturation by using regression analysis. We obtained the estimation of skeletal maturation levels from hand-wrist radiographs and volume parameters derived from the second, third, and fourth cervical vertebrae bodies from 102 Japanese patients (54 women and 48 men, 5-18 years of age). We performed Pearson's correlation coefficient analysis and simple regression analysis. All volume parameters derived from the second, third, and fourth cervical vertebrae exhibited statistically significant correlations (P < 0.05). The simple regression model with the greatest R-square indicated the fourth-cervical-vertebra volume as an independent variable with a variance inflation factor less than ten. The explanation power was 81.76%. Volumetric parameters of cervical vertebrae using cone beam computed tomography are useful in regression models. The derived regression model has the potential for clinical application as it enables a simple and quantitative analysis to evaluate skeletal maturation level.

  16. Cervical Vertebral Body's Volume as a New Parameter for Predicting the Skeletal Maturation Stages

    PubMed Central

    Choi, Youn-Kyung; Kim, Jinmi; Maki, Koutaro; Ko, Ching-Chang

    2016-01-01

    This study aimed to determine the correlation between the volumetric parameters derived from the images of the second, third, and fourth cervical vertebrae by using cone beam computed tomography with skeletal maturation stages and to propose a new formula for predicting skeletal maturation by using regression analysis. We obtained the estimation of skeletal maturation levels from hand-wrist radiographs and volume parameters derived from the second, third, and fourth cervical vertebrae bodies from 102 Japanese patients (54 women and 48 men, 5–18 years of age). We performed Pearson's correlation coefficient analysis and simple regression analysis. All volume parameters derived from the second, third, and fourth cervical vertebrae exhibited statistically significant correlations (P < 0.05). The simple regression model with the greatest R-square indicated the fourth-cervical-vertebra volume as an independent variable with a variance inflation factor less than ten. The explanation power was 81.76%. Volumetric parameters of cervical vertebrae using cone beam computed tomography are useful in regression models. The derived regression model has the potential for clinical application as it enables a simple and quantitative analysis to evaluate skeletal maturation level. PMID:27340668

  17. Optimization-based image reconstruction in x-ray computed tomography by sparsity exploitation of local continuity and nonlocal spatial self-similarity

    NASA Astrophysics Data System (ADS)

    Han-Ming, Zhang; Lin-Yuan, Wang; Lei, Li; Bin, Yan; Ai-Long, Cai; Guo-En, Hu

    2016-07-01

    The additional sparse prior of images has been the subject of much research in problems of sparse-view computed tomography (CT) reconstruction. A method employing the image gradient sparsity is often used to reduce the sampling rate and is shown to remove the unwanted artifacts while preserve sharp edges, but may cause blocky or patchy artifacts. To eliminate this drawback, we propose a novel sparsity exploitation-based model for CT image reconstruction. In the presented model, the sparse representation and sparsity exploitation of both gradient and nonlocal gradient are investigated. The new model is shown to offer the potential for better results by introducing a similarity prior information of the image structure. Then, an effective alternating direction minimization algorithm is developed to optimize the objective function with a robust convergence result. Qualitative and quantitative evaluations have been carried out both on the simulation and real data in terms of accuracy and resolution properties. The results indicate that the proposed method can be applied for achieving better image-quality potential with the theoretically expected detailed feature preservation. Project supported by the National Natural Science Foundation of China (Grant No. 61372172).

  18. Segmenting root systems in xray computed tomography images using level sets

    USDA-ARS?s Scientific Manuscript database

    The segmentation of plant roots from soil and other growing mediums in xray computed tomography images is needed to effectively study the shapes of roots without excavation. However, segmentation is a challenging problem in this context because the root and non-root regions share similar features. ...

  19. Retroperitoneal tumour radiotherapy: clinical improvements using kilovoltage cone beam computed tomography.

    PubMed

    Juan-Senabre, Xavier J; Ferrer-Albiach, Carlos; Rodríguez-Cordón, Marta; Santos-Serra, Agustín; López-Tarjuelo, Juan; Calzada-Feliu, Salvador

    2009-04-01

    We present a clinical case of a patient diagnosed with a retroperitoneal sarcoma, which received preoperative treatment with daily verification via computed tomography obtained with kilovoltage cone beam. We compare the benefit of this treatment compared to other conventional treatment without image guiding, reporting quantitative results.

  20. Imaging Techniques in Endodontics: An Overview

    PubMed Central

    Deepak, B. S.; Subash, T. S.; Narmatha, V. J.; Anamika, T.; Snehil, T. K.; Nandini, D. B.

    2012-01-01

    This review provides an overview of the relevance of imaging techniques such as, computed tomography, cone beam computed tomography, and ultrasound, to endodontic practice. Many limitations of the conventional radiographic techniques have been overcome by the newer methods. Advantages and disadvantages of various imaging techniques in endodontic practice are also discussed. PMID:22530184

  1. SIMULATION STUDY FOR GASEOUS FLUXES FROM AN AREA SOURCE USING COMPUTED TOMOGRAPHY AND OPTICAL REMOTE SENSING

    EPA Science Inventory

    The paper presents a new approach to quantifying emissions from fugitive gaseous air pollution sources. Computed tomography (CT) and path-integrated optical remote sensing (PI-ORS) concentration data are combined in a new field beam geometry. Path-integrated concentrations are ...

  2. Single photon emission computed tomography in motor neuron disease with dementia.

    PubMed

    Sawada, H; Udaka, F; Kishi, Y; Seriu, N; Mezaki, T; Kameyama, M; Honda, M; Tomonobu, M

    1988-01-01

    Single photon emission computed tomography with [123 I] isopropylamphetamine was carried out on a patient with motor neuron disease with dementia. [123 I] uptake was decreased in the frontal lobes. This would reflect the histopathological findings such as neuronal loss and gliosis in the frontal lobes.

  3. APPLICATION OF 3D COMPUTER-AIDED TOMOGRAPHY TO THE QUANTIFICATION OF MARINE SEDIMENT COMMUNITIES IN POLLUTION GRADIENTS

    EPA Science Inventory

    Computer-Aided Tomography (CT) has been demonstrated to be a cost efficient tool for the qualitative and quantitative study of estuarine benthic communities along pollution gradients.
    Now we have advanced this technology to successfully visualize and discriminate three dimen...

  4. Spatial image modulation to improve performance of computed tomography imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H. (Inventor); Wilson, Daniel W. (Inventor); Johnson, William R. (Inventor)

    2010-01-01

    Computed tomography imaging spectrometers ("CTIS"s) having patterns for imposing spatial structure are provided. The pattern may be imposed either directly on the object scene being imaged or at the field stop aperture. The use of the pattern improves the accuracy of the captured spatial and spectral information.

  5. Micro-CT of rodents: state-of-the-art and future perspectives

    PubMed Central

    Clark, D. P.; Badea, C. T.

    2014-01-01

    Micron-scale computed tomography (micro-CT) is an essential tool for phenotyping and for elucidating diseases and their therapies. This work is focused on preclinical micro-CT imaging, reviewing relevant principles, technologies, and applications. Commonly, micro-CT provides high-resolution anatomic information, either on its own or in conjunction with lower-resolution functional imaging modalities such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT). More recently, however, advanced applications of micro-CT produce functional information by translating clinical applications to model systems (e.g. measuring cardiac functional metrics) and by pioneering new ones (e.g. measuring tumor vascular permeability with nanoparticle contrast agents). The primary limitations of micro-CT imaging are the associated radiation dose and relatively poor soft tissue contrast. We review several image reconstruction strategies based on iterative, statistical, and gradient sparsity regularization, demonstrating that high image quality is achievable with low radiation dose given ever more powerful computational resources. We also review two contrast mechanisms under intense development. The first is spectral contrast for quantitative material discrimination in combination with passive or actively targeted nanoparticle contrast agents. The second is phase contrast which measures refraction in biological tissues for improved contrast and potentially reduced radiation dose relative to standard absorption imaging. These technological advancements promise to develop micro-CT into a commonplace, functional and even molecular imaging modality. PMID:24974176

  6. [Development of analysis software package for the two kinds of Japanese fluoro-d-glucose-positron emission tomography guideline].

    PubMed

    Matsumoto, Keiichi; Endo, Keigo

    2013-06-01

    Two kinds of Japanese guidelines for the data acquisition protocol of oncology fluoro-D-glucose-positron emission tomography (FDG-PET)/computed tomography (CT) scans were created by the joint task force of the Japanese Society of Nuclear Medicine Technology (JSNMT) and the Japanese Society of Nuclear Medicine (JSNM), and published in Kakuigaku-Gijutsu 27(5): 425-456, 2007 and 29(2): 195-235, 2009. These guidelines aim to standardize PET image quality among facilities and different PET/CT scanner models. The objective of this study was to develop a personal computer-based performance measurement and image quality processor for the two kinds of Japanese guidelines for oncology (18)F-FDG PET/CT scans. We call this software package the "PET quality control tool" (PETquact). Microsoft Corporation's Windows(™) is used as the operating system for PETquact, which requires 1070×720 image resolution and includes 12 different applications. The accuracy was examined for numerous applications of PETquact. For example, in the sensitivity application, the system sensitivity measurement results were equivalent when comparing two PET sinograms obtained from the PETquact and the report. PETquact is suited for analysis of the two kinds of Japanese guideline, and it shows excellent spec to performance measurements and image quality analysis. PETquact can be used at any facility if the software package is installed on a laptop computer.

  7. Fluorescence background subtraction technique for hybrid fluorescence molecular tomography/x-ray computed tomography imaging of a mouse model of early stage lung cancer.

    PubMed

    Ale, Angelique; Ermolayev, Vladimir; Deliolanis, Nikolaos C; Ntziachristos, Vasilis

    2013-05-01

    The ability to visualize early stage lung cancer is important in the study of biomarkers and targeting agents that could lead to earlier diagnosis. The recent development of hybrid free-space 360-deg fluorescence molecular tomography (FMT) and x-ray computed tomography (XCT) imaging yields a superior optical imaging modality for three-dimensional small animal fluorescence imaging over stand-alone optical systems. Imaging accuracy was improved by using XCT information in the fluorescence reconstruction method. Despite this progress, the detection sensitivity of targeted fluorescence agents remains limited by nonspecific background accumulation of the fluorochrome employed, which complicates early detection of murine cancers. Therefore we examine whether x-ray CT information and bulk fluorescence detection can be combined to increase detection sensitivity. Correspondingly, we research the performance of a data-driven fluorescence background estimator employed for subtraction of background fluorescence from acquisition data. Using mice containing known fluorochromes ex vivo, we demonstrate the reduction of background signals from reconstructed images and sensitivity improvements. Finally, by applying the method to in vivo data from K-ras transgenic mice developing lung cancer, we find small tumors at an early stage compared with reconstructions performed using raw data. We conclude with the benefits of employing fluorescence subtraction in hybrid FMT-XCT for early detection studies.

  8. Creation of anatomical models from CT data

    NASA Astrophysics Data System (ADS)

    Alaytsev, Innokentiy K.; Danilova, Tatyana V.; Manturov, Alexey O.; Mareev, Gleb O.; Mareev, Oleg V.

    2018-04-01

    Computed tomography is a great source of biomedical data because it allows a detailed exploration of complex anatomical structures. Some structures are not visible on CT scans, and some are hard to distinguish due to partial volume effect. CT datasets require preprocessing before using them as anatomical models in a simulation system. The work describes segmentation and data transformation methods for an anatomical model creation from the CT data. The result models may be used for visual and haptic rendering and drilling simulation in a virtual surgery system.

  9. Advanced imaging in COPD: insights into pulmonary pathophysiology

    PubMed Central

    Milne, Stephen

    2014-01-01

    Chronic obstructive pulmonary disease (COPD) involves a complex interaction of structural and functional abnormalities. The two have long been studied in isolation. However, advanced imaging techniques allow us to simultaneously assess pathological processes and their physiological consequences. This review gives a comprehensive account of the various advanced imaging modalities used to study COPD, including computed tomography (CT), magnetic resonance imaging (MRI), and the nuclear medicine techniques positron emission tomography (PET) and single-photon emission computed tomography (SPECT). Some more recent developments in imaging technology, including micro-CT, synchrotron imaging, optical coherence tomography (OCT) and electrical impedance tomography (EIT), are also described. The authors identify the pathophysiological insights gained from these techniques, and speculate on the future role of advanced imaging in both clinical and research settings. PMID:25478198

  10. Positron emission tomography-computed tomography predictors of progression after DA-R-EPOCH for PMBCL.

    PubMed

    Pinnix, Chelsea C; Ng, Andrea K; Dabaja, Bouthaina S; Milgrom, Sarah A; Gunther, Jillian R; Fuller, C David; Smith, Grace L; Abou Yehia, Zeinab; Qiao, Wei; Wogan, Christine F; Akhtari, Mani; Mawlawi, Osama; Medeiros, L Jeffrey; Chuang, Hubert H; Martin-Doyle, William; Armand, Philippe; LaCasce, Ann S; Oki, Yasuhiro; Fanale, Michelle; Westin, Jason; Neelapu, Sattva; Nastoupil, Loretta

    2018-06-12

    Dose-adjusted rituximab plus etoposide, prednisone, vincristine, cyclophosphamide, and doxorubicin (DA-R-EPOCH) has produced good outcomes in primary mediastinal B-cell lymphoma (PMBCL), but predictors of resistance to this treatment are unclear. We investigated whether [ 18 F]fluorodeoxyglucose positron emission tomography-computed tomography (PET-CT) findings could identify patients with PMBCL who would not respond completely to DA-R-EPOCH. We performed a retrospective analysis of 65 patients with newly diagnosed stage I to IV PMBCL treated at 2 tertiary cancer centers who had PET-CT scans available before and after frontline therapy with DA-R-EPOCH. Pretreatment variables assessed included metabolic tumor volume (MTV) and total lesion glycolysis (TLG). Optimal cutoff points for progression-free survival (PFS) were determined by a machine learning approach. Univariate and multivariable models were constructed to assess associations between radiographic variables and PFS. At a median follow-up of 36.6 months (95% confidence interval, 28.1-45.1), 2-year PFS and overall survival rates for the 65 patients were 81.4% and 98.4%, respectively. Machine learning-derived thresholds for baseline MTV and TLG were associated with inferior PFS (elevated MTV: hazard ratio [HR], 11.5; P = .019; elevated TLG: HR, 8.99; P = .005); other pretreatment clinical factors, including International Prognostic Index and bulky (>10 cm) disease, were not. On multivariable analysis, only TLG retained statistical significance ( P = .049). Univariate analysis of posttreatment variables revealed that residual CT tumor volume, maximum standardized uptake value, and Deauville score were associated with PFS; a Deauville score of 5 remained significant on multivariable analysis ( P = .006). A model combining baseline TLG and end-of-therapy Deauville score identified patients at increased risk of progression. © 2018 by The American Society of Hematology.

  11. Micro-positron emission tomography/contrast-enhanced computed tomography imaging of orthotopic pancreatic tumor-bearing mice using the αvβ₃ integrin tracer ⁶⁴Cu-labeled cyclam-RAFT-c(-RGDfK-)₄.

    PubMed

    Aung, Winn; Jin, Zhao-Hui; Furukawa, Takako; Claron, Michael; Boturyn, Didier; Sogawa, Chizuru; Tsuji, Atsushi B; Wakizaka, Hidekatsu; Fukumura, Toshimitsu; Fujibayashi, Yasuhisa; Dumy, Pascal; Saga, Tsuneo

    2013-09-01

    The purpose of this study was to develop a clinically relevant orthotopic xenotransplantation model of pancreatic cancer and to perform a preclinical evaluation of a new positron emission tomography (PET) imaging probe, ⁶⁴Cu-labeled cyclam-RAFT-c(-RGDfK-)₄ peptide (⁶⁴Cu-RAFT-RGD), using this model. Varying degrees of αvβ₃ integrin expression in several human pancreatic cancer cell lines were examined by flow cytometry and Western blotting. The cell line BxPC-3, which is stably transfected with a red fluorescence protein (RFP), was used for surgical orthotopic implantation. Orthotopic xenograft was established in the pancreas of recipient nude mice. An in vivo probe biodistribution and receptor blocking study, preclinical PET imaging coregistered with contrast-enhanced computed tomography (CECT) comparing ⁶⁴Cu-RAFT-RGD and ¹⁸F-fluoro-2-deoxy-d-glucose (¹⁸F-FDG) accumulation in tumor, postimaging autoradiography, and histologic and immunohistochemical examinations were done. Biodistribution evaluation with a blocking study confirmed that efficient binding of probe to tumor is highly αvβ₃ integrin specific. ⁶⁴Cu-RAFT-RGD PET combined with CECT provided for precise and easy detection of cancer lesions. Autoradiography, histologic, and immunohistochemical examinations confirmed the accumulation of ⁶⁴Cu-RAFT-RGD in tumor versus nontumor tissues. In comparative PET studies, ⁶⁴Cu-RAFT-RGD accumulation provided better tumor contrast to background than ¹⁸F-FDG. Our results suggest that ⁶⁴Cu-RAFT-RGD PET imaging is potentially applicable for the diagnosis of αvβ₃ integrin-expressing pancreatic tumors.

  12. Viewing Welds By Computer Tomography

    NASA Technical Reports Server (NTRS)

    Pascua, Antonio G.; Roy, Jagatjit

    1990-01-01

    Computer tomography system used to inspect welds for root penetration. Source illuminates rotating welded part with fan-shaped beam of x rays or gamma rays. Detectors in circular array on opposite side of part intercept beam and convert it into electrical signals. Computer processes signals into image of cross section of weld. Image displayed on video monitor. System offers only nondestructive way to check penetration from outside when inner surfaces inaccessible.

  13. Comparison of computed tomography with radiography as a noninvasive diagnostic technique for chronic nasal disease in dogs.

    PubMed

    Codner, E C; Lurus, A G; Miller, J B; Gavin, P R; Gallina, A; Barbee, D D

    1993-04-01

    Computed tomography was evaluated as a noninvasive technique for the diagnosis of chronic nasal disease in dogs. Computed tomographic images, radiographs, and histopathologic findings were compared in 11 dogs with chronic nasal disease. Definitive diagnosis was made following traumatic nasal flush, exploratory surgery, or necropsy. The study included 8 dogs with intranasal tumors, 2 dogs with bacterial rhinitis (Pasteurella sp), and 1 dog with mycotic rhinitis (Aspergillus sp). Computed tomography was superior to radiography in defining the extent of the disease process and in differentiating infectious rhinitis from nasal neoplasms. It defined lesions in the palate, nasopharyngeal meatus, maxillary sinus, caudal ethmoturbinates, and periorbital tissues that were difficult to demonstrate by use of conventional radiography. Tumors appeared as space-occupying lesions that obliterated the turbinates, caused deviation of the nasal septum, and eroded bone. Rhinitis appeared as a cavitating lesion that spared the paranasal sinuses, thickened and distorted the turbinates, and widened the meatus. Although morphologically distinct on computed tomographic images, infectious rhinitis and nasal neoplasms could not be differentiated by attenuation measurements or degree of contrast enhancement. Computed tomography appeared to be a reliable, noninvasive technique for the diagnosis of chronic nasal disease in dogs, and a promising alternative to diagnostic techniques currently in use.

  14. The Collaborative Seismic Earth Model Project

    NASA Astrophysics Data System (ADS)

    Fichtner, A.; van Herwaarden, D. P.; Afanasiev, M.

    2017-12-01

    We present the first generation of the Collaborative Seismic Earth Model (CSEM). This effort is intended to address grand challenges in tomography that currently inhibit imaging the Earth's interior across the seismically accessible scales: [1] For decades to come, computational resources will remain insufficient for the exploitation of the full observable seismic bandwidth. [2] With the man power of individual research groups, only small fractions of available waveform data can be incorporated into seismic tomographies. [3] The limited incorporation of prior knowledge on 3D structure leads to slow progress and inefficient use of resources. The CSEM is a multi-scale model of global 3D Earth structure that evolves continuously through successive regional refinements. Taking the current state of the CSEM as initial model, these refinements are contributed by external collaborators, and used to advance the CSEM to the next state. This mode of operation allows the CSEM to [1] harness the distributed man and computing power of the community, [2] to make consistent use of prior knowledge, and [3] to combine different tomographic techniques, needed to cover the seismic data bandwidth. Furthermore, the CSEM has the potential to serve as a unified and accessible representation of tomographic Earth models. Generation 1 comprises around 15 regional tomographic refinements, computed with full-waveform inversion. These include continental-scale mantle models of North America, Australasia, Europe and the South Atlantic, as well as detailed regional models of the crust beneath the Iberian Peninsula and western Turkey. A global-scale full-waveform inversion ensures that regional refinements are consistent with whole-Earth structure. This first generation will serve as the basis for further automation and methodological improvements concerning validation and uncertainty quantification.

  15. What can we learn from in-soil imaging of a live plant: X-ray Computed Tomography and 3D numerical simulation of root-soil system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaofan; Varga, Tamas; Liu, Chongxuan

    Plant roots play a critical role in plant-soil-microbe interactions that occur in the rhizosphere, as well as processes with important implications to farming, forest management and climate change. X-ray computed tomography (XCT) has been proven to be an effective tool for non-invasive root imaging and analysis. A combination of XCT, open-source software, and our own code was used to noninvasively image a prairie dropseed (Sporobolus heterolepis) specimen, segment the root data to obtain a 3D image of the root structure at 31µm resolution, and extract quantitative information (root volume and surface area) from the 3D data, respectively. Based on themore » mesh generated from the root structure, computational fluid dynamics (CFD) simulations were applied to numerically investigate the root-soil-groundwater system. The plant root conductivity, soil hydraulic conductivity and transpiration rate were shown to control the groundwater distribution. The flow variability and soil water distributions under different scenarios were investigated. Parameterizations were evaluated to show their impacts on the average conductivity. The pore-scale modeling approach provides realistic simulations of rhizosphere flow processes and provides useful information that can be linked to upscaled models.« less

  16. Does albendazole affect seizure remission and computed tomography response in children with neurocysticercosis? A Systematic review and meta-analysis.

    PubMed

    Mazumdar, Maitreyi; Pandharipande, Pari; Poduri, Annapurna

    2007-02-01

    A recent trial suggested that albendazole reduces seizures in adults with neurocysticercosis. There is still no consensus regarding optimal management of neurocysticercosis in children. The authors conducted a systematic review and meta-analysis to assess the efficacy of albendazole in children with neurocysticercosis, by searching the Cochrane Databases, MEDLINE, EMBASE, and LILACS. Three reviewers extracted data using an intent-to-treat analysis. Random effects models were used to estimate relative risks. Four randomized trials were selected for meta-analysis, and 10 observational studies were selected for qualitative review. The relative risk of seizure remission in treatment versus control was 1.26 (1.09, 1.46). The relative risk of improvement in computed tomography in these trials was 1.15 (0.97, 1.36). Review of observational studies showed conflicting results, likely owing to preferential administration of albendazole to sicker children.

  17. The benefits of the Atlas of Human Cardiac Anatomy website for the design of cardiac devices.

    PubMed

    Spencer, Julianne H; Quill, Jason L; Bateman, Michael G; Eggen, Michael D; Howard, Stephen A; Goff, Ryan P; Howard, Brian T; Quallich, Stephen G; Iaizzo, Paul A

    2013-11-01

    This paper describes how the Atlas of Human Cardiac Anatomy website can be used to improve cardiac device design throughout the process of development. The Atlas is a free-access website featuring novel images of both functional and fixed human cardiac anatomy from over 250 human heart specimens. This website provides numerous educational tutorials on anatomy, physiology and various imaging modalities. For instance, the 'device tutorial' provides examples of devices that were either present at the time of in vitro reanimation or were subsequently delivered, including leads, catheters, valves, annuloplasty rings and stents. Another section of the website displays 3D models of the vasculature, blood volumes and/or tissue volumes reconstructed from computed tomography and magnetic resonance images of various heart specimens. The website shares library images, video clips and computed tomography and MRI DICOM files in honor of the generous gifts received from donors and their families.

  18. X-ray computed tomography to study rice (Oryza sativa L.) panicle development

    PubMed Central

    Jhala, Vibhuti M.; Thaker, Vrinda S.

    2015-01-01

    Computational tomography is an important technique for developing digital agricultural models that may help farmers and breeders for increasing crop quality and yield. In the present study an attempt has been made to understand rice seed development within the panicle at different developmental stages using this technique. During the first phase of cell division the Hounsfield Unit (HU) value remained low, increased in the dry matter accumulation phase, and finally reached a maximum at the maturation stage. HU value and seed dry weight showed a linear relationship in the varieties studied. This relationship was confirmed subsequently using seven other varieties. This is therefore an easy, simple, and non-invasive technique which may help breeders to select the best varieties. In addition, it may also help farmers to optimize post-anthesis agronomic practices as well as deciding the crop harvest time for higher grain yield. PMID:26265763

  19. Automated Analysis of CT Images for the Inspection of Hardwood Logs

    Treesearch

    Harbin Li; A. Lynn Abbott; Daniel L. Schmoldt

    1996-01-01

    This paper investigates several classifiers for labeling internal features of hardwood logs using computed tomography (CT) images. A primary motivation is to locate and classify internal defects so that an optimal cutting strategy can be chosen. Previous work has relied on combinations of low-level processing, image segmentation, autoregressive texture modeling, and...

  20. Analysis of HRCT-derived xylem network reveals reverse flow in some vessels

    USDA-ARS?s Scientific Manuscript database

    Flow in xylem vessels is modeled based on constructions of three dimensional xylem networks derived from High Resolution Computed Tomography (HRCT) images of grapevine (Vitis vinifera) stems. Flow in 6-14% of the vessels was found to be oriented in the opposite direction to the bulk flow under norma...

  1. [CONE BEAM COMPUTED TOMOGRAPHY IN DIAGNOSTICS OF ODONTOGENIC MAXILLARY SINUSITIS (CASE REPORTS)].

    PubMed

    Demidova, E; Khurdzidze, G

    2017-06-01

    Diagnostic studies performed by cone beam computed tomography Morita 3D made possible to obtain high resolution images of hard tissues of upper jawbone and maxillary sinus, to detect bony tissue defects, such as odontogenic cysts, cystogranulomas and granulomas. High-resolution and three dimensional tomographic image reconstructions allowed for optimal and prompt determination of the scope of surgical treatment and planning of effective conservative treatment regimen. Interactive diagnostics helped to estimate cosmetic and functional results of surgical treatment, to prevent the occurrence of surgical complications, and to evaluate the efficacy of conservative treatment. The obtained data contributed to determination of particular applications of cone beam computed tomography in the diagnosis of odontogenic maxillary sinusitis, detection of specific defects with cone beam tomography as the most informative method of diagnosis; as well as to determination of weak and strong sides, and helped to offer mechanisms of x-ray diagnostics to dental surgeons and ENT specialists.

  2. Dynamic contrast enhanced CT in nodule characterization: How we review and report.

    PubMed

    Qureshi, Nagmi R; Shah, Andrew; Eaton, Rosemary J; Miles, Ken; Gilbert, Fiona J

    2016-07-18

    Incidental indeterminate solitary pulmonary nodules (SPN) that measure less than 3 cm in size are an increasingly common finding on computed tomography (CT) worldwide. Once identified there are a number of imaging strategies that can be performed to help with nodule characterization. These include interval CT, dynamic contrast enhanced computed tomography (DCE-CT), (18)F-fluorodeoxyglucose positron emission tomography-computed tomography ((18)F-FDG-PET-CT). To date the most cost effective and efficient non-invasive test or combination of tests for optimal nodule characterization has yet to be determined.DCE-CT is a functional test that involves the acquisition of a dynamic series of images of a nodule before and following the administration of intravenous iodinated contrast medium. This article provides an overview of the current indications and limitations of DCE- CT in nodule characterization and a systematic approach to how to perform, analyse and interpret a DCE-CT scan.

  3. Evaluative studies in nuclear medicine research: emission computed tomography assessment. Final report, January 1-December 31, 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potchen, E.J.; Harris, G.I.; Gift, D.A.

    The report provides information on an assessment of the potential short and long term benefits of emission computed tomography (ECT) in biomedical research and patient care. Work during the past year has been augmented by the development and use of an opinion survey instrument to reach a wider representation of knowledgeable investigators and users of this technology. This survey instrument is reproduced in an appendix. Information derived from analysis of the opinion survey, and used in conjunction with results of independent staff studies of available sources, provides the basis for the discussions given in following sections of PET applications inmore » the brain, of technical factors, and of economic implications. Projections of capital and operating costs on a per study basis were obtained from a computerized, pro forma accounting model and are compared with the survey cost estimates for both research and clinical modes of application. The results of a cash-flow model analysis of the relationship between projected economic benefit of PET research to disease management and the costs associated with such research are presented and discussed.« less

  4. Three-dimensional electrical impedance tomography based on the complete electrode model.

    PubMed

    Vauhkonen, P J; Vauhkonen, M; Savolainen, T; Kaipio, J P

    1999-09-01

    In electrical impedance tomography an approximation for the internal resistivity distribution is computed based on the knowledge of the injected currents and measured voltages on the surface of the body. It is often assumed that the injected currents are confined to the two-dimensional (2-D) electrode plane and the reconstruction is based on 2-D assumptions. However, the currents spread out in three dimensions and, therefore, off-plane structures have significant effect on the reconstructed images. In this paper we propose a finite element-based method for the reconstruction of three-dimensional resistivity distributions. The proposed method is based on the so-called complete electrode model that takes into account the presence of the electrodes and the contact impedances. Both the forward and the inverse problems are discussed and results from static and dynamic (difference) reconstructions with real measurement data are given. It is shown that in phantom experiments with accurate finite element computations it is possible to obtain static images that are comparable with difference images that are reconstructed from the same object with the empty (saline filled) tank as a reference.

  5. Geometrical analysis of woven fabric microstructure based on micron-resolution computed tomography data

    NASA Astrophysics Data System (ADS)

    Krieger, Helga; Seide, Gunnar; Gries, Thomas; Stapleton, Scott E.

    2018-04-01

    The global mechanical properties of textiles such as elasticity and strength, as well as transport properties such as permeability depend strongly on the microstructure of the textile. Textiles are heterogeneous structures with highly anisotropic material properties, including local fiber orientation and local fiber volume fraction. In this paper, an algorithm is presented to generate a virtual 3D-model of a woven fabric architecture with information about the local fiber orientation and the local fiber volume fraction. The geometric data of the woven fabric impregnated with resin was obtained by micron-resolution computed tomography (μCT). The volumetric μCT-scan was discretized into cells and the microstructure of each cell was analyzed and homogenized. Furthermore, the discretized data was used to calculate the local permeability tensors of each cell. An example application of the analyzed data is the simulation of the resin flow through a woven fabric based on the determined local permeability tensors and on Darcy's law. The presented algorithm is an automated and robust method of going from μCT-scans to structural or flow models.

  6. The conclusiveness of less-invasive imaging techniques (computer tomography, X-ray) with regard to their identification of bone diseases in a primate model (Callithrix jacchus).

    PubMed

    Grohmann, J; Taetzner, S; Theuss, T; Kuehnel, F; Buchwald, U; Einspanier, A

    2012-04-01

    Although common marmosets seem to be appropriate animal models to examine bone diseases, no data about the conclusiveness of less-invasive techniques are available. Therefore, the aim was to combine different techniques to analyse changes in bone metabolism of common marmosets with bone diseases. Five monkeys were examined by X-ray, computer tomography (CT), histology and immunohistochemistry (IHC). Monkeys with lowest bone mineral density (BMD) showed increased bone marrow, decreased cancellous bone and decreased contrast in X-ray. Highest alkaline phosphatase (AP)-levels were detected in bones with low elastic modulus. Expression of osteopontin (OPN), osteocalcin (OC) and runt-related transcriptions factor 2 (RUNX 2) was detected in bones with high modulus. No expression was present in bones with lower modulus. Collagen type I and V were found in every bone. In conclusion, CT, X-ray and AP are useful techniques to detect bone diseases in common marmosets. These observations could be confirmed by IHC. © 2012 John Wiley & Sons A/S.

  7. Examination of Scanning Electron Microscope and Computed Tomography Images of PICA

    NASA Technical Reports Server (NTRS)

    Lawson, John W.; Stackpoole, Margaret M.; Shklover, Valery

    2010-01-01

    Micrographs of PICA (Phenolic Impregnated Carbon Ablator) taken using a Scanning Electron Microscope (SEM) and 3D images taken with a Computed Tomography (CT) system are examined. PICA is a carbon fiber based composite (Fiberform ) with a phenolic polymer matrix. The micrographs are taken at different surface depths and at different magnifications in a sample after arc jet testing and show different levels of oxidative removal of the charred matrix (Figs 1 though 13). CT scans, courtesy of Xradia, Inc. of Concord CA, were captured for samples of virgin PICA, charred PICA and raw Fiberform (Fig. 14). We use these images to calculate the thermal conductivity (TC) of these materials using correlation function (CF) methods. CF methods give a mathematical description of how one material is embedded in another and is thus ideally suited for modeling composites like PICA. We will evaluate how the TC of the materials changes as a function of surface depth. This work is in collaboration with ETH-Zurich, which has expertise in high temperature materials and TC modeling (including CF methods).

  8. Performance and scalability of Fourier domain optical coherence tomography acceleration using graphics processing units.

    PubMed

    Li, Jian; Bloch, Pavel; Xu, Jing; Sarunic, Marinko V; Shannon, Lesley

    2011-05-01

    Fourier domain optical coherence tomography (FD-OCT) provides faster line rates, better resolution, and higher sensitivity for noninvasive, in vivo biomedical imaging compared to traditional time domain OCT (TD-OCT). However, because the signal processing for FD-OCT is computationally intensive, real-time FD-OCT applications demand powerful computing platforms to deliver acceptable performance. Graphics processing units (GPUs) have been used as coprocessors to accelerate FD-OCT by leveraging their relatively simple programming model to exploit thread-level parallelism. Unfortunately, GPUs do not "share" memory with their host processors, requiring additional data transfers between the GPU and CPU. In this paper, we implement a complete FD-OCT accelerator on a consumer grade GPU/CPU platform. Our data acquisition system uses spectrometer-based detection and a dual-arm interferometer topology with numerical dispersion compensation for retinal imaging. We demonstrate that the maximum line rate is dictated by the memory transfer time and not the processing time due to the GPU platform's memory model. Finally, we discuss how the performance trends of GPU-based accelerators compare to the expected future requirements of FD-OCT data rates.

  9. Three dimensional computed tomography lung modeling is useful in simulation and navigation of lung cancer surgery.

    PubMed

    Ikeda, Norihiko; Yoshimura, Akinobu; Hagiwara, Masaru; Akata, Soichi; Saji, Hisashi

    2013-01-01

    The number of minimally invasive operations, such as video-assisted thoracoscopic surgery (VATS) lobectomy or segmentectomy, has enormously increased in recent years. These operations require extreme knowledge of the anatomy of pulmonary vessels and bronchi in each patient, and surgeons must carefully dissect the branches of pulmonary vessels during operation. Thus, foreknowledge of the anatomy of each patient would greatly contribute to the safety and accuracy of the operation. The development of multi-detector computed tomography (MDCT) has promoted three dimensional (3D) images of lung structures. It is possible to see the vascular and bronchial structures from the view of the operator; therefore, it is employed for preoperative simulation as well as navigation during operation. Due to advances in software, even small vessels can be accurately imaged, which is useful in performing segmentectomy. Surgical simulation and navigation systems based on high quality 3D lung modeling, including vascular and bronchial structures, can be used routinely to enhance the safety operation, education of junior staff, as well as providing a greater sense of security to the operators.

  10. Density conversion factor determined using a cone-beam computed tomography unit NewTom QR-DVT 9000.

    PubMed

    Lagravère, M O; Fang, Y; Carey, J; Toogood, R W; Packota, G V; Major, P W

    2006-11-01

    The purpose of this study was to determine a conversion coefficient for Hounsfield Units (HU) to material density (g cm(-3)) obtained from cone-beam computed tomography (CBCT-NewTom QR-DVT 9000) data. Six cylindrical models of materials with different densities were made and scanned using the NewTom QR-DVT 9000 Volume Scanner. The raw data were converted into DICOM format and analysed using Merge eFilm and AMIRA to determine the HU of different areas of the models. There was no significant difference (P = 0.846) between the HU given by each piece of software. A linear regression was performed using the density, rho (g cm(-3)), as the dependent variable in terms of the HU (H). The regression equation obtained was rho = 0.002H-0.381 with an R2 value of 0.986. The standard error of the estimation is 27.104 HU in the case of the Hounsfield Units and 0.064 g cm(-3) in the case of density. CBCT provides an effective option for determination of material density expressed as Hounsfield Units.

  11. Beam hardening correction for interior tomography based on exponential formed model and radon inversion transform

    NASA Astrophysics Data System (ADS)

    Chen, Siyu; Zhang, Hanming; Li, Lei; Xi, Xiaoqi; Han, Yu; Yan, Bin

    2016-10-01

    X-ray computed tomography (CT) has been extensively applied in industrial non-destructive testing (NDT). However, in practical applications, the X-ray beam polychromaticity often results in beam hardening problems for image reconstruction. The beam hardening artifacts, which manifested as cupping, streaks and flares, not only debase the image quality, but also disturb the subsequent analyses. Unfortunately, conventional CT scanning requires that the scanned object is completely covered by the field of view (FOV), the state-of-art beam hardening correction methods only consider the ideal scanning configuration, and often suffer problems for interior tomography due to the projection truncation. Aiming at this problem, this paper proposed a beam hardening correction method based on radon inversion transform for interior tomography. Experimental results show that, compared to the conventional correction algorithms, the proposed approach has achieved excellent performance in both beam hardening artifacts reduction and truncation artifacts suppression. Therefore, the presented method has vitally theoretic and practicable meaning in artifacts correction of industrial CT.

  12. Radiation dose reduction in abdominal computed tomography during the late hepatic arterial phase using a model-based iterative reconstruction algorithm: how low can we go?

    PubMed

    Husarik, Daniela B; Marin, Daniele; Samei, Ehsan; Richard, Samuel; Chen, Baiyu; Jaffe, Tracy A; Bashir, Mustafa R; Nelson, Rendon C

    2012-08-01

    The aim of this study was to compare the image quality of abdominal computed tomography scans in an anthropomorphic phantom acquired at different radiation dose levels where each raw data set is reconstructed with both a standard convolution filtered back projection (FBP) and a full model-based iterative reconstruction (MBIR) algorithm. An anthropomorphic phantom in 3 sizes was used with a custom-built liver insert simulating late hepatic arterial enhancement and containing hypervascular liver lesions of various sizes. Imaging was performed on a 64-section multidetector-row computed tomography scanner (Discovery CT750 HD; GE Healthcare, Waukesha, WI) at 3 different tube voltages for each patient size and 5 incrementally decreasing tube current-time products for each tube voltage. Quantitative analysis consisted of contrast-to-noise ratio calculations and image noise assessment. Qualitative image analysis was performed by 3 independent radiologists rating subjective image quality and lesion conspicuity. Contrast-to-noise ratio was significantly higher and mean image noise was significantly lower on MBIR images than on FBP images in all patient sizes, at all tube voltage settings, and all radiation dose levels (P < 0.05). Overall image quality and lesion conspicuity were rated higher for MBIR images compared with FBP images at all radiation dose levels. Image quality and lesion conspicuity on 25% to 50% dose MBIR images were rated equal to full-dose FBP images. This phantom study suggests that depending on patient size, clinically acceptable image quality of the liver in the late hepatic arterial phase can be achieved with MBIR at approximately 50% lower radiation dose compared with FBP.

  13. Multi-material decomposition of spectral CT images

    NASA Astrophysics Data System (ADS)

    Mendonça, Paulo R. S.; Bhotika, Rahul; Maddah, Mahnaz; Thomsen, Brian; Dutta, Sandeep; Licato, Paul E.; Joshi, Mukta C.

    2010-04-01

    Spectral Computed Tomography (Spectral CT), and in particular fast kVp switching dual-energy computed tomography, is an imaging modality that extends the capabilities of conventional computed tomography (CT). Spectral CT enables the estimation of the full linear attenuation curve of the imaged subject at each voxel in the CT volume, instead of a scalar image in Hounsfield units. Because the space of linear attenuation curves in the energy ranges of medical applications can be accurately described through a two-dimensional manifold, this decomposition procedure would be, in principle, limited to two materials. This paper describes an algorithm that overcomes this limitation, allowing for the estimation of N-tuples of material-decomposed images. The algorithm works by assuming that the mixing of substances and tissue types in the human body has the physicochemical properties of an ideal solution, which yields a model for the density of the imaged material mix. Under this model the mass attenuation curve of each voxel in the image can be estimated, immediately resulting in a material-decomposed image triplet. Decomposition into an arbitrary number of pre-selected materials can be achieved by automatically selecting adequate triplets from an application-specific material library. The decomposition is expressed in terms of the volume fractions of each constituent material in the mix; this provides for a straightforward, physically meaningful interpretation of the data. One important application of this technique is in the digital removal of contrast agent from a dual-energy exam, producing a virtual nonenhanced image, as well as in the quantification of the concentration of contrast observed in a targeted region, thus providing an accurate measure of tissue perfusion.

  14. Flat-detector computed tomography evaluation in an experimental animal aneurysm model after endovascular treatment: A pilot study.

    PubMed

    Ott, Sabine; Gölitz, Philipp; Adamek, Edyta; Royalty, Kevin; Doerfler, Arnd; Struffert, Tobias

    2015-08-01

    We compared flat-detector computed tomography angiography (FD-CTA) to multislice computed tomography (MS-CTA) and digital subtracted angiography (DSA) for the visualization of experimental aneurysms treated with stents, coils or a combination of both.In 20 rabbits, aneurysms were created using the rabbit elastase aneurysm model. Seven aneurysms were treated with coils, seven with coils and stents, and six with self-expandable stents alone. Imaging was performed by DSA, MS-CTA and FD-CTA immediately after treatment. Multiplanar reconstruction (MPR) was performed and two experienced reviewers compared aneurysm/coil package size, aneurysm occlusion, stent diameters and artifacts for each modality.In aneurysms treated with stents alone, the visualization of the aneurysms was identical in all three imaging modalities. Residual aneurysm perfusion was present in two cases and visible in DSA and FD-CTA but not in MS-CTA. The diameter of coil-packages was overestimated in MS-CT by 56% and only by 16% in FD-CTA compared to DSA (p < 0.05). The diameter of stents was identical for DSA and FD-CTA and was significantly overestimated in MS-CTA (p < 0.05). Beam/metal hardening artifacts impaired image quality more severely in MS-CTA compared to FD-CTA.MS-CTA is impaired by blooming and beam/metal hardening artifacts in the visualization of implanted devices. There was no significant difference between measurements made with noninvasive FD-CTA compared to gold standard of DSA after stenting and after coiling/stent-assisted coiling of aneurysms. FD-CTA may be considered as a non-invasive alternative to the gold standard 2D DSA in selected patients that require follow up imaging after stenting. © The Author(s) 2015.

  15. Usefulness of computed tomography in pre-surgical evaluation of maxillo-facial pathology with rapid prototyping and surgical pre-planning by virtual reality.

    PubMed

    Toso, Francesco; Zuiani, Chiara; Vergendo, Maurizio; Salvo, Iolanda; Robiony, Massimo; Politi, Massimo; Bazzocchi, Massimo

    2005-01-01

    To validate a protocol for creating virtual models to be used in the construction of solid prototypes useful for the planning-simulation of maxillo-facial surgery, in particular for very complex anatomic and pathologic problems. To optimize communications between the radiology, engineering and surgical laboratories. We studied 16 patients with different clinical problems of the maxillo-facial district. Exams were performed with multidetector computed tomography (MDCT) and single slice computed tomography (SDCT) with axial scans and collimation of 0.5-2 mm, and reconstruction interval of 1 mm. Subsequently we performed 2D multiplanar reconstructions and 3D volume-rendering reconstructions. We exported the DICOM images to the engineering laboratory, to recognize and isolate the bony structures by software. With these data the solid prototypes were generated using stereolitography. To date, surgery has been preformed on 12 patients after simulation of the procedure on the stereolithographyc model. The solid prototypes constructed in the difficult cases were sufficiently detailed despite problems related to the artefacts generated by dental fillings an d prostheses. In the remaining cases the MPR/3D images were sufficiently detailed for surgical planning. The surgical results were excellent in all patients who underwent surgery, and the surgeons were satisfied with the improvement in quality and the reduction in time required for the procedure. MDCT enables rapid prototyping using solid replication, which was very helpful in maxillo-facial surgery, despite problems related to artifacts due to dental fillings and prosthesis within the acquisition field; solutions for this problem are work in progress. The protocol used for communication between the different laboratories was valid and reproducible.

  16. Current problems in applied mathematics and mathematical physics

    NASA Astrophysics Data System (ADS)

    Samarskii, A. A.

    Papers are presented on such topics as mathematical models in immunology, mathematical problems of medical computer tomography, classical orthogonal polynomials depending on a discrete variable, and boundary layer methods for singular perturbation problems in partial derivatives. Consideration is also given to the computer simulation of supernova explosion, nonstationary internal waves in a stratified fluid, the description of turbulent flows by unsteady solutions of the Navier-Stokes equations, and the reduced Galerkin method for external diffraction problems using the spline approximation of fields.

  17. Classification of biological micro-objects using optical coherence tomography: in silico study

    PubMed Central

    Ossowski, Paweł; Wojtkowski, Maciej; Munro, Peter RT

    2017-01-01

    We report on the development of a technique for differentiating between biological micro-objects using a rigorous, full-wave model of OCT image formation. We model an existing experimental prototype which uses OCT to interrogate a microfluidic chip containing the blood cells. A full-wave model is required since the technique uses light back-scattered by a scattering substrate, rather than by the cells directly. The light back-scattered by the substrate is perturbed upon propagation through the cells, which flow between the substrate and imaging system’s objective lens. We present the key elements of the 3D, Maxwell equation-based computational model, the key findings of the computational study and a comparison with experimental results. PMID:28856039

  18. Classification of biological micro-objects using optical coherence tomography: in silico study.

    PubMed

    Ossowski, Paweł; Wojtkowski, Maciej; Munro, Peter Rt

    2017-08-01

    We report on the development of a technique for differentiating between biological micro-objects using a rigorous, full-wave model of OCT image formation. We model an existing experimental prototype which uses OCT to interrogate a microfluidic chip containing the blood cells. A full-wave model is required since the technique uses light back-scattered by a scattering substrate, rather than by the cells directly. The light back-scattered by the substrate is perturbed upon propagation through the cells, which flow between the substrate and imaging system's objective lens. We present the key elements of the 3D, Maxwell equation-based computational model, the key findings of the computational study and a comparison with experimental results.

  19. Differentiation of low-attenuation intracranial hemorrhage and calcification using dual-energy computed tomography in a phantom system

    PubMed Central

    Nute, Jessica L.; Roux, Lucia Le; Chandler, Adam G.; Baladandayuthapani, Veera; Schellingerhout, Dawid; Cody, Dianna D.

    2015-01-01

    Objectives Calcific and hemorrhagic intracranial lesions with attenuation levels of <100 Hounsfield Units (HU) cannot currently be reliably differentiated by single-energy computed tomography (SECT). The proper differentiation of these lesion types would have a multitude of clinical applications. A phantom model was used to test the ability of dual-energy CT (DECT) to differentiate such lesions. Materials and Methods Agar gel-bound ferric oxide and hydroxyapatite were used to model hemorrhage and calcification, respectively. Gel models were scanned using SECT and DECT and organized into SECT attenuation-matched pairs at 16 attenuation levels between 0 and 100 HU. DECT data were analyzed using 3D Gaussian mixture models (GMMs), as well as a simplified threshold plane metric derived from the 3D GMM, to assign voxels to hemorrhagic or calcific categories. Accuracy was calculated by comparing predicted voxel assignments with actual voxel identities. Results We measured 6,032 voxels from each gel model, for a total of 193,024 data points (16 matched model pairs). Both the 3D GMM and its more clinically implementable threshold plane derivative yielded similar results, with >90% accuracy at matched SECT attenuation levels ≥50 HU. Conclusions Hemorrhagic and calcific lesions with attenuation levels between 50 and 100 HU were differentiable using DECT in a clinically relevant phantom system with >90% accuracy. This method warrants further testing for potential clinical applications. PMID:25162534

  20. Non-invasive detection of the early phase of kidney injury by photoacoustic/computed tomography imaging.

    PubMed

    Pan, Wanma; Peng, Wen; Ning, Fengling; Zhang, Yu; Zhang, Yunfei; Wang, Yinhang; Xie, Weiyi; Zhang, Jing; Xin, Hong; Li, Cong; Zhang, Xuemei

    2018-06-29

    The early diagnosis of kidney diseases, which can remarkably impair the quality of life and are costly, has encountered great difficulties. Therefore, the development of methods for early diagnosis has great clinical significance. In this study, we used an emerging technique of photoacoustic (PA) imaging, which has relatively high spatial resolution and good imaging depth. Two kinds of PA gold nanoparticle (GNP)-based bioprobes were developed based on their superior photo detectability, size controllability and biocompatibility. The kidney injury mouse model was developed by unilateral ureteral obstruction for 96 h and the release of obstruction model). Giving 3.5 and 5.5 nm bioprobes by tail vein injection, we found that the 5.5 nm probe could be detected in the bladder in the model group, but not in the control group. These results were confirmed by computed tomography imaging. Furthermore, the model group did not show changes in the blood biochemical indices (BUN and Scr) and histologic examination. The 5.5 nm GNPs were found to be the critical point for early diagnosis of kidney injury. This new method was faster and more sensitive and accurate for the detection of renal injury, compared with conventional methods, and can be used for the development of a PA GNP-based bioprobe for diagnosing renal injury.

Top